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ABSTRACT:  

The increased use of optical measurement techniques in industrial environments has the potential 

to increase knowledge and creates an opportunity for a more comprehensive validation of 

computational predictions. In this paper, a quantitative validation methodology is applied to a 

1 m x 1 m panel from an aircraft fuselage subject to compression and torsion, in order to evaluate 

the predicted response of the panel. A test matrix with four loading cases, namely pre-buckling and 

post-buckling compression with and without torsion, was used to demonstrate the capabilities of the 

validation methodology on the industrial component. The out-of-plane displacement fields were 

analysed with the aid of image decomposition and a validation process was successfully performed 

using a quantitative metric. The feature vectors, obtained through image decomposition, 

representing the surface curvature of the physical and virtual specimens were analysed to assess the 

similarity of the component’s overall curvature. Then, the feature vectors representing measured 

and predicted displacements for the four loading cases were used to analyse the deformed shapes 

and conduct a validation process for the simulation outcomes. The predictions of the deformation of 

the fuselage panel were found to have a high probability of representing the measured data.  
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1. INTRODUCTION  

A comprehensive verification and validation process is key in developing credible engineering 

models and building confidence in their predictions. In this context, a verification process is 

implemented first to assure accurate mathematical representation of the relevant physics in the 

model, which is then followed by a validation process to evaluate the predictions of the simulation 

from the perspective of the intended use of the model1. Along with the process of building 

confidence in the model's predictions, model calibration activities can also be undertaken, the aim of 

which is to adjust model parameters to improve agreement between the simulation results against a 

specified benchmark. The current paper focuses on the steps and methodologies in the validation 

process with the aid of a case study.  

It is a common practice during the validation process to evaluate simulation outputs against 

experimental measurements, which is emphasised in the validation guides produced by ASME1 and 

CEN2. However, there is a lack of consensus on the methodology to compare the predictions and 

measurements. The choice of the methodology depends on the field of engineering and the type of 

predictions being evaluated, amongst other factors. Strain and displacement data are typically of 

interest for models predicting structural behaviour, and optical measurement techniques are being 

increasingly used to obtain experimental measurement results3 equivalent to the colour maps of 

deformation generated as output by a simulation. In the field of solid mechanics, a series of 

European collaborative research projects, including ADVISE4, VANESSA5 and MOTIVATE6 have 

explored the challenges of utilising full-field maps, such as strain fields, and implementing a 

validation process in an industrial environment. Research activities in the frame of these projects 

have led to the development of effective tools for processing full-field maps using image 

decomposition7 and for comparing the outputs using quantitative statistical methods8 at different 

length scales, i.e. ranging between small and large scale components.  

Over the last decade, image decomposition techniques have been intensively studied to process 

measured and predicted strain and displacement fields7,9–11. The measured fields obtained using an 

optical measurement technique, such as digital image correlation (DIC), are typically treated as 

images, and can be visually compared with the corresponding images obtained from a simulation, 

for example using finite element analysis. However, for a quantitative comparison within the scope 

of validation, further processing is necessary because the image pairs could have different co-

ordinate systems, pixel spacing or colour bars, which does not allow a direct comparison between 

two sets of data. These differences can be overcome by decomposing both images and obtaining 

two unique yet equivalent feature vectors that represent the measured and predicted data, while 
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preserving the key information about the deformation of the entire surface and also reducing the 

dimensionality of the data from the order of 106 to the order of 102 data points. Following image 

decomposition, the two feature vectors can be directly compared using a validation metric as part of 

the validation process.  

The aim of the current work is to demonstrate the implementation of the data processing and 

comparison methodologies in a validation process for an industrial case study. In addition to the lack 

of standardised validation methodologies identified earlier, there is a scarcity in the literature of 

detailed industrial examples especially for large-scale components. Most of the previously published 

studies consider small components in laboratory tests or validate predictions only from a particular 

area measured by strain gauges. A successful application to an industrial component will 

demonstrate the robustness of the methods and their progression from lower technology readiness 

levels to higher levels. Moving from controlled laboratory settings and standard test components to 

large scale industrial components can present challenges in collecting and processing the data. 

Similarly, the increase in the complexity of the response of an engineering component and the 

increase in the amount of data to be analysed, present challenges for which the decomposition and 

comparison methodologies need to be matured and translated from a research laboratory into an 

industrial environment. This is key to a wider acceptance of these methodologies across industrial 

sectors. This paper aims to address these challenges by presenting a complete validation case study 

based on evaluating surface deformation of a 1 m x 1 m aircraft panel subject to compression and 

torsion.  

2. TESTING AND SIMULATION OF THE FUSELAGE PANEL  

A 1 m x 1 m aircraft fuselage panel subject to compression and torsion was used in this case study. 

The physical component and the corresponding CAD* data were provided by Airbus. The panel 

consists of riveted sections with a smooth exterior face and assembled with longitudinal and 

circumferential skin joints on the interior face, as shown in Figure 1.  

Prior to the physical test, the panel was inspected for any irregularities and damage. No damage was 

found; however, small geometrical deviations were identified between the CAD model and the real 

artefact. During its preparation, the edges of the panel were trimmed where necessary to provide a 

smooth perimeter, and the top and bottom ends were potted in a frame to ensure a secure fit in the 

test machine and a distribution of the applied load. Speckle patterns printed on self-adhesive vinyl 

sheets were applied on the front surface, i.e. the exterior face of the fuselage panel. After the 

                                                           
* Computer Aided Design 
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preparation, the panel was mounted in an Instron 1346 test machine and loaded in displacement 

control. A commercial stereovision DIC system Q-400 (Dantec Dynamics GmbH) was used, consisting 

of two Baumer VCXG 51M cameras with 2448 x 2048 pixel resolution, 12 mm Schneider Kreuznach 

lenses and an HILIS LED illumination unit.  The DIC system was set-up at 1.9 m from the panel and 

the cameras were 0.64 m apart.  A calibration was performed to establish the minimum 

measurement uncertainty, ucalibration and the values are reported in Table 1. A novel two-step 

calibration approach was utilised, which combines a standard DIC calibration process with an 

additional step to account for the sources of error arising from the test set up. The second step is 

based on assessing a rigid-body translation between the DIC system and the test component. 

Further details of the experimental set up and the calibration procedure can be found in Siebert et 

al12. The data captured was evaluated using a facet size of 23 x 23 pixels and a pitch of 17 pixels. The 

measured data fields were stored in an .hdf5 file format during the measurement process.  

A numerical model representing the fuselage panel was developed in the commercial code ANSYS. 

The panel was represented using shell elements of type ‘shell63’, except for the bolts and rivets 

which were modelled using rigid beam elements of type ‘beam4’. The resulting finite element mesh 

is shown in Figure 1.  After a mesh convergence study, the average element edge size was set to 10 

mm, resulting in 31740 nodes, 30220 shell elements and 1198 beam elements. All translational 

degrees of freedom were constrained at the upper and lower edges of the panel (red elements in 

Figure 1), except for the displacements in the loading direction at the lower moving edge. The 

compressive load was applied by gradually increasing the displacement at the nodes located at the 

lower end of the panel. The predicted data fields were saved as .png files for the validation process.  

Measured and predicted displacement fields were obtained for four load cases, namely pre-buckling 

and post-buckling compression with and without torsion. Only one panel was available and so it was 

not possible to determine its buckling load by experiment in advance of the tests; hence, values of 

71.9 kN and 80kN were calculated using the simulation and buckling theory respectively and used as 

a guideline.  The four data sets were captured during the test at the following stages:  

1. From 0 kN to 50 kN in compression; 

2. From 50 kN at 0o to 50 kN at -1o, i.e. a torsion of 1o was applied in the counter-clockwise 

direction at a constant load of 50 kN;  

3. From 50 kN at -1o to 80 kN at -1o, i.e. a compressive load was increased from 50 kN to 80 kN 

at a constant torsion angle of -1o;  

4. From 0 kN to 80 kN in compression.  
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The counter-clockwise direction was defined looking from the bottom to the top of the panel, and in 

the last case, the loading was applied continuously between 0 kN to -80 kN. The measured 

displacement fields were computed using pairs of DIC images captured at the beginning and the end 

of each stage, i.e. reference and object images respectively. For example, for the second load case a 

pair of reference images were captured at 50 kN and 0o angle of torsion, and the loaded state was 

captured at 50 kN and -1o angle of torsion. The data was collected over two tests performed on two 

consecutive days and the calibration was performed on each day to take into account any changes to 

the experimental set-up and the environmental conditions.  Specifically, the panel was unloaded 

between the first and the second load case, thus two values for the minimum measurement 

uncertainty were obtained and reported in Table 1. The measured and predicted displacement fields 

are presented in Figure 2.  

3. VALIDATION METHODOLOGY  

3.1. Image decomposition  

The displacement and strain fields obtained from the simulations and the optical measurements are 

typically presented and compared as images. Instead of a visual, essentially qualitative and 

subjective, side-by-side comparison of such deformation data, it has been previously proposed to 

utilise image decomposition to process the data from both experiments and simulations to support 

model updating13 and later for validation10,14. By treating a data field, e.g. a displacement field, as an 

image in which the magnitude is represented by a colour or grey level value, image decomposition 

techniques can be easily applied to both simulation and experimental outputs. Image decomposition 

is a form of orthogonal decomposition based on the principle of fitting a set of selected orthogonal 

polynomials to an image and is commonly used to both compress data and to identify shapes or 

features in images for applications such as object tracking, face and natural structures recognition15. 

A number of different polynomials are described in the literature on decomposition techniques; 

however, in this case study, Chebyshev polynomials were used because they are discrete orthogonal 

polynomials defined in a Cartesian coordinate system on a rectangular domain and because of 

previous experience of their application to engineering exemplars. Not only does decomposition 

using polynomials reduce the dimensionality of the data, i.e. from an image that is defined by a two-

dimensional matrix to a one-dimensional feature vector, it also provides a unique way of 

transforming the data from different sources and in different co-ordinate systems into the same 

format16 because the process is invariant to rotation, scale and translation.  In addition, information-

preserving shape descriptors, i.e. coefficients of the polynomials, are generated which allow the 

outputs from simulations and experiments to be compared directly when they are decomposed 

using the same set of polynomials.  
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Each of the coefficients in the feature vector corresponds to a specific shape in the image, and the 

magnitudes of the coefficient corresponds to the prominence of that shape in the image, as shown 

in Figure 3 for the kernels of the first fifteen Chebyshev coefficients. Following the decomposition of 

displacement fields, individual coefficients can be analysed and compared to extract further 

information about, for instance, the curvature of a specimen or a dominant deformation shape.  

In this case study, decomposition was performed using the ‘Euclid’ decomposition tool17, which is 

available to the public and was developed as part of the EU H2020 project, VANESSA5. The measured 

and predicted displacement fields were imported and decomposed separately for each load case 

over a common region of interest using a large number of coefficients, e.g. 200.  It has been 

previously shown in Lampeas  et al18 that the data sets can be further condensed by removing 

coefficients with smaller magnitudes, i.e. removing coefficients that do not significantly contribute 

to the shape of a data field. This approach was employed here by applying a percentage threshold to 

obtain four pairs of feature vectors containing only coefficients with significant values; for example, 

removing coefficients whose magnitude was below 5% of the absolute magnitude of the largest 

coefficient in the feature vector. The quality of decomposition was assessed against the criteria 

recommended by the CEN validation guideline2 to ensure that the resulting feature vector accurately 

represented the original data. The recommended criteria state that the average squared residual, 

𝑢𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 between the reconstructed and original images must not be more than the minimum 

measurement uncertainty in the measured data, i.e. 𝑢𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 < 𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 , and that there 

should be no cluster of data points in the data field, where the residual is greater than three times 

the average squared residual. A cluster is defined as a region of adjacent pixels in the image 

corresponding to more than 0.3 % of the image. When some of the criteria are not met, the number 

of coefficients needs to be increased. The number of significant coefficients in the four feature 

vectors used for the validation is summarised in Table 1. In the present study, it was not always 

possible to satisfy all three criteria when decomposing the simulation data due to artefacts in the 

image files; in such circumstances it was ensured that at least the 𝑢𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 criteria was 

satisfied, as it is further used as part of the validation criteria, and that the measurement data 

satisfied all three criteria. Once satisfactory decomposition results were obtained, they were 

exported in .mat format for further analysis. The exported information includes not only the feature 

vector, but also the reconstructed image and the reconstruction uncertainty.   

3.2. Validation metrics  

The CEN validation guideline2 also provides a methodology for comparison of the feature vectors for 

the purpose of validation. The methodology is based on plotting the coefficients of the feature 
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vector representing the measured data, 𝑆𝐸 against the coefficients of the feature vector 

representing the predicted data, 𝑆𝑀 and graphically comparing the deviations against the 

uncertainty limits defined by  

𝑆𝐸 = 𝑆𝑀 ± 2𝑢𝐸       (1) 

where 𝑢𝐸 is the total measurement uncertainty in the measured data, which comprises at least of 

the minimum measurement uncertainty and the reconstruction uncertainty:  

𝑢𝐸 = √𝑢𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛
2 + 𝑢𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛

2      (2) 

The CEN methodology was implemented in this case study for all four load cases to make an initial 

comparison and to visualise the discrepancies between measured and predicted displacement fields. 

This methodology allows a qualitative comparison of displacement fields, but does not lead to a 

quantitative validation outcome.  

Dvurecenska et al14 have recently proposed a validation metric that extends the CEN methodology 

and quantifies the similarities between predicted and measured responses. The metric is based on 

evaluating relative errors, 𝑒𝑘 between the components of two feature vectors against a threshold, 

𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 such that  

𝑉𝑀 = ∑ 𝑤𝑖‖𝑒𝑘<𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖      (3) 

where VM is a weighted sum of errors that are below the threshold, while 𝑤𝑖 is the error relative to 

the sum of the errors expressed as a percentage and the 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 is usually taken as the 

normalised total measurement uncertainty 𝑢𝐸, as in equation (2). ‖ is an indicator function that 

takes a value of 1 when 𝑒𝑘 < 𝑢𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , otherwise it has a value of 0. As a result, a probabilistic 

statement about the quality of predictions can be made based on the VM.  

4. RESULTS AND DISCUSSION 

Prior to validation, in addition to the initial comparison of the geometric details in the physical 

specimen and the numerical model, the global curvature of the panel was evaluated using digital 

image correlation to measure its shape and utilising image decomposition to assess the difference 

between the specimen and model. The results are illustrated in Figure 4 and confirm the panel’s 

initial curvature around its vertical axis as shown in Figure 1. For a more detailed and quantitative 

comparison of the curvature of the model and the physical panel, corresponding out-of-plane 

measurements were decomposed. By employing image decomposition, both data sets were 

translated into equivalent format and the details of the curvature were studied further by analysing 
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individual coefficients of their feature vectors. The difference between the two feature vectors was 

then calculated and the resulting feature vector was reconstructed to visualise the difference in 

curvature; this is illustrated in the bottom image in Figure 4. It is evident that, for the majority of the 

area of the panel, the curvatures are very similar, apart from towards the top edge where the radius 

of curvature is smaller in the numerical model. This localised discrepancy probably arose during 

disassembly of the panel from the aircraft or during transportation to the test lab. However, it was 

considered to not be substantial relative to the overall dimensions and geometry of the panel, and it 

was agreed to proceed to the validation of the displacement predictions.  

An initial comparison between the measured and predicted data fields was performed using the CEN 

methodology and the results are summarised in Figure 5. Plotting and evaluating the coefficients 

with respect to the total measurement uncertainty indicates a number of similarities and differences 

between predicted and measured displacement fields. Due to the nature of the Chebyshev 

polynomials, it is possible to explore these similarities and discrepancies further by illustrating the 

shape of the kernel represented by each coefficient. To illustrate some of the features present in the 

displacement fields, the four coefficients with the largest absolute magnitude for each load case 

have been superimposed on the graphs in Figure 5. For example, it can be seen that the fourth 

coefficient is one of the dominant coefficients in the displacement fields for the 50 kN and 80 kN 

compression load cases. This coefficient relates to the curvature around the horizontal axis, which 

clearly corresponds to the dominant shape expected as a result of a compressive load applied along 

the vertical axis. Also, the third and fifth coefficients are dominant coefficients in the displacement 

fields representing the 50 kN load case with torsion. These two coefficients correspond to rotation 

around the vertical axis and bending around the negative x=y line, which were expected to be the 

dominant shapes due to the torsion around the vertical axis coupled with compression along the 

vertical axis. The third coefficient can also be related to the initial change in curvature in the physical 

panel. In contrast to the measured data, this coefficient does not significantly contribute to the 

description of the predicted data fields in the 50 kN compression load case and in the 80 kN 

compression load case with and without torsion, i.e. the magnitude of the third coefficient in the 

predicted feature vector is much smaller than the magnitude of the corresponding coefficient in the 

measured feature vector and is very close to zero. Despite this discrepancy between the two data 

fields, as shown in Figure 4, the third coefficient always falls within the uncertainty limits.  

Following the qualitative analysis of the feature vectors, the relative error validation metric was 

applied to quantitatively compare predicted and measured displacement fields and the results are 

summarised in Table 1. A relatively low probability was computed for the predictions of the 

displacement under a 50 kN compressive load. This was expected following the visual comparison of 
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the displacement fields in Figure 2, where it was evident that the simulation underestimates the 

measured response. This is also supported by the result presented in the top left graph in Figure 5, 

where the first coefficient is far outside the uncertainty limits indicating unacceptable agreement 

between predicted and measured results according to the criteria in the CEN guideline. For the other 

three load cases, namely 80 kN compression and 50 kN and 80 kN compression with torsion, a high 

probability of the model being representative of the measured data is indicated by the computed 

VM values.  The refinement of the simulation and reconsidering the relevance of the experiment in 

order to achieve greater congruence between the predictions and experiments is beyond the scope 

of this study which is focussed on the methods of comparison.  However, the information embedded 

in the Figure 5 concerning which pairs of coefficients are not within the measurement uncertainty 

could support a diagnosis of the issues causing the lack of congruence. 

Implementation of the image decomposition method and the application of the validation metric 

presented in this paper have demonstrated the depth of analysis that is possible to perform for an 

industrial case study. Most of the previous studies concentrated on applications in laboratory 

environments, whereas this paper presents a complete validation case study based on an aircraft 

fuselage panel. The measured and predicted displacement data fields were fully utilised to interpret 

the response of a relatively large component and to quantify the discrepancy between measured 

and predicted responses. DIC was used in this case study to obtain measured data, as it is a common 

technique used in the aerospace industry during structural testing. However, the methodologies 

presented in this paper are applicable to a variety of data sets obtained by other measurement 

techniques, provided that the data can be presented as a map or an image.  

5. CONCLUSIONS  

A detailed demonstration of a quantitative validation process to an industrial component was 

presented. The case study was based on evaluating the predicted deformation of a 1 m x 1 m 

aerospace panel subject to compression and torsion. A more in-depth analysis of the fidelity of the 

model’s behaviour was achieved through the application of image decomposition and a quantitative 

validation metric, in comparison to previous validation studies. The validation process presented 

here included compressing the data fields into feature vectors without losing the key information, 

and then quantifying the similarities between the predicted and measured responses by comparing 

the corresponding feature vectors. Individual components of the feature vectors were further 

studied to identify the dominant shapes of the deformation which contributed to the similarities and 

differences between the predicted and measured responses. A series of validation outcomes for four 
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load cases were obtained, and it was found that predictions of the deformation of the fuselage panel 

generally have a high probability of corresponding to the measured data.  

The methodologies and the steps described in this paper demonstrate a successful translation of 

laboratory research into the industrial environment. The validation process that was implemented in 

this aerospace case study is based on recently published CEN Workshop Agreement (CWA 

16799:20142) with addition of a probabilistic validation metric14 that allows the relative difference 

between fields of data to be assessed against their uncertainty.  These methodologies and the 

sequence of steps that constituted the validation process can be employed in other industrial 

sectors where data can be treated as two-dimensional fields or images and the simulations are used 

for critical decision making.  They have the advantages of utilising the entirety of fields of 

measurements and providing a quantitative evaluation of the extent to which a simulation 

represents a physical experiment which is the essence of a validation process. 
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Table 1: Number of coefficients in the feature vectors, minimum measurement uncertainty and 
quantitative validation results for the displacement fields in Figure 2 for four load cases. Load 
cases were recorded in the order listed.  

Load cases   Number of 
Coefficients 

Measurement 
uncertainty  

Validation Metric 

0 kN, 0
o

  50 kN, 0
o

 77 0.064mm 53% 

50 kN, 0
o

  50 kN, -1
o

 41 0.095mm 90% 

50 kN, -1
o

  80 kN, -1
o

 119 0.095mm 90% 

0 kN, 0°  80 kN, 0°  126 0.095mm 86% 
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Figure 1: A 1 m x 1 m panel from an aircraft fuselage showing the smooth front face without speckle 

pattern (top) and with printed speckle patterns (middle) and the corresponding FE mesh (bottom) with 

equivalent boundary conditions (in red colour). The skin is shown in grey, stiffeners in cyan and frames in 

blue colour. (For interpretation of the references to colour in this figure legend, the reader is referred to 

the Web version of this article.) 

1m 
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Figure 2: Measured (top) and predicted (bottom) out-of-plane z displacement fields for the 

aerospace panel in Figure 1 subject to compression and torsion. The four load cases correspond to 

pre- and post-buckling of the panel, and a negative angle corresponds to counter-clockwise 

direction of the applied torsion.  

 



Page 15 of 17 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 3: An illustration of the shape of the first fifteen kernels of the Chebyshev polynomials. 
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Figure 4: The initial out-of-plane curvature of the aerospace panel in Figure 1 obtained by 
measurement using DIC (top) and from the CAD data used to generate the FEA model (middle), 
together with the plot of the absolute difference (bottom) between the two out-of-plane 
geometries. All dimensions are in mm.  
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Figure 5: Plots comparing measured and predicted displacement fields in Figure 2 using the 

approach described in CWA16779 which involves plotting against one another the coefficients of 

the feature vectors representing the data fields from the simulation (y-axes) and experiment (x-

axes) together with lines representing equality (solid) and equality plus and minus the expanded 

uncertainty in the measurements (dashed lines). The feature vectors were obtained using image 

decomposition and the inset kernels illustrate dominant features in the measured and predicted 

displacement fields. A visual representation of the first fifteen Chebyshev coefficients is shown in 

Figure 3.  
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