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Fig. 1 A theoretical model of an MREF-FML plate 
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ABSTRACT: To better exert the vibration suppression effect of magnetorheological elastomer (MRE) 

embedded into a composite structure with structural and functional integration advantage, this study 

proposes a nonlinear analytical model of such composite plate with an MRE function (MREF) layer, 

accounting for internal magnetic and temperature fields for the first time. Initially, a 9-layer fiber metal 

laminated (FML) plate with the MREF composites, consisting of two layers of metal protective skins, two 

layers of fiber-reinforced polymer (FRP) and one layer of MREF, is taken as an example to describe such 

a modelling method. Nonlinear expressions of elastic moduli of MRE and FRP involving thermal and 

magnetic fitting coefficients are also proposed, followed by derivation of the energy expressions of the 

constituent layers by the Rayleigh-Ritz method. After the free and forced vibrations are solved, the 

identification procedure of fitting coefficients is described and some literature results are employed to 

preliminarily validate this model without consideration of internal magnetic field or temperature field or 

both. Finally, dynamic experiments under different magnetic and temperature conditions are undertaken. 

The detailed comparison of the natural frequencies and resonant responses are conducted to provide a 

solid validation of the model developed. It has been found that enlarging the magnetic and temperature 

fields both facilitate the improvement of the anti-vibration performance. Also, by further increasing the 

shear modulus of MRE, the volume fraction of carbonyl iron particles or the thickness ratio of the MRE 

layer to the overall structure, a better vibration suppression capability can be obtained. 

KEYWORDS: A. Nonlinear analytical model; B. MRE function layer; C. Internal magnetic field; D. 

Internal temperature field; E. Vibration suppression  
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1. Introduction 

MRE is a new type of controllable damping materials with a series of advantages [1-4], 

including fast response speed [5], good reversibility [6], low production cost [7], etc. If this “smart” 

material can be embedded into a composite structure, vibration, noise and impact resistance 

properties of such a structural system can be greatly improved [8-10]. 

Recently, many researchers have investigated the vibration and damping characteristics of the 

composite beam, plate and shell structures with MRE by applying an external magnetic field. As one 

of the pioneers, Zhou et al. [11] investigated the adjustable rigidity behavior of an MRE-based 

sandwich beam with conductive metal skins. They found that the varied stiffness was dominated by 

the field-dependent shear property of this MRE core. On the basis of higher-order shear deformation 

theory, Dwivedy et al. [12] studied the dynamic response behavior of a soft-cored symmetric 

sandwich beam with MRE by taking into account an external magnetic field applied parallel to the 

structure. Nayak et al. [13] studied the natural frequencies and time-domain vibration response of a 

three-layered sandwich beam with an MRE core and metal layers. They found that up to 30 % 

vibration reduction was possible in this type of sandwich beam in comparison to that of the structure 

with a viscoelastic core. Furthermore, based on the finite element method (FEM), Nayak and his team 

[14] analyzed the free vibration of a sandwich beam with an MRE core and fiber-reinforced 

composite skins. Korobko et al. [15] proposed a general solution to motion equations for a 

three-layered sandwich beam with an MRE core subjected to forced bending vibrations in a uniform 

magnetic field. Ramesh et al. [16] conducted the vibration analysis of a laminated composite beam 

with an MRE core using FEM. They further proved that the natural frequencies and loss factors of 

such a composite beam could be increased with the enhancement of the magnetic field. By employing 

the finite element software Abaqus and Ritz method, Aguib et al. [17] established two types of 

dynamic models of a sandwich plate consisting of two aluminum skins and an MRE core. However, 

they did not consider the magnetic field effect on the material property of MRE. Ying et al. [18] 

analyzed the stochastic micro-vibration response of a horizontal magnetorheological viscous 

elastomer (MRVE) based sandwich beam with supported mass. They considered non-homogeneous 
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complex modulus of the MRVE caused by localized magnetic field. On the basis of Abaqus software 

and experimental method, Chikh et al. [19] investigated the vibration response of MRE sandwich 

beams subjected to different magnetic field intensities and harmonic excitation loads. Babu et al. [20] 

systematically investigated the effects of external magnetic field intensity, taper angle, ply 

orientations, aspect ratio, and constraint condition on the vibration properties of a tapered laminated 

composite plate with an MRE core. Yeh et al. [21] conducted the vibration analysis of a sandwich 

annular plate with MRE, and discussed the effects of thickness of MRE and the changed magnetic 

field on the structural natural frequencies and damping properties. Vemuluri et al. [22] investigated 

the optimal locations of MRE segments in the tapered composite MRE sandwich plates to maximize 

the natural frequencies and the loss factors. Zhang et al. [23] conducted the nonlinear vibration 

measurement of an MRE sandwich plate subjected to an external magnetic field, and discovered a 

strong hardening-type nonlinear stiffness behavior. Eloy and his coauthors [24-25] conducted 

systematic investigations on the free and forced vibrations of a composite sandwich beam with an 

MRE core. They concluded that the increase of external local magnetic field is responsible for 

nonlinear variations of the natural frequencies and responses. However, the overall effect of external 

magnetic field and thermal effect induced are not ignored. Jeong [26] designed an automatic vibration 

reduction device of a plate structure with MRE material, and determined the relationship between the 

vibration reduction frequencies and electric currents applied on the structural system with MRE. 

From literature review, it can be observed that researchers commonly focus on application of 

external magnetic field to achieve active vibration control of composite structures with MRE material, 

which requires extra arrangement of permanent magnets, or electromagnets or magnetic field 

generating instruments, thus does not benefit the design of smart composite materials with highly 

structural and functional integration features. No work has been reported on analytical modeling 

approach of composite structural systems with MRE material by accounting for internal magnetic and 

temperature fields simultaneously, to the authors’ best knowledge. Actually, to accurately predict and 

evaluate the free and forced vibration properties, it is very necessary to consider those nonlinear 

factors described above. Aiming at solving those problems, by taking a fiber-metal laminated plate 
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with an embedded MRE function layer (or called an MREF-FML plate) as an example, a nonlinear 

vibration model is proposed in the present study, on the basis of some novel assumptions of the 

material properties of the MRE core and FRP composites. Then, after the nonlinear solutions of the 

free and forced vibration problems are successfully obtained, the corresponding identification 

procedure of key fitting coefficients is clarified. Additionally, the predicted vibration parameters are 

compared to the experimental ones to verify the developed model, and some important factors are 

discussed to improve its vibration suppression capability. From both theoretical and practical 

perspectives, the present study has laid a solid foundation for comprehensive application of 

composite plate structures with an internal magnetic field, via active vibration control by an MRE 

function layer. 

2. Theoretical formulations 

2.1 Description of the model 

 
Fig. 1. A theoretical model of an MREF-FML plate. 

Here, a 9-layer MREF-FML plate structure that consists of two layers of metal protective skins, 

two layers of FRP and one layer of MREF is taken as an example to describe the analytical modelling 

method. Fig. 1 shows a theoretical model of this type of laminated structure, where the MREF layer 

actually contains two copper wire layers, two inner metal layers and an MRE core. Firstly, assume 

that there is a coordinate system o-xyz in the mid-plane of the MREF layer. The effective length, 

width, thickness and plane area are a, b, h, and A, respectively, and other parameters related to the 

thickness, density, modulus and Poisson's ratio of each layer are listed in Table 1, where subscripts 
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“mp”, “f”, “c”, “mi” and “v” denote the protective metal, fiber, copper wire, inner metal and MRE 

layer, respectively. Besides, there is a local coordinate system in the fiber layers, where fn  is the 

total number of fiber layers, ‘1’, ‘2’ and ‘3’ represent different fiber directions, and θ  represents the 

angle between direction ‘1’ and the x-axis. Also, this plate is assumed to be under the cantilever 

boundary condition with its constrained edge subjected to base excitation load ( )z t . The concerned 

vibration displacement is 0w , which is located at a point R 1 1( , )x y . 

Table 1 Material and geometrical parameters of the MREF-FML plate. 

Category Nomenclature 

Metal protective layer mph , mpρ , mpE , mpυ  

Fiber layer f  h , f  ρ , f1  E , f2  E , f12G , 12fυ , 21fυ  

Copper wire layer c  h , c  ρ , c1  E , c2 E , c12G , 12cυ , 21cυ  

Inner metal layer mih , mi  ρ , mi E , miυ  

MRE core v  h , v  ρ , v1 E , v2 E , v13G , v23G , v12G , 12vυ , 21vυ  

In the modelling process, the following assumptions need to be firstly clarified: 

(1) Each layer of this MREF-FML structure is tightly bonded without relative slippage [27]; 

(2) A uniform magnetic field is assumed to be generated in the powered copper coils, so it can 

be regarded as a ring current [28]; 

(3) The copper wire layer is tightly wound around the inner metal layers, which is treated as a 

single-layered structure with the configuration of 90°. Meanwhile, the generated magnetic field along 

the z direction is neglected due to the thin thickness of copper wires; 

(4) The magnetic field only acts on the MRE core and its effects on other materials and layers 

are negligible; 

(5) Particularly, the internal thermal effect induced by the current-carrying copper coils is 

assumed to be uniform in the overall area of the structure system. However, the generated thermal 

field only affects the fiber layers and MRE since those materials are sensitive to temperature. 

2.2 Nonlinear elastic moduli considering internal magnetic and temperature fields 

When the MREF-FML structure is utilized to exert vibration suppression effect, the applied 

magnetic field will enhance the magnetic dipole interactions between the adjacent particles within a 
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particle chain of MRE. So, its elastic moduli are changed in a nonlinear manner on the macro scale 

[29-30]. Meanwhile, due to the heat conduction phenomenon of current-carrying copper wires in this 

composite structure, it is necessary to account for the nonlinear thermal effect on stress-strain 

relations of constituent layers [31-32]. Here, by modifying the Jolly theory [29], the nonlinear 

dynamic Young's and shear moduli nonv1E , nonv2E  and nonv23G , nonv12G  of the MRE core are 

regarded as a function of temperature change ∆T  and magnetic induction intensity B (which is 

generated by the entire copper coils in the center of the plate, as seen in Appendix A) in the following 

forms 

( )
( )
( )

( )

v1 v1

v2 v2

v23 v 23

v12 v12

nonv1 v1 v1 v1

nonv2 v2 v2 v2

nonv23 v23 v23 v23

2
1 0

nonv12 v12 v12 v12 2 3
0

=(1 )( )

=(1 )( )

=(1 )( )

=(1 )( )
2

B

B

B

Br

r r

E T E A B

E T E A B

G T G A B

G T G A B
h

α

α

α

α

λ

λ

λ

µ φ χλ
µ µ

− ∆ +

− ∆ +

− ∆ +

− ∆ +

           (1) 

where v1E , v2E , v23G  and v12G  represent the traditional elastic moduli without considering both 

magnetic and temperature fields; viα  and viλ  (i= 1, 2, 23, 12) are the thermal fitting coefficients of 

MRE material; viA  and viB  (i= 1, 2, 23, 12) are the corresponding magnetic fitting coefficients; 

1µ  is a relative permeability of carbonyl iron particles (CIPs); 0χ  is a magnetic susceptibility; rφ  

is the volume fraction of CIPs; rh  is an indication of the gap between different CIPs; rµ  is a 

relative permeability of MRE; 0µ  is the corresponding permeability of vacuum. 

In addition, for FRP material in the studied plate, its material properties are actually sensitive to 

internal thermal field rather than magnetic field. So, its nonlinear dynamic Young's and shear moduli 

nonf1E , nonf2E  and nonf12G  are defined as follows 

( )
( )

( )

f1

f2

f12

nonf1 f1 f1

nonf2 f2 f2

nonf12 f12 f12

= (1 )

= (1 )

= (1 )
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− ∆
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                         (2) 
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where f1E , f2E  and f12G  are the traditional elastic moduli of FRP material without considering the 

thermal effects; fiα  and fiλ  (i= 1, 2, 12) denote the corresponding thermal fitting coefficients. 

2.3 Energy expressions of the constituent layers 

To solve the structural vibration problems, initially, the MRE core in the MREF layer is regarded 

as a viscoelastic material due to its excellent shear deformation capability (being able to effectively 

absorb vibration energy like what a viscoelastic material does). Thus, by combining Reddy’s 

higher-order shear deformation theory with the classical lamination theory, displacement field 

functions of the constituent layers in the MREF-FML plate at normal temperature are defined as 

follows 

( ) ( ) ( )
3

0 2

4
( , , , ) , ,

3X X

z w
u x y z t u x y t z i i

h x
λ λ ∂ = + − + ∂ 

                (3a) 

( ) ( ) ( )
3

0 2

4
( , , , ) , ,

3Y Y

z w
v x y z t v x y t z i i

h y
λ λ ∂= + − + ∂ 

  (i= 1 or 2)     (3b) 

( )0( , , , ) , ,w x y z t w x y t=                           (3c) 

where i= 1 presents the classical lamination theory, whereas i= 2 associates to Reddy’s higher-order 

shear deformation theory, with the related undetermined variables ( )= ,X x

w
i

x
λ ϕ∂ − ∂ 

; 

( )= ,  Y y

w
i

y
λ ϕ ∂− ∂ 

. Besides, 0 0 0,  ,  u v w  are displacements in mid-plane; t is time; xϕ  and yϕ  are 

the corresponding rotations in the xoz and yoz planes, respectively.  

Furthermore, the overall stress-strain relationships and internal moments ,  , i i i
x y xyM M M

( )mp, f, c, mii =  of the MREF-FML plate can be obtained by constructing the stiffness matrix [33] 

related to the nonlinear Young's and shear moduli described above. Meanwhile, potential energy 

MREFU  and kinetic energy MREFT  in the MREF layer are expressed as 

( ) ( )
v

v

c c c mi mi mi
MREF

22
v vv v v v v v v v v v2

2

d d

1 1
( )d d + d

2 2

x x y y xy xy x x y y xy xyA A

h

x yh x x y y yz yz xz xz xy xyA A

U M M M A M M M A

w w
z A N N A

x y

κ κ κ κ κ κ

σ ε σ ε τ γ τ γ τ γ
−

= + + + + +

  ∂ ∂ 
 + + + + + −    ∂ ∂    

∫ ∫
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∂ ∂ ∂ 
 ∂ ∂ ∂ 

∫ ∫ ∫ ∫

∫ ∫
   (4) 

where 
v v
, x yN N  are the internal forces considering temperature field and v v,  yz xzτ τ  are the shear 

stresses of the MRE core. Besides, v v v v v,  ,  , , x y yz xz xyε ε γ γ γ  are the normal and shear strains, and 

,  ,  x y xyκ κ κ  are the curvatures of this core. 

Potential energy fU  and kinetic energy fT  in the FRP layers are represented as 

( )

mo

v
mi c

22
f f ff f f

f

2 2 22
f f

2

d + + 2 d

( ) +( ) +( ) d d

x y xyx x y y xy xyA A

h
h

hA h h

w w w w
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x y x y
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ρ
−

+ +

  ∂ ∂ ∂ ∂ 
 = + + −    ∂ ∂ ∂ ∂    

∂ ∂ ∂ =  ∂ ∂ ∂ 

∫ ∫

∫ ∫

   (5) 

where 
f f f
,  , x y xyN N N  are the internal forces of the FRP layers considering temperature field. 

Potential energy mpU  and kinetic energy mpT  in the metal protective layers are given by 

( )

mp

mp mp mp
mp

2 2 2
mp mp

d

( ) +( ) +( ) d d

x x y y xy xyA

A
h

U M M M A

u v w
T z A

t t t

κ κ κ

ρ

= + +

∂ ∂ ∂ =  ∂ ∂ ∂ 

∫

∫ ∫
                   (6) 

Therefore, the overall potential energy U and kinetic energy T of this plate are obtained as  

mp f MREF

mp f MREF

U U U U

T T T T

= + +

= + +
                            (7) 

2.4 Solution to the free and forced vibrations 

On the basis of the Rayleigh-Ritz method, displacements 0 0 0,  ,  ,  ,  x yu v w ϕ ϕ  of the studied 

plate at a point R 1 1( , )x y  are given by 

( )i
0 0 0

1 1

( ) ( ) ,  ,  ,  ,  
M N

t
mn m n x y

m n

W e w P x P y W u v wω ϕ ϕ
= =

= =∑∑        (8) 

where ω  is excitation frequency,  = ,  ,  ,  ,  mn mn mn mn mn mnw A B C D E  are the eigenvectors which need 

to be solved, ( )mP x  and ( ) ( 1,..., ; 1,..., )nP y m M n N= =  are orthogonal polynomials related to 

cantilever boundary condition [34], and M and N are truncation coefficients.  
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Assume that W is the total external work, and define the Lagrangian energy function L as below 

max max max+L T W U= −                              (9) 

By minimizing the partial derivatives of L with respect to , , , , mn mn mn mn mnA B C D E  [35], one has 

0
mn mn mn mn mn

L L L L L

A B C D E

∂ ∂ ∂ ∂ ∂= = = = =
∂ ∂ ∂ ∂ ∂

                   (10) 

Letting 

max max max max max
non

2max max max max max
non

max max max max max

=diag ,  ,  ,  ,  

=diag ,  ,  ,  ,  /

=diag ,  ,  ,  ,  

mn mn mn mn mn

i
mn mn mn mn mn

mn mn mn mn mn

U U U U U

A B C D E

T T T T T

A B C D E

W W W W W

A B C D E

ω

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

K

M

F

non=α β


 
 

+C M K

            (11) 

where nonK , M and C are stiffness, mass and damping matrices, F is excitation force vector, α  and 

β  are the Rayleigh damping coefficients with 2 1
3 3 2 2
2 1 2 1

1 1
2( ) / ( )

n nα
ω ω ω ω

= - -  and 2 1
2 2
2 1

= 4( )
n nβ

ω ω
−
−

. 

Besides, 1n , and 2n  are attenuation coefficients, which are obtained via the measuring the damping 

property of the structure system.  

Thus, the characteristic equation of the structure system is obtained as 

2
non non( i )iω+ − =K C M q F                           (12) 

By ignoring C and F in Eq. (12), the free vibration eigenvalue equation is given by  

2
non non( )iω− = 0K M q                              (13) 

where noniω  represents the ith nonlinear natural angular frequency. 

Then, an iterative calculation method is adopted to solve noniω  by setting an appropriate 

termination condition with the following equation 

( ) ( )1
non non 0

j j
i i Sω ω+ − ≤                             (14) 

where ( )j
iω  and ( 1)j

iω +  are frequency values at the jth and (j+1)th steps, and 0S  is the accuracy 

factor. 

Once noniω  is obtained, each modal shape of the structure system can be obtained by 
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substituting q into Eq. (8). Furthermore, to solve the forced vibration behavior, the base excitation 

load ( )z t  is assumed as follows 

i( ) tz t Ze ω=                                (15) 

where Z is excitation amplitude. 

Assume that the total external work W is given by  

mp f c mi v= + + + +W W W W W W                         (16) 

where mp f c mi,  ,  ,  W W W W  and vW  are the work done in different individual layers, respectively. 

Subsequently, the residual vector r and Jacobian matrix J of the MREF-FML plate are 

constructed as below 

( )2
non i

( ) ( )

( ) ( )
R I

R I

R R

I I

ω= + − −

∂ ∂ ∂ ∂ 
=  ∂ ∂ ∂ ∂ 

r K C M q F

r q r q
J

r q r q

                          (17) 

where q is regarded as a complex vector in the solving process of dynamic response, which contains 

real part Rq  and imaginary part Iq . 

To solve the forced vibration, r and q are decomposed as r  and q  with the following forms 

( )
( )

( )
( )=  =

R R

I I

      
   
      

r q
r q

r q
                            (18) 

where R(r) and R(q) are the real parts of r and q, whereas I(r) and I(q) are their imaginary parts. 

To obtain q accurately, (0)q  is set as an initial value of q. Then, an iterative termination condition 

is set by calculating the infinite norm of r. In this way, the optimal value of q can be obtained when 

( 1)j+r  at the (j +1)th step meets the following equation 

( ) ( )
0

1 1
0

1
maxj j

k
k n

r Q+ +

≤ ≤∞
= ≤r                         (19) 

where 0Q  is the accuracy factor, and 0n  is the maximum of k. 

When the termination condition in Eq. (19) is satisfied, the optimal value of q is achieved. Finally, 

the vibration response 0w  of the MREF-FML plate can be acquired by substituting q into Eq. (8). 

2.5 Identification procedure of fitting coefficients of the MRE core and FRP layers 
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As mentioned in Section 2.2, several fitting parameters of the MRE core and FRP layers need to 

be determined. Here, assuming that an MREF plate is fabricated and its natural frequencies under 

different magnetic induction intensities and temperatures are already measured in experiment. Then, 

the relative error function free  between the experimental and theoretical frequency parameters, 

subjected to certain magnetic induction intensities and temperatures is constructed as below 

2

fre

ˆ
=

ˆ
i i

i

e
ω ω

ω
 − 
 
 

                             (20) 

where ˆiω  is the ith natural angular frequency measured, iω  is the ith natural angular frequency 

calculated based on the developed model, with ignoring the internal magnetic and temperature fields 

temporally. 

By taking the traditional material parameter values 0 0 0 0
nonv1 nonv2 nonv23 nonv12,  ,  ,  E E G G  of MRE as 

centers, the iterative ranges of the Young's and shear moduli are determined as below 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 0
nonv1 deg nonv1  nonv1 deg

0 0
nonv2 deg nonv2  nonv2 deg

0 0
nonv23 deg nonv23 nonv23 deg

0 0
nonv12 deg nonv12 nonv12 deg

1 1

1 1

1 1

1 1

E R E E R

E R E E R

G R G G R

G R G G R

− ≤ ≤ +

− ≤ ≤ +

− ≤ ≤ +

− ≤ ≤ +

                  (21) 

where degR  is the variation degree. According to our experience, degR  is usually set as 10 % to 

20 %. 

Choosing an appropriate step size g, the corresponding iteration vectors are determined as 

1 2[ , , ]nZ Z Z= ⋯Z                               (22) 

where 1 0
deg(1 )Z Z R= − , 2 0 0

deg deg(1 ) 2Z Z R gR Z= − + , 
0 0

deg deg(1 ) 2 ( 1)nZ Z R g n R Z= − + − , 0Z =

nonv1 nonv2 nonv23 nonv12,  ,  ,  E E G G . 

By calculating those modulus parameters in the predefined iteration range in Eq. (21), the 

optimal results of nonv1 nonv2 nonv23,  ,  E E G  and nonv12G  with certain magnetic induction intensity and 

temperature will be obtained when free  reaches the minimum value. Repeating the above steps, all of 

those material parameters with different magnetic induction intensities and temperatures will be 
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iteratively calculated. Moreover, in the Curve Fitting Tool environment of MATLAB, set ‘X data’, ’Y 

data’ and ‘Z data’ to denote the magnetic induction intensity, temperature and dynamic modulus 

values, respectively. In this way, three dimensional fitting surfaces related to different modulus values, 

magnetic induction intensities and temperatures can be plotted, among which the fitting parameters 

viλ , viα , viA  and viB  will be determined. 

Similarly, the iterative ranges of the Young's and shear moduli of FRP can also be assumed. 

Moreover, by employing the experimental natural frequency results of the MREF-FML plate as 

benchmarks, 2D fitting curves related to different modulus values and temperatures can be plotted. 

Then, the concerned fitting parameters fjλ  and fjα  will be determined. 

2.6 Analytical validation  

Firstly, Ref. [36] is employed to validate the developed model in predicting the natural 

frequencies of a composite plate with the MRE material. The corresponding geometrical and material 

parameters are: a=0.4 m, b=0.3 m, vh =2 mm, mpE =72 GPa, vG =0.6 MPa, mpρ =2700 kg/m3, vρ

=3312.7 kg/m3, mpυ =0.3 and vυ =0.49. Table 2 shows the comparison of natural frequencies of a 

laminated plate with the MRE layer between the present study and Ref. [36], when this type of 

composite plate is under the simply supported boundary condition with the change of external 

magnetic field from 0 to 400 mT. Note that at this time, our model ignores the temperature effect 

temporarily. It can be discovered that the deviations of the frequency parameters are less than 0.7 %, 

which shows a good consistency. 

Table 2 Comparison of the first three natural frequencies of a laminated plate with the MRE layer between the 
present study and Ref. [36]. 

B /mT Source 1 Mode 2 Mode 3 Mode 

0 

Ref. [36] /Hz 178.97 349.2 485.26 

Present /Hz 177.92 350.47 486.22 

Deviation /% 0.6 0.4 0.2 

200 
Ref. [36] /Hz 187.92 358.78 495.07 
Present /Hz 186.69 356.63 497.88 

Deviation /% 0.7 0.6 0.6 

400 

Ref. [36] /Hz 196.91 368.61 505.25 

Present /Hz 195.56 366.81 507.37 

Deviation /% 0.7 0.5 0.4 
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In addition, Ref. [37] is employed to preliminarily validate the developed model in predicting 

the vibration responses of this type of structure system without consideration of the internal magnetic 

and temperature fields. The corresponding geometrical and material parameters are: a =300.2 mm, b 

=199.9 mm, mph =1.9 mm, mih =0.3 mm, vh =0.5 mm, mpE =68.9 GPa, miE =209 GPa, vG =2.2 

MPa, mpρ =2700 kg/m3, miρ =7890 kg/m3, vρ =789.5 kg/m3, mpυ =0.3, miυ =0.3, vυ =0.49. Table 3 

shows the comparison of the calculated resonant responses of a laminated plate with a viscoelastic 

core in the first, third and fifth modes between the present study and Ref. [37], when it is under 

cantilever boundary condition with the base excitation amplitude of 1 g. It can be discovered that the 

deviations of the response parameters are less than 1.5 %, which indicates a relatively good 

agreement. The existing deviations may be caused by the different calculation approaches or 

theoretical principles, since the finite element method in conjunction with the classical shear 

deformation theory is adopted in Ref. [37], whilst the classical lamination theory and high-order 

shear deformation theory are utilized in the present study. 

Table 3 Comparison of resonant responses of a laminated plate with a viscoelastic core between the present study 
and Ref. [37]. 

Source 1 Mode 3 Mode 5 Mode 
Ref. [37] /mm/s 100.11 1.99 1.02 
Present /mm/s 100.83 2.02 1.03 
Deviation /% 0.7 1.5 1.0 

3. Experiment 

3.1 Material fabrication 

Fig. 2(a) shows a flowchart for fabrication of an MREF-FML plate specimen. Initially, carbonyl 

iron powder, silicone oil and silicone rubber are used to prepare the MRE core via a set of molds with 

thickness of 1.4 mm in internal space and two powerful permanent magnets outside, whose magnetic 

induction intensity reaches about 700 mT. Subsequently, for shaping and protecting the soft MRE 

material, two layers of aluminum alloy each with a thickness of 0.3 mm are placed on its upper and 

lower surfaces, and then are compressed under the atmospheric pressure. After a thermocouple is 

embedded, this 3-layer plate structure is wound around by copper wires each with a thickness of 0.3 

mm, to form an MREF plate specimen, of which two copper wire layers are actually produced in a 
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rectangular form, as seen in Fig. 2(a). 

On the basis of the prepared MREF plate specimen, with the vacuum-assisted resin-transfer 

method [38-39], the unidirectional carbon fiber cloths are laid up to obtain two FRP layers, each with 

a thickness of 0.9 mm and laminated configuration of [0°/90°/0°/90°/0°/90°]. Then, those FRP layers 

are laid up on both sides of the MREF plate specimen, followed by another two layers of aluminum 

alloy (treated as protective skins). In this way, an MREF-FML plate specimen is finally prepared by 

normal temperature curing of epoxy resin impregnating into constituent layers in a vacuum 

environment, as shown in Fig. 2(b). Note that in this fabrication process, resin flow effectiveness and 

an acceleration in excess of resin extrusion are checked repeatedly to ensure good quality of the 

specimen. The corresponding material parameters of different layers before application of internal 

magnetic field are shown in Table 4, among which the Young's and shear moduli as well as the 

Poisson's ratios of MRE are measured via reverse identification of metal beam specimens with an 

MRE core [37]. Also, those moduli and Poisson's ratios are compared to the counterparts in Ref. [40], 

showing that the measured material properties are trustworthy. 

 
Fig. 2. A flowchart for fabrication of (a) an MREF plate specimen and (b) an MREF-FML plate specimen. 

Table 4 Material parameters of the MREF-FML plate specimen before application of internal magnetic field. 

Type Young's modulus (MPa) Shear modulus (MPa) Poisson's ratio Density(kg/m3) 

Metal skin layer 3
mp 72 10E = ×  --- mp 0.3υ =  mp 2700ρ =  

FRP layer  3
f1 115 10E = ×  3

f2 9.5 10E = ×  3
f12 7.1 10G = ×  12f 0.32υ =  f 1370ρ =  

Copper wire layer 3
c1 163 10E = ×  3

c2 143 10E = ×  3
c12 47.5 10G = ×  12c 0.35υ =  c 7800ρ =  

Inner metal layer 3
mi 72 10E = ×  --- mi 0.3υ =  mi 2700ρ =  
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MRE core v1 7.8E =  v2 7.8E =  v12 2.5G =  v23 2.6G =  12v 0.47υ =  v 3300ρ =  

3.2 Experimental setup 

A vibration test system of the MREF-FML plate specimens considering internal magnetic and 

temperature fields is set up, as shown in Fig. 3, which includes a vibration shaker, a power amplifier, 

a laser vibrometer, a lightweight acceleration sensor, a set of clamp fixture, a 24V-DC power, a set of 

adjustable resistor, an LMS SCADAS data acquisition instrument, an embedded thermocouple and a 

thermal transducer. It is noteworthy that the 24V-DC power is used to provide access circuit for the 

rheostat and copper coils, thus a controllable internal magnetic field will be generated. Once the 

magnetic field is stable (after the current is formed without fluctuation for about 1 minute), the 

thermocouple is employed to measure the internal temperature variation via a thermal transducer. 

Finally, all of the excitation, response and temperature signals are recorded in the LMS Test Lab.10b 

software installed in a laptop workstation. In addition, the following parameters are used in the 

experimental process: (I) Frequency range: 0-2048 Hz; (II) Frequency resolution: 0.1 Hz; (III) 

Window function: Hanning window; (IV) Excitation amplitude: 1.0-10.0 g; (V) Response measuring 

time: 10-15 s; (VI) Current range: 0-1.2 A (the corresponding magnetic induction intensity ranges 

from 0 to 120 mT in accordance with Biot-Savart Law described in Appendix A); (VII) Temperature 

range: 20-80 °C 

 
Fig. 3. A vibration test system of the MREF-FML plates considering internal magnetic and temperature fields. 

4. Results and discussion 

4.1 Fitting coefficient results of the MRE and FRP layers 

Here, an MREF plate with the length, width, thickness of 120, 80 and 2.6 mm is first fabricated 
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and measured to obtain the first natural frequencies under different magnetic induction intensities and 

temperature conditions, as seen in Table B1 in Appendix B. Then, after it is covered with fiber metal 

laminates, the corresponding first natural frequencies of such an MREF-FML plate (namely the 

specimen I) are further measured, as seen in Table B2 in Appendix B. The length, width, and 

thickness of this MREF-FML plate are 120, 80 and 5 mm, respectively. Then, by taking those 

experimental data as a benchmark, the relative error functions between experimental and theoretical 

results are constructed to iteratively calculate the elastic moduli of MRE and FRP, respectively, as 

shown in Fig. C1 and Fig. C2 in Appendix C, from which it can be found that internal magnetic and 

temperature fields indeed have a non-negligible effect on material properties of MRE. Thus, it is 

reasonable to consider those factors, since a downward trend of the elastic moduli can be obviously 

observed as the internal temperature increases from 20 °C to 65 °C, whereas an upward trend of the 

elastic moduli can be found within a magnetic field range of 40-120 mT. Moreover, according to the 

identification procedure in Section 2.5, the fitting coefficients of MRE and FRP are obtained when 

those magnetic and temperature fields are both or separately considered, as listed in Table 5. 

Table 5 The identified fitting coefficients of MRE and FRP materials. 
Fitting 

coefficient 
Value 

Fitting 
coefficient 

Value 
Fitting 

coefficient 
Value 

Fitting 
coefficient 

Value 

v1λ  0.00000323 v1α  2.638 v1A  48.45144 v1B  1.9632 

v2λ  0.00662121 v 2α  0.592 v2A  0.71273 v 2B  2.8471 

v23λ  0.00096308 v23α  1.186 v23A  17.11392 v23B  2.1733 

v12λ  0.00172498 v12α  1.001 v12A  0.00077 v12B  0.6353 

f1λ  0.00010882 f1α  1.458 --- --- --- --- 

f 2λ  0.00009926 f 2α  1.518 --- --- --- --- 

f 12λ  0.00010893 f12α  1.442 --- --- --- --- 

4.2 Comparison of the theoretical and experimental results 

To validate the model developed, another MREF-FML plate (namely specimen II) is made using 

the same fabrication method with the length, width, thickness of 200, 100 and 5 mm. Then, similar 

experimental techniques are employed to gain the nonlinear vibration parameters by taking into 

account the magnetic and temperature fields already formed inside this type of laminated structure. 

Fig. 4 and Fig. 5 present the comparisons between the theoretical and experimental results of the first 

three natural frequencies and the corresponding resonant response amplitudes of specimen II with 
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different internal temperature and magnetic fields. Meantime, the maximum relative variation rates 

and calculation errors of those frequency and response parameters are also displayed in the same 

figures. Note that when the influence of the internal temperature field is investigated, the magnetic 

induction intensity is set as 80 mT, whereas when the effect of the internal magnetic field is studied, 

the internal temperature is fixed at 60 °C. 

 
Fig. 4. Comparisons between the theoretical calculations and experimental tests of specimen II with different internal 

temperatures, (a) the first three natural frequencies and (b) the corresponding resonant response amplitudes. 

 
Fig. 5. Comparisons between the theoretical calculations and experimental tests of specimen II with different internal 

magnetic induction intensities, (a) the first three natural frequencies and (b) the corresponding resonant response 

amplitudes. 

The following results can be discovered from Figs. 4 and 5: (I) based on the theoretical model, 

the maximum calculation errors of the first three natural frequencies and the corresponding resonant 

response amplitudes of specimen II are less than 2.9 % and 9.6 %, respectively. Meanwhile, the 

predicted variation trends of the free and forced vibrations are consistent with the experimental 

results. Hence, the accuracy and reliability of the developed model are verified; (II) when the 

magnetic field remains stable, with the increase of internal temperature, the structural natural 
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frequencies exhibit a gradually declining trend with the maximum reduction rate of 1.4 %. However, 

the first three resonant responses are significantly reduced. For example, the corresponding reduction 

rates reach 31.2 %, 47.6 % and 77.2 %, respectively. This good vibration suppression effect is 

attributed to the enlarged damping performance of the structure system when the internal temperature 

is increased. Usually, the resonant response is very sensitive to the change of the damping property 

(which is proportional to the structural damping matrix C in Eq. (11)). Besides, it is worth noting that 

the structural stiffness will also be reduced as the internal temperature increases, but at this time the 

increased damping matrix C exerts a dominant impact on the overall structure; (III) when the internal 

temperature field remains stable, with the increase of the magnetic induction intensity, the structural 

natural frequencies show a gradually rising trend with the maximum rising rate of 3.9 %. This 

upward phenomenon of frequency parameters may result from the increase of the shear modulus of 

MRE as well as structural rigidity. Besides, the first three resonant response results are obviously 

reduced. For example, the corresponding reduction rates reach 42.7 %, 64.3 % and 48.6 %, 

respectively. One reason for this increasing vibration suppression phenomenon is that the increase of 

the magnetic induction intensity leads to the rise of the elastic moduli of MRE, which also results in 

the increased structural stiffness in Eq. (11). Another reason is the enhanced damping effect, since the 

damping property of this type of structural system is proportional to the internal magnetic field 

intensity. It is interesting to note that as the shear modulus of MRE is increased, the structural shear 

stiffness is also enhanced. Moreover, it has more obvious suppression effect on the second resonant 

response, since its modal shape changes in a torsional manner. 

4.3 Effects of the elastic moduli of MRE on the vibration characteristics 

Fig. 6 shows the first 3 normalized natural frequencies and resonant responses of the MREF-FML 

plate with different enlargement times of the Young's moduli of MRE, which are achieved when the 

temperature is fixed at 60 °C and the magnetic induction intensity is set as 80 mT. It should be noted 

that: (I) when the change of Enonv1 is investigated, its initial value is set as 7.8 MPa, while Enonv2, 

Gnonv23 and Gnonv12 are chosen as 2 GPa, 2.6 MPa and 2.5 MPa, respectively; (II) when the variation 

of Enonv2 is studied, its initial value is set as 5 GPa, while Enonv1, Gnonv23 and Gnonv12 are selected as 2 
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GPa, 2.6 MPa and 2.5 MPa, respectively; (III) when the change of Gnonv23 is focused, its initial value 

is set as 4 MPa, while Enonv1, Enonv2 and Gnonv12 are chosen as 5 GPa, 5 GPa and 2.5 MPa, respectively; 

(IV) when the variation of Gnonv12 is studied, its initial value is set as 5 MPa, while Enonv1, Enonv2 and 

Gnonv23 are selected as 5 GPa, 5 GPa and 2.6 MPa, respectively. Besides, the maximum relative 

variation rates of those response parameters are also displayed in the same figures. 

 
Fig. 6. Effects of the Young's moduli of MRE core on the normalized natural frequency and resonant response: (a) the 

first mode, (b) second mode and (c) third mode. 

It can be observed from Fig. 6 that within the same enlargement range, compared to other 

moduli, the continuous increase of Gnonv12 has a significant impact on the natural frequencies of the 

structure system, which contributes to an uptrend of the first three frequency results with a rising rate 

being about 2 % to about 30 %. The reason may be that with the increase of Gnonv12, the stiffness 

matrix nonK  is also raised, which is directly proportional to the ascending values of MREFU  in Eq. 

(4) and U in Eq. (7). Moreover, the increase of Gnonv12 also yields the greatest reduction to the 

structural resonance in each mode. For example, the reduction rates of the first three resonant 

response amplitudes reach 73.8 %, 83.2 % and 88.6 %, respectively. Meanwhile, the enhancement of 

Gnonv23 also contributes to an obvious downward trend of the resonant responses with a reduction rate 

ranging from about 20 % to 80 %. The reason why those two types of shear moduli play a dominant 

role in vibration suppression is due to the continuously ascending stiffness matrix nonK  in Eq. (11) 

as well as the unchanged external work W in Eq. (16), since those variables are closely related to 

forced vibration of this kind of laminated structure. 

4.4 Effects of the volume fraction of CIPs on the vibration characteristics 
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Fig. 7 illustrates the first 3 normalized natural frequencies and resonant responses of the 

MREF-FML plate with different volume fractions of CIPs, where the temperature is fixed at 60 °C 

and the magnetic induction intensity is set as 80 mT. Meanwhile, the maximum relative variation 

rates of those frequency and response parameters are also displayed in the same figures. Note that an 

initial value with a volume fraction of 5 % is taken as a benchmark for comparison. 

 
Fig. 7. Effects of the volume fractions of CIPs on the vibration behavior of the MREF-FML plate: (a) normalized natural 

frequencies and (b) normalized resonant responses. 

It can be seen from Fig. 7(a) that as the volume fraction continues to rise, the structural natural 

frequencies increase with an upward variation rate being less than 0.5 % due to a slight increase of 

the modulus nonv12G , which is proportional to the volume fraction of CIPs. Besides, as seen in Fig. 

7(b), with the rise of the volume fraction, the first 3 resonant response amplitudes exhibit a 

downward trend with varying degrees. For example, the reduction rates of the first and third resonant 

responses reach 36.8 % and 55.3 %, respectively, whilst the counterpart in the second mode is only 

10.9 %. Moreover, this reduction variation in each mode gradually becomes weak, which may be 

caused by the nonlinear variation manner of the damping effect, since the magnetorheological effect 

of MRE is also improved as the volume fraction rises, followed by an upward trend of the structural 

damping performance. However, as reported by Zhang et al. [41] the growth of the 

magnetorheological effect becomes weaker and weaker with an increased change of the volume 

fraction of CIPs. Hence, a slowly declining trend of the resonant response results can be discovered. 

4.5 Effects of the thickness ratio on the vibration characteristics 

Under the same conditions of temperature and magnetic induction intensity described in the 
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previous section, Fig. 8 demonstrates the effects of the thickness ratio of the MRE layer to the overall 

plate structure (namely thickness ratio of type I) on the first 3 normalized natural frequencies and 

resonant responses of the MREF-FML plate. In the meantime, for the convenience of comparison, the 

effects of the thickness ratio of the MREF layer to the overall plate structure (namely thickness ratio 

of type II) on those frequency and response parameters are also plotted in the same figures. In 

addition, the maximum relative variation rates of those frequency and response parameters are also 

displayed in Fig. 8. Note that in the comparison study, the initial thickness ratio of type I is set at 

18 %, whilst the counterpart of type II is set at 44 %. When the thickness ratio of type I or type II is 

increased, the thickness of the MRE layer or MREF layer is increased proportionally. 

 
Fig. 8. Effects of the thickness ratios of the MRE layer and MREF layer to the overall plate structure on: (a) 

normalized natural frequencies and (b) normalized resonant responses. 

As can be observed from Fig. 8, with the increase of the thickness ratio of type II, the natural 

frequencies of the structure system drop obviously due to the increased weight. Thus, it is suggested 

to adopt thickness ratio of type I to improve the vibration suppression capability, since it has less 

impact on frequency parameters, but well maintains a good damping effect with reduction rates of the 

first three resonant responses ranging from 20.5 % to 75.5 %, respectively. Moreover, the 

recommended value of the thickness ratio of type I should be within 24 %-26 %. 

5. Conclusions 

In this study, a nonlinear model of the MREF-FML plate structure, considering the internal 

magnetic field and temperature field simultaneously, has been proposed and validated by 

experimental method. Based on the theoretical and experimental results, the following conclusions 
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are highlighted: 

(I) After an internal magnetic field is applied in such a structure, its vibration suppression 

capacity is enhanced by about 42 %-65 %. Moreover, due to the magneto-rheological effect of the 

MREF layer, the anti-vibration performance can be further improved with the increase of magnetic 

induction intensity. 

(II) Due to the inevitable heating phenomenon of copper wires in the MREF layer, as the 

internal temperature increases, the dynamic responses of the MREF-FML plate structure exhibit a 

declining trend ranging from about 30 % to 70 %. Hence, increasing the internal temperature field 

contributes to a rise of anti-vibration performance. 

(III) Since the shear modulus Gnonv12 of MRE material is increased by 16 times, the structural 

resonant responses in the first three modes are raised by about 70 %-90 %. It is suggested to add 

some carbon nanotubes, graphene and other reinforcing materials in the fabrication process of MREF 

material to improve the vibration suppression effect. Meanwhile, by further increasing the volume 

fraction of CIPs or the thickness ratio of the MRE layer to the overall plate structure, a better 

damping behavior is definitely discovered. 

(IV) Due to good viscoelasticity of MRE and further enhanced active damping performance 

with an internal magnetic field, the MREF-FML plate structure can be utilized to play a crucial role 

in both active and passive vibration suppression applications. However, the heating degradation issue 

of this type of composite materials caused by the internal temperature field is ignored in this paper. 

So, a more comprehensive model should be established in future work. Besides, the inner metal 

layers are adopted as a solid carrier for shaping and protecting the soft MRE material, however, they 

also bring extra weight. In the future study, a porous structure design needs to be adopted for those 

layers to achieve the goal of light weight as well as comprehensive control of vibration and noise 

issues. 
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Appendix A 

Based on the Biot-Savart law, the magnetic induction intensity B in the center of a composite 

plate generated by the current-carrying copper coils is given by 
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where R is half of the distance between two copper wires, l is the distance from the center of the plate 

to the current element along the y direction, n is the number of turns per unit length, and β  is the 

angle in the xoz plane between any point of the copper coils and the x direction. 

Appendix B 

Table B1 The first natural frequencies of the MREF plate with different magnetic induction intensities and 

temperatures obtained in experiments. 

Temperature /°C 
Magnetic induction intensity /mT 

40 60 80 100 120 

Frequency /Hz 

20 153.4 153.4 153.4 153.5 153.5 

30 152.9 152.9 153.1 153.1 153.1 

40 152.5 152.5 152.5 152.6 152.6 

50 152.0 152.1 152.1 152.1 152.1 

60 151.6 151.7 151.7 151.7 151.7 

70 151.4 151.5 151.5 151.5 151.5 

Table B2 The first natural frequencies of the MREF-FML plate with different magnetic induction intensities and 

temperatures obtained in experiments. 

MREF-FML 
Temperature /°C 

20 30 40 50 60 70 

Frequency /Hz 242.0 241.6 241.1 240.6 240.1 239.8 

Appendix C 

 
Fig. C1. The calculated elastic moduli of the MRE core: (a) nonv1E , (b) nonv2E , (c) nonv23G  and (d) nonv12G . 

 

Fig. C2. The calculated elastic moduli of FRP: (a) nonf1E , (b) nonf2E  and (c) nonf12G . 
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