
An Epistemic Strategy Logic∗

Xiaowei Huang†1 and Ron van der Meyden‡2

1The University of Liverpool, UK
2UNSW Sydney, Australia

Abstract

This paper presents an extension of temporal epistemic logic with operators
that quantify over agent strategies. Unlike previous work on alternating temporal
epistemic logic, the semantics works with systems whose states explicitly encode
the strategy being used by each of the agents. This provides a natural way to ex-
press what agents would know were they to be aware of some of the strategies
being used by other agents. A number of examples that rely upon the ability to
express an agent’s knowledge about the strategies being used by other agents are
presented to motivate the framework, including reasoning about game theoretic
equilibria, knowledge-based programs, and information theoretic computer secu-
rity policies. Relationships to several variants of alternating temporal epistemic
logic are discussed. The computational complexity of model checking the logic
and several of its fragments are also characterized.

1 Introduction
In distributed and multi-agent systems, agents typically have a choice of actions to
perform, and have individual and possibly conflicting goals. This leads agents to act
strategically, attempting to select their actions over time so as to guarantee achievement
of their goals even in the face of other agents’ adversarial behaviour. The choice of
actions generally needs to be made on the basis of imperfect information concerning
the state of the system.

These concerns have motivated the development of a variety of modal logics that
aim to capture aspects of such settings. One of the earliest, dating from the 1980’s,
was multi-agent epistemic logic [23, 44], which introduced modal operators that deal
∗This paper combines results from [31] An epistemic strategy logic, X. Huang and R. van der Meyden,

2nd International Workshop on Strategic Reasoning , April 2014, Grenoble, France, and [33] A temporal
logic of strategic knowledge, X. Huang and R. van der Meyden, Int. Conf. on Principles of Knowledge
Representation and Reasoning, Jul 2014, Vienna. It extends these works by including full proofs for all
results.
†Email: xiaowei.huang@liverpool.ac.uk. Most of Huang’s work was performed when he was at UNSW

Sydney, Australia
‡Email: meyden@cse.unsw.edu.au

1

ar
X

iv
:1

40
9.

21
93

v3
 [

cs
.L

O
]

 1
1

Ju
l 2

01
8

mailto: xiaowei.huang@liverpool.ac.uk
mailto: meyden@cse.unsw.edu.au

with imperfect information by providing a way to state what agents know. Combining
such constructs with temporal logic constructs [46] gives temporal epistemic logics,
which support reasoning about how agents’ knowledge changes over time. Temporal-
epistemic logic is an area about which a significant amount is now understood [19].

Logics dealing with reasoning about strategies, which started to be developed in the
same period [43], had a slower initial start, but have in recent years become the focus
of intense study [45, 30, 2]. Alternating temporal logic (ATL) [2], which generalizes
branching-time temporal logic to encompass reasoning about the temporal effects of
strategic choices by one group of agents against all possible responses by their adver-
saries, has become a popular basis for work in this area.

One of the ways in which recent work has extended ATL is to add epistemic oper-
ators, yielding an alternating temporal epistemic logic, e.g., ATEL [29]. Many subtle
issues arise concerning what agents know in settings where multiple agents act strate-
gically. In the process of understanding these issues, there has been a proliferation of
epistemic extensions of ATL [39, 55, 34, 35]. Some of the modal operators introduced
in this literature are complex, interweaving ideas about the knowledge of a group of
agents, the strategies available to them, the effect of playing these strategies against
strategies available to agents not in the group, and the knowledge that other groups of
agents may have about these effects.

Our contribution in this paper is to develop a logic that extends the expressive
power of previous work on logics for knowledge and strategies, while at the same
time simplifying the syntactic basis by identifying a small set of primitives that can be
composed to represent the more complex constructs for reasoning about strategies and
knowledge from prior literature. We present examples to show that the logic is useful
for a range of applications, including expressing notions of information flow security
(such as strategic notions of noninterference and erasure policies), reasoning about
implementations of knowledge-based programs, and reasoning about game theoretic
equilibria. We also conduct a detailed analysis of the complexity of model checking a
number of fragments of the logic. Our semantic framework is able to model a range
of semantics for knowledge and strategies including a “perfect recall” interpretation,
but since we are interested in model checking complexity results at the lower end of
the complexity spectrum we concentrate on an “imperfect recall” or “observational”
semantics of knowledge. (We note that model checking just ATL, even without knowl-
edge operators, under an imperfect information and perfect recall semantics is already
undecidable [16].)

At the semantic level, the key way in which our logic extends prior work on alter-
nating temporal epistemic logic is by treating agents’ strategies as first class citizens
in the semantics, represented as components of the global state of the system at any
moment of time in a run of the system. This is in contrast to most prior work in the
area, where strategies are used to generate runs of a system, but the runs themselves
contain no explicit information about the specific strategies used by the players to pro-
duce them. Our approach provides a referent for the notion “the strategy being used
by player i ”, which cannot be expressed in most prior works on alternating temporal
epistemic logic.

We reflect this additional referent at the syntactic level by introducing a syntactic
notation σ(i), that refers to the strategy of agent i. Since the strategy of agent i is

2

modelled semantically as a component of the global state, just like the local state of
agent i, we allow this construct to be used in the same contexts where the agent name
i can be used — in particular, in operators for knowledge (including distributed and
common knowledge). An example of what can be expressed with this extension is
D{i,σ(i)}φ, which says that the truth of φ in all possible futures can be deduced from
knowledge of agent i’s local state plus the strategy being applied by agent i. Intuitively,
the construct D{i,σ(i)} captures what agent i knows when it takes into account the strategy
it is running.

We show that this extension of temporal epistemic logic gives a logical approach
with broad applicability. In particular, as we show in Section 3.2, temporal epistemic
logic extended with the indices σ(i) can express alternating temporal logic constructs
(both revocable and irrevocable). The extension can also express many of the subtly
different notions that have been proposed in the literature on alternating temporal epis-
temic logics. We demonstrate this (in Section 3.3) by results that show how a number
of such logics can be translated into our setting. We also present a number of other ap-
plications including game theoretic solution concepts (Section 3.5), issues of concern
in computer security (Section 3.6), and reasoning about possible implementations of
knowledge-based programs (Section 3.7).

In some applications, however, some richer expressiveness is required. One such
application, discussed in Section 3.3, concerns expressing an operator, combining com-
mon knowledge and strategic concerns, from an extended alternating temporal epis-
temic logic of Jamroga and van der Hoek [38]. We address this by adding to the logic
constructs that can be used to express quantification over strategies. This leads to a logic
which, like strategy logic [13, 42], supports explicit naming and quantification over
strategies. Technically, we achieve this in a slightly more general way: we first gen-
eralize temporal epistemic logic to include operators ∃x for quantification over global
states x, as well as statements ei(x) which say that component i in the current global
state is the same as component i in the global state denoted by x. Even before the intro-
duction of strategic concerns, this gives a novel extension of temporal epistemic logic
in the flavour of hybrid logic [4]. (As we show in Section 2 this extension enables the
expression of security notions such as nondeducibility [53] that cannot be naturally ex-
pressed in standard temporal epistemic logics.) We then apply this generalization to a
system that includes strategies encoded in the global states and references these using
the “strategic” indices σ(i). The resulting logic can express that agent i knows what
strategy agent j is using, by means of the formula

∃x(eσ(j)(x) ∧ Kieσ(j)(x))

in which the first occurrence of eσ(j)(x) binds x to a global state in which the strategy
of agent j is the same as at the current state, and the remainder of the formula states
that every global state considered possible by agent i has the same strategy for agent
j. (This cannot be expressed in most alternating temporal epistemic logics, e.g., ATEL
[29], since their semantics fails to encode the strategy being run by an agent in the lo-
cus of evaluation of formulas.) The framework is able to express the above-mentioned
operator from [38], as well as notions of information flow security that quantify over
agent strategies, such as nondeducibility on strategies [57], which we discuss in Sec-
tion 3.1.

3

The main theoretical contribution of the paper is a set of results on the complexity
of model checking the resulting logic, and its fragments. We consider several dimen-
sions: does the logic have quantifiers, and what is the temporal basis for the logic:
branching-time (CTL) or linear time (LTL). The richest logics in our spectrum turn
out to have EXSPACE-complete model checking problems. However, we identify a
number of special cases where model checking is in PSPACE, i.e., no more than the
complexity of model checking the temporal logic LTL. One is the fragment where we
allow the constructs ∃x and ei(x), but restrict the temporal operators to be those of the
branching-time logic CTL. Another is the fragment in which we do not allow ∃x and
ei(x), but allow strategic indices σ(i) in knowledge operators and take the temporal op-
erators from the richer branching-time logic CTL∗, which extends the linear time logic
LTL.

The structure of the paper is as follows. In Section 2, we first develop an extension
of temporal epistemic logic that adds the ability to quantify over global states and refer
to global state components. We then present a semantic model for the environments in
which agents choose their actions. Building on this model, we show how to construct a
model for temporal epistemic logic called strategy space in which runs build in infor-
mation about the strategy being used by each of the agents. We then define a spectrum
of logics defined over the resulting semantics. These logics are obtained as fragments
of the extended temporal epistemic logic, interpreted in strategy space. Section 3 deals
with applications of the resulting logics. In particular, we show that the logics can ex-
press reasoning about implementations of knowledge-based programs, many notions
that have been proposed in the area of alternating temporal epistemic logic, game the-
oretic solution concepts, and problems from computer security. Next, in Section 4,
we provide results on the complexity of the model checking problem for the various
fragments of the logic, identifying fragments with lower complexity than the general
problem. In Section 5, we conclude with a discussion of related literature.

2 An extended temporal epistemic logic
The usual interpreted systems semantics for temporal epistemic logic [19] deals with
runs, in which each moment of time is associated with a global state that is comprised
of a local state for each agent in the system. We begin by defining the syntax and
semantics of an extension of temporal epistemic logic that adds the ability to quantify
over global states and refer to global state components. This syntax and semantics will
be instantiated in what follows by taking some of the global state components to be the
strategies being used by agents.

To quantify over global states, we extend temporal epistemic logic with a set of
variables Var, a quantifier ∃x and a construct ei(x), where x is a variable. The formula
∃x.φ says, intuitively, that there exists in the system a global state x such that φ (a
formula that may contain uses of the variable x) holds at the current point. The formula
ei(x) asserts the equality of the local states of agent i at the current point and in the
global state x.

Let Prop be a set of atomic propositions and let Ags be a finite set of agent names,
excluding the special name e, which we use to designate the environment in which the

4

agents operate. We write Ags+ for the set {e}∪Ags. The language ETLK(Ags, Prop,Var)
(or just ETLK when the parameters are obvious) has syntax given by the grammar:

φ ≡ p | ¬φ | φ1 ∨ φ2 | Aφ | dφ | φ1Uφ2 | ∃x.φ | ei(x) | DGφ | CGφ

where p ∈ Prop, x ∈ Var, i ∈ Ags+, and G ⊆ Ags+. The construct DGφ expresses that
agents in G have distributed knowledge of φ, i.e., could deduce φ if they pooled their
information, and CGφ says that φ is common knowledge to group G. The temporal
formulas dφ, φ1Uφ2, Aφ have the same intuitive meanings as in the temporal logic
CT L∗ [17], i.e., dφ says that φ holds at the next moment of time, φ1Uφ2 says that φ1
holds until φ2 does, and Aφ says that φ holds in all possible evolutions from the present
situation.

Other operators can be defined in the usual way, e.g., φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2),
^φ = (trueUφ), which says that φ holds eventually, �φ = ¬^¬φ, which says that φ
always holds, Eφ = ¬A¬φ, which says that φ holds on some path from the current
point, etc. The universal form ∀x.φ = ¬∃x.¬φ expresses that φ holds for all global
states x that occur in the system. For an agent i ∈ Ags+, we write Kiφ for D{i}φ — this
expresses that agent i knows the fact φ. The notion of everyone in group G knowing φ
can then be expressed as EGφ =

∧
i∈G Kiφ. We write eG(x) for

∧
i∈G ei(x). This says that

at the current point, the agents in G have the same local state as they do at the global
state named by variable x.

We will be interested in a fragment of the logic that restricts the occurrence of the
temporal operators to some simple patterns, in the style of the branching-time temporal
logic CTL [15]. We write ECTL(Ags, Prop,Var) (or just ECTL when the parameters
are obvious) for the fragment of the language ETLK(Ags, Prop,Var) in which the tem-
poral operators occur only in the particular forms A dφ, E dφ, Aφ1Uφ2, and Eφ1Uφ2. In
the context of temporal logic, these restrictions reduce the complexity of model check-
ing from PSPACE to PTIME [15]. It is therefore interesting to study the impact on
complexity of a similar restriction in the context of our additional operators.

The semantics of ETLK(Ags, Prop,Var) builds straightforwardly on the following
definitions used in the standard semantics for temporal epistemic logic [19]. Consider
a system for a set of agents Ags. A global state is an element of the set G = Πi∈Ags+ Li,
where Le is a set of states of the environment and Li is a set of local states for each
agent i ∈ Ags. A run is a mapping r : N → G giving a global state at each moment of
time. For n ≤ m, write r[n . . .m] for the sequence r(n)r(n + 1) . . . r(m). We also write
r[n . . .] for the infinite sequence r(n)r(n + 1) A point is a pair (r,m) consisting of
a run r and a time m ∈ N. An interpreted system is a pair I = (R, π), where R is a
set of runs and π is an interpretation, mapping each point (r,m) with r ∈ R to a subset
of Prop. Elements of R × N are called the points of I. For each i ∈ Ags+, we write
ri(m) for the corresponding component of r(m) in Li, and then define an equivalence
relation on points by (r,m) ∼i (r′,m′) if ri(m) = r′i (m

′). We also define ∼D
G≡ ∩i∈G ∼i,

and ∼E
G≡ ∪i∈G ∼i, and ∼C

G≡ (∪i∈G ∼i)∗ for G ⊆ Ags, where ∗ denotes the reflexive
transitive closure of a relation. We take ∼D

∅
to be the universal relation on points, and

(for the sake of preserving monotonicity of these relations in these degenerate cases)
take ∼E

∅
and ∼C

∅
to be the identity relation.

To extend this semantic basis for temporal epistemic logic to a semantics for ETLK,
we just need to add a construct that interprets variables as global states. A context for

5

an interpreted system I is a mapping Γ from Var to global states occurring in I, i.e.,
such that for all x ∈ Var there exists a point (r,m) of I such that Γ(x) = r(m). When
g is a global state and x ∈ V , we write Γ[g/x] for the context Γ′ with Γ′(x) = g and
Γ′(y) = Γ(y) for all variables y , x. The semantics of the language ETLK is given
by a relation Γ,I, (r,m) |= φ, representing that formula φ holds at point (r,m) of the
interpreted system I, relative to context Γ. This is defined inductively on the structure
of the formula φ, as follows:

• Γ,I, (r,m) |= p if p ∈ π(r,m);

• Γ,I, (r,m) |= ¬φ if not Γ,I, (r,m) |= φ;

• Γ,I, (r,m) |= φ ∧ ψ if Γ,I, (r,m) |= φ and Γ,I, (r,m) |= ψ;

• Γ,I, (r,m) |= Aφ if Γ,I, (r′,m) |= φ for all r′ ∈ R with r[0 . . .m] = r′[0 . . .m];

• Γ,I, (r,m) |= dφ if Γ,I, (r,m + 1) |= φ;

• Γ,I, (r,m) |= φUψ if there exists m′≥m such that Γ,I, (r,m′) |= ψ and Γ,I, (r, k) |=
φ for all k with m ≤ k < m′;

• Γ,I, (r,m) |= ∃x.φ if Γ[r′(m′)/x],I, (r,m) |= φ for some point (r′,m′) of I;

• Γ,I, (r,m) |= ei(x) if ri(m) = Γ(x)i;

• Γ,I, (r,m) |= DGφ if Γ,I, (r′,m′) |= φ for all (r′,m′) such that (r′,m′) ∼D
G (r,m);

• Γ,I, (r,m) |= CGφ if Γ,I, (r′,m′) |= φ for all (r′,m′) such that (r′,m′) ∼C
G (r,m).

The definition is standard, except for the constructs ∃x.φ and ei(x). The clause for
the former says that ∃x.φ holds at a point (r,m) if there exists a global state g = r′(m′)
such that φ holds at the point (r,m), provided we interpret x as referring to g. Note that
it is required that g is attained at some point (r′,m′), so actually occurs in the system
I. The clause for ei(x) says that this holds at a point (r,m) if the local state of agent
i, i.e., ri(m), is the same as the local state Γ(x)i of agent i at the global state Γ(x) that
interprets the variable x according to Γ.

We remark that these novel constructs introduce some redundancy, in that the set
of epistemic operators DG could be reduced to the “universal” operator D∅, since
DGφ ≡ ∃x.(eG(x) ∧ D∅(eG(x) ⇒ φ)). Evidently, given the syntactic complexity of
this formulation, DG remains a useful notation.

Example 1 As an example of a property that can be naturally expressed in ESL, but
not in most standard temporal epistemic logics (e.g., ESL minus the operators ∃x and
ei(x)), consider information flow security properties in the spirit of nondeducibility
[53]. Suppose that there are two agents Hi and Lo, representing two information se-
curity levels High and Low respectively. The High level contains secrets that need to
be protected from an attacker, represented by the Low level. Nondeducibility security
properties, intuitively, assert that Lo always has no information about Hi. When the
information that needs to be protected is represented in the local state of Hi, this means

6

that Lo should always consider all local states of Hi possible. This can be expressed
using the formula

�(¬∃x(KLo(¬eHi(x))) .

Here, KLo(¬eHi(x)) expresses that Lo has some information about Hi, because there
exists some local state of Hi that Lo is able to exclude, namely, the local state gHi

where g is the global state denoted by x. By asserting that it is always the case that
there does not exist such a state x whose Hi-local component Lo is able to exclude, we
say that Lo never has information about Hi. Equivalently, pushing the outer negation
inwards gives the form �(∀x(¬KLo(¬eHi(x))) which says that Lo always considers all
local states of Hi to be possible.

We remark that the operators ∃x and ei(x) may be eliminated from the above for-
mula if the system I is known, and has a sufficiently rich set of atomic propositions
that each local state h of Hi is associated with a conjunction φh of literals that is true
exactly at global states g with gHi = h. Let LHi be the set of local states of Hi. This
gives the equivalence

∃x(KLo(¬eHi(x))) ≡
∨

h∈LHi

KHi(¬φh)

which is valid in I. However, if the system I over all systems, then no single formula
of the logic without the operators ∃x and ei(x) can be equivalent to ∃x(KLo(¬eHi(x))),
because a fixed set of propositions cannot distinguish an arbitrarily large set of states.

�

2.1 Strategic Environments
In order to semantically represent settings in which agents operate by strategically
choosing their actions, we introduce environments, a type of transition system that
models the available actions and their effects on the state. This modelling is long es-
tablished in the literature on reasoning about knowledge [41], and is similar to models
used in the tradition of alternating temporal logic [2]. From an environment and a class
of strategies, we construct an instance of the interpreted systems semantics defined in
the previous section. One of the innovations in this construction is to introduce new
names, that refer to global state components that represent the strategies being used by
the agents.

An environment for agents Ags is a tuple E = 〈S , I, {Actsi}i∈Ags,→, {Oi}i∈Ags, π〉,
where

1. S is a set of states,

2. I is a subset of S , representing the initial states,

3. for each i ∈ Ags, component Actsi is a nonempty set of actions that may be
performed by agent i; we define Acts = Πi∈AgsActsi to be the set of joint actions,

4. →⊆ S × Acts × S is a transition relation, labelled by joint actions,

5. for each i ∈ Ags, component Oi : S → Li is an observation function, and

7

6. π : S → P(Prop) is a propositional assignment.

Here the range Li of the observation function Oi is any set, what will matter in the
semantics is an equivalence relation derived from this function.

An environment is said to be finite if all its components, i.e., S ,Ags,Actsi, Li and
Prop, are finite. Intuitively, a joint action a ∈ Acts represents a choice of action ai ∈

Actsi for each agent i ∈ Ags, performed simultaneously, and the transition relation
resolves this into an effect on the state. We assume that→ is serial in the sense that for
all s ∈ S and a ∈ Acts there exists t ∈ S such that (s, a, t) ∈→. We also write s

a
−→ t for

(s, a, t) ∈→.

Example 2 We describe an environment for a secure message transmission problem,
which models a sender agent HS at a High security level that has a bit of information
to be transmitted to a receiver agent HR, also at a High security level, via a channel
represented by an agent Lo at the Low security level (e.g., the internet). The transmis-
sion is handled by an agent Cr that models cryptography that may be applied to the
message before transmission. Thus, we take Ags = {HS ,Cr,HR, Lo}. The environment
has the following components:

• The set of states S is the set of assignments to the following variables:

– s, representing the sender’s secret bit, with value in {0, 1}
– k, representing a secret encryption key, with value in {0, 1}
– c, representing the unsecured communication channel, with value in {0, 1,⊥}

We represent a state in S in the format 〈s, k, c〉, corresponding to the values of
the three variables.

• The set I of initial states is the set 〈s, k,⊥〉 where s, k ∈ {0, 1}. That is, the value
of the channel c is initially ⊥, representing that no message has yet been sent.

• We associate the following sets of actions with the agents: ActsHS = ActsHR =

ActsLo = {skip} and ActsCr = { c := s⊕k, c := s⊕k }. Thus, agents HS ,HR, Lo
are inert, they can perform only the action skip, which has no effect on their lo-
cal states. The only active agent is Cr, which has two actions, each of which
encrypts the message bit s using the key k and places the result in the channel
c. Encryption is done by computing the exclusive-or ⊕ of the message with in-
formation from the key. The two actions correspond to taking the information
from the key to be either the key bit k itself, or its complement k. Since agents
HS ,HR, Lo always perform skip, we may, for brevity, name joint actions using
the action names for agent Cr, i.e., if a is one of Cr’s actions, then we denote a
joint action 〈skip, a, skip, skip〉 in Acts = ActsHS × ActsCr × ActsHR × ActsLo

as just a.

• The transition relation resolves joint actions denoted as a ∈ ActsCr as follows:

〈s, k, c〉
a
−→ 〈s′, k′, c′〉

if either a is c := s ⊕ k and s′ = s, k′ = k and c′ = s ⊕ k, or a is c := s ⊕ k and
s′ = s, k′ = k and c′ = s ⊕ k.

8

• We define the observation functions for each of the agents on states 〈s, k, c〉 ∈ S
as follows:

– Agent HS observes just the bit to be transmitted, i.e., OHS (〈s, k, c〉) = s.
– Agent Cr observes both the bit to be transmitted and the value of the en-

cryption key, i.e., OHS (〈s, k, c〉) = 〈s, k〉.
– Agent HR observes the communication channel and the value of the en-

cryption key i.e., OHR(〈s, k, c〉) = 〈k, c〉.
– Agent Lo observes just the communication channel, i.e., OLo(〈s, k, c〉) = c.

• We do not need any propositions in our later uses of this environment, so we take
Prop = ∅ and π : S → Prop to be the trivial assignment. �

A strategy for agent i ∈ Ags in an environment E is a function αi : S → P(Actsi) \
{∅}, selecting a nonempty set of actions of the agent at each state.1 We call these actions
enabled at the state for agent i. A group strategy, or strategy profile, for a group G is
a tuple αG = 〈αi〉i∈G where each αi is a strategy for agent i. A joint strategy is a group
strategy for the group Ags of all agents. If α = 〈αi〉i∈G is a group strategy for group G,
and H ⊆ G, we write α � H for the restriction 〈αi〉i∈H of α to H.

A strategy αi for agent i is deterministic if αi(s) is a singleton for all s. A strat-
egy αi for agent i is uniform if for all states s, t, if Oi(s) = Oi(t), then αi(s) = αi(t).
Intuitively, uniformity captures the constraint that agents’ actions are chosen using no
more information than they obtain from their observations.2 A strategy αG = 〈αi〉i∈G

for a group G is locally uniform (deterministic) if αi is uniform (respectively, determin-
istic) for each agent i ∈ G.3 Given an environment E, we write Σdet(E) for the set of
deterministic joint strategies, Σunif (E) for the set of all locally uniform joint strategies,
and Σunif ,det(E) for the set of all deterministic locally uniform joint strategies.

Example 3 We present some joint strategies in the environment of Example 2. For
agents i ∈ {HS ,HR, Lo}, the only available action is skip, so all joint strategies α have
αi(s) = {skip} for all s ∈ S . Thus, each joint strategy α is determined by its component
αCr, the strategy of the encryption agent.

The encryption agent could always choose the action c := s⊕k, giving the strategy
α0

Cr defined by α0
Cr(s) = {c := s ⊕ k} for all states s. This strategy is both locally

uniform and deterministic.
If the encryption agent chooses its action non-deterministically, we have the strat-

egy α1
Cr defined by α1

Cr(s) = ActsCr for all states s. This strategy is locally uniform, but
not deterministic.

An alternate strategy for the encryption agent is to choose its action based on the
values it observes. Consider the strategy α2

Cr defined by letting α2
Cr(〈s, k, c〉) be the

1More generally, a strategy could be a function of the history, but we focus here on strategies that depend
only on the final state.

2Recall that we work in this paper with agents with imperfect recall. For agents with perfect recall, we
would use a notion of uniformity that allows agents choice of action to depend on all their past observations.

3We prefer the term “locally uniform” to just “uniform” in the case of groups, since we could say a
strategy α for group G is globally uniform if for all states s, t, if Oi(s) = Oi(t) for all i ∈ G, then αi(s) = αi(t)
for all i ∈ G. While we do not pursue this in the present paper, this notion would be interesting in settings
where agents share information to collude on their choice of move.

9

singleton set {c := s ⊕ k} if k = 0 and the action {c := s ⊕ k} otherwise. This strategy
is deterministic. Also, since the value k is always part of the agent’s observation, this
strategy is locally uniform. �

2.2 Strategy Space
We now define an interpreted system, called the strategy space of an environment,
that contains all the possible runs generated when agents Ags behave by choosing a
strategy from some set Σ of joint strategies in the context of an environment E. To
enable reference to the strategy being used by agent i ∈ Ags, we introduce the notation
“σ(i)” as a name referring to agent i’s strategy. For G ⊆ Ags, we write σ(G) for the set
{σ(i) | i ∈ G}.

Technically, σ(i) will be treated as if it were an agent in the context of temporal
epistemic logic, in the sense that it will be the index of a local state component of the
global state. In particular, we take the value of the local state at index σ(i) to be the
strategy in use by agent i. We will permit use of the indices σ(i) in epistemic opera-
tors. This provides a way to refer, using distributed knowledge operators DG where G
contains the strategic indices σ(i), to what agents would know, should they take into
account not just their own observations, but also information about other agents’ strate-
gies. For example, the distributed knowledge operator D{i,σ(i)} captures the knowledge
that agent i has, taking into account the strategy that it is running. Operator D{i,σ(i),σ(j)}
captures what agent i would know, taking into account its own strategy and the strategy
being used by agent j. Various applications of the usefulness of this expressiveness are
given in Section 3.

We note, however, that unlike the base agent i ∈ Ags, the index σ(i) is not one of
the agents in the environment E, and it is not associated with any actions. The index
σ(i) exists only in the interpreted system that we generate from E. (A similar remark
applies to the special agent e, which is also not associated with any actions.) Since the
indices σ(i) are not agents in the same sense as agents i ∈ Ags, the reader may prefer
to read DGφ with σ(i) ∈ G as “φ is deducible from the information contained in state
components G” rather than the more standard “it is distributed knowledge to agents G
that φ”.

Formally, suppose we are given an environment E = 〈S , I, {Actsi}i∈Ags,→, {Oi}i∈Ags, π〉
for agents Ags, where Oi : S → Li for each i ∈ Ags, and a set Σ ⊆ Πi∈AgsΣi of joint
strategies for the group Ags. We define the strategy space interpreted system I(E,Σ) =

(R, π′) as follows4. The system I(E,Σ) has global states G = S × Πi∈AgsLi × Πi∈AgsΣi.
Intuitively, each global state consists of a state of the environment E, a local state for
each agent i in E, and a strategy for each agent i. We index the components of this
cartesian product by e, the elements of Ags and the elements of σ(Ags), respectively.
We take the set of runs R of I(E,Σ) to be the set of all runs r : N → G satisfying the
following constraints, for all m ∈ N and i ∈ Ags

4The construction given here is for an “observational” or “imperfect recall” modelling of knowledge that
assumes that an agent reasons, and chooses its next action, on the basis of its current observation only. It is
straightforward to give other constructions such as a synchronous perfect recall semantics, where we work
with the sequence of observations and actions of the agent instead. Model checking for such a variant would
be undecidable, so we do not pursue this here.

10

1. re(0) ∈ I and 〈rσ(i)(0)〉i∈Ags ∈ Σ,

2. ri(m) = Oi(re(m)),

3. (re(m), a, re(m + 1)) ∈→ for some joint action a ∈ Acts such that for all j ∈ Ags
we have a j ∈ α j(re(m)), where α j = rσ(j)(m), and

4. rσ(i)(m + 1) = rσ(i)(m).

The interpretation π′ of I(E,Σ) is determined from the interpretation π of E by taking
π′(r,m) = π(re(m)) for all points (r,m).

The first constraint on runs says, intuitively, that runs start at an initial state of E,
and the initial strategy profile at time 0 is one of the profiles in Σ. The second constraint
states that the agent i’s local state at time m is the observation that agent i makes of
the state of the environment at time m. The third constraint says that evolution of the
state of the environment is determined at each moment of time by agents choosing an
action by applying their strategy at that time to the state at that time. The joint action
resulting from these individual choices is then resolved into a transition on the state
of the environment using the transition relation from E. The final constraint says that
agents’ strategies are fixed during the course of a run. Intuitively, each agent picks a
strategy, and then sticks to it.

Our epistemic strategy logic is now just an instantiation of the extended temporal
epistemic logic in the strategy space generated by an environment. That is, we start
with an environment E and an associated set of strategies Σ, and then work with the
language ETLK(Ags ∪ σ(Ags), Prop,Var) in the interpreted system I(E,Σ). (Recall
that this notation implicitly includes a local state component e to represent the state of
the environment.) We call this instance of the language ESL(Ags, Prop,Var), or just
ESL when the parameters are implicit.

Since interpreted systems are always infinite objects, we use environments to give
a finite input for the model checking problem. For an environment E, a set of strategies
Σ for E, and a context Γ for I(E,Σ), we write Γ, E,Σ |= φ if Γ,I(E,Σ), (r, 0) |= φ for all
runs r of I(E,Σ). Often, the formula φ will be a sentence, i.e., will have all variables x
in the scope of an operator ∃x. In this case the statement Γ, E,Σ |= φ is independent of
Γ and we write simply E,Σ |= φ.

We will be interested in a number of fragments of ESL that turn out to have lower
complexity. We define ESL−(Ags, Prop,Var), or just ESL−, to be the language

ECTL(Ags ∪ σ(Ags), Prop,Var) .

Another fragment of the language that will be of interest is the language, denoted

CTL∗K(Ags ∪ σ(Ags), Prop,Var)

in which we omit the constructs ∃ and ei(x); this is a standard branching-time temporal
epistemic language except that it contains the strategy indices σ(Ags).

11

3 Applications
We now consider a range of applications of the logic ESL, and show how it can rep-
resent notions from earlier work on alternating temporal epistemic logic. (In a few
cases, we prove precise translation results, but due to the large number of operators
and distinct semantics underlying these logics in the literature, we just sketch intuitive
correspondences in most cases.)

3.1 Variants of Nondeducibility
We already mentioned the notion of nondeducibility in Example 1, which shows one
way that our logic extends the expressiveness of previous work on temporal epistemic
logic, by allowing quantification over agents’ local states to be expressed. We continue
discussion of this example here, in the context of the environment E of Example 2. We
also show that our logic can represent a related notion from the security literature called
nondeducibility on strategies [57] that involves an agent reasoning based not just on its
local state, but also using knowledge of the strategy being employed by another agent.
This demonstrates a further dimension in which we can express more than prior work
on alternating temporal epistemic logic, and shows the value of allowing the strategic
indices σ(i) to occur in epistemic operators. (Our discussion in this section loosely
follows examples used in [57] to motivate nondeducibility on strategies.)

Consider first the instance

NonDed = �(¬∃x.(KLo(¬eHS (x)))

of the formula from Example 1, which expresses that the low level attacker Lo never
learns any information about the high level secret held in the local state of the high
sender HS . On the other hand, the formula

Ded(G) = ^(∃x.(DG(eHS (x)))

states that group G does eventually learn the value of the secret held by HS . (Note
that the formula DG(eHS (x)) says that the group G has distributed knowledge that the
local state of component HS is the same as the local state of HS in the global state
denoted by variable x. The formulas NonDed and Ded({Lo}) are not opposites, as one
might expect from the names. Actually, the negation of NonDed and Ded({Lo}) lead
to similar formulas, except that the former has a negation before eHS (x).) Clearly, for
cryptography to be effective, we require that the specification NonDed∧Ded({HR}) be
satisfied, which expresses that the High receiver HR eventually learns the secret, but
that the adversary Lo never has any information about the secret.

In what follows, given a joint strategy α, we write Σ(α) for the singleton set of
strategies {α}.

Suppose first that encryption is always done using the action c := s ⊕ k, so that
the joint strategy is the strategy α0 from Example 3, with α0

Cr(s) = {c := s ⊕ k} for
all states s. Then we work in the interpreted system generated by the set of strategies
Σ(α0) = {α0}. Note that in I(E,Σ(α0)), it is common knowledge that the strategy being
used by Cr is α0

Cr. The following result shows that in this case, the system satisfies the
specification NonDed ∧ Ded({HR})

12

Proposition 1. E,Σ(α0) |= NonDed ∧ Ded({HR}) .

Proof. We first show that E,Σ(α0) |= NonDed. Note that, since there is only one joint
strategy, and agents’ observations are derived from the state of the environment, a run
r of I(E,Σ(α0)) is determined by the sequence of states of the environment re[0 . . .] =

re(0), re(1) These sequences all have the form

〈s, k,⊥〉〈s, k, s ⊕ k〉∞

for some s, k ∈ {0, 1}, where t∞ indicates infinitely many copies of the state t. For each
run r of this form, there exists another run r′ with r′e[0 . . .] = 〈s, k,⊥〉〈s, k, s⊕k〉∞. Now,
we have that (r, n) ∼Lo (r′, n) for all n ∈ N, since

rLo(0) = OLo(〈s, k,⊥〉) = ⊥ = OLo(〈s, k,⊥〉) = r′Lo(0)

and

rLo(n) = OLo(〈s, k, s ⊕ k〉)
= s ⊕ k

= s ⊕ k

= OLo(〈s, k, s ⊕ k〉)
= r′Lo(n)

for n ≥ 1. Since also (r, n) ∼Lo (r, n), we have that Lo considers both possible values of
the local state of agent HS possible, so I(E,Σ(α0)), (r, 0) |= NonDed.

On the other hand, we have I(E,Σ(α0)), (r, 0) |= Ded({HR}). For, at time 1, we have
rHR(1) = OHR(〈s, k, s ⊕ k〉) = 〈k, s ⊕ k〉. Let (r′,m) be any point with (r, 1) ∼HR (r′,m),
and let r′e[0 . . .] = 〈s′, k′,⊥〉〈s′, k′, s′ ⊕ k′〉∞. Then m ≥ 1 and

r′HR(m) = OHR(〈s′, k′, s′ ⊕ k′〉) = 〈k′, s′ ⊕ k′〉 .

Thus, from rHR(1) = r′HR(m), we obtain k = k′ and s⊕ k = s′ ⊕ k′. Hence also r′HS (m) =

s′ = (s′ ⊕ k′) ⊕ k′ = (s ⊕ k) ⊕ k = s = rHS (1). This shows that I(E,Σ(α0)), (r, 1) |=
∃x(KHR(eHS (x))), so I(E,Σ(α0)), (r, 0) |= Ded({HR})). �

On the other hand, not every strategy for the encryption agent similarly satisfies the
specification. Consider the joint strategy α2 from Example 3. Here we have that Lo and
HR both always learn the value of the secret.

Proposition 2. E,Σ(α2) |= Ded({HR}) ∧ Ded({Lo}).

Proof. Strategy α2 is deterministic. Note that if k = 0 then s ⊕ k = s, and if k = 1
then s ⊕ k = s. Thus, the runs of α2 have sequence of environment states re[0 . . .] =

〈s, k,⊥〉〈s, k, s〉∞. As above, since Σ(α2) is a singleton, this sequence determines the
run as a whole. Since OLo(〈s, k, s〉) = s and OHR(〈s, k, s〉) = 〈k, s〉, both Lo and HR
directly observe the value of the secret s in the local state of HS from time 1, so know
this value. �

13

A corollary of this result is that if we work in a system where all (uniform) strategies
for Cr are possible (represented by the set of strategies Σunif), then while Lo cannot
deduce the secret in general, there are encryption strategies for Cr such that, if Lo
knew that this strategy is being applied by Cr, then Lo would be able to deduce the
secret.

Proposition 3. E,Σunif |= NonDed, but not E,Σunif |= ¬Ded({Lo, σ(Cr)}).

Proof. For E,Σunif |= NonDed, we note that Lo always considers it possible that Cr is
running strategy α0 from above, and argue exactly as in Proposition 1. To show that not
E,Σunif |= ¬Ded({Lo, σ(Cr)}), let r be a run in which Cr runs strategy α2

Cr. Note that if
(r, 0) ∼{Lo,σ(Cr)} (r′,m) then rσ(Cr)(0) = r′σ(Cr)(m), i.e., Cr uses the same strategy in the
runs r and r′. Essentially the same argument as applied in Proposition 2 to show that
Ded({Lo}) holds then shows that I(E,Σunif), (r, 0) |= Ded({Lo, σ(Cr)}). �

By means of a similar example, Wittbold and Johnson [57] argued that nonde-
ducibility is too weak a notion of security to capture information flow security attacks
in which the attacker exploits a covert channel in a system. Intuitively, it does not take
into account that the attacker may have information about the strategies being used by
other agents. One example of how such knowledge of another agent’s strategy may
arise in practice is when the attacker Lo has succeeded in infiltrating a virus (here
represented by the strategy of Cr) into the system being attacked (here comprised of
components HS ,HR and Cr, i.e., the High sender, the High receiver, and the encryp-
tion agent, respectively). When this is the case, a more appropriate modality for the
attacker’s knowledge is the modality D{Lo,σ(Cr)}, which captures what Lo can deduce
when it also knows the strategy σ(Cr) being employed by Cr, rather than the modality
D{Lo} used in Ded({Lo}) . (The modality D{Lo,σ(Lo),σ(Cr)} which says that Lo also reasons
knowing its own strategy would also make sense in general, though in the model under
discussion it is identical to D{Lo,σ(Cr)} since Lo has only one action to choose from, so all
its uniform strategies are the same.) Wittbold and Johnson’s notion of nondeducibility
on strategies (NDS) is a definition of security that takes into account such reasoning by
the attacker. For a two-agent system, comprised of Low level agent Lo and High level
agent Hi, Wittbold and Johnson define a system to satisfy non-deducibility on strate-
gies if every Low view is compatible with every High strategy. NDS may be expressed
directly in our logic by the formula5

D∅∀x.(¬KLo(¬eσ(Hi)(x))) .

which says that at all points of the system (identifying a Lo view/local state, in partic-
ular) for all global states x (identifying a High strategy, in particular), Lo considers the
High strategy in x to be possible. This notion cannot be expressed in alternating tem-
poral epistemic logics such as ATEL, discussed below, which do not allow reference to
what can be deduced about other agents’ strategies.

5The perfect recall semantics in combination with perfect recall strategies would give the interpretation
of this formula that is most adequate for security applications.

14

3.2 Revocable and Irrevocable strategies in ATL
Alternating temporal logic (ATL) [2] is a generalization of the branching-time temporal
logic CTL that can express the capability of agents’ strategies to bring about temporal
effects. We show in this section that ESL is able to express several variants of ATL.
The following section relates various epistemic extensions of ATL to ESL.

The syntax of ATL formulas φ is given as follows:

φ ≡ p | ¬φ | φ1 ∨ φ2 | 〈〈G〉〉 dφ | 〈〈G〉〉�φ | 〈〈G〉〉(φ1Uφ2)

where p ∈ Prop, i ∈ Ags and G ⊆ Ags. Essentially, each branching construct Aφ of
CTL is generalized in ATL to an alternating construct 〈〈G〉〉φ for a group G of agents,
where φ is a “prefix temporal” formula such as dφ′, ^φ′, �φ′ or φ1Uφ2, as would be
used to construct a CTL formula. Intuitively, 〈〈G〉〉φ says that the group G has a strategy
for ensuring that φ holds, irrespective of what the other agents do.

The semantics of ATL is given using concurrent game structures, which are very
similar to environments as defined above, with the main differences being the follow-
ing. For each point of difference, we sketch how to view concurrent game structures as
equivalent to environments.

• Concurrent game structures lack a set of initial states. It is convenient for techni-
cal reasons to treat a concurrent game structure as an environment with all of its
states initial.

• Concurrent game structures allow that not all actions are available at every state,
whereas in environments all actions are always available. In environments, we
can treat a choice of a non-enabled action as equivalent to a choice of a default
enabled action in the transition relation.

• The transition relation in concurrent game structures is deterministic, in the sense
that for each state s and joint action a, there exists a unique state t such that
s

a
−→ t. Nondeterminism in environments can be modelled in concurrent game

structures, by adding an agent that makes the nondeterministic choice through
its actions.

• ATL’s concurrent game structures do not have a notion of observation. Intuitively,
all agents always have perfect information concerning the current state. We may
capture this in environments by taking Oi(s) = s for all agents i and states s.

Using such correspondences, we can express the ATL semantics in environments E
as follows. For reasons discussed below, we generalize the ATL semantics by parame-
terizing the definition on a set ∆ of strategies for groups of agents in the environment E.
That is, ∆ is a collection of tuples of agent strategies of the form 〈αi〉i∈G, with both the
strategies αi and the set G of agents varying. The semantics uses a relation E, s |=∆ φ,
where E = 〈S , I,Acts,→, {Oi}i∈Ags, π〉 is an environment and s ∈ S is a state of E, and
φ is a formula.

For the definition, we need the notion of a path in E: this is a function ρ : N → S
such that for all k ∈ N there exists a joint action a with (ρ(k), a, ρ(k + 1)) ∈→. A path

15

ρ is from a state s if ρ(0) = s. A path ρ is consistent with a strategy α = 〈αi〉i∈G for a
group G if for all k ∈ N there exists a joint action a such that (ρ(k), a, ρ(k + 1)) ∈→ and
ai ∈ αi(ρ(k)) for all i ∈ G. It is also convenient to identify the path formulas of ATL as
formulas of the form dφ, �φ or φUψ where φ and ψ are ATL formulas.

The relation E, s |=∆ φ, where s is a state of E and φ is an ATL formula, is defined
by a mutual recursion with the relation E, ρ |=∆ φ where ρ is a path of E and φ is a path
formula, as follows. Note that if 〈〈G〉〉φ is an ATL formula then φ is a path formula. For
evaluation of ATL formulas at a state we have the clauses

• E, s |=∆ p if p ∈ π(s);

• E, s |=∆ ¬φ if not E, s |=∆ φ;

• E, s |=∆ φ ∧ ψ if E, s |=∆ φ and E, s |=∆ ψ;

• E, s |=∆ 〈〈G〉〉φ if there exists a strategy αG ∈ ∆ for group G such that for all paths
ρ from s that are consistent with αG, we have E, ρ |=∆ φ;

and for evaluation of a path formula at a path we have the clauses

• E, ρ |=∆ dφ if E, ρ(1) |=∆ φ;

• E, ρ |=∆ �φ if have E, ρ(k) |=∆ φ for all k ∈ N;

• E, ρ |=∆ φUψ if there exists m ≥ 0 such that E, ρ(m) |=∆ ψ, and for all k < m, we
have E, ρ(k) |=∆ φ.

The semantics for ATL given in [2] corresponds to the instance of this definition with
∆ equal to the set of perfect recall, perfect information group strategies, but we focus
here on the variant where ∆ contains just imperfect information strategies.

We argue that the ATL construct 〈〈G〉〉φ can be expressed in CTL∗K(Prop,Ags ∪
σ(Ags)) as

¬Ke¬D{e}∪σ(G)φ .

Intuitively, here the outer operator ¬Ke¬ existentially switches to a point that has the
same state of the environment as the current state (and hence the same local state for
all agents in Ags), but may have different strategies for any of the agents. The inner
operator D{e}∪σ(G) then fixes both the state of the environment and the strategies se-
lected by the group G but allows all other agents to vary their strategy. It quantifies
universally over these possibilities. Thus, the formula says that the group G has a strat-
egy that achieves φ from the current state, whatever strategy the other agents play. (An
alternate way to express the formula using the richer expressive power of ESL is as
∃x(Ke(eσ(G)(x)⇒ φ)).)

More formally, consider the following translation from ATL to CTL∗K(Prop,Ags∪
σ(Ags)). For an ATL formula φ, we write φ∗ for the translation of φ, defined inductively

16

on the construction of φ by the following rules

p∗ = p

(¬φ)∗ = ¬φ∗

(φ1 ∧ φ2)∗ = φ∗1 ∧ φ
∗
2

(〈〈G〉〉φ)∗ = ¬Ke¬D{e}∪σ(G)φ
∗

(dφ)∗ = dφ∗
(�φ)∗ = �φ∗

(φ1Uφ2)∗ = φ∗1Uφ∗2

Note that the semantics of the operators using 〈〈G〉〉 quantifies over runs in which the
agents G run a particular strategy αG, but there is no constraint on the behaviour of the
other agents: these are not assumed to choose their actions according to any particular
strategy. A natural alternative to the definition above, would be to use the clause

E, s |=∆ 〈〈G〉〉φ if there exists a strategy α ∈ ∆ for group G such that for all joint
strategies β ∈ ∆ for group Ags with β � G = α, and all paths ρ from s that are
consistent with β, we have E, ρ |=∆ φ.

This variant corresponds more directly to the formula ¬De¬D{e}∪σ(G)�φ than does the
ATL semantics. It is reasonable to take the position that it more naturally captures a
concept of interest in competitive situations where agents are constrained in the strate-
gies they are able to use.

In the original semantics of ATL, where perfect information, perfect recall strate-
gies were considered, the two definitions are equivalent, since for any behaviour of the
other agents, there is a strategy that matches it. However, for the imperfect information,
epistemic extension we consider, this does not hold. For example, if all strategies in ∆

are deterministic, then the above variant would not allow paths in which some agent
in the complement of G chooses an action a at the first occurrence of a state s, but
some other action b at a later occurrence of s. On the other hand, such runs are allowed
in the ATL semantics given above. Since the semantics of ESL assumes that all runs
are generated by all agents running some strategy, we need to make some technical
assumptions on ∆ to set up a correspondence with ATL.

Define the “random” strategy for agent i to be the strategy randi defined by randi(s) =

Actsi for all states s ∈ S . Given a strategy α = 〈αi〉i∈G for a group of agents G
in an environment E, define the completion of the strategy to be the joint strategy
comp(α) = 〈α′i〉i∈Ags with α′i = αi for i ∈ G and with α′i = randi for all i ∈ Ags \G. Intu-
itively, this operation completes the group strategy to a joint strategy for all agents, by
adding the “random” strategy for all agents not in G, so that these agents are completely
unconstrained in their behaviour. Given a set of strategies ∆ for groups of agents, we
define the set of joint strategies comp(∆) = {comp(α) | α ∈ Σ}.

A second technicality is needed that results from the way we have used ∆ as a
parameter in a generalization of the ATL semantics. A constraint on this set is needed
to prove our correspondence result. Say that a set ∆ of group strategies is restrictable
if for every α ∈ ∆ for group of agents G and every group H ⊆ G, the restriction α � H
of α to agents in H is also in ∆. Say that ∆ is extendable if for every strategy α for a

17

group H and group G ⊇ H, there exists a strategy α′ ∈ ∆ for group G whose restriction
α′ � H to H is equal to α. Intuitively, restrictability says that group strategies are closed
under formation of subgroups, and extensibility says that a group is not able to prevent
any other agent from having some strategy that they are able to follow at the same time
as the group follows its choice of strategy.

The requirement that a set ∆ of group strategies be restrictable and extendable is
quite mild. For example, if ∆i is a set of strategies for agent i, for each agent i ∈ Ags,
then the natural set of “cartesian product strategies”

∆ = {〈αi〉i∈G | G ⊆ Ags, ∀i ∈ G (αi ∈ ∆i)}

is both restrictable and extendable. In particular, the set of all group strategies, and
the set of all locally uniform group strategies, are both restrictable and extendable.
Another example of a collection of strategies satisfying this condition is the set of group
strategies α in which at most k agents follow a strategy that differs from a designated
“correct” strategyσ. Note that this collection is extendable because an agent always has
the option to choose the correct strategy, even if k others have already deviated. This
collection models a common assumption in the analysis of fault-tolerant distributed
algorithms.

A final technicality relates to the fact that whereas runs of an environment start at
an initial state of the environment, and hence an environment may have unreachable
states, models in the ATL semantics lack a notion of initial state, and formulas may be
evaluated at any state. As already noted above, we resolve this difference by viewing
ATL models as environments in which all states are initial (hence reachable).

The following result now captures in a precise way that the ATL semantics can be
expressed in our logic as claimed above, provided we allow joint strategies in which
some agents run the random strategy.

Theorem 1. For every environment E in which all states are initial, for every nonempty
set of group strategies ∆ that is restrictable and extendable, for every state s of E
and ATL formula φ, we have E, s |=∆ φ iff for all (equivalently, some) points (r,m) of
I(E, comp(∆)) with re(m) = s we have I(E, comp(∆)), (r,m) |= φ∗.

Proof. For brevity, we write just I for I(E, comp(∆)). For the claim that the quantifiers
“for all” and “some” are interchangeable in the right hand side, note that formulas
of the form φ∗ are boolean combinations of atomic propositions and formulas of the
form Keψ, whose semantics at a point (r,m) depends only on re(m). This gives the
implication from the “some” case to the “for all” case. For the implication from the
“for all” case to the “some” case, note that the “for all” case is never trivial because
for all states s of E, there exists a point (r,m) of I with re(m) = s. This follows from
the fact that all states are initial in E and that the transition relation is serial, so that
any group strategy α in ∆ is consistent with an infinite path from initial state s. This
corresponds to a run r with r(0) = (s, comp(α)).

It therefore suffices to show that E, s |=∆ φ iff for all points (r,m) of I with re(m) =

s we have I, (r,m) |= φ∗. Additionally, for path subformulas φ of the form dψ, �ψ and
ψ1Uψ2 of ATL formulas, we show that for all paths ρ, we have E, ρ |=∆ φ iff for all
points (r,m) of I with re[m . . .] = ρ we have I, (r,m) |= φ∗

18

We proceed by induction on the construction of φ. The base case of atomic propo-
sitions, as well as the cases for the boolean constructs, are trivial. The claim concerning
path formulas is also straightforward from the semantics of the temporal operators and,
inductively, the claim concerning state formulas.

We consider next the case of φ = 〈〈G〉〉ψ. We show that E, s |=∆ 〈〈G〉〉ψ iff for all
points (r,m) of I with re(m) = s we have I, (r,m) |= ¬Ke¬D{e}∪σ(G)φ

∗.
Suppose first E, s |=∆ 〈〈G〉〉ψ. Let (r,m) be a point of I with re(m) = s. We show

that I, (r,m) |= ¬Ke¬D{e}∪σ(G)ψ
∗. By the ATL semantics, there exists a strategy αG ∈ ∆

for group G such that for all paths ρ of E from s that are consistent with αG we have
E, ρ |=∆ ψ. Let α = comp(αG) (note that this is in comp(∆)) and (using the fact that all
states are initial) let r′ be a run of I with r′(0) = (s, α). Because re(m) = s = r′e(0),
we have (r,m) ∼e (r′, 0), and it suffices to show that I, (r′, 0) |= D{e}∪σ(G)ψ

∗. For this,
suppose that (r′′,m′′) is any point of I with (r′, 0) ∼{e}∪σ(G) (r′′,m′′). We show that
I, (r′′,m′′) |= ψ∗. Now r′′(m′′) = (t, α′) implies that α′i = αi for all i ∈ G. Thus, the path
ρ = r′′e (m′′)r′′e (m′′ + 1) . . . in E is consistent with αG, and ρ(0) = r′′e (m′′) = r′e(0) = s. It
follows that E, ρ |=∆ ψ. Using the induction hypothesis, it follows that I, (r′′,m′′) |= ψ∗.
This completes the argument that I, (r′, 0) |= D{e}∪σ(G)ψ

∗.
Conversely, suppose that for all points (r,m) of Iwith re(m) = s we have I, (r,m) |=

¬Ke¬D{e}∪σ(G)ψ
∗. We show that E, s |=∆ 〈〈G〉〉ψ. Using the fact that all states are initial,

let r be a run of I with re(0) = s, and hence I, (r, 0) |= ¬Ke¬D{e}∪σ(G)ψ
∗. Then there

exists a point (r′,m′) of I such that r′e(m′) = s and I, (r′,m′) |= D{e}∪σ(G)ψ
∗. Let

r′(m′) = (s, α). Then there exists a strategy β ∈ ∆ for some set of agents G′ such that
α = comp(β) ∈ comp(∆). Let H = G ∩ G′. By restrictability, we have β � H ∈ ∆.
By extendability, there exists a strategy γ ∈ ∆ for group G such that γ � H = β � H.
Taking α′ = comp(β � H), it follows that α′ ∈ comp(∆). Note that α′ � G = α � G
and α′i = randi for i ∈ Ags \G. In particular, α′i = randi for i ∈ G \ H. Thus, any path
consistent with γ is consistent with α′.

To prove that E, s |=∆ 〈〈G〉〉ψ, we show that for every path ρ of E from s consistent
with γ, we have E, ρ |=∆ ψ. For this, let ρ be a path from s consistent with the strategy
γ for group G. By the conclusion of the previous paragraph, ρ is consistent with the
joint strategy α′ for all agents. Since s is an initial state of E, there exists a run r′′ of I
with r′′(0) = (s, α′) and r′′e [0 . . .∞] = ρ. Moreover, (r′,m′) ∼{e}∪σ(G) (r′′, 0). Thus, we
obtain from I, (r′,m′) |= D{e}∪σ(G)ψ

∗ that I, (r′′, 0) |= ψ∗. By the induction hypothesis,
we obtain that E, ρ |=∆ ψ. �

The ESL interpretation unpacks the alternating double quantification in the seman-
tics of 〈〈G〉〉φ. ESL offers the advantage of being able to express notions that are not
expressible in ATL. For example, under assumptions similar to those of Theorem 3,

¬De¬((¬D{e}∪σ(Ags)¬^p) ∧ (D{e}∪σ(G)�q))

says that, from the current state, there is a joint strategy for all agents, such that, some
runs of this joint strategy satisfy ^p, and group G’s strategy alone suffices to ensure
that �q.

There has been discussion in the literature on ATL about whether strategies should
be revocable or irrevocable. Consider a formula such as

〈〈A〉〉�(p ∧ 〈〈A, B〉〉^q) .

19

This says that A has a strategy that ensures that it is always the case both that p holds,
and that A and B together have a strategy that ensures that eventually q. Under the ATL
semantics, the strategy of A used to satisfy the inner formula 〈〈A, B〉〉^q is allowed to
be different from the strategy of A referred to by the outer operator. That is, to satisfy
the inner formula, A is allowed to revoke the strategy selected by the outer operator.

This aspect of the ATL semantics has been questioned [1], and it has been proposed
that the semantics of the formula 〈〈G〉〉φ should be defined so that it fixes the strategies
of agents in the group G and does not allow these to be varied in interpreting opera-
tors in the formula φ. In such a semantics, the strategy choices are irrevocable. Using
our framework, both revocable and irrevocable interpretations of the formula can be
represented. We show this with two formulas that are almost identical, with the point
of difference indicated by use of boldface. The interpretation allowing strategy revoca-
tion would be captured by translating both operators as described above, yielding the
formula

¬De¬D{e,σ(A)} (�p ∧ ¬De¬D{e,σ(A),σ(B)}^q) .

Note that here the outer operator prefix ¬De¬D{e,σ(A)} selects a strategy for A and plays
it against all strategies of the other agents, and because the operator De allows all
agent’s strategies to vary, the inner operator prefix ¬De¬D{e,σ(A),σ(B)} drops the selected
strategy of A, and selects a fresh strategy for A and B together to play against all strate-
gies of other agents. On the other hand, we can force the strategy of agent A to remain
fixed in the inner choice of strategies by means of the formula

¬De¬D{e,σ(A)} (�p ∧ ¬D{e,σ(A)} ¬D{e,σ(A),σ(B)}^q) .

Note that the inner operator D{e,σ(A)} varies all agent’s strategies, except that of A. Ev-
idently, at any point in a nested formula, our approach gives us the freedom to choose
which players’ strategies we wish to vary and which to fix.

A logic with revocable strategies is presented in Brihaye et al. [7], which considers
the extension of ATL with strategy context, or AT Lsc. Formulas are evaluated with
respect to a context which is a group strategy γG for some group G. The logic has
modalities ·〉H〈·φ, and 〈·H·〉φ. Intuitively, ·〉H〈·φ reduces the context group G to G \ H
by restricting γG to G \ H. The modality 〈·H·〉φ selects a new group strategy γH for
group H, and constructs the new context γH ◦ γG for group G ∪ H in which agents i in
H play γH(i), and agents i in G \ H play σG(i). The formula φ is then evaluated with
respect to context γH ◦ γG in all runs in which G ∪H plays γH ◦ γG against an arbitrary
behaviour of all other agents.

Evaluation of formulas commences with respect to the empty context, so each sub-
formula is evaluated with respect to a context for a group G that can be determined
from the operators on the path from the root to that subformula. This means that to
represent a formula φ of AT Lsc, we need to translate it with respect to a group G; we
write the translation as φG. Roughly, with respect to a context for group G, the formula
〈·H·〉φ can then be expressed with our logic as

(〈·H·〉φ)G = ¬D{e,σ(G\H)} ¬D{e,σ(G∪H)} φ
G∪H

and the formula ·〉H〈·φ can be expressed as

(·〉H〈·φ)G = φG\H .

20

However, we note that the semantics in [7] is based on perfect recall. This explains
that the complexity of model checking AT Lsc is non-elementary, while the complexity
of model checking our logic ESL is EXPSPACE-complete (Theorem 4 and Theorem 5).

Another work by van der Hoek, Jamroga and Wooldridge [28] introduces constants
that refer to strategies, and adds to ATL a new (counterfactual) modality Ci(c, φ), with
the intended reading “if it were the case that agent i committed to the strategy denoted
by c, then φ”. (The meaning of c is bound in the semantic context, and the logic does
not allow quantification over c.) The formula φ here is not permitted to contain further
references to agent i strategies. To interpret the formula Ci(c, φ) in an environment E,
the environment is first updated to a new environment E′ by removing all transitions
that are inconsistent with agent i running the strategy referred to by c, and then the
formula φ is evaluated in E′. In ESL, the assertion that i is running a particular strategy
can be made by the formula eσ(i)(x), where x is taken to denote a global state in which
the local component σ(i) denotes the strategy denoted by c. The formula Ci(c, φ) can
then be expressed in our framework as

D{e}∪σ(Ags\{i})(eσ(i)(x)⇒ φ+σ(i))

where in the translation φ+σ(i) of φ we ensure that there is no further deviation from the
strategy of agent i by adding σ(i) to the group of every knowledge operator occurring
later in the translation. We remark that because it deletes information from the transi-
tion relation, strategy choices made by the construct Ci(c, φ) are irrevocable, whereas
our logic is richer in that it allows revocation of the corresponding choices.

3.3 Connections to variants of ATEL
Alternating temporal epistemic logic (ATEL) adds epistemic operators to ATL [29]. As
a number of subtleties arise in the formulation of such logics, several variants of ATEL
have since been developed. In this section, we consider a number of such variants and
argue that our framework is able to express the main strategic concepts from these
variants. We begin by recalling ATEL as defined in [29].

The syntax of ATEL is given as follows:

φ ≡ p | ¬φ | φ1 ∨ φ2 | 〈〈G〉〉 dφ | 〈〈G〉〉�φ | 〈〈G〉〉(φ1Uφ2) | Kiφ | DGφ | CGφ

where p ∈ Prop, i ∈ Ags and G ⊆ Ags. This just adds the operators Ki,DG and CG to the
syntax for ATL given above. As usual, we may define EGφ as

∧
i∈G Kiφ. The intuitive

meaning of the constructs is as in CTL∗K above, with additionally, 〈〈G〉〉φ having the
intuitive reading that group G has a strategy for assuring that φ holds.

The relation E, s |=∆ φ is extended from ATL to ATEL by adding the following
clauses to the inductive definition:

• E, s |=∆ Kiφ if E, t |=∆ φ for all t ∈ S with t ∼i s;

• E, s |=∆ DGφ if E, t |=∆ φ, for all t ∈ S with (s, t) ∈
⋂

i∈G ∼i.

• E, s |=∆ CGφ if E, t |=∆ φ for all t ∈ S with (s, t) ∈ (∪i∈G ∼i)∗;

21

where we define, for each i ∈ Ags, the equivalence relation ∼i on states S , by s ∼i t if
and only if Oi(s) = Oi(t).

The specific version of ATEL defined in [29] is obtained from the above definitions
by taking ∆ = {σG | G ⊆ Ags, σG a deterministic G-strategy in E}. That is, following
the definitions for ATL, this version works with arbitrary deterministic group strategies,
in which an agent selects its action as if it had full information of the state. This as-
pect of the definition has been criticized by Jonker [39] and (in the case of ATL without
epistemic operators) by Schobbens [50], who argue that this choice is not in the spirit of
the epistemic extension, in which observations are intended precisely to represent that
agents do not have full information of the state. They propose that the definition instead
be based on the set ∆ = {σG |G ⊆ Ags, σG a locally uniform deterministic G-strategy in E}.
This ensures that in choosing an action, agents are able to use only the information
available in their observations.

We concur that the use of locally uniform strategies is the more appropriate choice,
but in either event, we now argue that our approach using strategy space is able to
express everything that can be expressed in ATEL. We may extend the translation into
our logic given above from ATL to ATEL, by adding the following rules:

(Kiφ)∗ = Kiφ
∗ (DGφ)∗ = DGφ

∗ (CGφ)∗ = CGφ
∗

In order to obtain a correspondence with ATEL, which does not have a notion
of initial states, we again work with environments in which all states are initial. The
following result shows that Theorem 1 extends from ATL to the logic ATEL.

Theorem 2. For every environment E in which all states are initial, for every nonempty
set of group strategies ∆ that is restrictable, for every state s of E and ATEL formula
φ, we have E, s |=∆ φ iff for all (equivalently, some) points (r,m) of I(E, comp(∆)) with
re(m) = s we have I(E, comp(∆)), (r,m) |= φ∗.

Proof. The proof extends the proof of Theorem 1. The argument for the equivalence of
the universal and existential quantifications in the right hand side of the “iff” continues
to apply, even though the translation now contains formulas of the form Kiφ, because,
by construction in Section 2.2, re(m) = r′e(m′) implies ri(m) = r′i (m

′). The remainder
of the proof extends the inductive argument.

Consider φ = Kiψ. Then (Kiψ)∗ = Kiψ
∗. We suppose first that E, s |=∆ φ and show

that for all points (r,m) of I with re(m) = s we have I, (r,m) |= φ∗, i.e., I, (r,m) |=
Kiψ

∗. Let (r,m) be a point of I with re(m) = s. We need to show that for all points
(r′,m′) of I with (r,m) ∼i (r′,m′) we have I, (r′,m′) |= ψ∗. But if (r,m) ∼i (r′,m′) then
r′e(m′) ∼i re(m) = s in E. Thus, from E, s |=∆ Kiψ it follows that E, r′e(m′) |=∆ ψ. By the
induction hypothesis, we obtain that I, (r′,m′) |= ψ∗, as required.

Conversely, suppose that for all points (r,m) of Iwith re(m) = s we have I, (r,m) |=
Kiψ

∗. We show that E, s |=∆ Kiψ. Let t be any state of E with s ∼i t. We have to
show E, t |=∆ ψ. First, since s is an initial state of E, there exists a run r of I with
re(0) = s, and joint strategy equal to any strategy in comp(∆), so we take m = 0,
and we have I, (r,m) |= Kiψ

∗. Then for all points (r′,m′) of I with r′e(m′) = t, we
have (r, 0) ∼i (r′,m′), from which it follows that I, (r′,m′) |= ψ∗. By the induction
hypothesis, we have E, t |= ψ, as required. This completes the proof for the case of

22

φ = Kiψ. The argument for the distributed and common knowledge operators is similar,
and left to the reader.

�

We remark that our translation maps ATEL into CTLK(Ags ∪ σ(Ags), Prop), the
fragment that that we show in Theorem 8 below to have PSPACE-complete model
checking complexity. This strongly suggests that this fragment has a strictly stronger
expressive power than ATEL, since the complexity of model checking ATEL, assum-
ing uniform strategies, is known to be PNP-complete. (The class PNP consists of prob-
lems solvable by PTIME computations with access to an NP oracle.) For ATEL, model
checking can be done with a polynomial time (with respect to the size of formula) com-
putation with access to an oracle that is in NP with respect to both the number of states
and the number of joint actions. In particular, [50] proves this upper bound and [37]
proves a matching lower bound.

Similar translation results can be given for other alternating temporal epistemic
logics from the literature. We sketch a few of these translations here.

Jamroga and van der Hoek [38] discuss issue of de dicto and de re interpretations of
ATEL formulas. They consider the formula Ki〈〈i〉〉φ. (Note that here φ is a path formula).
The ATEL semantics states that for an environment E and a state s, we have E, s |=
Ki〈〈i〉〉φ when in every state t consistent with agent i’s knowledge, some strategy for
agent i, depending on t, is guaranteed to satisfy φ. This is consistent with there being
no single strategy for agent i that agent i knows will work to achieve φ in all such states
t. To express that a single strategy is known to guarantee φ, they formulate a general
construct 〈〈G〉〉•

K(H)φ that says, effectively, that there is a strategy for a group G that
another group H knows (for notion of group knowledge K) to achieve goal φ. (Here
again, φ is a path formula.) The notion of group knowledgeK could be E for everyone
knows, D for distributed knowledge, or C for common knowledge. More precisely6,

E, s |=∆ 〈〈G〉〉•
K(H)φ if there exists a locally uniform group strategy α ∈ ∆ for group

G such that for all states t with s ∼KH t, and for all paths ρ from
t that are consistent with α, we have that E, ρ |=∆ φ.

Here ∼KH is the appropriate epistemic indistinguishability relation on states of E. The
particular case 〈〈G〉〉•E(G)φ is also proposed as the semantics for the ATL construct 〈〈G〉〉φ
in [50, 39, 35].

The construct 〈〈G〉〉•D(H)φ can be represented in the CTLK(Ags∪σ(Ags), Prop) frag-
ment of ESL as

¬Ke¬DH∪σ(G)φ .

Intuitively, here the first modal operator ¬Ke¬ switches the strategy of all the agents
while maintaining the state s, thereby selecting a strategy α for group G in particular,
and the next operator DH∪σ(G) verifies that the group H knows that the strategy being

6As above, we have generalized the definition to be relative to a set of group strategies ∆. The strate-
gies used in [38] are imperfect information, perfect recall strategies; we formulate the definition here with
imperfect information, imperfect recall strategies.

23

used by group G guarantees φ. Similarly, 〈〈G〉〉•E(H)φ can be represented as

¬Ke¬
∧
i∈H

D{i}∪σ(G)φ .

The precise statement and proof of these correspondences is similar to that in Theo-
rem 3.

In the case of the construct 〈〈G〉〉•C(H)φ, the definition involves the common knowl-
edge that a group H of agents would have if they knew a particular strategy being used
by another group G. By analogy with the above cases, one might expect this to be ex-
pressible using the formula ¬Ke¬CH∪σ(G)φ. However, this does not give the intended
meaning. Note that the semantics of the formula CH∪σ(G)φ quantifies over points (r′,m′)
reachable through chains (r,m) = (r0,m0) ∼i1 (r1,m1) ∼i2 . . . ∼in (rn,mn) = (r′,m′),
where each i j is in the set H∪σ(G). But this loses the connection to common knowledge
of group H and fails to fix the strategy of group G. Instead, what we would need to cap-
ture is chains of the form (r0,m0) ∼{i1}∪σ(H) (r1,m1) ∼{i2}∪σ(H) . . . ∼{in}∪σ(H) (rn,mn) =

(r′,m′), where each i j is in the set G. For this, it appears we need to be able to ex-
press the greatest fixpoint X of the equation X ≡

∧
i∈G D{i}∪σ(H)(X ∧ φ). The language

CTLK(Ags ∪ σ(Ags), Prop) does not include fixpoint operators and it does not seem
that this fixpoint is expressible. Indeed, the construct 〈〈G〉〉•C(H)φ does not appear to be
expressible using the fragment CTLK(Ags ∪ σ(Ags), Prop).

On the other hand, common knowledge of group H about the effects of a fixed
strategy of group G can be expressed with ESL in a natural way by the formula

CH(eσ(G)(x)⇒ φ)

which says that it is common knowledge to the group H that φ holds if the group G is
running the strategy profile captured by the variable x. Using this idea, the construct
〈〈G〉〉•C(H)φ can be represented with ESL as

∃x.CH(eσ(G)(x)⇒ φ) .

The following result states this claim precisely.

Theorem 3. Let E be an environment in which all states are initial, and let ∆ be
a restrictable and extendable set of group strategies in E. Let I = I(E, comp(∆)).
Assume that φ is a path formula and that φ∗ is an ESL formula without free variables,
such that for every path ρ of E, we have E, ρ |=∆ φ iff for all (equivalently, some) points
(r,m) of I with re[m . . .] = ρ we have I, (r,m) |= φ∗.

Then for all states s of E, we have E, s |=∆ 〈〈G〉〉•C(H)φ iff for all (equivalently, some)
points (r,m) of I with re(m) = s we have I, (r,m) |= ∃x.CH(eσ(G)(x)⇒ φ∗).

Proof. The argument for the equivalence between the universal and existential versions
of the right hand side of the iff is similar to that in Theorem 1.

Suppose first that E, s |=∆ 〈〈G〉〉•C(H)φ. Let (r,m) be a point of I with re(m) = s.
We need to prove that I, (r,m) |= ∃x.CH(eσ(G)(x) ⇒ φ∗). From E, s |=∆ 〈〈G〉〉•C(H)φ
it follows that there exists a strategy α ∈ ∆ for group G, such that for all states t
with s ∼C

H t and paths ρ from t consistent with α, we have E, ρ |=∆ φ. Let r′ be

24

any run with r′σ(G)(0) = α, and define Γ to be a context with Γ(x) = r(0). To prove
I, (r,m) |= ∃x.CH(eσ(G)(x) ⇒ φ∗), we show that Γ,I, (r,m) |= CH(eσ(G)(x) ⇒ φ∗).
For this, suppose that (r,m) = (r0,m0) ∼i1 (r1,m1) ∼i2 . . . ∼ik (rk,mk), where i j ∈

H for j = 1 . . . k, and assume that Γ,I, (rk,mk) |= eσ(G)(x). We need to show that
Γ,I, (rk,mk) |= φ∗.

Note that we have s = r(m) = r0
e (m0) ∼i1 . . . ∼ik rk

e(mk). Since Γ,I, (rk,mk) |=
eσ(G)(x), we have that rk

σ(G)(m
k) = Γ(x)σ(G) = α. Thus, the sequence ρ = rk

e[mk . . .] is a
path of E consistent with the group strategy α. It follows that E, ρ |=∆ φ. By assumption,
this means that Γ,I, (rk,mk) |= φ∗.

Conversely, let (r,m) be a point ofIwith re(m) = s andI, (r,m) |= ∃x.CH(eσ(G)(x)⇒
φ∗), witnessed by Γ,I, (r,m) |= CH(eσ(G)(x) ⇒ φ∗). Note that Γ(x)σ(Ags) = comp(β)
where β ∈ ∆ is a group strategy for some group G′. For agents i ∈ G \G′, we have that
Γ(x)σ(i) is the random strategy randi. It follows that any path consistent with Γ(x)σ(G∩G′)
is also consistent with Γ(x)σ(G). Let α ∈ ∆ be any group strategy for group G with
α � (G ∩G′) = Γ(x)σ(G∩G′). Such a strategy exists by the fact that ∆ is restrictable and
extendable: we may take α to be an extension of β � (G ∩G′). Then we have that any
path consistent with α is consistent with Γ(x)σ(G).

We show E, s |=∆ 〈〈G〉〉•C(H)φ, with α as the witnessing strategy for group G. For this,
let s = s0 ∼i1 s1 ∼i2 . . . ∼ik sk, where i j ∈ H for j = 1 . . . k, and let ρ be a path from sk

consistent with α. We show E, ρ |=∆ φ. By the observation above, ρ is also consistent
with Γ(x)σ(G). Let rk be a run with rk

e[0 . . .] = ρ, and rk
σ(G)(0) = Γ(x)σ(G). (We can

take rk
σ(Ags) = comp(β � (G ∩ G′)), which is in comp(∆).) Then Γ,I, (r, 0) |= eσ(G)(x).

Moreover, for each j = 1 . . . k − 1, let r j be any run with r j
e(0) = s j. Then (r,m) =

(r0,m0) ∼i1 (r1, 0) ∼i2 . . . ∼ik (rk, 0). It follows from Γ,I, (r,m) |= CH(eσ(G)(x) ⇒ φ∗)
that Γ,I, (rk, 0) |= φ∗, and in fact I, (rk, 0) |= φ∗, since φ∗ has no free variables. Since
rk[0 . . .] = ρ, by assumption, we have E, ρ |= φ. This proves E, s |=∆ 〈〈G〉〉•C(H)φ. �

The above equivalences give a reduction of the complex operators of [38] that
makes their epistemic content more explicit by expressing this using standard epis-
temic operators.

An alternate approach to decomposing the operators 〈〈G〉〉•
K(H) is proposed in [35].

By comparison with our standard approach to the semantics of the epistemic operators,
this proposal uses “constructive knowledge” operators which require a nonstandard
semantics in which formulas are evaluated at sets of states rather than at individual
states. Evaluation at single world q is treated as equivalent to evaluation at the set
{q}. For each standard (group) epistemic operator K = E,D,C, there is a constructive
version K̂ = E,D,C. Atomic propositions p are evaluated at sets of states Q by

E,Q |= p if for all states q ∈ Q we have E, q |= p.

(As above we define the semantics on environments E rather than ATEL models.) For
the constructive epistemic operators,

E,Q |= K̂Gφ if E, {q′ ∈ Q | ∃q ∈ Q (q ∼KG q′)} |= φ

and for the ATL operator 〈〈G〉〉φ we have

25

E,Q |= 〈〈G〉〉φ if there exists a strategy α for group G such that φ holds in
all runs starting in a state in Q in which group G plays the strategy α.

Note that the ATEL formula KG〈〈G〉〉φ says that at each world considered possible (in
the appropriate sense for K) by group G, there exists a (possibly different) strategy for
G that achieves φ. By contrast, KG〈〈G〉〉φ says that there exists a single strategy for G
that achieves φ from each world considered possible (in the appropriate sense for K)
by G.

This logic is shown in [36] to have a normal form, in which every subformula start-
ing with a constructive knowledge operator K̂1

G is of the form K̂1
G1
...K̂n

Gn
φ where φ

starts with a strategy modality and each K i ∈ {E,D,C}. Such a normal form subfor-
mula, evaluated at a single state, can be represented in ESL as

∃x.K1
G1
...Kn

Gn
(eσ(H)(x)⇒ φ) .

Precise formulation and proof of the claim are similar to the proofs above and left to
the reader.

3.4 Strategy Logic
Chatterjee et al’s strategy logic [13], which we call CHP-SL, following the convention
in [42], is an extension of ATL* for two-player games. Let x, y be two variables ranging
over Player 1 and Player 2’s strategies. The logic allows these variables to be quantified:
if φ is a formula then ∃x.φ and ∀x.φ are formulas. Additionally the effects of a particular
combination of player strategies can be expressed using the formula φ(x, y), which says
that φ holds if player 1 plays strategy x and player 2 plays strategy y. Thus, the ATL*
formula 〈〈1〉〉φ can be expressed in CHP-SL with (∃x)(∀y)φ(x, y).

Strategy logic (SL) [42] generalises CHP-SL, with the syntax as follows:

φ ≡ p | ¬φ | φ ∧ φ | dφ | φUφ | 〈〈v〉〉φ | [[v]]φ | (i, v)φ

where v ∈ VarSL such that VarSL is a set of strategy variables, and i ∈ Ags is an agent.
Intuitively, 〈〈v〉〉φ says that there exists a strategy v such that φ, formula [[v]]φ says that
φ holds for all strategies v, and (i, v)φ says that φ holds if agent i plays strategy v. A
formula is a sentence if every occurrence of (a, x) is within the scope of an occurrence
of 〈〈x〉〉 or [[x]], and every temporal subformula dφ or φUφ occurs within the context of
some binding (i, x), for every agent i. The ATL* formula 〈〈1〉〉φ can be expressed in SL
as 〈〈x〉〉[[y]](1, x)(2, y)φ.

Let Str be a set of agent strategies, and χ : Ags ∪ VarSL → Str be a partial
mapping from agents and variables to the set of strategies. Then, the semantics can be
formulated with respect to our environments E as follows.7

• E, χ, (r,m) |= 〈〈v〉〉φ iff there exists a strategy σ ∈ Str such that E, χ[v 7→ σ], s |=
φ;

• E, χ, (r,m) |= [[v]]φ iff for all strategies σ ∈ Str it holds that E, χ[v 7→ σ], s |= φ;

7We make some simplifications; [42] distinguish between path and state formulas.

26

• E, χ, (r,m) |= (i, v)φ iff E, χ[i 7→ χ(v)], (r′,m) |= φ for all runs r′ where r(m) =

r′(m) and r′ is a run consistent with χ[i 7→ χ(v)] from time m.

Atomic, boolean and temporal formulas are handled as usual. We remark that because
(1) the transition relation is assumed in SL to be deterministic, i.e., → can be written
as a function of type S × Acts → S , and (2) temporal operators in a sentence appear
only in contexts where every agent is bound to a strategy, the final binding (i, v) before
temporal operators are evaluated in fact quantifies over just a single run.

Given an SL formula φ, we let V(φ) be the set of variables in the operators 〈〈〉〉
or [[]]. SL allows the assignment of a strategy to multiple agents, e.g., in formula
〈〈v〉〉((i, v)φ1 ∧ (j, v)φ2) the agents i and j have the same strategy represented in the vari-
able v. For this to make sense in an imperfect information system, without allowing
implausible bindings or artificially complex interpretations of quantification, all agents
need to have the same actions and the same observations. This does not match the set-
ting of our framework particularly well. We remark that CHP-SL does not allow this
expressivity, as players 1 and 2 are associated with their dedicated strategy variables x
and y, respectively.

In the following, we consider the fragment of SL in which every variable vi is
uniquely associated with an agent i ∈ Ags, so that vi occurs only in bindings (j, vi)ψ
with j = i. Then we can translate a SL formula φ into an ESL formula φ∗ as follows.

p∗ = p

(¬φ)∗ = ¬φ∗

(φ1 ∧ φ2)∗ = φ∗1 ∧ φ
∗
2

(dφ)∗ = dφ∗
(φ1Uφ2)∗ = φ∗1Uφ∗2
(〈〈vi〉〉φ)∗ = ∃viφ

∗

([[vi]]φ)∗ = ∀viφ
∗

((i, vi)φ)∗ = De∪σ(Ags\{i})(eσ(i)(vi)⇒ φ∗)

Intuitively, to decide if 〈〈vi〉〉φ, we need to determine the existence of a strategy vi with
respect to which the formula φ is satisfied. In the ESL translation, vi refers to a global
state rather than a strategy, but the only component of this global state that is used in
the remainder of the evaluation is the component σ(i), which picks out a strategy for
agent i. Similarly for [[vi]]φ. To decide if (i, vi)φ, we need to satisfy φ on (all) runs where
agent i’s strategy is switched to that represented in vi. The translation handles this using
the operator De∪σ(Ags\{i}), which refers to points in which the state of the environment
and the strategies of all agents are fixed, while the strategy of agent i is allowed to
vary. The assertion eσ(i)(vi) checks that the strategy of agent i is in fact switched to that
represented in the global state vi.

27

Similarly, CHP-SL formulas can be translated into ESL formulas as follows.

(∃x.φ)∗ = ∃xφ∗

(∀x.φ)∗ = ∀xφ∗

(φ(x, y))∗ = De(eσ(1)(x) ∧ eσ(2)(y)⇒ φ∗)

Finally, we remark that both the CHP-SL semantics in [13] and the SL semantics
in [42] are for perfect recall. Since we have formulated ESL for imperfect recall, we
leave the above translations as indicative rather than attempting a formal proof.

3.5 Game Theoretic Solution Concepts
It has been shown for a number of logics for strategic reasoning that they are expressive
enough to state a variety of game theoretic solution concepts, e.g., [28, 13] show that
Nash Equilibrium is expressible. We now sketch the main ideas required to show that
the fragment CTLK(Ags∪σ(Ags)∪{e}, Prop) of our framework also has this expressive
power. We assume two players Ags = {0, 1} in a normal form perfect information game,
and assume that these agents play a deterministic strategy. The results in this section
can be easily generalized to multiple players and extensive form games.

Given a game G we construct an environment EG that represents the game. Each
player has a set of actions that correspond to the moves that the player can make. We
assume that EG is constructed to model the game so that play happens in the first step
from a unique initial state, and that subsequent transitions do not change the state. We
let agents have perfect information in EG, i.e., we define the observation of agent i in
state s by Oi(s) = s. (Consequently, although we use uniform strategies Σunif ,det below,
the uniformity constraint is vacuous in these environments.)

We write −i to denote the adversary of player i. Let ui for i ∈ {0, 1} be a variable
denoting the utility gained by player i when play is finished. Let Vi be the set of possible
values for ui, and let V = V0 ∪ V1. We work with the following atomic propositions.
Atomic proposition u ≤ v, where u, v ∈ V , expresses the ordering on utilities. Atomic
proposition ui = v, where i ∈ {0, 1} and v ∈ Vi, expresses that player i’s utility has value
v. We use formula

Ui(v) = d(ui = v)

to express that value v is player i’s utility once play finishes.
Nash equilibrium (NE) is a solution concept that states that no player can gain by
unilaterally changing their strategy. We may write

BRi(v) = Ui(v) ∧ Kσ(−i)

∧
v′∈Vi

(Ui(v′)⇒ v′ ≤ v)

to express that, given the current strategyσ(−i) of the adversary of i, the value v attained
by player i’s current strategy is the best possible utility attainable by player i, i.e., the
present strategy of player i is a best response to the adversary. Thus

BRi =
∨
v∈Vi

BRi(v)

28

says that player i is playing a best-response to the adversary’s strategy. The following
statement then expresses the existence of a (pure) Nash equilibrium for the game G:

EG,Σunif ,det(EG) |= ¬D∅¬(BR0 ∧ BR1) .

That is, in a Nash equilibrium, each player is playing a best response to the other’s
strategy.

Perfect cooperative equilibrium (PCE) is a solution concept intended to overcome
deficiencies of Nash equilibrium for explaining cooperative behaviour [26]. It says that
each player does at least as well as she would if the other player were best-responding.
The following formula

BUi(v) = D∅

∧
v′∈Vi

((BR−i ∧ Ui(v′))⇒ v′ ≤ v)

states that v is as good as any utility that i can obtain if the adversary always best-
responds to whatever i plays. Thus,

BUi =
∨
v∈Vi

(Ui(v) ∧ BUi(v))

says that i is currently getting a utility as good as the best utility that i can obtain if the
adversary is a best-responder. Now, the following formula expresses the existence of
perfect cooperative equilibrium for the game G:

EG,Σunif ,det(EG) |= ¬D∅¬(BU0 ∧ BU1)

That is, in a PCE, no player has an incentive to change their strategy, on the assumption
that the adversary will best-respond to any change.

3.6 Computer Security Example: Erasure policies
Formal definitions of computer security frequently involve reference to the strategies
available to the players, and to agents’ reasoning based on these strategies. In this
section we sketch an example that illustrates how our framework might be applied in
this context.

Consider the scenario depicted in the following diagram:
A customer C can purchase items at a web merchant M. Payment is handled by a
trusted payment processor P (this could be a service or device), which interacts with
the customer, merchant, and a bank B to securely process the payment. (To keep the
example simple, we suppose that the customer and merchant use the same bank). One
of the guarantees provided by the payment processor is to protect the customer from
attacks on the customer’s credit card by the merchant: the specification for the protocol
that runs the transaction requires that the merchant should not obtain the customer’s
credit card number. In fact, the specification for the payment processor is that after
the transaction has been successfully completed, the payment processor should erase

29

CUSTOMER

PAYMENT
PROCESSOR

MERCHANT

BANKATTACKER

the credit card data, to ensure that even the payment processor’s state does not contain
information about the customer’s credit card number. The purpose of this constraint is
to protect the customer against subsequent attacks by an attacker A, who may be able to
use vulnerabilities in the payment processor’s software to obtain access to the payment
processor’s state.

We sketch how one might use our framework to express the specification. To cap-
ture reasoning about all possible behaviours of the agents, and what they can deduce
from knowledge of those behaviours, we work in Iunif (E) for a suitably defined envi-
ronment E. To simplify matters, we take Ags = {C,M, P, A}. We exclude the strategy
of the bank from consideration: this amounts to assuming that the bank has no actions
and is trusted to run a fixed protocol. We similarly assume that the payment processor
P has no actions, but in order to talk about what information is encoded in the payment
processor’s local state, we do allow that this agent has observations. The customer C
may have actions such as entering the credit card number in a web form, pressing a
button to submit the form to the payment processor, and pressing a button to approve
or cancel the transaction. The customer observes variable cc, which records the credit
card number drawn from a set CCN, and boolean variable done which records whether
the transaction is complete (which could mean either committed or aborted).

We assume that the attacker A has some set of exploit actions, as well as some
innocuous actions (e.g., setting a local variable or performing skip). The effect of the
exploit actions is to exploit a vulnerability in the payment processor’s software and
copy parts of the local state of the payment processor to variables that are observable by
the attacker. We include in the environment state a boolean variable exploited, which
records whether the attacker has executed an exploit action at some time in the past.
The merchant M may have actions such as sending cost information to the payment
processor and acknowledging a receipt certifying that payment has been approved by
the bank (we suppose this receipt is transmitted from the bank to the merchant via the
payment processor).

We may then capture the statement that the system is potentially vulnerable to an
attack that exploits an erasure flaw in the implementation of the payment processor, by
the following formula:

¬D∅¬(done ∧
∨

x∈CCN

KP(cc , x))

where cc , x is an atomic proposition for each x ∈ CCN, with the obvious meaning that

30

the customer’s credit card number is not x. This says that there exist behaviours of the
agents, which can (at least on some points in some runs) leave the payment processor
in a state where the customer has received confirmation that the transaction is done, but
in which the payment processor’s local state somehow still encodes some information
about the customer’s credit card number. This encoding could be direct (e.g., by having
a variable customer cc that still stores the credit card number) or indirect (e.g. by the
local state including both a symmetric encryption key K and an encrypted version of
the credit card number, enc customer cc, with value EncryptK(cc) that was used for
secure transmission to the bank). Note that for a breach of security, it is only required
that the information suffices to rule out some credit card number (so that, e.g., knowing
the first digit of the number would constitute a vulnerability)

The vulnerability captured by this formula is only potential, because it does not nec-
essarily follow that the attacker is able to obtain the credit card information. Whether
this is possible can be checked using the formula

¬D∅¬(done ∧ ¬exploited ∧ E^
∨

x∈CCN

D{A,σ(A)}(cc , x))

which says that it is possible for the attacker to obtain information about the credit card
number even after the transaction is done. (To focus on erasure flaws, we deliberately
wish to exclude here the possibility that the attack occurs during the processing of
the transaction.) Note that here we assume that the attacker knows his own strategy
when making deductions from the information obtained in the attack. This is necessary,
because the attacker can typically write his own local variables, so it needs to be able
to distinguish between a value it wrote itself and a value it copied from the payment
processor.

However, even this formula may not be sufficiently strong. Suppose that the pay-
ment processor implements erasure by writing, to its variable customer cc, a random
value. Then, even if the attacker obtains a copy of this value, and it happens to be equal
to the customer’s actual credit card number, the attacker would not have any knowledge
about the credit card number, since, as far as the attacker knows, it could be looking
at a randomly assigned number. However, there may still be vulnerabilities in the sys-
tem. Suppose that the implementation of the payment processor operates so that the
customer’s credit card data is not erased by randomization until the merchant has ac-
knowledged the receipt of payment from the bank, but to avoid annoying the customer
with a hanging transaction, the customer is advised that the transaction is approved
(setting done true) if the merchant does not respond within a certain time limit. It is
still the case that on observing the copied value of customer cc, the attacker would
not be able to deduce that this is the customer’s credit card number, since it might be
the result of erasure in the case that the merchant responded promptly. However, if the
attacker knows that the merchant has not acknowledged the receipt, the attacker can
then deduce that the value is not due to erasure. One way in which the attacker might
know that the merchant has not acknowledged receipt is that the attacker is in collu-
sion with the merchant, who has agreed to omit sending the required acknowledgement
messages.

This type of attack can be captured by replacing the term D{A,σ(A)}(cc , x) by
D{A,σ(A),σ(M)}(cc , x), capturing that the attacker reasons using knowledge of both its

31

own strategy as well as the strategy of the merchant, or even D{A,σ(A),σ(M),M}(cc , x)
for a collusion in which the merchant shares information observed. Similarly, to focus
on erasure flaws in the implementation of the payment gateway, independently of the
attackers capability, we would replace the term KP(cc , x) above by D{P,σ(M)}(cc , x).

We remark that in the case of the attacker’s knowledge, it would be appropriate to
work with a perfect recall semantics of knowledge, but when using knowledge oper-
ators to express information in the payment gateway’s state for purposes of reasoning
about erasure policy, the more appropriate semantics of knowledge is imperfect recall.

This example illustrates some of the subtleties that arise in the setting of reasoning
about security and the way that our framework helps to represent them. Erasure policies
have previously been studied in the computer security literature, beginning with [14],
though generally without consideration of strategic behaviour by the adversary.

3.7 Reasoning about Knowledge-Based Programs
Knowledge-based programs [20] are a form of specification of a multi-agent system
in the form of a program structure that describes how an agent’s actions are related
to its knowledge. They have been shown to be a useful abstraction for several areas
of application, including the development of optimal protocols for distributed systems
[20], robot motion planning [6], and game theoretic reasoning [24].

Knowledge-based programs cannot be directly executed, since there is a circular-
ity in their semantics: which actions are performed depends on what the agents know,
which in turn depends on which actions the agents perform. The circularity is not vi-
cious, and can be resolved by means of a fixed point semantics, but it means that a
knowledge-based program may have multiple distinct implementations (or none), and
the problem of reasoning about these implementations is quite subtle. In this section,
we show that our framework can capture reasoning about the set of possible implemen-
tations of a knowledge-based program.

We consider joint knowledge-based programs P (as defined by [20]) where for each
agent i we have a knowledge-based program

Pi = do φi
1 → ai

1 [] . . . [] φi
ni
→ ai

ni
od

where each φi
j is a formula of CTL∗K(Ags, Prop) of the form Kiψ, and each ai appears

just once. The formulas φi
j are called the guards of the knowledge-based program.8

Intuitively, this program says to repeat forever the following operation: nondetermin-
istically execute one of the actions ai

j such that the corresponding guard φi
j is true.

To ensure that it is always the case that at least one action enabled, we assume that
φi

1 ∨ . . . ∨ φ
i
ni

is a valid formula; this can always be ensured by taking the last con-
dition φi

ni
to be the “otherwise” condition Ki¬(φi

1 ∨ . . . ∨ φ
i
ni−1), which is equivalent

to ¬(φi
1 ∨ . . . ∨ φ

i
ni−1) by introspection. In general, the guards in a knowledge based

8The guards in [20] are allowed to be boolean combinations of formulas Kiψ and propositions p local
to the agent: since for such propositions p ⇔ Ki p, and the operator Ki satisfies positive and negative intro-
spection, our form for the guards is equally general. They do not require that ai appears just once, but the
program can always be put into this form by aggregating clauses for ai into one and taking the disjunction of
the guards.

32

program may contain common knowledge operators CG, but we assume for technical
reasons (explained below) that no φi

j contains such an operator.
We present a formulation of semantics for knowledge-based programs that refac-

tors the definitions of [20], following the approach of [41] which uses the notion of
environment defined above rather than the original notion of context. A potential im-
plementation of a knowledge-based program P in an environment E is a joint strategy
α in E. (Recall that we use “joint strategy” to refer to a group strategy for the group of
all agents.) Given a potential implementation α in E, we can construct the interpreted
system Iα = I(E, {α}), which captures the possible runs of E when the agents choose
their actions according to the single possible joint strategy α. Given this interpreted
system, we can now interpret the epistemic guards in P. Say that a state s of E is α-
reachable if there is a point (r,m) of Iα with re(m) = s. We note that for a formula
Kiφ, and a point (r,m) of Iα, the statement Iα, (r,m) |= Kiφ depends only on the state
re(m) of the environment at (r,m). Recall that re(m) determines ri(m) for i ∈ Ags. For
an α-reachable state s of E, it therefore makes sense to define satisfaction of Kiφ at s
rather than at a point, by Iα, s |= Kiφ if Iα, (r,m) |= Kiφ for all (r,m) with re(m) = s.
We define a joint strategy α to be an implementation of P in E if for all α-reachable
states s of E and agents i, we have

αi(s) = {ai
j | 1 ≤ j ≤ ni, Iα, s |= φi

j} .

Intuitively, the right hand side of this equation is the set of actions that are enabled
at s by Pi when the tests for knowledge are interpreted using the system obtained by
running the strategy α itself. The condition states that the strategy is an implementation
if it enables precisely this set of actions at every reachable state. It is easily checked
that a strategy αi satisfying the above equation is uniform.

We now show that our framework for strategic reasoning can express the same con-
tent as a knowledge-based program by means of a formula, and that this enables the
framework to be used for reasoning about knowledge-based program implementations.
In general, implementations α of a knowledge based program P can be hard to find, and
there may be one, many or no implementations of a given knowledge based program.
We therefore work in strategy space I(E,Σunif), which contains all candidate imple-
mentations, and develop a formula imp(P) such that for a given run r, the formula
imp(P) holds at a point of r iff the joint strategy encoded in r is an implementation of
P in E.

We need one constraint on the environment. Say that an environment E is action-
recording if for all agents i, for each a ∈ Actsi there exists an atomic proposition didi(a)
such that for s ∈ I we have didi(a) < π(s) and for all states s, t and joint actions a such
that (s, a, t) ∈→, we have didi(b) ∈ π(t) iff b = ai. Intuitively, this means that we
can determine from a non-initial state the joint action that was executed in reaching
that state. It is easily seen that any environment can be made action-recording, just by
adding a component to the states that records the latest joint action.

We can now express knowledge-based program implementations as follows. The
main issue that we need to deal with is that the semantics of knowledge formulas in
knowledge-based programs is given with respect to a system Iα, in which it is com-
mon knowledge that the joint strategy in use is α. In general, strategies are not com-
mon knowledge in the strategy space I(E,Σunif) within which we wish to reason about

33

knowledge-based program implementations. We handle this by means of a transforma-
tion of formulas.

For a formula φ of CTL∗K(Ags, Prop), not containing common knowledge opera-
tors, write φ$ for the formula of ESL (in fact, of CTL∗K(Ags∪σ(Ags), Prop)) obtained
from the following recursively defined transformation:

p$ = p

(¬φ)$ = ¬φ$

(φ1 ∧ φ2)$ = φ$
1 ∧ φ

$
2

(DGφ)$ = DG∪σ(Ags) φ
$

(Aφ)$ = Aφ$

(dφ)$ = dφ$

(φ1Uφ2)$ = (φ$
1 U φ$

2)

Intuitively, this substitution says that knowledge operators in φ are to be interpreted
as if it is known that the current joint strategy is being played. In the case of an operator
DG, which includes the special case Ki = D{i}, the translation handles this by adding
σ(Ags) to the set of agents that are kept fixed when moving through the indistinguisha-
bility relation.

Let
imp(P) = Dσ(Ags)(

∧
i∈Ags, j=1...ni

((φi
j)

$ ⇔ E ddidi(ai
j))).

Intuitively, this formula says that the current joint strategy gives an implementation of
the knowledge-based program P. More precisely, we have the following:

Proposition 4. Suppose that P is a knowledge-based program in which the guards do
not contain common knowledge operators. Let α be a locally uniform joint strategy in
E and let r be a run of I(E,Σunif (E)), in which the agents are running joint strategy α,
i.e., r(0) = (s, α) for some state s. Let m ∈ N. Then

I(E,Σunif (E)), (r,m) |= imp(P)

iff the strategy α is an implementation of knowledge-based program P in E.

Proof. For brevity, we write just I for I(E,Σunif (E)). First, we claim that for a formula
φ not containing common knowledge operators, we have I, (r,m) |= φ$ iff Iα, (r,m) |=
φ, where r(m) = (s, α). The proof is by induction on the construction of φ. The base
case of atomic propositions, and the cases for boolean and linear temporal operators
are straightforward.

Consider the case φ = Aψ, where we have (Aψ)$ = A(ψ$). Observe that if r and
r′ are runs of I, with r[0 . . .m] = r′[0 . . .m], then r and r′ encode the same strategy
α = rσ(Ags)(0). Now I, (r,m) |= A(ψ$) iff I, (r′,m) |= ψ$ for all runs r′ of I with
r[0 . . .m] = r′[0 . . .m]. By the observation, this is equivalent to I, (r′,m) |= ψ$ for
all runs r′ of Iα with r[0 . . .m] = r′[0 . . .m]. By induction, the latter is equivalent to

34

Iα, (r′,m) |= ψ for all runs r′ of Iα with r[0 . . .m] = r′[0 . . .m], i.e., to Iα, (r,m) |= Aψ.
Hence I, (r,m) |= (Aψ)$ iff Iα, (r,m) |= Aψ.

Finally, consider the case φ = DGψ, where we have (DGψ)$ = DG∪σ(Ags)(ψ$). Ob-
serve that if (r,m) and (r′,m′) are points of I with (r,m) ∼G∪σ(Ags) (r′,m′), then r and
r′ encode the same strategy α = rσ(Ags)(0) and (r,m) ∼G (r′,m′). Conversely, if (r,m)
and (r′,m′) are points of Iα, i.e., both encode joint strategy α, then (r,m) ∼G (r′,m′)
implies (r,m) ∼G∪σ(Ags) (r′,m′). Now I, (r,m) |= DG∪σ(Ags)(ψ$) iff I, (r′,m′) |= ψ$ for
all points (r′,m′) of I with (r,m) ∼G∪σ(Ags) (r′,m′). By the observation, this is equiva-
lent to I, (r′,m′) |= ψ$ for all points (r′,m′) of Iα with (r,m) ∼G (r′,m′). By induction,
this is equivalent to Iα, (r′,m′) |= ψ for all points (r′,m′) of Iα with (r,m) ∼G (r′,m′),
i.e., to Iα, (r,m) |= DGψ.

This completes the proof of the claim. Next, note that, for a point (r,m) with r(m) =

(s, α), for action αi
j of agent i, we have I, (r,m) |= E ddidi(ai

j) iff ai
j ∈ αi(s).

Suppose that α is an implementation of P in E, and let (r,m) be a point of I with
r(m) = (s, α), We show that I, (r,m) |= imp(P). For this, we let (r′,m′) be a point with
(r′,m′) ∼σ(Ags) (r,m), and show that I, (r′,m′) |=

∧
i∈Ags, j=1...ni

((φi
j)

$ ⇔ E ddidi(ai
j)).

From (r′,m′) ∼σ(Ags) (r,m) it follows that r′(m′) = (t, α) for some state t of E. Thus,
from what was noted above, I, (r′,m′) |= E ddidi(ai

j) iff ai
j ∈ αi(t). Since α is an

implementation of P in E, this holds iff Iα, (r′,m′) |= φi
j. By the claim proved above,

Iα, (r′,m′) |= φi
j is equivalent to I, (r′,m′) |= (φi

j)
$. Thus, we have that I, (r′,m′) |=

(φi
j)

$ ⇔ E ddidi(ai
j). It follows that I, (r,m) |= imp(P).

Conversely, suppose that I, (r,m) |= imp(P), and let r(m) = (s, α). We show that
α is an implementation of P in E. Let t be any α-reachable state, with, in particular,
(r′,m′) a point of Iα with r′(m′) = (t, α). We need to show that for all agents i, we have

αi(t) = {ai
j | 1 ≤ j ≤ ni, Iα, t |= φi

j}

i.e., that for all i, j we have ai
j ∈ αi(t) iff Iα, t |= φi

j. Note that (r,m) ∼σ(Ags) (r′,m′), so
we have that

I, (r′,m′) |=
∧

i∈Ags, j=1...ni

((φi
j)

$ ⇔ E ddidi(ai
j)).

As in the previous paragraph, ai
j ∈ αi(t) iff I, (r′,m′) |= E ddidi(ai

j), which is equivalent
to I, (r′,m′) |= (φi

j)
$, and by the claim proved above, equivalent to Iα, (r′,m′) |= φi

j,
i.e., Iα, t |= φi

j. Thus ai
j ∈ αi(t) iff Iα, t |= φi

j, for all i, j, which is what we needed to
prove. �

In particular, as a consequence of this result, it follows that several properties of
knowledge-based programs (that do not make use of common knowledge operators)
can be expressed in the system I(E,Σunif (E)):

1. The statement that there exists an implementation of P in E can be expressed by

I(E,Σunif (E)) |= ¬D∅¬imp(P)

2. The statement that all implementations of P in E guarantee that formula φ of
CTL∗K(Ags, Prop) (which may contain knowledge operators) holds at all times

35

can be expressed by

I(E,Σunif (E)) |= D∅(imp(P)⇒ φ$)

We remark that as a consequence of these encodings and Theorem 8 (in section 4
below) that CTL∗K(Ags∪σ(Ags), Prop) model checking in strategy space is in PSPACE,
we obtain the following result:

Corollary 1. The following are in PSPACE:

1. Given a finite environment E and a knowledge based program P, determine if P
has an implementation in E.

2. Given a finite environment E and a knowledge based program P and a CTL∗K(Ags, Prop)
formula φ, determine if Iα |= φ for all implementations α of P in E.

For testing existence (part 1 of Corollary 1), this result was known [20], but the
result on verification (part 2 of Corollary 1), has not previously been noted (though it
could also have been shown using the techniques in [20].)

One might expect that Proposition 4 can be extended to knowledge based programs
in which formulas may contain common knowledge operators, simply by adding the
condition

(CGφ)$ = CG∪σ(Ags) φ
$

to the transformation of formulas. However, this does not work, because the interpre-
tation of CGφ in a subsystem Iα is based on chains of points (r0,m0) ∼i1 (r1,m1) ∼i2
. . . ∼ik (rk,mk), such that r j is a run of joint strategy α for all j = 1 . . . k. By contrast,
the semantics of CG∪σ(Ags)φ

$ in I involves chains of points which are not required to
preserve the joint strategy: rather each step preserves the local state of one of the agents
in G or the strategy of one of the agents. Neither does it work to use the translation

(CGφ)$ = ∃x(eσ(Ags)(x) ∧CG(eσ(Ags)(x)⇒ φ$))

since the operator CG similarly does not preserve the joint strategy, and it is not enough
to test only at the end of the chain that the joint strategy has been preserved.

It is not clear that the translation we require for common knowledge is expressible
in ESL. What would work is to generalize the common knowledge operator to the form
CXφ, where X is a set of sets of agents (instead of a set of agents), and to define the
semantics of this more general form as the greatest fixpoint of equation

CXφ =
∧
G∈X

DG(φ ∧CXφ) .

We could then use the translation

(CGφ)$ = C{{i}∪σ(Ags) | i∈G} φ
$.

Here the semantics involves chains of points in which we preserve the joint strategy
and one of the agents in G. While this is an interesting extension, that we consider
worthy of study, we do not pursue this as an ad hoc extension here, leaving it for future
consideration in a broader context, such as a logic that extends ESL by mu-calculus
operators.

36

4 Model Checking
Model checking is the problem of computing whether a formula of a logic holds in a
given model. We now consider the problem of model checking ESL and various of its
fragments.

The model checking problem is to determine whether Γ, E,Σ |= φ for a finite state
environment E, a set Σ of strategies and a context Γ, where φ is an ESL formula.

For purposes of results concerning the complexity of model checking, we need a
measure of the size of a finite environment. Conventionally, the size of a model is taken
to be the length of a string that lists its components, and typically, this is polynomial in
the number of states of the model. We note that in the case of environments, the set of
labels Acts of the transition relation is an n-fold cartesian product, where n = Ags, so
(if the number of agents is a variable in the class of environments we consider) the size
of the transition relation may be exponential in the number of agents.9

However there is a more severe issue with respect to the parameter Σ of the model
checking problem. A strategy for a single agent is a mapping from states to sets of
actions of the agent. Hence the number of strategies we may need to list to describe
Σ explicitly could be exponential in the number of states of the environment, even in
the case of a single agent. To address this issue, we abstract the strategy set Σ to a
parameterized class such that for each environment E, the set Σ(E) is a set of strategies
for E. When C is a complexity class, we say that the parameterized class Σ can be
presented in C, if the problem of determining, given an environment E and a joint
strategy α for E, whether α ∈ Σ(E), is in complexity class C. For example, the class Σ

of all strategies for E can be PTIME-presented, as can Σunif , Σdet and Σunif ,det.
We first consider the complexity of model checking the full language ESL. The

following result gives an upper bound of EXPSPACE for this problem.

Theorem 4. Let Σ be a parameterized class of strategies that can be presented in
EXPSPACE. The complexity of deciding, given an environment E, an ESL formula φ
and a context Γ for I(E,Σ(E)), defined on the free variables of φ, whether Γ, E,Σ(E) |=
φ, is in EXPSPACE.

Proof. The problem can be reduced to that of model checking the temporal epis-
temic logic CTL∗K obtained by omitting the constructs ∃ and ei(x) from the language
ESL. This is known to be PSPACE-complete.10 The reduction involves an exponential

9 For certain classes of environments, we could address this by allowing that the transition relation→ is
presented in some notation with the property that (1) given states s, t and a joint action a, the representation
of −→ has size polynomial in the size of |S | and |Acts|, and (2) determining whether s

a
−→ t is in PTIME

given s, a, t and the representation of −→. One example of a presentation format with this property is the
class of turn-based environments, where at each state s, there exists an agent i such that if s

a
−→ t for a joint

action a, then for all joint actions b with ai = bi we have s
b
−→ t. That is, the set of states reachable in a

single transition from s depends only on the action performed by agent i. In this case, the transition relation
can be presented more succinctly as a subset of S × (∪i∈AgsAi)× S . While it would be interesting to consider
the effect of such optimized representations on our complexity results, we do not pursue this here.

10The result is stated explicitly in [18], but techniques sufficient for a proof (involving guessing a labelling
of states by knowledge subformulas in order to reduce the problem to LTL model checking and also verifying
the guess by LTL model checking) were already present in [56]. The branching operator A can be treated as
a knowledge operator for purposes of the proof.

37

blowup of size of both the formula and the environment, so we obtain an EXPSPACE
upper bound.

Model checking for temporal epistemic logic takes as input a formula and a struc-
ture that is like an environment, except that its transitions are not based on a set of
actions for the agents. More precisely, an epistemic transition system for a set of agents
Ags is a tuple E = 〈S , I,→, {Oi}i∈Ags, π〉, where S is a set of states, I ⊆ S is the set
of initial states, →⊆ S × S is a state transition relation, for each i ∈ Ags, component
Oi : S → Li is a function giving an observation in some set Li for the agent i at each
state, and π : S → P(Prop) is a propositional assignment. A run of E is a sequence
r : N → S such that r(0) ∈ I and r(k) → r(k + 1) for all k ∈ N. To ensure that every
partial run can be completed to a run, we assume that the transition relation is serial,
i.e., that for all states s there exists a state t such that s→ t.

Given an epistemic transition system E, we define an interpreted system I(E) =

(R, π′) as follows. For a run r : N → S of E, define the lifted run r̂ : N → S ×
Πi∈AgsLi (here Le = S), by r̂e(m) = r(m) and r̂i(m) = Oi(r(m)) for i ∈ Ags. Then we
take R to be the set of lifted runs r̂ with r a run of E. The assignment π′ is given by
π′(r,m) = π(r(m)). The model checking problem for temporal epistemic logic CTL∗K
is to decide, given an epistemic transition system E and a formula φ ∈ CTL∗K, whether
I(E), (r, 0) |= φ for all runs r of I(E).

We now show how to reduce ESL model checking to CTL∗K model checking.
Given an environment E = 〈S , I,Acts,→, {Oi}i∈Ags, π〉 for ESL(Ags, Prop,Var), we first
introduce a set of new propositions Prop∗ = {p(s,α) | s ∈ S , α ∈ Σ(E)} which will be
interpreted at global states of the generated interpreted system. Each proposition p(s,α)
will be true only at the global state (s, α). These propositions will help to eliminate the
constructs ei(x) and ∃x. We then define the epistemic transition system E = 〈S ∗, I∗,→∗

, {O∗i }i∈Ags, π
∗〉 for the language CTL∗K(Ags∪σ(Ags), Prop∪Prop∗,Var), in which the

propositions have been extended by the set Prop∗, as follows:

1. S ∗ = {(s, α) ∈ S × Σ(E) | s is reachable in E using α},

2. I∗ = I × Σ(E),

3. (s, α)→∗ (t, β) iff s
a
−→ t (in E) for some joint action a and β = α,

4. O∗i (s, α) = Oi(s) and O∗σ(i)(s, α) = αi, for i ∈ Ags,

5. π∗(s, α) = π(s) ∪ {p(s,α)}.

We can treat the states (s, α) ∈ S ∗ as tuples indexed by Ags ∪ σ(Ags) ∪ {e} by taking
(s, α)i = Oi(s) and (s, α)σ(i) = αi for i ∈ Ags, and (s, α)e = s.

Note that a joint strategy for an environment E can be represented in space Σi∈Ags|S |×
|Actsi|, and the number of strategies is exponential in the space requirement. Thus, the
size of E is O(2poly(|E|)). Note also that the construction of E can be done in EXPSPACE
so long as verifying whether an individual strategy α is in Σ(E) can be done in EX-
PSPACE.

We also need a transformation of the formula. Given a formula φ of ESL and a
context Γ for E, we define a formula φΓ, inductively, by

38

1. pΓ = p, for p ∈ Prop,

2. ei(x)Γ =
∨
{pg | g ∈ S ∗, gi = Γ(x)i}

3. (¬φ)Γ = ¬φΓ, (φ1 ∧ φ2)Γ = φΓ
1 ∧ φ

Γ
2 ,

4. (dφ)Γ = d(φΓ), (φ1Uφ2)Γ = (φΓ
1)U(φΓ

2), (Aφ)Γ = A(φΓ)

5. (DGφ)Γ = DGφ
Γ, (CGφ)Γ = CGφ

Γ,

6. ∃x(φ)Γ =
∨
{φΓ[g/x] | g ∈ S ∗}.

Plainly the size of φΓ is O(2poly(|E|,|φ|)), and this formula is in CTL∗K(Ags∪σ(Ags), Prop∪
Prop∗). A straightforward inductive argument based on the semantics shows that
Γ, E,Σ(E) |= φ iff I(E) |= φΓ. It therefore follows from the fact that model checking
CTL∗K with respect to the observational semantics for knowledge is in PSPACE that
ESL model checking is in EXPSPACE. �

The following result shows that a restricted version of the model checking problem,
where we consider systems with just one agent and uniform deterministic strategies is
already EXPSPACE hard.

Theorem 5. The problem of deciding, given an environment E for a single agent, and
an ESL sentence φ, whether E,Σunif ,det(E) |= φ, is EXPSPACE-hard.

Proof. We show how polynomial size inputs to the problem can simulate exponential
space deterministic Turing machine computations. Let T = 〈Q, q0, q f , qr, AI , AT , δ〉 be
a one-tape Turing machine solving an EXPSPACE-complete problem, with states Q,
initial state q0, final (accepting) state q f , final (rejecting) state qr, input alphabet AI ,
tape alphabet AT ⊇ AI , and transition function δ : Q × AT → Q × AT × {L,R}. We
assume that T runs in space 2p(n) − 2 for a polynomial p(n), and that the transition
relation is defined so that the machine idles in its final state q f on accepting, and idles
in state qr on rejecting. The tape alphabet AT is assumed to contain the blank symbol
⊥.

DefineCT,Q = AT∪(AT×Q) to be the set of “cell-symbols” of T . We may represent a
configuration of T as a finite sequence over the set CT,Q, containing exactly one element
(x, q) of AT × Q, representing a cell containing symbol x where the machine’s head is
positioned, with the machine in state q. For technical reasons, we pad configurations
with a blank symbol to the left and right (so configurations take space 2p(n)), so that the
initial configuration has the head at the second tape cell and, without loss of generality,
assume that the machine is designed so that it never moves the head to the initial or
final padding blank. This means that the transition function δ can also be represented
as a set of tuples ∆ ⊆ C4

T,Q, such that (a, b, c, d) ∈ ∆ iff, whenever the machine is in
a configuration with a, b, c at cells at positions k − 1, k, k + 1, respectively, the next
configuration has d at the cell at position k.

Given the TM T and a number N = p(n) (for some polynomial p) we construct
an environment ET,N such that for every input word w, with |w| = n, there exists a
sentence φw of size polynomial in n such that ET,N ,Σ

unif (ET,N) |= φw iff T accepts
w. The idea of the simulation, depicted in Figure 1, is to represent a computation of

39

the Turing machine, using space 2N , by representing the sequence of configurations
of T for the computation consecutively along a run r of the environment ET,N . (These
runs travese a set of states we call s/c-states.) Each cell of a configuration will be
encoded as a block of N + 1 consecutive moments of time in r. In a block, the first of
these moments represents the cell-symbol of the cell, and the remaining N moments
represent the position of the cell in the configuration, in binary. Not all runs of ET,N will
correctly encode a computation of the machine, so we use the formula to check whether
a computation of T has been correctly encoded in a given run of ET . In order to do so,
the main difficulty is to check that corresponding cells of successive configurations
represented along a run are updated correctly according to the yields relation of the
Turing machine. For this, we need to be able to identify these corresponding cells, i.e.
the cells with the same position number in the binary representation. For this, we use
the behaviour of a strategy on an additional set of states (t-states) to give an alternate
representation of a binary number, one that may be accessed in a formula by means of
existential quantification. The formula then compares the representations of the binary
number at two locations in the the s/c-run with the representation of the binary number
in the strategy, in order to check that the numbers represented at the two locations in
the s/c-run are the same. Details are given below.

The environment E has propositions CT,Q ∪ {c} ∪ {t0, . . . tN−1}. Propositions from
CT,Q are used to represent cell elements, and c is used to represents the bits of a counter
that indicates the position of the cell being represented. In particular, a cell in a con-
figuration, at position bN−1 . . . b0, in binary, and containing symbol a ∈ CT,Q, will be
represented by a sequence of N +1 states, the first of which satisfies proposition a, such
that for i = 0 . . .N − 1, element i + 2 of the sequence satisfies c iff bi = 1. (Thus, low
order bits are represented to the left in the run.)

We take the set of states of the environment to be

S = {sx |x ∈ CT,Q} ∪ {c0, c1} ∪ {(ti, j) | i = 0 . . .N − 1, j ∈ {0, 1}} .

The set of initial states of the environment is defined to be I = {s⊥} ∪ {(ti, j) | i =

0 . . .N − 1, j ∈ {0, 1}}. We define the assignment π so that π(sa) = {a} for a ∈ CT,Q,
π(c0) = ∅, π(c1) = {c} and π((ti, 0)) = {ti} and π((ti, 1)) = {ti} ∪ {c}.

We take the set of actions of the single agent to be the set {a0, a1}. The transition
relation→ is defined so that for the only transitions are

sx
ak
−→ ci

ci
ak
−→ c j

ci
ak
−→ sx

(tm, j)
ak
−→ (tm, k)

for x ∈ CT,Q and i, j, k ∈ {0, 1} and m ∈ {0 . . .N − 1}. Intuitively, this forces the runs
starting at state s⊥ to alternate between selecting a symbol from CT,Q and a sequence of
bits {0, 1} for the counter. Note that for every sequence ρ in⊥·{c0, c1}

+·(CT,Q·{c0, c1}
+)ω,

and for every strategy α for the single agent, there exists a run r with rσ(1) = α and
re[0 . . .] = ρ. For each i = 0, . . .N − 1, the states of the form (ti, j) for j ∈ {0, 1} form
an isolated component in the transition relation, and are used to ensure that there is a
sufficiently rich set of strategy choices for strategies to encode counter values.

40

a b c a d c
yields

s_b c_0 c_N c_0 c_Ns_d

(t_0,0)

(t_{N_1},1)

(t_0,1)

(t_{N_1},0)

…

…

…

Turing machine run:

…… … …

configuration configuration

Strategy space
interpreted System

I(E):
s/c runs:

… …

represents

t runs:

!

"

!

encodes

Figure 1: Structure of the encoding

The length of the counter sequence segments of a run generated by this transition
system can vary within the run, but we can use a formula of length O(N) to state that
these segments always have length N wherever they appear in the run; let φN

clock be the
formula

�(αT,Q ⇒ (dN+1αT,Q ∧
∧

i=1...N

di¬αT,Q))

where we write αT,Q for
∨

x∈CT,Q
x. By definition of the transition relation, this formula

holds on a run starting in state s⊥ just when it consists of states of the form sx alternating
with sequences of states of the form ci of length exactly N.

The transition system generates arbitrary such sequences of states ci of length N,
intuitively constituting a guess for the correct counter value. Note that a temporal for-
mula of length O(N2) can say that these guesses for the counter values are correct, in
that the counter values encoded along the run are 0, 1, 2, . . . 2N − 1, 0, 1, 2, . . . 2N − 1

41

(etc). Specifically, this is achieved by the following formula φN
count:

φzero ∧ �

 αT,Q ⇒

(φmax ⇒

dN+1(φzero))∧∧
i=1...N((dc ∧ . . . di−1c ∧ di¬c)⇒dN+1(d¬c ∧ . . . ∧ di−1¬c ∧ dic)

∧
∧

j=i+1...N((djc)⇔ (dj+N+1c)))

where φzero =
∧

i=1...N
di¬c and φmax =

∧
i=1...N

dic. Intuitively, the first line of the inner
formula handles the steps from 2N − 1 to 0, and the remainder of the inner formula
uses the fact that, in binary, x01i + 1 = x10i. (Recall that in the run, low order bits are
represented to the left.)

The following formula φw
init then says that the run is initialized with word w =

a1 . . . an

⊥∧ dN+1((q0, a1)∧ dN+1(a2∧
dN+1(. . . dN+1(an∧

d((αT,Q ⇒ (⊥∧¬φzero))U(αT,Q∧φzero))) . . .))

where ⊥ is the blank symbol. This formula has size O(N · |w|) = O(p(n) ·n). Intuitively,
the formula says that the sequence of symbols w is followed by a sequence of ⊥ sym-
bols until the first time that the counter has value zero (this corresponds to the start of
the second configuration).

We now need a formula that expresses that whenever we consider two consecutive
configurations C,C′ encoded in a run, C′ is derived from C by a single step of the TM
T . The padding blanks are easily handled by the following formula φpad:

�((αT,Q ∧ (φzero ∨ φmax))⇒ ⊥)

For the remaining cell positions, we need to express that for each cell position k =

1 . . . 2N − 2, the cell value at position k in C′ is determined from the cell value at
positions k−1, k, k + 1 in C according to the transition relation encoding ∆. This means
that we need to be able to identify the corresponding positions k in C and C′. To capture
the counter value at a given position in the run, we represent counter values using a
strategy for the single agent, as follows.

We define the observation function O1 for the single agent in ET,N , so that observa-
tion O1((ti, j)) = i for i = 0 . . .N − 1. (The values of the observation function on other
states are not used in the encoding, and can be defined arbitrarily.) The number with
binary representation B = bN−1 . . . b0 can then be represented by the strategy αB such
that αB(ti, j) = abi , for i = 0 . . .N − 1 and j ∈ {0, 1}, and αB(s) = a0 for all other states
s. (Note that this strategy is uniform, and conversely, for any uniform strategy α there
exists a unique binary number bN−1 . . . b0 such that αB(ti, j) = abi , for i = 0 . . .N−1 and
j ∈ {0, 1}.) Comparing this representation with the encoding of numbers along runs, the
following formula φnum(x) expresses that the number encoded at the present position in
the run is the same as the number encoded in the strategy of agent 1 in the global state
denoted by variable x:

αT,Q ∧
∧

i=0...N−1

(di+1c)⇔ ¬D∅¬(eσ(1)(x) ∧ ti ∧ dc)

Note that, by the definition of the transition system, the value of dc at a state where ti
holds encodes whether the strategy selects a0 or a1 on observation i = 0 . . .N − 1. Note

42

also that since all states of the form (ti, j) are initial, for every strategy α, the value of
α(ti, j) is represented in this way at some point of some run. We may now check that the
transitions of the TM are correctly computed along the run by means of the following
formula φtrans:

�

(∧
(a,b,c,d)∈∆(a ∧ ¬φmax ∧

dN+1(b ∧ ¬φmax ∧
dN+1c))⇒dN+1∃x [φnum(x) ∧ d((¬φnum(x))U(φnum(x) ∧ d)]

)
Intuitively, here x captures the number encoded at the cell containing the symbol b, and
the U operator is used to find the next occurrence in the run of this number. The oc-
currences of φmax ensure that the three positions considered in the formula do not span
across a boundary between two configurations. In Figure 1, the bottom part represents
a strategy α of agent 1 encoded in some global state x. The behaviour of this strat-
egy at the t-state runs represents a number, using the statement eσ(1)(x) in the formula
φnum. The formula φnum is used to assert that this representation of a binary number in
α encodes the counter values at a position in a run. Asserting that two positions have
the same counter number by this device allows us to check the yields relation at corre-
sponding positions in the run representation of a computation of the Turing machine.

To express that the machine accepts we just need to assert that the accepting state
is reached; this is done by the formula φaccept = ^

∨
a∈AT

(a, q f).
Combining these pieces, we get that the TM accepts input w if and only if

ET,N |= (φN
clock ∧ φ

N
count ∧ φ

w
init ∧ φtrans)⇒ φaccept

holds, i.e., when every run that correctly encodes a computation of the machine is
accepting.

�

Combining Theorem 4 and Theorem 5 we obtain the following characterization of
the complexity of ESL model checking.

Corollary 2. Let Σ be an EXPSPACE presented class of strategies for environments,
containing Σunif ,det. The complexity of deciding, given an environment E, an ESL for-
mula φ and a context Γ for the free variables in an ESL formula φ relative to E and
Σ(E), whether Γ, E,Σ(E) |= φ, is EXPSPACE-complete.

The high complexity for ESL model checking motivates the consideration of frag-
ments that have lower model checking complexity. We demonstrate two orthogonal
fragments for which the complexity of model checking is in a lower complexity class.
One is the fragment ESL−, where we allow the operators ∃x.φ and ei(x), but restrict the
use of the temporal operators to be those of the branching-time temporal logic CTL. In
this case, we have the following result:

Theorem 6. Let Σ be a PSPACE-presented class of strategies. The problem of deciding,
given an environment E, a formula φ of ESL−, and a context Γ for the free variables of
φ relative to E and Σ(E), whether Γ, E,Σ(E) |= φ, is in PSPACE.

Proof. We observe that the following fact follows straightforwardly from the semantics
for formulas φ of ESL−: for a context Γ for the free variables of φ relative to E and

43

Σ(E), and for two points (r, n) and (r′, n′) of I(E,Σ(E)) with r(n) = r′(n′), we have that
Γ,I(E,Σ(E)), (r, n) |= φ iff Γ,I(E,Σ(E)), (r′, n′) |= φ. That is, satisfaction of a formula
relative to a context at a point depends only on the global state at the point, and not
on other details of the run containing the point. For a global state (s, α) of I(E,Σ(E)),
define the boolean S AT (Γ, E,Σ, (s, α), φ) to be TRUE just when Γ,I(E,Σ(E)), (r, n) |=
φ holds for some point (r, n) of I(E,Σ(E)) with r(n) = (s, α). By the above observation,
we have that Γ, E,Σ(E) |= φ iff S AT (Γ, E,Σ, (s, α), φ) holds for all initial states s of
E and all strategies α ∈ Σ(E). Since we may check these conditions one at a time,
strategies α can be represented in space linear in |E|, and deciding α ∈ Σ(E) is in
PSPACE, it suffices to show that S AT (Γ, E,Σ, (s, α), φ) is decidable in PSPACE.

We proceed by describing an APTIME algorithm for S AT (Γ, E,Σ, (s, α), φ), and
using the fact that APTIME = PSPACE [12]. The algorithm operates recursively, with
the following cases:

1. If φ = p, for p ∈ Prop, then return TRUE if p ∈ π(s), else return FALSE.

2. If φ = ei(x), then return TRUE if (s, α)i = Γ(x)i, else return FALSE.

3. If φ = φ1 ∧ φ2, then universally call S AT (Γ, E,Σ, (s, α), φ1) and
S AT (Γ, E,Σ, (s, α), φ2).

4. If φ = ¬φ1, then return the complement of S AT (Γ, E,Σ, (s, α), φ1).

5. If φ = A dφ1 then universally choose a state t such that s
a
−→ t for some for some

joint action a, and call S AT (Γ, E,Σ, (t, α), φ1). The other temporal operators from
CTL are handled similarly. (In the case of operators using U, we need to run a
search for a path through the set of states of E generated by the strategy α, but
this is easily handled in APTIME.)

6. If φ = DGφ1, then universally choose a global state (t, β) such that (s, α) ∼D
G (t, β)

and universally

(a) decide whether β ∈ Σ(E), and

(b) call REACH(t, β), and

(c) call S AT (Γ, E,Σ, (t, β), φ1).

(Here REACH(t, β) decides whether state t is reachable in E from some initial
state when the agents run the joint strategy β; this is trivially in PSPACE. Decid-
ing β ∈ Σ(E) is in PSPACE by the assumption that Σ is PSPACE-presented.)

7. If φ = CGφ1, then universally guess a global state (t, β) and universally do the
following:

(a) Decide whether (s, α) ∼C
G (t, β) using an existentially branching binary

search for a path of length at most |S | × |Σ(E)|. For all states (u, γ) on this
path it should be verified that REACH(u, γ) and that γ ∈ Σ(E). The maxi-
mal length of the path is in the worst case exponential in |E|, but the binary
search can handle this in APTIME.

44

(b) call S AT (Γ, E,Σ, (t, β), φ1).

8. If φ = ∃x(φ1), then existentially guess a global state (t, β), and universally

(a) decide if β ∈ Σ(E), and

(b) call REACH(t, β), and

(c) call S AT (Γ[(t, β)/x], E,Σ, (s, α), φ1).

A straightforward argument based on the semantics of the logic shows that the above
correctly computes SAT.

We remark that a more efficient procedure for checking that (s, α) ∼C
G (t, β) is

possible in the typical case where Σ(E) is a cartesian product of sets of strategies for
each of the agents. In this case, if there exists a witness chain then there is one of length
at most |S |. Let G = G1 ∪ σ(G2) such that G1,G2 ⊆ Ags. The number of steps through
the relation ∪i∈G ∼i required to witness (s, α) ∼C

G (t, β) depends on the sets G1,G2 as
follows:

1. If G1 = G2 = ∅ then we must have (s, α) = (t, β) and a chain of length 0 suffices.

2. If G1 is nonempty and G2 = ∅ then we must have s (∪i∈G1 ∼i)∗ t, but β can be
arbitrary, and this component can be changed in any step. A path of length |S |
suffices in this case.

3. If G1 = ∅ and G2 = {i} is a singleton, then we must have αi = βi, but s and t can
be arbitrary. A path of length one suffices in this case.

4. If |G1| ≥ 1, say i ∈ G1, and G2 = { j} is a singleton, then (∪i∈G ∼i)∗ is the universal
relation and a path of length 2 suffices. In particular, for any (s, α), (t, β) we have
(s, α) ∼i (s, β) ∼σ(j) (t, β).

5. If |G2| ≥ 2 then (∪i∈G ∼i)∗ is the universal relation and a path of length 2 suffices.
In particular, for any (s, α), (t, β) and distinct i, j ∈ G2, there exists α′ such that
α′i = αi and α′k = βk for all k ∈ Ags with k , i, and (s, α) ∼σ(i) (s, α′) ∼σ(j) (t, β).

�

The following result shows that the PSPACE upper bound from this result is tight,
already for formulas that use strategy indices in the CTLK operators, but make no direct
uses of the constructs ∃x and ei(x).

Theorem 7. The problem of deciding, given an environment E for two agents and a
formula φ of CTLK(Ags ∪ σ(Ags), Prop), whether E,Σunif ,det(E) |= φ is PSPACE hard.

Proof. We proceed by a reduction from the satisfiability of Quantified Boolean Formu-
lae (QBF). An instance of QBF is a formula φ of form

Q1x1...Qnxn(γ)

where Q1, ...,Qn ∈ {∃,∀} and γ is a formula of propositional logic over propositions
x1, ..., xn. The QBF problem is to decide, given a QBF instance φ, whether it is true.

45

We construct an environment Eφ and a formula φ∗ of CTLK using strategic indices σ(i)
such that the QBF formula φ is true iff we have Eφ,Σ

unif ,det(Eφ) |= φ∗.
Given the QBF formula φ, we construct the environment Eφ = 〈S , I, {Actsi}i∈Ags,→

, {Oi}i∈Ags, π〉 for 2 agents Ags = {1, 2} and propositions Prop = {p0, . . . , pn, q1, q2} as
follows.

1. The set of states S = {s0} ∪ {st, j,k | t ∈ {1 . . . n}, j, k ∈ {0, 1}}.

2. The set of initial states is I = {s0}.

3. The actions of agent i are Ai = {0, 1}, for each i ∈ Ags.

4. The transition relation is defined to consist of the following transitions, where
j, j′, k, k′ ∈ {0, 1}

s0
(j′,k′)
−→ s1, j′,k′

st, j,k
(j′,k′)
−→ st+1, j′,k′ for t = 1 . . . n − 1

sn, j,k
(j′,k′)
−→ sn, j,k .

5. Observations are defined so that Oi(s0) = 0 and Oi(st, j,k) = t.

6. The assignment π is defined by π(s0) = {p0}, and

π(st, j,k) = {pt} ∪ {q1 | j = 1} ∪ {q2 | k = 1}

for t = 1 . . . n.

Intuitively, the model sets up n + 1 moments of time t = 0, . . . , n, with s0 the only
possible state at time 0 and st, j,k for j, k ∈ {0, 1} the possible states at times t = 1, . . . , n.
Both agents observe only the value of the moment of time, so that for each agent, a
strategy selects an action 0 or 1 at each moment of time. We may therefore encode an
assignment to the proposition variables x1 . . . xn by the actions chosen by an agent’s
strategy at times 0, . . . n − 1. The action chosen by each agent at time t ∈ {0 . . . n − 1}
is recorded in the indices of the state at time t + 1, i.e. if the state at time t + 1 is st+1, j,k
then agent 1 chose action j at time t, and agent 2 chose action k.

We work with two agents, each of whose strategies is able to encode an assignment,
in order to alternate between the two encodings. At each step, one of the strategies is
assumed to encode an assignment to the variables x1, . . . xm. This strategy is fixed, and
we universally or existentially guess the other strategy in order to obtain a new value
for the variable xm+1. We then check that the guess has maintained the values of the
existing assignment to x1, . . . xm by comparing the two strategies.

More precisely, let vali(x j) be the formula K{σ(i)}(p j−1 ⇒ E d(qi)) for i = 1, 2 and
j = 1 . . . n. This states that at the current state, the strategy of agent i selects action 1 at
time j− 1, so it encodes an assignment making x j true. For m = 1 . . . n, let agree(m) be
the formula ∧

j=1...m

D{σ(1),σ(2)}(p j−1 ⇒ (E d(q1)⇔ E d(q2)))

46

This says that the assignments encoded by the strategies of the two agents agree on the
values of the variables x1 . . . , xm. Assuming, without loss of generality, that n is even,
and that the quantifier sequence in φ is (∃∀)n/2, given the QBF formula φ, define the
formula φ∗ to be

¬D∅¬(D{σ(1)}(agree(1)⇒
¬D{σ(2)}¬(agree(2)∧

D{σ(1)}(agree(3)⇒
¬D{σ(2)}¬(agree(4)∧. . .

...
D{σ(1)}(agree(m − 1)⇒ γ+) . . .)

where γ+ is the formula obtained by replacing each occurrence of a variable x j in γ by
the formula val2(x j). Intuitively, the first operator ¬D∅¬ existentially chooses a value
for variable x1, encoded in σ(1), the next operator D{σ(1)} remembers this strategy while
encoding a universal choice of value for variable x2 in σ(2), and the formula agree(1)
checks that the existing choice for x1 is preserved in σ(2). Continued alternation be-
tween the two strategies adds universal or existential choices for variable values while
preserving previous choices. It can then be shown that the QBF formula φ is true iff
Eφ,Σ

unif ,det |= φ∗. �

Combining Theorem 6 and Theorem 7, we obtain the following:

Corollary 3. Let Σ be a PSPACE-presented class of strategies. The problem of deciding
if Γ, E,Σ(E) |= φ, given an environment E, a formula φ of ESL− and a context Γ for the
free variables of φ relative to E and Σ(E), is PSPACE complete.

Since PSPACE is strictly contained in EXPSPACE, this result shows a strict im-
provement in complexity as a result of the restriction to the CTL-based fragment. We
remark that, by a trivial generalization of the standard state labelling algorithm for
model checking CTL to handle the knowledge operators, the problem of model check-
ing the logic CTLK(Ags, Prop) in the system I(E) generated by an epistemic transition
system E is in PTIME. Thus, there is a jump in complexity from CTLK as a result of
the move to the strategic setting, even without the addition of the operators ∃x.φ and
ei(x). However, this jump is not so large as the jump to the the full logic ESL.

An orthogonal restriction of ESL is to retain the CTL∗ temporal basis, i.e., to allow
full use of LTL operators, but to allow epistemic operators and strategy indices, but omit
use of the operators ∃x.φ and ei(x). This gives the logic CTL∗K(Ags ∪ σ(Ags), Prop).
For this logic we also see an improvement in the complexity of model checking com-
pared to full ESL, as is shown in the following result.

Theorem 8. Let Σ(E) be a PSPACE presented class of strategies for environments E.
The complexity of deciding, given an environment E and a CTL∗K formula φ for agents
Ags(E)+ ∪ σ(Ags(E)), whether E,Σ(E) |= φ, is PSPACE-complete.

Proof. The lower bound is straightforward from the fact that linear time temporal logic
LTL is a sublanguage of CTL∗K, and model checking LTL is already PSPACE-hard

47

[52]. For the upper bound, we describe an alternating PTIME algorithm, and invoke
the fact that APTIME = PSPACE [12]. We abbreviate I(E,Σ(E)) to I.

For a formula φ, write maxk(φ) for the maximal epistemic subformulas of φ, defined
to be the set of subformulas of the form Aψ or CGψ or DGψ for some set G of basic and
strategic indices, which are themselves not a subformula of a larger subformula of φ of
one of these forms. Note that Aψ can be taken to be epistemic because it is equivalent to
D{e}∪σ(Ags)ψ; in the following we assume that Aψ is written in this form. Also note that
for epistemic formulas ψ, satisfaction at a point depends only on the global state, i.e.,
for all points (r,m) and (r′,m′) of I, we have that if r(m) = r′(m′) then I, (r,m) |= ψ iff
I, (r′,m′) |= ψ. Thus, for global states (s, α) of I, we may write I, (s, α) |= ψ to mean
that I, (r,m) |= ψ for some point (r,m) with r(m) = (s, α).

Define a φ-labelling of E to be a mapping L : S ×maxk(φ)→ {0, 1}, giving a truth
value for each maximal epistemic subformula of φ. A φ-labelling can be represented
in space |S | × |φ|. Note that if we treat the maximal epistemic subformulas of φ as if
they were atomic propositions, evaluated at the states of E using the φ-labelling L, then
φ becomes an LTL formula, evaluable on any path in E with respect to the labelling
L. Verifying that all α-paths from a state s satisfy φ with respect to L is then exactly
the problem of LTL model checking, for which there exists an APTIME procedure
ASAT(E, (s, α), L, φ) since model checking LTL is in PSPACE [52] and APTIME =
PSPACE [12]. For this to correspond to model checking in I, we require that the φ-
labelling L gives the correct answers for the truth value of the formula at each state
(s, α), i.e., that L(ψ) = 1 iff I, (s, α) |= ψ. We handle this by means of a guess and
verify technique.

To handle the verification, an alternating PTIME algorithm KSAT(E,Σ, (s, α), φ)
is defined, for φ an epistemic formula, such that KSAT(E,Σ, (s, α), φ) returns TRUE
iff I, (s, α) |= φ. The definition is recursive and uses a call to the procedure ASAT.
Specifically, KSAT(E,Σ, (s, α),DGφ) operates as follows:

1. universally guess a state t of E and a joint strategy β in E, then

2. verify that t is reachable in E using joint strategy β, that (s, α) ∼G (t, β), and that
β is in Σ(E), then

3. existentially guess a φ-labelling L of E, then

4. universally,

(a) call ASAT(E, (t, β), L, φ), and

(b) for each state w and formula ψ ∈ maxk(φ), call KSAT(E,Σ, (w, β), ψ).

Note that step 4(b) verifies that the φ-labelling L is correct.
For KSAT(E,Σ, (s, α),CGφ), the procedure is similar, except that instead of verify-

ing that (s, α) ∼G (t, β) in the second step, we need to verify that (s, α) (∪i∈G ∼i)∗ (t, β).
This is easily handled in APTIME by a standard recursive procedure that guesses a
midpoint of the path and branches universally to verify the existence of the left and
right halves of the chain. (See the proof of Theorem 6 for some further discussion on
this point.)

48

To solve the model checking problem in I, we can now apply the following alter-
nating procedure:

1. universally guess a global state (s, α) of I, then branch existentially to the fol-
lowing cases:

(a) if s is an initial state of E return FALSE, else return TRUE,

(b) if α ∈ Σ(E), return FALSE, else return TRUE,

(c) call KSAT(E,Σ, (s, α), Aφ).

Evidently, each of the alternating procedures runs in polynomial time internally, and the
number of recursive calls is O(|φ|). It follows that the entire computation is in APTIME
= PSPACE. �

It is interesting to note that, although CTL∗K(Ags ∪ σ(Ags)) is significantly richer
than the temporal logic LTL, the added expressiveness comes without an increase in
complexity: model checking LTL is already PSPACE-complete [52].

5 Conclusion
We now discuss some related work and remark upon some questions for future re-
search. The sections above have already made some references and comparisons to
related work on each of the topics that we cover. Beside these references, the following
are also worth mentioning.

Semantics that explicitly encode strategies in runs have been used previously in the
literature on knowledge in information flow security [25]; what is novel in our approach
is to develop a logic that enables explicit reference to these strategies.

A variant of propositional dynamic logic (PDL) for describing strategy profiles in
normal form games subject to preference relations is introduced in [54]. This work
does not cover temporal aspects as we have done in this paper. Another approach based
on PDL is given in [47], which describes strategies by means of formulas.

A very rich generalization of ATEL for probabilistic environments is described in
[49]. This proposal includes variables that refer to strategy choices, and strategic oper-
ators that may refer to these variables, so that statements of the form “when coalition
A runs the strategy represented by variable S1, and coalition B runs the strategy repre-
sented by variable S2, and the remaining agents behave arbitrarily, then the probability
that φ holds is at least δ” can be expressed. Here a strategy choice maps each state,
coalition and formula to a uniform imperfect recall strategy for the coalition. There are
a number of syntactic restrictions compared to our logic. The epistemic operators in
this approach apply only to state formulas rather than path formulas (in the sense of
this distinction from CTL∗.) Moreover, the strategic variables may be quantified, but
only in the prefix of the formula. These constraints imply that notions such as “agent
i knows that there exists a strategy by which it can achieve φ” and “agent i knows
that it has a winning response to every strategy chosen by agent j” cannot be naturally
expressed.

49

The extended temporal epistemic logic ETLK we have introduced, of which our
epistemic strategy logic ESL is an instantiation with respect to a particular semantics,
uses constructs that resemble constructs from hybrid logic [4]. Hybrid logic is an ap-
proach to the extension of modal logics that uses “nominals”, i.e., propositions p that
hold at a single world. These can be used in combination with operators such as ∃p,
which marks an arbitrary world as the unique world at which nominal p holds. Our con-
struct ∃x is closely related to the hybrid construct ∃p, but we work in a setting that is
richer in both syntax and semantics than previous works. There have been a few works
using hybrid logic ideas in the context of epistemic logic [27, 48] but none are con-
cerned with temporal logic. Hybrid temporal logic has seen a larger amount of study
[5, 22, 21, 51], with variances in the semantics used for the model checking problem.

We note that if we were to view the variable x in our logic as a propositional con-
stant, it would be true at a set of points in the system I(E,Σ), hence not a nominal
in that system. Results in [5], where a hybrid linear time temporal logic formula is
checked in all paths in a given model, suggest that a variant of ESL in which x is
treated as a nominal in I(E,Σ) would have a complexity of model checking at least
non-elementary, compared to our EXPSPACE and PSPACE complexity results.

Our PSPACE model checking result for CTLK(Ags ∪ σ(Ags)) seems to be more
closely related to the result in [21] that model checking a logic HL(∃,@, F, A) is
PSPACE-complete. Here F is essentially a branching time future operator and A is
a universal operator (similar to our D∅), the construct @pφ says that φ holds at the
world marked by the nominal p, and ∃p(φ) says that φ holds after marking some world
by p. The semantics in this case does not unfold the model into either a tree or a set of
linear structures before checking the formula, so the semantics of the hybrid existential
∃ is close to our idea of quantifying over global states. Our language, however, has
a richer set of operators, even in the temporal dimension, and introduces the strategic
dimension in the semantics. It would be an interesting question for future work to con-
sider fragments of our language to obtain a more precise statement of the relationship
with hybrid temporal logics.

Strategy Logic [13] is a (non-epistemic) generalization of ATL for perfect infor-
mation strategies in which strategies may be explicitly named and quantified. Strategy
logic has a non-elementary model checking problem. Work on identification of more
efficient variants of quantified strategy logic includes [42], who formulate a variant
with a 2-EXPTIME-complete model checking problem. In both cases, strategies are
perfect recall strategies, rather than the imperfect recall strategies that form the basis
for our PSPACE-completeness result for model checking.

Most closely related to this paper are a number of independently developed works
that consider epistemic extensions of variants of strategy logic. Belardinelli [3] devel-
ops a logic, based on linear time temporal logic with epistemic operators, that adds
an operator ∃xi, the semantics of which existentially modifies the strategy associated
to agent i in the current strategy profile. It omits the binding operator from [42], so
provides no other way to refer to the variable x. The logic is shown to have nonelemen-
tary model checking complexity. This complexity is higher than the results we have
presented because the semantics for strategies allows agents to have perfect informa-
tion and perfect recall (though the semantics for the knowledge operators is based on
imperfect information and no recall), whereas we have assumed imperfect information

50

and no recall for strategies.
Another extension of strategy logic with epistemic operators has been indepen-

dently developed by Čermák et al [11, 10]. Their syntax and semantics differs from
ours in a number of respects. Although the syntax appears superficially in the form of
an extension of LTL, it is more like CTL in some regards. The transition relation is de-
terministic in the sense that for each joint action, each state has a unique successor when
that action is performed. Strategies are also assumed to be deterministic (whereas we
allow nondeterministic strategies.) This means that, like CTL, the semantics of a for-
mula depends only on the current global state and the current strategy profile, whereas
for LTL it is generally the case that the future structure of the run from a given global
state can vary, and the truth value of the formula depends on how it does so. Although
it seems that non-determinism could be modelled, as is commonly done, through the
choice of actions of the environment, treated as an agent, the fact that strategies are
deterministic, uniform and memoryless means that the environment must choose the
same alternative each time a global state occurs in a run. This means that this standard
approach to modelling of non-determinism does not work for this logic. The syntax of
the logic moreover prevents epistemic operators from being applied to formulas with
free strategy variables, whereas we allow fully recursive mixing of the constructs of
our logic. Consequently, epistemic notions from our logic like D{i,σ(i)}, expressing an
agent’s knowledge about the effects of its own strategy, which are used in several of
our applications, do not appear to be expressible in this logic. Finally, the notion of
“interpreted system” in this work, which corresponds most closely to our notion of
“environment”, also seems less general than our notion of environment because it de-
fines the accessibility relations for the knowledge operators in a way that makes the
environment state known to all agents.

In another paper [32], we have implemented a symbolic algorithm that handles
model checking for the fragment CTLK(Ags ∪ σ(Ags)), which, as shown above, en-
compasses the expressiveness of ATEL. Existing algorithms described in the literature
for ATEL model checking [40, 9, 8] are based either on explicit-state model checking or
are only partially symbolic in that they iterate over all strategies, explicitly represented.
Our experimental results in [32] show that by comparison with the partially-symbolic
approach, a fully-symbolic algorithm can greatly improve the performance and there-
fore scalability of model checking. The approach to model checking epistemic strategy
logic implemented in [11, 10] is fully symbolic, but as already mentioned, this logic
has a more limited expressive power than ours and its semantics does not permit repre-
sentation of a nondeterministic environment. (It does not seem that the semantics could
be extended to allow nondeterminism while retaining correctness of their algorithm.)

Our focus on this paper has been on an observational, or imperfect recall, semantics
for knowledge. Other semantics for knowledge are also worth considering, but are left
for future work. We note one issue in relation to the connection to ATEL that we have
established, should we consider a perfect recall version of our logic. ATEL operators
effectively allow reference to situations in which agents switch their strategy after some
actions have already been taken, whereas in our model an agent’s strategy is fixed
for the entire run. When switching to a new strategy, there is the possibility that the
given state is not reachable under this new strategy. We have handled this issue in our
translation by assuming that all states are initial, so that the run can be reinitialized

51

if necessary to make the desired state reachable. This is consistent with an imperfect
recall interpretation of ATEL, but it is not clear that this approach is available on a
perfect recall interpretation. We leave a resolution of this issue to future work.

References
[1] Thomas Ågotnes, Valentin Goranko, and Wojciech Jamroga. Alternating-time

temporal logics with irrevocable strategies. In Proc. of the 11th Conf. on Theo-
retical Aspects of Rationality and Knowledge (TARK-2007), pages 15–24, 2007.

[2] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-Time
Temporal Logic. Journal of the ACM, 49(5):672–713, 2002.

[3] Francesco Belardinelli. Reasoning about knowledge and strategies: Epistemic
strategy logic. In Proc. 2nd Int. Workshop on Strategic Reasoning, SR 2014,
Grenoble, France, April 5-6, 2014., pages 27–33, 2014. arXiv:1404.0837v1.

[4] Patrick Blackburn and Jerry Seligman. What are hybrid languages? In M. de Ri-
jke, H. Wansing, and M. Zakharyaschev, editors, Advances in Modal Logic, vol-
ume 1, pages 41–62. CSLI Publications, 1998.

[5] Laura Bozzelli and Ruggero Lanotte. Complexity and succinctness issues for
linear-time hybrid logics. Theoretical Computer Science, 411(2):454–469, 2010.

[6] Ronen I. Brafman, Jean-Claude Latombe, Yoram Moses, and Yoav Shoham. Ap-
plications of a Logic of Knowledge to Motion Planning under Uncertainty. JACM,
44(5):633–668, 1997.

[7] Thomas Brihaye, Arnaud Da Costa, François Laroussinie, and Nicolas Markey.
ATL with strategy contexts and bounded memory. In International Symposium
on Logical Foundations of Computer Science, pages 92–106, 2009.

[8] Simon Busard, Charles Pecheur, Hongyang Qu, and Franco Raimondi. Reason-
ing about strategies under partial observability and fairness constraints. In 1st
International Workshop on Strategic Reasoning (SR2013), pages 71–79, 2013.

[9] Jan Calta, Dmitry Shkatov, and Bernd-Holger Schlingloff. Finding uniform
strategies for multi-agent systems. In Computational Logic in Multi-Agent Sys-
tems (CLIMA XI), pages 135–152, 2010.

[10] Petr Čermák. A model checker for strategy logic. MEng Individual Project thesis,
Department of Computing, Imperial College London, June 2014.

[11] Petr Čermák, Alessio Lomuscio, Fabio Mogavero, and Aniello Murano. Mcmas-
slk: A model checker for the verification of strategy logic specifications. In 26th
International Conference, CAV 2014, pages 525–532, 2014.

[12] Ashok K. Chandra, Dexter Kozen, and Larry J. Stockmeyer. Alternation. Journal
of the ACM, 28(1):114–133, 1981.

52

[13] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Strategy logic.
Information and Computation, 208(6):677–693, 2010.

[14] Stephen Chong and Andrew C. Myers. Language-based information erasure. In
IEEE Computer Security Foundations Workshop, pages 241–254, 2005.

[15] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verifica-
tion of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244–263, 1986.

[16] Catalin Dima and Ferucio Laurentiu Tiplea. Model-checking ATL under
imperfect information and perfect recall semantics is undecidable. CoRR,
abs/1102.4225, 2011.

[17] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not never” revisited:
on branching versus linear time temporal logic. Journal of the ACM, 33(1):151–
178, 1986.

[18] Kai Engelhardt, Peter Gammie, and Ron van der Meyden. Model checking knowl-
edge and linear time: PSPACE cases. In Proc. Symposium on Logical Foundations
of Computer Science, LNCS, pages 195–211. Springer, June 2007.

[19] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
About Knowledge. The MIT Press, 1995.

[20] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.
Knowledge-based programs. Distributed Computing, 10(4):199–225, 1997.

[21] Massimo Franceschet and Maarten de Rijke. Model checking hybrid logics (with
an application to semistructured data). Journal of Applied Logic, 4(3):279–304,
2006.

[22] Massimo Franceschet, Maarten de Rijke, and Bernd-Holger Schlingloff. Hybrid
logics on linear structures: Expressivity and complexity. In 10th International
Symposium on Temporal Representation and Reasoning / 4th International Con-
ference on Temporal Logic (TIME-ICTL 2003), pages 166–173, 2003.

[23] Joseph Y. Halpern and Yoram Moses. Knowledge and Common Knowledge in a
Distributed Environment. Journal of the ACM, 37(3):549–587, 1990.

[24] Joseph Y. Halpern and Yoram Moses. Characterizing Solution Concepts in Games
Using Knowledge-Based Programs. In the 20nd International Joint Conference
on Artificial Intelligence (IJCAI2007), pages 1300–1307, 2007.

[25] Joseph Y. Halpern and Kevin R. O’Neill. Secrecy in Multiagent Systems. ACM
Transactions on Information and System Security, 12(1), Article No. 5 2008.

[26] Joseph Y. Halpern and Nan Rong. Cooperative Equilibrium (Extended Abstract).
In 9th International Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’10), pages 1465–1466, 2010.

53

[27] Jens Ulrik Hansen. A hybrid public announcement logic with distributed knowl-
edge. Electronic Notes in Theoretical Computer Science, 273:33–50, 2011.

[28] Wiebe van der Hoek, Wojciech Jamroga, and Michael Wooldridge. A logic for
strategic reasoning. In Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems (AAMAS’05), pages 157–164, 2005.

[29] Wiebe van der Hoek and Michael Wooldridge. Tractable multiagent planning
for epistemic goals. In Proceedings of the First International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS’02), pages 1167–1174,
2002.

[30] John F. Horty. Agency and deontic logic. Oxford University Press, 2001.

[31] Xiaowei Huang and Ron van der Meyden. An epistemic strategy logic (extended
abstract). In 2nd International Workshop on Strategic Reasoning, SR 2014, pages
35–41, 2014.

[32] Xiaowei Huang and Ron van der Meyden. Symbolic model checking epis-
temic strategy logic. In Twenty-Eighth AAAI Conference on Artificial Intelligence
(AAAI-14), pages 1426–1432, 2014.

[33] Xiaowei Huang and Ron van der Meyden. A temporal logic of strategic knowl-
edge. In 14th International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR2014), 2014.

[34] Wojciech Jamroga. Some Remarks on Alternating Temporal Epistemic Logic. In
Proceedings of Formal Approaches to Multi-Agent Systems (FAMAS 2003), 2003.

[35] Wojciech Jamroga and Thomas Ågotnes. Constructive knowledge: what agents
can achieve under imperfect information. Journal of Applied Non-Classical Log-
ics, 17(4):423–475, 2007.

[36] Wojciech Jamroga, Thomas Ågotnes, and Wiebe van der Hoek. A simpler se-
mantics for abilities under uncertainty. Tech. Report IfI-08-01, Department of
Informatics, Clausthal University of Technology, 2008.

[37] Wojciech Jamroga and Jürgen Dix. Model checking abilities under incomplete
information is indeed delta2-complete. In the 4th European Workshop on Multi-
Agent Systems (EUMAS’06), 2006.

[38] Wojciech Jamroga and Wiebe van der Hoek. Agents that Know How to Play .
Fundamenta Informaticae, 62:1–35, 2004.

[39] Geert Jonker. Feasible strategies in alternating-time temporal. Master’s thesis,
University of Utrech, The Netherlands, 2003.

[40] Alessio Lomuscio and Franco Raimondi. Model Checking Knowledge, Strate-
gies, and Games in Multi-Agent Systems. In the proceedings of the 5th interna-
tional joint conference on Autonomous agents and multiagent systems (AAMAS
2006), pages 161–168, 2006.

54

[41] Ron van der Meyden. Knowledge Based Programs: On the Complexity of Per-
fect Recall in Finite Environments. In 6th Conference on Theoretical Aspects of
Rationality and Knowledge (TARK 1996), pages 31–49, 1996.

[42] Fabio Mogavero, Aniello Murano, and Moshe Y. Vardi. Reasoning about strate-
gies. In IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS 2010), pages 133–144, 2010.

[43] Rohit Parikh. Propositional game logic. In IEEE Symp. on Foundations of Com-
puter Science, pages 195–200, 1983.

[44] Rohit Parikh and Ramaswamy Ramanujam. Distributed Processes and the Logic
of Knowledge. In Logics of Programs 1985, pages 256–268, 1985.

[45] Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and
Computation, 12(1):149–166, 2002.

[46] Amir Pnueli. The Temporal Logic of Programs. In Symp. on Foundations of
Computer Science, pages 46–57, 1977.

[47] Ramaswamy Ramanujam and Sunil Easaw Simon. Dynamic logic on games
with structured strategies. In Eleventh International Conference on Principles
of Knowledge Representation and Reasoning (KR2008), pages 49–58, 2008.

[48] Olivier Roy. A dynamic-epistemic hybrid logic for intentions and information
changes in strategic games. Synthese, 171(2):291–320, 2009.

[49] Henning Schnoor. Explicit strategies and quantification for ATL with incomplete
information and probabilistic games. Technical Report 1008, Institut für Infor-
matik, Christian-Albrechts Universität zu Kiel, Aug. 2010.

[50] Pierre-Yves Schobbens. Alternating-time logic with imperfect recall. Electronic
Notes in Theoretical Computer Science, 85(2):82–93, 2004.

[51] Thomas Schwentick and Volker Weber. Bounded-variable fragments of hybrid
logics. In Proc. STACS 2007, 24th Annual Symposium on Theoretical Aspects of
Computer Science, volume 4393 of Springer LNCS, pages 561–572, 2007.

[52] A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear
temporal logics. Journal of the ACM, 32(3):733–749, 1985.

[53] D. Sutherland. A model of information. In Proceedings of the 9th National
Computer Security Conference, pages 175–183, 1986.

[54] Jan van Eijck. PDL as a multi-agent strategy logic. In Proc. Conf. on The-
oretical Aspects of Reasoning about Knowledge, 2013. published in CoRR,
http://arxiv.org/abs/1310.6437.

[55] Sieuwert van Otterloo and Geert Jonker. On Epistemic Temporal Strategic Logic.
Electronic Notes in Theoretical Computer Science, 126:77–92, 2005.

55

[56] Moshe Y. Vardi. Implementing knowledge-based programs. In the Sixth Confer-
ence on Theoretical Aspects of Rationality and Knowledge, pages 15–30, 1996.

[57] J. Todd Wittbold and Dale M. Johnson. Information flow in nondeterministic
systems. In Proc. IEEE Symp. on Security and Privacy, pages 144–161, 1990.

56

	1 Introduction
	2 An extended temporal epistemic logic
	2.1 Strategic Environments
	2.2 Strategy Space

	3 Applications
	3.1 Variants of Nondeducibility
	3.2 Revocable and Irrevocable strategies in ATL
	3.3 Connections to variants of ATEL
	3.4 Strategy Logic
	3.5 Game Theoretic Solution Concepts
	3.6 Computer Security Example: Erasure policies
	3.7 Reasoning about Knowledge-Based Programs

	4 Model Checking
	5 Conclusion

