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Abstract

Testing the predictability of the predictive regression model is of great interest in economics

and finance. Recently, Zhu et al. (2014) proposed a unified test to account for this issue. Their

test has a desirable property that its limit distribution is standard regardless of the regressor

being stationary, near unit root or unit root. However, this test depends on, a priori, whether

there is an intercept in the predictive regression while this is usually unknown in practice. In

this paper, using empirical likelihood inference, we develop a unified pretest for the intercept,

as a pretest to determine the choice of the predictability test. Simulations studies confirm

that the proposed pretest works well. Two real data examples are also provided to illustrate the

importance of such pretest. The first revisits the S&P 500 index data and the second investigates

stock return predictability and investor sentiment for six countries.
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I Introduction

As an important tool for modeling the relationship between a dependent variable and the

lagged value of a regressor, predictive regression models have been widely used in economics and

finance, especially when low frequency data are present. Seminal results about these models

include Campbell and Yogo (2006), Cai and Wang (2014), and Kostakis et al. (2015), among

others. See, e.g., the excellent summary Phillips (2015) and references therein for details.

A typical predictive regression model has usually the following linear structure:
Yt = α+ βXt−1 + Ut,

Xt = µ+ φXt−1 + εt,

B(L)εt = Vt,

(1)

where Yt denotes the dependent variable such as the asset return at time t, and Xt−1 denotes a

financial variable, e.g., the log dividend-price ratio at time t− 1. The initial value X0 = op(
√
T )

independent of {Vs}Ts=1, B(L) = 1 − (
∑p

i=1 biL
i) with Liεt = εt−i, B(1) 6= 0, all roots of B(L)

are fixed and less than one in absolute value, and {(Ut, Vt)}Tt=1 are independent and identically

distributed (i.i.d.) random vectors with zeros means.

In practice, an interesting issue on this model is to test the predictability, i.e., the null

hypothesis H0 : β = 0, of Yt by some lagged regressor Xt−1. It is known that the tests involving

in the ordinary least squares estimator of β have different limit distributions. They depend on

(i) whether |φ| < 1 (stationary), or φ = 1 (unit root), or φ = 1 + c/T (near unit root) for some

c 6= 0, and (ii) whether µ is included or excluded in the AR process, and (iii) whether there

exists the so-called embedded endogeneity, i.e., Xt and Ut may be correlated. They may depend

on some non-estimable parameters, say c, when {Xt} is non-stationary; See, e.g., Cai and Wang

(2014); Campbell and Yogo (2006) and references therein for details.

In view of this, it is important to develop some unified tests which are robust against (i) –

(iii). For the AR(1) process Xt’s, uniform inference procedures for φ have already been discussed

by many authors; See So and Shin (1999), Mikusheva (2007), Chan et al. (2012) and Hill et

al. (2016). Recently, Zhu et al. (2014) investigated the unified predictability test for β in (1)

by empirical likelihood method. The most outstanding property of this test is its robustness

against (i)-(iii). However, this method depends in prior on whether or not α = 0 in (1). A

further data splitting technique has to be employed to get rid of the impact of the intercept on

2



the resulting testing statistic if α 6= 0. Although both empirical likelihood methods have the

same limit distribution, the data splitting technique leads to a great loss of power (Zhu et al.,

2014). They even may lead to different conclusions over the same data set; See Section IV in the

sequel for an example. In practice, whether or not α = 0 is unknown, and needs to be tested.

Unfortunately, it is nontrivial to construct a unified method for testing the existence of

intercept in a time series model regardless of whether the regressors are stationary or non-

stationary. For the AR(1) model, testing H∗0 : µ = 0 was studied by separately considering the

case φ = 1 and the case |φ| < 1 in Dickey and Fuller (1981) and Fuller et al. (1981), respectively.

Recently Dios-Palomares and Roldan (2006) proposed to test H∗0 : µ = 0 by combining the tests

in Dickey and Fuller (1981) and Fuller et al. (1981), which depends on a prior test on testing

H∗∗0 : µ = 0 & φ = 1 and does not work for the case of φ = 1 + c/n with some c 6= 0.

Motivated by the unified empirical likelihood inference in Chan et al. (2012) and Zhu et

al. (2014), in this paper we develop a similar unified empirical likelihood inference for α and

studies its power property. The proposed empirical likelihood function can be employed to test

H0 : α = 0 and construct an interval for α without knowing whether |φ| < 1 or φ = 1 or

φ = 1 − c/T for some c 6= 0; We refer to Owen (2001) for an overview on empirical likelihood

method. It turns out that if the proposed test fails to reject H0 : α = 0, we will be able to use

the first empirical likelihood method of Zhu et al. (2014), which explicitly forces α = 0, to test

the predictability. The testing power can be improved because no data splitting technique is

involved.

It is worth mentioning that Georgiev et al. (2019) recently considers an interesting issue

concerning the stability of the intercept in a predictive regression model. Such test is designed

by investigating the impact of Zt−1, an omitted but either manifest or unobserved latent variable,

on the predictability of Xt−1 to Yt. A fixed regressor wild bootstrap procedure is developed to

test the null hypothesis of βz = 0. A related study by Georgiev et al. (2018) further extends

the discussion for the instability test in the predictive regression with regards to whether the

parameters are constant over time to all or a subset of the parameters, not just intercept as in

Georgiev et al. (2019).

While our present paper is relevant to both two studies in that we also investigate the issue

of parameters in the predictive regression model context, in particular, our paper is similar to

Georgiev et al. (2019) since we both focus on the intercept parameter, however, our paper is

different from Georgiev et al. (2019) because the intercept term in Georgiev et al. (2019) is
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αt = α+βzZt−1 when Zt−1 is not included, whereas our paper mainly examines the existence of

the intercept of whether α = 0 which is different from testing if βz = 0 in Georgiev et al. (2019).

Another important difference is that both Georgiev et al. (2018) and Georgiev et al. (2019)

consider the case where the predictive regressor Xt is a unit root or near unit root process; while

we provide a unified framework, i.e., we allow for the possibilities that not only unit root, near

unit root, but also the case when Xt is stationary. Hence, the tests developed in our paper is

able to accommodate these three cases without requiring any a priori information regarding the

degree of persistence in the predictors.

We organize the rest of this paper as follows. Section 2 presents the methodologies and main

asymptotic results of our proposed test. Section 3 contains the finite sample simulation studies.

Two empirical applications are discussed in Section 4 and Section 5 concludes. All proofs are

provided in the Appendix.

II Methodology and main results

Suppose the samples {(Xt, Yt)}Tt=1 are generated from model (1). The interesting issue is to

consider the hypothesis

H0 : α = 0 versus H1 : α 6= 0,

for the following cases: |φ| < 1 (stationary), or φ = 1 (unit root), or φ = 1 + c/T (near unit

root) for some c 6= 0. Throughout this paper, we assume that {(Ut, Vt)}Tt=1 are i.i.d. random

vectors, and satisfy

• (C1). E(|U1|2+ε + |V1|2+ε) <∞ for some ε > 0.

Since the least squares estimators α̂, β̂ are solutions to
1
n

T∑
t=1

(Yt − α−Xt−1β) = 0

1
n

T∑
t=1

(Yt − α−Xt−1β)Xt−1 = 0

(2)

with respect to α and β, one may construct an empirical likelihood based test from (2) as did

in Qin and Lawless (1994). However, as mentioned in Chan et al. (2012), the quantity

1

T

T∑
t=1

E


 (Yt − α−Xt−1β)

(Yt − α−Xt−1β) 1√
T
Xt−1

 (Yt − α−Xt−1β)

(Yt − α−Xt−1β) 1√
T
Xt−1

>
∣∣∣∣∣∣∣Ft−1


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does not converge in probability when µ = 0 and φ = 1 − c/T for some c under the null

hypothesis, where Ft denotes the σ-field generated by {(Us, Vs) : 1 ≤ s ≤ t}. We hence are not

able to obtain the asymptotic normality of 1√
T

T∑
t=1

( Yt−α−Xt−1β

(Yt−α−Xt−1β) 1√
T
Xt−1

)
. Consequently, Wilks’

theorem does not hold for the related log-empirical likelihood ratio. A similar problem exists in

the empirical likelihood function relying on the estimating equations
1
T

T∑
t=1

(Yt − α−Xt−1β) = 0

1
T

T∑
t=1

(Yt − α−Xt−1β) Xt−1√
1+X2

t−1

= 0.

This is because the quantity 1
T

T∑
t=1

Xt−1√
1+X2

t−1

does not converge in probability when µ = 0 and

φ = 1− c/T for some c, which results in that the joint limit of 1√
T

T∑
t=1

Ut and 1√
T

T∑
t=1

UtXt−1√
1+X2

t−1

is

no longer a bivariate normal distribution (Zhu et al., 2014).

Similar to Li et al. (2014), we overcome this problem by adding a pseudo sample. Put
Zt1(α, β) = Yt − α− βXt−1

Zt2(α, β) = (Yt − α− βXt−1) Xt−1

(1+X2
t−1)γ

+Wt = 0, t = 1, 2, · · · , n,
(3)

where Wt’s are independent of Xt and Yt, and Wt ∼ N(0, σ̄2), t = 1, 2, · · · , n, are i.i.d. for

some known σ̄2 > 0. In Li et al. (2014), γ is chosen to be 0.75, but here we suggest to use

some γ ∈ (1
2 ,

3
4) due to the reason mentioned in Remark 4 below. Note that as stated in

Section 2.1 of Hill et al. (2016), the choice of γ > 1
2 guarantees the asymptotic normality of the

1√
n

∑n
t=1 Zt2(α, β) in the nonstationary case; while γ < 3

4 ensures the testing statistic to have

nontrivial power. To balance between the power and size, we suggest a simple choice of γ, i.e.,

using the average of 1
2 and 3

4 in practice.

We consider the following empirical likelihood function

`(α) = sup
β
L(α, β),

where

L(α, β) = sup

{
T∏
t=1

Tpt, pt ≥ 0, t = 1, 2, · · · , T,
T∑
t=1

pt = 1,

T∑
t=1

ptζt(α, β) = 0

}

with ζt(α, β) = (Zt1(α, β), Zt2(α, β))>, t = 1, 2, · · · , T .

This profile empirical likelihood function follows directly from Hill et al. (2016), and mainly

serves as a benchmark for the other methods conducted in the sequel. Note that for some
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γ ∈ (1
2 ,

3
4), both quantities 1

T

∑T
t=1E((Yt − α − βXt−1)2 Xt−1

(1+X2
t−1)γ

|Ft−1) and 1
T

∑T
t=1E((Yt −

α − βXt−1)2 X2
t−1

(1+X2
t−1)2γ

|Ft−1) vanish as T → ∞ when µ = 0 and φ = 1 − c/T for some c. It

directly follows that 1
T

∑T
t=1E

(
ζt(α, β)ζt(α, β)>

∣∣Ft−1

)
converges in probability. It is then easy

to check the following result. Hereafter, we denote (α0, β0)> as the true value of (α, β)>.

Theorem 1. Suppose (C1) holds. Then under the null hypothesis H0 we have

−2 log `(α0)
d−→ χ2

1, as T −→∞,

for µ ∈ R, regardless of |φ| < 1 (stationary), or φ = 1 (unit root), or φ = 1 + c/T (near unit

root) for some c 6= 0, where ‘
d−→’ denotes the convergence in distribution, and χ2

1 is a chi-squared

distributed random variable with one degree of freedom.

Theorem 1 indicates that −2 log `(α0) has an asymptotic chi-squared distribution uniformly

holding for all possible cases of Xt’s mentioned above. One may reject the null hypothesis H0 if

−2 log `(α) ≥ χ2
1(1−a) at the significance level a ∈ (0, 1), where χ2

1(1−a) denotes the (1−a)-th

quantile of χ2
1 though.

However, the existence of random Wt’s results in the value of −2 log `(α0) to be random for

given observations. How to choose σ̄2 is also not trivial. Furthermore, the power of this test

to detect the local alterative hypothesis departing from H0 may be further improved for given

γ ∈ (1
2 ,

3
4) as stated in the sequel.

In view of this, we propose to consider the following profile empirical likelihood function

˜̀(α) = sup
β
L̃(α, β),

with

L̃(α, β) = sup

{
T∏
t=1

Tpt, pt ≥ 0, t = 1, 2, · · · , T,
T∑
t=1

pt = 1,
T∑
t=1

ptζ̃t(α, β) = 0

}
.

Here ζ̃t(α, β) = (Z̃t1(α, β), Z̃t2(α, β))>, t = 1, 2, · · · , T , with
Z̃t1(α, β) = Yt − α− βXt−1

Z̃t2(α, β) = (Yt − α− βXt−1)
(

Xt−1√
1+X2

t−1 log(e+X2
t−1)

+ (Yt−1 − α− βXt−2)
)
.

The following result states the limit distribution of −2 log ˜̀(α0) under the null hypothesis

H0.
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Theorem 2. Under the same condition of Theorem 1, we have

−2 log ˜̀(α0)
d−→ χ2

1, as T −→∞,

for µ ∈ R, regardless of |φ| < 1 (stationary), or φ = 1 (unit root), or φ = 1 + c/T (near unit

root) for some c 6= 0, where χ2
1 is a chi-squared distributed random variable with one degree of

freedom.

Remark 1. Theorems 1 and 2 still hold, under the same conditions of Theorem 3.1 in Basrak

et al. (2002), when

Ut = σtet, σ
2
t = ω +

r∑
i=1

aie
2
t−i +

s∑
j=1

bjσ
2
t−j ,

with {(et, Vt)}Tt=1 being i.i.d. random vectors.

Remark 2. Theorems 1 and 2 still hold when the predictor Xt follows the so-called augmented

Dickey-Fuller model, i.e., ADF(p):

Xt = µ+ φXt−1 +

p∑
i=1

ψi(Xt−i −Xt−1−i) + εt, t = 1, · · · , n,

when all roots of 1−
∑p

i=1 ψix
i = 0 are outside of the unit circle for φ = 1 + c/T with c ∈ R,

all roots of 1− φx−
∑p

i=1 ψix
i +
∑p

i=1 ψix
i+1 = 0 are outside of the unit circle for |φ| < 1.

Similar to Theorem 1 above, Theorem 2 indicates that Wilks’ theorem holds for −2 log ˜̀(α0)

too. Hence, we can reject the null hypothesis H0 if −2 log ˜̀(α) ≥ χ2
1(1 − a) at the significance

level a ∈ (0, 1) by Theorem 2.

The results above only analyze the size property. For a test statistic, another issue of interest

is its power property, especially its ability to detect the local alterative hypothesis departing from

H0. For the proposed tests above, we have the following theorem.

Theorem 3. Suppose condition C1 holds and d 6= 0. Then, as T →∞,

(I) for the first empirical likelihood function, under H1 : α = α0 − daT , we have

−2 log ` (α0)

p−→



χ2
1(δ2

11), for |φ| < 1

(
ξ1−d

∫ 1
0

Jc(r)

|Jc(r)|2γ
dr
)2

σ̄2 , for φ = 1 + c
T for some c ∈ R with µ = 0,

χ2
1(δ2

12), for φ = 1 + c
T for some c ∈ R with µ 6= 0,
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where (i) aT = T−1/2, and δ11 denotes the second component of Σ̄
−1/2
1 θ1 when |φ| < 1 with

θ1 = −d

 1

lim
t→∞

E
(

Xt−1

(1+X2
t−1)γ

)
 ,

Σ̄1 =

 σ2
u σ2

u lim
t→∞

E
(

Xt−1

(1+X2
t−1)γ

)
σ2
u lim
t→∞

E
(

Xt−1

(1+X2
t−1)γ

)
σ2
u lim
t→∞

E
(

Xt−1

(1+X2
t−1)γ

)2
+ σ̄2

 , where σ2
u = E(U2

1 );

and (ii) aT = 1
T 1−γ , and ξ1 ∼ N(0, σ̄2), and Jc(s) =

∫ s
0 e

c(s−r)dWε(r) with Wε(r) being the

Wiener process related to 1√
T

[Tr]∑
t=1

εt for some r ∈ (0, 1], when φ = 1 + c
T for some c ∈ R and

µ = 0; and (iii) aT = 1

T
3
2−2γ

, and δ12 = −d
σ̄

∫ 1
0

µ
∫ r
0 e

c(r−s)ds

|µ
∫ r
0 e

c(r−s)ds|2γ dr when φ = 1 + c
T for some c ∈ R

and µ 6= 0.

(II) for the second empirical likelihood function, under H1 : α = α0 − dbT , we have

−2 log ˜̀(α0)

p−→



χ2
1(δ2

21), for |φ| < 1

(ξ2−d
∫ 1
0 sgn(Jc(r))dr)

2

(E(U2
1 ))2

, for φ = 1 + c
T for some c ∈ R with µ = 0,

χ2
1(δ2

22), for φ = 1 + c
T for some c ∈ R with µ 6= 0,

where (i) bT = T−1/2, and δ21 denotes the second component of Σ̄
−1/2
2 θ2 when |φ| < 1 with

θ2 = −d

 1

lim
t→∞

E

(
Xt−1√

1+X2
t−1 log(e+X2

t−1)

)  ,

Σ̄2 = σ2
u


1 lim

t→∞
E

(
Xt−1√

1+X2
t−1 log(e+X2

t−1)

)
lim
t→∞

E

(
Xt−1√

1+X2
t−1 log(e+X2

t−1)

)
lim
t→∞

E

((
Xt−1√

1+X2
t−1 log(e+X2

t−1)
+ Ut−1

)2
)
 ;

and (ii) bT = T−1/2 log(T ), and ξ2 ∼ N(0, (E(U2
1 ))2) when φ = 1+ c

T for some c ∈ R and µ = 0;

and (iii) bT = T−1 log(T ), and δ22 =
−2d

∫ 1
0 sgn(µ

∫ r
0 e

c(r−s)ds)dr

E(U2
1 )

when φ = 1 + c
T for some c ∈ R

and µ 6= 0, where sgn(·) denotes the sign function.

Remark 3. Theorem 3 shows that: when |φ| < 1, the powers of −2 log ` (α) and −2 log ˜̀(α)

are of the same order; when φ = 1 + c
T for some c ∈ R, the power of −2 log ` (α) to detect
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the local alterative hypothesis is of order ≥ T−max(1−γ, 3
2
−2γ), while that of −2 log ˜̀(α) is of

order T−1/2 log(T ). That is, it is impossible for −2 log ` (α) to distinct α0 + d
T τ from α0 when

τ ∈ (max(1 − γ, 3
2 − 2γ), 1

2) = (1 − γ, 1
2) for given γ ∈ (1

2 ,
3
4). On the other hand, −2 log ˜̀(α)

is able to distinct α0 + d
T τ from α0 for any τ ∈ (0, 1

2). Therefore, −2 log ˜̀(α) is more powerful

than −2 log ` (α) in the cases of unit root and near unit root.

Remark 4. It is interesting to find that, when taking γ = 0.75 as usually did in Li et al. (2014),

the first test −2 log ` (α) has no local power in the case of φ = 1+ c
T for some c ∈ R when µ 6= 0.

Remark 5. Observe that both ξ2
1/σ̄

2 ∼ χ2
1 and ξ2

2/E(e2
t−1σ

2
t−1σ

2
t ) ∼ χ2

1 in the case of φ = 1 + c
T

for some c ∈ R when µ = 0. Hence, the power of both tests above tend to 1 as |d| → ∞.

III Simulation Study

In this section we conduct Monte Carlo studies to examine the finite sample performance

of our proposed log-empirical likelihood −2 log ˜̀(α) in terms of coverage accuracy for testing

H0 : α = 0 against H1 : α 6= 0. In the first simulation study, we consider µ = {0, 0.5}, β0 = {0,

1}, α0 = {0, 1}, and φ = 1+c/T δ with (c, δ) = {(−0.1, 0), (1, 1), (−1, 1), (−1, 0.5), (0, 0)}, which

stand for five different types of stationary or nonstationary predictors. All computations are

repeated 10000 times, and the sample size is taken to be 400 and 1000. The results are computed

by the ‘emplik ’ and ‘nlm’ packages, which are the most popular R packages for computing the

profile empirical likelihood. The empirical coverage probabilities are reported in Table 1 at

different significance levels, i.e., a = 0.25, 0.1, 0.05. It turns out that the empirical coverage

probabilities are close to their theoretical counterparts 1−a, and tend to be closer as the sample

size increases from 400 to 1000 in most cases. This indicates that the proposed test statistic

−2 log ˜̀(α) performs well under different parameter settings as reported in Table 1.

We follow Zhu et al. (2014) to denote EL1 as the empirical likelihood function for testing

the predictability of model (1) when α = 0 and EL2 as the one involving data splitting when α

is unknown. As mentioned in Section 1, if the test above fails to reject H0 : α = 0, we will be

able to use EL1 to test the predictability of model (1). Note that EL1 is more powerful than

EL2 as EL1 involves no data splitting technique as shown in Zhu et al. (2014). In fact, when

the true intercept α0 = 0, it is easy to check that under the hypothesis H̃1 : β = β0 + d/
√
T , we
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have under condition C1 that

1√
m

m∑
t=1

(Ỹt − β0X̃t−1) X̃t−1√
1+X̃2

t−1√√√√ 1
m

m∑
t=1

(
(Ỹt − β0X̃t−1) X̃t−1√

1+X̃2
t−1

)2

d−→ N(∆1, 1), and

1√
T

T∑
t=1

(Yt − β0Xt−1) Xt−1√
1+X2

t−1√
1
T

T∑
t=1

(
(Yt − β0Xt−1) Xt−1√

1+X2
t−1

)2

d−→ N(∆2, 1),

as T → ∞ by using similar techniques as the proof of Theorem 3. Here m denotes the largest

integer less than T/2, X̃t = Xt+m − Xt and Ỹt = Yt+m − Yt, for t = 1, 2, · · · ,m. Note that

∆1 = d
2σu

< ∆2 = d
σu

for φ = 1 + c
T for some c ∈ R with µ = 0. (∆1 < ∆2 holds similarly

for the other combinations of (µ, φ).) That is, it is more difficult to distinguish N(∆1, 1) than

N(∆2, 1) from N(0, 1). Hence, the predictability testing method EL2 is less powerful than EL1.

Therefore, if it is plausible to know a prior α = 0 explicitly, EL1 would be used in testing the

predictability to improve the power performance.

To illustrate the benefit of adding a pretesting for H0 : α = 0 via using our proposed empirical

likelihood method for the predictability test in model (1), we conduct another simulation study

as follows. We investigate four scenarios based on different combinations with α0 and β0 being

zero or nonzero. In each scenario, we first choose randomly one model from four candidate

models with (α0, β0) ∈ A ⊗ B, where A ∈ {{0, 1}, {0, 0.03}}, B ∈ {{0, 0.015}, {0, 0.03}} and ⊗

denotes the Cartesian product. For example, in the first scenario, we have (α0, β0) randomly

generated from {0, 1} ⊗ {0, 0.015} = {(0, 0), (0, 0.015), (1, 0), (1, 0.015)} with equal probability.

After that, we carry out the predictability test, i.e., hypothesis H̃0 : β = 0, through the following

procedures: (W1) a one-step procedure directly using EL2 of Zhu et al. (2014); (W2) a two-step

procedure with a pretesting step for checking whether or not α = 0 as its first step, and then

using EL2 if rejecting α = 0, or EL1 otherwise, as its second step. The other simulation settings

are similar to the first simulation study above.
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TABLE 1

Empirical coverage probabilities of −2 log ˜̀(α), where T denotes the sample size, and a the

significance level

(α0, β0) (µ, c, δ) 1− a 1− a

T 0.75 0.90 0.95 T 0.75 0.90 0.95

(0, 0) (0.5,−0.1, 0) 400 0.7496 0.8968 0.9464 1000 0.7535 0.8988 0.9497

(0.5,−1, 1) 400 0.7457 0.8958 0.9459 1000 0.7429 0.8935 0.9438

(0.5, 1, 1) 400 0.7485 0.8936 0.9449 1000 0.7448 0.8976 0.9480

(0.5,−1, 0.5) 400 0.7474 0.8949 0.9474 1000 0.7404 0.8945 0.9489

(0.5, 0, 0) 400 0.7338 0.8901 0.9425 1000 0.7480 0.8997 0.9471

(0, 1) (0,−0.1, 0) 400 0.7319 0.8891 0.9433 1000 0.7377 0.8935 0.9495

(0,−1, 1) 400 0.7496 0.8996 0.9473 1000 0.7514 0.9001 0.9498

(0, 1, 1) 400 0.7461 0.9005 0.9500 1000 0.7437 0.9005 0.9479

(0,−1, 0.5) 400 0.7488 0.8974 0.9480 1000 0.7524 0.9023 0.9534

(0, 0, 0) 400 0.7457 0.8997 0.9481 1000 0.7476 0.8975 0.9503

(0.5,−0.1, 0) 400 0.7445 0.8925 0.9470 1000 0.7481 0.8966 0.9498

(0.5,−1, 1) 400 0.7529 0.9004 0.9475 1000 0.7477 0.9002 0.9516

(0.5, 1, 1) 400 0.7500 0.8966 0.9453 1000 0.7502 0.8986 0.9486

(0.5,−1, 0.5) 400 0.7405 0.8968 0.9477 1000 0.7536 0.8997 0.9510

(0.5, 0, 0) 400 0.7397 0.8970 0.9465 1000 0.7496 0.9007 0.9482

(1, 1) (0,−0.1, 0) 400 0.7324 0.8919 0.9458 1000 0.7405 0.8905 0.9460

(0,−1, 1) 400 0.7586 0.9000 0.9516 1000 0.7557 0.9063 0.9510

(0, 1, 1) 400 0.7493 0.8983 0.9509 1000 0.7538 0.9041 0.9526

(0,−1, 0.5) 400 0.7389 0.8968 0.9495 1000 0.7458 0.8988 0.9486

(0, 0, 0) 400 0.7597 0.9045 0.9487 1000 0.7558 0.9026 0.9516

(0.5,−0.1, 0) 400 0.7405 0.8955 0.9468 1000 0.7448 0.8976 0.9503

(0.5,−1, 1) 400 0.7466 0.8991 0.9497 1000 0.7448 0.8979 0.9474

(0.5, 1, 1) 400 0.7476 0.8965 0.9477 1000 0.7406 0.8940 0.9464

(0.5,−1, 0.5) 400 0.7470 0.8966 0.9483 1000 0.7502 0.9015 0.9486

(0.5, 0, 0) 400 0.7467 0.8971 0.9485 1000 0.7466 0.8941 0.9455
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TABLE 2

Empirical ratios of correctly judging whether or the true parameter β0 is equal to 0 when

testing the predictability of model (1) at the significance level a = 0.05. Here W1 and W2

denotes the one-step and two-step procedure, respectively

(α0, β0) (µ, c, δ) T = 400 T = 1000

W1 W2 W1 W2

α0 = {0, 1}, β0 = {0, 0.015} (0,−0.1, 0) 0.513 0.513 0.524 0.544

(0,−1, 1) 0.616 0.681 0.830 0.874

(0, 1, 1) 0.733 0.787 0.942 0.959

(0,−1, 0.5) 0.507 0.522 0.555 0.582

(0, 0, 0) 0.662 0.727 0.906 0.920

α0 = {0, 1}, β0 = {0, 0.03} (0,−0.1, 0) 0.565 0.580 0.625 0.680

(0,−1, 1) 0.797 0.854 0.954 0.968

(0, 1, 1) 0.891 0.919 0.966 0.979

(0,−1, 0.5) 0.578 0.610 0.798 0.859

(0, 0, 0) 0.833 0.867 0.960 0.961

α0 = {0, 0.03}, β0 = {0, 0.015} (0,−0.1, 0) 0.518 0.535 0.526 0.560

(0,−1, 1) 0.633 0.766 0.870 0.948

(0, 1, 1) 0.738 0.852 0.914 0.945

(0,−1, 0.5) 0.515 0.532 0.554 0.645

(0, 0, 0) 0.659 0.790 0.890 0.946

α0 = {0, 0.03}, β0 = {0, 0.03} (0,−0.1, 0) 0.533 0.576 0.642 0.718

(0,−1, 1) 0.791 0.907 0.969 0.961

(0, 1, 1) 0.876 0.936 0.977 0.960

(0,−1, 0.5) 0.572 0.661 0.773 0.913

(0, 0, 0) 0.832 0.916 0.966 0.956

We compute the empirical ratios of correctly judging whether or not the true parameter β0

is equal to 0, i.e., the predictor has predictability. Table 2 reports the corresponding results

of W1 and W2 based on 1000 repeated computations. It turns out that the empirical ratio of

correct judgement can be improved in most cases through adding a pretesting step by using our

test of −2 log ˜̀(α), especially when the sample size is relative small. That is, a pretesting step

of using −2 log ˜̀(α) can help to improve the finite performance of the empirical likelihood based

predictability test suggested by Zhu et al. (2014).
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IV Applications

In this Section, we examine two real data applications to illustrate how to apply our proposed

log-empirical likelihood function −2 log ˜̀(α) as a pretest for the intercept and the importance

of adding such a test before considering the predictability in the regressions.

S&P 500 index data revisited

We first revisit the S&P 500 index data (S&P 500) given in Campbell and Yogo (2006). We use

the monthly excess returns of S&P 500 during the period from January 1952 to December 2015

for the predicted variable, and the Long-term Yield during the same period as the predictor.
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Figure 1 The curves of EL1 and EL2 with the predictor being Long-term Yield during 1952 to

2015. Here β1 = −0.1756, β2 = 0.01809

For this case, under the null of α = 0, we compute that −2 log ˜̀(α) = 12.0949 > χ2
1(0.95) =

3.8415. This indicates that we can reject H0 : α = 0 at the significance level a = 0.05. The

conclusion of rejecting H0 can also be supplemented by the following fact : Note that when

the true intercept is 0, both EL1 and EL2 of Zhu et al. (2014) can be used to test whether or

not β = 0, and the minimizers of -2× log-empirical likelihood functions of β corresponding to

EL1 and EL2, say −2 logEL1(β) and −2 logEL2(β), respectively, should tend to be close to each

other, as they converge to the same value β0 when the sample size goes to infinity. Otherwise,

when α0 6= 0, the minimizer of −2 logEL1(β) may differ from that of −2 logEL2(β) by observing

that the existing of the intercept term have potential impacts on the behavior of −2 logEL1(β).
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We plot both curves of −2 logEL1(β) and −2 logEL2(β) in Figure 1. It is shown that their

minimizers differ from each other obviously. This supports us to conclude that −2 log ˜̀(α)

performs well in this case.

It is worth mentioning that in the range of (β1, β2), EL1 and EL2 of Zhu et al. (2014) come

out different conclusions, and β = 0 lies in such interval means if we use EL1 and EL2 to test

the predictability, we may obtain contradictive conclusions , because −2 logEL1(0) < χ2
1(0.95)

while −2 logEL2 (0) > χ2
1(0.95). In fact, this is not rare in practice. To this end, we further

investigate several other commonly used financial variables, i.e. Term Spread, Long-term Yield

and Earnings-price Ratio as the predictors, and test their predictability by applying EL1 and

EL2. Considering the statement in Campbell and Yogo (2006) that (i) the valuation ratios are

sensitive to whether the sample period includes data after 1994; (ii) the nature of interest rates

in the United States changed after 1952 due to the Fed’s policy of pegging the interest rate, we

divide the collected data into four subsamples: 1926 - 2015, 1926 - 1994, 1994 - 2015 and 1952

- 2015.

Table 3 reports the statistic values of −2 log ˜̀(α) under the null of α = 0 as well as values

of predictability test EL1 and EL2. Note that there are several cases that EL1 and EL2 imply

different conclusions. For example, the null hypothesis of no predictability is rejected by EL2

for all periods of the Term Spread except for subsample 1994 - 2015, while EL1 fails to reject

any of them. As for the variable Long-term Yield, for subsample 1926 - 2015, EL1 reject the

null at 10% significance level while EL2 indicates non-rejection; for subsample 1952 - 2015, the

consistency of EL1 and EL2 depends on the significance level. Finally, for Earnings-price Ratio,

the null hypothesis of no predictability is not rejected by EL1 and EL2 for the subsample 1926-

1994 and 1926-2015, which is in line with the conclusion given in Zhu et al. (2014). According

to the values of −2 log ˜̀(α) in Table 3, the null of α = 0 is strongly rejected for all cases which

suggest that EL2 is the appropriate test to use. Hence, if we rely on EL1 here, the conclusion

would probably be incorrect.
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TABLE 3

Test results for the monthly S&P 500 value-weighted index

Predictor Time period −2 log ˜̀(0) Values of the predictability test statistics

EL1 EL2

Term Spread 1926 - 2015 26.3214∗∗∗ 0.8273 5.7820∗∗

1926 - 1994 40.4477∗∗∗ 0.4221 3.5707∗

1994 - 2015 8.3356∗∗∗ 0.2249 0.0366

1952 - 2015 43.8885∗∗∗ 2.6218 9.1772∗∗∗

Long-term Yield 1926 - 2015 31.5969∗∗∗ 2.9637∗ 1.4705

1926 - 1994 26.4610∗∗∗ 4.6973∗∗ 6.106254∗∗

1994 - 2015 6.3603∗∗ 0.2012 0.3590

1952 - 2015 12.0950∗∗∗ 3.4470∗ 7.8816∗∗∗

Earnings-price Ratio 1926 - 2015 43.6337∗∗∗ 0.1776 0.0507

1926 - 1994 35.5870∗∗∗ 0.7258 1.2213

1994 - 2015 7.1544∗∗∗ 0.4559 3.0020∗

1952 - 2015 33.1421∗∗∗ 0.3180 3.3220∗

1 Significance levels: *p <0.10, **p <0.05, ***p <0.01.

Monthly weighted dollars stock return data

In this subsection, we explore the predictive relation between investor sentiment and stock

market returns. It has been well documented that investor sentiment plays an important role

in international financial markets (see, e.g., Baker and Wurgler (2006), Baker et al. (2007),

Lemmon and Portniaguina (2006), Schmeling (2009), Baker et al. (2012) and others).

Given that many studies in the literature mainly focus on U.S stock market, our sentiment

indices look at six stock markets: the United States, Canada, the United Kingdom, Germany,

France and Italy, with the objective to provide a wider international prospective of this issue.

Among different sentiment measures, since Consumer Confidence Indices (CCI) are found to be

highly adequate measures of investor sentiment (e.g. Fisher and Statman (2003); Qiu and Welch

(2006)), we follow the literature to use this as a proxy for individual investor sentiment in our

application. It is pointed out that an advantage of this proxy is that it covers the sentiment

of investors at the aggregate level and not exclusively of financial markets. Similarly, Qiu and

Welch (2006) finds CCI to be useful predictor of excess returns on small deciles stocks.

We use monthly weighted stock return as the predicted variable and their CCI data as the

predictor. The data description of each country has been summarized in Table 5. The monthly
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CCI data for the U.S. market is taken from the University of Michigan Surveys of Consumers.

The CCI data for Canada is obtained from the Conference Board of Canada, while data for the

U.K., France, Germany and Italy are obtained from “Directorate Generale for Economic and

Financial Affairs” (DG ECFIN). The stock return data for all the countries are extracted from

Professor Kenneth French’s website as they are collected across countries in a consistent manner

(See Schmeling (2009)).

Figure 2 - 3 display the ACF and PACF plots of CCI for these six countries respectively.

These plots indicate that all of these six CCI series have high degree of serial correlation and in

some cases it is very close to 1. To check the persistence of the predictor CCI, in Table 4, we

summarize the results of Augmented Dickey-Fuller (ADF) test for all the countries. The results

of Ljung-Box test also confirm the number of lags included, as shown in the second column,

are sufficient in all the series. The P -values of ADF test indicate that CCI in U.S. and Italy

are clearly unit root process, while for France, CCI is stationary. The conclusions for U.K and

Germany are not quite clear-cut, as the null of unit root is rejected at 10% significance level

while we fail to reject the null when the significance level is 5%. Similarly, for the case in Canada,

the null of unit root is only marginally failed to be rejected at 5% level. This again shows the

benefit of having a unified approach that can accommodate regressors of different persistence

without conducting any additional test.

TABLE 4

P -values of tests for the predictor and residual series

Country Number of lags∗ Ljung - Box test ADF Test

{Xt} {Ut} {εt} {Xt}

United States 1 0.5852 0.1776 0.4700

Canada 4 0.8147 0.1066 0.0530

United Kingdom 1 0.8072 0.0519 0.0876

Germany 2 0.6361 0.1163 0.0841

France 1 0.4732 0.8851 0.0100

Italy 2 0.0936 0.4214 0.3537

∗When the number of lag is greater than 1, the data is fitted via the augmented Dickey-Fuller representation

mentioned in Remark 2 with p = Number of lags - 1.
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Figure 2 The autocorrelogram and partial autocorrelogram with variable being CCI of United

State, Canada and United Kingdom
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Figure 3 The autocorrelogram and partial autocorrelogram with variable being CCI of Germany,

France and Italy
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TABLE 5

Tests results for stock return predictability of investor sentiment

Country Time period T −2 log ˜̀(0) Values of the predictability test statistics

EL1 EL2

United States 1978.01 - 2020.01 505 1.0364 23.4907∗∗∗ 0.0334

Canada 1980.07 - 2019.12 474 1.5663 9.7009∗∗∗ 0.5208

United Kingdom 1985.01 - 2019.12 420 0.9942 15.0027∗∗∗ 0.1009

Germany 1985.01 - 2019.12 420 0.2072 12.5109∗∗∗ 0.1774

France 1985.01 - 2019.12 420 0.9921 15.1127∗∗∗ 0.2594

Italy 1985.01 - 2019.12 420 0.7230 7.5849∗∗∗ 0.1369

1 Significance levels: *p <0.10, **p <0.05, ***p <0.01.

Since our proposed test is robust to whether or not the predictor is stationary, we may

directly apply it to the current application. Table 5 summarizes the test statistic values for

six countries. The results clearly show that using EL1 or EL2 leads to conflicting conclusion

regarding the predictability of CCI to the stock returns. That is, all EL2 fail to reject the null

β = 0 which suggests no predictability evidence is found, while all EL1 reject the null for all the

countries at different level of significance and this provide evidence that such predictive relation

is present. Hence, a decision is required to make a choice between these two tests which suggest

that a pretest would be of great importance. Reported in the fourth column, the results of our

proposed pretest indicate that zero intercept in model (1) cannot be rejected for all countries.

Therefore, EL1 will be preferred here and the predictability relation is confirmed for all six

countries. In fact, when we plot the corresponding performance of EL1 and EL2 for the case of

the United States as an example in Figure 4, −2× log-empirical likelihood functions are much

closer to each other, which means both EL1 and EL2 work under this scenario and implies that

we cannot reject the null of α = 0 in this case. This confirms with our U.S. result in Table

5 as the value of −2 log ˜̀(α) is lower than the corresponding critical value. In summary, based

on the analysis above, our conclusion shows that β is statistically significant in the predictive

regression and the investor sentiment does have a predictive power to stock returns for all the

countries we discussed in the given time periods.
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Figure 4 The curves of the EL1 and EL2 with predictor being US investor sentiments during

1982 to 2007. Here β1 = −0.1756, β2 = 0.01809

V Conclusions

A series of researches have been devoted to investigate whether asset returns can be predicted

by some relevant financial or economic variables such as Dividend - price Ratio, Earnings -

price Ratio, Interest Rate and so on. Zhu et al. (2014) proposed two unified methods for the

predictive regression model which have an attractive advantage that they can allow for regressors

with different degree of persistence, i.e., whether it is stationary, nearly nonstationary or unit

root. However, the testing statistics included in these procedures depend on a prior information

of whether the intercept of the regression is zero or not.

In this paper, we develop a unified pretest for the intercept in the predictive regression to

determine which predictability tests in Zhu et al. (2014) to be used to avoid misleading inferences.

By revising the score functions in Hill et al. (2016), we prove that Wilks’ theorem holds for the

profile empirical likelihood function −2 log ˜̀(α0). In addition to its size property, the theoretical

power property of our test is also discussed. The simulation studies show that our test of

intercept performs very well in finite samples. It is also confirmed that it is beneficial to use a

two-step approach with our pretest as the first step when testing the predictability. Furthermore,

the importance of such pretest has been supported by our two real data applications. The

first application, by re-visiting S&P 500 index data, illustrate when using our pretest, the

evidence of predictability is found in most subsamples for the predictors Term Spread, Long-
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term Yield and Earnings-price Ratio. In the second application, we examined the predictive

relation between investor sentiment and stock markets returns for six countries. Using Consumer

Confidence Index as the proxy and applying our pretest as a first step, we find strong evidence

of predictability in all countries which are consistent with findings in the literature. Note that,

since our proposed pretest has no restrictions on the nature of predicting variables, this may

imply wide applications in economics and finance.

Appendix: Proofs of the main results

Before proving the main results, we provide some preliminary lemmas. Since the proof of

Theorem 1 is similar to that of Theorem 2, we only prove Theorem 2 in the sequel.

Lemma 1. Under conditions of Theorem 2, we have that

1√
T

T∑
t=1

ζ̃t(α0, β0)
d−→ N(0,Σ) as T →∞,

where Σ := (σ2
ij)1≤i,j≤2 satisfying Σ = Σ̄2, which is specified in Theorem 3, when |φ| < 1, and

Σ =

σ2
u 0

0 σ4
u

 ,

when φ = 1 + c/T for some c ∈ R. Here σ2
u = E(U2

1 ).

Proof. Note that, for t = 1, 2, · · · , T ,

Z̃t1(α0, β0) = Ut,

Z̃t2(α0, β0) = Ut
Xt−1√

1 +X2
t−1 log(e+X2

t−1)
+ UtUt−1.

Trivially,

1√
T

T∑
t=1

Z̃t1(α0, β0)
d−→ N(0, σ2

11), as T →∞. (4)

When |φ| < 1, since {Xt} is stationary, we have by the ergodic theorem that

1

T

T∑
t=1

E
(
Z̃2
t2(α0, β0)|Ft−1

)

= E(U2
t ) · 1

T

T∑
t=1

 Xt−1√
1 +X2

t−1 log(e+X2
t−1)

+ Ut−1

2
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p−→ E(U2
1 ) · lim

t→∞
E

 Xt−1√
1 +X2

t−1 log(e+X2
t−1)

+ Ut−1

2

,

where ‘
d−→’ denotes the convergence in probability. When φ = 1+c/T for some c ∈ R, |Xt| → ∞,

and hence log(e+X2
t−1)→∞ in probability as t→∞. A simple derivation leads to

1

T

T∑
t=1

E
(
Z̃2
t2(α0, β0)|Ft−1

)
= E(U2

t ) ·

[
1

T

T∑
t=1

X2
t−1

(1 +X2
t−1) log2(e+X2

t−1)

+
1

T

n∑
t=1

2Xt−1Ut−1√
1 +X2

t−1 log(e+X2
t−1)

+
1

T

n∑
t=1

U2
t−1


= E(U2

t ) · 1

T

T∑
t=1

U2
t−1 + op(1).

Next, for any 0 < q < ε and ε1 > 0, we have

1

T

T∑
t=1

E
(
Z̃2
t2(α0, β0)I(Z̃2

t2(α0, β0) > ε21T )|Ft−1

)
≤ 1

(ε1
√
T )q

1

T

T∑
t=1

E
(
|Z̃t2(α0, β0)|2+q|Ft−1

)

=
E(|U1|2+q)

(ε1
√
T )q

 1

T

T∑
t=1

E

∣∣∣∣∣∣ Xt−1√
1 +X2

t−1 log(e+X2
t−1)

+ Ut−1

∣∣∣∣∣∣
2+q∣∣∣∣∣∣Ft−1


≤ 21+qE(|U1|2+q)(1 + E(|U1|2+q))

(ε1
√
T )q

→ 0, as T →∞,

by noting that ∣∣∣∣∣∣ Xt−1√
1 +X2

t−1 log(e+X2
t−1)

∣∣∣∣∣∣ ≤ 1.

Hence, by Corollary 3.1 of Hall and Heyde (1980), we have as n→∞

1√
T

T∑
t=1

Z̃t2(α0, β0)
d−→ N(0, σ2

22), as T →∞. (5)

On the other hand, by noting that

1

T

T∑
t=1

E(Z̃t1(α0, β0)Z̃t2(α0, β0)|Ft−1) (6)
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= E(U2
1 ) · 1

T

T∑
t=1

 Xt−1√
1 +X2

t−1 log(e+X2
t−1)

+ Ut−1

 p−→ σ2
12

Therefore, this lemma follows directly from (4)–(6) and the Cramér-Wold device.

Lemma 2. Under conditions of Theorem 1, we have that

1

T

T∑
t=1

ζ̃t(α0, β0)ζ̃t(α0, β0)>
p−→ Σ,

and max
1≤t≤T

‖ζ̃t(α0, β0)‖ = op(T
1/2), as T →∞.

Proof. Like the proof of Lemma 1, the first part of this lemma can be shown by using the weak

law of large numbers for martingale differences, and we skip details.

The second part of this lemma follows directly from the facts that max
1≤t≤T

|Ut| = op(T
1/2) and

P

(
max

2≤t≤T
|UtUt−1| > ε1

√
T

)
≤

T∑
t=2

P
(
|UtUt−1| > ε1

√
T
)
≤ (E(|U1|2+q))2

ε2+q
1 T 1+q

→ 0,

for any ε1 > 0.

Before proving Theorem 1, we need some notations. Let

ϑ := ϑ(β) =


β if |φ| < 1

√
Tβ if φ = 1 + c

T or φ = 1 with µ = 0

Tβ if φ = 1 + c
T or φ = 1 with µ 6= 0,

(7)

ϑ0 := ϑ(β0), ζ̄t(α, ϑ) = (Z̄t1(α, ϑ), Z̄t2(α, ϑ))T for t = 1, 2, · · · , T , where Z̄t1(α, ϑ) = Z̃t1(α, β)

and Z̄t2(α, ϑ) = Z̃t2(α, β), and denote L̄(α, ϑ) = L(α, β).

Lemma 3. Under conditions of Theorem 1, L(α0, ϑ) attains its maximum value with probability

tending to one at some point ϑ̄ such that |ϑ̄− ϑ0| < n−1/δ0 for some δ0 ∈ (2, 2 + δ) as n→∞,

and ϑ̄ and λ̄ satisfy Q1n(ϑ̄, λ̄) = 0 and Q2n(ϑ̄, λ̄) = 0, where

Q1T (ϑ,λ) :=
1

T

T∑
t=1

ζ̄t(α0, ϑ)

1 + λ>ζ̄t(α0, ϑ)
,

Q2T (ϑ,λ) =
1

T

T∑
t=1

1

1 + λ>ζ̄t(α0, ϑ)

(
∂ζ̄t(α0, ϑ)

∂ϑ

)>
λ.
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Proof. Let

X̆t =


Xt if |φ| < 1

1√
T
Xt if φ = 1 + c

T or φ = 1 with µ = 0

1
TXt if φ = 1 + c

T or φ = 1 with µ 6= 0, t = 1, 2, · · · , T.

In the sequel we only give a detailed proof of the case φ = 1 + c
T with some c 6= 0 and µ = 0

since other cases can be proved similarly.

It is easy to check that

sup
|ϑ−ϑ0|<T−1/δ0

∣∣∣∣∣ 1

T

T∑
t=1

Z̄t1(α0, ϑ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

T

T∑
t=1

Ut

∣∣∣∣∣+ sup
|ϑ−ϑ0|<T−1/δ0

∣∣∣∣∣ 1

T

T∑
t=1

(ϑ− ϑ0)X̆t−1

∣∣∣∣∣
= Op(T

−1/2) +Op(T
−1/δ0)

= Op(T
−1/δ0).

Similarly, sup
|ϑ−ϑ0|<T−1/δ0

| 1T
∑T

t=1 Z̄t2(α0, ϑ)| = Op(T
−1/δ0), and hence we obtain

sup
|ϑ−ϑ0|<T−1/δ0

∥∥∥∥∥ 1

T

n∑
t=1

ζ̄t(α0, ϑ)

∥∥∥∥∥ = Op(T
−1/δ0). (8)

Next, observe that

P

(
max

1≤t≤T
|X̆t| ≥ bT 1/2+δ1

)
≤

T∑
t=1

P
(
|X̆t| ≥ bT 1/2+δ1

)

≤
E
(∑T

t=1 X̆
2
t

)
b2T 1+2δ1

=
E
(∫ 1

0 J
2
c (s)ds

)
b2T 2δ1

+ o(1)→ 0,

for some 1/δ0 > δ1 > 0 as T →∞. Therefore

sup
|ϑ−ϑ0|<T−1/δ0

max
1≤t≤T

|(ϑ− ϑ0)X̆t| = op(T
1/2),

implies that as T →∞,

sup
|ϑ−ϑ0|<T−1/δ0

max
1≤t≤T

|Z̄t1(µ0, ϑ)| = op(T
1/2).

Similarly, sup
|ϑ−ϑ0|<T−1/δ0

max
1≤t≤T

|Z̄t2(α0, ϑ)| = op(T
1/2), and hence

sup
|ϑ−ϑ0|<T−1/δ0

max
1≤t≤T

∥∥ζ̄t(α0, ϑ)
∥∥ = op(T

1/2), as T →∞. (9)

By (8) and (9), this lemma can be proved by using the same arguments as in the proof of Lemma

1 in Qin and Lawless (1994).
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Proof of Theorem 2. We only prove the case of µ = 0 and φ = 1 + c
T for some c 6= 0. Using

similar arguments in proving Lemma 2, we have

∂Q1T (ϑ0, 0)

∂λ>
= − 1

T

T∑
t=1

ζ̄t(α0, ϑ0)ζ̄t(α0, ϑ0)>
p−→ −Σ,

1

T

T∑
t=1

−X̆t
Xt√

1 +X2
t log(e+X2

t−1)

p−→ 0.

Next, observe that

1

T

T∑
t=1

X̆t−1Ut−1 =
1

T

T∑
t=1

φX̆t−2Ut−1 +
1

T

T∑
t=1

Vt−1Ut−1

d−→
∫ 1

0
Jc(r)dWu(r) + E(V1U1),

by Hansen (1992), whereWu(r) denotes the Wiener process related to 1√
T

[Tr]∑
t=1

Ut for any r ∈ (0, 1].

Using this, it is easy to check that

∂Q1T (ϑ0, 0)

∂ϑ
=

(
∂Q2T (ϑ0, 0)

∂λ>

)>
=

1

T

T∑
t=1

(
−X̆t

−X̆t
Xt√

1+X2
t log(e+X2

t−1)
− X̆t−1Ut−1 − X̆t−2Ut

)
d−→

(
−
∫ 1

0 Jc(s)ds

0

)
,

where Jc(s) is defined in the proof of Theorem 3. It follows from Lemmas 1-3 and the same

arguments in the proof of Theorem 1 in Qin and Lawless (1994) that λ̄

ϑ̄− ϑ0

 = S−1
T

−Q1T (ϑ0, 0) + op(T
−1/2)

op(T
−1/2)

 ,

where

ST =

∂Q1T (ϑ0,0)
∂λ>

∂Q1T (ϑ0,0)
∂ϑ

∂Q2T (ϑ0,0)
∂λ>

0

 d−→

S11 S12

S>12 0


with S11 = −Σ and S12 =

(− ∫ 1
0 Jc(s)ds

0

)
.

Next, by the standard arguments in empirical likelihood method, we can show under H0

that, as T →∞,

−2 log ˜̀(α0) = 2

T∑
t=1

log{1 + λ̄>ζ̄t(α0, ϑ̄)}
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= 2T (λ̄>, ϑ̄− ϑ0)
(
Q>1T (ϑ0, 0), 0

)>
+T (λ̄>, ϑ̄− ϑ0)ST (λ̄, ϑ̄− ϑ0)> + op(1)

= −n(Q>1T (ϑ0, 0), 0)S−1
T

(
Q>1T (ϑ0, 0), 0

)>
+ op(1)

d−→ −(η>, 0)

S11 S12

S>12 0

−1

(η>, 0)>

= −η>
(
S−1

11 − (S−1
11 S12)(S>12S

−1
11 S12)−1(S>12S

−1
11 )
)
η

= (Σ−
1
2η)>

(
I2×2 − (Σ−

1
2S12)(S>12Σ−1S12)−1(S>12Σ−

1
2 )
)

(Σ−
1
2η)

= (Σ−
1
2η)>

0 0

0 1

 (Σ−
1
2η)

:= υ2,

where η ∼ N(0,Σ), and υ denotes the second component of Σ−
1
2η ∼ N(0, I2×2). Then this

theorem follows immediately.

Proof of Theorem 3. Here, we only prove Part (II) when φ = 1 + c
T for some c ∈ R and µ = 0,

since the rest proofs follow a similar fashion.

Note that, under H1 : α = α0 − dbT , for t = 1, 2, · · · , T ,

Z̃t1(α0, β0) = Ut − dbT = Z̃t1(α0 − dbT , β0)− dbT ,

Z̃t2(α0, β0) = Ut
Xt−1√

1 +X2
t−1 log(e+X2

t−1)
+ UtUt−1

−dbT
Xt−1√

1 +X2
t−1 log(e+X2

t−1)
− dbTUt−1 − dbTUt + d2b2T

= Z̃t2(α0 − dbT , β0)− dbT
Xt−1√

1 +X2
t−1 log(e+X2

t−1)
− dbT (Ut−1 + Ut) + d2b2T .

Then, similar Lemmas 1-3, we have as, T →∞,

1√
T

T∑
t=1

ζt(α0, β0)

=
1√
T

T∑
t=1

ζt(α0 − dbT , β0) +

 − 1√
T

T∑
t=1

dbT

−dbT 1√
T

T∑
t=1

Xt−1√
1+X2

t−1 log(e+X2
t−1)

+Op(bT )


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=
1√
T

T∑
t=1

ζt(α0 − dbT , β0) +


− 1
T

n∑
t=1

d log(T )

−d 1
T

T∑
t=1

1√
T
Xt−1 log(T )√

1+
(
Xt−1√
T

)2[
log

(
e
T

+
(
Xt−1√
T

)2)
+log(T )

] +Op(bT )



=
1√
T

T∑
t=1

ζt(α0 − dbT , β0) +

 − 1
T

T∑
t=1

d log(T )

−d
∫ 1

0 sgn(Jc(r))dr +Op(bT )


=

 Op(log(T ))

Y2 − d
∫ 1

0 sgn(Jc(r))dr +Op(bT )

 ,

and

1

T

T∑
t=1

ζt(α0, β0)ζt(α0, β0)>
p−→ Σ,

and max
1≤t≤T

‖ζt(α0, β0)‖ = op(T
1/2), as T →∞,

and L(α0, ϑ) attains its maximum value with probability tending to one at some point ϑ̃ such

that |ϑ̃ − ϑ0| < T−1/δ0 for some δ0 ∈ (2, 2 + δ) as T → ∞, and ϑ̃ and λ̃ satisfy Q̃1T (ϑ̃, λ̃) = 0

and Q̃2T (ϑ̃, λ̃) = 0, where

Q̃1T (ϑ,λ) :=
1

T

T∑
t=1

ζ̄t(α0, ϑ)

1 + λ>ζ̄t(α0, ϑ)
,

Q̃2T (ϑ,λ) =
1

T

T∑
t=1

1

1 + λ>ζ̄t(α0, ϑ)

(
∂ζ̄t(α0, ϑ)

∂ϑ

)>
λ.

Then under H1 : α = α0 − dbT , similar to the proof of Theorem 2, it is easy to check that,

as T →∞,

−2 log ˜̀(α0)

= 2

n∑
t=1

log{1 + λ̃>ζ̄t(α0, ϑ̄)}

= −T (Q̃>1T (ϑ0, 0), 0)S̃−1
T

(
Q̃>1T (ϑ0, 0), 0

)>
+ op(1)

= −


Op(log(n))

ξ2 − d
∫ T

0 sgn(Jc(r))dr +Op(bT )

0


>

S̃−1
T


Op(log(T ))

ξ2 − d
∫ n

0 sgn(Jc(r))dr +Op(bT )

0

+ op(1)

=

 Op(log(T ))

ξ2 − d
∫ T

0 sgn(Jc(r))dr +Op(bT )

>Op(bT ) Op(bT )

Op(bT ) σ−2
22 +Op(bT )

×
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 Op(log(T ))

ξ2 − d
∫ T

0 sgn(Jc(r))dr +Op(bT )

+ op(1)

d−→

(
ξ2 − d

∫ 1
0 sgn(Jc(r))dr

)2

(E(U2
1 ))2

,

by noting that Op(log2(T )bT ) = op(1) and (Σ + Op(bT ))−1 = Σ−1 + Op(bT ), which can be

obtained by applying the Taylor expansion to the matrix inverse. Here

S̃T :=

S̃11,T S̃12,T

S̃>12,T 0

 =

∂Q̃1T (ϑ0,0)
∂λ>

∂Q̃1T (ϑ0,0)
∂ϑ

∂Q̃2T (ϑ0,0)
∂λ>

0

 .

This completes the proof of this theorem.
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