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1 Introduction

Based on theoretical motivations, in particular the socalled hierarchy problem, and stim-

ulated by some indirect experimental hints, like coupling constant unification and the

top quark mass, the minimal supersymmetric standard model (MSSM) was extensively

discussed during the last years. Unfortunately, the necessary violation of supersymmetry

has to be put in by hand into the MSSM and is described by the socalled soft supersym-

metry breaking parameters (SSBP) like the gaugino masses etc. For reasons of simplicity

these SSBP were assumed in most of the phenomenological discussions to be universal for

all different gauginos and also for the various matter fields. For some SSBP, a possible

deviation from universality is severely constrained by phenomenological requirements like

the absence a flavor changing neutral currents [1].

On the other hand, superstring theories are a very promising candidate for a consis-

tent quantization of gravity. For this purpose, the typical string scale has to be identified

with the Planck mass MP of order 1019 GeV. Therefore one strongly hopes that super-

strings may solve some puzzles concerning quantum physics at MP . Now for the actual

relevance of superstring theories it is of most vital importance to make direct contact

to the standard model (SM) or perhaps better to the MSSM. This programm attracted

a lot of attention during the last 10 years, and the results of this research are, at least

conceptually, quite successful. Indeed, the low energy effective lagrangian of a large class

of four-dimensional heterotic string theories is just given by the standard N = 1 su-

pergravity action with gauge group potentially containing the gauge group of the SM

and with matter coming very near to the three chiral families of the SM. Deriving the

effective string action, it is very important to realize that the low energy spectrum and

the low energy effective interactions among the almost massless fields are to some extent

controlled by the stringy symmetries which are still reminiscent after integrating out

the infinite number of massive modes. A particular nice example of this kind are the

well established duality symmetries (for a review see [2]) which proved to provide useful

information about the effective string action on general grounds.

A very attractive feature of N = 1 supergravity in general is the fact that upon spon-

taneous supersymmetry breaking in some hidden sector of the theory the SSBP in the

observable sector automatically emerge due to gravitational couplings among observable

and hidden fields. Thus in string theory the SSBP are, at least in principle, calculable

from first principles. However at the moment, the actual mechanism of supersymmetry

breaking is far from being completely understood. However recently it was demonstrated

[3, 4, 5, 6, 7] that, parametrizing the SSBP without specifying the actual supersymme-

try breaking mechanism, some interesting generic features of supersymmetry breaking

in superstring theories can be derived. In particular it turned out that the SSBP are

generically non-universal [3].

This contribution will be organized as follows: first we will set up the general for-

malism of supersymmetry breaking in N = 1 supergravity with special emphasis on the

structure of the SSBP in four-dimensional strings. As more specific examples we will

2



then present some results for Abelian orbifolds.

2 N = 1 effective supergravity action for four-dimen-

sional heterotic strings

Let us first specify the string modes with masses small compared to MP which we assume

to appear in the effective action. First there is the N = 1 supergravity multiplet contain-

ing the graviton field and the spin 3
2
gravitino. Next, the gauge degrees of freedom are

described by N = 1 vector multiplets Va with spin 1 gauge bosons and Spin 1
2
gauginos λa.

The gauge index a is assumed to range over the SM gauge group SU(3)× SU(2)×U(1)

and an unspecified hidden gauge group Ghid. Finally we consider chiral matter multi-

plets ΦI with complex scalars and spin 1
2
Weyl fermions. These chiral fields, i.e. the

index I, separate into socalled matter fields Qα which contain the matter of the MSSM,

Qα
SM = (q, l, H1, H2), and matter which only transforms non-trivilly under Ghid, Q

α
hid.

The second type of chiral fields ΦI correspond to the socalled moduli fields M i whose

vacuum expextation values (vev’s) are undetermined in perturbation theory since the

M i correspond to the free parameters of the four-dimensional string models. The mod-

uli are assumed to be SM singlets (however note that H1 and H2 could be in principle

moduli). The duality group Γ acts on the moduli M i as discrete reparametrizations,

M i → M̃ i(M i), which leave the underlying four-dimensional string theory invariant.

Therefore, the effective action of the massless field must be Γ invariant which provides

a link between Leff and the theory of Γ-modular functions [8]. Moreover strong restric-

tions on the massless spectrum arise [3] due to the required absence of potential duality

anomalies.

The effective N = 1 supergravity action, up to two space-time derivatives, is specified

by three different functions of the chiral fields ΦI [9]. First, the Kähler potential K is a

gauge-invariant real analytic function of the chiral superfields. To compute later on the

SSBP it is enough to expand K up to quadratic order in the matter fields:

K = K0(M, M̄) +Kαβ̄(M, M̄)QαQ̄β̄ + (
1

2
Hαβ(M, M̄)QαQβ + h.c.) (2.1)

Note that for SM matter fields the last term in eq.(1) can be non-vanshing only for a

mixing term of the two Higgs fields: (1
2
H12(M, M̄)H1H2 + h.c.). K0 is just the Kähler

potential of the Kählerian moduli space K0. Γ-duality transformations act as Kähler

transformations on K, K → K + g(M) + ḡ(M̄) (g(M) is a holomorphic function of the

moduli), and induce a ‘rotation’ on the matter fields, Qα → hαβ(M)Qβ .

Next we consider the moduli dependent effective gauge couplings ga(M, M̄):

g−2
a (M, M̄) = Re fa(M)−

1

16π2

(

(C(Ga)−
∑

α

Ta(α))K0(M, M̄)

+ 2
∑

α

Ta(α) log detKαβ̄(M, M̄)
)

.

(2.2)
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C(Ga) is the quadratic Casimir of the gauge group Ga and Ta(α) the index of the mass-

less matter representations. The holomorphic gauge kinetic function fa(M) includes

the tree level moduli dependence as well as possible one-loop quantum corrections from

massive modes; however beyond one loop the are no perturbative corrections to fa(M)

[10]. The non-holomorphic terms in eq.(2) originate from one-loop corrections involv-

ing massless fields. Specifically, these terms describe the presence of Kähler as well as

σ-model anomalies [11, 12]. ga(M, M̄) has to be a duality invariant function. Therefore

the duality non-invariance of the non-holomorphic anomaly terms has to be cancelled by

a non-trivial transformation behaviour of fa(M):

fa(M) → fa(M) +
1

8π2
((C(Ga)−

∑

Ta(α))g(M)−
1

4π2

∑

Ta(α) log det hαβ(M). (2.3)

Third the superpotential will be conveniently split into a SUSY-preserving tree-level

part and into a SUSY-breaking piece which does not depend on the matter fields:

W = Wtree(Q,M) +WSUSY−breaking(M). (2.4)

Duality invariance of the effective action demands that W transforms as W → e−g(M)W .

The structure of Wtree is such that it generates the moduli-dependent Yukawa couplings

for the matter fields as well as possible moduli-dependent mass terms for some hidden

matter fields; the observed matter fields are assumed to stay massless for all values of

the moduli fields:

Wtree =
1

3
hαβγ(M

i)QαQβQγ +
1

3
hiαβ(M

i)Qα
hidQ

β
hid. (2.5)

Thus it may happen that at some points in the moduli space, hiαβ(M
i) = 0, there are

additional massless hidden matter fields. Very often they go together with additional

massless gauge bosons at these points.

Essentially, there are two very promising mechanisms of supersymmetry breaking in

the last years’ literature. First at tree level by the socalled Scherk-Schwarz mechanism

[13]. This can be described in the effective field theory by a tree-level superpotential.

Second supersymmetry can be broken due to non-perturbative effects. Unfortunately it

is not possible at the moment to calulate these non-perturbative effects directly in string

theory. However, let us assume that non-perturbative field theory effects give a dominant

contribution to the spontaneous breaking of supersymmetry. In particular, one can show

that non-perturbative gaugino condensation in the hidden gauge sector potentially breaks

supersymmetry [14]. Integrating out the dynamical degrees of freedom corresponding to

the gaugino bound states, the duality invariant [15, 16] gaugino condensation can be de-

scribed by an effective non-perturbative superpotential, which depends holomorphically

on the moduli fields:

WSUSY−breaking(M) = e
24π

2

ba
fa(M), (2.6)

(ba is the N = 1 β-function coefficient). It is remarkable that this expression is in a

sense exact since fa(M) is only renormalized up to one loop. It is this exactness of
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WSUSY−breaking which provides very strong confidence in the applicability of the used

method.

Now let us discuss the form of the SSBP in the effective action which arise after the

spontaneous breaking of local supersymmetry. This discussion will not refer to the actual

(perturbative or non-perturbative) breaking mechanism; nevertheless some interesting

information about these couplings can be obtained at the end. The scalar potential in

the low-energy supergravity action has the form [9]

V = |WSUSY−breaking(M)|2eK0(GiGi − 3). (2.7)

(eG = |W |2eK , GI =
∂G
∂φI

.) Deriving this formula we have assumed that, upon minimiza-

tion of V , < Gα >= 0 and < Qα >= 0 in the matter sector. This assumption, which is

satisfied in most realistic scenarios, means that the spontaneous supersymmetry breaking

takes places in the moduli sector, i.e. < Gi > 6= 0 for at least one of the moduli fields.

Then the gravitino mass becomes

m3/2 = eK0(M,M̄)/2|WSUSY−breaking(M)|. (2.8)

m3/2 should be of order TeV; thus the smallness of this scale compared to MP must come

either from the Kähler potential and/or from the superpotential. Now we obtain the

following SSBP: first the gaugino masses take the form

ma(M M̄) =
1

2
m3/2G

i(M, M̄)∂i log g
−2
a (M, M̄). (2.9)

The scalar masses (squarks and sleptons) become [4]

m2
αβ̄ = m2

3/2[Kαβ̄(M, M̄)−Gi(M, M̄)Gj̄(M, M̄)Rij̄αβ̄ ]. (2.10)

(Rij̄αβ̄ = ∂i∂̄j̄Kαβ̄ −Γγ
iαKγδ̄Γ̄

δ̄
j̄β̄, Γ

γ
iα = Kγδ̄∂iKαγ̄ . These parameters are generically of the

order of m3/2. Their exact values depend on the details of K, W and the (dynamically

fixed) vev’s of the moduli fields. It is quite evident that in general these SSBP are non-

universal [3]. The non-universality arises due to the non-universal moduli dependence

of the gauge couplings and the matter kinetic energies. Similar expression can be also

obtained for the trilinear couplings [17, 4, 5]

Finally let us investigate the possible apperance of a mass mixing term for the two

standard model Higgs fields H1, H2 which is necessary for the correct radiative breaking

of the electro-weak gauge symmetry. Clearly, a tree-level mixing due to a quadratic

term in the superpotential, Wtree = µH1H2, would be a desaster, since it will be most

likely of the order of MP . (This is often called the µ-problem.) However, if there exist

[18] a possible, holomorphic mixing term H12 among H1 and H2 in the tree-level Kähler

potential (see eq.(1)), then an effective µ-term will be generated after the spontaneous

breaking of supersymmetry:

Weff = µ̂H1H2, µ̂ = m3/2[H12(M, M̄)−Gī∂īH12(M, M̄)]. (2.11)
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3 Abelian orbifolds

In this chapter we want to apply our previous formulas to the case of Abelian orbifold

compactifications [19]. Every orbifold of this type has three complex ‘planes’, and each

orbifold twist ~θ = θi (i=1,2,3) acts either simultaneously on two or all three planes.

Generically, for all four-dimensional strings there exist as moduli fields the dilaton (D)

– axion (a) chiral multiplet S = eD + ia. Then the tree-level Kähler potential for the

S-field has the form K0 = − log(S + S̄).

Next we consider the internal moduli of the orbifold compactification. We will con-

centrate on the untwisted moduli fields. For each Abelian orbifold there exist at least

three Kähler class moduli Ti each associated to one of the three complex planes. We

will call the Ti (2,2) moduli, since they do not destroy a possible (2,2) superconformal

structure of the underlying string theory, i.e. their vev’s do not break the (2,2) gauge

group E6 × E8. Next we consider socalled (0,2) untwisted moduli which are generically

present in any orbifold compactification. A non-vanishing vev for these kind of fields

destroys the (2,2) world sheet supersymmetry and breaks E6 × E8 to some non-Abelian

subgroup. In addition they will generically give mass to some matter fields by a superpo-

tential coupling. Specifically these types of moduli correspond to continuous Wilson line

background fields [20] which are again associated to each of the three complex planes.

For the case that θi 6= ±1, there is generically at least one complex Wilson line field Ai

(for example a 27 of E6). The combined Ti, Ai Kähler potential reads [21, 22]

K0 = − log(Ti + T̄i − AiĀi) (3.12)

and leads to the Kähler metric of the space K0 = SU(1, 2)/SU(2)×U(1). If θi = ±1 there

will be additional moduli fields namely, first, the (2,2) modulus Ui which corresponds to

the possible deformations of the complex structure. In addition there will be again some

(0,2) moduli, namely generically at least two complex Wilson line moduli B and C [22].

(B and C being, for example, 27 respectively 2̄7 of E6). Then the Kähler potential for

these fields can be determined as follows [22]:

K0 = − log[(Ti + T̄i)(Ui + Ūi)−
1

2
(Bi + C̄i)(B̄i + Ci)]. (3.13)

The corresponding Kähler moduli space is given by K0 = SO(2, 4)/SO(2)× SO(4). A

few remarks are at hand. First note that in the absence of Wilson lines (B = C = 0) the

Kähler potential splits into the sum K0 = K(T, T̄ ) +K(U, Ū), which is the well-known

Kähler potential for the factorizable coset SO(2, 2)/SO(2)×SO(2) = SU(1, 1)/U(1)T ⊗

SU(1, 1)/U(1)U . On the other hand, turning on Wilson lines, the moduli space does

not factorize anymore into two submanifolds. Thus it is natural to expect that also in a

more general situation the moduli space is not anymore factorizable into a space of the

Kähler class moduli times a space of the complex structure moduli (as it is true for (2,2)

compactifications) as soon as (0,2) moduli are turned on. Also note that the complex

Wilson lines give rise to holomorphic BC and antiholomorphic B̄C̄ terms in the Kähler
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potential. This is in principle just what is needed for the solution of the µ-problem; upon

identification of H1 with B and H2 with C the mass mixing term becomes [23, 22]

H12 =
1

(T + T̄ )(U + Ū)
. (3.14)

(This is also true in general if B and C are not moduli but matter fields with tree-

level zero vev’s [4, 23].) Thus we learn that holomorphic mixing terms in the Kähler

potential can occur only if θi = ±1, i.e. if there exists a complex structure modulus Ui.

Consequently, the Higgs fields should be associated to this particular complex plane.

Now let us briefly discuss the duality symmetries. We consider the most interesting

case with four complex moduli T , U , B and C. (For more discussion see [22].) In addition

we assume that the complex plane corresponds to a two-dimensional subtorus. The

duality, i.e. modular group in question is then given by the discrete group O(2, 4, Z). The

modular group O(2, 4, Z) contains an SO(2, 2, Z) = PSL(2, Z)T×PSL(2, Z)U subgroup.

PSL(2, Z)T acts in the standard way on the T modulus

T →
aT − ib

icT + d
(3.15)

(a, b, c, d ∈ Z, ad− bc = 1). However U transforms also non-trivially under this transfor-

mation as

U → U −
ic

2

BC

icT + d
. (3.16)

Thus, in the presence of B and C, T and U get mixed under duality transformations

[22, 23] which reflects the non-factorizable structure of the moduli space.

For the discussion of supersymmery breaking one also needs to include one-loop cor-

rections to the moduli Kähler potential. These arise due to a one-loop mixing of the

S-field with the internal moduli. This is the socalled Green-Schwarz mixing with mixing

coefficient δiGS. Specifically one can show that the loop corrected Kähler potential has

the following structure [12, 24]:

K1−loop
0 = − log Y +Ktree

0 (T, U,A,B, C),

Y = S + S̄ +
1

8π2

3
∑

i=1

δiGSK0 i tree(Ti, Ui, Ai, Bi, Ci).
(3.17)

Furthermore for the computation of the SSBP we need the tree-level Kähler potential of

the matter fields. It can be shown to have the following form [25, 3]:

Kαβ̄ = δαβ̄

3
∏

i=1

(Ti + T̄i)
ni
α. (3.18)

(For simplicity we have included only the generic Ti moduli.) The integers ni
α are called

modular weights of the matter fields, since the Qα transform under PSL(2, Z) as

Qα → Qα
3
∏

i=1

(iciTi + di)
ni
α . (3.19)
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(The Wilson line moduli A,B,C have modular weight -1.)

As a final ingredient we have to specify the form of the gauge kinetic function in

orbifold compactifications. Including one A-type modulus, the f -function in lowest order

in A is given as

f(S, Ti, A)a = S −
1

8π2
(b1 − b0) log[h(Ti)A]−

1

8π2

3
∑

i=1

(b′
i
a − δiGS) log η(Ti)

2. (3.20)

Here η(Ti) is the well-known Dedekind function and reflects the one-loop threshold con-

tributions of momentum and winding states [26]. The A contribution corresponds to the

mass thresholds [27, 28] of those fields Qα which get mass by a superpotential coupling

to A: W ∼ h(Ti)AQ
αQβ . If one assumes that all matter fields, that are charged under

Ga, get a A-dependent masses one obtains b0 = −3C(Ga), b1 = −3C(Ga) +
∑

α Ta(α).

Then b′ia = −C(Ga) +
∑

α Ta(α)(1 + 2ni
α). It is not difficult to verify the correct duality

transformation behaviour of f .

Now let us apply these formulas to discuss some specific aspects of supersymmetry

breaking in orbifold compactifications. Let us focus on the non-perturbative gaugino

condensation in the hidden gauge sector a. The non-perturbative superpotential then

reads

WSUSY−breaking =
e

24π
2

b0
S
[h(Ti)A]

3(b0−b1)/b0

∏3
i=1[η(Ti)]

6(b′ia−δi
GS

)/b0
. (3.21)

This leads to the following expression [28] for the scalar potential V using the one-loop

corrected Kähler potential but neglecting for simplicity a possible A contribution, i.e.

b0 = b1 = 3b′ia (the inclusion of A can be found in [29, 28]):

V = m2
3/2

{

|1−
24π2

b0
Y |2 +

3
∑

i=1

Y

8π2Y − δiGS

(1− 3
δiGS

b0
)(Ti + T̄i)

2|Ĝ2(Ti)|
2 − 3

}

. (3.22)

The minimization of this scalar potential leads to the following results. First note that in

case of complete Green-Schwarz cancellation, i.e. b0 = 3δiGS, there is no Ti dependence in

the potential (as well as in m3/2) and Ti still remains as a undetermined parameter. On

the other hand, for 3δiGS 6= b0, the modulus Ti gets dynamically fixed. A specific analysis

was performed in [15, 17] for the case δiGS = 0 with the result that at the minimum

Ti ∼ 1.2 supersymmetry gets spontaneously broken in the Ti sector since at that point

GTi
6= 0. However there is an important caveat witin this analysis since it used the

assumption that at the minimum GS = 0. In fact, the above potential, triggered by the

gaugino condensate, has no stable minimum with respect to S. Therefore the dilaton

dynamics has to be modified in order to justify this assumption. One way could be that

there are gaugino condensates in more that one hidden gauge sector [30]. Then GS = 0

is rather generic, however several β-function coefficients have to be tuned in a careful

way in order to get m3/2 ∼O(1TeV). A different, very interesting possibility is that the

non-perturbative dilaton dynamics is governed by the socalled S-duality [31, 32]. This

means that the true non-perturbative string partition function is actually PSL(2, Z)
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invariant resp. covariant with respect to the S-field due to non-perturbative monopol-

like configuration in target space. The simplest possibility within this context is that the

partition function looks like [31]

Z ∼
1

(S + S̄)|η(S)|4
. (3.23)

In the effective field theory this could mean that the effective superpotential contains

a term η(S)−2 instead of the ‘standard’ eS dependence. Such types of superpotentials

possibly lead to GS = 0. Finally one has to remark in this context that the cosmological

constant tends to be non-vanishing within the non-perturbative scenario, which is very

disturbing but probably reflects our ignorance about the exact supersymmetry breaking

dynamics dynamics. (For a recent discussion about the cosmological constant see [6]; in

[33] it has been argued that a negative cosmological constant after gaugino condensation

might be a desirable feature, for the fully renormalized cosmological constant to vanish.)

Now, we could proceed to calculate the SSBP resulting from this type of superpo-

tentials. For example the squark and slepton masses are obtained as a function of the

modular weights nα [3]. At this stage it is very convenient to parametrize the unknown

supersymmetry dynamics by some angle tan θ ∼ GS

GT
[5], i.e. the relative strength of the

supersymmetry breaking in the S and T sectors. Then the exact form of the (pertur-

bative or non-perturbative) superpotential is parametrized by θ and m3/2, and the form

of the SSBP depends only on known perturbative quantities like K. Specifically the

scalar masses have the form (assuming vanishing cosmological constant, the index i is

suppressed now) [5]:

m2
α = m2

3/2[1 + nα(1−
δGS

24π2Y
)−1 cos2 θ]. (3.24)

For arbitrary values of θ these SSBP are non-universal. However for θ = π/2, i.e. the

dilaton dominated supersymmetry breaking, the SSBP are in fact universal [34]. Finally,

for the gaugino masses similar expressions can be derived. Concluding, it would be very

interesting to test some of these features in future colliders.
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