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Abstract 

Two complementary methodologies for extracting useful insights into electronic structure and bonding 

from contemporary wavefunctions are compared. The first of these, known as the analysis of domain-

averaged Fermi holes (DAFH) mostly provides visually appealing descriptions of the role and the extent 

of electron sharing in chemical bonding. The second one, known as the fragment, atom, localized, 

delocalized and interatomic (FALDI) charge density decomposition scheme, uses the partitioning of 

certain localization and delocalization indices to focus on highly visual contributions associated with 

individual domains and with pairs of domains, respectively. Four variants of a FALDI-like approach are 

investigated here in some detail, mostly to establish which of them are the most reliable and the most 

informative. In addition to ‘full’ calculations that use the correlated pair density, the consequences for 

the DAFH and FALDI-like procedures of using instead a popular one-electron approximation are 

explored. Additionally, the geometry dependence of the degree of acceptability of the errors that this 

introduces for delocalization indices is assessed for different formal bond multiplicities. The familiar 

molecular test systems employed for these various linked investigations are the breaking of the bonds in 

H2 and in N2, as well as the nature of the bonding in B2H6, as a simple example of multicenter bonding. 

One of the key outcomes of this study is a clear understanding of how DAFH analysis and a particular 

variant of FALDI-like analysis could be most profitably deployed to extract complementary insights into 

more complex and/or controversial bonding situations. 

Keywords Fragment, atom, localized, delocalized and interatomic (FALDI) charge density 

decomposition • Domain-averaged Fermi hole (DAFH) analysis • Shared-electron distribution index 

(SEDI) • One-electron approximation • Pair density 
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1 Introduction 

Advances in understanding electronic structure and bonding continue to rely not only upon the 

development and application of computational strategies for carrying out accurate calculations, but also 

upon the development and application of reliable techniques for extracting useful insights from 

contemporary calculations. Some six decades ago, Charles Coulson suggested that a key role of quantum 

chemistry is to understand concepts and to show what are the essential features of chemical behavior [1] 

and the motto of Richard Hamming’s textbook on numerical methods is that the purpose of computing 

is insight, not numbers [2]. Eugene Wigner has often been quoted as saying: “It is nice to know that the 

computer understands the problem. But I would like to understand it too.” Somewhat more recently, 

Frank Neese and co-workers have reminded all of us that nowadays we need both the insights and the 

numbers [3]. 

Unsurprisingly an impressive array of techniques has been developed for extracting useful chemical 

insights from contemporary calculations, even though some of the most useful concepts in electronic 

structure and bonding do tend to be difficult to pin down with unambiguous precise definitions. Examples 

of such broad families of approaches include various energy partitioning schemes, those which rely on 

partitioning densities and/or density matrices, conceptual density functional theory, and procedures for 

extracting descriptions of the valence bond type, just to mention but a few. Often it turns out that 

combinations of techniques give the most useful and reliable insights, with one such example being 

EDA-NOCV [4,5] which combines a particular form of energy decomposition analysis with highly visual 

natural orbitals for chemical valence. In the present work we focus on two methodologies that are linked 

to the partitioning of density matrices, with one of the aims being to find a combination in which they 

provide complementary useful information. 

The two methodologies considered here have both proved to be particularly useful for visualizing the 

actual bonding situation in molecular systems. One of them is domain-averaged Fermi hole (DAFH) 

analysis [6-14] which is especially useful for the manner in which it depicts the role and the extent of 

electron sharing in bonding situations. The other is linked to the original fragment, atom, localized, 

delocalized and interatomic (FALDI) charge density decomposition scheme [15-19]. The FALDI scheme 

provides, amongst other things, information about the partitioning of shared electrons into the 

contributions of individual bonded atoms. 

In essence DAFH analysis involves integration over a chosen domain of one of the electron 

coordinates in the exchange–correlation density, 𝜌xc(𝐫1, 𝐫2), so as to generate a one-electron quantity that 

can loosely be labelled a ‘hole’. Although the eigenvectors and associated eigenvalues of a matrix 
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representation of that ‘hole’ could in principle be interpreted directly as domain natural orbitals, they are 

more usually transformed using an isopycnic (meaning ‘same density’) localization procedure [20]. 

Examination of the forms of the resulting (nonorthogonal) one-electron DAFH functions and their 

corresponding occupation numbers then provides highly visual interpretations of chemical bonding. In 

general it proves to be particularly useful to perform DAFH analysis for ‘holes’ that are averaged over 

(combinations of) individual quantum theory of atoms in molecules (QTAIM) [21] domains. 

Except for the special case of closed-shell restricted Hartree-Fock wavefunctions, the actual 

construction of 𝜌xc(𝐫1, 𝐫2) does of course require use of the pair density, which is not always readily 

available. Fortunately it has been shown that the significant simplifications that arise from the use instead 

of a convenient one-electron approximation do not lead to significant changes in the forms of the 

dominant DAFH functions [22], but there are modest changes to the associated occupation numbers. 

Integration of the ‘hole’ over the same or a different domain generates quantities known as localization 

and delocalization indices [23], respectively. Bader argued that the information provided by these 

delocalization indices is independent of any association with chemical bonding between the atoms 

involved and, as such, the delocalization index should not be identified as a bond order [23]. Furthermore, 

it was argued that the delocalization index does not determine the number of Lewis-bonded pairs [23], 

except in the special case of equally-shared electron pairs. Nonetheless such delocalization indices have 

been widely used as bond orders or as surrogates for bond orders in a wide variety of applications. In 

particular, it has been strongly suggested relatively recently in a study of nearly 200 inorganic and organic 

molecules that such delocalization measures in real space could be used to revitalize the whole concept 

of bond order [24]. 

Whether or not it should actually be considered a bond order, the delocalization index is clearly an 

example of an electron sharing index [25], quantifying the extent of the sharing of the electron 

distribution between two QTAIM domains. Accordingly we have chosen to use instead the term shared-

electron distribution index (SEDI) [26], thereby also avoiding any possible confusion with alternative 

delocalization measures or electron sharing indices. Indeed, purely for convenience, we will refer to the 

corresponding localization indices as diagonal SEDI values, whereas the off-diagonal ones are of course 

delocalization indices. It proves straightforward to resolve such values of SEDI into contributions that 

involve individual DAFH functions [27] (see also [12,13]). 

The original FALDI scheme [15-19] quantifies pseudo-second-order contributions arising from 

electrons within QTAIM domains. One of its outcomes is in essence a means of visualizing SEDI values 

(albeit calculated within the usual one-electron approximation) in terms of sets of one-electron functions 

and their associated eigenvalues. We note that it has been found that whereas the significant 
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simplifications provided by the one-electron approximation introduce errors in off-diagonal SEDI values 

that are less than 5% for many bonds, the corresponding errors for high bond multiplicities, such as the 

formal triple bonds in N2 and HCN, can exceed 10% [24]. Provided that it is readily available, it would 

of course be straightforward to avoid the one-electron approximation that is implicit in the original 

formulations of FALDI [15-19] by using instead the actual pair density; we could also choose to localize 

the resulting one-electron functions by means of an isopycnic transformation [20], exactly as in DAFH 

analysis. The variants of FALDI considered here have been labelled FALDI-like, to distinguish them 

from the original, but it is our expectation that any lessons learnt here can be carried back to the original 

formulation. 

The main purpose of the present work is to try to provide answers to a series of interrelated questions 

associated with DAFH analysis, the FALDI-like approach and SEDI values: 

• For the different variants of the FALDI-like approach, as explained later, which are the most useful? 

• How similar/different are the functions generated by the DAFH and FALDI-like approaches for a 

particular molecule at a given level of theory and how similar/different are the corresponding 

eigenvalues? 

• Is there a combination of the DAFH and FALDI-like approaches in which they provide 

complementary useful information? 

• Can the FALDI-like approach give a more compact (or more ‘efficient’) expansion of SEDI values 

than does DAFH analysis? 

• Given the extent to which use of the usual one-electron approximation has been shown to affect SEDI 

values [24], would its use in the DAFH and FALDI-like approaches affect also the relative importance 

of the different functions in the expansions of SEDI values? 

• Do the answers to any of the above questions depend on the formal bond multiplicity and do any of 

the answers change for a given system when nuclear separations are increased/decreased? 

Along the way we also examine for representative systems the extent to which the accuracy of the one-

electron approximation for calculating SEDI values varies with nuclear separation. 

2 Theoretical and computational details 

A convenient starting point for introducing DAFH analysis is to define the ‘hole’ 𝑔Ω for a particular 

domain Ω as follows: 
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𝑔Ω(𝒓1, 𝒓1
′ ) = ∫ 𝜌xc(𝒓1, 𝒓1

′ ; 𝒓2, 𝒓2
′ )𝑑𝒓2

𝒓2=𝒓2
′

Ω

 

 
= 𝜌(1)(𝒓1, 𝒓1

′ ) ∫ 𝜌(1)(𝒓2, 𝒓2
′ )𝑑𝒓2

𝒓2=𝒓2
′

Ω

− 2 × ∫ 𝜌(2)(𝒓1, 𝒓1
′ ; 𝒓2, 𝒓2

′ )𝑑𝒓2

𝒓2=𝒓2
′

Ω

 

 ≡ ∑ ∑ 𝜙𝐼(𝒓1)𝐺Ω(𝐼, 𝐽)𝜙𝐽(𝒓1
′ )

𝐽𝐼

 

(1) 

in which ρ(1) and ρ(2) are spinless one- and two-electron densities and the 𝜙𝐼 are (real) orthonormal natural 

orbitals with occupation numbers 𝜔𝐼. It is straightforward to construct this matrix representation GΩ of 

the ‘hole’ 𝑔Ω by combining elements of the (spinless) one- and two-electron density matrices, expressed 

in this natural orbital basis, with so-called domain-condensed overlap integrals: 

𝑆Ω(𝐼, 𝐽) = ∫ 𝜙𝐼(𝒓1)𝜙𝐽(𝒓1)𝑑𝒓1

Ω

 

(2) 

A convenient one-electron approximation that can be traced back to work by Müller [28], as well as 

to certain bond orders introduced by Fulton [29], has been rediscovered many times and continues to be 

used for various purposes, especially when the two-electron density is not readily available. This one-

electron approximation, which is exact in the special case of closed-shell restricted Hartree-Fock 

wavefunctions, effectively reduces the expression for 𝐺Ω(𝐼, 𝐽) to √𝜔𝐼𝜔𝐽𝑆Ω(𝐼, 𝐽). 

Whether we do the full calculation using the pair density or we use instead the much simpler form 

based on the one-electron approximation mentioned above, the eigenvectors and eigenvalues of GΩ are 

transformed using an implementation of Cioslowski’s isopycnic localization procedure [20], resulting 

for the chosen domain Ω in a set of (real) DAFH functions 𝜑𝑖Ω with occupation numbers 𝑛𝑖Ω. In effect, 

the so-called ‘hole’ gΩ for domain Ω has been re-expressed in the following simple form 

𝑔Ω(𝒓1, 𝒓1
′ ) = ∑ 𝑛𝑖Ω𝜑𝑖Ω(𝒓1)𝜑𝑖Ω(𝒓1

′ )

𝑖

= ∑ (𝑛𝑖Ω ∑ 𝑑𝑖Ω𝐽𝑑𝑖Ω𝐼𝜙𝐼(𝒓)𝜙𝐽(𝒓1
′ )

𝐼,𝐽

)

𝑖

 

(3) 
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in which the 𝑑𝑖Ω𝐼 are the expansion coefficient of the DAFH functions 𝜑𝑖Ω in the basis of the natural 

orbitals 𝜙𝐼: 

𝜑𝑖Ω(𝒓) = ∑ 𝑑𝑖Ω𝐼

𝐼

𝜙𝐼(𝒓) 

(4) 

It is the inspection of visual depictions of the DAFH functions 𝜑𝑖Ω for various domains in the 

molecule, alongside a consideration of the corresponding occupation numbers 𝑛𝑖Ω, which provides 

insights into the chemical bonding, including direct links to familiar chemical concepts such as bonds, 

lone pairs and so on. The DAFH analysis detects any electron pairs that remain intact within a given 

domain and provides information about the broken or dangling valences that are created by the (formal) 

bond splitting that would be required to isolate that domain from the rest of the molecule. It 

straightforwardly elucidates the manner and the extent to which the electrons associated with a given 

domain (often an atom) are involved in interactions with those for other domains in the molecule. 

As was mentioned in the Introduction, further integration of 𝑔Ω over the same or a different domain 

generates localization and delocalization indices, respectively. Specifically, we may write: 

𝑘ΩΩ′ = ∫ 𝑔Ω(𝒓1, 𝒓1
′ ) 𝑑𝒓1

𝒓1=𝒓1
′

Ω′

= ∑ 𝐺Ω(𝐼, 𝐽)𝑆Ω′(𝐼, 𝐽)

𝐼,𝐽

= 𝑇𝑟𝑎𝑐𝑒(GΩSΩ′) 

(5) 

and then define ‘diagonal’ (i.e. one-domain) elements SEDI(Ω, Ω) = 𝑘ΩΩ and the corresponding off-

diagonal (i.e. two-domain) quantities SEDI(Ω, Ω′) = 𝑘ΩΩ′ + 𝑘Ω′Ω. It follows from equations 3 and 5 that 

the values of 𝑘ΩΩ and 𝑘ΩΩ′ (and thus SEDI) can straightforwardly be expressed [27] (see also [12,13]) 

as the simple summation of terms 𝑃𝑖 that involve individual DAFH functions 𝜑𝑖Ω. These 𝑃𝑖 are very 

straightforward to compute given the following expression: 

𝑃𝑖(Ω, Ω′) = 𝑛𝑖Ω ∑ 𝑑𝑖Ω𝐼𝑑𝑖Ω𝐽𝑆Ω′(𝐼, 𝐽)

𝐼,𝐽

 

(6) 

We turn now to the FALDI-like approach, which involves the generation of the eigenfunctions and 

corresponding eigenvalues of GΩSΩ′ rather than those of GΩ. Whereas the matrices GΩ and SΩ′ are 

symmetric, their product GΩSΩ′ need not be (unless GΩ and SΩ′ commute) and so GΩSΩ′ can exhibit 

different sets of left- and right-hand eigenvectors, albeit with the same eigenvalues. Instead of solving 

directly the right-hand FALDI-like eigenvalue equation, namely 
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(GΩSΩ′)𝒙ΩΩ′ = 𝜆ΩΩ′𝒙ΩΩ′ 

(7) 

or the corresponding left-hand FALDI-like eigenvalue problem 

𝒚ΩΩ′
𝑇 (GΩSΩ′) = 𝜆ΩΩ′𝒚ΩΩ′

𝑇  

(8) 

we can in principle recast both of these equations in the more convenient symmetric form: 

(SΩ′
½ GΩSΩ′

½ )𝒛ΩΩ′ = 𝜆ΩΩ′𝒛ΩΩ′ 

(9) 

with 𝒙ΩΩ′ = 𝐒Ω′
−½𝒛ΩΩ′ and 𝒚ΩΩ′ = 𝐒Ω′

½ 𝒛ΩΩ′. It is of course straightforward to generate 𝐒Ω′
½

 from the 

symmetric matrix SΩ′ and, provided that SΩ′ is also positive definite, we can also easily generate 𝐒Ω′
−½

. A 

simple pragmatic alternative to the use of equations 7 to 9 is to find instead the eigenvectors and 

corresponding eigenvalues of the following symmetric problem: 

½(GΩSΩ′ + SΩ′GΩ) 𝒗ΩΩ′ = 𝜆ΩΩ′
𝑠  𝒗ΩΩ′ 

(10) 

We note that such a strategy does in fact mimic the approach adopted in the original FALDI studies [15-

19] that were based on a one-electron approximation to GΩ. 

Regardless of which of equations 7 to 10 we use, the eigenvalues must sum to 𝑘ΩΩ′ (see equation 5) 

so that we can easily identify the principal contributions to a given SEDI value. In common with what is 

done in DAFH analysis, we have chosen here to carry out a subsequent isopycnic transformation [20] of 

the corresponding eigenvectors and then to analyze the transformed functions with the largest 

eigenvalues. The full sets of eigenvalues will of course still sum to 𝑘ΩΩ′ in each case and the sum of all 

diagonal (i.e. one-domain) and off-diagonal (i.e. two-domain) k values for a given system must still match 

the trace of the one-electron density matrix, i.e. the number of active electrons. It is important to note a 

fundamental difference between the DAFH and FALDI-like approaches when it comes to the individual 

contributions to these different k values. On the one hand, FALDI and FALDI-like approaches involve 

solving separate one-domain and two-domain eigenvalue problems, thereby generating two different sets 

of functions, with the former related only to diagonal k values and the latter only to off-diagonal k values. 

On the other hand, DAFH functions, which are obtained from one-domain eigenvalue problems, 

contribute (whether significantly or not) both to diagonal and off-diagonal k values. 

It is useful to notice that whereas full DAFH analysis requires construction of the matrix representation 

GΩ of the ‘hole’ 𝑔Ω, as was described earlier, we can regenerate that matrix with minimal effort when we 

then go on to the FALDI-like analysis. This is because we can identify from equation 3 that 
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 𝐺Ω(𝐼, 𝐽) = ∑ 𝑛𝑖Ω𝑑𝑖Ω𝐼𝑑𝑖Ω𝐽

𝑖

 

(11) 

which involves little more than the calculation of dot products. (Note that it is important in the 

summations in equations 3 and 11 to include all of the functions, labelled by i, whether or not they were 

actually included in the isopycnic transformation, which deals only with non-negative eigenvalues [20].) 

In order to provide answers to various questions posed in the Introduction, we first examine the 

breaking of the single bond in H2 so as to compare DAFH analysis with variants of FALDI-like 

approaches. We also examine the geometry dependence of the reliability of the usual one-electron 

approximation to the full treatment. We then do much the same for the breaking of the formal triple bond 

in N2, not least to discover whether various observations for H2 also apply for higher bond multiplicity. 

Finally, we use B2H6 near its equilibrium geometry as an example that features bonds that are not only 

heteronuclear but that also involves a bonding pattern which transcends the conventional two-center 

paradigm. It is also useful to note that whereas the isopycnic transformation actually does relatively little 

to the DAFH eigenfunctions and eigenvalues in the cases of H2 and N2, it does somewhat more in the 

case of B2H6; these observations also turn out to be true for the FALDI-like approaches we considered. 

It is important to stress that our emphasis in the present work is on the testing of (combinations of) 

methodologies rather than on looking for new insights into the electronic structure and bonding in the 

chosen intentionally familiar molecular systems. 

It is also important to notice that whereas for the DAFH and diagonal FALDI-like approaches we 

solve a separate eigenvalue problem for each domain Ω in turn, the off-diagonal FALDI-like case does 

of course involve two such domains, Ω and Ω′. Although kΩΩ′ and kΩ′Ω must coincide, the FALDI-like 

partitioning of them leads to two different sets of functions. Depending on their forms, we can thus expect 

to be able to identify (by visual inspection) the FALDI-like functions which are mostly associated with 

one domain (Ω) or with the other one (Ω′). For homonuclear systems, such as H2 and N2, the functions 

in the two sets are trivially related to one another by symmetry. On the other hand, for (say) a B−H bond 

in a system such as B2H6, the two sets of functions will be different from one another so that, depending 

on the forms of the functions, we can say that they provide a view of the bonding from either the B or 

the H perspective. 

As is well known, a variety of definitions of bond orders have proved to be especially useful in 

attempts to understand electronic structure and bonding, with variants of the Wiberg-Mayer (W-M) index 

being particularly widely used. For the special case of correlated singlet systems, Mayer introduced a so-
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called ‘improved’ definition [30] of such a two-center W-M index which, when re-expressed in QTAIM-

generalized form [31], can be written [32]: 

W-M(Ω, Ω′) = ∑ ∑ (𝜔𝐼𝜔𝐽 + [𝜔𝐼(2 − 𝜔𝐼)𝜔𝐽(2 − 𝜔𝐽)]
½

) 𝑆Ω(𝐼, 𝐽) 𝑆Ω′(𝐼, 𝐽)

𝐽𝐼

 

(12) 

It proves useful for the bond breaking in H2 and N2 to compare the geometry dependence of W-M(Ω, Ω′) 

and SEDI(Ω, Ω′) 

We used here full configuration interaction (FCI) descriptions of H2 based on a standard cc-pVTZ 

basis. In practice, these FCI/cc-pVTZ wavefunctions for H2 were generated for a range of nuclear 

separations (R) by means of ‘2 electrons in 28 orbitals’ complete active space self-consistent field 

(CASSCF) calculations. We also used standard cc-pVTZ basis sets, always in spherical form, for the 

other systems we studied, with all of the various calculations carried out in D2h symmetry. In the case of 

N2 we employed full-valence CASSCF (‘10 electrons in 8 orbitals’) descriptions, again for a range of 

nuclear separations, and we also carried out full-valence CASSCF (‘12 electrons in 14 orbitals’) 

calculations for B2H6 near its equilibrium geometry. (The coordinates used for the symmetry-unique 

atoms are available in Table S1 in the electronic supplementary material.) All of the wavefunctions 

required for the present work were calculated using MOLPRO [33,34] and the subsequent DAFH, 

FALDI-like, SEDI and bond order analysis including isopycnic transformations used our own codes, 

with the QTAIM analysis [21] carried out with AIMAll [35]. Using the same isovalue throughout, 

pictorial depictions of DAFH and FALDI-like functions were produced using Virtual Reality Markup 

Language (VRML) files generated with Molden [36]. 

4 Results and discussion 

We start with an examination of the bond breaking process in H2. Then, taking account of what we find 

for H2, we carry out similar analysis for the breaking of the formal triple bond in N2 before moving on 

to consider the bonding situation in B2H6. 

H2 

The geometry dependence of (off-diagonal) SEDI values and of the results of DAFH analysis for H2 

have been described in detail several times. In particular, wavefunctions at exactly the same level of 

theory as used in the present work were deployed by Cooper and Ponec [14] to show how combinations 

of DAFH and bond order analysis can be used to provide insights into the electron reorganization that 

accompanies the making and breaking of chemical bonds. 
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We report in Table 1 the values of SEDI(H, H′) as a function of R, calculated using the full 

methodology as well as with the usual one-electron approximation. (Given that SEDI(H, H) +

½ SEDI(H, H′) = 1 in this case, the diagonal SEDI elements provide no additional information.) We 

observe that the sign of the errors introduced for this system by the one-electron approximation is 

consistent throughout and that the magnitudes remain rather small, increasing to no more than 1.1% for 

the largest of the R values that we have considered. Also reported in Table 1 are values of the QTAIM-

generalized ‘improved’ W-M index, as defined in equation 12. We observe that the reduction in the value 

of SEDI(H, H′) with increasing R is similar to the corresponding behavior of the W-M index, although 

the two curves are not parallel. Even so, it is clear that SEDI(H, H′) behaves very much like a bond order. 

Dominant DAFH functions associated with the domain of one of the H atoms in H2 are shown in 

Figure 1 for three representative values of R. As in previous work, we use here the term ‘dominant 

functions’ to signify all of those with eigenvalues (or occupation numbers) of at least 0.1. Also displayed 

in Figure 1 for each function is the corresponding occupation number as well as the proportion of 𝑘HH' =

½ SEDI(H, H′) that is contributed by the value of 𝑃𝑖 (see equation 6). Quoting these proportions 

(expressed as percentages) rather than the actual numerical values of 𝑃𝑖 proves to be somewhat more 

convenient for direct comparisons with the corresponding results when using instead the one-electron 

approximation. In each case, the occupation number is fairly close to unity and the proportion of 𝑘HH' is 

very high. As can be seen from Figure S1 in the electronic supplementary material, the analogous DAFH 

functions and numerical values generated using the one-electron approximation are quite similar to those 

presented here for the full calculation. 

Near equilibrium geometry, the dominant DAFH function for each H atom domain has an occupation 

close to unity (0.992). These two functions have a high overlap (0.984), with each of them resembling a 

slightly asymmetric version of a 1σg molecular orbital. Clearly such a DAFH description corresponds 

rather closely to an almost doubly occupied 1σg orbital. This is of course consistent with the occupation 

number of the corresponding natural orbital, which is also close to two (1.964). Increasing the nuclear 

separation leads to further asymmetry in the dominant DAFH functions and to a reduction in the overlap 

between them, corresponding to a decrease in the extent of sharing, but it has relatively little effect on 

their occupation numbers (which gradually move slightly closer to unity). 

Of course, from a purist point of view, there is something slightly unsettling about some of these 

results not least because, in the absence of same-spin interactions, there can be no Fermi hole [37]. 

Nonetheless the DAFH analysis does lead to functions that can easily be interpreted in terms of the 
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R-dependence of the bonding and to values of SEDI(H, H′) which, in general terms, display the sort of 

behavior anticipated for a bond index. 

We now turn to the results of the FALDI-like approaches, for which we have considered the four 

variants introduced above: 

A. Direct use of 𝒛ΩΩ′ and 𝜆ΩΩ′ from the solution of equation 9. 

B. Use of 𝒗ΩΩ′ and 𝜆ΩΩ′
𝑠  from the artificially symmetrized problem in equation 10. 

C. Use of the left-hand eigenvectors 𝒙ΩΩ′ = 𝐒Ω′
−½𝒛ΩΩ′ following solution of equation 9. 

D. Use of the right-hand eigenvectors 𝒚ΩΩ′ = 𝐒Ω′
½ 𝒛ΩΩ′ following solution of equation 9. 

For the same nuclear separations as were considered in Figure 1, the resulting dominant FALDI-like 

functions that can be associated (by visual inspection) with the domain of one of the H atoms are shown 

in Figure 2 together with their eigenvalues and the relative contributions to the relevant k values. For 

each value of R, the first row corresponds to partitioning of the (diagonal, i.e. one-domain) 𝑘HH value 

and the second one to the corresponding partitioning of the (off-diagonal, i.e. two-domain) 𝑘HH' value. 

The columns are labelled A-D according to the variant of the approach that was used. As can be seen 

from Figure S2 in the electronic supplementary material, the analogous results when using the one-

electron approximation are rather similar to those presented here for the full calculation. 

An immediate observation from Figure 2 is that scheme B, namely use of the artificially symmetrized 

problem (equation 10), can produce eigenvalues that exceed the relevant k values. They are of course 

balanced by contributions from functions with negative eigenvalues, but the fact that the dominant 

functions can contribute more than 100% seems to be an unwelcome distraction. As such, we do not 

consider any further the results for H2 from scheme B. For somewhat different reasons, we also do not 

dwell on the results for H2 from scheme D, namely use of the right-hand eigenvectors 𝒚ΩΩ′ = 𝐒Ω′
½ 𝒛ΩΩ′ 

following solution of equation 9. This is because the forms of these functions turn out to be rather similar 

to those from the DAFH analysis and so it seems unlikely that the results of scheme D will provide much 

additional information. This leaves us with Schemes A and C, for which the two sets of results turn out 

to be rather similar. From a purely computational point of view, Scheme A (direct use of the functions 

from the solution of equation 9) is slightly preferable to Scheme C because it avoids the requirement to 

generate SΩ′
−½

 (as would be required for the construction of 𝒙ΩΩ′ = 𝐒Ω′
−½𝒛ΩΩ′ in Scheme C). 

Focusing on the results of Scheme A, we observe in each case that the dominant FALDI-like function 

for a given value of R accounts for a high proportion (> 97%) of the relevant k value. Except for the 

largest of the three nuclear separations considered in Figure 2, the dominant functions from the 

partitioning of diagonal (i.e. one-domain) and off-diagonal (i.e. two-domain) k values are remarkably 
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similar to one another. Looking first at the dominant function for the diagonal case (top row for each 

value of R) we notice that it becomes increasingly s-like at larger R and that it is somewhat more localized 

for all three R values than was the case for the corresponding DAFH functions. Turning now to the 

dominant FALDI-like functions for the off-diagonal case, we notice that these are also somewhat more 

localized than are the corresponding DAFH functions, but that there is a deviation from pure s-like 

character for the largest value of R shown in Figure 2 – exactly the same behavior is observed for the 

Scheme C functions. 

Having examined the breaking of the single bond in H2 we can now move onto a comparison of our 

observations with those that we can make for the formal triple bond in N2. 

N2 

It is clear from the SEDI(N, N′) values for N2 which are reported in Table 2 that the magnitudes of the 

errors introduced for this system by the one-electron approximation are somewhat larger than was the 

case for H2, as might have been anticipated from the larger number of electrons. Furthermore the errors 

show much more dependence on R for breaking the formal triple bond in N2 than they do for the single 

bond in H2. An error of 18% near the equilibrium geometry of N2 increases to 24% at intermediate R 

before changing sign at larger nuclear separations. Also reported in Table 2 are values of the ‘improved’ 

W-M index and we observe that the reduction in the value of SEDI(N, N′) in the region from 1.5Å to 2Å 

is somewhat more gradual than is the corresponding behavior of the W-M index. (Given for these 

calculations with 10 active electrons that SEDI(N, N) + ½ SEDI(N, N′) = 5, the diagonal SEDI elements 

provide no additional information.) 

Dominant DAFH functions associated with the domain of one of the N atoms are shown in Figure 3 

for three representative values of R with the smallest of the three values (1.1Å) being close to Re. Also 

displayed for each of these functions is the corresponding occupation number as well as the proportion 

of 𝑘NN' = ½ SEDI(N, N′) that is contributed by the value of 𝑃𝑖 (see equation 6). As can be seen from 

Figure S3 in the electronic supplementary material, the analogous DAFH functions and numerical values 

generated using the one-electron approximation are similar to those presented here for the full 

calculation. 

It is clear from Figure 3 that we observe a consistent pattern for the dominant DAFH functions for N2 

at the different values of R. The first function, with an occupancy approaching two, resembles a 

nonbonding ‘lone pair’ σ function near equilibrium geometry and evolves into an s orbital at larger R. It 

accounts for ~50% of 𝑘NN' = ½ SEDI(N, N′) near equilibrium, dropping towards 40% as the two atoms 

are moved apart. Next we observe a degenerate pair of functions of π symmetry, each with an occupation 
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number that is close to unity. Each of these functions accounts for 18% of ½ SEDI(N, N′) near the 

equilibrium geometry, but this proportion increases slightly as R is increased. Finally we observe another 

σ function, again with an occupancy that is close to unity. It evolves from a σ bonding function near 

equilibrium geometry into a 2pz function at larger R. Although it contributes less than 16% of 

½ SEDI(N, N′) near the equilibrium geometry, this proportion increases with R (albeit to a slightly larger 

fraction of a somewhat smaller total number). 

For the same nuclear separations as were considered in Figure 3, the resulting dominant Scheme A 

FALDI-like functions that can be associated (by visual inspection) with the domain of one of the N atoms 

are shown in Figure 4 together with their eigenvalues as well as the relative contributions that these make 

to the relevant k values. The corresponding results when using instead Schemes B-D (see Figures S4-S6 

in the electronic supplementary material) tell a familiar story: the combined contributions from the 

dominant Scheme B functions typically exceed 100%, the outcome of Scheme D is strongly reminiscent 

of the results of the DAFH analysis, and the results from Schemes A and C are rather similar to one 

another. The analogous functions and numerical values for Schemes A-D when using instead the one-

electron approximation are observed in each case to be similar to those from the full calculations (see 

Figures S7-S10 in the electronic supplementary material). 

Looking at the dominant Scheme A FALDI-like functions for the two-domain off-diagonal (NN′) case 

for R=1.1Å (near Re), we observe in Figure 4 a σ function that accounts for nearly 40% of 𝑘NN' and then 

a pair of degenerate π functions, each of which accounts for nearly 30% of 𝑘NN'. Moving on to R=1.5Å 

we find that the π functions become somewhat more localized on the relevant N atom domain and now 

contribute a slightly reduced proportion of 𝑘NN', with an increase to 45% for the σ function. It is clear for 

both of these values of R that the dominant Scheme A FALDI-like functions provide a more efficient 

representation of 𝑘NN' than was the case for the corresponding DAFH functions. This is because just three 

FALDI-like functions (one σ and two π) account for most of 𝑘NN' whereas we require instead four DAFH 

functions (two σ and two π). Moving to larger R (2.5Å) the value of 𝑘NN' = ½ SEDI(N, N′) drops below 

0.1 (see Table 2) and so it is not surprising that none of the Scheme A FALDI-like functions reached our 

chosen threshold (eigenvalue > 0.1) to be displayed. 

Moving on to the one-domain diagonal (NN) case we observe from Figure 4 that there are striking 

similarities to the outcome of the DAFH analysis (see Figure 3). Indeed, the dominant Scheme A FALDI-

like functions account for almost the same proportion of 𝑘NN =  SEDI(N, N) as did the DAFH functions 

for 𝑘NN' = ½ SEDI(N, N′). Focusing instead on the differences, we observe in particular that the 
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degenerate pair of π functions is much more localized to a single N atom domain that are the 

corresponding DAFH functions. 

As our final example we move on to B2H6 near its equilibrium geometry. Not only does this system 

feature bonds between different atoms, unlike the cases of H2 and N2, but it also presents a bonding 

pattern that goes beyond the usual two-electron two-center paradigm. 

B2H6 

Various off-diagonal SEDI(Ω, Ω′) values for B2H6 are reported in Table 3. The corresponding diagonal 

elements are also listed (last three rows of Table 3) for a terminal hydrogen atom (Ht), a bridging 

hydrogen atom (Hb) and for a boron atom. We have used primes to distinguish between atoms of the 

same type, such that SEDI(H𝑡, H𝑡′) corresponds to the value for two different terminal H atoms that are 

attached to the same boron center. For the directly bonded atoms, the error from use of the one-electron 

approximation is somewhat smaller than was the case for N2, varying only from −1.4% to +2.1%. On the 

other hand, it is certainly true that there are large deviations for some of the other cases but it is important 

to remember that the corresponding SEDI(Ω, Ω′) values are actually very small, with the consequence 

being that large percentage changes correspond to rather small absolute changes. This is especially true 

for the case of SEDI(B, B′). 

The dominant DAFH functions for various QTAIM domains in B2H6 are depicted in the first column 

of Figure 5, together with occupation numbers and the proportion of a relevant 𝑘ΩΩ′ = ½ SEDI(Ω, Ω′) 

value. The function in the top row (occupation 1.526), which is for the domain of one of the terminal 

hydrogen atoms, represents the main contribution from that atom to one of the B−Ht bonds and it accounts 

for nearly 94% of ½ SEDI(B, H𝑡). The function in the second row (occupation 0.346), which is instead 

for the domain of the corresponding boron atom, is the complementary contribution to this B−Ht bond 

and it accounts for over 95% of ½ SEDI(B, H𝑡). (Notice also that 1.526+0.346 is almost 1.9, consistent 

with conventional notions of a two-center two-electron B−Ht bond.) The function in the third row 

(occupation 0.192) is for the domain of the same boron atom and represents the main contribution from 

this center to the bonding that involves one of the bridging hydrogen atoms, but it only accounts for 

~85% of ½ SEDI(B, H𝑏). Finally, the function in the bottom row (occupation 1.419) is for the domain of 

that bridging hydrogen and it does of course represent the main contribution from that atom to the 

anticipated three-center two-electron (3c-2e) B−Hb−B′ bonding. (Notice also that 2×0.192+1.419 slightly 

exceeds 1.8, consistent with notions of 3c-2e bonding.) This function only accounts for ~79% of each 

½ SEDI(B, H𝑏) value, being somewhat more suited to the diagonal term SEDI(H𝑏, H𝑏), for which it 

accounts for 97.7%. 
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The dominant Scheme A FALDI-like functions are depicted in the second and third columns of Figure 

5. The corresponding results using Schemes B-D (see Figures S11-S13 in the electronic supplementary 

material) again show that the dominant Scheme B functions tend to overestimate k values, that the 

outcome of Scheme D is strongly reminiscent of the results of the DAFH analysis, and that it is the results 

from Schemes A and C which are rather similar to one another. Additionally, the corresponding functions 

and numerical values for Schemes A-D when using instead the usual one-electron approximation are 

again similar to those from the full calculations (see Figures S14-S17 in the electronic supplementary 

material). 

Looking first at the dominant Scheme A FALDI-like functions for the off-diagonal (i.e. two-domain) 

SEDI values (middle column of Figure 5), the top two functions correspond to one of the B−Ht linkages, 

but seen from the Ht and B perspectives, respectively. Each function accounts for a high proportion of 

½ SEDI(B, H𝑡). In a similar fashion, the final two functions in the middle column correspond to one of 

the B−Hb linkages, as seen from the B and Hb perspectives, but both functions account for a slightly 

lower proportion of ½ SEDI(B, H𝑏) than was the corresponding case for B−Ht. Nonetheless, in general 

terms, we observe that the Scheme A FALDI-like functions do provide a slightly more efficient 

expansion of SEDI values that do those from the corresponding DAFH analysis. The third column of 

Figure 5 shows depictions of the dominant Scheme A FALDI-like functions for the diagonal (i.e. one-

domain) cases, specifically Ht and Hb, each of which accounts for a high proportion of the relevant 

SEDI(Ω, Ω) element. The largest eigenvalue for the B domain was below our usual cutoff (0.1) and so 

this function has not been shown. (It is for much the same reason that we have not depicted here the 

FALDI-like functions for the two-domain BB′ and HH′ cases.) We notice that the ‘diagonal’ FALDI-like 

functions shown in the third column of Figure 5 are rather reminiscent of the DAFH functions associated 

with the same atomic domains. 

5 Conclusions 

We have presented here a systematic comparison of the performance of two complementary 

methodologies, namely DAFH analysis and FALDI-like analysis, both of which aim to provide useful 

insights into electronic structure and bonding by means of partitioning the densities and/or the density 

matrices provided by contemporary calculations. Whereas DAFH analysis provides information about 

the role and the extent of electron sharing in bonding situations, the complementary FALDI-like picture 

is in some senses somewhat richer. In particular, FALDI-like analysis provides detailed insights into the 
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partitioning of localization and delocalization indices (collectively called SEDI) into contributions 

associated with individual domains and with pairs of domains, respectively. 

We are now in a strong position to provide some answers to the series of interrelated questions that 

were posed in the Introduction. We wondered just how similar/different are the functions generated by 

the DAFH and FALDI-like approaches for a particular molecule at a given level of theory, and how 

similar/different are the corresponding eigenvalues. A minor complication is that GΩSΩ′ need not be 

symmetric, so that we are faced with more than one FALDI-like scheme. A simple pragmatic approach 

(which we called Scheme B) of using instead ½(GΩSΩ′ + SΩ′GΩ) turns out not be wholly satisfactory 

because the combined contributions from the dominant functions often exceed 100%. The left-hand 

eigenfunctions of GΩSΩ′ (Scheme D) do turn out to be rather similar to those generated by DAFH 

analysis, but the eigenvalues are somewhat different, in one case being a direct measure of the 

contribution to the relevant k value and in the other being an occupation number. On the other hand, the 

right-hand eigenfunctions of GΩSΩ′ (Scheme C) are somewhat different so that they could, in principle, 

provide additional, complementary information that is not already available from the DAFH analysis. 

Our computationally preferred approach (Scheme A), which is based on the convenient symmetric form 

SΩ′
½ GΩSΩ′

½
, produces results which are rather similar to those from Scheme C. The consequences of our 

findings as to which of the different variants of the FALDI-like approach are the most useful can of 

course now be carried back to implementations of the original FALDI scheme [15-19]. In the remainder 

of this discussion, we consider only FALDI-like Scheme A. 

One aim of the FALDI-like approach is to provide a compact description corresponding to expansions 

of the SEDI values. As such, an obvious question is whether such expansions are more compact (or more 

‘efficient’) than are those provided by DAFH analysis via the values of 𝑃𝑖(Ω, Ω′) calculated using 

equation 6. As might have been anticipated, we found for H atom domains in H2 at each value of R that 

there is a single dominant DAFH function and that there is a single dominant FALDI-like function. Each 

of these accounts for most of the total 𝑘HH' = ½ SEDI(H, H′) value but the proportions are slightly higher 

with the FALDI-like approach, especially for larger nuclear separations. In this sense, the preferred 

FALDI-like approach (Scheme A) could be said to provide a slightly more efficient expansion of two-

domain SEDI values than does DAFH analysis. 

The errors in SEDI(Ω, Ω′) values from use of the usual one-electron approximation turned out to be 

rather small (up to 1.1%) for breaking the formal single bond in H2 and they all have the same sign. On 

the other hand, the situation turned out to be somewhat different for breaking the formal triple bond in 

N2. Not only did an error of 18% near the equilibrium geometry increase to 24% at intermediate R, but 
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it then changed sign at larger nuclear separations. The corresponding errors at a fixed geometry of B2H6 

were somewhat smaller for the directly bonded atoms, varying only from −1.4% to +2.1%. Nonetheless, 

it turns out that the forms of the dominant DAFH and FALDI-like functions from a given Scheme show 

rather little sensitivity to use of the one-electron approximation. Furthermore, the differences in the 

relative importance of the different functions in the expansions of the non-trivial SEDI values (when 

expressed as percentages) were always small, regardless of the formal bond multiplicity or of variations 

in the nuclear separations. 

Having now established which of the four FALDI-like variants that we have considered provides 

information that complements DAFH and bond order analysis, we are now in a strong position to deploy 

such a combination of techniques for studies of systems with unknown and/or controversial bonding 

patterns. Based on the various observation in the present work, our preference will be for the full 

treatments, whenever they are possible, but we do now have clear indications of the extents to which we 

can rely instead on the somewhat more convenient one-electron approximation. 
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Figure 1. Dominant DAFH functions associated with the domain of one of the H atoms in H2 at three 

representative nuclear separations. Also shown for each function is the corresponding 

occupation number as well as the proportion of 𝑘HH' = ½ SEDI(H, H′) which can be assigned 

to a term 𝑃𝑖 (see equation 6) that involves this function. 
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Figure 2. Dominant FALDI-like functions that can be associated (by visual inspection) with the domain 

of one of the H atoms in H2 at three representative nuclear separations, together with their 

eigenvalues and relative contributions to the relevant k values. For each of these values of R, 

the first row corresponds to partitioning of 𝑘HH and the second one to partitioning of 𝑘HH'. 

Columns are labelled A-D according to the variant of the approach, as described in the text. 
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Figure 3. Dominant DAFH functions associated with the domain of one of the N atoms in N2 at three 

representative nuclear separations. Also shown for each function is the corresponding 

occupation number as well as the proportion of 𝑘NN' = ½ SEDI(N, N′) which can be assigned 

to a term 𝑃𝑖 (see equation 6) that involves this function. 
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Figure 4. Dominant Scheme A FALDI-like functions that can be associated (by visual inspection) with 

the domain of one of the N atoms in N2 at three representative nuclear separations, together 

with their eigenvalues and relative contributions to the relevant k values. 
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Figure 5. Dominant DAFH functions (first column) and Scheme A FALDI-like functions (second and 

third columns) for B2H6, together with their eigenvalues and relative contributions to relevant 

k values. The specific domains used for each of these functions are identified in the main text. 
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Table 1. Geometry dependence of off-diagonal (i.e. two-domain) SEDI values for H2 and of the W-M 

bond order defined in equation 12. 

R/Å 
SEDI(H, H′) 

W-M 

full one-electron error 

0.40 0.916 0.912 -0.4% 0.984 

0.50 0.900 0.896 -0.5% 0.980 

0.60 0.882 0.877 -0.5% 0.974 

0.75 0.848 0.843 -0.6% 0.961 

1.00 0.771 0.765 -0.8% 0.924 

1.25 0.667 0.661 -0.9% 0.855 

1.50 0.538 0.532 -1.0% 0.740 

1.60 0.481 0.476 -1.1% 0.679 

1.70 0.424 0.419 -1.1% 0.612 

1.75 0.396 0.391 -1.1% 0.577 

1.80 0.368 0.364 -1.1% 0.541 
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Table 2. Geometry dependence of off-diagonal (i.e. two-domain) SEDI values for N2 and of the W-M 

bond order defined in equation 12. 

R/Å 
SEDI(N, N′) 

W-M 

full one-electron error 

0.95 2.178 2.492 14.4% 2.917 

1.00 2.107 2.436 15.6% 2.887 

1.10 1.963 2.318 18.1% 2.819 

1.20 1.817 2.190 20.5% 2.738 

1.30 1.671 2.050 22.7% 2.637 

1.50 1.376 1.713 24.5% 2.341 

1.70 1.064 1.264 18.8% 1.830 

1.90 0.731 0.761 4.1% 1.133 

2.10 0.455 0.420 -8.3% 0.610 

2.50 0.176 0.156 -12.9% 0.201 
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Table 3. Off-diagonal (i.e. two-domain) SEDI values for B2H6, with the corresponding diagonal (i.e. 

one-domain) values shown in the last three rows. 

domains 
SEDI(Ω, Ω′) 

full one-electron error 

B, Ht 0.484 0.495 2.1% 

B, Hb 0.291 0.287 -1.4% 

Hb, Hb′ 0.179 0.187 4.9% 

Ht, Ht′ 0.116 0.107 -8.9% 

Hb, Ht 0.099 0.096 -3.5% 

B, B′ 0.027 0.048 78.6% 

Ht 1.222 1.230 0.7% 

Hb 1.095 1.101 0.6% 

B 0.234 0.214 -9.3% 
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Section S1. Geometry for B2H6 

Table S1 Cartesian coordinates (in Å) used for symmetry-unique atoms in B2H6 (D2h), with the 

inversion center taken as the origin. Hb is a bridging H atom and Ht is a terminal one. 

Atom x y z 

B 0.888375 0 0 

Hb 0 0 0.973751 

Ht 1.463157 1.035737 0 

 

Section S2. Additional results for H2 

Figure S1. Dominant DAFH functions associated with the domain of one of the H atoms in H2 at 

three representative nuclear separations, generated using the one-electron approximation. 

Also shown for each function is the corresponding occupation number as well as the 

proportion of 𝑘HH' = ½ SEDI(H, H′) which can be assigned to a term 𝑃𝑖 (see equation 6) 

that involves this function. 
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Figure S2. Dominant FALDI-like functions associated with the domain of one of the H atoms in H2 

at three representative nuclear separations, together with their eigenvalues and relative 

contributions to the relevant k values, calculated using the one-electron approximation. 

For each of these values of R, the first row corresponds to partitioning of 𝑘HH and the 

second one to partitioning of 𝑘HH'. Columns are labelled A-D according to the variant of 

the approach, as described in the text. 
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Section S3. Additional results for N2 

Figure S3. Dominant DAFH functions associated with the domain of one of the N atoms in N2 at 

three representative nuclear separations, generated using the one-electron approximation. 

Also shown for each function is the corresponding occupation number as well as the 

proportion of 𝑘NN' = ½ SEDI(N, N′) which can be assigned to a term 𝑃𝑖 (see equation 6) 

that involves this function. 
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Figure S4. Dominant Scheme B FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

generated using the full calculation. 
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Figure S5. Dominant Scheme C FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

generated using the full calculation. 
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Figure S6. Dominant Scheme D FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

generated using the full calculation. 
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Figure S7. Dominant Scheme A FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

calculated using the one-electron approximation. 
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Figure S8. Dominant Scheme B FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

calculated using the one-electron approximation. 

 



 11 

Figure S9. Dominant Scheme C FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

calculated using the one-electron approximation. 
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Figure S10. Dominant Scheme D FALDI-like functions that can be associated (by visual inspection) 

with the domain of one of the N atoms in N2 at three representative nuclear separations, 

together with their eigenvalues and relative contributions to the relevant k values, 

calculated using the one-electron approximation. 
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Section S4. Additional results for B2H6 

Figure S11. Dominant DAFH functions (first column) and Scheme B FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, generated using the full calculation. The specific domains used for each 

of these functions are the same as those in Figure 5 and are identified in the main text, 

expect that the additional function depicted in the third column is associated with one of 

the B domains. 
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Figure S12. Dominant DAFH functions (first column) and Scheme C FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, generated using the full calculation. The specific domains used for each 

of these functions are the same as those in Figure 5 and are identified in the main text. 
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Figure S13. Dominant DAFH functions (first column) and Scheme D FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, generated using the full calculation. The specific domains used for each 

of these functions are the same as those in Figure 5 and are identified in the main text. 
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Figure S14. Dominant DAFH functions (first column) and Scheme A FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, calculated using the one-electron approximation. The specific domains 

used for each of these functions are the same as those in Figure 5 and are identified in the 

main text. 
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Figure S15. Dominant DAFH functions (first column) and Scheme B FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, calculated using the one-electron approximation. The specific domains 

used for each of these functions are the same as those in Figure 5 and are identified in the 

main text. 
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Figure S16. Dominant DAFH functions (first column) and Scheme C FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, calculated using the one-electron approximation. The specific domains 

used for each of these functions are the same as those in Figure 5 and are identified in the 

main text. 
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Figure S17. Dominant DAFH functions (first column) and Scheme D FALDI-like functions (second 

and third columns) for B2H6, together with their eigenvalues and relative contributions to 

relevant k values, calculated using the one-electron approximation. The specific domains 

used for each of these functions are the same as those in Figure 5 and are identified in the 

main text. 

 


