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Abstract 24 

In vivo knee ligament forces are important to consider for informing rehabilitation or clinical 25 

interventions. However, they are difficult to directly measure during functional activities. 26 

Musculoskeletal models and simulations have become the primary methods by which to estimate 27 

in vivo ligament loading. Previous estimates of anterior cruciate ligament (ACL) forces range 28 

widely, suggesting that individualized anatomy may have an impact on these predictions. Using 29 

10 subject-specific (SS) lower limb musculoskeletal models, which include individualized 30 

musculoskeletal geometry, muscle architecture and 6 degree-of-freedom knee joint kinematics 31 

from dynamic biplane radiography, this study provides subject-specific estimates of ACL force 32 

(anteromedial- aACL; and posterolateral- pACL bundles) during the full gait cycle of treadmill 33 

walking. These forces are compared to estimates from scaled-generic (SG) musculoskeletal 34 

models to assess the effect of musculoskeletal knee joint anatomy on predicted forces and the 35 

benefit of subject-specific modelling in this context. On average, the SS models demonstrated a 36 

double force peak during stance (0.39 – 0.43 xBW per bundle), while only a single force peak 37 

during stance was observed in the SG aACL. No significant differences were observed between 38 

continuous SG and SS ACL forces, however root mean squared differences between SS and SG 39 

predictions ranged from 0.08 xBW to 0.27 xBW, suggesting SG models do not reliably reflect 40 

forces predicted by SS models. Force predictions were also found to be highly sensitive to 41 

ligament resting length, with ±10% variations resulting in force differences of up to 84%. Overall, 42 

this study demonstrates the sensitivity of ACL force predictions to subject-specific anatomy, 43 

specifically musculoskeletal joint geometry and ligament resting lengths, as well as the feasibility 44 

for generating subject-specific musculoskeletal models for a group of subjects to predict in vivo 45 

tissue loading during functional activities.   46 
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Introduction 47 

Insights into knee ligament dynamics during gait, such as strains and passive forces, are crucial 48 

for understanding injury mechanisms and informing rehabilitations and clinical interventions 49 

following these injuries [1]. However, passive forces from these ligaments are very difficult to 50 

directly measure in vivo during dynamic activities such as gait, and as such have often been 51 

estimated using biomechanical modeling or similar methods [2-12]. These studies have reported 52 

a wide range of passive forces from the anterior cruciate ligament (ACL) during various functional 53 

activities, with estimates ranging from 0.5 x body weight (xBW) [13] to 3.5 xBW [6] during 54 

walking. There is clearly little consensus over exactly how much force is developed by the ACL 55 

during gait, with this large range of values suggesting that results are largely dependent on the 56 

level of complexity within the models, or the anatomy of the single individual upon which these 57 

models are often based. There is therefore justification for addressing the limitations of previous 58 

studies by using a cohort of subject-specific musculoskeletal models to predict ACL forces during 59 

gait in multiple subjects. 60 

The benefits of patient-specific models relative to the more-often used scaled-generic models 61 

are becoming more accepted, with several studies reporting high sensitivity of models to 62 

individualized anatomical factors such as bone geometry, muscle attachment points and joint 63 

centers of rotation [14-23]. These models can be further improved by including precise multiple-64 

degree-of-freedom (DoF) joint kinematics obtained from dynamic biplane radiography, which can 65 

replicate bone positions and orientations with sub-millimeter accuracy [24]. This can 66 

demonstrably improve the accuracy of musculoskeletal models compared to exclusively using 67 

traditional skin-mounted surface marker motion capture methods [25].  68 

Regardless of how detailed these individualized models are, the accuracy of ligament force 69 

predictions is inherently dependent on the accuracy of their input parameters, particularly 70 

resting length (or the length beyond which these tissues begin generating passive forces). This 71 

however is a difficult measurement to obtain in vivo during dynamic movements such as gait, 72 

and as such is usually estimated in studies into knee ligament dynamics, for example, by using a 73 
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standardized correction percentage of 85% of the ligament’s maximum length throughout the 74 

full knee flexion/extension range of motion, as described by Guess et al. [26]. 75 

This study aims to create a set of subject-specific lower limb musculoskeletal models using a 76 

validated framework [23, 27, 28] to estimate the passive forces exerted by the ACL during a full 77 

cycle of level treadmill walking in uninjured knees. The models will include individualized bone 78 

geometries, muscle attachments, joint centers of rotation, muscle force generating properties 79 

and 6 DoF knee joint kinematics from a biplane radiography system. The outputs from these 80 

models will be compared to those from corresponding scaled-generic models, which will give 81 

important insights into the sensitivity of ligament force predictions to patient-specific properties, 82 

the inter-subject variability in predicted passive forces in the aACL and pACL forces during gait, 83 

and the necessity of creating subject-specific models for answering detailed clinical questions in 84 

future studies. Furthermore, a sensitivity analysis where ligament resting lengths will be altered 85 

to test the effect on predicted passive forces will give insight into the importance of this 86 

parameter in obtaining individualized predictions of knee joint dynamics during gait. These 87 

analyses will be used to address two hypotheses: 1) due to the inclusion of individualized bone 88 

and muscle data, the subject-specific musculoskeletal models will produce significantly different 89 

and more plausible and precise predictions of knee ligament dynamics relative to their scaled-90 

generic equivalents; and 2) predictions of passive knee ligament forces will be highly sensitive to 91 

resting length input values.  92 

Methods 93 

Subject-specific model construction 94 

To create the subject-specific (SS) lower limb musculoskeletal models (Figure 1), musculoskeletal 95 

geometry of the right lower limbs of ten individuals (5 males, 5 females; Age- 27 ± 4 years; Body 96 

mass- 76 ± 12 kg) was obtained from magnetic resonance imaging (MRI). Each subject signed 97 

informed consent prior to taking part in this IRB approved study. Imaging primarily consisted of 98 

three sequences: T1-weighted anatomical turbo spin echo (voxel size 0.47  0.47  6.5 mm3, 99 

repetition time [TR] - 650 ms, echo time [TE] - 23 ms, number of slices - 35 per segment, number 100 

of signal averages (NSA) - 1, acceleration factor - 2) to image from the iliac crest to the ankle joint; 101 
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T2 (sagittal, voxel size- 0.29  0.29  0.59 mm3, TR – 29ms, TE – 16ms, NSA- 1) to image the knee 102 

joint ±7.5cm above and below the joint line; and diffusion-weighted single-shot dual-refocusing 103 

spin-echo planar (voxel size 2.962.966.5 mm3, TR/TE 7900/65 ms, 12 direction diffusion 104 

gradients, b value - 0 & 400 s/mm2, strong fat suppression - spectral attenuated inversion 105 

recovery [SPAIR], number of slices - 35 per segment, NSA - 2, acceleration factor - 2, bandwidth 106 

- 2440 Hz/pixel) to determine in vivo muscle fiber lengths and pennation angles using a validated 107 

framework of fiber tractography. See Charles et al. [28] for details of this method, and Charles et 108 

al. [27] for an extensive data set of in vivo lower limb muscle architecture from the same 109 

individuals in this study. All subjects were imaged in a supine position in the same 3 T scanner 110 

(Biograph mMR, Siemens, Munich, Germany), with a total scanning time of ~37 minutes. 111 

The T1 MR images were digitally segmented in Mimics (Materalise, Leuven, Belgium) to create 112 

3D volumetric meshes of 20 lower limb muscles, as well as the pelvic bones, femur, tibia, fibula 113 

and foot bones. The T2 MR images were similarly segmented to create detailed 3D meshes of the 114 

distal femur, proximal tibia and fibula, patella and the ACL. The meshes of the femur, tibia and 115 

fibula bones segmented from the T1 and T2 MR images were each merged, to create full bone 116 

models with detailed articular surfaces at the knee.    117 

Each subject-specific lower limb model was assembled in NMSBuilder [29]. Muscle force 118 

generating properties for 21 musculotendon unit (MTU) models were derived from a previously 119 

published data set of in vivo muscle anatomy from the same subjects used in this study [27], 120 

which was generated using a combination of anatomical MRI and diffusion tensor imaging (DTI). 121 

Including subject-specific muscle force generating properties derived from DTI fiber tractography 122 

has been shown to significantly improve the accuracy of model outputs relative to using more 123 

generic data [23], and so was included in the models here to optimize their subject-specificity 124 

and accuracy. The points of origins and insertions and via points for these MTUs were placed 125 

based on the 3D muscle meshes segmented from the T1 MR images (Table 1). The Adductor 126 

magnus muscle was represented by two MTUs (lateral and medial) due to its broad origin on the 127 

ischium and two insertions on the medial femur separated by the adductor foramen. To account 128 

for this, maximum isometric force of the whole muscle [27] was split evenly between these MTUs, 129 

while optimal fiber length and pennation angle remained the same, which is common practice in 130 
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musculoskeletal modeling [21, 30-32]. See Tables S1-S10 for the force generating properties 131 

included in each individual musculoskeletal model.  This method of attachment point placement 132 

is similar to that described previously and has an overall median error of 6.1mm along all 3 axes 133 

[15].  134 

Ligament model properties 135 

Attachment points of the ACL were determined from 3D meshes from the T2 MR images, as 136 

described by Nagai et al. [33]. Similar to Nagai et al. [33], and to ensure consistency with current 137 

musculoskeletal models which include knee ligaments [34], the ACL was modeled by two 138 

ligament models representing the anteromedial bundle (aACL) and posterolateral bundle (pACL) 139 

in each subject. The dynamic properties of the ligaments were modeled as described by Stanev 140 

et al. [35], where input parameters include the ligament’s resting length (Lr), stiffness and 141 

damping. Stiffness and damping values were taken from previous literature [34] and were 142 

consistent between all subjects (1500N and 390N respectively for the aACL, and 1600N and 403N 143 

for the pACL), while Lr values were estimated for both bundles in each subject using a 144 

standardized correction percentage [26, 36]. These resting lengths are shown in Tables 2 and 3. 145 

Wrap surfaces were added to the model to prevent muscles passing through bones surfaces 146 

(Table 1), and were placed based on those in a generic full body OpenSim model [37] and 147 

subsequently manually optimized in size and location to minimize muscle-bone penetration 148 

during joint rotations. Coordinate systems and joint centers for the hip, knee and ankle joints 149 

were determined based on the lower extremity anatomical landmark sets recommended by the 150 

International Society of Biomechanics [38] (Figure 2). Each model was exported to Opensim 3.3 151 

[39] for further analysis. 152 

Data collection 153 

Lower limb joint kinematics and kinetics were gathered from the same 10 individuals (Figure 3) 154 

with a 12-camera motion capture system (Vicon vantage, Oxford, UK; 100Hz) measuring full-body 155 

motion for one whole stride (heel strike to heel strike) of level treadmill walking (4 trials, 13 156 

seconds at 1.5ms-1). A total of 55 reflective markers were placed on each subject. 157 
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A customized dynamic biplane radiography (DBR) system imaged the knee joint through these 158 

same walking steps (100Hz), with two trials recording one half of the gait cycle (mid-swing to 159 

mid-stance), and two recording the other half (mid-stance to mid-swing). Ground reaction forces 160 

(GRFs) were recorded using a dual-belt instrumented treadmill (Bertec Corporation, Columbus, 161 

Ohio).  162 

High resolution CT scans (voxel size- 0.6  0.6  0.6 mm) of both knee joints were then collected 163 

for each individual. The acquired CT images were then digitally segmented (Mimics 17.0, 164 

Materalise) to obtain models of the femur and tibia bones. A validated volumetric model-based 165 

tracking process determined the precise three-dimensional (3D) six degree of freedom knee joint 166 

kinematics (Figure 4) through the recorded walking steps using the biplane radiographs and 167 

digitally reconstructed radiographs [24]. The kinematics from the four walking trials for each 168 

subject were averaged and then combined to obtain full gait cycle, 6 degree of freedom knee 169 

joint kinematics. See Gale, et al. [40] for full details regarding the acquisition and analysis of these 170 

knee joint kinematics from the DBR system. Motion capture marker coordinates and GRF data 171 

(low-pass filtered at 20Hz) were processed and prepared for subsequent modeling steps using 172 

the freely available “C3D extraction toolbox” for MATLAB 173 

(https://simtk.org/home/c3d2opensim_btk). 174 

Simulations 175 

For each subject-specific lower limb model, the standard OpenSim simulation protocol of inverse 176 

kinematics (IK) and residual reduction algorithm (RRA) was applied. The IK step was modified to 177 

allow for the predefined knee joint kinematics from DBR to be combined with the hip and ankle 178 

joint kinematics from motion capture marker positions. Static optimization was used to estimate 179 

knee ligament forces during walking, with the objective function of minimizing the sum of muscle 180 

activations squared. 181 

An initial validation of each SS model was performed by comparing predicted knee joint loads to 182 

previously published in vivo knee joint forces [41]. The model predictions of joint contact force 183 

were obtained using the Joint Reaction Analysis within OpenSim 3.3, while in vivo forces were 184 
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measured during treadmill walking in 6 individuals with instrumented knee joint replacements 185 

(24 total gait cycles; 1.1ms-1, sports shoes. Data available at www.orthload.com). 186 

Full body generic musculoskeletal models [37] were then scaled to match the anthropometry of 187 

each subject. The same simulation protocol was applied to these scaled generic (SG) models, 188 

which provided direct comparisons to the subject-specific models. In these models, the muscle 189 

and ligament attachment sites remained unchanged from their default settings. Resting lengths 190 

in the aACL and pACL were altered using the same correction percentage applied to the subject-191 

specific models.  192 

Data analysis 193 

Ligament forces predicted from static optimization in SG and SS models were normalized to body 194 

weight (xBW) for comparison. A paired t-test was used to test for significant differences between 195 

aACL and pACL forces predicted by the SS (FSS) and SG (FSG) models at all time points of the gait 196 

cycle using the freely available statistical parametric mapping (SPM) toolbox [42]. Here, this 197 

calculation reported statistically significant differences (p<0.05) when the t statistic, also referred 198 

to as SPM{t} [42], exceeded a threshold value. These thresholds were > 4.18 or < -4.18 for the 199 

aACL, and > 4.37 or < -4.37 for the pACL. 200 

To quantify the agreement of the ligament forces predicted in both ACL bundles by the SG models 201 

relative to the SS models, root mean squared (RMS) differences were calculated for each subject 202 

through the entire walking gait cycle (√(𝐹𝑠𝑠  −  𝐹𝑆𝐺)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅). Intra-subject variability in predicted ACL 203 

bundle forces was quantified by the average standard deviation of those forces throughout the 204 

gait cycle. 205 

Sensitivity analysis 206 

To test the effect of predictions of knee ligament forces to uncertainties in resting length values, 207 

these values in the aACl and pACL were altered ±10% of their initial value within the SS models 208 

(see Tables 2 and 3). Static optimization was then re-run for each SS model within OpenSim to 209 

predict the resulting ligament forces. 210 
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Results 211 

Ligament forces 212 

Subject-specific simulations predicted a double peak of knee ligament forces in both the aACL 213 

and pACL during a walking gait cycle (Fig. 5 A, B). The first peak occurred at early stance phase, 214 

and the second peak occurred during mid-late stance phase. There was also an increase in 215 

ligament force at the end of the swing phase, just prior to heel strike. These peaks appear to 216 

correspond to peaks of ligament strain measured previously within the same individuals (Nagai 217 

et al 2019) (see Figure 5). Average force in the aACL was 0.42 ± 0.05 xBW at the first peak, and 218 

0.43 ± 0.05 xBW at the second peak in the SS models. In the pACL, average force was 0.38 ± 0.06 219 

xBW at the first peak, and 0.41 ± 0.06 xBW at the second peak. Inter-subject variability in aACL 220 

and pACL forces predicted by the SS models averaged 0.14 xBW and 0.13 xBW respectively, over 221 

the entire gait cycle (Figure 5). 222 

Scaled generic models predicted a similar double-peaked behavior during walking in the pACL 223 

(Fig. 5 B), and similar peak forces as in the SS models (0.38 ± 0.04 at the first peak, and 0.39 ± 224 

0.07 at the second peak). This was not seen in the aACL (Fig. 5 A), which exhibited only one peak 225 

of force during midstance (at around 0.41 ± 0.05 xBW on average), with only a slight reduction in 226 

force through the swing phase (Figure 5 A). In the SG models, inter-subject variability averaged 227 

0.15 xBW in both the aACL and the pACL over the gait cycle (Figure 5).  228 

SPM showed no statistically significant differences between forces predicted by the SS and SG 229 

models in either the aACL or the pACL throughout the entire gait cycle (Figure 5 C, D). However, 230 

individual subject RMS difference values showed substantial variability between individuals, with 231 

differences between SS and SG simulations ranging from 0.08 xBW (21.1% of maximum force; 232 

Subject 1) to 0.26 xBW (30.6%; Subject 8) in the aACL, and from 0.05 xBW (17%; Subject 10) to 233 

0.18 xBW (43.3%; Subject 3) in the pACL (Table 4).  234 

Sensitivity analysis 235 

Altering the resting lengths of both the aACL and pACL in the subject-specific models had 236 

substantial effects on predictions of force during walking (Figure 6). Increasing resting lengths by 237 
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10% resulted in decreases of peak forces up to 0.18 xBW (57% change) and 0.13 xBW (65%) at 238 

the first force peak during the stance phase in the aACL and pACL respectively. Similar reductions 239 

in peak forces were seen at the second peak (54% and 60% in the aACL and pACL respectively). 240 

Reducing ligament resting lengths by 10% resulted in large increases in peak forces in the aACL 241 

and pACL. In the early stance phase, peak forces increased by 69% and 73% in the aACL and pACL 242 

respectively (increased to 0.71 and 0.66 xBW). In the late stance phase, peak aACL force increased 243 

by 71% (to 0.72 xBW), while peak pACL increased by 84% (to 0.70 xBW). 244 

Knee joint contact forces 245 

Predicted knee joint contact forces followed similar patterns in the SS models to those measured 246 

in vivo [41], and peak forces were similar, with forces of ~3 xBW in the SS models and ~2.3 xBW 247 

in the in vivo data (Figure 7).  248 

Discussion 249 

The main goal of this study was to compare high-fidelity subject-specific musculoskeletal models 250 

to scaled generic models of the lower limb for predicting anterior cruciate ligament dynamics 251 

during gait. Secondary goals were to quantify the sensitivity of ligament forces predictions to 252 

variations in individualized musculoskeletal and ligament anatomy and to characterize the 253 

among-subject variability in predicted ACL forces during gait. Two hypotheses were formulated 254 

to attempt to achieve these goals, where it was hypothesized that 1) due to the inclusion of 255 

individualized bone and muscle data, the subject-specific musculoskeletal models will produce 256 

significantly different and more plausible and precise predictions of knee ligament dynamics 257 

relative to their scaled-generic equivalents; and 2) predictions of passive knee ligament forces 258 

will be highly sensitive to resting length input values. 259 

Previous plausible estimates of peak ACL force during walking range from 0.5 - 1.7 xBW [2, 5, 7-260 

12], which model the ACL as one whole structure. Our peak force estimates from the SS and SG 261 

models, which model the ACL as two bundles, fall within this range when forces from both 262 

bundles are summed to provide a total force from the entire ACL structure (0.80 – 0.84 xBW). It 263 

is important to note that these ACL force values are the average over our entire group of 10 264 

subjects, which showed variability in peak force that ranged from 0.32 to 0.87 xBW (in the aACL). 265 
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This large range of values (and standard deviations) points to a potentially large inter-subject 266 

variability in ACL forces, and suggest that previous studies have not necessarily provided incorrect 267 

predictions of forces but have instead been limited by their relatively small sample sizes. The 268 

ability of a valid subject-specific modeling framework to capture inter-subject variations in 269 

musculoskeletal anatomy, and by extension musculoskeletal and ligament function, is an 270 

inherent advantage of this method over generic or scaled generic models, however, in the 271 

absence of a “gold standard” reference for in vivo knee ligament forces, these estimates are 272 

difficult to validate.  273 

The patterns of ligament forces in both ACL bundles predicted here in the SS models follow the 274 

patterns of relative elongation reported by Nagai et al. [33], whose analyses used the same 275 

subjects. Nagai et al. [33] showed two relative elongation peaks during the stance phase and a 276 

peak towards terminal swing phase in both bundles, with the relative elongation of the aACL 277 

higher than that of the pACL, which is also similar to the forces seen here. These patterns are 278 

however different to those seen in previous models and predictions of ACL dynamics [2-4, 12], 279 

some of which predicted two peaks of relative strain or elongation, at mid-late stance phase and 280 

terminal swing phase. Potential reasons for these differences may be due to more accurate 281 

kinematics relative to Taylor et al. [4] and higher walking speeds relative to Wu, et al. [3] (see 282 

Nagai, et al. [33] for further discussion of these differences).  283 

However, while the SS models exhibited similarities to previous data, the SG models did not, 284 

particularly in the aACL, where a double force peak during stance was not observed and forces 285 

remained high throughout the swing phase. Despite the peak force being within a physiological 286 

range, and the differences from the SS models not being statistically significant throughout the 287 

gait cycle, the peak force during midstance and relatively high loading throughout the swing 288 

phase are unlikely to be representative of true aACL dynamic behavior during walking. Therefore, 289 

these data partially supported Hypothesis 1, although it is possible that small adjustments to the 290 

ligament attachment points within the scaled-generic models, particularly those of the aACL, 291 

could improve the force predictions of the scaled-generic models and result in closer matches to 292 

the subject-specific predictions.  293 
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However, this good agreement in ligament forces between the model types did not appear to be 294 

consistent across all the subjects in this study. The large variation in RMS difference values 295 

between the subjects (ranging from 0.08 xBW to 0.27 xBW in the aACL) showed that the SG 296 

models lack precision in predicting knee ligament dynamics in subjects with a range of 297 

anthropometries. There are many potential reasons for this variability in the accuracy of the SG 298 

models, such as inconsistencies in scaling and discrepancies in ligament attachment points. The 299 

attachment point location (onto the femur and tibia) and orientation of the ACL are known to 300 

vary considerably between individuals due to variations in the anatomy of the knee joint complex 301 

[43], and these are important factors which cannot be precisely incorporated into scaled-generic 302 

models. Given that ligament resting lengths in the SG models were determined with the same 303 

correction percentage to the SS models, but attachment sites coordinates remained unchanged 304 

from their generic values, these discrepancies in force highlight the importance of accurately 305 

identifying and incorporating individualized ligament attachment sites into musculoskeletal 306 

models in order to accurately estimate ligament forces during gait. This sensitivity of knee 307 

ligament forces to origin and insertion location was also suggested by Beynnon, et al. [44] and 308 

lends further support to the use of subject-specific musculoskeletal modeling within clinical or 309 

sports biomechanics, where high resolution MR images can be used to determine individualized 310 

muscle and ligament geometry. Within these fields, a valid framework to generate high fidelity 311 

predictive models of the knee joint complex in a range of subjects provides a platform upon which 312 

to test various functional hypotheses of in vivo tissue loading, and could also be used to generate 313 

personalized predictions of post-surgical outcomes or inform tailored injury rehabilitation 314 

protocols. 315 

Ligament resting lengths 316 

The comparison between subject-specific and scaled generic models suggests that estimates of 317 

ligament dynamics are highly sensitive to attachment sites and bony geometry. However, the 318 

resting length of these ligaments (the length beyond which they begin to develop a passive force) 319 

is another important input factor into these ligament models, but one which is usually estimated 320 

rather than directly measured in studies modelling the dynamic behavior of knee ligaments. The 321 

results of the sensitivity analysis, where initial resting length values were changed ±10%, 322 
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supported Hypothesis 2 and quantified the high sensitivity of force predictions to uncertainties 323 

in certain input values, with a 10% decrease in resting length resulting in increases in peak passive 324 

forces of up to 84% from the pACL during the late stance phase. Using estimates of resting lengths 325 

is an inherent limitation of studies modelling knee ligament dynamics due to difficulty in 326 

obtaining such values in vivo, with the “optimal” approach currently being calculating this value 327 

using a correction percentage based on maximum ligament length [26, 36]. While various medical 328 

imaging techniques such as ultrasound, shearwave or magnetic resonance elastography have 329 

shown promise as potential methods for obtaining in vivo estimates of ligament resting lengths, 330 

as well as other in vivo muscle/tendon parameters [45-49], they may prove unsuitable for 331 

obtaining similar parameters from the ACL due to occlusion from the femoral condyles or tibial 332 

plateau. It is therefore likely that estimating resting lengths will remain the most feasible method 333 

of enabling individualized predictions of knee ligament dynamics using musculoskeletal 334 

modeling, but one which can be optimized with knowledge of individualized ligament geometry 335 

obtained through subject-specific modeling.  336 

It should be noted that while attempts were made to individualize the resting length values of 337 

the ACL in each model, the stiffness and damping values remained unchanged from their generic 338 

values [34]. This was due to a lack of knowledge about how these parameters vary between 339 

individuals and further difficulty in measuring these in vivo, but regardless reduced the subject-340 

specificity of each model. These assumptions further contributed to what could be seen as a 341 

relatively simple model of ligament dynamics used here [35], particularly when compared to 342 

more complex models such as that described by Nasseri, et al. [50]. However, the model 343 

developed by Stanev, et al. [35] has the advantage of being easily incorporated into the open-344 

source, user friendly OpenSim modeling environment, meaning it can be readily used in a range 345 

of studies to accurately predict ligament dynamics in multiple individuals, which this study 346 

succeeded in demonstrating.   347 
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While this study represents an initial and important insight into the necessity of detailed subject-349 

specific modeling and kinematics in estimating knee ligament dynamics, a few limitations and 350 

assumptions inherent to musculoskeletal modeling hinder the clinical relevance of these findings.  351 

As mentioned, in vivo measurements of knee ligament forces are impossible to obtain during 352 

dynamic activities such as walking. Therefore, while a good agreement in predicted ACL forces 353 

was seen in the SS models to previous musculoskeletal modeling studies, comparisons such as 354 

these do little to assess the true validity of the models or their outputs. But good matches 355 

between predicted knee joint loads in the SS models relative to in vivo data raised confidence in 356 

this modeling framework and in the model’s functional predictions, and suggested that they were 357 

accurately replicating the dynamics of the knee joint complex. Of course, an exact match 358 

between knee joint forces predicted from models of young, healthy individuals and those 359 

measured from older individuals with knee joint replacements should not be expected, due to 360 

differences in age, gait kinematics and walking speed (1.5ms-1 vs. 1.1 ms-1).  Therefore, the lack 361 

of in vivo data against which to truly compare predictions of ligament forces from 362 

musculoskeletal models make validation attempts difficult and may limit their immediate clinical 363 

applicability. However, it is possible that incorporating an improved ligament model into these 364 

musculoskeletal models, such as that described by Nasseri, et al. [50] which was validated against 365 

cadaveric data obtained through a drop-landing task, could raise confidence in the force 366 

predictions generating using this subject-specific modeling framework.  367 

Despite the high accuracy of the knee joints in each subject-specific model created here, with 368 

high resolution musculoskeletal geometry, 6 degrees of joint freedom and individualized joint 369 

centers of rotation based on anatomical landmarks, these centers of rotation were fixed 370 

throughout each walking gait cycle. There are questions regarding how this assumption affects 371 

the accuracy of predicted model outcomes, as van den Bogert, et al. [51] showed that knee joint 372 

center of rotation moves and changes orientation substantially during gait, which could have a 373 

large effect on muscle and ligament moment arms. While implementing a moving center of knee 374 

joint rotation within the OpenSim subject-specific modeling framework presented here was out 375 

of the scope of this study, doing so could provide more realistic personalized predictions of 376 

muscle and ligament forces in future studies. 377 
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Our study focused on level treadmill walking, however investigating downhill running, cutting or 378 

pivot maneuvers, which place more load on the ACL would be more relevant to predictions of 379 

post-surgical rehabilitation. Furthermore, given that the force from both ACL bundles seen here 380 

was homogenous, something also noted by Wu, et al. [3] during walking, analyzing more 381 

demanding movements may give further insights into the dynamic differences between the aACL 382 

and pACL bundles.  These two bundles have also been seen to wrap over each other during knee 383 

flexion-extension [52], however ligament wrapping was not included in this study. Ultrasound 384 

imaging of the ACL could also provide insights into how the two bundles interact during knee 385 

rotations and translations and may allow more accurate representations of this behavior in 386 

musculoskeletal models using wrapping surfaces. 387 

Future directions 388 

Here we establish an efficient framework for developing highly detailed subject-specific lower 389 

limb musculoskeletal models and simulations of knee ligament dynamics which incorporate 390 

individualized musculoskeletal geometry, muscle architecture and high precision knee joint 391 

kinematics from dynamic biplane radiographs.  392 

Predictions of ACL forces from the subject-specific models through walking are slightly lower than 393 

values reported in previous literature, although without “gold-standard” reference values of in 394 

vivo ligament forces, it is assumed that these values are not physiologically unfeasible during a 395 

low-demand movement such as walking. The more physiologically plausible and precise 396 

predictions of ACL dynamics predicted by the subject-specific models relative to the scaled-397 

generic models, as well as the high sensitivity of these predictions to ligament input parameters, 398 

support the need for a high degree of personalization in models such as these for clinical uses. 399 

However, further study and refinements to this framework are needed before these models can 400 

be used clinically. More accurate measurements of ACL resting lengths, or the use of more 401 

complex ligament models, will optimize predictions of its dynamic behavior during gait, and 402 

attempts to automate the process of creating the subject-specific models are crucial for applying 403 

this framework to clinical cases. Nevertheless, this study provides solid support to the notion that 404 

highly accurate subject-specific musculoskeletal models can be developed for groups of 405 
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individuals (healthy or pathological) and used within freely available musculoskeletal modelling 406 

software for hypothesis testing related to post-surgical ligament dynamics. This is particularly 407 

important for future work, as while it is possible to predict ligament forces without the creation 408 

of detailed inverse dynamics based musculoskeletal models, generating predictive simulations of 409 

functional post-surgical and rehabilitation outcomes cannot be done using purely kinematics-410 

based methods. Furthermore, a large set of individualized models such as that presented here 411 

would also be an ideal platform upon which to investigate the relationships between 412 

musculoskeletal anatomy, physiology and ligament forces, which could help to increase 413 

understanding surrounding ACL injury risk factors in various patient populations. Furthermore, if 414 

these methods were to be applied to other joints, this could lead to an extensive set of highly 415 

detailed subject-specific models of the human musculoskeletal system with potentially greater 416 

clinical applicability than scaled-generic models.  417 
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Table 1. The musculotendon units included in each subject-specific musculoskeletal model, as 570 

well as associated wrapping surfaces and properties. 571 

Muscle Abbreviation 

Wrap surface properties 

Wrap surface Body Cylinder/sphere 
Radius 
(mm) 

Length 
(mm) 

Adductor magnus (lateral) AM1 
     

Adductor magnus (medial) AM2      

Adductor longus AL 
     

Adductor brevis AB 
     

Gracilis GRA 

Hip extensors at tibia Leg Sphere 35 n/a Semimembranosus SM 

Semitendinosus ST 

Biceps femoris- long head BFL      

Biceps femoris- short head BFS      

Popliteus POP      

Sartorius SAR Hip extensors at tibia Leg Sphere 35 n/a 

Rectus femoris RF 

Knee extensors at femur Thigh Cylinder 25 75 
Vastus lateralis VL 

Vastus medialis VM 

Vastus intermedius VI 

Tibialis anterior TA      

Extensor digitorum longus EDL      

Extensor hallucis longus EHL      

Medial gastrocnemius MG Gastrocs at femur/Gastrocs at 
tibia 

Thigh/leg Cylinder 25 75 
Lateral gastrocnemius LG 

Soleus SOL 
     

 572 

 573 

 574 
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Table 2. Resting lengths of the aACL in each subject-specific and scaled generic model. 576 

Subject 

aACL resting lengths (m) 

Subject-specific Scaled-generic 

Initial +10% -10% Initial 

S01 0.0352 0.0387 0.0317 0.0283 

S02 0.0329 0.0362 0.0296 0.0296 

S03 0.0315 0.0347 0.0283 0.0299 

S04 0.0306 0.0336 0.0275 0.0295 

S05 0.0321 0.0353 0.0289 0.0328 

S06 0.0310 0.0341 0.0279 0.0310 

S07 0.0307 0.0338 0.0276 0.0320 

S08 0.0277 0.0305 0.0249 0.0312 

S09 0.0427 0.0469 0.0384 0.0336 

S10 0.0382 0.0420 0.0344 0.0330 
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Table 3. Resting lengths of the pACL in each subject-specific and scaled generic model. 578 

 579 

  580 

Subject 

pACL resting lengths (m) 

Subject-specific Scaled-generic 

Initial +10% -10% Initial 

S01 0.0270 0.0298 0.0243 0.0215 

S02 0.0251 0.0276 0.0226 0.0240 

S03 0.0239 0.0263 0.0215 0.0234 

S04 0.0216 0.0238 0.0195 0.0195 

S05 0.0252 0.0278 0.0227 0.0252 

S06 0.0290 0.0319 0.0262 0.0291 

S07 0.0258 0.0284 0.0232 0.0245 

S08 0.0204 0.0225 0.0184 0.0219 

S09 0.0340 0.0373 0.0306 0.0246 

S10 0.0276 0.0304 0.0248 0.0239 
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Table 4. Subject demographics and root mean squared (RMS) differences of anterior cruciate 581 

ligament forces predicted by scaled generic (SG) models relative to subject-specific (SS) models. 582 

RMS differences expressed as % of maximum SS force are displayed in parentheses, which 583 

highlights the variability of the accuracy of ACL force prediction by the SG models. 584 

Subject Sex Age Body mass (kg) Height (cm) 
RMS difference (SS vs SG; xBW) 

aACL pACL 

S01 Male 23 90.7 182 0.08 (21%) 0.13 (35%) 
S02 Male 26 82.1 173 0.11 (26%) 0.17 (40%) 
S03 Male 29 81.1 182 0.10 (25%) 0.18 (43%) 
S04 Female 26 71.2 162 0.12 (29%) 0.11 (28%) 
S05 Female 23 59.8 170 0.26 (44%) 0.09 (12%) 
S06 Female 35 80.2 169 0.13 (31%) 0.09 (33%) 
S07 Female 25 80.7 168 0.09 (21%) 0.13 (28%) 
S08 Female 26 40.6 162 0.27 (31%) 0.09 (10%) 
S09 Male 26 84.8 187 0.21 (64%) 0.06 (15%) 
S10 Male 34 82.5 192 0.12 (30%) 0.05 (17%) 
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  587 

 

Figure 1. Framework for constructing subject-specific lower limb musculoskeletal models from T1, T2 

magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Muscles, ligaments and bones were 

manually segmented from these images to create 3D meshes, and musclulotendon unit and ligament 

attachments and via points were manually placed based on these meshes. Muscle force generating 

properties for each individual were determined for 20 lower limb muscles using a validated framework of 

DTI and fiber tractography [27], which have formed a reference data set of in vivo muscle architetcure data 

[28]. 
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 588 

 

Figure 2. Joint centers for the hip (A), knee (B) and ankle (C) joints in each subject-specific musculoskeletal model 

constructed in NMSBuilder [29]. The position and orientation were determined by the position of anatomical 

landmarks defined by the International Society of Biomechanics [38]. The coordinate system origin for each body in 

the model (pelvis, thigh, leg and foot) was set as the joint center of the respective parent joint. RPSIS/LPSIS- 

right/left posterior superior iliac spine, RASIS/LASIS- right/left anterior superior iliac spine, RHC/LHC- right/left hip 

center, RLE/RME- right lateral/medial femoral epicondyle, RLC/RMC- right lateral/medial femoral condyle, 

RLM/RMM- right lateral/medial malleolus, RPA_CA- right posterior aspect of calcaneus, RPA_II- right posterior 

aspect of second metatarsal.     
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  589 

Figure 3. Workflow to create subject-specific and scaled generic musculoskeletal simulations from 

kinematic and kinetic data collection. Whole body kinematics were obtained from maker based 

motion capture, while precise 6 degree of freedom knee joint kinemaitcs were obtained from 

dynamic biplane radiography and a validated model based tracking algorithm [24]. Combined with 

ground reaction forces (GRFs), these data were used to develop simulations of treadmill walking 

with subject-specfic and scaled genericmusculoskeletal models.  
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  590 

 

Figure 4. Mean (± 1 SD) knee extension (A), adduction (B) and internal rotation (C) joint angles and 

anterior-posterior (D), lateral-medial (E) and proximal-distal (F) tibial translations determined from 

dynamic biplane radiography (DBR), biplane radiographs and model based tracking, and input into 

subject-specific and scaled-generic musculoskeletal models. The vertical dashed line indicates 

average toe-off time. 
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 591 

 

Figure 5. Comparison of mean (±1 SD) forces (xBW) in the anterior-medial bundle of the anterior cruciate 

ligament (aACL; A) and posterior-lateral bundle (pACL; B) as predicted from subject-specific (SS) and 

scaled generic (SG) simulations of one stride of walking gait. The vertical dashed line indicates average 

toe-off time. SPM{t} values (aACL, C; pACL, D) through the gait cycle indicate the level of statistical 

significance between the model predictions. Red horizontal dashed lines represent respective thresholds 

of statistical significance (SPM{t} > 4.18 or < -4.18 for the aACL, and > 4.37 or < -4.37 for the pACL). 
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 613 

 614 

 615 

Figure 6. Sensitivity analysis of mean forces (xBW) in the anterior-medial bundle of the anterior cruciate 616 

ligament (aACL; A) and posterior-lateral bundle (pACL; B) predicted from subject-specific (SS) 617 

simulations of the stride of walking gait, where resting lengths were changed ±10% from the original 618 

value. The vertical dashed line indicates average toe-off time. 619 

620 
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 621 

Figure 7. Mean (± standard deviation) knee joint contact forces predicted by the subject-specific (SS) 622 

models using the Joint Reaction Analysis in Opensim, compared to in vivo knee contact forces measured 623 

using instrumented knee joint replacements [41]. The vertical dashed line indicates the average toe-off 624 

time in the SS simulations.  625 
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Table S1. Muscle force generating properties included in the model of Subject 01 (Male, Age- 23y/o, Body 627 

mass- 90.7kg, Height- 182cm, Lower limb mass- 6.9kg, Lower limb length- 87.2cm). Lf- Optimal fiber 628 

length. Lts- Tendon slack length. 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 228 18 630 0.16 

Adductor magnus (medial) AM2 228 18 630 0.16 

Adductor longus AL 102 13 652 0.10 

Adductor brevis AB 61 12 587 0.26 

Gracilis GRA 226 7 185 0.15 

Semimembranosus SM 105 20 733 0.35 

Semitendinosus ST 169 14 470 0.29 

Biceps femoris- long head BFL 128 18 720 0.32 

Biceps femoris- short head BFS 107 12 368 0.14 

Popliteus POP 74 19 99 0.08 

Sartorius SAR 453 0 126 0.02 

Rectus femoris RF 111 10 856 0.41 

Vastus lateralis VL 115 15 2280 0.42 

Vastus medialis VM 119 18 1536 0.38 

Vastus intermedius VI 182 11 1177 0.35 

Tibialis anterior TA 175 6 248 0.24 

Extensor digitorum longus EDL 181 7 125 0.30 

Extensor hallucis longus EHL 123 5 71 0.20 

Medial gastrocnemius MG 79 11 1052 0.40 

Lateral gastrocnemius LG 143 7 293 0.35 

Soleus SOL 196 13 846 0.18 
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Table S2. Muscle force generating properties included in the model of Subject 02 (Male, Age- 26y/o, Body 642 

mass- 82.1kg, Height- 173cm, Lower limb mass- 5.4kg, Lower limb length- 82.5cm). Lf- Optimal fiber 643 

length. Lts- Tendon slack length 644 

 645 

  646 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 311 15 305 0.16 

Adductor magnus (medial) AM2 311 15 305 0.16 

Adductor longus AL 125 11 383 0.10 

Adductor brevis AB 104 15 281 0.26 

Gracilis GRA 157 7 154 0.15 

Semimembranosus SM 170 10 410 0.23 

Semitendinosus ST 99 10 578 0.21 

Biceps femoris- long head BFL 190 22 286 0.22 

Biceps femoris- short head BFS 75 9 304 0.14 

Popliteus POP 58 11 81 0.05 

Sartorius SAR 400 0 100 0.02 

Rectus femoris RF 126 10 580 0.41 

Vastus lateralis VL 211 27 817 0.35 

Vastus medialis VM 103 21 1360 0.39 

Vastus intermedius VI 128 21 1387 0.35 

Tibialis anterior TA 134 12 327 0.24 

Extensor digitorum longus EDL 103 12 264 0.30 

Extensor hallucis longus EHL 81 10 119 0.20 

Medial gastrocnemius MG 88 20 755 0.33 

Lateral gastrocnemius LG 74 16 647 0.31 

Soleus SOL 182 10 927 0.18 
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Table S3. Muscle force generating properties included in the model of Subject 03 (Male, Age- 29y/o, Body 647 

mass- 81.1kg, Height- 182cm, Lower limb mass- 5.3kg, Lower limb length- 84.8cm). Lf- Optimal fiber 648 

length. Lts- Tendon slack length. 649 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 271 12 289 0.16 

Adductor magnus (medial) AM2 271 12 289 0.16 

Adductor longus AL 105 14 572 0.17 

Adductor brevis AB 73 9 350 0.09 

Gracilis GRA 212 0 141 0.15 

Semimembranosus SM 187 13 403 0.22 

Semitendinosus ST 158 7 487 0.27 

Biceps femoris- long head BFL 213 8 336 0.20 

Biceps femoris- short head BFS 108 10 299 0.10 

Popliteus POP 95 6 59 0.03 

Sartorius SAR 434 0 104 0.02 

Rectus femoris RF 121 8 781 0.43 

Vastus lateralis VL 213 13 918 0.33 

Vastus medialis VM 177 13 680 0.35 

Vastus intermedius VI 144 10 1225 0.35 

Tibialis anterior TA 167 7 274 0.20 

Extensor digitorum longus EDL 127 8 168 0.30 

Extensor hallucis longus EHL 132 8 57 0.20 

Medial gastrocnemius MG 105 8 656 0.29 

Lateral gastrocnemius LG 145 9 258 0.27 

Soleus SOL 108 12 1284 0.22 
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Table S4. Muscle force generating properties included in the model of Subject 04 (Female, Age- 26y/o, 651 

Body mass-71.2kg, Height- 162cm, Lower limb mass- 4.4kg, Lower limb length- 80.7cm). Lf- Optimal fiber 652 

length. Lts- Tendon slack length. 653 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 146 12 552 0.16 

Adductor magnus (medial) AM2 146 12 552 0.16 

Adductor longus AL 51 11 567 0.17 

Adductor brevis AB 34 14 554 0.08 

Gracilis GRA 175 6 129 0.15 

Semimembranosus SM 127 9 611 0.25 

Semitendinosus ST 228 5 202 0.24 

Biceps femoris- long head BFL 241 10 197 0.20 

Biceps femoris- short head BFS 137 9 197 0.11 

Popliteus POP 55 11 63 0.08 

Sartorius SAR 389 0 130 0.02 

Rectus femoris RF 150 7 426 0.43 

Vastus lateralis VL 230 15 804 0.33 

Vastus medialis VM 210 11 565 0.35 

Vastus intermedius VI 215 11 644 0.35 

Tibialis anterior TA 109 9 259 0.20 

Extensor digitorum longus EDL 130 7 127 0.30 

Extensor hallucis longus EHL 128 5 47 0.20 

Medial gastrocnemius MG 82 11 688 0.29 

Lateral gastrocnemius LG 74 7 513 0.27 

Soleus SOL 118 11 894 0.21 
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Table S5. Muscle force generating properties included in the model of Subject 05 (Female, Age- 23y/o, 655 

Body mass-59.8kg, Height- 170cm, Lower limb mass- 4.2kg, Lower limb length- 83.0cm). Lf- Optimal fiber 656 

length. Lts- Tendon slack length. 657 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 177 14 314 0.25 

Adductor magnus (medial) AM2 177 14 314 0.25 

Adductor longus AL 145 13 296 0.17 

Adductor brevis AB 100 10 295 0.09 

Gracilis GRA 109 6 224 0.35 

Semimembranosus SM 176 10 359 0.25 

Semitendinosus ST 237 7 224 0.25 

Biceps femoris- long head BFL 228 9 200 0.20 

Biceps femoris- short head BFS 107 8 213 0.13 

Popliteus POP 94 9 34 0.03 

Sartorius SAR 394 0 86 0.02 

Rectus femoris RF 140 8 580 0.35 

Vastus lateralis VL 152 16 1054 0.33 

Vastus medialis VM 146 13 665 0.28 

Vastus intermedius VI 165 14 838 0.35 

Tibialis anterior TA 100 7 386 0.20 

Extensor digitorum longus EDL 101 5 260 0.40 

Extensor hallucis longus EHL 68 4 23 0.28 

Medial gastrocnemius MG 89 9 673 0.29 

Lateral gastrocnemius LG 128 7 234 0.27 

Soleus SOL 140 12 788 0.24 
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Table S6. Muscle force generating properties included in the model of Subject 06 (Female, Age- 35y/o, 659 

Body mass- 80.2kg, Height- 169cm, Lower limb mass- 4.6kg, Lower limb length- 78.7cm). Lf- Optimal 660 

fiber length. Lts- Tendon slack length. 661 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 250 11 342 0.17 

Adductor magnus (medial) AM2 250 11 342 0.17 

Adductor longus AL 136 10 265 0.17 

Adductor brevis AB 77 11 477 0.18 

Gracilis GRA 156 8 165 0.22 

Semimembranosus SM 193 10 412 0.26 

Semitendinosus ST 213 8 197 0.21 

Biceps femoris- long head BFL 210 8 266 0.20 

Biceps femoris- short head BFS 118 7 172 0.20 

Popliteus POP 60 9 76 0.10 

Sartorius SAR 378 0 108 0.02 

Rectus femoris RF 218 8 277 0.30 

Vastus lateralis VL 274 16 559 0.30 

Vastus medialis VM 147 15 739 0.31 

Vastus intermedius VI 228 10 678 0.30 

Tibialis anterior TA 101 8 375 0.20 

Extensor digitorum longus EDL 136 8 153 0.30 

Extensor hallucis longus EHL 97 8 55 0.20 

Medial gastrocnemius MG 121 7 613 0.28 

Lateral gastrocnemius LG 159 7 226 0.23 

Soleus SOL 157 11 815 0.20 
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Table S7. Muscle force generating properties included in the model of Subject 07 (Female, Age- 25y/o, 663 

Body mass- 80.7kg, Height- 168cm, Lower limb mass- 3.3kg, Lower limb length- 77.9cm). Lf- Optimal 664 

fiber length. Lts- Tendon slack length. 665 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 307 9 161 0.25 

Adductor magnus (medial) AM2 307 9 161 0.25 

Adductor longus AL 126 9 209 0.17 

Adductor brevis AB 71 12 272 0.09 

Gracilis GRA 130 8 137 0.30 

Semimembranosus SM 108 12 437 0.28 

Semitendinosus ST 155 7 232 0.28 

Biceps femoris- long head BFL 145 11 290 0.22 

Biceps femoris- short head BFS 150 9 179 0.13 

Popliteus POP 87 12 34 0.03 

Sartorius SAR 350 0 111 0.02 

Rectus femoris RF 131 5 347 0.35 

Vastus lateralis VL 171 10 713 0.30 

Vastus medialis VM 189 9 392 0.25 

Vastus intermedius VI 195 7 454 0.28 

Tibialis anterior TA 134 5 260 0.20 

Extensor digitorum longus EDL 153 7 97 0.40 

Extensor hallucis longus EHL 116 6 54 0.28 

Medial gastrocnemius MG 83 8 777 0.29 

Lateral gastrocnemius LG 53 9 516 0.27 

Soleus SOL 170 8 595 0.24 
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Table S8. Muscle force generating properties included in the model of Subject 08 (Female, Age- 26y/o, 667 

Body mass- 40.6kg, Height- 162cm, Lower limb mass- 3.1kg, Lower limb length- 73.1cm). Lf- Optimal 668 

fiber length. Lts- Tendon slack length. 669 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 120 10 451 0.17 

Adductor magnus (medial) AM2 120 10 451 0.17 

Adductor longus AL 77 10 384 0.17 

Adductor brevis AB 53 9 369 0.10 

Gracilis GRA 74 8 173 0.28 

Semimembranosus SM 114 15 393 0.27 

Semitendinosus ST 134 8 244 0.25 

Biceps femoris- long head BFL 237 10 146 0.19 

Biceps femoris- short head BFS 82 9 248 0.11 

Popliteus POP 79 8 28 0.05 

Sartorius SAR 407 0 51 0.02 

Rectus femoris RF 63 8 721 0.40 

Vastus lateralis VL 187 13 614 0.30 

Vastus medialis VM 114 12 714 0.30 

Vastus intermedius VI 115 11 883 0.30 

Tibialis anterior TA 140 6 182 0.20 

Extensor digitorum longus EDL 143 7 128 0.30 

Extensor hallucis longus EHL 79 7 57 0.20 

Medial gastrocnemius MG 69 11 551 0.25 

Lateral gastrocnemius LG 88 12 230 0.27 

Soleus SOL 149 16 630 0.21 
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Table S9. Muscle force generating properties included in the model of Subject 09 (Male, Age- 26y/o, Body 671 

mass- 84.8kg, Height- 187cm, Lower limb mass- 6.4kg, Lower limb length- 90.8cm). Lf- Optimal fiber 672 

length. Lts- Tendon slack length. 673 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 262 9 390 0.17 

Adductor magnus (medial) AM2 262 9 390 0.17 

Adductor longus AL 112 14 684 0.17 

Adductor brevis AB 99 9 310 0.10 

Gracilis GRA 263 7 176 0.23 

Semimembranosus SM 247 11 432 0.25 

Semitendinosus ST 233 7 323 0.20 

Biceps femoris- long head BFL 245 9 244 0.19 

Biceps femoris- short head BFS 109 10 343 0.11 

Popliteus POP 75 9 82 0.07 

Sartorius SAR 434 0 147 0.02 

Rectus femoris RF 209 9 497 0.35 

Vastus lateralis VL 214 14 1083 0.30 

Vastus medialis VM 224 14 724 0.30 

Vastus intermedius VI 227 9 762 0.30 

Tibialis anterior TA 149 5 304 0.20 

Extensor digitorum longus EDL 183 5 167 0.30 

Extensor hallucis longus EHL 143 5 41 0.20 

Medial gastrocnemius MG 145 7 637 0.28 

Lateral gastrocnemius LG 188 9 311 0.27 

Soleus SOL 155 14 1244 0.24 
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Table S10. Muscle force generating properties included in the model of Subject 10 (Male, Age- 34y/o, 675 

Body mass- 82.5kg, Height- 192cm, Lower limb mass- 4.9kg, Lower limb length- 90.2cm). Lf- Optimal 676 

fiber length. Lts- Tendon slack length 677 

Muscle Abbreviation Lf (mm) Pennation angle (°) Max force (N) Lts (m) 

Adductor magnus (lateral) AM1 239 12 350 0.17 

Adductor magnus (medial) AM2 239 12 350 0.17 

Adductor longus AL 124 14 397 0.17 

Adductor brevis AB 90 14 307 0.10 

Gracilis GRA 223 8 109 0.23 

Semimembranosus SM 152 10 493 0.29 

Semitendinosus ST 209 6 261 0.24 

Biceps femoris- long head BFL 207 9 309 0.23 

Biceps femoris- short head BFS 99 11 225 0.15 

Popliteus POP 65 8 48 0.07 

Sartorius SAR 436 0 86 0.02 

Rectus femoris RF 153 8 495 0.38 

Vastus lateralis VL 196 13 776 0.30 

Vastus medialis VM 158 15 748 0.35 

Vastus intermedius VI 215 11 765 0.30 

Tibialis anterior TA 163 5 249 0.20 

Extensor digitorum longus EDL 126 7 223 0.30 

Extensor hallucis longus EHL 97 7 63 0.20 

Medial gastrocnemius MG 103 8 712 0.28 

Lateral gastrocnemius LG 166 7 246 0.27 

Soleus SOL 89 10 1653 0.24 
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