PURE VACUUM. NOTHING ELSE.

10-3 mbar vacuum range

- + 100% oil-free
- + Chemically resistant
- + No wear parts

Learn more

VACUU·PURE®

www.vacuubrand.com/vacuu-pure

Disulfide Promoted C–P Bond Cleavage of Phosphoramide: "P" Surrogates to Synthesize Phosphonates and Phosphinates

Fei Hou,^{+a} Xing-Peng Du,^{+a} Anwar I. Alduma,^a Zhi-Feng Li,^{b,*} Cong-De Huo,^a Xi-Cun Wang,^a Xiao-Feng Wu,^{a, c,*} and Zheng-Jun Quan^{a,*}

^c Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, UK

⁺ These authors contributed equally to this work.

Manuscript received: April 28, 2020; Revised manuscript received: July 29, 2020; Version of record online:

Supporting information for this article is available on the WWW under https://doi.org/10.1002/adsc.202000511

Abstract: A metal-free C–P bond cleavage reaction is described herein. Phosphoramides, a phosphine source, can react with alcohols to produce phosphonate and phosphinate derivatives in the presence of a disulfide. P–H₂, P-alkyl, and P,P-dialkyl phosphoramides can be used as substrates to obtain the corresponding pentavalent phosphine products.

Keywords: C–P bond cleavage; Disulfide; Alkyl phosphonates; Phosphoramides; Phosphinates

Organophosphorus compounds are widely used in materials.^[1] catalysis.^[2] agriculture.^[3] pharmaceuticals,^[4] and modern organic syntheses.^[5] One representative is phosphonate which has attracted significant attention in recent years.^[6] The current strategy for synthesizing phosphonates mainly includes the classical Michaelis-Arbuzov reaction and Atherton-Todd reaction,^[7] direct esterification of phosphoric acid,^[8] phosphorylation of alcohols^[9] and C–P coupling reaction.^[10] These strategies often require pre-activated organic halides or pseudo halides as substrates.^[11] The severe effects associated with the industrial preparation of organophosphorus compounds are well known.^[12] Therefore, it is important to develop a new and environment-friendly method to synthesize phosphonates and phosphinates.

In the past few decades, the cleavage of C–P bond has emerged as an interesting topic of research.^[13,14]

The C–P bond cleavage is mostly realized through transition metal catalysis (Scheme 1A, a).^[15] In addition, Davidson^[16] has demonstrated the photocatalytic acyl C–P bond cleavage of acyl phosphine oxide under UV irradiation (Scheme 1A, b). Recently, Wang and co-workers have reported the acyl phosphorus C–P bond cleavage using Pd or Ni catalysts (Scheme 1A, c).^[17]

Phosphinecarboxamide was initially reported by Goicoechea et al.^[18] and our group^[19] recently. We reported the reaction of phosphinecarboxamide with nucleophiles in an addition-elimination reaction, and the phosphorylation of the P–H bond.^[20] We also

Scheme 1. C–P bond cleavage to synthesize new organophosphorus compounds.

Adv. Synth. Catal. 2020, 362, 1–7 Wiley Online Library 1 These are not the final page numbers!

^a International Scientific and Technological Cooperation Base of Water Retention Chemical Functional Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, People's Republic of China E-mail: xfwu@liverpool.ac.uk; quanzhengjun@hotmail.com

^b College of Chemical Engineering and Technology, Key Laboratory for New Molecule Design and Function of Gansu Universities, Tianshui Normal University, Tianshui 741001, People's Republic of China E-mail: zfli@tsnu.edu.cn

observed the dephosphorization of phosphinecarboxamide (removal of PH₂) in these reactions. These phenomena drew our attention, and we speculated that these side reactions could be a new route for the synthesis of phosphine organic compounds (Scheme 1B). C–P bond rupture and reconstruction has been an emerging topic because it provides an easy way to prepare value-added products from low-functionality molecule.^[21] In this study, we developed an efficient method to cleave the C–P bond of phosphoramides for synthesizing phosphates and phosphinates.

Initially, reaction of phosphoramide 1a and 1,2diphenyldisulfane was tested in ethanol in the presence of K₂CO₃. However, the desired product was not obtained, and all the starting materials were fully recovered. Interestingly, phosphoramide 1b reacted with EtOH gave the target product diethyl phosphite (4a) in 23% yield under the same reaction conditions (Scheme 2).

Inspired by the above results, P-alkylated phosphinecarboxamide (1c) with EtOH (2a) was used as the model substrates to explore the optimal reaction conditions in the presence of disulfide 3a for 3h at room temperature (Table 1). First, we investigated the effect of disulfide concentration on the yield of the reaction (entries 1-6. Table 1). No product was detected in the absence of disulfide (entry 1). The product yield gradually increased with increasing amount of the disulfide compound. When 2.5 equivalent of disulfide was added, the product yield increased to 52% (entries 2–6). Different types of bases were also examined (entries 7–13). K_2CO_3 was found to be the most beneficial for this reaction, and yield of the target product (4b) increased to 83% (entry 12). Following this, various solvents were screened (entries 14-18). When ethanol was replaced by equivalent amount of acetonitrile, **4b** was isolated in 80% yield (entry **14**), suggesting that acetonitrile was also effective in this reaction. Considering the generity and sustainability, ethanol was chosen as the optimal solvent for this reaction (entry 12). Increasing the temperature inhibited the reaction (entries 19-20). Particularly, it is worth mentioned that air was an essential component for this reaction. Under inert atmosphere, the product was obtained in only 10% yield (entry 21). When 3a was replaced by thiophenol, **4b** was obtained in a very low yield (10%, entry 22). Moreover, the use of

Scheme 2. Disulfide-promoted alkyl phosphate formation.

Adv. Synth. Catal. 2020, 362, 1-7

 Table 1. Optimization of reaction conditions.
 [a]

$Ph \xrightarrow{\qquad } P_{A} \xrightarrow$						
	1c	2a	4b	\ \	5a	
Entry	1 c:3 a	Base	Base Solvent		Yield (%) ^[c]	
	(mmol)	(equiv.)		4 b	5a	
1	1:0	$Cs_2CO_3(1)$	EtOH	0	0	
2	1:0.5	$Cs_2CO_3(1)$	EtOH	14	76	
3	1:1	$Cs_2CO_3(1)$	EtOH	20	78	
4	1:1.5	$Cs_2CO_3(1)$	EtOH	40	78	
5	1:2	$Cs_2CO_3(1)$	EtOH	50	80	
6	1:2.5	$Cs_2CO_3(1)$	EtOH	52	79	
7	1:2	DBU (1)	EtOH	64	66	
8	1:2	<i>t</i> -BuOK (1)	EtOH	trace	35	
9	1:2	$K_{2}CO_{3}(1)$	EtOH	70	83	
10	1:2	$Et_{3}N(1)$	EtOH	62	71	
11	1:2	$K_{2}CO_{3}(1)$	EtOH	70	80	
12	1:2	$K_2CO_3(2)$	EtOH	83	83	
13	1:2	$Cs_2CO_3(2)$	EtOH	63	80	
14 ^[b]	1:2	$K_2CO_3(2)$	CH ₃ CN	80	85	
15 ^[b]	1:2	$K_2CO_3(2)$	DMSO	trace	trace	
16 ^[b]	1:2	$K_2CO_3(2)$	Dioxane	32	53	
17 ^[b]	1:2	$K_2CO_3(2)$	CH_2Cl_2	36	50	
18 ^[b]	1:2	$K_2CO_3(2)$	Toluene	trace	trace	
19 ^[b,g]	1:2	$K_2CO_3(2)$	MeCN	52	62	
$20^{[b,h]}$	1:2	$K_2CO_3(2)$	MeCN	18	trace	
21 ^[d]	1:2	$K_2CO_3(2)$	EtOH	10	84	
22 ^[e]	1:2	$K_2CO_3(2)$	EtOH	10	12	
23 ^[f]	1:2	$K_2CO_3(2)$	EtOH	76	80 ^[i]	

^[a] Reaction conditions: A mixture of disulfide (0.4 mmol) and K_2CO_3 (0.4 mmol) in CH₃CN (3 mL) was stirred under an air for 0.5 h, then 1 c (0.2 mmol) was added. Stirring was continued at room temperature for 3 h.

^[b] 2 equivalents of ethanol was added.

^[c] Isolated yields.

^[d] Reaction under an argon atmosphere.

^[e] **3 a** was replaced by thiophenol.

^[f] 4-Methyl disulfide (**3b**) was added to replace **3a**.

^[g] Reaction at 40 °C.

^[h] Reaction at 80 °C.

^[i] S-(*p*-tolyl) (4-methoxyphenyl)carbamothioate was obtained.

various disulfide such as 4-methyl disulfide (3b) gave a good yield of 4b (entry 22). Although thioester 5a or 5b is a byproduct of this reaction, it is a valuable and useful intermediate that has been widely used in organic synthesis.^[22,23]

With the optimized reaction conditions in hand, substrates scope of the reaction was investigated. As show in scheme 3I, phenylpropyl and phenylbutyl substituted products **4b** and **4c** were obtained in excellent yields, and both of these are all useful and valuable pharmaceutical intermediates.^[6,24,25] Notably, the more reactive benzyl substituted substrate gave product **4d** in 64% yield, and the long-chain heptane

These are not the final page numbers! **7**7

Wiley Online Library

Scheme 3. Substrate scope for the synthesis of phosphonates/ phosphinates.

substituted phosphanecarboxamide gave phosphate **4e** in 68% yield.

To further increase the diversity of the functional groups on phosphorus in this C–P bond cleavage reaction, we prepared a series of P(III) substrates through the *P*-Michael addition reaction (Scheme 4). Such compounds are usually difficult to synthesize by the conventional methods. Thus, the method of establishing C–P bond is of great interest to organic researchers.^[26] Although some advances have been made in this field,^[27] the formation of $C(sp^3)$ –P bond is still significantly challenging. Especially, the direct constructions of $C(sp^3)$ –P bond and –PH₂ group have rarely been reported. The method developed in this study will provide a new alternative approach for the synthesis of organic P(III) compounds.

The phosphate products could be synthesized smoothly through the *P*-Michael addition reaction (Scheme 3I). There is no obvious electronic effect of the substituent group on the aromatic rings. Thus, similar yields were obtained for both electron-withdrawing (4j, 4m) and electron-donating groups (4f, 4k, 4l). The *o*-Methyl substituted aromatic product (4l) was obtained in 68% yield, while naphthyl product (4n) was obtained in 54% yield. For the unsubstituted

Scheme 4. Substrate scopes of the Michael addition reaction.

aromatic ring, product 4i was obtained in 81% yield, which is comparable to the yields of phenylpropyl and phenylbutyl products (4b, 4c).

It is worth emphasizing that the protocol works well for the synthesis of hypophosphonate compounds when *P*,*P*-difunctionalized phosphanecarboxamides are used as substrate (Scheme 3II). For example, the desired products (4p, 4s) were obtained in 86% and 80% yields. Notably, different alcohols (methanol, ethanol and propanol) could be used as the solvent, and all the reactions afforded the target products (4f–4h) in good yields. In addition, compounds 4q and 4r could be isolated in reasonably good yields (76% and 83% yields, respectively). Unfortunately, we found that phenol could not be used as a nucleophilic reagent to obtain the corresponding target product.

We next used **1Bl** as substrate to carry out the gram scale reaction (Scheme 5). We found **1Bl** could further undergo a gram-scale reaction to transform into phosphate ester **4g**. Although this scale-up reaction required a longer reaction time (5 h), and the product **4g** was obtained in 71% yield.

Scheme 5. Gram-scale reaction to prepare single Michael addition product (1Bl) and phosphonates (4g).

Adv. Synth. Catal. 2020, 362, 1–7 Wiley Online Library 3 These are not the final page numbers!

In order to elucidate the reaction mechanism, control experiments several were conducted (Scheme 6). In the absence of alcohol, substrates **1Bl** and 1Bg gave sole products: phosphoric acids (7) and (8) in good yields with and without disulfide 3a respectively. Products 7 and 8 did not react further with ethanol to give product (4g) (Scheme 6I, equations 1-4). Therefore, compounds 7 and 8 were byproducts, and not the intermediates of the reaction. It is evident from scheme 6II that oxidants such as air or O_2 played a crucial role in the generation of the desired product (Scheme 6II, equation 1). Furthermore, the reaction in the presence of a free radical inhibitor (2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO)) gave the target product (4g) in high yield (76%, Scheme 6II, equation 2), suggesting that the reaction did not proceed through a free-radical process. Both disulfide and alcohol were indispensable in this transformation (Scheme 6III, equations 1–2). Unfortunately, we could

Scheme 6. Control experiments.

not isolate any phosphorus product in the absence of ethanol except thioester 5 a (84% yield).

Based on the above preliminary results and related literature reports,^[28] a plausible reaction mechanism was proposed (Scheme 7). Initially, the reaction starting is promoted by disulfide (3 a) attacking substrate 1Bl generating intermediate S1 and thioester 5a. Then, intermediate S1 is oxidized to S2, which reacts with EtOH to form intermediate S3 (detected by HRMS). The S3 reacts with 3a to form S4 (detected by HRMS), which eventually undergoes nucleophilic substitution reaction with alcohol to form desired product 4g (path a). Alternatively, intermediate S2 can be resulfurized to give the phosphonodithioate S5, which is subsequently esterized by EtOH to form 4g(path **b**). Since we estimated the molecular weight of the intermediates S3 and S4 in HRMS, we speculate that the reaction is more likely to proceed through path a. Furthermore, since P(III)–H was extremely sensitive to air and was easily oxidized, in the absence of a disulfide, substrate 1B can be directly oxidized to phosphoric acid 7.^[28c,f]

In summary, we have developed a successful method to capture $PH_2(R)$ fragments generated from the C–P bond cleavage of a phosphoramide. A series of phosphonates and phosphinates were synthesized by this method. This method is operationally simple under mild conditions with high yields of products, broad substrate scope, and good practical applicability. More interestingly, even the byproduct of this reaction, thioester, is a valuable and useful intermediate in organic synthesis.

Experimental Section

General Procedure for the Synthesis of Phosphonates 4 b

To a solution of disulfide **3a** (87.2 mg, 2 equiv.), and K_2CO_3 (55.2 mg, 2 equiv.) in EtOH (3.0 mL) was added *N*-(4-meth-oxyphenyl)-1-(4-phenylbutyl)phosphanecarboxamide (1 c, 63 mg, 0.2 mmol) at room temperature and stirred for 3 h. After the reaction reached completion, the reaction mixture was diluted with ethyl acetate (10 mL). The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel to give corresponding thioester 5a (petroleum ether:ethyl acetate = 8:1) and phosphonates **4b** (ethyl acetate).

Acknowledgements

We are thankful for financial support from the LongYuan Youth Innovative and Entrepreneurial Talents Project (the Key Talent Projects of Gansu Province [2019]39) and National Nature Science Foundation of China (No. 21562036).

Adv. Synth. Catal. 2020, 362, 1–7 Wiley Online Library 4 These are not the final page numbers!

References

- [1] a) C. Queffelec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli, *Chem. Rev.* 2012, *112*, 3777; b) H. Onouchi, T. Miyagawa, A. Furuko, K. Maeda, E. Yashima, *J. Am. Chem. Soc.* 2005, *127*, 2960–2965.
- [2] a) C. S. Demmer, N. K. Larsen, L. Bunch, *Chem. Rev.* 2011, *111*, 7981–8006; b) P. Guga, *Curr. Top. Med. Chem.* 2007, *7*, 695–713; c) K. Moonen, O. Laureyn, C. V. Stevens, *Chem. Rev.* 2004, *104*, 6177–6216.
- [3] B. Nowack, Water Res. 2003, 37, 2533-2546.
- [4] a) G. P. Horsman, D. L. Zechel, *Chem. Rev.* 2017, *117*, 5704–5783; b) A. Mucha, P. Kafarski, Ł. Berlicki, *J. Med. Chem.* 2011, *54*, 5955–5980; c) J. W. McGrath, J. P. Chin, J. P. Quinn, *Nat. Rev. Microbiol.* 2013, *11*, 412–419.
- [5] R. Martin, S. L. Buchwald, Acc. Chem. Res. 2008, 41, 1461–1473.
- [6] a) M. B. Geeson, C. C. Cummins, Science. 2018, 359, 1383–1385; b) A. L. Schwan, Chem. Soc. Rev. 2004, 33, 218–224; c) C. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 2011, 111, 7981–8006; d) J. L. Montchamp, Acc. Chem. Res. 2014, 47, 77–87; e) F. M. J. Tappe, V. T. Trepohl, M. Oestreich, Synthesis, 2010, 18, 3037–3062; f) C. A. Bange, R. Waterman, Chem. Eur. J. 2016, 22, 12598–12605; g) R. Waterman, Chem. Soc. Rev. 2013, 42, 5629–5641; h) Q. Xu, L. B. Han, J. Organomet. Chem. 2011, 696, 130–140; i) J. Yang, T. Chen, L. B. Han, J. Am. Chem. Soc. 2015, 137, 1782–1785.
- [7] a) B. A. Arbuzov, *Pure Appl. Chem.* 1964, *9*, 307–336;
 b) F. R. Atherton, *J. Chem. Soc.* 1945, 660–663.
- [8] a) B. Xiong, X. Feng, L. Zhu, T. Chen, Y. Zhou, C.-T. Au, S.-F. Yin, ACS Catal. 2015, 5, 537–543; b) A. Sakakura, M. Katsukawa, K. Ishihara, Angew. Chem. Int. Ed. 2007, 46, 1423–1426; Angew. Chem. 2007, 119, 1445–1448.
- [9] a) J. Dhineshkumar, K. R. Prabhu, Org. Lett. 2013, 15, 6062–6065; b) C. Y. Li, T. Q. Chen, L.-B. Han, Dalton Trans. 2016, 45, 14893–14897.
- [10] a) T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Synthesis. 1981, 1, 56-57; b) T. Hirao, T. Masunaga, Y. Ohshiro, T. Agawa, Tetrahedron Lett. 1980, 21, 3595-3598; c) C. Liu, M. Szostak, Angew. Chem. Int. Ed. 2017, 56, 12718-12722; Angew. Chem. 2017, 129, 12892-12896; and references cited herein d) H. Luo, H. Liu, X. Chen, K. Wang, X. Luo, K. Wang, Chem. Commun. 2017, 53, 956-958; e) J. Yang, J. Xiao, T. Chen, S. F. Yin, L. B. Han, Chem. Commun. 2016, 52, 12233-12236; f) C. Fu, C. M. So, F. Y. Kwong, Org. Lett. 2015, 17, 5906-5909; g) T. Wang, S. Sang, L. Liu, H. Qiao, Y. Gao, Y. Zhao, J. Org. Chem. 2014, 79, 608-617; h) Y. L. Zhao, G. J. Wu, Y. Li, L. X. Gao, F. S. Han, Chem. Eur. J. 2012, 18, 9622-9627; i) C. Shen, G. Yang, W. Zhang, Org. Biomol. Chem. 2012, 10, 3500-3505; j) R. Berrino, S. Cacchi, G. Fabrizi, A. Goggiamani, P. Stabile, Org. Biomol. Chem. 2010, 8, 4815-4818; k) M. Andaloussi, J. Lindh, J. Sävmarker, P. J. R. Sjöberg, M.

Larhed, *Chem. Eur. J.* **2009**, *15*, 13069–13074; 1) H. Rao, Y. Jin, H. Fu, Y. Jiang, Y. Zhao, *Chem. Eur. J.* **2006**, *12*, 3636–3646; m) D. Gelman, L. Jiang, S. L. Buchwald, *Org. Lett.* **2003**, *5*, 2315–2318; n) K. S. Petrakis, T. L. Nagabhushan, *J. Am. Chem. Soc.* **1987**, *109*, 2831–2633; o) L. Niu, J. Liu, H. Yi, S. Wang, X.-A. Liang, A. K. Singh, C.-W. Chiang, A. Lei, *ACS Catal.* **2017**, *7*, 7412– 7416; p) Y. He, H. Wu, F. D. Toste, *Chem. Sci.* **2015**, *6*, 1194–1198; q) M. Min, D. Kang, S. Jung, S. Hong, *Adv. Synth. Catal.* **2016**, *358*, 1296–1301.

- [11] B. Q. Xiong, G. Wang, C. S. Zhou, Y. Liu, P. L. Zhang, K. W. Tang, J. Org. Chem. 2018, 83, 993–999.
- [12] C. Y. Li, Q. Wang, J. Q. Zhang, Q. Xu, L. B. Han, Green Chem. 2019, 21, 2916–2922.
- [13] a) I. A. Inoue, H. Shinokubo, K. Oshima, J. Am. Chem. Soc. 2003, 125, 1484–1485; b) K. Masuda, N. Sakiyama, R. Tanaka, K. Noguchi, K. Tanaka, J. Am. Chem. Soc. 2011, 133, 6918–6921; c) B. E. Segelstein, T. W. Butler, B. L. Chenard, J. Org. Chem. 1995, 60, 12–13; d) D. K. Morita, J. K. Stille, J. R. Norton, J. Am. Chem. Soc. 1995, 117, 8576–8581; e) B. M. Goodson, T. I. Wallow, B. M. Novak, J. Am. Chem. Soc. 1997, 119, 12441– 12453; f) P. A. Byrne, D. G. Gilheany, J. Am. Chem. Soc. 2012, 134, 9225–9239.
- [14] a) L. Wang, H. Chen, Z. Duan, *Chem. Asian J.* 2018, *13*, 2164–2173; b) K. Jia, J. Li, Y. Chen, *Chem. Eur. J.* 2018, 24, 3174–3177.
- [15] For selected examples on C–P(III) cleavage, see: a) F. Y. Kwong, K. S. Chan, Organometallics. 2000, 19, 2058–2060; b) F. Y. Kwong, K. S. Chan, Chem. Commun. 2000, 1069–1070; c) J. Cao, X. Huang, L. Wu, Chem. Commun. 2013, 49, 7747–7749; d) K. Baba, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 2013, 52, 11892–11895; Angew. Chem. 2013, 125, 12108–12111; e) K. Baba, M. Tobisu, N. Chatani, Org. Lett. 2015, 17, 70–73; f) H. Zhou, J. Li, H. Yang, C. Xia, G. Jiang, Org. Lett. 2015, 17, 4628–4631; g) Y. Zhou, Z. Gan, B. Su, Z. Duan, F. Mathey, Org. Lett. 2015, 17, 5722–5724; h) P. M. Scheetz, D. S. Glueck, A. L. Rheingold, Organometallics 2017, 36, 3387–3397; i) Z. Lian, B. N. Bhawal, P. Yu, B. Morandi, Science 2017, 356, 1059–1063.
- [16] a) J. E. Baxter, R. S. Davidson, D. G. Stevens, J. Chem. Soc. Chem. Commun. 1987, 73–75; b) G. W. Sluggett, C. Turro, M. W. G. V. Koptyug, N. J. Turro, J. Am. Chem. Soc. 1995, 117, 5148–5153; c) G. W. Sluggett, P. F. McGarry, I. V. Koptyug, N. J. Turro, J. Am. Chem. Soc. 1996, 118, 7367–7372.
- [17] a) R. R. Yu, X. Y. Chen, S. F. Martin, Z. Q. Wang, Org. Lett. 2017, 19, 1808–1811; b) R. R. Yu, X. Y. Chen, Z. Q. Wang, Tetrahedron Lett. 2016, 57, 3404–3406.
- [18] a) A. R. Jupp, G. Trott, J. D. G. Holl, D. Carmichael, J. M. Goicoechea, *Chem. Eur. J.* 2015, *21*, 8015–8018;
 b) M. B. Geeson, A. R. Jupp, J. E. McGrady, J. M. Goicoechea, *Chem. Commun.* 2014, *50*, 12281–12284;
 c) A. R. Jupp, J. M. Goicoechea, *J. Am. Chem. Soc.* 2013, *135*, 19131–19134.

Adv. Synth. Catal. 2020, 362, 1–7 Wiley Online Library

These are not the final page numbers! 77

- [19] a) Y.-H. Wu, Z.-F. Li, W.-P. Wang, X.-C. Wang, Z.-J. Quan, Eur. J. Org. Chem. 2017, 5546–5553.
- [20] a) Y.-H. Wu, Q.-L. Wu, W.-P. Wang, X.-C. Wang, Z.-J. Quan, *Adv. Synth. Catal.* 2018, *360*, 2382–2388; b) X.-G. Chen, Q.-L. Wu, F. Hou, X.-C. Wang, Z.-J. Quan, *Synlett.* 2019, *30*, 73–76.
- [21] T. Liu, J. Zhu, X. Sun, L. Cheng, L. Wu, Adv. Synth. Catal. 2019, 361, 3532–3537.
- [22] a) M. J. Xuan, C. L. Lu, M. N. Liu, B.-L. Lin, J. Org. Chem. 2019, 84, 7694–7701; b) F. H. Xiao, S. S. Yuan, S. W. Liu, G.-J. Deng, Adv. Synth. Catal. 2019, 361, 3331–3336; c) F. H. Lutter, L. Grokenberger, M. S. Hofmayer, P. Knochel, Chem. Sci. 2019, 10, 8241–8245.
- [23] Utilization of this method to preprae the thioesters is undergoing in our group.
- [24] N. G. Anderson, Org. Process Res. Dev. 1997, 1, 315-319.
- [25] a) W.-Q. Liu, M. Vidal, C. Olszowy, E. Million, C. Lenoir, C. Garbay, *J. Med. Chem.* 2004, 47, 1223–1233;
 b) R. P. McGeary, P. Vella, J. Y. W. Mak, L. W. Guddat, G. Schenk, *Bioorg. Med. Chem. Lett.* 2009, *19*, 163–166;
 c) W. W. Metcalf, W. A. van der Donk, *Annu. Rev.*

Biochem. **2009**, *78*, 65–94; d) V. D. Romanenko, V. P. Kukhar, *Chem. Rev.* **2006**, *106*, 3868–3935.

- [26] a) H. Y. Zeng, C.-J. Li, Org. Lett. 2019, 21, 1301–1305;
 b) J. Y. Dong, L. Liu, X. Y. Ji, L.-B. Han, Org. Lett. 2019, 21, 3198–3203;
 c) J. Yuan, W.-P. To, C.-M. Che, Org. Lett. 2018, 20, 7816–7820;
 d) C. Huang, X. Tang, H. Fu, Y. F. Zhao, J. Org. Chem. 2006, 71, 5020–5022;
 e) A. L. Schwan, Chem. Soc. Rev. 2004, 33, 218–224.
- [27] a) D. Gelman, L. Jiang, S. L. Buchwald, Org. Lett. 2003, 5, 2315–2318; b) T. Hirai, L.-B. Han, Org. Lett. 2007, 9, 53–55.
- [28] a) S. Song, Y. Zhang, A. Yeerlan, B. Zhu, J. Liu, N. Jiao, Angew. Chem. Int. Ed. 2017, 56, 2487–2451; Angew. Chem. 2017, 129, 2527–2531; b) X. Qiu, X. X. Yang, Y. Q. Zhang, S. Song, N. Jiao, Org. Chem. Front. 2019, 6, 2220–2225; c) O. Berger, J.-L. Montchamp, J. Org. Chem. 2019, 84, 9239–9256; d) P. A. Donets, N. Cramer, J. Am. Chem. Soc. 2013, 135, 11772–11775; e) Y. Unoh, K. Hirano, M. Miura, J. Am. Chem. Soc. 2017, 139, 6106–6109; f) T. Yuan, S. Huang, C. Cai, G.-P. Lu, Org. Biomol. Chem. 2018, 16, 30–33; g) J.-L. Montchamp, Acc. Chem. Res. 2014, 47, 77–87; h) E. J. Corey, K. C. Nicolaou, J. Am. Chem. Soc. 1974, 96, 5614–5616.

UPDATES

Disulfide Promoted C–P Bond Cleavage of Phosphoramide: "P" Surrogates to Synthesize Phosphonates and Phosphinates

Adv. Synth. Catal. 2020, 362, 1-7

F. Hou, X.-P. Du, A. I. Alduma, Z.-F. Li*, C.-D. Huo, X.-C. Wang, X.-F. Wu*, Z.-J. Quan*

