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Abstract

We model source-selection in multi-source Un-
supervised Domain Adaptation (UDA) as an
attention-learning problem, where we learn at-
tention over the sources per given target in-
stance. We first independently learn source-
specific classification models, and a related-
ness map between sources and target domains
using pseudo-labelled target domain instances.
Next, we learn domain-attention scores over
the sources for aggregating the predictions of
the source-specific models. Experimental re-
sults on two cross-domain sentiment classifica-
tion datasets show that the proposed method re-
ports consistently good performance across do-
mains, and at times outperforming more com-
plex prior proposals. Moreover, the computed
domain-attention scores enable us to find ex-
planations for the predictions made by the pro-
posed method. 1

1 Introduction

Domain adaptation (DA) considers the problem of
generalising a model learnt using the data from a
particular source domain to a different target do-
main (Zhang et al., 2015). Although most DA meth-
ods consider adapting to a target domain from a
single source domain (Blitzer et al., 2006, 2007;
Ganin et al., 2016), often it is difficult to find a suit-
able single source to adapt from, and one must con-
sider multiple sources. For example, in sentiment
classification, each product category is considered
as a domain (Blitzer et al., 2006), resulting in a
multi-domain adaptation setting.

Unsupervised DA (UDA) is a special case of
DA where labelled instances are not available for
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1Source code available at https://github.com/
LivNLP/multi-source-attention

the target domain. Existing approaches for UDA
can be categorised into pivot-based and instance-
based methods. Pivots refer to the features common
to both source and target domains (Blitzer et al.,
2006). Pivot-based single-source domain adapta-
tion methods, such as Structural Correspondence
Learning (SCL; Blitzer et al., 2006, 2007) and Spec-
tral Feature Alignment (SFA; Pan et al., 2010), first
select a set of pivots and then project the source and
target domain documents into a shared space. Next,
a prediction model is learnt in this shared space.
However, these methods fail in multi-source set-
tings because it is challenging to find pivots across
all sources such that a single shared projection can
be learnt. Similarly, instance-based methods, such
as Stacked Denoising Autoencoders (SDA; Glo-
rot et al., 2011) and marginalised SDA (mSDA;
Chen et al., 2012) minimise the loss between the
original inputs and their reconstructions. Not all
of the source domains are appropriate for learning
transferable projections for a particular target do-
main. Adapting from an unrelated source can result
in poor performance on the given target, which is
known as negative transfer (Rosenstein et al., 2005;
Pan and Yang, 2010; Guo et al., 2018).

Prior proposals for multi-source UDA can be
broadly classified into methods that: (a) first select
a source domain and then select instances from
that source domain to adapt to a given target do-
main test instance (Ganin et al., 2016; Kim et al.,
2017; Zhao et al., 2018; Guo et al., 2018); (b) pool
all source domain instances together and from this
pool select instances to adapt to a given target do-
main test instance (Chattopadhyay et al., 2012); (c)
pick a source domain and use all instances in that
source (source domain selection) (Schultz et al.,
2018); and (d) pick all source domains and use all
instances (utilising all instances) (Aue and Gamon,
2005; Bollegala et al., 2011; Wu and Huang, 2016).

In contrast, we propose a multi-source UDA
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method that systematically addresses the various
challenges in multi-source UDA.

• Although in UDA we have labelled instances
in each source domain, its number is signifi-
cantly smaller than that of the unlabelled in-
stances in the same domain. For example, in
the Amazon product review dataset released
by Blitzer et al. (2007) there are 73679 un-
labelled instances in total across the four do-
mains, whereas there are only 4800 labelled
instances. To increase the labelled instances
in a source domain, we induce pseudo-labels
for the unlabelled instances in each source
domain using self-training as in § 3.1.
• In UDA, we have no labelled data for the tar-

get domain. To address this challenge, we
infer pseudo-labels for the target domain’s un-
labelled training instances by majority voting
over the classifiers trained from each source
domain, using both labelled and pseudo-
labelled instances as in § 3.1.
• Given that the pseudo-labels inferred for

the target domain instances are inherently
more noisier compared to the manually la-
belled source domain instances, we propose a
method to identify a subset of prototypical tar-
get domain instances for DA using document
embedding similarities as described in § 3.2.
• The accuracy of UDA is upper-bounded by

theH-divergence between a source and a tar-
get domain (Kifer et al., 2004; Ben-David
et al., 2006, 2009). Therefore, when predict-
ing the label of a target domain test instance,
we must select only the relevant labelled in-
stances from a source domain. We propose
a method to learn such a relatedness map be-
tween source and target domains in § 3.3.
• To reduce negative transfer, for each target do-

main test instance we dynamically compute a
domain-attention score that expresses the rel-
evance of a source domain. For this purpose,
we represent each domain by a domain embed-
ding, which we learn in an end-to-end fashion
using the target domain’s pseudo-labelled in-
stances as detailed in § 3.4.

We evaluate the proposed method on two standard
cross-domain sentiment classification benchmarks
for UDA. We find that both pseudo-labels and
domain-attention scores contribute toward improv-
ing the classification accuracy for a target domain.
The proposed method reports consistently good

performance in both datasets and across multiple
domains. Although the proposed method does not
outperform more complex UDA methods in some
cases, using the domain-attention scores, we are
able to retrieve justifications for the predicted la-
bels.

2 Related Work

In § 1 we already mentioned prior proposals for
single-source DA and this section discusses multi-
source DA, which is the main focus of this paper.
Bollegala et al. (2011) created a sentiment sensitive
thesaurus (SST) using the data from the union of
multiple source domains to train a cross-domain
sentiment classifier. The SST is used to expand
feature spaces during train and test times. The
performance of SST depends heavily on the selec-
tion of pivots (Cui et al., 2017; Li et al., 2017).
Wu and Huang (2016) proposed a sentiment DA
method from multiple sources (SDAMS) by intro-
ducing two components: a sentiment graph and a
domain similarity measure. The sentiment graph
is extracted from unlabelled data. Similar to SST,
SDAMS uses data from multiple sources to max-
imise the available labelled data. Guo et al. (2020)
proposed a mixture of distance measures and used
a multi-arm bandit to dynamically select a single
source during training. However, in our proposed
method all domains are selected and contributing
differently as specified by their domain-attention
weights for each train and test instance. Moreover,
we use only one distance measure and is easier to
implement.

Recently, Adversarial NNs have become popu-
lar in DA (Ganin et al., 2016; Zhao et al., 2018;
Guo et al., 2018). Adversarial training is used to
reduce the discrepancy between source and target
domains (Ding et al., 2019). Domain-Adversarial
Neural Networks (DANN; Ganin et al., 2016) use a
gradient reversal layer to learn domain independent
features for a given task. Multiple Source Domain
Adaptation with Adversarial Learning (MDAN;
Zhao et al., 2018) generalises DANN and aims
to learn domain independent features while being
relevant to the target task. Li et al. (2017) proposed
End-to-End Adversarial Memory Network (AMN),
inspired by memory networks (Sukhbaatar et al.,
2015), and automatically capture pivots using an
attention mechanism. Guo et al. (2018) proposed
an UDA method using a mixture of experts for
each domain. They model the domain relations



using a point-to-set distance metric to the encoded
training matrix for source domains. Next, they
perform joint training over all domain-pairs to up-
date the parameters in the model by meta-training.
However, they ignore the available unlabelled in-
stances for the source domain. Adversarial train-
ing methods have shown to be sensitive to the hy-
per parameter values and require problem-specific
techniques (Mukherjee et al., 2018). Kim et al.
(2017) modeled domain relations using example-
to-domain based on an attention mechanism. How-
ever, the attention weights are learnt using source
domain training data in a supervised manner. Fol-
lowing a self-training approach, Chattopadhyay
et al. (2012) proposed a two-stage weighting frame-
work for multi-source DA that first computes the
weights for features from different source domains
using Maximum Mean Discrepancy (MMD; Borg-
wardt et al., 2006). Next, they generate pseudo
labels for the target unlabelled instances using a
classifier learnt from the multiple source domains.
Finally, a classifier is trained on the pseudo-labelled
instances for the target domain. Their method re-
quires labelled data for the target domain, which is
a supervised DA setting, different from the UDA
setting we consider in this paper. Our proposed
method uses self-training to assign pseudo-labels
for the unlabelled target instances, and learn an em-
bedding for each domain using an attention mecha-
nism.

3 Multi-Source Domain Attention

Let us assume that we are given N source domains,
S1, S2, . . . , SN , and required to adapt to a target
domain T . Moreover, let us denote the labelled
instances in Si by SL

i and unlabelled instances by
SU
i . For T we have only unlabelled instances T U

in UDA. Our goal is to learn a binary classifier2

to predict labels (∈ {0, 1}) for the target domain
instances using SL = ∪Ni=1SL

i , SU = ∪Ni=1SU
i and

T U . We denote labelled and unlabelled instances in
Si by respectively xL

i and xU
i , whereas instances in

T are denoted by xT . To simplify the notation, we
drop the superscripts L and U when it is clear from
the context whether the instance is respectively
labelled or not.

The steps of our proposed method can be sum-
marised as follows: (a) use labelled and unlabelled

2Although we consider binary sentiment classification as
an evaluation task in this paper, the proposed method can be
easily extended to multi-class classification settings by making
1-vs-rest prediction tasks (Rifkin and Klautau, 2004).

instances from each of the source domains to learn
classifiers that can predict the label for a given in-
stance. Next, develop a majority voter and use it
to predict the pseudo-labels for the target domain
unlabelled instances T U (§ 3.1); (b) compute a re-
latedness map between the target domain’s pseudo-
labelled instances, T L∗, and source domains’ la-
belled instances SL (§ 3.3); (c) compute domain-
attention weights for each source domain (§ 3.4);
(d) jointly learn a model based on the relatedness
map and the domain-attention weights for predict-
ing labels for the target domain’s test instances
(§ 3.5).

3.1 Pseudo-Label Generation
In UDA, we have only unlabelled data for the
target domain. Therefore, we first infer pseudo-
labels for the target domain instances T U by self-
training (Abney, 2007) following Algorithm 1.
Specifically, we first train a predictor fi for the
i-th source domain using only its labelled instances
SL
i using a base learner Γ (Line 1-2). Any classifi-

cation algorithm that can learn a predictor fi that
can compute the probability, fi(x, y), of a given
instance x belonging to the class y can be used
as Γ. In our experiments, we use logistic regres-
sion for its simplicity and popularity in prior UDA
work (Bollegala et al., 2011; Bollegala et al., 2013).

Next, for each unlabelled instance in the selected
source domain, we compute the probability of it
belonging to each class and find the most probable
class label. If the probability of the most likely
class is greater than the given confidence thresh-
old τ ∈ [0, 1], we will append that instance to the
current labelled training set. This enables us to
increase the labelled instances for the source do-
mains, which is important for learning accurate
classifiers when the amount of labelled instances
available is small. After processing all unlabelled
instances in Si, we train the final classifier fi for Si
using both original and pseudo-labelled instances.
Finally, we predict a pseudo-label for a target do-
main instance as the majority vote, f∗ ∈ {0, 1},
over the predictions made by the individual classi-
fiers fi.

3.2 Prototype Selection
Selecting the highest confident pseudo-labelled in-
stances for training a classifier for the target domain
as done in prior work (Zhou and Li, 2005; Abney,
2007; Søgaard, 2010; Ruder and Plank, 2018) does
not guarantee that those instances will be the most



Algorithm 1 Multi-Source Self-Training
Input: source domains’ labelled instances
SL
1 , . . . ,SL

N , source domains’ unlabelled instances
SU
1 , . . . ,SU

N and target domain’s unlabelled in-
stances T U , target classes Y , base learner Γ and
the classification confidence threshold τ .
Output: multi-source self-training classifier f∗

1: for i = 1 to N do
2: Li ← SL

i

3: fi ← Γ(Li)
4: for x ∈ SU

i do
5: ŷ = arg maxy∈Y fi(x, y)
6: if fi(x, ŷ) > τ then
7: Li ← Li ∪ {(x, ŷ)}
8: end if
9: end for

10: fi ← Γ(Li)
11: end for
12: return majority voter f∗ over f1, . . . , fN .

suitable ones for adapting to the target domain,
which was not considered during the self-training
stage. For example, some target instances might
not be good prototypical examples of the target
domain and we would not want to use the pseudo-
labels induced for those instances when training
a classifier for the target domain. To identify in-
stances in the target domain that are better proto-
types, we first encode each target instance by a
vector and select the instances that are closest to
the centroid, cT , of the target domain instances
given by (1).

cT =
1

|T U |
∑
x∈T U

x (1)

In the case of text documents x, their em-
beddings, x, can be computed using numer-
ous approaches such as using bi-directional
LSTMs (Melamud et al., 2016) or transform-
ers (Reimers and Gurevych, 2019). In our ex-
periments, we use the Smoothed Inversed Fre-
quency (SIF; Arora et al., 2017), which computes
document embeddings as the weighted-average of
the pre-trained word embeddings for the words in
a document. Despite being unsupervised, SIF has
shown strong performance in numerous semantic
textual similarity benchmarks (Agirre et al., 2015).
Using the centroid computed in (1), similarity for
target instance to the centroid is computed using

the cosine similarity given in (2).

sim(x, cT ) =
x>cT
||x|| ||cT ||

(2)

Other distance measures such as the Euclidean dis-
tance can also be used. We use cosine similarity
here for its simplicity. We predict the labels for
the target domain unlabelled instances, T U , using
f∗, and select the instances with the top-k highest
similarities to the target domain according to (2) as
the target domain’s pseudo-labelled instances T L∗.

3.3 Relatedness Map Learning

Not all of the source domain instances are relevant
to a given target domain instance and the perfor-
mance of a classifier under domain shift can be up-
per bounded by theH-divergence between a source
and a target domain (Kifer et al., 2004; Ben-David
et al., 2006, 2009). To model the relatedness be-
tween a target domain instance and each instance
from the N source domains, we use the pseudo-
labelled target domain instances T L∗ and source
domains’ labelled instances SLi to learn a related-
ness map, ψi, between a target domain instance
xT (∈ T L∗) and a source domain labelled instance
xL
i (∈ SLi ) as given by (3).

ψi(xT ,x
L
i ) =

exp(xT
>xL

i )∑
x′∈SLi

exp(xT
>x′)

(3)

Using ψi, we can determine how well each instance
in a source domain contributes to the prediction of
the label of a target domain’s instance.

3.4 Instance-based Domain-Attention

To avoid negative transfer, we dynamically select
the source domain(s) to use when predicting the
label for a given target domain instance. Specif-
ically, we learn domain-attention, θ(xT ,Si), for
each source domain, Si, conditioned on xT as given
by (4).

θ(xT ,Si) =
exp(xT

>φi)∑N
j=1 exp(xT

>φj)
(4)

φi can be considered as a domain embedding for
Si and has the same dimensionality as the instance
embeddings. During training we initialise φi using
Xavier initialisation (Glorot and Bengio, 2010) and
normalise such that ∀xT ,

∑N
i=1 θ(xT ,Si) = 1.



3.5 Training
We combine the relatedness map (§ 3.3) and
domain-attention (§ 3.4) and predict the label,
ŷ(xT ), of a target domain instance xT using (5).

ŷ(xT ) = σ

 N∑
i=1

∑
xL
i ∈S

L
i

y(xL
i )ψi(xT ,x

L
i ) θ(xT ,Si)


(5)

Here, σ(z) = 1/(1 + exp(−z)) is the logistic sig-
moid function and y(xL

i ) is the label of the source
domain labelled instance xL

i . First, we use the tar-
get instances, x ∈ T L∗, with inferred labels y∗(x)
(computed using f∗ from Algorithm 1) as the train-
ing instances and predict their labels, ŷ(x), by (5).
The cross entropy error, E (ŷ(x), y∗(x)) for this
prediction is given by (6):

E (ŷ(x), y∗(x)) =−λ(x)(1−y∗(x)) log(1−ŷ(x))

− λ(x)y∗(x) log(ŷ(x)) (6)

Here, λ(x) is a rescaling factor computed using the
normalised similarity score as in (7):

λ(x) =
sim(x, cT )∑

x′∈T L∗ sim(x′, cT )
(7)

We minimise (6) using ADAM (Kingma and Ba,
2015) for learning the domain-embeddings, φi.
The initial learning rate is set to 10−3 using a subset
of T L∗ held-out as a validation dataset.

4 Experiments

To evaluate the proposed method, we use the
multi-domain Amazon product review dataset com-
piled by Blitzer et al. (2007). This dataset con-
tains product reviews from four domains: Books
(B), DVD (D), Electronics (E) and Kitchen Ap-
pliances (K). Following Guo et al. (2018), we
conduct experiments under two different splits
of this dataset as originally proposed by Blitzer
et al. (2007) (Blitzer2007) and by Chen et al.
(2012) (Chen2012). Table 1 shows the number
of instances in each dataset. By using these two
versions of the Amazon review dataset, we can
directly compare the proposed method against rel-
evant prior work. Next, we describe how the pro-
posed method was trained on each dataset.

For Blitzer2007, we use the official train and test
splits where each domain contains 1600 labelled
training instances (800 positive and 800 negative),
and 400 target test instances (200 positive and 200

negative). In addition, each domain also contains
6K-35K unlabelled instances. We use 300 dimen-
sional pre-trained GloVe embeddings (Pennington
et al., 2014) following prior work (Bollegala et al.,
2011; Wu and Huang, 2016) with SIF to create
document embeddings for the reviews.

In Chen2012, each domain contains 2000 la-
belled training instances (1000 positive and 1000
negative), and 2000 target test instances (1000 pos-
itive and 1000 negative). The remainder of the in-
stances are used as unlabelled instances (ca. 4K-6K
for each domain). We use the publicly available3

5000 dimensional tf-idf vectors produced by Zhao
et al. (2018). We use a multilayer perceptron (MLP)
with an input layer of 5000 dimensions and 3 hid-
den layers with 500 dimensions. We use final out-
put layer with 500 dimensions as the representation
of an instance.

For each setting, we follow the standard input
representation methods as used in prior work. It
also shows the flexibility of the proposed method
to use different (embedding vs. BoW) text repre-
sentation methods. We conduct experiments for
cross-domain sentiment classification with multi-
ple sources by selecting one domain as the target
and the remaining three as sources. The statistics
for the two settings are shown in Table 1.

4.1 Effect of Self-Training

As described in § 3.1, our proposed method
uses self-training to generate pseudo-labels for
the target domain unlabelled instances. In Ta-
ble 2, we compare self-training against alterna-
tive pseudo-labelling methods on Chen2012: Self-
Training (Self; Abney, 2007; Chattopadhyay et al.,
2012), Union Self-Training (uni-Self; Aue and
Gamon, 2005), Tri-Training (Tri; Zhou and Li,
2005) and Tri-Training with Disagreement (Tri-
D; Søgaard, 2010). We observe that all semi-
supervised learning methods improve only slightly
over uni-MS, the baseline model trained on the
union of all sources and tested directly on a target
domain without any DA, which has been identi-
fied as a strong baseline for multi-source DA (Aue
and Gamon, 2005; Zhao et al., 2018; Guo et al.,
2018). Therefore, pseudo-labelling step alone is
insufficient for DA. Moreover, we observe that all
semi-supervised methods perform comparably.

3https://github.com/KeiraZhao/MDAN/

https://github.com/KeiraZhao/MDAN/


Target Source Train Test Unlabel Train Test Unlabel
Blitzer2007 (Blitzer et al., 2006) Chen2012 (Chen et al., 2012)

B D,E,K 1600× 3 400 6000 2000× 3 2000 4465
D B,E,K 1600× 3 400 34741 2000× 3 2000 5586
E B,D,K 1600× 3 400 13153 2000× 3 2000 5681
K B,D,E 1600× 3 400 16785 2000× 3 2000 5945

Table 1: Number of train, test and unlabelled instances for the two Amazon product review datasets.

(a) prob sorted in ascending order (b) prob sorted in descending order

Figure 1: The number of selected pseudo-labelled instances k on Blitzer2007 is shown on the x-axis. prob denotes
prediction confidence from the pseudo classifier trained on the source domains, sim denotes the similarity to
the target domain, asc and dsc respectively denote sorted in ascending and descending order (only applied to
prob related selection methods, sim is always sorted in dsc). prob only denotes using only prediction confidence,
sim only denotes using only target similarity. prob sim indicates selecting by prob first and then sim (likewise
for sim prob). prob×sim denotes using the product of prob and sim, and prob+sim denotes using their sum. The
marker for the best result of each method is filled.

Example (1) Why anybody everest feet would want reading this? ... pure pleasure why 29028 feet account
this?... It’s a pleasure to read.

(a) (b) (c)

Figure 2: A positively labelled a target test instance in B (top) and resulted θ, ψi and the product of ψi and
θ (bottom). Here, the x-axis represents the instances and the y-axis represents the prediction scores. Instance
specific values in (a) and (c) are shown as > 0 for positive labelled instances and otherwise < 0. Source instances
from D, E and K are shown in blue, green and red respectively. The contributions from top-150 instances from
three source domains are shown.

4.2 Pseudo-labelled Instances Selection

When selecting the pseudo-labelled instances from
the target domain for training a classifier for the tar-
get domain, we have two complementary strategies:
(a) select the most confident instances according
to f∗ (denoted by prob) or (b) select the most sim-

ilar instances to the target domain’s centroid (de-
noted by sim). To evaluate the effect of these two
strategies and their combinations (i.e prob+sim and
prob×sim), in Figure 1, we select target instances
with each strategy and measure the accuracy on
the target domain B for increasing numbers of in-



Example (2) Her relationship limited own pass her own analysis, there’re issues mainly focus in turn for
codependency. Disappointing, dysfunctional. Mother’ll book her daughter’s turn the pass, message turn
the message issues analysis of very disappointing information.

(a) (b) (c)

Figure 3: A negatively labelled target test instance in B.

DM L Score Evidences (Reviews)
E - 0.16943 Serious problems.
E - 0.02823 Sound great but lacking isolation in other areas.
E + 0.02801 Cases for the cats walking years, no around and knocking...walking on similar cases of cats.
E + 0.02233 Cord supposed to no problems, this extension extension not worked as cord did...whatever

expected just worked fine.
E - 0.02209 Buy this like characters not used names...be aware of many commonly used characters before

you accept file like drive.

Table 3: The top-5 evidences for Example (2) selected from the source domains. DM denotes the domain of the
instance. L denotes the label for the instance. Score is ψi(x)θ(x).

T uni-MS Self uni-Self Tri Tri-D

B 79.46 79.60 79.46 79.61 79.51
D 82.32 82.49 82.35 82.35 82.35
E 84.93 84.97 84.93 84.99 84.93
K 87.17 87.18 87.17 87.15 87.23

Table 2: Classification accuracies (%) for semi-
supervised methods on Chen2012.

stances k in the descending (dsc) and ascending
(asc) order of the selection scores.

From Figure 1b we observe that selecting the
highest confident instances does not produce the
best UDA accuracies. In fact, merely selecting
instances based on confidence scores only (corre-
sponds to prob only) reports the worst performance.
On the other hand, instances that are highly simi-
lar to the target domain’s centroid are more effec-
tive for DA. We observe that with only k = 1000
instances, sim only reaches almost its optimal ac-
curacy. Using validation data, we estimated that
k = 2000 to be sufficient for all domains to reach
the peak performance regardless of the selection
strategy. Therefore, we selected 2000 pseudo-
labelled instances for the attention step. In our

experiments, we used sim only to select pseudo-
labelled instances because it steadily improves the
classification accuracy with k for all target domains,
and is competitive against other methods.

4.3 Effect of the Relatedness Map

In Table 4 we report the classification accuracy on
the test instances in the target domain over the dif-
ferent steps: uni-MS (no adapt baseline), Self (self-
training), PL (pseudo-labelling) and Att (attention).
We use the self-training method described in Al-
gorithm 1. The results clearly demonstrate a con-
sistent improvement over all the steps in the pro-
posed method. For Self step, the proposed method
improves the accuracy only slightly without any
information from the target domain. In the PL step,
we report the results of a predictor trained on target
pseudo-labelled instances. We report the evaluation
results for the trained attention model in Att.

In Att step, we use the relatedness map ψi to
express the similarity between a target instance and
each of source domain instances, and the domain
attention score θ to express the relation between
a target instance and each of the source domain
instances. Two example test instances (one posi-
tive and one negative) from the target domain B



T uni-MS Self PL Att

B 79.46 79.60 79.57 79.68
D 82.32 82.49 82.71 82.96
E 84.93 84.97 85.30 85.30
K 87.17 87.18 87.30 87.48

Table 4: Classification accuracies (%) across different
steps of the proposed method, evaluated on Chen2012.

are shown in Figures 2 and 3. We observe that dif-
ferent source instances contribute to the predicted
labels in different ways. As expected, in Figure 2a
more positive source instances are selected using
the relatedness map for a positive target instance,
and Figure 3a more negative source instances are
selected for a negative target instance. After train-
ing, we find that the proposed method identifies
the level of importance of different source domains.
Example (1) is closer to D, whereas Example (2) is
closer to E with a very high value of θ. Figures 2c
and 3c show that the instance specific contribution
to the target instance. The proposed method also
identifies the level of importance within the most
relevant source domain. Figure 3 shows the actual
reviews as the top-5 evidences from the source do-
mains in Example (2). Negative labelled source
training instance from E: “Serious problem.” is the
most important instance with the highest contribu-
tion of ψi(x)θ(x) to the decision.

4.4 Comparisons against Prior Work

Table 5 compares the proposed method against the
following methods on Blitzer2007 dataset.
SCL: Structural Correspondence Learning (Blitzer
et al., 2006, 2007) is a single-source DA method,
trained on the union of all source domains and
tested on the target domain. We report the pub-
lished results from Wu and Huang (2016).
SFA: Spectral Feature Alignment (Pan et al., 2010)
is a single-source DA method, trained on the union
of all source domains, and tested on the target do-
main. We report the published results from Wu and
Huang (2016).
SST: Sensitive Sentiment Thesaurus (Bollegala
et al., 2011; Bollegala et al., 2013) is the SoTA
multi-source DA method on Blitzer2007. We re-
port the published results from Bollegala et al.
(2011).
SDAMS: Sentiment Domain Adaptation with Mul-
tiple Sources proposed by Wu and Huang (2016).
We report the results from the original paper.

T uni-MS SCL SFA SST SDAMS AMN Proposed

B 80.00 74.57 75.98 76.32 78.29 79.75 83.50
D 76.00 76.30 78.48 78.77 79.13 79.83 80.50
E 74.75 78.93 78.08 83.63* 84.18** 80.92* 80.00*
K 85.25 82.07 82.10 85.18 86.29 85.00 86.00

Table 5: Classification accuracies (%) for the proposed
method and prior work on Blitzer2007. Statistically
significant improvements over uni-MS according to
the Binomial exact test are shown by “*” and “**” re-
spectively at p = 0.01 and p = 0.001 levels.

T uni-MS mSDA DANN MDAN MoE Proposed

B 79.46 76.98 76.50 78.63 79.42 79.68
D 82.32 78.61 77.32 80.65 83.35 82.96
E 84.93 81.98 83.81 85.34 86.62 85.30
K 86.71 84.26 84.33 86.26 87.96 87.48

Table 6: Classification accuracies (%) for the proposed
method and prior work on Chen2012.

AMN: End-to-End Adversarial Memory Net-
work (Li et al., 2017) is a single-source DA method,
trained on the union of all source domains, and
tested on the target domain. We report the pub-
lished results from Ding et al. (2019).

In Table 6, we compare our proposed method
against the following methods on Chen2012.
mSDA: Marginalized Stacked Denoising Autoen-
coders proposed by Chen et al. (2012). We report
the published results from Guo et al. (2018).
DANN: Domain-Adversarial Neural Networks pro-
posed by Ganin et al. (2016). We report the pub-
lished results from Zhao et al. (2018).
MDAN: Multiple Source Domain Adaptation with
Adversarial Learning proposed by Zhao et al.
(2018). We report the published results from the
original paper.
MoE: Mixture of Experts proposed by Guo et al.
(2018). We report the published results from the
original paper.

From Tables 5 and 6, we observe that the pro-
posed method obtains the best classification accu-
racy on Books domain (B) in both settings, which
is the domain with the smallest number of unla-
belled instances. In particular, when the amount of
training instances are small, pseudo-labelling and
domain-attention in our proposed method play a
vital role in multi-source UDA. Although SDAMS
(in Blitzer2007) and MoE (in Chen2012) outper-
form the proposed method, the simplicity and the
ability to provide explanations are attractive prop-
erties for a UDA method when applying in an
industrial setting involving a massive number of



source domains such as sentiment classification in
E-commerce reviews.

5 Conclusions

We propose a multi-source UDA method that com-
bines self-training with an attention module. In
contrast to prior works that select pseudo-labelled
instances based on prediction confidence of a pre-
dictor learnt from source domains, our proposed
method uses similarity to the target domain during
adaptation. Our proposed method reports com-
petitive performance against previously proposed
multi-source UDA methods on two splits on a stan-
dard benchmark dataset.
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