
Artificial Neural Network Design Approaches to

Multi-Channel Information Analysis

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Jaehoon Cha

October 2020

Jaehoon Cha

Abstract

In recent years, a large amount of multi-channel data has been collected due to advances
in technology such as with computers and the Internet. However, obtaining and labelling
data are still laborious and time-consuming. Yet another issue that adds to the difficulty
is finding important channels and features from multi-channel data since having enough
channels alone does not guarantee designing efficient algorithms due to scalability problems.
In this thesis, a generative model and hierarchical learning models are introduced to deal
with the aforementioned issues.

First, the learning process of Variational Autoencoders is analysed. Taking into account
the role of the mean and the standard deviation, which are used in the reparameterization
trick, we propose a new generative model. The proposed model is modified from the original
Autoencoder architecture which is used for dimensionality reduction. The model preserves
the architecture of the Autoencoder by removing the reparameterization trick and becomes
a generative model by extension of the mapping of the decoder from a discrete latent space
to a continuous latent space. The model is compared with VAE and MMD on three
benchmark datasets: MNIST, Fashion-MNIST and SVHN datasets. The experimental
results show that the difference of the accuracy of the test set when training ANNs using
synthetic data generated by the proposed model is less than 10% when training it using
the original training set in MNIST and Fashion-MINST datasets. In addition, further
experiments are carried out to investigate the impact of the number of the training set
when training generative models. The results show that the accuracy of the test set
decreases less than 10% when the number of the training set decreases in the NNIST and
the Fashion-MNIST dataset.

Second, two types of hierarchical learning models are proposed. Designing these models
began with the idea of utilizing an innate hierarchy of targets. The first type of model,
HAL, is proposed when targets are discrete. This model involves inserting the auxiliary
block to output the auxiliary scores from the coarse classes. These scores are distributed
based on the corresponding coarse classes. Although the model improves the accuracy of
a test set, it has the disadvantage of requiring the coarse classes at the test phase. The
second type of models are proposed when targets are continuous. C-FNNs and HADNNs
are proposed to perform the regression task by utilizing the coarse classes. C-FNNs and
HADNNs are evaluated on three benchmark indoor localization datasets, examples of multi-

i

Jaehoon Cha

channel data. Results show that C-FNNs increase the floor accuracy by 30% at least and
60% at most in the three datasets. However, C-FNNs require more than three times the
parameters than the baseline. HADNNs achieve better accuracy than C-FNNs and require
1.2 times the parameters than the baseline at most.

Third, human motion data is analysed in order to show the importance of the relation-
ship between sensor locations and motion types when identifying motion types. The data
were gathered from patients and students in Inha University Hospital, Korea. Twenty-
three subjects participated in the experiment and all had to perform nine motion types.
Forty-eight total measurements were obtained from eight different body parts. The mo-
tion type detection algorithm is divided into five steps and is evaluated based on four
metrics: recall, precision, accuracy and F-measure. The proposed detection algorithm has
0.8986 average recall, 0.9071 average precision, 0.9739 average accuracy and 0.8977 average
F-measure. The detection algorithm outperforms PCA, which is a popular method in fea-
ture extraction. This shows the importance of feature extraction based on the relationship
between channels and targets in multi-channel data.

Finally, the motion type detection process is proposed by integrating the proposed
models. The process is divided into three: generation, labelling and classification. In gen-
eration, the proposed generative model is used to generate synthetic data. In labelling,
SVM and PCA are used to label synthetic data. In classification, ResNet with C-FNNs
and with HADNNs for a classification task are trained using the combination of the la-
belled synthetic data and the original training set, and the neural networks are used to
detect motion types. The process is evaluated using InhaMotion and nine open source hu-
man motion datasets. The results show that training ANNs with synthetic data prevents
overfitting, and the proposed generative model outperforms VAE, β-VAE and MMD. In
addition, the combination of ResNet and C-FNNs increase the accuracies of the test sets
when coarse classes are available during the training phase. Since C-FNNs do not require
coarse classes at the test phase, it is practical to use in daily life problems where hierarchy
of targets should be considered.

ii

Acknowledgements

This PhD thesis is the greatest present to me in the last four years. I would like to thank
the people who helped me in completing this present.

Thank you to my supervisor, Dr. Sanghyuk Lee, who I am sincerely indebted and
grateful to. He created the perfect environment for my successful PhD. I might have failed
to settle in the field of engineering if not for his help. I will never forget everything he gave
me.

Thank you to Dr. Kyeongsoo Kim, who taught me the qualifications and responsibilities
of researchers. His advice and encouragement were of great assistance to completing my
thesis. I will forever keep all the lessons I’ve learnt from him in mind.

Thank you to Dr. Thiyagalingam Jeyarajan, for encouraging me to continue with my
topic when I was on the verge of changing it. The conversations I had with him in the
early stages of my PhD significantly affected the direction of my thesis. His endless help
always removed my anxiety and worries. It’s always a pleasure to work with him.

I would also like to take this opportunity to express my thanks to my co-supervisors, Dr.
EngGee Lim and Dr. Angel Garcia Fernandez. Their guidance and warm heart broadened
my perspectives on life and my research.

I especially appreciate the outstanding committee members, Dr. Ka Lok Man, Dr.
David O’Connor, and Dr. HeuiSeok Lim, for finding the time to assess my thesis. All
their pointed questions, comments, and advice were of immense help in the improvement
and outcome of my thesis. I thank them for conducting remote viva under unprecedented
circumstances.

I also wish to thank my IPAP members, Dr. Mark Leach and Dr. Danushka Bolle-
gala, for reviewing my annual report. Their questions during our annual IPAP meetings
contributed to the successful progress of my research on this thesis.

I also wish to thank Dr. Kaizhu Huang, for the opportunity to attend his group seminar
about machine learning which opened my eyes to what it is capable of. To Dr. Sangmin

iii

Jaehoon Cha

Lee, Professor, Department of Electronic and Electrical Engineering, Inha University, for
allowing me access to the human motion dataset. And Dr. Keunho Ryu, retired profes-
sor and now honorary professor in Chungbuk National University for providing me the
opportunity to join his group to learn the basics of machine learning.

Thank you to Dr. Jinhae Park, Professor, Chungnam National University, because
of whom I began pursuing research. During my master’s studies, he introduced me to
studying abroad that, until then, had never crossed my mind and guided me to achieve it.
I might not have tried to study abroad if I did not have his guidance.

Thanks you to Dr. Changhyun Jun, who I would like to say is my mentor. He has
always motivated me and influenced me positively. I’ve been really luck to have met him
during my PhD.

I also wish to thank Dr. Hangyun Chu, for informing me of the opportunity to study
engineering, and Dr. Hyungchul Chung and Dr. Moonkeun Kim, for advising me when
needed during my PhD.

Thanks to my PhD friends, Bing, Shufei, and Haochuan, who helped make my life in
China easier. I quickly got used to and adjusted to China thanks to them. Also, to Inho,
who was my only Korean friend in China. I might have felt lonely hadn’t I met him. I
have many good memories of China thanks to him. I also thank my PhD friend Jason. He
gave me good memories in the United Kingdom.

Special thanks to Mayet, my teacher and old friend. Thank you for always listening to
my anxiety and worries. I would like to tell you that you played a huge role in completing
my PhD.

Thank you to my parents, who gave me their unending support. They have always
believed in me and assured me that I could do anything. Knowing that they always trust
and support me no matter what, I was able to confidently go my way.

Last but not the least, I would like to thank my life partner, Sohyun, for standing by
me. She shared all of my emotions during my PhD. She was happy when I was happy, sad
when I was sad, and annoyed when I was annoyed. I owe everything to her and I am ready
to start a new phase of my life with her.

I also would like to extend my gratitude to everyone who has, knowingly or unknowingly,
directly or indirectly, helped me in the successful completion of my PhD.

Jaehoon Cha

iv

Contents

Abstract i

Acknowledgements iii

Contents vii

List of Figures xii

List of Tables xiii

1 Introduction 1

2 Literature Review 6

2.1 Generative models . 6

2.2 Hierarchical learning . 9

2.3 Machine learning application to motion type analysis 12

3 Data Augmentation Approach 14

3.1 Variational Autoencoders . 15

3.1.1 Generative models . 15

3.1.2 Differences between Autoencoders and Variational Autoencoders . . 17

3.1.3 The role of the Reparameterization trick 18

3.2 Analysis on Autoencoder and designing a new generative model 19

3.2.1 Continuity of the Original Autoencoder 20

3.2.2 Extending the decoder network from a discrete latent space to a
continuous latent space . 21

3.2.3 A new generative model . 23

3.3 Experiments . 24

3.3.1 Dataset . 25

3.3.2 Generative model setup . 26

3.3.3 Labelling synthetic data . 28

v

Jaehoon Cha

3.3.4 Classification model setup . 30

3.3.5 Results . 30

3.4 Summary . 33

4 Hierarchical Learning Approach 35

4.1 Hierarchical Auxiliary Learning . 35

4.1.1 Convolutional Neural Network . 36

4.1.2 Learning scheme . 38

4.1.3 Backpropagation . 38

4.1.4 Experiments with three baselines . 40

4.1.5 Experiments with three datasets on the selected baseline 41

4.2 Consecutive Feedforward Neural Networks and Hierarchical Auxiliary Deep
Neural Networks . 46

4.2.1 Adaptive loss balancing . 47

4.2.2 Consecutive Feedforward Neural Networks 48

4.2.3 Hierarchical Auxiliary Deep Neural Networks 50

4.2.4 Comparison between C-FNNs and HADNNs 52

4.2.5 C-FNNs and HADNNs setup . 52

4.2.6 Data description . 53

4.2.7 Experiments . 55

4.3 Summary . 59

5 Multi-channel Human Data 61

5.1 Human motion data . 62

5.2 Decisive features extraction . 63

5.2.1 Measurement and noise removal with Wavelet Transform 63

5.2.2 Sensor location decision . 65

5.2.3 A decision tree and characteristic functions 66

5.2.4 Decision algorithm . 70

5.3 Experiments . 74

5.3.1 Data description . 74

5.3.2 Results . 75

5.4 Summary . 77

6 Multi-Channel Data Analysis with Machine Learning 79

6.1 Motion type detection process . 79

6.1.1 Training generative neural networks 80

6.1.2 Labelling synthetic data . 81

6.1.3 Motion type detection using the proposed models 82

6.1.4 Adaptive Loss Weighting . 83

6.2 Experiments . 83

vi

Jaehoon Cha

6.2.1 InhaMotion dataset description . 83
6.2.2 InhaMotion dataset result . 84
6.2.3 Open source human motion data description 88
6.2.4 Open source human motion data results 89

6.3 Summary . 91

7 Conclusions and Future Work 97
7.1 Conclusions . 97
7.2 Future Work . 100

A Reconstructed images from the proposed generative models and available
methods 102

B Losses and auxiliary scores with different coarse class cases on three
datasets 107

C Algorithms to find weights based on the global patterns in the InhaMo-
tion dataset 111

D Nine open source human motion datsets 112

References 116

vii

List of Figures

2.1 Relationships between coarse classes with two levels and fine classes when
fine classes are discrete targets. The node is a link between a superior class
and an inferior class. 10

3.1 Architecture of the Generative Adversarial Networks. z is an fixed length
vector, xf is a fake data and xr is a real data. 16

3.2 Architecture of the Variational Autoencoder. x is a sample in the training
set and z is a latent variable. µ and

∑
are the mean and standard deviation,

respectively . 17

3.3 Architecture of (a) the proposed generative model and (b) the VAE. 25

3.4 Symmetrical architecture of the encoder and the decoder networks for MNIST
and Fashion-MNIST datasets. Fc refers to fully-connected layers. 26

3.5 Symmetrical architecture of the encoder and the decoder networks for SVHN
dataset. Conv refers to convolutional layers and Fc refers to fully-connected
layers. 27

3.6 Architecture of the baseline of generative models for (a) MNIST and Fashion-
MNIST and (b) SVHN datasets . 28

3.7 Support Vector Machine is used to find the hyper-planes based on observed
data (white, grey and black color points) and the hyper-planes are used to
assign labels when previously unobserved data (star points) are given. In
the figure, label 0 is given to the red star while label 2 is given to the green
star. 29

3.8 Relationship between the standard deviation and the accuracy of the test set
when all images in (a) MNIST, (b) Fasion-MNIST and (c) SVHN datasets
are used. 31

3.9 Relationship between the standard deviation and accuracy of the test set
when a portion of (a) MNIST, (b) Fasion-MNIST and (c) SVHN datasets is
used. 32

viii

Jaehoon Cha

4.1 Architecture of the Convolutional neural networks. The Convolutional neu-
ral networks are comprised of convolutional layers and fully-connected layers
. 37

4.2 Architecture of the Hierarchical Auxiliary learning. The auxiliary block is
inserted after a series of convolutional layers. 39

4.3 Three baselines are used to investigate the effect of the auxiliary block. (a)
is proposed in [106], (b) is VGG16 and (c) is ResNet34. Kenerl sizes of all
Conv layers are set to 3 and a kernel size of Conv∗ is set to 7. 42

4.4 Architecture of three baselines with the auxiliary block. 43

4.5 Coarse class information of (1) the first case and (2) the second case with
CIFAR-10 dataset. 44

4.6 Consecutive Feedforward Neural Networks for coarse classes with one level.
F and D denote a feedforward neural network and a decoder network, re-
spectively, and yc1 , and yr denote the first coarse class and a regression
output, respectively. 49

4.7 Consecutive Feedforward Neural Networks for coarse classes with two levels.
F and D denote a feedforward neural network and a decoder network, re-
spectively, and yc1 ,yc2 , and yr denote the first coarse class, the second coarse
class and a regression output, respectively. 49

4.8 Hierarchical Auxiliary Deep Neural Network for coarse classes with one level.
F and D denote a feedforward neural network and a decoder network, re-
spectively, and yc1 , and yr denote the first coarse class and a regression
output, respectively. 51

4.9 Hierarchical Auxiliary Deep Neural Network for coarse classes with two lev-
els. F and D denote a feedforward neural network and a decoder network,
respectively, and yc1 ,yc2 , and yr denote the first coarse class, the second
coarse class and a regression output, respectively. 51

4.10 Distribution (a) floors in the training set (b) in the test set in the TUT2017
dataset, and (c) floors in the training set (d) the test set in the TUT2018
dataset. 55

4.11 Distribution of (a) buildings in the training set (b) floors in the training
set (c) buildings in the validation set (d) floors in the validation set in the
UJIIndoor dataset. 56

5.1 (a) Sensor placement: the head, upper middle back, lower left back, lower
right back, hands, and feet. (b) Directions of x, y, and z axis and orientation
angles: roll, pitch, and course. 63

5.2 Weights for each feature with respect to motion types. Features, have similar
patterns in all subjects, have high weights. Otherwise, weights are low. . . . 66

5.3 A decision tree of motion types. 67

ix

Jaehoon Cha

5.4 (a) Raw a2
z reading of a subject when sitting to standing (b) The result of (a)

by applying db4 wavelet. (c) Raw a2
z reading of a subject when Transferring

(d) The result of (c) by applying db4 wavelet. 71

5.5 Example outputs of the proposed algorithm. The top row contains the
inputs, and the bottom row shows the resulting outputs for each case (a)
and (b). 71

5.6 The ROC curves for finding the threshold for the characteristic function (a)
p7 and (b) p8. 73

5.7 Four metrics for a comparison between the proposed method and the Prin-
cipal Component Analysis: (a) Recall, (b) Precision, (c) Accuracy and (d)
F-measure. 76

6.1 A flowchart diagram showing the pipeline to classify motion data with or
without coarse classes. 80

6.2 A time series synthetic data generation from multiple time series data. (a)
Observed multiple time series data, (b) generation by arithmetic average
and (c) generation by DBA. (b) fails to generate a pattern of (a) at time
around 50 while (c) succeed to generate the pattern. 81

6.3 Accuracy of a training set and test set of Baseline on InhaMotion dataset
with respect to initial learning rate. 85

6.4 (a) is a sample in the training set of InhaMotion dataset. Visualization of
synthetic data generated by VAE is in (b), by β-VAE is in (c), by MMD is
in (d) and by the proposed generative model is in (e). 86

6.5 Accuracy of a training set and test set of (a) Baseline, (b) Baseline with
C-FNN on Case1, (c) Baseline with C-FNN on Case2, (d) Baseline with
HADNN on Case1 and (e) Baseline with HADNN on Case2 with respect to
standard deviation applied to the generative model proposed in Chatper 3. 87

6.6 Visualization of a sample and synthetic data. The first, second and third
rows show data from Data1, Data5 and Data8, respectively. (a) is a sample
from each training set. Visualization of the synthetic data corresponding to
the dataset generated by VAE is in (b), by β-VAE is in (c), by MMD is in
(d) and by the proposed generative model is in (e). 91

6.7 Accuracy of a training set and test set of Baseline on (a) Data1, (b) Data2,
(c) Data3, (d) Data4, (e) Data5, (f) Data6, (g) Data7, (f) Data8, and (i)
Data9 with respect to initial learning rate. 93

6.8 Accuracy of a training set and test set of Baseline on (a) Data1, (b) Data2,
(c) Data3, (d) Data4, (e) Data5, (f) Data6, (g) Data7, (f) Data8, and (i)
Data9 with respect to standard deviation applied to the generative model
proposed in Chatper 3. 94

x

Jaehoon Cha

6.9 Accuracy of a training set and test set of Baseline with C-FNN on (a) Data3,
(b) Data5, (c) Data6, (d) Data7, and (e) Data9 with respect to standard
deviation applied to the generative model proposed in Chatper 3. 95

6.10 Accuracy of a training set and test set of Baseline with HADNN on (a)
Data3, (b) Data5, (c) Data6, (d) Data7, and (e) Data9 with respect to
standard deviation applied to the generative model proposed in Chatper 3. 95

A.1 Visualization of the 10 reconstructed images with respect to the standard
deviation. The first column contains the ground truth images. The images in
each column are reconstructed from the ground truth based on the proposed
model with the standard deviation, which is written at the top of each
column. The generative models are trained by all images in the training set. 103

A.2 Visualization of a comparison of 10 reconstructed images. Images in (A)
are the ground truth. Images of (B) are reconstructed images by VAE, (C)
are by MMD, and (D) are by the proposed model with std of 0.001. The
generative models are trained by all images in the training set. 104

A.3 Visualization of the 10 reconstructed images with respect to the standard
deviation. The first column contains the ground truth images. The images in
each column are reconstructed from the ground truth based on the proposed
model with the standard deviation, which is written at the top of each
column. The generative models are trained by a portion of the training set. 105

A.4 Visualization of a comparison of 10 reconstructed images. Images in (A)
are the ground truth. Images of (B) are reconstructed images by VAE, (C)
are by MMD, and (D) are by the proposed model with std of 0.001. The
generative models are trained by a portion of the training set. 106

B.1 Loss comparison of the traiingn and test datasets at each epoch during the
training phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and
(d) Case4 with MNIST dataset. 108

B.2 Auxiliary scores of all training images corresponding to their coarse classes
of (a) Case1, (b) Case2, (c) Case3, and (d) Case4 with MNIST dataset. . . 108

B.3 Loss comparison of training and test datasets at each epoch during the
training phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and
(d) Case4 with SVHN dataset. 109

B.4 Auxiliary scores of all training images corresponding to their coarse classes
of (a) Case1, (b) Case2, (c) Case3, and (d) Case4 with SVHN dataset. . . . 109

B.5 Loss comparison of training and test datasets at each epoch during the
training phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and
(d) Case4 with CIFAR-10 dataset. 110

B.6 Auxiliary scores of all training images corresponding to their coarse classes
of (a) Case1, (b) Case2, (c) Case3, and (d) Case4 with CIFAR-10 dataset. . 110

xi

List of Tables

3.1 The accuracy of the test set when training neural networks using synthetic
data from generative models trained by all images in the training set. . . . 32

3.2 he accuracy of the test set when training neural networks using synthetic
data from generative models trained by a portion of the training set. 33

4.1 CIFAR-10 dataset label information . 41

4.2 The accuracy of the test set on the three baselines 42

4.3 The number of the learnable parameters on the three baselines 43

4.4 Coarse classes information . 44

4.5 The accuracy comparison with three datasets 45

4.6 The number of nodes of the models used for TUT datasets 53

4.7 The number of nodes of the models used for UJIIndoorLoc dataset 53

4.8 Summary of datasets . 57

4.9 TUT2017 dataset results of C-FNN and HADNN 57

4.10 TUT2018 dataset results of C-FNN and HADNN 57

4.11 TUT2017 dataset results comparison with previous works 57

4.12 UJIIndoor dataset results of C-FNN and HADNN 58

4.13 UJIIndoor dataset results comparison with previous works 58

5.1 Characteristic vectors corresponding to motion type 70

5.2 Threshold obtained by the ROC curve . 74

5.3 Recall and Precision . 75

5.4 Accuracy and F-measure . 75

6.1 Coarse class information of InhaMotion dataset 84

6.2 Accuracy with or without synthetic data of InhaMotion dataset 86

6.3 Accuracy of the test set when using synthetic data by various generative
models of InhaMotion dataset . 86

6.4 Hierarchical Result without synthetic data of InhaMotion dataset 87

6.5 Hierarchical with synthetic data of InhaMotion dataset 87

6.6 Hierarchical Result without synthetic data of InhaMotion dataset 87

xii

Jaehoon Cha

6.7 The best learning rate with respect to each dataset 90
6.8 The best standard deviation with respect to each dataset 90
6.9 Accuracy with or without synthetic data of nine open source datasets . . . 91
6.10 Accuracy of the test set when using synthetic data by various generative

models of nine open source datasets . 92
6.11 Hierarchical Result without synthetic data of nine open source datasets . . 92
6.12 Hierarchical with synthetic data of nine open source datasets 92
6.13 Summary of the nine open source human motion datasets 96
6.14 Coarse class information for five open source datasets 96

D.1 data1 . 112
D.2 data2 . 113
D.3 data3 . 113
D.4 data4 . 113
D.5 data5 . 114
D.6 data6 . 114
D.7 data7 . 114
D.8 data8 . 115
D.9 data9 . 115

xiii

Jaehoon Cha

xiv

Chapter 1

Introduction

With the development of technologies such as computers and the Internet, a vast range of

data has become more accessible and manageable within various fields. This widespread

availability allows researchers to design equations and models based on a large number of

data characteristics [5, 41, 89]. Nevertheless, some researchers still choose to extract key

information to design these equations and models. However, rather than extracting key

information, it makes more sense to combine independent information and heterogeneous

datasets so that we may benefit from the abundance of available data [36]. Throughout

this thesis, the term multi-channel data is used to refer to data obtained from multiple

channels or sources that are independent. Scientific research on human motion type detec-

tion, indoor localization, recommendation system and other research areas are carried out

by processing multi-channel data [15, 101, 73]. For human motion type detection, mea-

surements come from the head, hands, and legs, which are considered different channels.

These measurements can be used to determine how much care a patient requires. Another

example of a multi-channel data application is research on indoor localization using Wi-Fi

signals. The importance of localization inside buildings has been further emphasized by

the increasing number of multiplex buildings. The characteristics of the Global Position-

ing Systems (GPS) do not allow for accurate indoor positioning, making the use of GPS

impractical. Wi-Fi routers, however, are positioned within buildings, making localization

using Wi-Fi signals a more sensible indoor localization alternative. These routers work

independently from one another, thereby making the derived data multi-channel data.

Nevertheless, data processing by integrating independent channels presents difficulties be-

cause the significance of each channel is different. This can be solved by assigning a value,

1

2 Jaehoon Cha

which we will refer to as weight henceforth, to each channel according to its significance.

Even so, another challenge still remains in designing functions which can integrate the

weighted channel.

As mentioned before, even if a large amount of data is accessible, some researchers

still choose only a few key pieces of information to solve problems to reduce uncertainty

and conflict from probably irrelevant information. With the advent of machine learning

methods, it becomes practical to use as much information as possible. Machine learning

is the methodology used to find the optimal function of given datasets. The process of

finding the optimal function is called the training phase. Parameters in machine learning

algorithms are randomly set before the training phase, and the goal of machine learning

is to tune the parameters, referred to as learnable parameters, to get the optimal func-

tion based on a training set, a set consisting of samples used during the training phase.

The methods to achieve this goal generally consist of two major tasks, one of which is

feature extraction and the other could be classification, regression or clustering using the

extracted features. Features are extracted by removing redundant information. On the

other hand, classification and regression are types of supervised learning where the targets

are known, i.e., data in the training set are composed of pairs of inputs and targets. The

goal of supervised learning is to predict targets corresponding to its inputs. Nonetheless,

classification and regression differ in their type of targets. The former has discrete targets,

while the latter has continuous targets. Meanwhile, data clustering is considered to be

unsupervised learning because it does not have any targets. Data clustering takes into

account the similarity of inputs to create clusters. These two major tasks can be combined

using the cutting-edge machine learning method called Artificial Neural Networks (ANNs).

These ANNs are inspired by the function of the human brain and consist of a minimum

of three layers [24]. The first layer is called an input layer and the last layer is called an

output layer. Multiple layers, which are called hidden layers, exist between the input layer

and output layer. Data are fed to the input layer, pass through the hidden layers, and

reach the output layer. Hidden layers have learnable parameters and are tuned to represent

features. Tuned parameters contain the important features of a training set and enough

information to perform a given task. ANNs have been applied to various fields includ-

ing computer vision, speech recognition, recommendation system and medical diagnosis,

leading to exceptional results in each of the fields.

However, there are still some difficulties in applying ANNs to fields where the amount

of data is inadequate. Because training ANNs relies absolutely on a training set, it is

Chapter 1. Introduction 3

important to collect a sufficient amount of data [24]. Furthermore, the performance of

machine learning including ANNs is evaluated based on a test set, a set that is not used

during the training phase. ANNs should use the training set to learn the general features

of the training set. With a small number of training samples, ANNs alongside all the

other methods included in machine learning, will learn only a few parts of the important

features. To address this, generative models can be used as they are powerful tools when

only a small number of training samples are provided.

A generative model is a type of unsupervised learning that does not require pairs of

inputs and targets. Generative models are specialized for dimensionality reduction, feature

extraction and new sample generation [29]. The parameters obtained after the training

phase represent the hierarchical level representation of the inputs and are able to generate

synthetic data which are convincingly drawn from the training set. Because it is difficult to

make pairs of inputs and targets when a tremendous amount of data is given, in Chapter 3,

we design a new generative model and propose an algorithm to make a set of labelled

synthetic data.

Another issue of conventional ANNs is that they consider all targets equally, i.e., the

similarities between targets are not considered and all targets are equally distributed. In

other words, traditional ANNs do not consider the hierarchy of targets and this hierarchy

cannot be learnt during the training phase. However, multi-channel data may have their

own innate hierarchical structure depending on channel information, which should be con-

sidered at the test phase. Considering hierarchy of targets makes ANNs logical by tuning

parameters to represent features of inputs and to capture hierarchy of targets at the same

time. ANNs can learn the hierarchy of targets by either taking hierarchical information

as inputs or adjusting the loss function with respect to the hierarchy. In Chapter 4, hier-

archical learning models based on hierarchical information are studied and new types of

models are proposed.

In Chapter 5, before analysing multi-channel data with the use of the proposed models,

we analyse human motion data as an example of multi-channel data. This data is a

typical example of multi-channel data because the data is collected from multiple channels,

i.e., sensor locations in human motion data, and is difficult to obtain due to both the

complexities in the approval process and the gathering of subjects. We selected human

motion data as an example of multi-channel data because improving the health care system

for the elderly and the sick is an exceedingly important social issue. Furthermore, the

evaluation of the physical ability of patients, those who have difficulties with mobility, is

4 Jaehoon Cha

required prior to rehabilitation treatments. Without standardized evaluation methods, the

ability level of a patient is given a grade through a subjective evaluation by one of many

varying methods or people. It goes without saying that overestimation of ability can cause

injuries and underestimation can result in a delay in rehabilitation [52]. In this regard,

it is necessary to objectively detect and evaluate physical ability. In order to explore

motion type detection using sensors, human motion data obtained from Inha University

Hospital, Korea are analysed in Chapter 5. Eight sensors are attached to each human

subject and these subjects are required to perform nine motion types with respect to their

abilities. We hierarchically group these nine motion types based on their relationship with

the locations of the sensors. In Chapter 6, this hierarchical group information is applied

to the hierarchical learning models proposed in Chapter 4.

Finally, the proposed models in Chapter 3 and Chapter 4 are applied to human motion

data as examples of multi-channel data in Chapter 6. In order to overcome the issue of

difficulty gathering a sufficient amount of data to deal with a variety of samples formed by

a combination of multiple channels, the generative model proposed in Chapter 3 is used

to generate synthetic data. The proposed model is trained on a training set and generates

synthetic data which are plausibly drawn from the distributions of the training set. Subse-

quently, they are labelled using Support Vector Machine (SVM) and Principal Component

Analysis (PCA). The labelled synthetic data are used together with the training set when

training ANNs, which take measurements of human motion data as inputs and detect mo-

tion types. Successfully trained generative models are able to generate synthetic data quite

similar to the data in the training set. These synthetic data allow ANNs to capture impor-

tant features and to avoid bias towards the training set. In addition, human motion types

can be grouped according to their relationships with multiple channels. The hierarchical

group structure of human motion types, studied in Chapter 5, is used to better identify

motion types by use of hierarchical learning models. To validate the proposed models in

motion type detection, human motion data obtained from Inha University Hospital, Korea

and nine open source human motion datasets are used. We carry out four experiments

with or without synthetic data and with or without hierarchical grouping of multi-channel

data.

This thesis is organized as follows. First, the previous works related to this thesis are

introduced in Chapter 2. In Chapter 3, generative models are analysed in detail and a

new generative model is proposed. These models are tested on three benchmark datasets

and further evaluated on a portion of the datasets in order to investigate the impact

Chapter 1. Introduction 5

of the amount of data on the performance of the models. In Chapter 4, two types of

hierarchical learning models are introduced to utilize an innate hierarchy of targets. The

first type of the proposed model shows the importance of learning hierarchy of targets. It

leads us to propose the second type of models which can be used for multi-channel data.

The proposed second type of models are evaluated with indoor localization datasets as

examples of multi-channel data. In Chapter 5, human motion data are analysed to study

the relationship between sensor locations and motion types. In Chapter 6, a total of ten

human motion datasets, including the human motion data analysed in Chapter 5, are used

with the proposed models from Chapter 3 and Chapter 4. Finally, conclusions and future

research interests are summarized in Chapter 7.

Chapter 2

Literature Review

Since we have emphasized the importance of the research on multi-channel data analysis

and capturing features of data through machine learning, we briefly summarize previous

research in related fields. This thesis studies three subject matters. First, generative

models are studied to generate more various samples that are not included in a training set.

Second, hierarchical learning models are proposed in order to utilize an innate hierarchy

of targets. Third, the relationships between motion types and the locations of sensors

attached to different human body parts are studied.

2.1 Generative models

There are two large families of generative models in ANNs. One type is Variational Au-

toencoders (VAEs) and the other is Generative Adversarial Networks (GANs). There are

two models of GANs: the generator model which provides new samples, and the discrimi-

nator model which classifies samples as either real (from a training set) or fake (generated).

Although GANs are able to generate synthetic images which are indistinguishable from real

images, VAEs have drawn the attention of many researchers due to a key drawback in the

functional training of GANs [39, 93]. This difficulty in training GANs arises because of

the zero-sum game between its two models, i.e., when one model reduces its loss, the loss

of the other increases [25]. VAEs circumnavigate this issue by introducing a probabilistic

encoder and a probabilistic decoder [28, 40, 71]. The probabilistic encoder is a model which

compresses given data x into z with respect to φ, which is denoted by qφ(z|x). This model

is referred to as the encoder model. On the other hand, the probabilistic decoder is a model

6

Chapter 2. Literature Review 7

which reconstructs x from z with respect to θ and is denoted by pθ(x|z). This model is

referred to as the decoder model. The architecture of VAEs is based on Autoencoders

(AEs), the goal of which is dimensionality reduction and the architecture of which consists

of an encoder and a decoder. In AEs, the encoder reduces the dimensions of the samples,

i.e., the encoder maps Rn to Rm where n� m, and the decoder operates in reverse.

Two big differences between AEs and VAEs are in how they deal with the latent

space, the space between the encoder and the decoder. The first difference is that VAEs

apply Kullback–Leibler divergence (KL divergence) denoted by DKL(·||·), to compare the

similarity between two distributions: qφ(z|x), the distribution of the latent space (i.e., the

outputs of the encoder), and pθ(z|x), the prior distribution (i.e., given distribution before

the training phase). DKL(·||·) plays a crucial role as a regularizer to ensure that outputs

of the encoder map onto the prior distribution. The second difference is that VAEs use the

reparameterization trick to learn sampling, the random selection from the distribution of

the latent space to generate data. The encoder model learns the mean and the standard

deviation of the distribution of the latent space which are required for sampling. Noting

the fact that KL divergence is non-negative, the variational lower bound on the marginal

likelihood of x is proposed by

−DKL(qφ(z|x)||pθ(z|x)) + Eqφ(z|x)[logpθ(x|z)], (2.1)

where E[·] is the mean. Finally, φ and θ are learnt by maximizing the variational lower

bound or minimizing the negative of the variational lower bound, which is a loss function

of VAE, to approximate (qφ(z|x) to pθ(z|x). The advantage of maximizing the variational

lower bound compared to optimizing loss functions of GANs is more reliable [39].

With the great success of the VAE proposed in [39], many new VAE variants with

improved performance have emerged. These variants attempt to find a complicated and

flexible distribution of the latent space that corresponds to the distribution of the samples.

In this section, we explore some of the variants of the VAE in [39]. For example,

Improved Variational Inference with Inverse Autoregressive Flow attempts to find flexible

distributions [40]. One idea of normalizing flow is to start off with an initial random

variable with a relatively simple distribution, then apply a chain of invertible parameterized

transformations to find a more flexible distribution. In order to start off with a simple

distribution, the initial encoder model outputs µ0 and σ0, which are the mean and standard

deviation of the latent space, respectively. Then, latent variables are drawn with the

8 Jaehoon Cha

reparameterization trick:

z0 = µ0 + σ0 � ε, (2.2)

where � is an element-wise multiplication operator and ε ∼ N (0, I). The flow consists of

a chain of T of the following transformations:

zt = µt + σt � zt−1, (2.3)

where t = 1, · · · , T . Because ∂µt
∂zt−1

and ∂σt
∂zt−1

are triangular with zeros on the diagonal

and ∂zt
∂zt−1

is triangular with σt on the diagonal, the determinant of ∂zt
∂zt−1

becomes ΠD
i=0σt,i

where D is the dimension of the latent space. Finally, the density after the final iteration

is:

log q(zt|x) = −
D∑
i=1

(
1

2
ε2i +

1

2
log (2π) +

T∑
t=0

log σt,i). (2.4)

Apart from the learning strategy used to learn more flexible distributions, a new varia-

tional lower bound is proposed to enforce meaningful representation learning in the latent

space. β-VAE introduces a single hyper-parameter β to improve the degree of disentangle-

ment in the learnt representation in the latent space [28]. The difference between β-VAE

and the VAE is the multiplication of β to DKL(qφ(z|x)||pθ(z|x)) and so the variational

lower bound becomes:

− βDKL(qφ(z|x)||pθ(z|x)) + Eqφ(z|x)[logpθ(x|z)] (2.5)

and this new variational lower bound encourages the model to learn the most efficient

representation of the data. The improved performance of β-VAE is shown with the dis-

entanglement metric proposed in [28]. β-VAE shows that the simple modification of the

variational lower bound improves the ability of VAEs in terms of representation in the la-

tent space regardless of the flexible distribution. In addition, the problem of the variational

lower bound of the VAE is tackled in [105]. The variational lower bound of the VAE itself

causes amortized inference of failures and the information preference property, which both

lead to an imbalance in learning between the distributions of the samples and of the latent

space. In order to overcome this problem, a new objective of variational lower bound is

proposed in [105]:

− λDKL(qφ(z)||pθ(z))− Eqφ(z)DKL(qφ(x|z)||pθ(x|z)) + αIq(x; z), (2.6)

Chapter 2. Literature Review 9

where Iq(x; z) is the mutual information between x and z under distribution qφ(x, z). In

order to efficiently optimize the objective the equivalent form is derived using Maximum-

Mean Discrepancy (MMD), which measures the distance between two distributions [105].

Finally, the neural network is trained to optimize the following objective

EPD(x)Eqφ(z|x)[logpθ(x|z)]− (1− α)EPD(x)DKL(qφ(z|x)||p(z))

− (α+ λ− 1)DMMD(qφ(z)||p(z)),
(2.7)

where PD(x) is the true distribution and α < 1, λ > 0 and

DMMD(q||p) =Ep(z),p(z′)[k(z, z′)]

− 2Eq(z),p(z′)[k(z, z′)] + Eq(z),q(z′)[k(z, z′)]
(2.8)

with any positive definite kernel, k(·, ·). Henceforth, MMD is referred to as MMD-VAE for

the convenience.

In Chapter 3, we introduce a new generative model similar to VAEs, as well as analyse

and compare existing models with image datasets.

2.2 Hierarchical learning

Conventional ANNs for classification previously had not considered the structure of target

classes despite the fact that most target classes in real life problems have a hierarchy. For

example, images from daily life can be divided into living organisms and inanimate objects,

drugs can be structured by parent/child relationships and locations can be grouped under

big or small areas. Unlike conventional ANNs, hierarchical learning is proposed in a way

that allows for the use of additional information, also called auxiliary information, to utilize

the hierarchy of targets. The auxiliary information can be easily drawn from either original

data or an innate hierarchy of targets and this is done by means of defining the hierarchical

classes of the targets.

In this section, techniques that utilize the hierarchy of targets as auxiliary information

or by architectures of neural networks are introduced. Before introducing the previous

techniques, we define the term coarse class and fine class. Throughout this thesis, we call

the original targets which are either discrete or continuous as fine classes. Sets containing

the fine classes are referred to as coarse classes if the sets are disjoint and their union

contains all fine classes. For example, let Y be a set of original targets. A partition of Y

10 Jaehoon Cha

can be defined by taking subsets of Y , C1, · · · , Cn, such that

(1) Ci 6= φ for all i = 1, · · ·n,

(2) Ci ∩ Cj = φ if i 6= j,

(3) ∪ni=1Ci = Y .

Then, we refer to element in Y as fine classes and to elements in the partition as the

coarse classes. The coarse class can be defined with multiple levels as shown in Figure 2.1.

In stage-wise learning, coarse to finer images which are subsampled from original images

𝑐" 𝑐# ⋯ 𝑐% 𝑐&𝑐&'"⋯𝑐%("

𝐶"" 𝐶*"𝐶#" ⋯

𝐶"# 𝐶+#𝐶## ⋯ 𝐶,# ⋯

The first level of coarse classes

The second level of coarse classes

Fine classes

Figure 2.1: Relationships between coarse classes with two levels and fine classes when fine
classes are discrete targets. The node is a link between a superior class and an inferior
class.

are fed to a neural network step by step to enhance the learning process [3]. At the

beginning stage, only coarse image information is given to this neural network, forcing its

first few layers to learn the global structures of the samples in the training set. Fine image

information is provided to this neural network as the stages progress. This strategy forces

the neural network to learn features more hierarchically, which sometimes neural networks

fail to achieve due to hyper-parameters.

The residual auxiliary block architecture introduces an auxiliary block which can per-

form multiple tasks, outputs of which improve the performance of a main task [56]. This

auxiliary block extracts useful information from samples in a training set and inserts the

information into a neural network as an input of the main task [56]. Apart from this main

task, the neural network is able to learn more meaningful representations of the training

set.

Approaches which directly utilize hierarchical class have also been studied. For ex-

ample, [8] designs a sequence of multi-layer perceptrons (MLPs). Each MLP sequentially

learns coarse classes through its rear layer taking outputs of the preceding layer. Because

Chapter 2. Literature Review 11

the neural network consists of a number of MLPs proportional to its number of coarse

classes, scalability problems are encountered. In addition, as the number of MLPs in-

creases, i.e., the number of layers increases, the information of the first few layers rarely

reaches the last layer.

Another approach that can be taken is that coarse category layers and multiple fine

category layers follow shared layers [98]. These shared layers learn the common properties

of samples in a training set. After the training phase, weights of the shared layers are

used for the initialization of the coarse category layers and multiple fine category layers.

In order to build these layers, labels are grouped manually and the number of groups

is set to the number of elements within the coarse category. Then, the coarse category

layers learn about the coarse category. Following the coarse category layers, multiple fine

category layers are built. Each fine category corresponds to one element in the coarse

category. Because multiple fine category layers are connected in parallel, the number of

layers from an input layer and an output layer is much smaller than the proposed network

in [8]. However, this model still has a scalability issue since the number of fine category

layers is proportional to the number of elements in the coarse category.

B-CNN outputs coarse classes in the middle of the architecture of a neural network [106].

The layers which outputs coarse classes are called branches and the outputs of the branches

are compared with target coarse classes. If there are more than two levels in the coarse

classes, the branch closest to the input layer learns the first level of the coarse classes and

the branch closest to the output layer learns the lowest level of the coarse classes. The

final loss function is then defined as the weighted sum of the losses over all branches, and

afterwards the neural network is forced to learn hierarchically according to the structure

of the hierarchy of targets.

Besides changing neural network architectures, a new loss function is proposed to utilize

the hierarchy of targets. In [96], an ultrametric tree is proposed based on the semantic

meaning of all targets and uses the hierarchical target information. The probability of each

node of the ultrametric tree is the sum of the probabilities of its leaves and all its nodes

that are on the path from the leaves to the node.

Auxiliary inputs are used to check logical reasoning in [88]. Auxiliary inputs based on

human knowledge are provided to a neural network to allow it to learn logical reasoning.

The neural network verifies the logical information with the auxiliary inputs first and then

proceeds to the next stage.

All of these hierarchical techniques have not only been applied to image classification,

12 Jaehoon Cha

but also to many other fields where the hierarchy of targets can be easily obtained [104, 38].

In Chapter 4, we use indoor localization as an example of multi-channel data because it

allows for an easier application of a hierarchical approach in indoor localization when

applying ANNs.

2.3 Machine learning application to motion type analysis

Motion types can be captured from various sources such as from videos and Inertial Mea-

surement Unit (IMU). Research on motion type detection can benefit a number of diverse

fields. For example, improvements can be made in the performance of athletes, the reha-

bilitations of patients and the prevention of falls in the elderly [15, 67].

The relationship between body parts and mobility has been studied for a long time.

Several tests have been designed to measure human mobility based on the movements of

body parts [82, 6]. In these tests, subjects are required to perform a few motion types such

as standing up, sitting down and walking. Experts in these tests then score the subjects’

mobility. Diagnoses and advice are given by these experts based on the subjects’ scores.

These approaches help with the rehabilitation of patients. Nevertheless, because the score is

subject to experts and tests, efforts to find a universal approach for motion type detection

are continuing to develop. In order to find this universal approach, standard ways to

describe motion types and automatic motion type detection methods should be established.

As opposed to the fact that standard ways to describe motion types have already been

proposed [12], designing the automatic motion type detection methods remains an ongoing

challenge.

In the early stage of research on automatic motion type detection methods, basic sta-

tistical values of measurements from IMU sensors were used to detect motion types [85].

Motion types such as standing, sitting, lying, walking, ascending stairs, descending stairs

and cycling are detected using IMU sensors attached to the sternum and thighs. The

sensors measure three accelerometers and three gyroscopes. The mean and the standard

deviation of the measurements were used to detect motion types. Due to a lack of com-

plicated computational methods, but a great development in sensor techniques, the au-

thors in [12] manually separated motion types and set thresholds in order to distinguish

motion types from one another. In [59], vertical displacements are computed to discrimi-

nate the difference between standing-after-sitting and sitting-after-standing. Both motion

types showed the same movements from the back since subjects stretched their backs after

Chapter 2. Literature Review 13

bending. The difference was that sensors on subjects’ backs were moving upward when

standing-after-sitting and moving downward when sitting-after-standing. Because these

actions were completed very quickly, the key was to find the time period where the action

happened. The authors in [59] applied the Wavelet Transform (WT) to remove noise and

so they could observe clear up and down changes and found the right time period which

could be used to measure the height change. In [1], 19 daily and sports motion types

(sitting, standing, lying down on the back and on the right side, ascending and descending

stairs, standing in an elevator still and moving around in an elevator, walking in a parking

lot, walking on a treadmill with a speed of 4 km/hr, running on a treadmill with a speed

of 8 km/hr, exercising on a stepper, exercising on a cross trainer, cycling on an exercise

bike in horizontal and vertical positions, rowing, jumping and playing basketball) were

classified with Bayesian Decision Making (BDM), the Least-Squares Method (LSM), the

k-Nearest Neighbor algorithm (k-NN), Dynamic Time Warping (DTW), Support Vector

Machines (SVM) and ANNs. Rather than using raw measurements, the authors extracted

multiple features: the minimum and maximum values, the mean values, variance, skew-

ness, kurtosis, ten equally spaced samples from the autocorrelation sequence, the first five

peaks of the discrete Fourier transform of the signal and the corresponding frequencies.

Because subjects wore sensors on five body parts and each sensor produced nine mea-

surements, Principal Component Analysis (PCA) was used to further extract meaningful

features. All machine learning algorithms based on features extracted by PCA worked well

to distinguish the 19 motion types.

As wearable devices with sensors have become readily available in terms of price, us-

ability and data acquisition, and machine learning algorithms have become easier to use,

a lot of research has been carried out on diverse machine learning algorithms in order

to detect motion types [15]. The advantage of the use of machine learning algorithms is

that researchers do not need to find important measurements and equations. Nevertheless,

research on the relationship between sensor locations and motion types will help in under-

standing human motion data. Therefore, in Chapter 5, human motion data obtained from

Inha University Hospital, Korea, is analysed.

Chapter 3

Data Augmentation Approach

The trade-off between bias and variance is one of the biggest challenges in machine learn-

ing from the viewpoint of data reliance [4]. Imbalances in handling this trade-off causes

either overfitting or underfitting. In overfitting, the trained machine learning algorithms

nearly perfectly match with a training set, but show rather poor matching with a test set.

Meanwhile, underfitting occurs when the algorithms do not match with both a training set

and a test set. The problem of underfitting can be easily solved by increasing the num-

ber of parameters, while overfitting cannot be easily solved [4]. This problem was widely

studied so that the performance on a test set would improve [45, 70]. Recent research in

ANNs has shown that one of the most effective ways to solve overfitting is through data

augmentation [14, 77]. This regularizes ANNs making them able to work well with a test

set. Data augmentation is additionally essential in fields where big data acquisition is still

difficult such as in time series data and medical fields, where data gathering takes lengthy

periods of time [19]. In addition, data augmentation can play a crucial role in analysing

multi-channel data. This is because analysis of multi-channel data requires a large amount

of data due to a lot of possible samples through a combination of multiple channels. In

this chapter, we present generative models which can augment data beyond simple data

augmentation techniques such as cropping, flipping and rotating [77]. The chapter is di-

vided into four sections discussing the following: VAEs, the proposed generative model,

experiments to verify the proposed model and the summary.

14

Chapter 3. Data Augmentation Approach 15

3.1 Variational Autoencoders

In this section, we analyse VAEs, one of the big families under generative models. We begin

to cover the architectures and benefits of VAEs compared to GANs. Then, we discuss our

observation about the role of reparameterization trick.

3.1.1 Generative models

Generative models can be used to generate new samples that convincingly could have

been drawn from a training set through automatically learning patterns of samples in the

training set. In fact, these models can learn the distribution of the samples in a latent

space allowing us to obtain new samples, i.e., the models learn an unlabeled distribution

P (X|Z) where X is the space including the training set and Z is the latent space. These

models are popular in computer vision since realistic fake images can be generated. The

great success in generating these images is evidenced by the fact that researchers demand

fake image detection algorithms [61].

GANs are the second of the big families under generative models in ANNs. GANs have

achieved vast successes in generating new images. Nevertheless, the architecture of GANs

is only briefly introduced in this chapter. The focus, instead, is on VAEs since the loss

function of GANs is difficult to train due to the zero-sum game between its two models

mentioned in Chapter 2,whereas the loss function of VAEs is reliable since it has the lower

bound [39].

Generative Adversarial Networks (GANs)

There are two models of GANs: the generator model that generates new samples and the

discriminator model that attempts to classify samples as either real (from a training set)

or fake (generated). The architecture of GANs is shown in Figure 3.1.

The generator model takes in fixed-length vectors which are drawn randomly from the

Gaussian distribution as its inputs and generates synthetic samples. These synthetic sam-

ples, along with samples from the training set, are provided to the discriminator model

and are classified as real or fake. The discriminator model is then updated to improve its

skills in telling real from fake, and the generator model is updated based on the perfor-

mance of the discriminator model. The generator model then generates samples to fool

the discriminator model. In other words, both the discriminator and the generator models

16 Jaehoon Cha

are attempting to obtain the upper hand, which explains why training GANs is known as

the zero-sum game and why training GANs is difficult [25]. After the training phase, the

discriminator model is discarded because the main objective of GANs is to generate new

samples, i.e., the generator model is only required during the test phase.

Generator𝑧 		𝑥$

		𝑥%

Discriminator

Real

Fake

Figure 3.1: Architecture of the Generative Adversarial Networks. z is an fixed length
vector, xf is a fake data and xr is a real data.

Variational Autoencoders (VAEs)

The architecture of VAEs is similar to that of AEs, which consist of the encoder and the

decoder networks. The main objective of AEs is dimensionality reduction [29]. This is

done by the opposite roles of the encoder and the decoder networks. The encoder network

reduces the dimensions of samples in a training set. The decoder network then enlarges the

latent variables, the outputs of the encoder network. By comparing the inputs and outputs

of the decoder network, key features are learnt in the latent space. However, the objectives

of VAEs are slightly different from those of AEs. The encoder network of VAEs takes

samples from the training set and reduces the dimensions in a process similar to that of

AEs. The difference is that VAEs learn not only the key features, but also the distribution

of the samples in the latent space [39]. Under the assumption that most samples from real

life follow the Gaussian distribution, the encoder learns the mean and standard deviation

of samples within the latent space. Next, the decoder network generates new samples by

sampling based on the learnt mean and standard deviation. The architecture of VAEs is

shown in Figure 3.2. In order to apply back-propagation, a technique to reduce the error

of a loss function [72], sampling is substituted with the reparameterization trick, which

Chapter 3. Data Augmentation Approach 17

adds the standard deviation multiplied by the noise to the mean, i.e., the latent variable,

z, is obtained by z = µ + σ � ε, where µ, σ, and ε are the mean, the standard deviation,

and Gaussian noise, respectively. In order to make the encoder network output the mean

and the standard deviation of the distribution of the latent space, KL divergence is used

to compare the distribution of the latent space and the prior distribution. Finally, VAEs

are trained by optimizing the sum of KL divergence and the discrepancy between inputs

and generated outputs. With the lower bound of KL divergence, VAEs are reliably trained

and appear theoretically more well-defined than GANs. In the following training phase,

the encoder network is discarded and the Gaussian distribution, which is used as the prior

distribution during the training phase, is used to sample latent variables.

𝑥"

𝑥

Encoder

Decoder

Optimizer

	𝜇 	Σ

𝑧~𝒩(𝜇, Σ)

Figure 3.2: Architecture of the Variational Autoencoder. x is a sample in the training set
and z is a latent variable. µ and

∑
are the mean and standard deviation, respectively

3.1.2 Differences between Autoencoders and Variational Autoencoders

Two points of VAEs differentiate VAEs from AEs, allowing VAEs to be generative models

while AEs cannot. The first is that the loss function of VAEs is the sum of the reconstruc-

tion loss and KL divergence, whereas the loss function of AEs only has the reconstruction

18 Jaehoon Cha

loss. The reconstruction loss in VAEs plays the same role as in AEs which computes the

difference between the outputs of the decoder network and the inputs of the encoder net-

work. The outputs of the decoder network become similar to the inputs of the encoder

network, and the learnable parameters in the hidden layers of the encoder network learn

key information. At the same time, the decoder network learns to reconstruct inputs based

on the key information.

The other metric for VAEs compares the distribution of the latent space with the

prior distribution with the end goal of making them similar. The most popular metric

for the comparison of the two distributions is KL divergence. In addition, the Gaussian

distribution, of which the mean is zero and the covariance matrix is equal to the identity

matrix, is used for the prior distribution to improve computational efficiency. A notable

effect of using KL divergence to match the distribution of the latent space to the Gaussian

distribution is the centralizing of the outputs of the encoder network around the mean.

The second difference between VAEs and AEs appears in the reparameterization trick.

In VAEs, generation works by feeding samples, randomly selected from the latent space,

to the decoder network. If a random sampling in statistics is used during the training

phase, the encoder and the decoder networks are disconnected, which results in a failure to

deliver the reconstruction loss to the encoder network by back-propagation [39]. In order to

solve this problem, the reparameterization trick was proposed [39]. The reparameterization

trick requires the mean and standard deviation to mimic sampling in statistics; hence, the

encoder network learns the population parameters of the distribution of the latent space.

Since the Gaussian distribution is used as the prior distribution, the encoder network now

learns its population parameters: the mean and standard deviation, which are denoted by

µ and σ, respectively. Then, a new sample, z, is computed by the reparameterization trick

as follows:

z = µ+ σ � ε, (3.1)

where ε ∼ N (0, I). The reparameterization trick allows for the delivery of the reconstruc-

tion loss to the encoder network by back-propagation. Now, we further cover the necessity

of the reparameterization trick.

3.1.3 The role of the Reparameterization trick

The encoder network outputs the mean and standard deviation, both of which are used

to perform the reparameterization trick. Let us use x, µ and σ to, respectively, denote an

Chapter 3. Data Augmentation Approach 19

input, the corresponding mean output and the standard deviation output of the encoder

network. If the reparameterization trick is not used, the decoder network reconstructs x

from µ.

In AEs, a set of all µs from a training set forms a set of latent variables, which are both

dimensionally reduced and are clustered based on the similarity of their inputs. However,

KL divergence differentiates between AEs and VAEs. KL divergence forces latent variables

to form the standard Gaussian distribution [105, 48]. In other words, latent variables are

distributed centered at zero with a standard deviation of one. Because the number of

samples in a training set is finite, the number of µs corresponding to all inputs is also

finite. This means that there are variables in the latent space which do not correspond to

any inputs during the training phase. Thus, it is impossible to reconstruct samples using

a decoder network from randomly selected latent variables in the latent space.

VAEs solve this issue by the use of the reparameterization trick. The trick allows VAEs

learn population parameter, µ and σ, through back-propagation. In other words, VAEs

learn µ to represent all inputs in the latent space. However, we note the fact that each µ

has its corresponding input and σ in Eq. (3.1) plays a role in weighting the ε ∼ N (0, I).

This implies that VAEs learn µ to represent each input and it is highly possible that

z = µ + σ � ε is located nearby µ. Nevertheless, VAEs become generative models by

comparing the output of the decoder of z with x, which proves that the closer variable

z is to µ, the more similar the output of z is to x. From that fact, we observe that

the reparameterization trick makes VAEs generative models by mapping latent variables

around µ to x rather than by mimicking sampling.

3.2 Analysis on Autoencoder and designing a new genera-

tive model

In this section, we show the continuity of AEs and propose a new generative model by ex-

tension of the mapping of the decoder network from a discrete latent space to a continuous

latent space, one not using the reparameterization trick.

20 Jaehoon Cha

3.2.1 Continuity of the Original Autoencoder

Let us assume that one layer of a neural network consists of a set of a matrix multiplication,

an addition and an activation function. We define a function h : X→Y , given by

h(x) = f(Ax+ b) (3.2)

where dim(X)=n, dim(Y)=r, A : Rn→Rr is a matrix operator, b is a 1-dimensional vector

of r components, and f is an activation function such as Softplus, sigmoid, hyperbolic

tangent (tanh) or rectified linear unit (ReLU). Then, xn→x implies h(xn)→h(x) from the

fact that

‖h(xn)− h(x)‖ = ‖f(Axn + b)− f(Ax+ b)‖ (3.3)

≤ ‖A(xn − x)‖ (3.4)

≤ ‖A‖‖xn − x‖, (3.5)

where the matrix multiplication is bounded. In addition, all the activation functions con-

sidered in ANNs satisfy the following inequality

‖f(xn)− f(x)‖ ≤ ‖xn − x‖. (3.6)

Consequently, the layer consisting of a set of a matrix multiplication, an addition and an

activation function is continuous. Due to the fact that a composite of continuous functions

is continuous, a composite of these layers is also continuous.

Now, we let f : Xin→Z and g : Z→Xout be the encoder and the decoder networks which

are composite functions of layers and Z be the latent space. If y=g(f(x)) and y′=g(f(x′))

for any x, x′∈Xin, then

‖y − y′‖ ≤ cg‖f(x)− f(x′)‖ ≤ cf‖x− x′‖, (3.7)

where cf and cg denote the product of the norms of projection matrices in the encoder and

the decoder networks, respectively. From Eq. ((3.7)), we can expect that, for any z, z′∈Z,

if the distance between z and z′, is small, then the distance between the resulting outputs

of g — i.e., g(z) and g(z′) — is also small. Therefore, if ‖z − z′‖≤ε and z = f(x), then

the outputs of z′ must be similar to x because ‖g(z)− g(z′)‖ must be small and y = g(z)

Chapter 3. Data Augmentation Approach 21

is a reconstruction of x.

3.2.2 Extending the decoder network from a discrete latent space to a

continuous latent space

Note that the outputs of latent variables around z must be similar to x by the continuity of

AEs. From this fact and the role of the reparameterization trick mentioned in Section 3.1.3,

we aim to design a new generative model by extending the mapping of the decoder net-

work from a discrete latent space to a continuous latent space. In fact, the mapping of

the decoder network of latent variables around z by the reparameterization trick is very

analogous to the partition of unity, which is defined as follows:

Definition 3.2.1. [84] A partition of unity of a space X is a set of S of continuous

functions from X to the unit interval [0, 1] such that

1) the finite number of functions in S of a neighborhood of x has zero,

2)
∑

p∈S p(x) = 1, for all x ∈ X.

In other words, there are finitely many continuous functions, pi in S, such that pi(x) = 0

for i = 1, · · · , N and the sum of p(x) for all p ∈ S is one. Partition of unity extends a

locally defined mapping to a mapping on an entire space. Now, we apply the concept of

partition of unity into our problem with AEs. Let us assume that there are N pairs of

(xi, zi) by the encoder network – i.e., the output of the encoder network of xi is zi – and

the decoder network of the AE, which we denote by DAE . Assume that DAE perfectly

reconstructs the finitely latent variables zi to xi. Our goal is to define a new decoder

network which can reconstruct any of the latent variables z to one which is convincingly

drawn from the distribution of the training set. Now, let us define a function Dzi which

maps z to x such that

Dzi(z) =

{
DAE(zi), if z = zi,

0, otherwise.
(3.8)

where 0 is a zero-matrix. Let ˆD(z) =
∑

iDzi(z), then D̂ = DAE |z={z1,··· ,zN} completely

reconstructs from the latent variables {z1, · · · , zN} to samples in the training set. As most

samples in real life follow the Gaussian distribution, it is natural that z around zi happens

22 Jaehoon Cha

following N (zi, σ) for some σ > 0. To design a new decoder network with a continuous

latent space, we define a weighting function and a neighbor set.

Definition 3.2.2. A weighting function, wzi, with respect to zi, is a function which gives

weight to z according to its distance from zi by

wzi(z) = e−
1
2

(
z−zi
σ

)2 (3.9)

A weight, wzi(z), gets closer to one when the z approaches zi. In contrast, the weight

approaches zero when z goes away from zi. In other words, the higher the weight, the

closer z is to zi. Accordingly, the weight is inversely proportional to the distance between

zi and z.

Definition 3.2.3. A neighbor set, M(z) is a set of zk’s, the weight of which is the highest

with respect to z,

M(z) = {zk|wzi(z) ≤ wzk(z) for all zi}. (3.10)

Finally, we define a new decoder network, D, by

D(z) =
∑
i

∑
z′∈M(z)

Dzi(z
′) · wzi(z). (3.11)

Theorem 3.2.4. Let D(z) =
∑

i

∑
z′∈M(z)Dzi(z

′)·wzi(z) be a mapping from a latent space

Z to the space of the output of decoder, Y . Then D satisfies

1) D(z) = ˆD(z) = DAE(z) on {z1, · · · , zN},

2) For any small number ε > 0, ‖D(z)−D(zi)‖ < ε if M(z) = {zi} and ‖wzi(z)− 1‖ <
ε

‖DAE(zi)‖ .

for some σ > 0.

Chapter 3. Data Augmentation Approach 23

Proof. 1) For any zk in {z1, · · · , zN},

D(zk) =
∑
i

∑
z′∈M(zk)

Dzi(z
′) · wzi(zk) (3.12)

=
∑
i

∑
z′∈{zk}

Dzi(z
′) · wzi(zk) (3.13)

=
∑
i

Dzi(zk) · wzi(zk) (3.14)

= DAE(zk). (3.15)

2) Let ε < 0 and M(z) = {zi}, then

‖D(z)−D(zi)‖ < ‖
∑
j

(Dzj (zi) · wzj (z)−Dzj (zi) · wzj (zi))‖ (3.16)

= ‖Dzi(zi) · (wzi(z)− 1)‖ (3.17)

< ‖DAE(zi)‖ ·
ε

‖DAE(zi)‖
(3.18)

< ε. (3.19)

All of the above show that a decoder network can be built from AEs in order to

reconstruct any latent variables into ones which are plausibly drawn from the distribution

of the training set. However, it is impractical to compute M(z) and wzi(z) at the training

phase. Noting Theorem 3.2.4 2) it is guaranteed that D(z) should be similar to D(zi) for

z ∼ N (zi, σ), so we propose a new generative model based on AEs in the next section.

3.2.3 A new generative model

We propose a new generative model based on AEs, one which does not need the reparame-

terization trick and extend the mapping of a decoder network from a discrete latent space

to a continuous latent space. The key point of the proposed model is that the observed

latent variables during the training phase are directly used to extend the latent space of

a decoder network to the continuous space. While VAEs use the reparameterization trick,

the proposed model explores the new latent variables based on the observed latent vari-

ables and given standard deviation. Let x and z be a sample in a training set and its

24 Jaehoon Cha

corresponding latent variable, respectively. Let z′ be sampled from N (z, σ). Considering

the property of Theorem 3.2.4 2) property, the output of the decoder of z′ is compared

with x to expand the latent space to continuous space. This can be written as:

L
(
x, g(z′; θ)

)
, (3.20)

where f(·, φ) and g(·, θ) are the encoder and decoder networks with respect to parame-

ters sets φ and θ, respectively, and z′ ∼ N (f(x;φ), σ) and L is a loss function. Now, we

let the latent space correspond to a known distribution, specifically the standard normal

distribution for the computational efficiency, to sample inputs of the decoder network at

the generative phase. As the outputs of the encoder map the standard normal distribu-

tion without using the reparameterization trick, we use DMMD instead of KL divergence.

Therefore, the loss function of the proposed model becomes

L
(
x, g(z′; θ)

)
+DMMD(f(x;φ)||N (z, σ)). (3.21)

As the decoder network is defined on a continuous latent space, any sample from the

distribution has a corresponding output which is plausibly drawn from the distribution of

the training set. The architecture of the proposed model is shown in Figure 3.3 (a), and

the architecture of the VAE in Figure 3.3 (b). In addition, as the proposed model expands

the latent space to a continuous space, it does not depend on the distribution of the latent

space, unlike VAE which highly depends on the flexibility of the distribution of the latent

space, often resulting in the centralization of latent variables. The reason for mapping the

latent space to the standard normal distribution in the proposed model is for the sampling

at the generative phase, not for learning distributions.

3.3 Experiments

A number of diverse data samples provide the solution to the problem of overfitting by

generalizing neural networks, which results in good performance not only in the training

set, but also in the test set. The goal of a generative model is to generate diverse and

similar data with samples in a training set to obtain a number of diverse data samples.

In this section, the performance of generative models is evaluated using datasets for a

classification task. Since we use datasets for a classification task, the datasets consist of

Chapter 3. Data Augmentation Approach 25

𝑥"

𝑥

Encoder

Decoder

Latent (𝑧)

Optimizer𝑧"~𝒩(𝑧,𝜎)

(a)

𝑥"

𝑥

Encoder

Decoder

Optimizer

	𝜇 	Σ

𝑧~𝒩(𝜇, Σ)

(b)

Figure 3.3: Architecture of (a) the proposed generative model and (b) the VAE.

pairs of inputs and targets, which can be referred to as labels in a classification task and

are divided into a training set and a test set. The following four steps are performed to

evaluate the generative models. First, generative models are trained using inputs of the

training set. Second, labels are given to synthetic data generated by the generative models.

Third, neural networks for a classification task, which is referred to as classification models,

are trained using labelled synthetic data. Last, the performance of the generative models

is evaluated based on the accuracy of the test set using the trained classification models.

To compare the performance of the proposed model, of VAE and of MMD, we use three

benchmark datasets.

Henceforth, the accuracy of the test set is referred to as the accuracy of the test set

using the classification model trained by synthetic data generated by generative models.

3.3.1 Dataset

MNIST1 is one of the most popular benchmark datasets within a classification task due

to its small size [97]. It consists of 10 classes of handwritten digits from 0 to 9. There are

60, 000 training and 10, 000 test images of 28×28.

The second dataset is another popular benchmark dataset, called Fashion-MNIST2.

This dataset has the same size as MNIST and also consists of 10 classes related to fashion:

T-Shirt, Trouser, Pullover, Dress, Coat, Sandal, Sneaker, Bag and Ankle boot. Fashion-

1Available at http://www.cs.nyu.edu/~roweis/data.html.
2Available at https://github.com/zalandoresearch/fashion-mnist.

http://www.cs.nyu.edu/~roweis/data.html
https://github.com/zalandoresearch/fashion-mnist

26 Jaehoon Cha

MNIST gained popularity by preserving its small size of 28×28, but while also imposing

more challenges.

Finally, The Street View House Numbers (SVHN)3 dataset which is a benchmark

dataset consisting of RGB-channel images is used. There are 73,257 training images and

26,032 test images in this dataset, and the size of the images is 32×32×3 [62]. The biggest

difference between SVHN and the other two datasets is that images in SVHN have an

RGB-channel while the others have grayscale images.

Fc FcLatent

Input Output

Figure 3.4: Symmetrical architecture of the encoder and the decoder networks for MNIST
and Fashion-MNIST datasets. Fc refers to fully-connected layers.

3.3.2 Generative model setup

VAE, MMD and the proposed model all consist of the encoder network and the decoder

network. Except for the proposed model, the encoder network has two branches in order

to output the mean and standard deviation so that the models can learn the distribution of

the latent space. In the models used with MNIST and Fashion-MNIST, with each having

one channel, the encoder network and the decoder network are made symmetrical using

3Available at http://ufldl.stanford.edu/housenumbers.

http://ufldl.stanford.edu/housenumbers

Chapter 3. Data Augmentation Approach 27

Flattened

Latent

Fc
Conv Conv

Input Output

Figure 3.5: Symmetrical architecture of the encoder and the decoder networks for SVHN
dataset. Conv refers to convolutional layers and Fc refers to fully-connected layers.

fully connected layers as shown in Figure 3.4. The encoder and the decoder networks are

built upon two fully connected hidden layers of 500 nodes with a ReLU activation function.

The dimension of the latent space is set to 10, thereby the dimension of the outputs of the

encoder network in VAE and MMD is 20 since they have two branches. On the other hand,

the proposed model has the dimension of 10 in the output of the encoder network. The

architecture with the number of nodes for MNIST and Fashion-MNIST datasets is shown

in Figure 3.6 (a). Models are trained with epochs of 500 and a batch size of 128. Adam

optimization with a 0.001 learning rate and loss functions corresponding to the models

mentioned in Section 2.1 and Section 3.2.3 are set. We choose cross entropy to compare

an input x and the corresponding output x̂, which is originally used in [39],

−
N∑
i=1

xi · log(x̂i), (3.22)

where x = (xi)i=1···N and x̂ = (x̂i)i=1···N .

In the model used with SVHN, the encoder network and the decoder network are made

28 Jaehoon Cha

Fc-500

Image: 𝑥

Fc-500
Fc-10
Fc-500
Fc-500

Output:𝑥"

(a)

Conv-32

Image: 𝑥

Conv-64
Conv-128
Conv-256

Fc-16

Output:𝑥"

Conv-256
Conv-128
Conv-64
Conv-32

(b)

Figure 3.6: Architecture of the baseline of generative models for (a) MNIST and Fashion-
MNIST and (b) SVHN datasets

symmetrical using convolutional layers and transposed convolutional layers as shown in

Figure 3.5 because the images have three channels. The encoder network is built upon

four convolutional layers with ReLU activation function, kernel size of four and stride of

two for the first three convolutional layers and stride of one for the last convolutional layer

following [28]. The numbers of channels of each convolutional layer are 32, 64, 128, and

256. The decoder network is symmetric to the encoder with the same kernel size and the

stride with the encoder network. The architecture with the number of output channels

for SVHN dataset is shown in Figure 3.6 (b). The dimension of the latent space is set to

16, thereby the dimension of the outputs of the encoder network in VAE and MMD is 32.

The hyper-parameter setups of epochs, batch size, optimizer and the loss functions are the

same as the setup for MNIST and Fashion-MNIST datasets, except for the initial learning

rate. Here, the initial learning rate is set to 0.0001.

Furthermore, the experiments with the same setup are repeated with 10, 000 randomly

selected images, all from the training set, in order to further investigate the performance

of the generative models on a small number of data samples.

3.3.3 Labelling synthetic data

Labelling synthetic data is necessary to perform a classification task. We use SVM, a

method to find decision boundaries which is also referred to as hyper-planes, to assign

Chapter 3. Data Augmentation Approach 29

labels to synthetic data in the latent space [74]. The hyper-planes separate data with

respect to their labels by maximizing the margin, the smallest distance between the decision

boundaries and the data points. SVM uses a kernel function, K, to map the original space

into a higher dimensional space. In the experiments, we use the Radial Basis Function

(RBF) kernel,

K(xi, xj) = exp(−γ‖xi − xj‖2), (3.23)

with γ = 0.7. Assigning labels to synthetic data is done in three steps. First, all inputs

in the training set are mapped into the latent space using the encoder network. Second,

SVM finds hyper-planes which separate the latent space using pairs of the outputs of the

encoder network and their corresponding labels. Finally, labels are assigned to synthetic

data using the hyper-planes with respect to the corresponding latent variables of synthetic

data. In Figure 3.7, hyper-planes are found based on the variables (white, gray and black

points) which are mapped from the training set using the encoder network. When new

latent variables (stars) are observed, labels are assigned to the variables based on the

hyper-planes.

X1

X2

Label 0

Label 1
Label 2

Figure 3.7: Support Vector Machine is used to find the hyper-planes based on observed
data (white, grey and black color points) and the hyper-planes are used to assign labels
when previously unobserved data (star points) are given. In the figure, label 0 is given to
the red star while label 2 is given to the green star.

30 Jaehoon Cha

3.3.4 Classification model setup

The architecture of a classification model for MNIST dataset consists of one fully-connected

layer with 128 nodes, and for Fashion-MNIST consists of two fully-connected layers with

128 and 32 nodes. For SVHN, there are four convolutional layers with the same kernel

size, stride and numbers of output channels setup of the generative model. All layers

are followed by the ReLU activation function. In order to predict labels with probability

distributions proportional to the exponential of the outputs of the last layer, we use the

softmax function,
exi∑M
i=1 e

xi
(3.24)

whereM is the number of target classes and i denotes i-th node in the output layer following

the last fully connected layer. Finally, cross entropy is used to compare the outputs and

the targets. At every iteration, 128 pairs of labelled synthetic data are generated and the

classification models are trained on a total of 10, 000 iterations. Like in the generative model

setup, Adam optimizer with 0.001 learning rate is used for all datasets. The evaluation

results on MNIST, Fashion-MNIST and SVHN datasets are used in the next section.

3.3.5 Results

The proposed model requires the standard deviation be a hyper-parameter. Therefore, we

first investigate the effects of the standard deviation of the proposed model on the accuracy

of the test set. For one experiment, we set the standard deviation from 0.001 to 0.009 with

an interval of 0.001, another experiment from 0.01 to 0.09 with an interval of 0.01, and

the third experiment from 0.1 to 1.0 with an interval of 0.1. In the end, we collate all

results. The proposed models with respect to the set of standard deviations are trained

using all images in the training set to generate synthetic data. After labelling the synthetic

data, they are used to train a classification model to get the accuracy of the test set. As

mentioned before, further experiments with the same setup are repeated using a portion of

the training set to check the performance of the generative models when a small number

of data samples is given.

Chapter 3. Data Augmentation Approach 31

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100
Ac

cu
ra

cy

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100

Ac
cu

ra
cy

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100

Ac
cu

ra
cy

(c)

Figure 3.8: Relationship between the standard deviation and the accuracy of the test set
when all images in (a) MNIST, (b) Fasion-MNIST and (c) SVHN datasets are used.

Performance results of the generative models when it is trained on all images

of a training set

All the classification performance results using all images of the training sets of the three

datasets are shown in Figure 3.8. The results show that the larger the standard deviation

is, the worse the performance results will be in all three datasets. This is because when the

standard deviation gets larger, the set M(z) in Eq. (3.10) includes latent variables which

are not close to z. Therefore, it neglects the property from 2) in Theorem 3.2.4. The

performance results begin to deteriorate at some standard deviation, and the range of the

standard deviations that will guarantee a good performance is left for future study.

Next, we compare the best results from the proposed model with the results of VAE

and MMD. All models are trained with the same conditions mentioned in Section 3.3.2

and Section 3.3.4. The accuracies of the test set with respect to the models are shown in

Table 3.1 and the reconstructed images are shown in Figure A.2. Table 3.1 shows that

the highest accuracy is achieved when a classification model is trained on the synthetic

data from the proposed model. In other words, the neural network is able to capture the

characteristics of the dataset even though it is trained on synthetic data. Note that the

difference between accuracies when using the training set and when using the synthetic

data from the proposed model is less than 10%. Although the accuracy in the SVHN

dataset is very different from the accuracy of the test set when using the training set, it

results in a better accuracy than other models. The reconstructed images in Figure A.2

(c) show that VAE fails to reconstruct images in the SVHN dataset, which results in low

accuracy in classification tasks.

32 Jaehoon Cha

Table 3.1: The accuracy of the test set when training neural networks using synthetic data
from generative models trained by all images in the training set.

Training set from \ Dataset MNIST Fashion-MNIST SVHN

VAE 92.24% 69.55% 19.56%

MMD 91.14% 76.44% 46.23%

The proposed model 94.13% 79.72% 49.47%

Original training set 97.91% 88.64% 88.97%

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100

Ac
cu

ra
cy

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100
Ac

cu
ra

cy

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

0

20

40

60

80

100

Ac
cu

ra
cy

(c)

Figure 3.9: Relationship between the standard deviation and accuracy of the test set when
a portion of (a) MNIST, (b) Fasion-MNIST and (c) SVHN datasets is used.

Performance results of the generative models when it is trained on a portion

of the training set

Generative models are proposed so that we may generate synthetic data when it is difficult

to obtain a large amount of data. For that reason, we do experiments with the same setup as

in Section 3.3.2 and Section 3.3.4 but use only 10, 000 images from each dataset. The images

are randomly selected and the sets of selected images are named as: MNISTs, Fashion-

MNISTs and SVHNs. Although we use a smaller number of images, the reconstructed

images using the three datasets in Figure A.3 are similar to the reconstructed images

using the original datasets in Figure A.1. Accordingly, we again evaluate the models using

the accuracy of the test set. Like in the previous results when all images were used, the

accuracy decreases when the standard deviation increases, as shown in Figure 3.9. The

comparison of the results between the proposed model, VAE and MMD are shown in

Table 3.2. The accuracy of the test set when training a classification model using synthetic

data from the proposed model also outperforms the other models. The neural network

trained on synthetic data generated by the proposed model can still distinguish 84.62% of

images from the test set in the MNIST dataset and about 73.37% of the test set from the

Chapter 3. Data Augmentation Approach 33

Fashion-MNIST dataset without the original training set. The reconstructed images from

the three datasets using the proposed model, VAE and MMD are shown in Figure A.4.

Table 3.2: he accuracy of the test set when training neural networks using synthetic data
from generative models trained by a portion of the training set.

Training set from \ Dataset MNISTs Fashion-MNISTs SVHNs

VAE 84.13% 46.03% 19.56%

MMD 82.58% 64.72% 37.72%

The proposed model 84.62% 73.38% 38.41%

3.4 Summary

In this chapter, generative models to generate more data have been provided to overcome

the overfitting problem. We begin by tackling the role of the reparameterization trick in

VAEs, which mimics the sampling in statistics. We notice that each mean in the latent

sapce has its corresponding input and the reparameterization trick could make the archi-

tecture of autoencoders become generative models by mapping unobserved latent variables

around the mean values. This leads us to design a new generative model based on the

continuity of the original AEs and by extension of the mapping of the decoder network

from discrete latent space to continuous latent space. This is done by mapping samples

in the training set into a prior distribution, which is used at the generating phase, and by

adding ε ∼ N (0, σ) where σ is given as a hyper-parameter.

Three datasets are used to verify the proposed model. The proposed generative model

is trained using one of the datasets. At each iteration in training a classification model, a

set of labelled synthetic data from the generative model is fed to the neural network.

The impact of the standard deviation on the accuracy of the test set is empirically

shown. The result suggests that a certain range of standard deviations guarantees learning

a good representation of the dataset. The accuracy of the test set when training using

synthetic data from the proposed generative model is higher than those when training

using synthetic data from the other generative models. The impact of the number of

training samples on the accuracy of the test set is studied by randomly selecting 10, 000

images from each dataset. As the proposed model performs better than the others in a

certain range of standard deviations, it is left for future study to find the optimal range of

standard deviations.

34 Jaehoon Cha

The proposed generative model will be applied to multi-channel data in a later chapter

to generate synthetic data, which are plausibly drawn from the distribution of the training

set. This will help in understanding multi-channel data as we could consider more possible

samples that might arise when multiple channels are combined.

Chapter 4

Hierarchical Learning Approach

Noting the use of conventional ANNs for classification and regression tasks, it is assumed

that the relationship between targets are equal (i.e., no hierarchy). ANNs for a classifica-

tion task built on this assumption cannot take into account an innate hierarchy of targets

(e.g., the first and the second floors of Building A belong to Building A in multi-building

and multi-floor classification). Moreover, on the same assumption, ANNs cannot utilize

additional information that humans know (e.g., numbers larger than five among one-digit

numbers), thereby misclassification by ANNs can be recognized more by humans (e.g.,

ANNs regard the degree of difference between images of cats and images of dogs the same

as between images of cats and images of ships). In this chapter, two types of novel neu-

ral network architectures are proposed to utilize the coarse classes of targets. The first

type directly utilizes coarse classes to boost the training phase and increase performance

of a classification task using image datasets as examples. The experiments with the first

type show learning coarse classes affects learning fine classes. The second type uses coarse

classes to improve the performance of a regression task using indoor localization datasets as

examples of multi-channel data. The experiments with the second type shows that coarse

classes defined based on channels of data can improve the performance of a regression task.

4.1 Hierarchical Auxiliary Learning

Although Convolutional Neural Networks (CNNs) show superior performance in image

classification by hierarchically capturing characteristics of images [43, 102, 81, 30, 20],

some misclassification results with CNNs are hardly ever explainable [10]. The occurrence

35

36 Jaehoon Cha

of this misclassification can be reduced by providing coarse classes as auxiliary information

to CNNs. In the case of an image classification task, coarse classes can be defined by

various conditions. For example, images in real life can be grouped into two classes based

on whether or not they are alive. Considering the significance of coarse classes, new

neural network architectures which take these coarse classes into account deserve intensive

study. To this end, we propose the first type of hierarchical learning models, named as

Hierarchical Auxiliary Learning (HAL). HAL is a mixed concept composed of hierarchical

classification [9, 95, 99, 106] and logical learning by auxiliary inputs [88].

The goal of HAL is to provide coarse class information at the training phase as an

auxiliary input. For example, a set of digits from 0 to 4 and from 5 to 9 can be classified

as two different coarse classes, denoted by 0 and 1, respectively. The coarse classes and

images are then fed to the neural networks during the training phase. Let (x, y) and x∗

be a pair of an image and a fine class and a coarse class, respectively. Triplet (x, y, x∗)

is required to train HAL, while the pair of (x, y) is required in the conventional ANNs.

During the training phase, x and x∗ are fed to the neural network and the output of HAL

is compared with y. Therefore, the goal of HAL is to find a function f ,

ŷ = f(x, x∗), (4.1)

while the goal of the conventional ANNs is to find a function g,

ŷ = g(x), (4.2)

which minimizes the loss between ŷ and y. In this section, an auxiliary block, which takes

coarse classes and outputs auxiliary scores, is inserted to CNNs to find the function f .

4.1.1 Convolutional Neural Network

The images of any given dataset are presented using grayscale or color scale m by n

matrices. With the conventional feedforward neural networks, this dataset would require

m×n or m×n×3 dimensional flatten vectors as its inputs. By flattening the image matrix,

we lose spatial information, which would not occur with CNNs as CNNs scan the original

m by n matrices [43].

In general, CNNs can be divided into two parts: a series of convolutional layers and of a

series of fully-connected layers. In convolutional layers, filters are square arrays which are

Chapter 4. Hierarchical Learning Approach 37

Flattened

Conv
Input

Fc

Figure 4.1: Architecture of the Convolutional neural networks. The Convolutional neural
networks are comprised of convolutional layers and fully-connected layers

smaller than the inputs and are applied to the inputs by way of element-wise multiplication.

The summed outputs of each element-wise multiplication are then collected in a feature

map. Once a feature map is created, values in the feature map go through a nonlinear

function. Let h(m) and w(n,m) be the m-th input from the previous layer and the m-th

array in the n-th filter. Each output of convolutional layer is written as follows:

y(n, i, j) = f(z(n, i, j)), (4.3)

z(n, i, j) =

d∑
m=1

p∑
x=1

q∑
y=1

w(n,m, x, y) · h(m, i+ x, j + y) + b(n), (4.4)

where f is a non-linear activation function, d is the depth of the previous layer, and

p and q are width and height of the kernel, respectively. Here, b is a bias and z(n, i, j)

denotes (i, j)-element in the n-th feature map. After one or more convolutional layers, there

might be a pooling layer. This pooling layer downsamples the previous layers to compress

or generalize feature representations and generally reduces the overfitting in CNNs [43].

38 Jaehoon Cha

The advantages of convolutional layers are the extraction of features hierarchically and

preservation of spatial information, which is known as translation equivariance [42]. These

two advantages allow the outputs of a series of convolutional layers to represent important

features of the input images, regardless of position changes.

4.1.2 Learning scheme

In this subsection, we design an auxiliary block which takes coarse classes as inputs and

outputs the auxiliary scores. Coarse classes are converted to one-hot encodings as follows

to be inputs of the auxiliary block: First, coarse classes are labelled by numbers from

zero. Second, if the label, k, is given to coarse classes, one-hot encodings are completed by

making a vector with (k+1)-th element of 1 and the other elements are 0. For example, let

there be 4 coarse classes. The coarse class with label 1 will have the one-hot encoding of

[0, 0, 1, 0]. Subsequently, the one-hot encodings are fed to the auxiliary block rather than

to the input layer as shown in Figure 4.2. This is done to utilize coarse class information

with extracted features by a series of convolutional layers rather than utilizing raw images.

In other words, the auxiliary block takes one-hot encodings and flattened vectors of the

outputs of the last convolutional layer.

This auxiliary block consists of one fully-connected layer, an element-wise subtraction

layer, an absolute layer and a summation layer. Nevertheless, the auxiliary block contains

learnable parameters only in one fully-connected layer which results in the architecture not

suffering from scalability problems unlike the other architectures introduced in Section 2.2.

The fully-connected layer outputs vectors whose dimensions are the same as those of the

one-hot encoded coarse classes. Passing the other layers in the auxiliary block, the auxil-

iary score is obtained and is element-wise multiplied by the output of the last convolutional

layer. Since the auxiliary block can take any flattened vector of the outputs of the con-

volutional layers, it can be inserted into any existing pretrained model such as VGGNet,

ResNet and so on [78, 27].In this experiment, we insert the auxiliary block after the last

convolutional layer, as we want to utilize features extracted by the convolutional layers.

4.1.3 Backpropagation

ANNs use backward-propagation, also referred to as back-propagation, to find the optimal

parameters by reducing the loss between the predictions of ANNs and targets [72]. The loss

gets smaller by adjusting the learnable parameters of ANNs based on the derivative of the

Chapter 4. Hierarchical Learning Approach 39

The last
convolutional layer

Auxiliary Block

Fully-connected
layer

×

Convolutional layer

Image: 𝑥 Coarse class: 𝑥∗

⋮

Coarse class Input, 𝑥∗:
𝑠−dimensional vector

Linear layer Output:
𝑠−dimensional vector

The last Convolutional
layer Output:

𝑙−dimensional vector

−

Absolute value
function Output:

𝑠−dimensional vector

Sum Output:
𝑠𝑐𝑎𝑙𝑎𝑟

Auxiliary Block

Auxiliary score:
𝑠𝑐𝑎𝑙𝑎𝑟

𝑎

𝑦𝑁−2

𝑦𝑁−1

Figure 4.2: Architecture of the Hierarchical Auxiliary learning. The auxiliary block is
inserted after a series of convolutional layers.

loss with respect to the learnable parameters, i.e., ∂l
∂w is the degree of the changes of l with

respect to changes of w , where l and w are the loss and a learnable parameter, respectively.

However, it is difficult to calculate ∂l
∂w directly for all learnable parameters since learnable

parameters are connected with multiple operations. This difficulty is solved by back-

propagation by firstly calculating the derivatives of l with respect to learnable parameters

from the last layer to the first layer using the chain rule [72], and secondly adjusting

learnable parameters with respect to the derivatives to reduce the loss. The auxiliary

block includes learnable parameters in its fully-connected layer and those parameters are

also updated through back-propagation, meaning the auxiliary scores are learnt through

back-propagation during the training phase.

As back-propagation works well with the flow of the input layer, the convolutional

layers, the fully-connected layers and the output layer, we are going to show how to im-

plement back-propagation when the auxiliary block is inserted within this flow. Let us

consider a neural network consisting of a series of convolutional layers, one fully-connected

layer and the auxiliary block as shown in Figure 4.2. Let yN−1, yN−2, and a be the input

to the fully-connected layer, the output of the last convolutional layer and the auxiliary

40 Jaehoon Cha

score, respectively. Compared to conventional CNNs where yN−1 = yN−2, the input to the

fully-connected layers, yN−1, is calculated by

yN−1 = yN−2 × a (4.5)

and

a =
∑
j

∣∣∣∣∣∑
i

wij · yN−2
i − x∗j

∣∣∣∣∣ , (4.6)

where wij ’s are the learnable parameter of the fully-connected layer in the auxiliary block

and x∗ = (x∗j) is the one-hot encoded coarse class. Subsequently, the derivative of l with

respect to learnable parameters are calculated as follows:

∂L

∂a
=
∑
i

∂L

∂yN−1
i

· yN−2
i , (4.7)

∂L

∂yN−2
i

=
∂L

∂yN−1
i

· a+
∑
j

χj ·
∂L

∂a
· wij (4.8)

and
∂L

∂wij
= χj ·

∂L

∂a
· yN−2
i , (4.9)

where

χj =

{
1 if

∑
iwij · y

N−2
i > x∗j ,

−1 otherwise
. (4.10)

This shows that the auxiliary score is updated based on the extracted features from the

convolutional layers and the coarse classes using back-propagation. In addition, the auxil-

iary block transforms the discrete coarse class to the continuous auxiliary scores. Because

learnable parameters are included only in one fully-connected layer, the number of learn-

able parameters of HAL is similar to those of one without the auxiliary block. The result

will be verified in the next subsection.

4.1.4 Experiments with three baselines

In this subsection, we investigate the effect of the auxiliary block on the performance of

the image classification task. Given the fact that the auxiliary block can be inserted after

Chapter 4. Hierarchical Learning Approach 41

Table 4.1: CIFAR-10 dataset label information
Name airplane car bird cat deer dog frog horse ship truck

Label 0 1 2 3 4 5 6 7 8 9

any series of convolutional layers, three baselines are used on the CIFAR-10 dataset1: a)

Base A (used in [106]), b) Base B (the pretrained VGG 16) and c) Base C (the pretrained

ResNet 34), which are shown in Figure 4.3. The auxiliary block is inserted between the

last convolutional layer and the first fully-connected layer in each baseline as shown in

Figure 4.4. In CIFAR-10, there are 60, 000 images of 32×32, which belong to the 10

different classes listed in Table 4.1. In order to utilize coarse classes, CIFAR-10 data are

grouped into two cases. In the first case, the fine classes are divided into two coarse classes

based on whether the class is a form of transportation or an animal. In the second case,

the fine classes are grouped into five coarse classes. The relationships of the coarse classes

and fine classes for both cases are shown in Figure 4.5. All baselines are trained on the

same conditions: the batch size and epoch are set to 128 and 100, respectively. Stochastic

gradient descent (SGD) optimizer is used with a step learning schedule: the initial learning

rate is set to 0.003 and decreases to 0.0005 after 42 epochs and to 0.0001 after 52 epochs.

The result of the fine class classification task is shown in Table 4.2. The results show

that the accuracy of the test set increases in both cases. As the second case has higher

accuracies than the first case on all three baselines, we can assume that the coarse class

information improves the accuracy of the test set regardless of the architecture of the neural

networks.

We discover two notable points of HAL. First, the proposed model can be easily created

by inserting an auxiliary block into the existing CNNs. Second, the number of learnable

parameters in both the baselines with or without the auxiliary block are very similar. The

comparison of the number of the parameters between the baseline with or without the

auxiliary block is shown in Table 4.3.

4.1.5 Experiments with three datasets on the selected baseline

We further investigate the effect of the auxillary block on the performance of the image

classification task with a new architecture setup modified by Base C using three standard

benchmark datasets: MNIST, SVHN and CIFAR-10. ResNet (Base C) is one of the most

1Available at https://www.cs.toronto.edu/~kriz/cifar.html.

https://www.cs.toronto.edu/~kriz/cifar.html

42 Jaehoon Cha

(Fc-1024)×2

(Conv-64)×2

Image: 𝑥

maxpool-2
(Conv-128)×2

maxpool-2
(Conv-256)×2

maxpool-2
(Conv-512)×2

maxpool-2

Fc-Final

(a)

(Fc-4096)×2

(Conv-64)×2

Image: 𝑥

maxpool-2
(Conv-128)×2

maxpool-2
(Conv-256)×3

maxpool-2
(Conv-512)×3

maxpool-2
(Conv-512)×3

Fc-Final

(b)

(Conv-64)*

Image: 𝑥

maxpool-2
[(Conv-64)×2]×3
[(Conv-128)×2]×4

[(Conv-256)×2]×6
[(Conv-512)×2]×3

avgpool-2

Fc-Final

(c)

Figure 4.3: Three baselines are used to investigate the effect of the auxiliary block. (a) is
proposed in [106], (b) is VGG16 and (c) is ResNet34. Kenerl sizes of all Conv layers are
set to 3 and a kernel size of Conv∗ is set to 7.

Table 4.2: The accuracy of the test set on the three baselines
Case Base A Base A with the auxiliary block

89.15
Case1 89.57
Case2 91.53

Base B Base B with the auxiliary block

92.24
Case1 92.47
Case2 94.02

Base C Base C with the auxiliary block

87.64
Case1 87.99
Case2 89.35

popular architectures in Computer Vision but is designed for a larger image dataset than

CIFAR-10 [27]. Accordingly, we reduce the number of residual blocks and the number

of filters in each residual block for the three datasets. For the experiments with three

datasets, we use three residual blocks with filters of 16, 32 and 64. While images in

Chapter 4. Hierarchical Learning Approach 43

(Fc-1024)×2

(Conv-64)×2

Image: 𝑥

maxpool-2
(Conv-128)×2

maxpool-2
(Conv-256)×2

maxpool-2
(Conv-512)×2

maxpool-2

Fc-Final

Auxiliary Block

×

Coarse class: 𝑥∗

(a)

(Fc-4096)×2

(Conv-64)×2

Image: 𝑥

maxpool-2
(Conv-128)×2

maxpool-2
(Conv-256)×3

maxpool-2
(Conv-512)×3

maxpool-2

(Conv-512)×3

Fc-Final

Auxiliary Block

×

Coarse class: 𝑥∗

(b)

(Conv-64)*

Image: 𝑥

maxpool-2
[(Conv-64)×2]×3
[(Conv-128)×2]×4
[(Conv-256)×2]×6
[(Conv-512)×2]×3

avgpool-2

Fc-Final

Auxiliary Block

×

Coarse class: 𝑥∗

(c)

Figure 4.4: Architecture of three baselines with the auxiliary block.

Table 4.3: The number of the learnable parameters on the three baselines
Case Base A Base A with the auxiliary block

7,849,418
Case1 7,853,516
Case2 7,859,663

Base B Base B with the auxiliary block

39,929,674
Case1 39,933,772
Case2 39,939,919

Base C Base C with the auxiliary block

21,802,802
Case1 21,806,900
Case2 21,813,047

SVHN and CIFAR-10 datasets have an RGB-channel, MNIST dataset has grayscale images.

Therefore, the number of repetitions in each block is set differently – one for MNIST and

four for both SVHN and CIFAR-10. In this experiment, we use cosine annealing with a

maximum learning rate of 1.0 and a minimum learning rate of 0 [47]. Batch size is set to

128 and epoch is increased to 250 for all datasets. The learnable parameters are initialized

by He initialization [26]. During the training phase, images are augmented by cropping and

randomly flipping. All experiments are trained five times, and the mean and the standard

44 Jaehoon Cha

Bird Cat Deer Dog Frog HorseAirplane Car Ship Truck

Transportation Animal

CIFAR-10

(a)

Cat Dog Bird FrogDeer Horse Airplane ShipCar Truck

Car Small animal Big animal Craft Others

CIFAR-10

(b)

Figure 4.5: Coarse class information of (1) the first case and (2) the second case with
CIFAR-10 dataset.

deviation of the accuracies are presented in Table 4.5.

Table 4.4: Coarse classes information
Dataset Case Condition Coarse class

MNIST Case1 ≥ 5 0:{5, 6, 7, 8, 9}, 1:{0, 1 ,2 ,3, 4}
SVHN Case2 modulo 2 0:{1, 3, 5, 7, 9}, 1:{0, 2, 4, 6, 8}

Case3 prime 0:{2, 3, 5, 7}, 1:{0, 1, 4, 6, 8, 9}
Case4 circle/ curve/ straight line 0:{0, 6, 8, 9}, 1:{2, 3, 5}, 2:{1, 4, 7}

CIFAR-10 Case1 transportation/ animal 0:{2, 3, 4, ,5, 6, 7}, 1:{0, 1, 8, 9}
Case2 car/ small animal/ big animal/ 0:{1, 9}, 1:{3, 5}, 2:{4, 7},

craft/ others 3:{0, 8}, 4:{2, 6}
Case3 fine class ≥ 5 0:{5, 6, 7, 8, 9}, 1:{0, 1 ,2 ,3, 4}
Case4 fine class (modulo 2) 0:{1, 3, 5, 7, 9}, 1:{0, 2, 4, 6, 8}

MNIST

We use the MNIST dataset, which was described in Chapter 3, to evaluate HAL. The

coarse classes of this dataset are manually drawn based on human knowledge or on the

Chapter 4. Hierarchical Learning Approach 45

Table 4.5: The accuracy comparison with three datasets
MNIST baseline Case1 Case2 Case3 Case4

Error 99.07 99.57 ± 0.03 99.27 ± 0.06 99.30 ± 0.05 99.31 ± 0.00

SVHN baseline Case1 Case2 Case3 Case4

Error 95.95 97.47 ± 0.06 97.36 ± 0.11 97.34 ± 0.07 97.14 ± 0.07

CIFAR-10 baseline Case1 Case2 Case3 Case4

Error 93.19 93.54 ± 0.08 94.87 ± 0.09 96.7 ± 0.06 94.7 ± 0.14

shape of the digit. First, the dataset is grouped by five into two coarse classes. Second,

it is split into even and odd numbers. The third condition is based on whether the digit

is a prime number. Finally, the coarse classes are determined by the similarity of the

shape of the digits: Circles appear in digits 0, 6, 8 and 9, and lines govern the digits 1,

4 and 7, while the other digits do not have unconnected curves. The four different coarse

classes are summarized in Table 4.4 and the results are shown in Table 4.5. While the

baseline accuracy is 99.07%, all coarse classes mentioned above affect the improvement

of the accuracy of the test set. Loss in the training and test sets of the baseline with

or without the auxiliary block during the training phase are compared in Figure B.1. In

addition, the auxiliary scores of all training images show that the auxiliary scores can be

separated based on the coarse classes. A comparison between Case1 and Case2 shows that

a better performance is obtained when the auxiliary scores are well-separated with respect

to the coarse classes. A comparison between Case1 and Case4 shows that constructing

more coarse classes does not guarantee improvement of the performance.

SVHN

Next, the SVHN dataset introduced in Chapter 3 is used to evaluate HAL. As the fine

classes of MNIST and SVHN are the same, we can apply the coarse classes strategy of

MNIST to SVHN. The mean and the standard deviation of the errors are shown in Ta-

ble 4.5. The accuracy of the test set is improved by at least 1.2%. During the training

phase, the losses of training and test sets decrease faster when the coarse classes are intro-

duced. Unlike MNIST dataset, the auxiliary scores are well-distributed over all the coarse

classes as shown in Figure B.4, thereby the results of all cases are almost identical.

46 Jaehoon Cha

CIFAR-10

We also use CIFAR-10 dataset with four coarse class cases including the first and second

case in Section 4.1.4. The new coarse classes, Case3 and Case4, are formed based on their

labels shown in Table 4.1. In Case3, if the label of an image is larger than or equal to 5,

then it is labeled as 0; otherwise, the label is 1. In Case4, 0 is given if the fine class of an

image is an odd number; otherwise, 1 is given. Although the coarse classes are not related

to the semantic information of the targets, which makes the coarse classes of Case3 and

Case4 meaningless, we still evaluate the proposed model with Case3 and Case4 in order

to observe if any coarse classes could improve the overall performance. All coarse class

information is described in Table 4.4. As shown in Table 4.5, the meaningless coarse class

assignments also improve the accuracy of the test set. Figure B.5 also shows that loss

reduction during the training phase with the auxiliary block is faster and more efficient in

terms of convergence when coarse classes are provided. Again, a separation of auxiliary

scores with respect to coarse classes is related to the accuracy of the test set as shown

in Figure B.6 and Table 4.5. Case3 – which shows a clear separation between two coarse

classes – outputs a higher accuracy than Case1 – where the two regions of auxiliary scores

with respect to coarse classes are overlapped.

4.2 Consecutive Feedforward Neural Networks and Hierar-

chical Auxiliary Deep Neural Networks

It is clear that HAL performs better by applying coarse classes than conventional ANNs,

as seen in Section 4.1. However, HAL still needs coarse classes during the test phase,

which are sometimes unavailable. In this section, we derive a new model which utilizes a

hierarchy of targets for regression tasks and which does not require coarse classes during

the test phase. Conventional ANNs for a regression task only consider the target values,

thereby an innate hierarchy of targets cannot be taken into account. In order to deal with

this issue, we propose the second type of hierarchical learning models, called Consecutive

Feedforward Neural Networks (C-FNNs) and Hierarchical Auxiliary Deep Neural Networks

(HADNNs). Both perform a classification task for coarse classes and a regression task for

fine classes. In C-FNNs and HADNNs, coarse classes in a training set are given and the

regression task follows the classification tasks. There are two possible cases for the coarse

classes: (1) coarse classes have only one level and (2) coarse classes have two levels. At the

Chapter 4. Hierarchical Learning Approach 47

test phase, the proposed models predict all coarse classes and a target of the regression

task. Both C-FNNs and HADNNs show better performance than conventional ANNs, but

C-FNNs require a large number of learnable parameters. In order to balance and scale the

loss between coarse classes and fine classes, adaptive loss balancing is introduced in the

following subsection.

4.2.1 Adaptive loss balancing

C-FNNs and HADNNs can be regarded as multi-task learning, as they perform coarse

class classification tasks as well as a regression task. Learnable parameters in C-FNNs

and HADNNs are updated by reducing all the losses of both tasks. The simplest way to

deal with multiple losses is to sum all the losses. However, this results in the imbalanced

learning of multi-tasks, i.e., a loss of some of the tasks decreases faster than the others. This

imbalanced learning causes biased performance, which means having a good performance

only in some of the tasks. In this section, we propose adaptive loss balancing in order to

deal with this imbalanced learning problem.

Adaptive loss balancing is made up of two strategies: 1) weights of losses are calculated

to make the ratio of the losses equal and 2) an additional weight, k, is multiplied by the

loss of the regression task to deal with the scale difference of the loss functions between a

regression task and a classification task. The procedure is as follows:

1. Calculate each loss, lc1 , lc2 , and lr.

2. Round up each loss.

3. Take the maximum of the losses, which is denoted by m.

4. Calculate m
lc1

, m
lc2

, and m
lr

.

5. Round them up and denote by ac1 , ac2 , and ar.

6. Multiply them by the losses.

7. The final loss is ac1 · lc1 + ac2 · lc2 + k · ar · lr

where lc1 , lc2 , and lr are losses for the first coarse classes, the second coarse classes, and a

regression task, respectively.

48 Jaehoon Cha

4.2.2 Consecutive Feedforward Neural Networks

C-FNNs are a series of pairs of one feedforward neural network and one decoder network.

Each feedforward neural network performs a classification task or a regression task. Then,

all decoder networks enlarge the outputs of each of the feedforward neural network apart

from the output of the last feedforward neural network. This results in the outputs of

the decoders having the same dimensions as the inputs of the feedforward neural net-

work. Subsequently, the inputs are added element-wise to the outputs. The process of

adding inputs by skipping the feedforward neural network and the decoder is known as

skip connection [27, 81]. Next, we illustrate two types of C-FNNs.

C-FNNs for coarse classes with one level

In C-FNNs for coarse classes with one level, there are two feedforward neural networks

and one decoder network. The first feedforward neural network performs a coarse class

classification task. The decoder network enlarges the output of the coarse class classifica-

tion task to have the same dimensions as the input of the feedforward neural network. Let

FNN1 be the first feedforward neural network for the input x, then the output of FNN1

in Eq. (4.11),

ŷc1 = FNN1(x) (4.11)

is fed to the first decoder network DEC1 to enlarge the dimensions. Consequently, the

second feedforward neural network, FNN2, performs the final regression task by taking the

sum of the output of the decoder and the input x. This process is expressed in Eq. (4.12).

ŷr = FNN2(DEC1(ŷc1) + x) (4.12)

The cross-entropy and the mean squared error are used to calculate the classification loss

and the regression loss, respectively. Applying adaptive loss balancing from Section 4.2.1,

the loss, l, becomes

l = ac1 · C(ŷc1 , yc1) + k · ar ·M(ŷr, yr), (4.13)

where C is the cross-entropy, M is the mean squared error, and yc1 and yr denote the

first coarse class target and a regression target, respectively. The architecture is shown in

Chapter 4. Hierarchical Learning Approach 49

Figure 4.6.

𝑥

	𝑦$% + Loss𝐹' 𝐷' 𝐹) 	𝑦*

Figure 4.6: Consecutive Feedforward Neural Networks for coarse classes with one level. F
and D denote a feedforward neural network and a decoder network, respectively, and yc1 ,
and yr denote the first coarse class and a regression output, respectively.

𝑥

	𝑦$% 	𝑦$& 	𝑦'+ + Loss𝐹) 𝐷) 𝐹+ 𝐷+ 𝐹,

Figure 4.7: Consecutive Feedforward Neural Networks for coarse classes with two levels.
F and D denote a feedforward neural network and a decoder network, respectively, and
yc1 ,yc2 , and yr denote the first coarse class, the second coarse class and a regression output,
respectively.

C-FNNs for coarse classes with two levels

C-FNNs for coarse classes with two levels require one more classification task. Hence, the

third feedforward neural network, FNN3, and the second decoder network, DEC2, are

inserted in the architecture in Figure 4.6. In addition, the loss for the second coarse class

classification task is added to the loss in Eq. (4.13), and it becomes

l = ac1 · C(ŷc1 , yc1) + ac2 · C(ŷc2 , yc2) + k · ar ·M(ŷr, yr), (4.14)

where yc1 , yc2 and yr denote the first coarse class target, the second coarse class target and

a regression target, respectively. The architecture diagram is shown in Figure 4.7.

However, C-FNNs need a large number of learnable parameters due to the use of skip

connection. Consequently, we propose an architecture in the next subsection that can

50 Jaehoon Cha

overcome this difficulty.

4.2.3 Hierarchical Auxiliary Deep Neural Networks

Here, we propose a new architecture called HADNNs, which are modifications of C-FNNs

by reducing the size of a series of pairs of one feedforward neural network and one decoder

network.

HADNNs for coarse classes with one level

In HADNNs, we can reduce the size of a pair of one feedforward neural network and one

decoder network because the skip connection is no longer used. The first layer then is

followed by two branches: 1) a pair of one feedforward neural network and one decoder

network and 2) one feedforward neural network. The first branch performs the coarse

class classification task and the second branch directly conveys extracted features from the

preceded layer to the next layer. Let us define a layer which has two branches as F . Then,

the two branches are denoted as F u1 and F d1 . A pair of one feedforward neural network,

FNN , and one decoder network, DEC, for a coarse class classification task follows F u1 ,

i.e.,

ŷc1 = FNN(F u1 (F (x))), (4.15)

and DEC extends ŷc1 to have the same dimensions as the outputs of F d1 , then these are

concatenated as follows,

ŷ = DEC(ŷc1) c©F d1 (F (x)) (4.16)

where c© denotes concatenation. ŷ is then fed to the next layer. By concatenating the

two branches, the latter layers are affected by the information from the input and the

extracted features from the previous tasks. The same loss as in Eq. (4.13) is applied and

the architecture of HADNNs for coarse classes with one level is shown in Figure 4.8.

HADNNs for coarse classes with two levels

Since there are coarse classes with two levels, we repeat the inserting branches process

described in the previous section one more time. We complete the model for coarse classes

Chapter 4. Hierarchical Learning Approach 51

with two levels by inserting two branches within F u1 , as shown in Figure 4.8. The com-

pleted model is shown in Figure 4.9. The outputs of the first coarse class information are

concatenated with F d2 . Consequently, the second coarse class information, which is affected

by the input x, and the first coarse class information are concatenated with F d1 . Finally,

the regression task is performed based on the information of the first coarse class, the

second coarse class, and the input x. By removing skip connection and the conveyance of

input information by branches, the proposed network reduces the number of parameters.

𝐹

𝐹"# 𝐹$" 	𝑦$' 𝐷"

𝐹")

𝐹* 	𝑦* Lossc

𝑥

Figure 4.8: Hierarchical Auxiliary Deep Neural Network for coarse classes with one level.
F and D denote a feedforward neural network and a decoder network, respectively, and
yc1 , and yr denote the first coarse class and a regression output, respectively.

𝑥

𝐹

𝐹#$

𝐹%$ 𝐹&# 	𝑦&) 𝐷%

𝐹%+

𝐹&% 	𝑦&, 𝐷#

𝐹#+

c

𝐹- 	𝑦- Lossc

Figure 4.9: Hierarchical Auxiliary Deep Neural Network for coarse classes with two levels.
F and D denote a feedforward neural network and a decoder network, respectively, and
yc1 ,yc2 , and yr denote the first coarse class, the second coarse class and a regression output,
respectively.

52 Jaehoon Cha

4.2.4 Comparison between C-FNNs and HADNNs

The most important purpose of C-FNNs and HADNNs is to deliver input information

and the extracted information from coarse class classification tasks to a regression task.

However, there is a small difference in their architectures.

C-FNNs derive extracted features related to the coarse classes and add them to the

inputs. By adding extracted features to the inputs, which is crucial in order to compensate

for the information lost at the coarse class classification tasks, all the information together

can be delivered to a regression task. Although C-FNNs are able to deliver the information

mentioned before to a regression task, C-FNNs still require a lot of parameters because of

skip connection.

In HADNNs, extracted features of inputs and of the outputs of the coarse class classifi-

cation tasks are delivered to a regression task by making two branches. By concatenating,

as opposed to adding, the extracted features of inputs and of the outputs, a large number

of parameters can be eliminated. In addition, the concatenation of the extracted features

allows for the independent connecting of these extracted features to the next layer. On the

other hand, by adding the extracted features of inputs and of the outputs of the coarse

class classification tasks, separately considering the importance of each extracted feature

is difficult. Therefore, concatenation allows for a more flexible process.

4.2.5 C-FNNs and HADNNs setup

C-FNNs and HADNNs are applied to indoor localization datasets as examples of multi-

channel data since the samples in the indoor localization datasets are obtained from mul-

tiple independent Wi-Fi routers. The description of the datasets is in the following sub-

section. The coarse classes in the indoor localization datasets can be either building and

floor and fine classes are location coordinates. The main goal of indoor localization is

the estimation of a location coordinate. Because location coordinates are highly related to

building and floor information in indoor localization, building and floor information should

be considered when training ANNs on indoor localization.

C-FNNs and HADNNs are built based on a baseline of two fully-connected layers with

128 and 68 nodes, respectively, which showed the best result with one of the three datasets

in [38, 79]. For the regression task, the outputs of the baseline are set as two continuous

targets: the longitude and latitude, which are referred to as location coordinates. Table 4.6

and Table 4.7 summarize the number of nodes of C-FNNs and HADNNs used for the case of

Chapter 4. Hierarchical Learning Approach 53

coarse classes with one level and for the case of coarse classes with two levels, respectively.

We use a cosine annealing learning rate with a maximum learning rate of 0.01 for the

TUT datasets and to 0.03 for the UJIIndoorLoc dataset. In the loss function, defined by

adaptive loss balancing, the additional weight, k, is set to 10.

Table 4.6: The number of nodes of the models used for TUT datasets
Methods Network The number of nodes

C-FNN
F1 128 - 64 - Nc1

F2 128 - 64 - Nr

D1 64 - 128 - Ninput

HADNN

F 128
F u1 , F d1 , D1 64
Fc1 Nc1

Ff Nr

Table 4.7: The number of nodes of the models used for UJIIndoorLoc dataset
Methods Network The number of nodes

C-FNN

F1 128 - 64 - Nc1

F2 128 - 64 - Nc2

F3 128 - 64 - Nr

D1, D2 64 - 128 - Ninput

HADNN

F 128
F u1 , F d1 , D1 64
F u2 , F d2 , D2 32
Fc1 Nc1

Fc2 Nc2

Ff Nr

4.2.6 Data description

Three open source datasets are used to evaluate C-FNNs and HADNNs. The first two of

the three open source datasets are used to evaluate models for coarse classes with one level

and the third of the datasets is used to evaluate models for coarse classes with two levels.

54 Jaehoon Cha

Case study for coarse classes with one level: TUT datasets

The first two of the three open source datasets mentioned above are collected at Tampere

University of Technology, Finland as an example of coarse classes with one level. One was

published in 2017, denoted by TUT2017 dataset [46], and the other in 2018, denoted by

TUT2018 dataset [54]. Both datasets comprise training and test sets and both sets provide

Received Signal Strengths (RSSs), floor, location coordinates. RSSs are used as inputs,

while floor, longitude and latitude are used as targets. TUT2017 dataset was measured

at 5 different floors in a building and TUT2018 dataset was measured at 3 different floors

in a building. The distributions of the longitude and latitude of both datasets are shown

in Figure 4.10. Since more data were collected for the test sets of both datasets, the

distributions of the test sets are denser than that of the training sets. By considering floor

and location coordinates predictions, we compute the final score:

Final score(x) = 4 · F +Dist(C). (4.17)

where F is the difference between the floor targets and the floor predictions of ANNs

and Dist(C) is the Euclidean coordinate mean distance between the location coordinates

targets and the location coordinates predictions of ANNs. The score is modified from the

proposed score in [57], which was originally suggested for building-floor-coordinate tasks.

Case study for coarse classes with two levels: UJIIndoorLoc dataset

The third of the datasets mentioned above, UJIIndoorLoc dataset [83] was collected from 3

buildings during different time periods. The UJIIndoorLoc dataset consists of trainingData

and validationData. TrainingData comprises RSSs, building, floor, location coordinates,

spaceID, relative position, userID and PhoneID, whereas validationData only consists of

RSSs, building, floor, location coordinates and PhoneID. Since UJIIndoorLoc dataset con-

tains building information which TUT datasets do not contain, we evaluate C-FNNs and

HADNNs for coarse classes with two levels by setting the building information as the

first level of the coarse classes and floor information as the second level of the coarse

classes. Figure 4.11 shows that clusters of floors with respect to the location coordinates

are hardly ever separated, while clusters of buildings with respect to the location coor-

dinates are well-distinguished. This implies that the location coordinates regression may

not take into account floor classification. Considering all predictions, we compute the final

Chapter 4. Hierarchical Learning Approach 55

(a) (b)

(c) (d)

Figure 4.10: Distribution (a) floors in the training set (b) in the test set in the TUT2017
dataset, and (c) floors in the training set (d) the test set in the TUT2018 dataset.

score proposed in the competition [57],

Final score(x) = 50 ·B + 4 · F +Dist(C), (4.18)

where B is 1 if the building prediction fails and F is the difference between the floor targets

and the floor predictions of ANNs, whileDist(C) is the Euclidean coordinate mean distance

between the location coordinates targets and the location coordinates predictions of ANNs,

which is defined in [57]. The summary of all datasets is listed in Table 4.8.

4.2.7 Experiments

The main target of C-FNNs and HADNNs is the location coordinates prediction by the

utilization of coarse classes. C-FNNs and HADNNs employ the coarse classes during the

training phase. During the test phase, unlike HAL, they do not require target coarse classes

but predict coarse classes and the location coordinates. For the purpose of performance

56 Jaehoon Cha

(a) (b)

(c) (d)

Figure 4.11: Distribution of (a) buildings in the training set (b) floors in the training set
(c) buildings in the validation set (d) floors in the validation set in the UJIIndoor dataset.

evaluation, coarse class classification accuracy, fine class regression mean squared error and

Final core proposed in subsection 4.2.6 are used. In addition, we compare our results with

available methods which predict coarse classes and location coordinates.

TUT datasets

TUT datasets are used to evaluate C-FNNs and HADNNs for coarse classes with one

level. All results are shown in Table 4.9 and Table 4.10. Apart from the floor accuracy in

TUT2018 dataset, the best performance is obtained with HADNNs. Nevertheless, C-FNNs

also achieve an equally good performance as HADNNs although C-FNNs require at least

three times the parameters over the baseline while HADNN requires at most 1.1 times.

HADNNs results are compared with the results in [46], which used the TUT2017

dataset. In [46], the smallest Euclidean coordinate mean distance is 8.09,which was ob-

Chapter 4. Hierarchical Learning Approach 57

Table 4.8: Summary of datasets
Dataset UJIIndoor TUT2017 TUT2018

The number of training data 19937 697 446

The number of test data 1111 3951 982

The number of RSS values 520 992 489

The number of Buildings 3 N/A N/A

The number of Floors 4 or 5 5 3

Table 4.9: TUT2017 dataset results of C-FNN and HADNN
Methods Baseline C-FNN HADNN

Floor accuracy (%) 38.54 93.12 94.58

Euclidean coordinate mean distance (m) 11.31 9.12 9.05

Final score in Eq. (4.17) 19.14 11.77 11.75

The number of parameters 136,258 410,993 145,233

Table 4.10: TUT2018 dataset results of C-FNN and HADNN
Methods Baseline C-FNN HADNN

Floor accuracy (%) 66.19 97.55 97.45

Euclidean coordinate mean distance (m) 13.88 10.62 9.91

Final score in Eq. (4.17) 19.96 14.33 13.34

The number of parameters 71,874 216,070 80,587

Table 4.11: TUT2017 dataset results comparison with previous works
Methods Clustering UJI kNN RTLS@UM HADNN

Floor accuracy (%) 90.81 92.26 90.05 94.58

Euclidean coordinate mean distance (m) 8.09 8.45 9.18 9.05

58 Jaehoon Cha

Table 4.12: UJIIndoor dataset results of C-FNN and HADNN
Methods Baseline C-FNN HADNN

Building accuracy (%) 99.09 100.00 100.00

Floor accuracy (%) 32.40 92.34 93.15

Euclidean coordinate mean distance (m) 15.44 11.74 11.59

Final score in Eq. (4.18) 23.95 15.56 14.93

The number of parameters 75,458 382,248 90,584

Table 4.13: UJIIndoor dataset results comparison with previous works
Methods RTLS@UM Weighted Centroid HADNN

Building accuracy (%) 100.00 99.91 100.00

Floor accuracy (%) 94.00 90.19 93.15

Euclidean coordinate mean distance (m) 7.73 9.27 14.93

tained with RSS clustering and the best floor accuracy is 92.26% by use of UJI kNN

algorithm. With TUT2017 dataset, HADNNs performs better in all tasks compared with

RTLS@UM and in the floor classification task compared with all previous results. Although

RSS clustering and the UJI kNN algorithm show better performance in the Euclidean co-

ordinate mean distance than HADNNs, both methods require a training set during the

test phase, while HADNNs do not.

UJIIndoorLoc dataset

UJIIndoorLoc dataset is used to evaluate C-FNNs and HADNNs for coarse classes with

two levels. A comparison between the baseline and C-FNNs and HADNNs are shown in

Table 4.12. The best performance is obtained with HADNNs. C-FNNs also achieve as

good performance as HADNNs, but require five times the parameters over the baseline

while HADNNs only require 1.2 times. Baseline results show that ANNs designed for only

the location coordinates prediction cannot take into account the coarse class of the targets.

The dataset used in the competition in the International Conference on Indoor Po-

sitioning and Indoor Navigation (IPIN) 2015 and a number of additional research have

been carried out with UJIIndoorLoc dataset due to its large scale [57, 64, 32, 38, 79]. We

compare the results of HADNNs with the best result in the competition, which is from the

RTLS@UM team, and with the result by ANNs with Weighted Centroid (ANNs with WC)

in [38]. All results are shown in Table 4.13. HADNNs perform better than ANNs with

Chapter 4. Hierarchical Learning Approach 59

WC, but have a slightly lower performance than RTLS@UM in a floor classification task.

Despite this, the advantage of HADNNs is that a training set is not necessary during the

test phase.

4.3 Summary

In this chapter, we propose two types of hierarchical learning models to utilize the an

hierarchy of targets. They can be applicable to fields where it is easy to obtain a hierarchy

of targets such as Computer Vision and indoor localization.

The first type of hierarchical learning models is HAL, a combined idea of auxiliary

learning and hierarchical classification. Supposing target classes of images have coarse

classes, the coarse class information is fed to the auxiliary block in neural networks. This

auxiliary block consists of one fully-connected layer, an element-wise subtraction layer, an

absolute layer and a summation layer. Taking outputs of a series of convolutional layers as

an input, the auxiliary block transforms discrete coarse classes to the continuous auxiliary

scores which can be distributed with respect to their coarse classes, thereby helping in the

classification of fine classes.

HAL is tested with three baselines using three benchmark datasets. The accuracy

was improved 0.5%, 1.52% and 3.51% at most in MNIST, Fashion-MNIST and SVHN,

respectively. The auxiliary block improves the performance and does not have an impact

on the number of coarse classes and on the number of parameters of neural networks. This

is a powerful advantage as, normally, the number of coarse classes increases when a large

amount of data is obtained.

The other type of hierarchical learning models are C-FNNs and HADNNs. They are

proposed to deal with indoor localization problems as an example of multi-channel data.

In C-FNNs and HADNNs, coarse classes of given data are provided and used during the

training phase. There are two possible cases in indoor localization. The first case is coarse

classes with one level since the data are gathered in one building; hence, the targets are

floors and location coordinates. In the second case, coarse classes have two levels since

the data are obtained in multiple buildings, meaning the targets are buildings, floors, and

location coordinates. C-FNNs perform better than conventional ANNs. Despite this, its

number of parameters increases greatly. In contrast, HADNNs, which are modified from

C-FNNs, perform as well as C-FNNs and prevent the drastic increase in the number of

parameters.

60 Jaehoon Cha

In order to validate C-FNNs and HADNNs, they are compared using three datasets.

The C-FNNs increase floor accuracy by 55%, 30% and 60% in TUT2017, TUT2018 and

UJIIndoorLoc datasets, respectively. However, C-FNNs require three times and five times

the parameters in TUT and UJIIndoorLoc datasets, respectively. On the other hand,

HADNNs achieve slightly better accuracy than C-FNNs, and HADNNs also need less

parameters than C-FNNs. The biggest advantage of C-FNNs and HADNNs is that they

do not require the training set and coarse classes at the test phase.

The results of the second type of hierarchical models show that training C-FNNs and

HADNNs with coarse classes based on channels of data can improve the performance of a

test set without coarse classes.

Chapter 5

Multi-channel Human Data

Human motion data are obtained from sensors on different body parts such as the head,

hands, chest, feet and so on. These sensors are considered as channels in human motion

data, which make human motion data a typical type of multi-channel data and the sen-

sor locations important information. In addition, the targets of human motion data are

motion types. The significance of the relationship between sensor locations and motion

types can be identified by the common measurement patterns among subjects. For exam-

ple, sensors on the back become significant for the motion type standing up because all

subjects bend their backs to stand up. In this chapter, we derive characteristic functions

which extract key features of human motion data based on the relationship between sen-

sor locations and motion types. Subsequently, an algorithm to detect motion types using

the characteristic functions is proposed. This algorithm is divided into five steps: prepro-

cessing, weighting, characteristic functions, thresholds and detection. In the preprocessing

step, angular displacement is calculated and noise was removed by WT. In the weight-

ing step, the importance of measurements with respect to motion types is calculated. In

characteristic functions, a decision tree of motion types is built following weighting and

eight characteristic functions are derived to complete the decision tree. In the threshold

step, the ROC curve is used to find the optimal thresholds to differentiate motion types

based on the outputs of characteristic functions. Finally, using characteristic functions and

the optimal thresholds, characteristic vectors are defined and used to detect motion types.

The algorithm is evaluated with subjects and the result is compared with the conventional

method, namely, the PCA.

61

62 Jaehoon Cha

5.1 Human motion data

The characterization and quantification of the motion types of people have always been a

viable route for assessing mobility. Depending on people’s medical conditions, their ability

to move different muscle groups will vary greatly, and thus, the exact mobility and resulting

motion types may also vary [53]. Motion type detection can help diverse fields related to

human health. For example, checking for changes in physical ability daily using motion

type detection can prevent problems caused by the degeneration of physical abilities [103].

In motion type detection, the sensor locations play an important role. Many research

has attached sensors to different parts of the body to capture various measurements over

time [31, 90, 65, 15, 66, 68]. In those research, sensors were attached to some body parts

such as the chest (sternum), back, waist, thighs and feet using IMU sensors that can

measure three accelerometer measurements and angle measurements with respect to the

origin. In this chapter, we introduce five steps of a motion type detection algorithm with

experimental human data.

We apply nine different types of motions selected from the Berg Balance Scale Test [6],

which is specialized for the determination of people’s static and dynamic balance capabil-

ities. The motion types are illustrated as follows:

• M1: Standing

• M2: Sitting

• M3: Sitting-to-standing

• M4: Standing-to-sitting

• M5: Transferring

• M6: Reaching forward (with stretched

arms)

• M7: Retrieving an object from the floor

• M8: Turning to look behind

• M9: Turning 360◦

where M1 and M2 are static motions and are measured on fixed time intervals. The other

motion types are dynamic motions and are flexibly measured without time limitation.

In order to help understand the motion types, further descriptions for M5 to M9 are

provided. Subjects are asked to transfer to a specific chair and back to their origin in M5.

In M6, subjects are required to lift their arms 90 degrees and to stretch forward as far as

possible. In M7, subjects must pick up an object placed in front of their feet. M8 asks

subjects to turn around to look directly behind themselves, while M9 requires subjects to

turn around in a complete circle.

Chapter 5. Multi-channel Human Data 63

S1

S2

S3S4

S5 S6

S7 S8

(a)

𝑥

𝑦

𝑧

Roll Pitch

Course

(b)

Figure 5.1: (a) Sensor placement: the head, upper middle back, lower left back, lower right
back, hands, and feet. (b) Directions of x, y, and z axis and orientation angles: roll, pitch,
and course.

5.2 Decisive features extraction

Motion types are detected using characteristic vectors which represents motion types. Four

steps to derive characteristic vectors including preprocessing, weighting, Characteristic

functions and a decision tree and the ROC with threshold are introduce in the following

subsections.

5.2.1 Measurement and noise removal with Wavelet Transform

In order to obtain the measurements, sensors are attached to eight different locations on

the body: the head, upper middle back, lower left back, lower right back, hands and feet.

The locations of the eight sensors are shown in Figure 5.1 (a). Each sensor produces three-

axes accelerometer measurements and three angle measurements (Course, Pitch, and Roll)

with respect to the origin, which are illustrated in Figure 5.1 (b). In this chapter, we

denote a vector represents three accelerometer measurements, ai and a vector represents

three angle measurements ri as follows:

64 Jaehoon Cha

ai =

a
i
x

aiy

aiz

 and ri =

r
i
c

rip

rir

where i refers to a sensor location Si (i = 1, . . . , 8) in Figure 5.1 (a), and subscripts (x, y, z)

and (c, p, r) denote the three cartesian components of the accelerometer measurements, and

the course, pitch and roll components of the angle measurements, respectively. Angular

displacements on ri, which can be drawn from absolute angle measurements, provide mean-

ingful information about motion types, and thus, we calculate the angular displacements

in order to check for increases and decreases in the angle, expressed as:

θi =

θ
i
c

θip

θir

where θik(0) = 0, θik(t) = rik(t) − rik(t − 1), k ∈ {c, r, p} and i = 1, . . . , 8. Additionally,

the mean and standard deviation are denoted by µ and σ, respectively.

Fourier Transform (FT) is one effective methodology for signal processing [37, 80, 2, 16,

33], but it is limited to analyzing non-stationary signals. As a result, Wavelet Transform

(WT) is considered so that we may overcome the limitation as it provides wide resolution

over a time interval [50]. In addition, WT also has the ability to delete noise from the

signals. Wavelet basis function T ∈ L2(R) has the structure such that {DjTkT }j,k∈Z forms

the orthonormal basis of L2(R), where Tk is the time shifting,

Tk(x) = T (x− k),

where D is the dilation operator, Dc : L2(R) → L2(R), hence Djf(x) = 2
j
2 f(2jx). Then,

reconstruction from its Wavelet coefficient < f,DjTkT > to a signal is obtained by

f =
∑

j,k∈Z < f,DjTkT > DjTkT .

All basis functions provide scaled time-shifting, same as in the mother wavelet. In this

paper, the db4 wavelet is used to remove noise from the observed signals, which has shown

effectiveness in the analysis of IMU sensors [59, 87]. In order to remove noise, the signals

are decomposed by the db4 wavelet and values in the decomposed signals are replaced if

they exceed a predefined threshold. Finally, the decomposed signals are recomposed by

the db4 wavelet.

Chapter 5. Multi-channel Human Data 65

5.2.2 Sensor location decision

Motion types are highly related to movements of certain body parts. For example, the

head and hands would be moving for all motion types, and the back would give important

information for the standing up and sitting down motion types, since back movement is

expected with these motion types. This shows the significance of the knowledge of the

relationship between the locations of the sensors and the motion types. The importance

of the locations of the sensors is decided by comparing the patterns of measurements from

the sensors and motion types. Even though multiple trials are carried out by different

subjects, the same motion types should provide the same measurement patterns.

We face two difficulties in determining the importance of the locations of the sensors

with respect to the motion types. The first difficulty is called local perturbation. There

are sometimes inconsistent measurement patterns when studying the same motion type

on different people due to these people’s extra subconscious body movements. A local

perturbation is changes of measurement between two extremal values where the standard

deviation, σ′, of the changes is less than the standard deviation, σ, measured for the entire

motion.

Local perturbation, if σ′ < σ

We refer to measurement patterns after removing local perturbation as a global pattern. By

comparing global patterns, common measurement patterns among subjects are more likely

to be captured. The next difficulty is personal dependence. Measurement amplitudes show

a large range in variations from different subjects. In this case, it is not possible to apply

correlations to measurements from the same locations obtained from different subjects.

In order to solve these two difficulties, angle measurements are used to determine

the locations of the sensors. The main reason for this is that angle measurements are

less affected than accelerometer measurements, as a result, they suffer less from local

perturbation. By comparing the common measurement patterns among subjects with

respect to motion types, weights are assigned to a pair of a measurement and a motion

type proportional to the number of common measurement patterns among subjects. The

results of the weights between the angle measurements and the motion types are illustrated

in Figure 5.2.

66 Jaehoon Cha

M1 M2 M3 M4 M5 M6 M7 M8 M9

rc
1

rp
1

rr
1

rc
2

rp
2

rr
2

rc
3

rp
3

rr
3

rc
4

rp
4

rr
4

rc
5

rp
5

rr
5

rc
6

rp
6

rr
6

rc
7

rp
7

rr
7

rc
8

rp
8

rr
8

0.4 0.6 0.6 0.6 0.9 0.1 0.4 0.9 1.0
0.6 0.7 0.4 0.6 0.5 0.5 0.7 0.7 0.7
0.2 0.6 0.0 0.6 0.5 0.2 0.5 0.5 0.5
0.4 0.5 0.4 0.3 1.0 0.4 1.0 0.9 1.0
0.6 0.4 1.0 1.0 0.5 1.0 0.9 0.7 0.5
0.5 0.5 0.5 0.4 0.3 0.4 1.0 0.7 0.3
0.4 0.5 0.2 0.5 1.0 0.4 0.9 0.9 1.0
0.5 0.5 1.0 0.9 0.4 0.9 1.0 0.6 0.7
0.5 0.6 0.3 0.5 0.2 0.5 0.8 0.5 0.1
0.5 0.4 0.4 0.6 0.9 0.4 1.0 0.9 1.0
0.5 0.4 1.0 1.0 0.5 0.9 1.0 0.7 0.5
0.4 0.6 0.3 0.2 0.2 0.4 0.9 0.6 0.3
0.1 0.6 0.4 0.3 0.8 0.3 0.5 0.8 1.0
0.1 0.5 0.5 0.3 0.2 0.3 0.4 0.0 0.2
0.0 0.5 0.6 0.7 0.5 0.5 0.4 0.1 0.2
0.4 0.2 0.4 0.4 0.8 0.2 0.0 0.8 0.9
0.2 0.3 0.5 0.2 0.4 0.6 0.4 0.1 0.1
0.3 0.5 0.5 0.5 0.6 0.4 0.2 0.1 0.1
0.4 0.5 0.3 0.0 0.9 0.0 0.5 0.8 0.9
0.5 0.3 0.6 0.0 0.1 0.6 0.1 0.6 0.6
0.5 0.2 0.5 0.3 0.4 0.7 0.4 0.6 0.4
0.5 0.3 0.3 0.1 0.9 0.3 0.4 0.8 1.0
0.4 0.1 0.5 0.2 0.0 0.4 0.3 0.7 0.4
0.5 0.0 0.6 0.4 0.2 0.5 0.2 0.7 0.0

Figure 5.2: Weights for each feature with respect to motion types. Features, have similar
patterns in all subjects, have high weights. Otherwise, weights are low.

5.2.3 A decision tree and characteristic functions

In this subsection, a decision tree and characteristic functions are designed based on the

weights obtained in subsection 5.2.2.

The nine motion types are divided into a set of hierarchically organized groups, G1, . . . , G8

based on the weights of the angle measurements as shown in Figure 5.2. First, motion types

are separated into two groups according to the weights. For example, M1 and M2 do not

have weights over 0.8, while the other motion types have at least one weight above 0.8. We

define M1 and M2 as G1 since they show rather little movement. The rest of the motion

types are grouped as G2. Under G2, M5, M7, M8 and M9 are included in the same group

called G4 because of their high weights in r2
c , r

3
c and r4

c . The other three motion types are

grouped as G3 according to the weight values of r2
p. All relationships between groups and

motion types are illustrated with hierarchical structure in Figure 5.3.

Identifying motion types in G1

Now, we analyse each motion type in more detail. The weight of pitch and course mea-

surements from the sensors on the back show a big difference between the G1 and G2 from

Chapter 5. Multi-channel Human Data 67

𝐺1={𝑀1, 𝑀2}

Motions

𝐺2

𝐺3

𝐺7={𝑀5, 𝑀7} 𝐺8={𝑀8, 𝑀9}

𝐺4

𝐺6={𝑀6}𝐺5={𝑀3,𝑀4}

Figure 5.3: A decision tree of motion types.

Figure 5.2. Because motion types in G1 do not require any movements, pitch and course

measurements from the sensors on the back do not show any patterns in motion types for

G1, while they continue to change in motion types for G2. This means that the standard

deviations of pitch and course measurements from sensors on the back can be the boundary

values used to differentiate G1 and G2. The characteristic function is given by:

p1 =

{
1, if max(S) ≤ τ
0, otherwise

(5.1)

where S = {σ(r2
p), σ(r3

p), σ(r4
p)} and τ is the required threshold. Eq. (5.1) states that a

motion type falls under G1 when p1 = 1, and G2 when it does not. We call G1 a static

group. Furthermore, from the fact that the tilt of the trunk varies with each subject [100],

the degree of bend of the trunk, β, can be computed by:

β = E(r2
p)− E(rkp) (5.2)

This can be used to discriminate M1 and M2, where rkp is r3
p or r4

p. When r3
p is greater

than r4
p, M1 can show positive bending, implying forward positioning, and otherwise M2

can show negative bending. Hence, M1 and M2 are discriminated by:

p2 =

{
1, if β ≥ τ
0, otherwise

(5.3)

68 Jaehoon Cha

where p2 = 1 indicates forward bending, and p2 = 0 is backward bending.

Identifying motion types in G4

When a motion type is not in G1, it can be in any of G5–G8, which covers motion types M3–

M9. Among these, M5 and M7–M9 show high values in weights for r2
c , r

3
c and r4

c , primarily

resulting from the change in rc. Hence, these motion types show a strong connection

between the change in rc and G4. Therefore, we use the standard deviation of rc to

discriminate G3 from G4. Thus,

p3 =

{
1, if mean(S) ≥ τ
0, otherwise

(5.4)

where S is {σ(r2
c), σ(r3

c), σ(r4
c)} and τ is the required threshold. Eq. (5.4) states that a

motion type belongs to the set G4 when p3 = 1.

Once the motion types in G3 and G4 are differentiated, the next logical step is to

separate motion types falling under G7 and G8. Inside of G4, the difference between G7

and G8 can be noted using the variation of course and pitch measurements. M5 and M7

indicate that subjects need to bend their trunk. Thus the standard deviation of the course

measurement and the minimum value of pitch measurement can be collectively used as the

criterion for G7 and G8 detection, which are given by:

p4 =

{
1, if min{min(r3

p),min(r4
p)} ≥ τ1 and σ(r2

c) ≥ τ2

0, otherwise
(5.5)

where τ1 and τ2 are the thresholds. With Eq. (5.4) and Eq. (5.5), a motion type belongs

to G8 when p3 = p4 = 1, and to G7 when p3 = 1 ∧ p4 = 0.

The weight of course measurements on the feet is high only in M5. The difference

between M5 and M7 is in the weight of the course measurement (from the sensor on the

feet), as M5 requires subjects to move from one position to another. In addition, the

trunk and feet turn at the same time to transfer subjects to another chair. Therefore, the

correlation between r3
c and r7

c and the correlation between r4
c and r8

c are both calculated

in order to differentiate M5 and M7:

p5 =

{
1, if min{ρ{r3

c , r
7
c}, ρ{r4

c , r
8
c}} > τ

0, otherwise
(5.6)

Chapter 5. Multi-channel Human Data 69

where ρ measures the correlation between two measurements and τ is the obtained set of

thresholds. Here, p5 = 1 means the lower back and feet turn at the same time.

M8 and M9 both require turning around the z-axis, which results in both having high

weights in course measurements of the sensors on the feet. However, the corresponding

weights for M9 are slightly higher than that of M8. This means that M9 requires subjects

to do the same movements for the course measurements on the feet. More specifically, M9

demands a minimum of a 300◦ turn, ideally a 360◦ turn, whereas M8 does not demand any

specific range of angle measurements for the turn. Therefore, the maximum difference of

r2
c , r

3
c , and r4

c can be calculated to differentiate M8 and M9:

p6 =

 1, if
max{Θ(r3

c),Θ(r4
c)} > τ1 and

max{Θ(r7
c),Θ(r8

c)} > τ2

0, otherwise

(5.7)

where Θ(rc) = max(rc)−min(rc) and τ1, τ2 are the thresholds. Here, p6 = 1 indicates the

motion type results in a turn exceeding the corresponding threshold.

Identifying motion types in group G3

Given that M3, M4, and M6 require subjects to bend their trunk, these motion types

all have the same pattern on the pitch measurement from the sensors attached to the

back of their body. The differences between the three motion types M3, M4 and M6 are

in the information of the accelerometer measurement about the z-axis. The accelerometer

measurement along the z-axis for M3 and M4 tend to show radical changes when compared

to the corresponding measurements for M6. This is because the height variations of M3

and M4 are larger than that of M6. Thus, by relying on the standard deviations of the

corresponding sensor measurements, G5 and G6 can be differentiated.

Let ∆t = t(min(r2
p)) − t(min(θ2

p)) be a time interval to distinguish M6 from M3 and

M4, since the trunk will stop at min(r2
p) when subjects only bends at the trunk. Otherwise,

the trunk movement will continue changing. Then, M6 is detected by:

p7 =

{
1, if σ(a2

z)on∆t < τ

0, otherwise
(5.8)

where τ is the threshold. Here, p7 = 1 means that the change in the measurements from

the sensors on the back is small.

70 Jaehoon Cha

Table 5.1: Characteristic vectors corresponding to motion type
Motion Vector

M1 [1, 1, ∗, ∗, ∗, ∗, ∗, ∗]
M2 [1, 0, ∗, ∗, ∗, ∗, ∗, ∗]
M3 [0, ∗, 0, ∗, ∗, ∗, 0, 1]
M4 [0, ∗, 0, ∗, ∗, ∗, 0, 0]
M5 [0, ∗, 1, 0, 1, ∗, ∗, ∗]
M6 [0, ∗, 0, ∗, ∗, ∗, 1, ∗]
M7 [0, ∗, 1, 0, 0, ∗, ∗, ∗]
M8 [0, ∗, 1, 1, ∗, 0, ∗, ∗]
M9 [0, ∗, 1, 1, ∗, 1, ∗, ∗]

∗ can be any value.

Now, the final task is to differentiate M3 and M4. It is worth noting that the velocity

directions of M3 and M4 are opposite since the height change of the two motion types

are opposing. In fact, there are techniques outlined in literature that utilize time interval

calculations in order to differentiate two motion types [58, 59, 23, 60]. Here, we calculate

the average velocity of S2, which denotes the change in height for M3 and M4, about the

z-axis. This is defined by µ[v2
z] over the time interval [t1, t2] as follows:

µ(v2
z) =

∫ t2
t1
v2
z(t)dt

t2 − t1

where v2
z(y) =

∫ y

t1

a2
z(t)dt,

where t1 and t2 are the minimum points of θ2
p and r2

p, respectively. With µ(v2
z), M3 and

M4 are differentiated by:

p8 =

{
1, µ(v2

z) > τ

0, otherwise
(5.9)

where τ is a threshold. Here, p8 = 1 means that the motion type is M3, and p8 = 0 means

that the motion type is M4.

5.2.4 Decision algorithm

The hierarchical structure in Figure 5.3 provides an effective way to separate the nine mo-

tion types. The characteristic vector of each motion type is defined to separate the motion

Chapter 5. Multi-channel Human Data 71

650 700 750 800 850

Time (10 ms)

50

0

50

100

150

200

a2 z

(a)

0 50 100 150 200

Time (10 ms)

50

0

50

100

150

200

a2 z

(b)

31100 31200 31300 31400 31500 31600 31700 31800

Time (10 ms)

200

150

100

50

0

50

100

150

200

a2 z

(c)

0 100 200 300 400 500 600 700

Time (10 ms)

150

100

50

0

50

100

150

a2 z

(d)

Figure 5.4: (a) Raw a2
z reading of a subject when sitting to standing (b) The result of (a)

by applying db4 wavelet. (c) Raw a2
z reading of a subject when Transferring (d) The result

of (c) by applying db4 wavelet.

0 100 200 300 400 500 600

50

0

r2
p in M7

0 100 200 300 400 500 600

50

0

Time

r2
p

(a) Example 1

0 200 400 600 800
40

45

50

55
r2
p in M9

0 200 400 600 800
40

45

50

55

Time

r2
p

(b) Example 2

Figure 5.5: Example outputs of the proposed algorithm. The top row contains the inputs,
and the bottom row shows the resulting outputs for each case (a) and (b).

types. These vectors are derived from the eight characteristic functions with thresholds

and are illustrated in Table 5.1. In this section, we propose an algorithm that can perform

motion type detection.

72 Jaehoon Cha

Preprocessing and feature selection

We apply WT with db4 wavelet to remove noise. Noises in measurements are replaced

with the threshold σth:

σth = σ1

√
2 logN,

where σ1 = MAD1/0.675 as defined in [34], MAD1 denotes the median absolute deviation

of the detailed component at scale j = log2N and N is the number of samples in the mea-

surement. Examples of noise removal are shown in Figure 5.4. In Figure 5.4, measurements

on the right side become smooth using the db4 wavelet. In order to decide the motion type,

weights have to be assigned to measurements by exploiting the dominant features of these

measurements. Algorithm 2 outlines the steps for computing these weights by comparing

global patterns with a specific measurement in a given motion. As shown in Figure 5.5,

local perturbations are defined and removed in order to get a good comparison between

two measurements. In Figure 5.5, we use Algorithm 2 to show the measurement before

(top-row) and after (bottom-row) the processing. The red points obtained after processing

turn into binary codes and are then used to obtain weights.

Threshold values

We use a Receiver (or Relative) Operating Characteristic (ROC) curves to find the optimal

threshold [21]. Since the 1950s, ROC curves have been used for the purpose of signal

detection and analysis based on statistical decision theory [55]. Operating point decisions

for instruments were considered with the comparison of true negatives and false negatives

and also provided an optimum tradeoff between false positives and false negatives [49]. In

the previous research, the optimal threshold values were found by maximizing true positive

rate (TPR) + 1 - false positive rate (FPR) [7, 1, 63, 21]. Nevertheless, threshold values for

each motion type are determined by maximizing the sum of the true positive (TPR) and

true negative (TNR) rates instead of TPR + 1 - FPR in this thesis. In other words, a set

of the optimal thresholds, {τth}, is found using the following optimization problem:

maximize
τth

(TP + TN) (5.10)

Chapter 5. Multi-channel Human Data 73

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
TP

R

ROC curve

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

TP
R

ROC curve

(b)

Figure 5.6: The ROC curves for finding the threshold for the characteristic function (a) p7

and (b) p8.

Although the formulation

maximize
τth

(TPR+ 1− FPR) (5.11)

was used in the previous research [7, 1, 63, 21]. This is because Eq. (5.10) is more easily

calculated and both formulations yield a similar set of results. To show this, let C1 and

C0 denote the positive and negative groups, respectively. In order to obtain a threshold

of interest, τ , we performed a number of simulations covering a range of values for each τ .

Then, the relation is satisfied as follows:

TPR+ 1− FPR

=
T+

T+ + F−
+ 1− F+

F+ + T−

=
T+

T+ + F−
+

T−

F+ + T−

=
T+

#{C1}
+

T−

#{C0}

=
T+ + T−

N
, for #{C1} ' #{C0} ' N,

where T+, T−, F+ and F− are true positive, true negative, false positive and false negative,

respectively. Consequently, threshold values that maximize TPR +1 - FPR and TP + FP

are the same when two groups, C1 and C0, have the same number of elements. Here,

the examples of the ROC curve for the threshold values are illustrated in Figure 5.6 and

threshold values for each characteristic function are decided as illustrated in Table 5.2.

74 Jaehoon Cha

Table 5.2: Threshold obtained by the ROC curve

Characteristic Type of values Threshold
function τ1 τ2 τe(τe1) τe2
p1 σ(r) - 2.013 -

p2 r - -1.1484 -

p3 σ(r) - 13.7673 -

p4 r σ(r) -28.0571 25.1001

p5 correlation - 0.8651 -

p6 σ(r) σ(r) 234.9043 181.5007

p7 σ(a) - 13.4068 -

p8 velocity 97.7670 -

5.3 Experiments

In order to verify that the characteristic functions and algorithms are of practical utility,

in collaboration with the INHA University Hospital in South Korea, we evaluated our

algorithms using experimental data.

5.3.1 Data description

The experimental data were gathered for all nine different motion types with eight sensors

using 23 subjects. The subjects were divided into three distinct groups so that:

• The first and second groups consist of 12 men and seven women who were under

medical treatment in INHA University Hospital due to brain diseases such as Cerebral

Infarction, Thalamic Infarction and Cerebellar Degeneration.

• In the third group, there was one patient, who was under neurological medical treat-

ment, and three students, all of whom had no history or diagnosis of neurological

conditions. The data from this group were collected at a different time period with

the first and second groups of subjects.

The subjects in the first group had difficulty in completing all nine motion types.

Consequently, they were required to perform seven motion types, from M1 to M7. The

subjects in the second group were able to perform all motion types, from M1 to M9. The

subjects in the third group carried out all nine motion types. We used the Mymotion of

Noraxon sensors (Noraxon USA Inc, Scottsdale, AZ) to obtain inertial measurements.

Chapter 5. Multi-channel Human Data 75

5.3.2 Results

For the purpose of performance evaluation, four metrics, recall, precision, accuracy and

F-measure are used in this chapter [51, 69]. Recall represents the ratio of true positive

motion types to conditioned positive motion types. Precision represents the ratio of true

positive motion types to motion types, identified as positive by the algorithm. Accuracy

represents the proportion of the sum of true positive motion types and true negative motion

types. F-measure represents harmonic mean of the recall and precision. The results are

shown in Table 5.3 and Table 5.4.

Table 5.3: Recall and Precision
Recall Precision

Motion Proposed PCA Percentage Proposed PCA Percentage
algorithm increase algorithm increase

M1 0.9130 0.7391 +17.39% 0.8077 0.5484 +25.93%
M2 0.7826 0.3478 +43.48% 0.9000 0.6154 +28.46%
M3 0.6957 0.5652 +13.05% 0.9412 0.3095 +63.17%
M4 1.0000 0.2609 +73.91% 0.7419 0.6667 +7.52%
M5 1.0000 0.2174 +78.26% 1.0000 0.4545 +54.55%
M6 0.8261 0.7391 +8.70% 0.8636 0.5152 +34.84%
M7 0.8696 0.6957 +17.39% 0.9091 0.4706 +43.85%
M8 1.0000 0.3636 +63.64% 1.0000 0.8000 +20.00%
M9 1.0000 0.4545 +54.55% 1.0000 1.0000 +0.00%

Mean 0.8986 0.4870 +41.15% 0.9071 0.5978 +30.92%

Table 5.4: Accuracy and F-measure
Accuracy F-measure

Motion Proposed PCA Percentage Proposed PCA Percentage
algorithm increase algorithm increase

M1 0.9617 0.8907 +7.10% 0.8571 0.6296 +22.75%
M2 0.9617 0.8907 +7.10% 0.8372 0.4444 +39.28%
M3 0.9563 0.7869 +16.94% 0.8000 0.4000 +40.00%
M4 0.9563 0.8907 +6.56% 0.8519 0.3750 +47.69%
M5 0.9945 0.8689 +12.56% 1.0000 0.2941 +70.59%
M6 0.9617 0.8798 +8.19% 0.8444 0.6071 +23.73%
M7 0.9727 0.8634 +10.93% 0.8889 0.5614 +32.75%
M8 1.0000 0.9563 +4.37% 1.0000 0.5000 +50.00%
M9 1.0000 0.9672 +3.28% 1.0000 0.6250 +37.50%

Mean 0.9739 0.8883 +8.56% 0.8977 0.4930 +40.48%

76 Jaehoon Cha

M1 M2 M3 M4 M5 M6 M7 M8 M9
0

0.2
0.4
0.6
0.8
1.0

Proposed Model PCA

(a)

M1 M2 M3 M4 M5 M6 M7 M8 M9
0

0.2
0.4
0.6
0.8
1.0

Proposed Model PCA

(b)

M1 M2 M3 M4 M5 M6 M7 M8 M9
0

0.2
0.4
0.6
0.8
1.0

Proposed Model PCA

(c)

M1 M2 M3 M4 M5 M6 M7 M8 M9
0

0.2
0.4
0.6
0.8
1.0

Proposed Model PCA

(d)

Figure 5.7: Four metrics for a comparison between the proposed method and the Principal
Component Analysis: (a) Recall, (b) Precision, (c) Accuracy and (d) F-measure.

In our results, the mean value of the recall across all nine motions is 0.8986. M3 has

the lowest percentage of recall, and M4, M5, M8 and M9 show 100% recall. The mean

value of the precision of the nine motions is 0.9071 and the lowest percentage is found

in M4. M5, M8 and M9 show 100% precision. For accuracy, the mean value of the nine

motions is 0.9739. The lowest value is found in M3 and M4, and 100% accuracy is found

in M8 and M9. For F-measure, the mean value of the nine motions is 0.8977. The lowest

value is found in M3, and 100% accuracy is found in M5, M8 and M9. The results show

that characteristic vectors consisting of a few features are able to detect motion types

accurately.

As the weighing and characteristic functions steps are related to feature extraction,

we compare our results with PCA by replacing these steps with PCA, which is widely

used for feature extraction [1, 35]. Following the paper [1], we calculate the minimum

and maximum values, the mean value, variance, skewness, kurtosis, first five peaks of the

discrete Fourier transform of the measurement and the corresponding frequencies. Now,

1, 152(= 72×16) features are used to discriminate each motion. With PCA, we reduce the

Chapter 5. Multi-channel Human Data 77

number of features from 1,152 to 30. Subsequently, the optimal thresholds to differentiate

motion types at each node in the decision tree in Figure 5.3 are found. Based on the

thresholds, the motion types are differentiated. The result is illustrated in Table 5.3 and

Table 5.4, and visualized in Figure 5.7. The mean values of recall, precision, accuracy

and F-measure based on PCA are 0.4870, 0.5978, 8883 and 0.4930, respectively. These

results are lower than the results based on a few extracted features from the characteristic

functions. Specifically, recall, precision and F-measure show much higher values in all

motion types in the proposed algorithm than in PCA. In both methods, M2 and M3 have

lower recall. This is due to most M2 being detected as M1, most M3 as M4, and some M3

as M6. Because M6 is the midway point of M3 and M4, a more detailed study and/or new

sensor placements are needed in order to properly detect M6.

5.4 Summary

In this chapter, relationships between sensor locations and motion types are studied as

research on human motion data is a typical example of multi-channel data. The data are

obtained using multiple sensors, which measure three accelerometer measurements and

three angle measurements from different human body parts.

The detection algorithm is divided into five steps. In the first step, preprocessing is

done to calculate angular displacement and to remove noise by WT. In the second step,

the importance of measurements with respect to motion types is calculated by comparing

measurement patterns among subjects. High weights are assigned to measurements which

provide the common measurement patterns among subjects. In the third step, a decision

tree of motion types is defined based on the weights and the characteristic functions are

proposed to differentiate motion types at each node of the decision tree. In the fourth

step, the optimal thresholds for the characteristic functions are defined based on the ROC

curves. Finally, the motion types are identified based on the characteristic vectors.

In order to evaluate the proposed algorithm, human motion data were gathered from

Inha University Hospital, Korea. 23 subjects, including patients in the hospital, partici-

pated in the experiment. They were required to perform nine motion types as far as their

physical abilities could permit. The nine motion types are standing, sitting, sitting to

standing, standing to sitting, transferring, reaching forward, retrieving an object from the

floor, turning to look behind and turning 360◦. First, the motion types are divided based

on their dynamics. Standing and sitting are included in less dynamic groups, which is

78 Jaehoon Cha

referred to as a static group, and the other motion types formed a dynamic group. In the

dynamic group, the motion types are further divided into several groups based on pitch

and course measurements. Sitting to standing, standing to sitting and reaching forward

are highly related to pitch measurements while the other motion types are highly related

to course measurements.

Using the characteristic vectors from the characteristic functions and thresholds, the

performance of the proposed algorithm was evaluated on recall, precision, accuracy and

F-measure. The average of recall, precision, accuracy and F-measure are 0.8986, 0.9071,

0.9739 and 0.8977, respectively and the results outperform PCA.

We can conclude that studying the relationship between channels and targets of human

motion data has a significant effect when detecting motion types.

Chapter 6

Multi-Channel Data Analysis with

Machine Learning

In this chapter, we detect motion types using the proposed models from Chapter 3 and

Chapter 4. The generative models proposed in Chapter 3 generate synthetic data in order

to augment the amount of data and prevent overfitting in neural networks. Then, a com-

bination of labelled synthetic data and experimental data is fed to the neural networks.

When coarse classes are defined in human motion data, the proposed hierarchical learn-

ing models from Chapter 4 are used to utilize these coarse classes. A flowchart diagram

illustrated in Figure 6.1 shows the entire process proposed in this chapter. Additionally,

nine open source human motion datasets, alongside the dataset studied in Chapter 5, are

used to evaluate the proposed process. In this chapter, we refer to the dataset from Chap-

ter 5 as the InhaMotion dataset. In the following sections, we describe the details of each

procedure.

6.1 Motion type detection process

In this section, to overcome some issues of the human motion data, the proposed generative

model in Chapter 3 and the hierarchical learning models in Chapter 4 are used. The first

issue is that human motion data are difficult to obtain due to both the complexities in the

approval process and the gathering of subjects. In addition, abundant amounts of human

motion data are required in machine learning methods because various human motion data

samples will arise when multiple channels are combined. This is addressed by generating

79

80 Jaehoon Cha

Raw Motion Data

Training
Generative Models

Training
Classification

Models

Defining Coarse
Classes

Training
Hierarchical

Learning Models

Sampling
Synthetic Data

at Every Iteration

Combining
Synthetic and

Experimental Data

Labeling Synthetic
Data Using

PCA and SVM

A Fine Class
Prediction

Coarse Classes and
a Fine class
Prediction

Figure 6.1: A flowchart diagram showing the pipeline to classify motion data with or
without coarse classes.

synthetic data. The second issue is that motion types, which are targets of human motion

data, can be hierarchically structured based on multiple channels. This is addressed by

applying the proposed hierarchical learning models to utilize the hierarchical structure

of motion types. To this end, we propose a process to detect motion types as follows:

generation, labelling and classification.

6.1.1 Training generative neural networks

Data acquisition is one of the most difficult challenges in training neural networks with

human motion data. This can be addressed by data augmentation. For example, in image

classification, data augmentation such as cropping, flipping and rotating greatly improves

performance of a test set [77]. However, these techniques are not suitable for human

motion data – which is a kind of time series data – because cropping, flipping and rotating

are designed for data with spatial information [18]. Research on data augmentation in a

times series is being conducted [92]. One promising technique is Dynamic Time Warping

Barycenter Averaging (DBA), which averages multiple time series data [19]. Although this

technique generates better plausible synthetic data than the arithmetic average technique,

Chapter 6. Multi-Channel Data Analysis with Machine Learning 81

(a) (b) (c)

Figure 6.2: A time series synthetic data generation from multiple time series data. (a)
Observed multiple time series data, (b) generation by arithmetic average and (c) generation
by DBA. (b) fails to generate a pattern of (a) at time around 50 while (c) succeed to
generate the pattern.

DBA only generates synthetic data that are very similar to the observed data, as shown

in Figure 6.2. Therefore, it is necessary to design a new generative model. We use the

proposed generative model in Chapter 3 to generate synthetic human motion data. The

synthetic data are used to train a classification model to prevent overfitting. Since training

classification tasks require labelled synthetic data, we introduce the labelling synthetic

data process in the next section.

6.1.2 Labelling synthetic data

In order to label synthetic data, we modify the labelling process from Chapter 3,which

uses only SVM for labelling synthetic data. This modification is needed due to a difference

in the dimension of the latent space between images and multi-channel data. While the

dimension of the latent space of images is fixed, the dimension of the latent space from

multi-channel data increases proportional to the number of channels. This might cause

poor labelling using SVM because machine learning algorithms show poor performance

in high-dimensional space, which is the phenomenon called curse of dimensionality [17].

Subsequently, we use PCA to reduce the dimensions of the latent space regardless of the

number of channels. In our case, human motion data is mapped into a latent space and the

dimension of the latent space is reduced by PCA. Consequently, hyper-planes are found

to assign labels to the synthetic data using SVM. This labelling process is outlined in

Algorithm 1.

82 Jaehoon Cha

Algorithm 1 Labeling synthetic data

1: Input: Experimental data
2: Stage: Fitting PCA and SVM

3: Map experimental data into a latent space.
4: Fit PCA based on the latent variables.
5: Fit SVM based on the output from PCA.

6: Stage: Labeling synthetic data

7: Generate synthetic data
8: Map synthetic data into a latent space.
9: Transform synthetic data using PCA.

10: Obtain labels using SVM.

6.1.3 Motion type detection using the proposed models

The obtained labelled synthetic data are fed to neural networks alongside the original

training set. The number of the labelled synthetic data is half of the number of the

original training set. This allows the neural networks to focus on the training set more than

synthetic data and to prevent overfitting by synthetic data, which results in generalization

of neural networks.

In order to observe the effect of coarse classes on a motion type detection, we start by

doing an experiment without coase classes. ResNet is used as a baseline because ResNet

performs well when applied to time series data classification [91]. ResNet can be divided

into two parts: a series of residual blocks and a series of fully-connected layers. The role

of a series of residual blocks is to extract important features whereas the role of a series

of fully-connected layers is to predict targets based on the extracted features. In human

motion type detection, the series of residual blocks extracts important features from human

motion data and the series of fully-connected layers predicts motion types. Taking into

account this fact, we modify ResNet to utilize coarse classes. As we aim to utilize coarse

classes when predicting targets, we replace a series of fully-connected layers with C-FNNs

and HADNNs, which are denoted as ResNet with C-FNNs and ResNet with HADNNs,

respectively. Because C-FNNs and HADNNs were used when fine classes were continuous

in Chapter 4, we need to modify adaptive loss balancing to use C-FNNs and HADNNs in

motion type detection where the fine classes are discrete. The new loss scheme is proposed

in the next subsection.

Chapter 6. Multi-Channel Data Analysis with Machine Learning 83

6.1.4 Adaptive Loss Weighting

Adaptive Loss Balancing in Section 4.2.1 is proposed to reduce the scale difference between

a classification task and a regression task. Since all tasks related to coarse classes and fine

classes are classification tasks, we propose a new type of loss scheme, which we name

Adaptive Loss Weighing. Its aim is to make neural networks learn the training set starting

from coarse classes to fine classes. Adaptive Loss Weighting is derived from a combination

of Adaptive Loss Balancing and Branch Training strategy (BT-strategy) in [106]. After

balancing all the losses, pre-defined weights are multiplied by losses at every iteration.

Weights are defined with the condition that their sum is 1. At the beginning of learning,

weights of multiple levels of coarse classes are higher than the weight of the fine classes.

A portion of the weight of the fine classes increases as learning progresses. For example,

a set of three weights {wc1 , wc2 , wf} is given when two coarse classes are present, where

c1, c2 and f denote the first level of coarse classes, the second level of coarse classes and

the fine classes, respectively. The learning begins by assigning wc1 the highest portion of

the set of weights. Consequently, wc1 is reduced to the lowest portion of the set of weights

while the portion of wf increases to the highest.

6.2 Experiments

In order to verify the proposed process, InhaMotion dataset and nine open source datasets1

are used. InhaMotion dataset is transformed to use them with machine learning algorithms

and nine open source datasets, which are originally made for machine learning, are studied.

6.2.1 InhaMotion dataset description

In order to apply InhaMotion dataset to machine learning algorithms, two kinds of pre-

processing with respect to the amplitude and the length of a measurement are performed.

First, preprocessing with respect to amplitude is addressed by standard normalization.

Second, preprocessing with respect to the length of a measurement is addressed by using

fast Fourier transform (FFT) and inverse Fourier transform. FFT is used to resample a

measurement with a fixed length [11]. Let us denote the fixed length, N , as the length of

the resampled measurement and L as the length of the measurement. FFT is applied to

the measurement and we compute the minimum number, m, between N and L. The first

1All datasets are available at http://www.timeseriesclassification.com/dataset.php.

http://www.timeseriesclassification.com/dataset.php

84 Jaehoon Cha

m
2 + 1 FFT coefficients are selected by sampling theorem [75]. Subsequently, the inverse

Fourier transform is applied to the selected FFT coefficients and then N
L is multiplied by

the result of the inverse Fourier transform to scale the amplitude of the measurement.

The division of a training set and a test set follows the preprocessing step. Since 12

subjects in the first group performed seven motions, and both seven subjects in the second

group and four subjects in the third group performed nine motions, 12×7+(7+4)×9 = 183

samples were collected. From Chapter 5, we chose a set of 18 measurements which are

r2, r3, r4, r7, r8, and a2. In other words, we have 183 samples and each sample has 18

measurements. Now, we make a training set by randomly selecting nine samples for each

motion type from InhaMotoin dataset and make a test set with the remaining samples,

i.e., the number of samples in the training set and the test set, respectively, is 81 and 102.

Two possible cases for the coarse classes are considered in InhaMotion dataset based

on the decision tree in Figure 5.3. First, coarse classes with one level is defined based

on G1, G5, G6, G7 and G8 and denoted by Case1. Accordingly, C-FNNs and HADNNs for

coarse classes with one level are used. Second, coarse classes with two levels are defined

and denoted by Case2. The first level consists of G1 and G2. The second level consist of

G1, G3, and G4.Accordingly, C-FNNs and HADNNs for coarse classes with two levels are

used. These two cases are summarized in Table 6.1.

Table 6.1: Coarse class information of InhaMotion dataset
Case group the first coarse class group the second coarse class

One level G1 0:{0, 1} N/A N/A
coarse class G5 1:{2, 3} N/A N/A

G6 2:{5} N/A N/A
G7 3:{4, 6} N/A N/A
G8 4:{7, 8} N/A N/A

Two levels of G1 0:{0, 1} G1 0:{0, 1}
coarse class G2 1:{2, 3, 4, 5, 6, 7, 8} G3 1:{2, 3, 5}

G4 2:{4, 6, 7, 8}

6.2.2 InhaMotion dataset result

The generative model for InhaMotion dataset comprises a symmetrical architecture of an

encoder network and a decoder network introduced in Chapter 3. The encoder and the

decoder networks are built upon two fully-connected hidden layers of 500 nodes with the

Chapter 6. Multi-Channel Data Analysis with Machine Learning 85

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

Figure 6.3: Accuracy of a training set and test set of Baseline on InhaMotion dataset with
respect to initial learning rate.

dimension of the latent space set to 10. The same configuration of epochs, batch size,

activation functions and loss functions with setup in Section 3.3.2 are used to train the

generative model. In order to deal with the characteristics of multi-channel data, that they

consist of multiple channels, the generative model learns one channel at a time instead of

learning them altogether, and we assemble them to make multi-channel data. Since the

proposed generative model requires the standard deviation as hyper-parameter, the model

is trained with various standard deviations, which were used in Section 3.3.5.

Next, a classification model without coarse classes is trained following subsections 6.1.2,

6.1.3 and 6.1.4. The baseline is built upon four residual blocks with filters of 32, 64, 128 and

256, and two fully-connected layers with 1024 and 512 nodes. The best learning rate for

the baseline is empirically searched as shown in Figure 6.3 and set as 0.01. This learning

rate is used when carrying out three classification tasks with the following: when only

synthetic data are used, when only coarse classes are used and when both synthetic data

and coarse classes are used.

In the first task, the proposed generative model is trained with various standard devia-

tions as shown in Figure 6.5. The highest accuracy is obtained when the standard deviation

is 0.6. The results in Table 6.2 show that the accuracy of the training set decreases while

the accuracy of the test set increases. It shows that overfitting can be addressed by the

use of synthetic data generated by the proposed model. In contrast, the accuracy of the

test set decreases when using synthetic data generated by available generative models as

86 Jaehoon Cha

(a) (b) (c) (d) (e)

Figure 6.4: (a) is a sample in the training set of InhaMotion dataset. Visualization of
synthetic data generated by VAE is in (b), by β-VAE is in (c), by MMD is in (d) and by
the proposed generative model is in (e).

shown in Table 6.3. This is because these models fail to generate synthetic data similar to

samples in the training set as shown in Figure 6.4.

In the second task, the test accuracies of both cases decrease except for Case1 with

C-FNNs as shown in Table 6.4. These results are compared to the results of the third task

in Table 6.5. In the third task, Case1 and Case2 are also used, however their accuracies

dramatically increase. The biggest increase happens when using C-FNNs with Case2.

This big improvement can be explained by the accuracies of the coarse classes as shown

in Table 6.6. Accuracies of the first level of coarse classes and the second level of coarse

classes in the third task is much higher than those in the second task. In other words,

capturing key features of coarse classes improves the accuracy of the fine classes.

Table 6.2: Accuracy with or without synthetic data of InhaMotion dataset
without synthetic data with synthetic data

train acc test acc train acc test acc difference

98.76 49.01 81.69 51.85 +2.84

Table 6.3: Accuracy of the test set when using synthetic data by various generative models
of InhaMotion dataset

Generative models test acc

VAE 44.44
β-VAE 41.97
MMD 34.56

The proposed model 51.85

Chapter 6. Multi-Channel Data Analysis with Machine Learning 87

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100
Ac

cu
ra

cy

train
test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(e)

Figure 6.5: Accuracy of a training set and test set of (a) Baseline, (b) Baseline with C-
FNN on Case1, (c) Baseline with C-FNN on Case2, (d) Baseline with HADNN on Case1
and (e) Baseline with HADNN on Case2 with respect to standard deviation applied to the
generative model proposed in Chatper 3.

Table 6.4: Hierarchical Result without synthetic data of InhaMotion dataset
Baseline with C-FNN with HADNN

Case train acc test acc train acc test acc train acc test acc

Case 1 98.76 49.01 100. 54.90 100. 46.07

Case 2 98.76 49.01 91.35 38.23 92.59 46.07

Table 6.5: Hierarchical with synthetic data of InhaMotion dataset
Baseline with C-FNN with HADNN

Case train acc test acc train acc test acc train acc test acc

Case 1 81.69 51.85 80.99 57.84 79.33 57.84

Case 2 81.69 51.85 77.68 66.66 76.85 52.94

Table 6.6: Hierarchical Result without synthetic data of InhaMotion dataset
Synthetic data Without With

Case 1st level 2nd level test acc 1st level 2nd level test acc

Case 2 73.52 55.88 38.23 86.27 73.52 66.66

88 Jaehoon Cha

6.2.3 Open source human motion data description

We further test the proposed process with nine open source human motion datasets:

• Data1 measured movements of the tongue and lips during speech. The sensors on

the lower lip (LL), tip of tongue (T1) and upper lip produced X, Y and Z positions

with a sampling rate of 200 Hz. Targets were 25 words in phonetically balanced (PB)

lists from native English speakers [76].

• Data2 measured four basic motions of standing, running, walking and badminton. A

smartwatch produced three accelerometer measurements and three gyroscope mea-

surements during each movement.

• Data3 measured the gestures of a Cricket umpire in a game. Three accelerometer

measurements were captured from sensors on the wrists of subjects [76].

• Data4 measured four types of movements: seizure mimicking, walking, running and

sawing. Each subject wore a sensor on their dominant wrist and the sensor produced

three accelerometer measurements [86].

• Data5 measured six types of hand movements, which were gestures to express open

fist, two, pointing, ring and grasp. Subjects wore an eRing, which was a sensor for the

detection of finger movements, on their thumb, index finger and middle finger [94].

• Data6 measured 15 Brazilian Sign Language (BSL) movements. This consists of

swing (curved, horizontal and vertical), arc (anti-clockwise and clockwise), circle,

straight-line (horizontal and vertical), zigzag (horizontal and vertical), wavy (hori-

zontal and vertical), curve (down and up) and irregular movement. The movements

are captured from a video [13].

• Data7 measured six Naval Air Training and Operating Procedures Standardization

(NATOPS) aircraft handling signals. Sensors were attached on the hands, elbows,

wrists and thumbs, producing X, Y and Z coordinates [22].

• Data8 measured two motions from badminton and another two motions from squash.

Subjects wore a smartwatch, which generated three accelerometer measurements and

three gyroscopes measurements.

Chapter 6. Multi-Channel Data Analysis with Machine Learning 89

• Data9 measured eight simple gestures captured by wii, which generated three ac-

celerometer measurements. Gestures included line, circle, rectangular and so on [44].

For the experiments using coarse classes, five datasets are considered. First, coarse classes

with two levels are defined in Data3. The first level of coarse classes is divided based on

the dynamics of the movements. Fine classes 1, 2, 3, 4, 6, 7 and 11 are defined as dynamic

classes, and the other fine classes as static classes. Subsequently, the second level of coarse

classes is defined based on the movements of both arms. In the dynamic class, fine classes

2, 6 and 7 require the movement of one arm and 1, 3, 4 and 11 require both arms. In the

static class, one arm movement is required for fine classes 0 and 10, and both arms should

be moved in fine classes 5, 8 and 9. Second, coarse classes with one level are defined in

Data5. The fine classes are divided based on whether the index finger should be bent or

not to complete the gestures required. Third, coarse classes with one level are also defined

in Data6, but the number of coarse classes are three unlike the case of Data5. The first

coarse class consists of vertical movements and the second coarse class consists of horizontal

movements. The last coarse class consists of arc movements, which are more dynamic than

the others. Fourth, coarse classes with one level are also defined in Data7. The coarse

classes are simply defined based on the need for the movements of both arms. Fine classes

0, 1 and 2 require the movement of one arm and the other fine classes require both sides.

Lastly, coarse classes with two levels are defined in Data9. The first level of coarse classes

is defined based on whether the shape of the movement is a line or not. Subsequently, the

second level of the coarse classes is defined as follows: the fine classes related to the line

movements are divided into whether the shape of the movement is vertical and horizontal,

and the fine classes related to non-line movements are divided into whether the shape of

the movement is an arc or not.

6.2.4 Open source human motion data results

These open source human motion datasets are collected for machine learning. Therefore,

data preprocessing is not required for all datasets. Generative models are trained with the

same configuration as the setup in Section 6.2.2. For the nine open source human motion

datasets, the baseline architecture is built upon four residual blocks with filers of 16, 32, 64

and 128, and two fully-connected layers with 512 and 256 nodes. This baseline architecture

is found by iterating training with different configurations.

To find the best learning rate corresponding to each dataset, we iterate experiments

90 Jaehoon Cha

with varied learning rates. The best learning rate are taken following Figure 6.7 and

illustrated in Table 6.7. The best learning rates are used when carrying out the three tasks

mentioned in subsection 6.2.2.

For the first task, the proposed generative model is trained with various standard

deviations. The standard deviation with the highest accuracy with respect to each dataset

is shown in Table 6.8. As the standard deviations with the highest accuracies are different

with respect to the datasets, designing an algorithm to find the best standard deviation is

left for future study. Table 6.9 shows all results for the first task. The accuracies of the

training sets without synthetic data are 100% in all datasets except for Data7. Comparing

the results when using synthetic data generated by the proposed generative model to

the results without synthetic data, the accuracies of the training sets decrease, and the

accuracies of the test sets increase or stay the same in seven datasets. On the other hand,

accuracies of the training sets and test sets decrease in Data6 and Data8. This decrease

of the accuracies does not only happen with the proposed generative model but also with

other available generative models: VAE, β-VAE and MMD as shown in Table 6.10. As

illustrated in Figure 6.6, which shows examples of synthetic data compared to data in the

original training set, the accuracies decrease when synthetic data are not similar to the

samples in the training set.

In the second task, five datasets are considered by defining their coarse classes following

Table 6.14. The accuracies of the test sets all improve when using C-FNNs as shown

in Table 6.11, while the accuracies of the test sets decrease when using HADNNs. The

decrease of the accuracy in Data6 happens when using both synthetic data and hierarchical

learning models in the third task as shown in Table 6.12. From these results, we can

deduce that using synthetic data, which are not plausibly drawn from the distribution of

the training set, deteriorates the ability of neural networks.

Table 6.7: The best learning rate with respect to each dataset
Data number 1 2 3 4 5 6 7 8 9

Learning rate 0.01 0.015 0.015 0.01 0.01 0.02 0.01 0.05 0.015

Table 6.8: The best standard deviation with respect to each dataset
Data number 1 2 3 4 5 6 7 8 9

Standard deviation 0.8 0.7 0.08 0.08 0.8 0.9 0.06 0.5 0.06

Chapter 6. Multi-Channel Data Analysis with Machine Learning 91

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)

Figure 6.6: Visualization of a sample and synthetic data. The first, second and third rows
show data from Data1, Data5 and Data8, respectively. (a) is a sample from each training
set. Visualization of the synthetic data corresponding to the dataset generated by VAE is
in (b), by β-VAE is in (c), by MMD is in (d) and by the proposed generative model is in
(e).

Table 6.9: Accuracy with or without synthetic data of nine open source datasets
without synthetic data with synthetic data

Data number train acc test acc train acc test acc difference

1 100. 84. 79.85 89.66 +5.66

2 100. 100. 93.33 100. +0

3 100. 98.61 71.16 100. +1.39

4 100. 94.92 96.09 95.65 +0.73

5 100. 78.14 93.33 83.33 +5.19

6 100. 55. 69.62 53.88 -1.12

7 98.88 90.55 80.74 90.55 +0

8 100. 69.07 89.82 66.44 -2.63

9 100. 83.12 78.33 85. +1.88

6.3 Summary

In this chapter, we apply models proposed in Chapter 3 and Chapter 4 to multi-channel

data with examples of human motion data. Two or four experiments are carried out per

dataset. ResNet is used as a baseline since it performs well with multi-channel time series

92 Jaehoon Cha

Table 6.10: Accuracy of the test set when using synthetic data by various generative models
of nine open source datasets

Data number VAE β-VAE MMD Proposed model

1 86.33 83.66 87. 89.66

2 100. 100. 100. 100.

3 95.83 93.05 94.44 100.

4 92.75 92.08 95.65 95.65

5 81.85 79.25 63.33 83.33

6 52.22 48.88 40.55 53.88

7 88.33 88.88 90.55 90.55

8 63.15 63.81 64.47 66.44

9 80.31 78.13 84.38 85.

Table 6.11: Hierarchical Result without synthetic data of nine open source datasets
Baseline with C-FNN with HADNN

Data number train acc test acc train acc test acc train acc test acc

3 100. 98.61 100. 100. 100. 95.83

5 100. 78.14 100. 83.33 100. 78.51

6 100. 55. 100. 57.77 99.44 52.22

7 98.88 90.55 100. 92.77 98.88 89.99

9 100. 83.12 100. 83.12 100. 81.18

Table 6.12: Hierarchical with synthetic data of nine open source datasets
Baseline with C-FNN with HADNN

Data number train acc test acc train acc test acc train acc test acc

3 83.33 100. 85.18 100. 82.71 97.22

5 93.33 83.33 95.55 84.44 93.33 77.77

6 72.22 53.88 67.03 50.55 73.33 50.

7 96.66 90.55 94.81 93.88 94.81 92.22

9 81.11 85. 80.55 85.93 80. 84.06

data.The first experiment is to train the baseline without synthetic data. The second

experiment is to train the baseline with synthetic data. If coarse classes are available, two

more experiments with hierarchical learning models are carried out.

Because obtaining a large amount of human motion data is time-consuming, we first

apply the proposed generative model in Chapter 3 to augment the amount of data. A set

of labelled synthetic data is created at every iteration and is used to prevent overfitting

Chapter 6. Multi-Channel Data Analysis with Machine Learning 93

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

0

20

40

60

80

100
Ac

cu
ra

cy
train
test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

40

60

80

100

Ac
cu

ra
cy

train
test

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

40

60

80

100

Ac
cu

ra
cy

train
test

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

40

60

80

100

Ac
cu

ra
cy

train
test

(h)

0.0 0.2 0.4 0.6 0.8 1.0
Initial learning rate

20

40

60

80

100

Ac
cu

ra
cy

train
test

(i)

Figure 6.7: Accuracy of a training set and test set of Baseline on (a) Data1, (b) Data2, (c)
Data3, (d) Data4, (e) Data5, (f) Data6, (g) Data7, (f) Data8, and (i) Data9 with respect
to initial learning rate.

in neural networks. The proposed motion type detection process using synthetic data is

evaluated using InhaMotion dataset and nine open source human motion datasets. Train-

ing with synthetic data from the proposed generative model results in improvement of the

accuracy of the test set in InhaMotion dataset by 2.84%. In the nine open source human

motion datasets, training neural networks with synthetic data from the proposed gener-

ative model improves the accuracy of the test set in seven datasets and outperforms the

other available generative models. This result demonstrates that the proposed model can

generate multi-channel time series data which are convincingly drawn from the original

training set.

InhaMotion dataset and five open source datasets are used with coarse classes. In order

94 Jaehoon Cha

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100
Ac

cu
ra

cy

train
test

(e)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(f)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(g)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(h)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

20

40

60

80

100

Ac
cu

ra
cy

train
test

(i)

Figure 6.8: Accuracy of a training set and test set of Baseline on (a) Data1, (b) Data2, (c)
Data3, (d) Data4, (e) Data5, (f) Data6, (g) Data7, (f) Data8, and (i) Data9 with respect
to standard deviation applied to the generative model proposed in Chatper 3.

to take advantage of utilizing coarse classes without providing them at the test phase, C-

FNNs and HADNNs are attached to ResNet after removing its fully-connected layers. The

accuracies of the test sets of the five open source datasets all improve with C-FNNs. It

is worth noting that the accuracy dramatically increases by 17.65% when both synthetic

data and coarse classes are used in InhaMotion dataset.

All results show that the proposed generative model and hierarchical learning models

can be successfully used in fields where the amount of data is insufficient and where data

can be hierarchically structured based on their channels.

Chapter 6. Multi-Channel Data Analysis with Machine Learning 95

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100
Ac

cu
ra

cy

train
test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(e)

Figure 6.9: Accuracy of a training set and test set of Baseline with C-FNN on (a) Data3,
(b) Data5, (c) Data6, (d) Data7, and (e) Data9 with respect to standard deviation applied
to the generative model proposed in Chatper 3.

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(b)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(c)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(d)

0.0 0.2 0.4 0.6 0.8 1.0
Standard deviation

40

60

80

100

Ac
cu

ra
cy

train
test

(e)

Figure 6.10: Accuracy of a training set and test set of Baseline with HADNN on (a) Data3,
(b) Data5, (c) Data6, (d) Data7, and (e) Data9 with respect to standard deviation applied
to the generative model proposed in Chatper 3.

96 Jaehoon Cha

Table 6.13: Summary of the nine open source human motion datasets
Summary

N(train) N(test) N(classes) N(channels) length

1 275 300 25 9 144

2 40 40 4 6 100

3 108 72 12 6 1197

4 137 138 4 3 206

5 30 270 6 4 65

6 180 180 15 2 45

7 180 180 6 24 51

8 151 152 4 6 30

9 120 320 8 3 315

Table 6.14: Coarse class information for five open source datasets
Dataset type the first coarse class type the second coarse class

Data3 dynamic 0:{1, 2, 3, 4, 6, 7, 11} one arm 0:{2, 6, 7}
both arms 1:{1, 3, 4, 11}

static 1:{0, 5, 8, 9, 10} one arm 2:{0,10}
both arms 3:{5,8,9}

Data5 not bent 0:{0, 2, 3} N/A N/A
bent 1:{1, 4, 5} N/A N/A

Data6 arc 0:{0, 3, 4, 5, 12, 13, 14} N/A N/A
horizontal 1:{1, 6, 8, 10} N/A N/A
vertical 2:{2, 7, 9, 11} N/A N/A

Data7 one arm 0:{0, 1, 2} N/A N/A
both arms 1:{3, 4, 5} N/A N/A

Data9 line 0:{2, 3, 4, 5} horizontal 0:{2, 3}
vertical 1:{4, 5}

non-line 1:{0, 1, 6, 7} arc 2:{6, 7}
non-arc 3:{0, 1}

Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we have studied machine learning algorithms to apply them to multi-channel

data. In order to use machine learning algorithms with data from multiple channels, we

propose new models for neural networks in Chapter 3 and Chapter 4. The proposed process

in Chapter 6 using machine learning algorithms is mainly divided into two steps: generating

a set of labelled synthetic data and classifying motion types with their hierarchy of target

classes.

Because multi-channel data consist of multiple channels, more various samples can

emerge in multi-channel data from the combination of multiple channels than in single

channel data. Thus, in order to analyse multi-channel data, the more the data required,

the more channels the data have. Accordingly, we propose a new generative model to

augment the amount of data in Chapter 3. Taking into account the role of the mean

and the standard deviation in the reparameterization trick of VAEs, we design a new

generative model which is built upon the architecture of AEs. Since AEs achieve great

success in dimensionality reduction, our goal is to preserve their architecture and to make

it become a generative model. This is done by the extension of the mapping of decoder

from the discrete latent space to the continuous latent space.

In addition, we propose a validation process to check the performance of generative

models with a given dataset, which has a training set and a test set. The process is di-

vided into three: generation, labelling and classification. In generation, generative models

are trained on the training set. In labelling, synthetic data generated by the now trained

97

98 Jaehoon Cha

generative models are labelled using SVM. In classification, a neural network for a clas-

sification task is trained using the labelled synthetic data. Subsequently, the generative

models are evaluated based on the accuracy of the test set. Because standard deviation

is a hyper-parameter of the proposed generative model, we first check the impact of the

standard deviation on the accuracy of the test set. The result shows that a certain range

of the standard deviations guarantees a good performance on the test set. In other words,

the neural networks trained using synthetic data can capture the representations of the

training set. The proposed generative model is compared with VAE and MMD. With

the comparison, we conclude that the proposed generative model can be used to generate

synthetic data.

Multi-channel data may have their own innate hierarchical structure based on chan-

nel information. In Chapter 4, two types of hierarchical learning models are proposed.

First, Hierarchical Auxiliary Learning (HAL) is proposed to utilize hierarchical structure

of target classes in the field of Computer Vision, which is one of the most popular fields

in machine learning. HAL takes auxiliary information and transforms them into auxiliary

score through the auxiliary block. With the experimental results, we observe four advan-

tages of using the auxiliary block. First, the block can be easily attached to any baselines.

Second, the numbers of parameters with or without the auxiliary block are almost the

same, which implies that it does not affect computational complexity. Third, any auxiliary

information improves the performance in terms of the accuracy of the test set. Last, the

auxiliary block transforms discrete coarse class information to continuous auxiliary scores

through back propagation. As auxiliary scores still are separable with respect to coarse

classes but are different with respect to inputs, the auxiliary scores can contain both coarse

class and fine class information. Nonetheless, the disadvantage of the proposed model is

that it requires the coarse class information even at the test phase.

By modifying the targets of hierarchical learning models, we propose Consecutive Feed-

forward Neural Networks (C-FNNs) and Hierarchical Auxiliary Deep Neural Networks

(HADNNs) whose targets are continuous and which do not require coarse classes at the

test phase. C-FNNs are a series of pairs of one feedforward neural network and decoder

network with the skip connection. On the other hand, HADNNs are the modifications of

C-FNNs to reduce the number of parameters. The series of pairs of one feedforward neural

network and decoder network are reduced and inserted in the middle of an architecture of

HADNNs as a branch. C-FNNs and HADNNs are evaluated on three benchmark indoor lo-

calization datasets – TUT2017, TUT2018 and UJIIndoorLoc –, examples of multi-channel

Chapter 7. Conclusions and Future Work 99

data as samples in the datasets are obtained from independent Wi-Fi routers. Results show

that C-FNNs increase the floor accuracy by 55%, 30% and 60% in TUT2017, TUT2018

and UJIIndoorLoc, respectively and require more than three times and five times the pa-

rameters than baselines. On the other hand, HADNNs achieve as high an accuracy as

C-FNNs with much less parameters than C-FNNs. As HADNNs require less parameters

and do not require the coarse classes at the test phase, it is a practical solution to any

problem where coarse classes should be considered.

As another example of multi-channel data, human motion data is analysed to study the

significance of the relationship between channels and targets of the task. In human motion

data, channels are sensor locations and targets are motion types. The goal is to detect

motion types based on the relationship between sensor locations and motion types. In

Chapter 5, we divide the detection algorithm into five steps. In the first step, WT is applied

to measurements to remove noise, and angular displacement is calculated as it provides

meaningful information about motion movements. In the second step, weights are obtained

based on the relationship between motion types and measurements from sensor locations.

In the third step, we build a hierarchical decision tree and design a set of characteristic

functions based on the weights. In the fourth step, the ROC curve is used to find the

optimal thresholds for the characteristic functions. Finally, characteristic vectors are found

using the characteristic functions and thresholds. Evaluations are done with subjects, who

were patients and students of Inha University Hospital, Korea. All subjects were required

to perform nine motions as far as their abilities could permit. We use four metrics including

recall, precision, accuracy and F-measure to validate the proposed detection algorithm and

the results were compared against the conventional method, namely the PCA. From the

results, analysing the relationship between sensor locations and motion types can help

in designing functions that can extract important features and hierarchically differentiate

motion types.

In Chapter 6, we integrate Chapters 3 to 5. We use human motion data as an example

of multi-channel data with machine learning. Due to difficulties in gathering motion data,

we first apply the proposed generative model in Chapter 3. At every iteration, a set of

labelled synthetic data is fed to a neural network together with the original training set.

The number of the labelled synthetic data is half of the number of the original training set.

This allows the neural networks to focus on the training set more than synthetic data and

to prevent overfitting by synthetic data, which results in generalization of neural networks.

In addition, we apply the proposed hierarchical learning models in Chapter 4 to datasets,

100 Jaehoon Cha

the targets of which have hierarchy. ResNet is selected as a baseline since it performs

well with multi-channel data. Then, we replace fully-connected layers with C-FNNs and

HADNNs to utilize coarse classes. The proposed detection process with machine learning

is evaluated by the accuracy of the test set using InhaMotion dataset and nine open source

human motion datasets. In InhaMotion dataset, the accuracy of the test set increases up

to 17.65% when using both synthetic data and coarse classes with C-FNNs. In seven of

the nine open source human motion datasets, the accuracies of the test sets improve when

training neural networks for a classification task using a combination of synthetic data and

the original training set. Two of the nine datasets are used as examples of coarse classes

with two levels and three of the remaining seven datasets are used as examples of coarse

classes with one level. In all five datasets with coarse classes, the accuracies of the test sets

increase when utilizing coarse classes. Note that coarse classes are not required at the test

phase since C-FNNs and HADNNs are attached to ResNet. Therefore, we conclude that

the proposed detection process is applicable to multi-channel data, which have difficulty in

gathering abundant amounts of data and demand the utilization of hierarchy of targets.

Future study is discussed in the next section.

7.2 Future Work

Although the proposed models solve several problems mentioned in this thesis, there are

still a lot of things to be complemented. In this section, we list future research derived

from this thesis.

First, we observed the impact of the standard deviation on the proposed generative

model. The results showed that there is a certain range of the standard deviations which

guarantees the creation of a set of good synthetic data. Therefore, one can design an

algorithm to automatically find the range.

Second, HAL showed great performance on a coarse class and fine class classification

tasks. Since it is proposed to utilize the hierarchy among target classes to address scalability

issues, the experiments on larger datasets should be carried out in the future. In addition,

the accuracy of the test set is affected by the coarse class information. Therefore, we will

design an algorithm to find the optimal coarse classes which can improve the performance

the most.

Third, the combination of ResNet and C-FNNs improves the accuracies of the test sets

while the combination of ResNet and HADNNs decreases the accuracies of the test sets

Chapter 7. Conclusions and Future Work 101

when coarse classes are used. Accordingly, we will focus on figuring out the reason for the

dropping performance of the combination of ResNet and HADNNs. This can lead us to

design more effective neural networks which can utilize coarse classes and fine classes and

do not require coarse classes at the test phase.

Fourth, the results of the generative models show that generating synthetic data, which

are convincingly drawn from the training set, can improve the performance of a classifica-

tion task. In the future study, the model can be used to solve imbalanced class problems,

caused when the numbers of samples with respect to each class are different.

Finally, the results of the proposed hierarchical learning models show that they can

be successfully used in fields where the coarse classes are available. Consequently, these

hierarchical learning models can be applied to fields where coarse classes based on multiple

channels are available. Examples of such fields are text categorization, drug discovery and

a recommendation system.

Appendix A

Reconstructed images from the

proposed generative models and

available methods

102

Appendix A. Reconstructed images from the proposed generative models and available
methods 103

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(a)

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(b)

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(c)

Figure A.1: Visualization of the 10 reconstructed images with respect to the standard
deviation. The first column contains the ground truth images. The images in each column
are reconstructed from the ground truth based on the proposed model with the standard
deviation, which is written at the top of each column. The generative models are trained
by all images in the training set.

104 Jaehoon Cha

(A)

(B)

(C)

(D)

(a)

(A)

(B)

(C)

(D)

(b)

(A)

(B)

(C)

(D)

(c)

Figure A.2: Visualization of a comparison of 10 reconstructed images. Images in (A) are
the ground truth. Images of (B) are reconstructed images by VAE, (C) are by MMD, and
(D) are by the proposed model with std of 0.001. The generative models are trained by all
images in the training set.

Appendix A. Reconstructed images from the proposed generative models and available
methods 105

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(a)

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(b)

GT 0.0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Label0

Label1

Label2

Label3

Label4

Label5

Label6

Label7

Label8

Label9

(c)

Figure A.3: Visualization of the 10 reconstructed images with respect to the standard
deviation. The first column contains the ground truth images. The images in each column
are reconstructed from the ground truth based on the proposed model with the standard
deviation, which is written at the top of each column. The generative models are trained
by a portion of the training set.

106 Jaehoon Cha

(A)

(B)

(C)

(D)

(a)

(A)

(B)

(C)

(D)

(b)

(A)

(B)

(C)

(D)

(c)

Figure A.4: Visualization of a comparison of 10 reconstructed images. Images in (A) are
the ground truth. Images of (B) are reconstructed images by VAE, (C) are by MMD, and
(D) are by the proposed model with std of 0.001. The generative models are trained by a
portion of the training set.

Appendix B

Losses and auxiliary scores with

different coarse class cases on

three datasets

107

108 Jaehoon Cha

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case1 train
baseline + case1 test

(a)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case2 train
baseline + case2 test

(b)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case3 train
baseline + case3 test

(c)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case4 train
baseline + case4 test

(d)

Figure B.1: Loss comparison of the traiingn and test datasets at each epoch during the
training phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and (d) Case4 with
MNIST dataset.

(a) (b)

(c) (d)

Figure B.2: Auxiliary scores of all training images corresponding to their coarse classes of
(a) Case1, (b) Case2, (c) Case3, and (d) Case4 with MNIST dataset.

Appendix B. Losses and auxiliary scores with different coarse class cases on three
datasets 109

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case1 train
baseline + case1 test

(a)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case2 train
baseline + case2 test

(b)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case3 train
baseline + case3 test

(c)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case4 train
baseline + case4 test

(d)

Figure B.3: Loss comparison of training and test datasets at each epoch during the training
phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and (d) Case4 with SVHN
dataset.

(a) (b)

(c) (d)

Figure B.4: Auxiliary scores of all training images corresponding to their coarse classes of
(a) Case1, (b) Case2, (c) Case3, and (d) Case4 with SVHN dataset.

110 Jaehoon Cha

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010

Loss
baseline train
baseline test
baseline + case3 train
baseline + case3 test

(a)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case3 train
baseline + case3 test

(b)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case1 train
baseline + case1 test

(c)

0 50 100 150 200 250
epoch

0.000

0.002

0.004

0.006

0.008

0.010
Loss

baseline train
baseline test
baseline + case2 train
baseline + case2 test

(d)

Figure B.5: Loss comparison of training and test datasets at each epoch during the training
phase between the baseline and (a) Case1 (b) Case2 (c) Case3 and (d) Case4 with CIFAR-
10 dataset.

(a) (b)

(c) (d)

Figure B.6: Auxiliary scores of all training images corresponding to their coarse classes of
(a) Case1, (b) Case2, (c) Case3, and (d) Case4 with CIFAR-10 dataset.

Appendix C

Algorithms to find weights based

on the global patterns in the

InhaMotion dataset

Algorithm 2 Feature weights calculation

1: Input: Motion number
2: for r in orientation angles do
3: for s in Subjects do
4: σ := a standard deviation of r
5: P := {p|r has a local minimum or local maximum at p}
6: for i = 1 : 1 : (len(P)− 1) do
7: σL := a standard deviation between pi and pi+1

8: if σL < σ then
9: add the mean of pi and pi+1 to P and

delete pi and pi+1 from P
10: end if
11: end for
12: Convert signals to a binary code.
13: end for
14: distancer := sum of code length differences among all subjects
15: end for

16: Weightr =
maxr′∈R(distancer′)− distancer

maxr′∈R(distancer′)
where R is a set of all orientation angles.

111

Appendix D

Nine open source human motion

datsets

Table D.1: data1
1. Articulary Word Recognition

N of train N of test N of classes N of channels Lenght Type

275 300 25 9 144 Motion

Description
Collected from multiple native English speakers producing
25 words

Channel each sensor produces X, Y and Z, (LL, T1, UL)

Frequency 200 Hz

N of subjects N/A

Classes 25 words in Derivation of twenty-five-word PB Lists[citation]

112

Appendix D. Nine open source human motion datsets 113

Table D.2: data2
2. Basic Motions

N of train N of test N of classes N of channels Lenght Type

40 40 4 6 100 Motion

Description four students performed four activities

Channel 6, 3d acc and 3d gyroscope

Frequency 10 per second

N of subjects 4

Classes

standing(0)
running(1)
walking(2)
badminton(3)

Table D.3: data3
3. Cricket

N of train N of test N of classes N of channels Lenght Type

108 72 12 6 1197 Motion

Description
In the game of Cricket umpire’s gestures: motions of the
hands for different events.

Channel Acc (X, Y and Z)on the two wrists

Frequency 184Hz

N of subjects N/A

Classes 12 events in the Cricket game

Table D.4: data4
4. Epilepsy

N of train N of test N of classes N of channels Lenght Type

137 138 4 3 206 Motion

Description
Class activities. Each subjects performed each 10 times at
least. Truncate data to the length of the shortest series.

Channel 3, Acc (X, Y and Z)on the dominant wrist

Frequency 16Hz

N of subjects 6

Classes
seizure mimicking(0)
walking(1)
running(2)
sawing (3)

114 Jaehoon Cha

Table D.5: data5
5. Ering

N of train N of test N of classes N of channels Lenght Type

30 270 6 4 65 Motion

Description Detect hand and finger gesutres.

Channel
thumb, index finger, and middle finger, distance between
thumb and middle finger

Frequency N/A

N of subjects 1

Classes
open(0), fist(1)
two(2), pointing(3)
ring(4), grasp(5)

Table D.6: data6
6. Libras

N of train N of test N of classes N of channels Lenght Type

180 180 15 2 45 Motion

Description Brazilian sign language. Obtained from videos

Channel 2 bidirection

Frequency 45 frame each measured for 7 seconds

N of subjects 4

Classes 15 body language

Table D.7: data7
7. NATOPS

N of train N of test N of classes N of channels Lenght Type

180 180 6 24 51 Motion

Description Classify 6 motions

Channel 24 = 8,3 (hands, elbows, wrists, and thumbs x,y, and z)

Frequency N/A

N of subjects N/A

Classes
have command(0), all clear(1),
not clear(2), spread wings(3),
fold wings(4), lock wings(5),

Appendix D. Nine open source human motion datsets 115

Table D.8: data8
8. RacketSports

N of train N of test N of classes N of channels Lenght Type

151 152 4 6 30 Motion

Description To classify movements in two racket sports

Channel 6, acc and xyz

Frequency 10 Hz over 3 seconds

N of subjects N/A

Classes
smash (0)/clear(1) in badminton
forehand(2)/backhand(3) in squash

Table D.9: data9
9. U Wave Gesture Library

N of train N of test N of classes N of channels Lenght Type

120 320 8 3 315 Motion

Description Classify 8 simple gestures generated by Wii

Channel x,y and z by wii

Frequency 100 Hz

N of subjects 8

Classes 8 simple gesture

Bibliography

[1] Kerem Altun and Billur Barshan. Human activity recognition using inertial/magnetic

sensor units. In International workshop on human behavior understanding, pages 38–

51. Springer, 2010.

[2] Pawel Badura and Ewa Pietka. Automatic Berg Balance Scale assessment system

based on accelerometric signals. Biomedical Signal Processing and Control, 24:114–

119, 2016.

[3] Elnaz Barshan and Paul Fieguth. Stage-wise training: An improved feature learning

strategy for deep models. In Feature Extraction: Modern Questions and Challenges,

pages 49–59, 2015.

[4] Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern

machine-learning practice and the classical bias–variance trade-off. Proceedings of

the National Academy of Sciences, 116(32):15849–15854, 2019.

[5] Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with

multi-layer neural networks. In Advances in Neural Information Processing Systems,

pages 400–406, 2000.

[6] Katherine Berg, Sharon Wood-Dauphine, JI Williams, and David Gayton. Measuring

balance in the elderly: preliminary development of an instrument. Physiotherapy

Canada, 41(6):304–311, 1989.

[7] Viv Bewick, Liz Cheek, and Jonathan Ball. Statistics review 13: receiver operating

characteristic curves. Critical care, 8(6):508, 2004.

116

Bibliography 117

[8] Ricardo Cerri, Rodrigo C Barros, and André CPLF De Carvalho. Hierarchical multi-

label classification using local neural networks. Journal of Computer and System

Sciences, 80(1):39–56, 2014.

[9] Tao Chen, Shijian Lu, and Jiayuan Fan. SS-HCNN: Semi-supervised hierarchical

convolutional neural network for image classification. IEEE Transactions on Image

Processing, 28(5):2389–2398, 2019.

[10] Jaegul Choo and Shixia Liu. Visual analytics for explainable deep learning. IEEE

computer graphics and applications, 38(4):84–92, 2018.

[11] James W Cooley and John W Tukey. An algorithm for the machine calculation of

complex fourier series. Mathematics of computation, 19(90):297–301, 1965.

[12] Alana Elza Fontes Da Gama, Thiago de Menezes Chaves, Pascal Fallavollita, Lu-

cas Silva Figueiredo, and Veronica Teichrieb. Rehabilitation motion recognition

based on the international biomechanical standards. Expert Systems with Appli-

cations, 116:396–409, 2019.

[13] Daniel B Dias, Renata CB Madeo, Thiago Rocha, Helton H B́ıscaro, and Sara-

jane M Peres. Hand movement recognition for brazilian sign language: a study using

distance-based neural networks. In 2009 international joint conference on neural

networks, pages 697–704. IEEE, 2009.

[14] Nikita Dvornik, Julien Mairal, and Cordelia Schmid. On the importance of visual

context for data augmentation in scene understanding. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2019.

[15] Mostafa Elhoushi, Jacques Georgy, Aboelmagd Noureldin, and Michael J Korenberg.

A survey on approaches of motion mode recognition using sensors. IEEE Transactions

on intelligent transportation systems, 18(7):1662–1686, 2016.

[16] Mostafa Elhoushi, Jacques Georgy, Aboelmagd Noureldin, and Michael J Korenberg.

A survey on approaches of motion mode recognition using sensors. IEEE Transactions

on Intelligent Transportation Systems, 18(7):1662–1686, 2017.

[17] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher

Leckie. High-dimensional and large-scale anomaly detection using a linear one-class

svm with deep learning. Pattern Recognition, 58:121–134, 2016.

118 Jaehoon Cha

[18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,

and Pierre-Alain Muller. Data augmentation using synthetic data for time series

classification with deep residual networks. arXiv preprint arXiv:1808.02455, 2018.

[19] Germain Forestier, François Petitjean, Hoang Anh Dau, Geoffrey I Webb, and Ea-

monn Keogh. Generating synthetic time series to augment sparse datasets. In 2017

IEEE international conference on data mining (ICDM), pages 865–870. IEEE, 2017.

[20] Xavier Gastaldi. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

[21] Yishuang Geng, Jin Chen, Ruijun Fu, Guanqun Bao, and Kaveh Pahlavan. Enlighten

wearable physiological monitoring systems: On-body RF characteristics based human

motion classification using a support vector machine. IEEE transactions on mobile

computing, 15(3):656–671, 2016.

[22] Nehla Ghouaiel, Pierre-François Marteau, and Marc Dupont. Continuous pattern

detection and recognition in stream-a benchmark for online gesture recognition. In-

ternational Journal of Applied Pattern Recognition, 4(2):146–160, 2017.

[23] Alan Godfrey, AK Bourke, GM Olaighin, P Van De Ven, and J Nelson. Activity clas-

sification using a single chest mounted tri-axial accelerometer. Medical engineering

& physics, 33(9):1127–1135, 2011.

[24] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning,

volume 1. MIT press Cambridge, 2016.

[25] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

Advances in neural information processing systems, pages 2672–2680, 2014.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778, 2016.

Bibliography 119

[28] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew

Botvinick, Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic

visual concepts with a constrained variational framework. Iclr, 2(5):6, 2017.

[29] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data

with neural networks. science, 313(5786):504–507, 2006.

[30] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.

Densely connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4700–4708, 2017.

[31] Norio Ishigaki, Teiji Kimura, Yuki Usui, Kaoru Aoki, Nobuyo Narita, Masayuki

Shimizu, Kazuo Hara, Nobuhide Ogihara, Koichi Nakamura, Hiroyuki Kato, et al.

Analysis of pelvic movement in the elderly during walking using a posture moni-

toring system equipped with a triaxial accelerometer and a gyroscope. Journal of

biomechanics, 44(9):1788–1792, 2011.

[32] Jin-Woo Jang and Song-Nam Hong. Indoor localization with wifi fingerprinting using

convolutional neural network. In 2018 Tenth International Conference on Ubiquitous

and Future Networks (ICUFN), pages 753–758. IEEE, 2018.

[33] Lei Jing and Zixue Cheng. Recognition of daily routines and accidental event with

multipoint wearable inertial sensing for seniors home care. In 2017 IEEE Inter-

national Conference on Systems, Man, and Cybernetics (SMC), pages 2324–2389.

IEEE, 2017.

[34] Iain M Johnstone and Bernard W Silverman. Wavelet threshold estimators for data

with correlated noise. Journal of the royal statistical society: series B (statistical

methodology), 59(2):319–351, 1997.

[35] Ian Jolliffe. Principal component analysis. Springer, 2011.

[36] Enric Junqué de Fortuny, David Martens, and Foster Provost. Predictive modeling

with big data: Is bigger really better? Big Data, 1(4):215–226, 2013.

[37] Dean M Karantonis, Michael R Narayanan, Merryn Mathie, Nigel H Lovell, and

Branko G Celler. Implementation of a real-time human movement classifier using a

triaxial accelerometer for ambulatory monitoring. IEEE transactions on information

technology in biomedicine, 10(1):156–167, 2006.

120 Jaehoon Cha

[38] Kyeong Soo Kim, Sanghyuk Lee, and Kaizhu Huang. A scalable deep neural network

architecture for multi-building and multi-floor indoor localization based on Wi-Fi

fingerprinting. Big Data Analytics, 3(4), April 2018.

[39] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[40] Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and Max

Welling. Improved variational inference with inverse autoregressive flow. In Advances

in neural information processing systems, pages 4743–4751, 2016.

[41] David G Kleinbaum, Lawrence L Kupper, Azhar Nizam, and Eli S Rosenberg. Ap-

plied regression analysis and other multivariable methods. Nelson Education, 2013.

[42] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and

convolution in neural networks to the action of compact groups. arXiv preprint

arXiv:1802.03690, 2018.

[43] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105, 2012.

[44] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:

Accelerometer-based personalized gesture recognition and its applications. Perva-

sive and Mobile Computing, 5(6):657–675, 2009.

[45] Yinyin Liu, Janusz A Starzyk, and Zhen Zhu. Optimized approximation algo-

rithm in neural networks without overfitting. IEEE transactions on neural networks,

19(6):983–995, 2008.

[46] Elena Simona Lohan, Joaqúın Torres-Sospedra, Helena Leppäkoski, Philipp Richter,

Zhe Peng, and Joaqúın Huerta. Wi-fi crowdsourced fingerprinting dataset for indoor

positioning. Data, 2(4):32, 2017.

[47] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm

restarts. arXiv preprint arXiv:1608.03983, 2016.

Bibliography 121

[48] James Lucas, George Tucker, Roger Grosse, and Mohammad Norouzi. Understanding

posterior collapse in generative latent variable models. International Conference on

Learning Representations, Workshop Paper, 2019.

[49] Lee B. Lusted. Roc recollected. Medical Decision Making, 4(2):131–135, 1984.

[50] Stephane G Mallat. A theory for multiresolution signal decomposition: the wavelet

representation. IEEE transactions on pattern analysis and machine intelligence,

11(7):674–693, 1989.

[51] Christopher D Manning, Hinrich Schütze, and Prabhakar Raghavan. Introduction to

information retrieval. Cambridge university press, 2008.

[52] Louise C Mâsse, Barbara E Ainsworth, Susan Tortolero, Sarah Levin, Janet E Fulton,

Karla A Henderson, and Kelly Mayo. Measuring physical activity in midlife, older,

and minority women: issues from an expert panel. Journal of Women’s Health,

7(1):57–67, 1998.

[53] Sina Mehdizadeh. The largest lyapunov exponent of gait in young and elderly indi-

viduals: a systematic review. Gait & posture, 60:241–250, 2018.

[54] Germán Mart́ın Mendoza-Silva, Philipp Richter, Joaqúın Torres-Sospedra, Elena Si-

mona Lohan, and Joaqúın Huerta. Long-term wifi fingerprinting dataset for research

on robust indoor positioning. Data, 3(1):3, 2018.

[55] Charles E Metz. Roc methodology in radiologic imaging. Investigative radiology,

21(9):720–733, 1986.

[56] Taylor Mordan, Nicolas Thome, Gilles Henaff, and Matthieu Cord. Revisiting multi-

task learning with rock: a deep residual auxiliary block for visual detection. In

Advances in Neural Information Processing Systems, pages 1310–1322, 2018.

[57] Adriano Moreira, Maria J. Nicolau, Filipe Meneses, and António Costa. Wi-Fi fin-

gerprinting in the real world – RTLSUM at the EvAAL competition. In Proc. In-

ternational Conference on Indoor Positioning and Indoor Navigation (IPIN), pages

1–10, Banff, Alberta, Canada, October 2015.

[58] Bijan Najafi, Kamiar Aminian, François Loew, Yves Blanc, and Philippe A Robert.

Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and

122 Jaehoon Cha

its application in fall risk evaluation in the elderly. IEEE Transactions on biomedical

Engineering, 49(8):843–851, 2002.

[59] Bijan Najafi, Kamiar Aminian, Anisoara Paraschiv-Ionescu, François Loew,

Christophe J Bula, and Philippe Robert. Ambulatory system for human motion

analysis using a kinematic sensor: monitoring of daily physical activity in the el-

derly. IEEE Transactions on biomedical Engineering, 50(6):711–723, 2003.

[60] Bijan Najafi, David G Armstrong, and Jane Mohler. Novel wearable technology for

assessing spontaneous daily physical activity and risk of falling in older adults with

diabetes, 2013.

[61] Lakshmanan Nataraj, Tajuddin Manhar Mohammed, BS Manjunath, Shivkumar

Chandrasekaran, Arjuna Flenner, Jawadul H Bappy, and Amit K Roy-Chowdhury.

Detecting gan generated fake images using co-occurrence matrices. Electronic Imag-

ing, 2019(5):532–1, 2019.

[62] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y

Ng. Reading digits in natural images with unsupervised feature learning. In NIPS

Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

[63] Tamara ME Nijsen, Ronald M Aarts, Pierre JM Cluitmans, and Paul AM Griep.

Time-frequency analysis of accelerometry data for detection of myoclonic seizures.

IEEE Transactions on Information Technology in Biomedicine, 14(5):1197–1203,

2010.

[64] M. Nowicki and J. Wietrzykowski. Low-effort place recognition with WiFi finger-

prints using deep learning. In Roman Szewczyk, Cezary Zieliński, and Ma lgorzata

Kaliczyńska, editors, Automation 2017, pages 575–584, Cham, 2017. Springer Inter-

national Publishing.

[65] Martin A O’Reilly, Darragh F Whelan, Tomas E Ward, Eamonn Delahunt, and

Brian M Caulfield. Classification of deadlift biomechanics with wearable inertial

measurement units. Journal of biomechanics, 58:155–161, 2017.

[66] Giulia Pacini Panebianco, Maria Cristina Bisi, Rita Stagni, and Silvia Fantozzi.

Analysis of the performance of 17 algorithms from a systematic review: Influence

Bibliography 123

of sensor position, analysed variable and computational approach in gait timing

estimation from imu measurements. Gait & posture, 66:76–82, 2018.

[67] Mitesh Patel. Action observation in the modification of postural sway and gait:

Theory and use in rehabilitation. Gait & posture, 58:115–120, 2017.

[68] Hillary A Plummer, Federico Pozzi, and Lori A Michener. Comparison of two trunk

electromagnetic sensor placement methods during shoulder motion analysis. Journal

of biomechanics, 68:132–135, 2018.

[69] David Martin Powers. Evaluation: from precision, recall and f-measure to roc, in-

formedness, markedness and correlation. Journal of Machine Learning Technologies,

2(1):37–63, 2011.

[70] Lutz Prechelt. Automatic early stopping using cross validation: quantifying the

criteria. Neural Networks, 11(4):761–767, 1998.

[71] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normaliz-

ing flows. arXiv preprint arXiv:1505.05770, 2015.

[72] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning repre-

sentations by back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[73] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Analysis of rec-

ommendation algorithms for e-commerce. In Proceedings of the 2nd ACM conference

on Electronic commerce, pages 158–167, 2000.

[74] Bernhard Scholkopf, Kah-Kay Sung, Christopher JC Burges, Federico Girosi, Partha

Niyogi, Tomaso Poggio, and Vladimir Vapnik. Comparing support vector machines

with gaussian kernels to radial basis function classifiers. IEEE transactions on Signal

Processing, 45(11):2758–2765, 1997.

[75] Claude Elwood Shannon. Communication in the presence of noise. Proceedings of

the IRE, 37(1):10–21, 1949.

[76] Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn Keogh.

Generalizing dtw to the multi-dimensional case requires an adaptive approach. Data

mining and knowledge discovery, 31(1):1–31, 2017.

124 Jaehoon Cha

[77] Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation

for deep learning. Journal of Big Data, 6(1):60, 2019.

[78] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[79] Xudong Song, Xiaochen Fan, Xiangjian He, Chaocan Xiang, Qianwen Ye,

Xiang Huang, Gengfa Fang, Liming Luke Chen, Jing Qin, and Zumin

Wang. Cnnloc: Deep-learning based indoor localization with wifi fingerprint-

ing. In 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Ad-

vanced & Trusted Computing, Scalable Computing & Communications, Cloud &

Big Data Computing, Internet of People and Smart City Innovation (Smart-

World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pages 589–595. IEEE, 2019.

[80] Melania Susi, Valérie Renaudin, and Gérard Lachapelle. Motion mode recognition

and step detection algorithms for mobile phone users. Sensors, 13(2):1539–1562,

2013.

[81] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.

Inception-v4, inception-ResNet and the impact of residual connections on learning.

In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[82] Mary E Tinetti, Mark Speechley, and Sandra F Ginter. Risk factors for falls

among elderly persons living in the community. New England journal of medicine,

319(26):1701–1707, 1988.

[83] Joaqúın Torres-Sospedra, Raúl Montoliu, Adolfo Mart́ınez-Usó, Joan P. Avariento,

Tomás J. Arnau, Mauri Benedito-Bordonau, and Joaqúın Huerta. UJIIndoorLoc:

A new multi-building and multi-floor database for WLAN fingerprint-based indoor

localization problems. In Proc. International Conference on Indoor Positioning and

Indoor Navigation (IPIN), pages 261–270, Busan, Korea, October 2014.

[84] Loring W.. Tu. An introduction to manifolds. Springer., 2011.

[85] Peter H Veltink, HansB J Bussmann, Wiebe De Vries, WimL J Martens, and Rob C

Van Lummel. Detection of static and dynamic activities using uniaxial accelerome-

ters. IEEE Transactions on Rehabilitation Engineering, 4(4):375–385, 1996.

Bibliography 125

[86] Jose R Villar, Paula Vergara, Manuel Menéndez, Enrique de la Cal, Vı́ctor M

González, and Javier Sedano. Generalized models for the classification of abnor-

mal movements in daily life and its applicability to epilepsy convulsion recognition.

International journal of neural systems, 26(06):1650037, 2016.

[87] Mark P Wachowiak, Gregory S Rash, Peter M Quesada, and Ahmed H Desoky.

Wavelet-based noise removal for biomechanical signals: A comparative study. IEEE

Transactions on biomedical engineering, 47(3):360–368, 2000.

[88] Fang Wan and Chaoyang Song. A neural network with logical reasoning based on

auxiliary inputs. Frontiers in Robotics and AI, 5:86, 2018.

[89] Xinggang Wang, Yongluan Yan, Peng Tang, Xiang Bai, and Wenyu Liu. Revisiting

multiple instance neural networks. Pattern Recognition, 74:15–24, 2018.

[90] Zhelong Wang, Donghui Wu, Jianming Chen, Ahmed Ghoneim, and Mohammad An-

war Hossain. A triaxial accelerometer-based human activity recognition via EEMD-

based features and game-theory-based feature selection. IEEE Sens. J, 16(9):3198–

3207, 2016.

[91] Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from

scratch with deep neural networks: A strong baseline. In 2017 International joint

conference on neural networks (IJCNN), pages 1578–1585. IEEE, 2017.

[92] Qingsong Wen, Liang Sun, Xiaomin Song, Jingkun Gao, Xue Wang, and Huan

Xu. Time series data augmentation for deep learning: A survey. arXiv preprint

arXiv:2002.12478, 2020.

[93] Maciej Wiatrak and Stefano V Albrecht. Stabilizing generative adversarial network

training: A survey. arXiv preprint arXiv:1910.00927, 2019.

[94] Mathias Wilhelm, Daniel Krakowczyk, Frank Trollmann, and Sahin Albayrak. ering:

multiple finger gesture recognition with one ring using an electric field. In Proceed-

ings of the 2nd international Workshop on Sensor-based Activity Recognition and

Interaction, pages 1–6, 2015.

[95] Cinna Wu, Mark Tygert, and Yann LeCun. Hierarchical loss for classification. arXiv

preprint arXiv:1709.01062, 2017.

126 Jaehoon Cha

[96] Wu-Qiang Wu, Hao-Lin Feng, Hong-Yan Chen, Dai-Bin Kuang, and Cheng-Yong Su.

Recent advances in hierarchical three-dimensional titanium dioxide nanotree arrays

for high-performance solar cells. Journal of Materials Chemistry A, 5(25):12699–

12717, 2017.

[97] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,

2017.

[98] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis De-

Coste, Wei Di, and Yizhou Yu. Hd-cnn: hierarchical deep convolutional neural

networks for large scale visual recognition. In Proceedings of the IEEE international

conference on computer vision, pages 2740–2748, 2015.

[99] Zhicheng Yan, Hao Zhang, Robinson Piramuthu, Vignesh Jagadeesh, Dennis De-

Coste, Wei Di, and Yizhou Yu. HD-CNN: hierarchical deep convolutional neural

networks for large scale visual recognition. In Proceedings of the IEEE international

conference on computer vision, pages 2740–2748, 2015.

[100] Che-Chang Yang and Yeh-Liang Hsu. A review of accelerometry-based wearable

motion detectors for physical activity monitoring. Sensors, 10(8):7772–7788, 2010.

[101] Faheem Zafari, Athanasios Gkelias, and Kin K Leung. A survey of indoor localization

systems and technologies. IEEE Communications Surveys & Tutorials, 21(3):2568–

2599, 2019.

[102] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

[103] David Zambrano-Montenegro, FJ Bellido-Outeiriño, Rodolfo Garćıa-Bermúdez,

JM Flores-Arias, and Alexander Huhn. Advanced monitoring system for daily ac-

tivity in elderly people. In 2019 IEEE International Conference on Consumer Elec-

tronics (ICCE), pages 1–2. IEEE, 2019.

[104] Yijia Zhang, Wei Zheng, Hongfei Lin, Jian Wang, Zhihao Yang, and Michel Dumon-

tier. Drug–drug interaction extraction via hierarchical rnns on sequence and shortest

dependency paths. Bioinformatics, 34(5):828–835, 2018.

Bibliography 127

[105] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Balancing learning and

inference in variational autoencoders. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 33, pages 5885–5892, 2019.

[106] Xinqi Zhu and Michael Bain. B-cnn: branch convolutional neural network for hier-

archical classification. arXiv preprint arXiv:1709.09890, 2017.

128 Jaehoon Cha

Curriculum Vitae

Jaehoon Cha

• Date of Birth: 1989.09.05

• Gender : M

• Country of Birth : Republic of Korea

• Nationality : Republic of Korea

Personal Details : Jaehoon Cha, BS, MS

E.mail Address: Jaehoon.Cha@xjtlu.edu.cn

Academic Qualifications

PhD, Electrical Engineering, University of Liverpool, United Kingdom, 2020

M.S, Mathematical Science, Chungnam National University, Republic of Korea, 2016

B.S, Mathematical Science, Chungnam National University, Republic of Korea, 2013

Teaching Assistant Experience

2016 - 2019: at the Department of Electrical and Electronic Engineering - (normally 40 -

120 students per modules)

2014 - 2015: at the Department of Mathematics - (normally 40 - 100 students per

modules)

Research Participants

2019 - 2020: Visiting Scientist at Science and Technology Facilities Council, United

Kingdom

2017 - 2019: Research Assistant at Xi’an Jiaotong – Liverpool University, China

Publication and Accepted papers

International Journal

Bibliography 129

1. Moon Keun Kim, Jaehoon Cha, Eunmi Lee, Van Huy Pham, Sanghyuk Lee and

Nipon Theera-Umpon, Simplified Neural Network Model Design with Sensitivity Analysis

and Electricity Consumption Prediction in a Commercial Building, Energies 2019, 12, 1201;

doi:10.3390/en12071201 (SCIE)

2. Sanghyuk Lee, Jaehoon Cha, Moon Keun Kim, Kyeong Soo Kim, Van Huy Pham,

and Mark Leach, Neural-Network-Based Building Energy Consumption Prediction with

Training Data Generation, Processes 2019, 7, 731; doi:10.3390/pr7100731 (SCIE)

3. Kyeong Soo Kim, Ruihao Wang, Zhenghang Zhong, Zikun Tan, Haowei Songy,

Jaehoon Cha, and Sanghyuk Lee, Large-Scale Location-Aware Services in Access: Hierar-

chical Building/Floor Classification and Location Estimation using Wi-Fi Fingerprinting

Based on Deep Neural Networks,” (Extended version of the FOAN 2017 paper), Fiber and

Integrated Optics, vol. 37, no. 5, pp. 277-289, Apr. 27, 2018.(SCIE)

4. Sanghyuk Lee, Jaehoon Cha, Nipon Theera-Umpon and Kyeong Soo Kim, Analysis

of a Similarity Measure for Non-Overlapped Data, Symmetry 2017, 9, 68; doi:10.3390/sym9050068

(SCIE)

International Conference

1. Sanghyuk Lee, Jaehoon Cha and Kyeong Soo Kim, ”Data gathering and application

to building energy optimization with sensitivity analysis for IoT applications,” Proc. 2019

International SoC Design Conference (ISOCC), Jeju, Korea, Oct. 6-9, 2019. (EI index)

https://ieeexplore.ieee.org/document/9027650

2. Jaehoon Cha, Kyeong Soo Kim, Haolan Zhang, and Sanghyuk Lee, ”Analysis on

EEG signal with machine learning,” Proc. SPIE 11321, 2019 International Conference on

Image and Video Processing, and Artificial Intelligence (IVPAI2019), 113212E, Shanghai,

China, Nov. 27, 2019. (DOI)

3. Jaehoon Cha, Sanghyuk Lee and Kyeong Soo Kim, Automatic building and floor

classification using two consecutive multi-layer perceptron, Proceeding of International

Conference on Control, Automation and Systems(ICCAS 2018), pp. 87-91, Pyeongchang,

Korea, Oct. 2018 (DBpia) (EI index) https://ieeexplore.ieee.org/document/8571593

4. Kyeong Soo Kim, Ruihao Wang, Zhenghang Zhong, Zikun Tan, Haowei Song, Jae-

hoon Cha, and Sanghyuk Lee, ”Large-scale location-aware services in access: Hierarchical

building/floor classification and location estimation using Wi-Fi fingerprinting based on

deep neural networks,” Proc. FOAN 2017 Workshop, Munich, Germany, Nov. 7, 2017.

(DOI) (arXiv) (EI index) https://ieeexplore.ieee.org/document/8215259

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Generative models
	Hierarchical learning
	Machine learning application to motion type analysis

	Data Augmentation Approach
	Variational Autoencoders
	Generative models
	Differences between Autoencoders and Variational Autoencoders
	The role of the Reparameterization trick

	Analysis on Autoencoder and designing a new generative model
	Continuity of the Original Autoencoder
	Extending the decoder network from a discrete latent space to a continuous latent space
	A new generative model

	Experiments
	Dataset
	Generative model setup
	Labelling synthetic data
	Classification model setup
	Results

	Summary

	Hierarchical Learning Approach
	Hierarchical Auxiliary Learning
	Convolutional Neural Network
	Learning scheme
	Backpropagation
	Experiments with three baselines
	Experiments with three datasets on the selected baseline

	Consecutive Feedforward Neural Networks and Hierarchical Auxiliary Deep Neural Networks
	Adaptive loss balancing
	Consecutive Feedforward Neural Networks
	Hierarchical Auxiliary Deep Neural Networks
	Comparison between C-FNNs and HADNNs
	C-FNNs and HADNNs setup
	Data description
	Experiments

	Summary

	Multi-channel Human Data
	Human motion data
	Decisive features extraction
	Measurement and noise removal with Wavelet Transform
	Sensor location decision
	A decision tree and characteristic functions
	Decision algorithm

	Experiments
	Data description
	Results

	Summary

	Multi-Channel Data Analysis with Machine Learning
	Motion type detection process
	Training generative neural networks
	Labelling synthetic data
	Motion type detection using the proposed models
	Adaptive Loss Weighting

	Experiments
	InhaMotion dataset description
	InhaMotion dataset result
	Open source human motion data description
	Open source human motion data results

	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Reconstructed images from the proposed generative models and available methods
	Losses and auxiliary scores with different coarse class cases on three datasets
	Algorithms to find weights based on the global patterns in the InhaMotion dataset
	Nine open source human motion datsets
	References

