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ABSTRACT OF THESIS

submitted by Natasha Saint Savage
for the degree of PhD and entitled

The Effects of State Dependent and State
Independent Probabilistic Updating on Boolean

Network Dynamics.
September 2005

We study semi-synchronous Boolean networks with probabilistic updating

schemes and various topologies (tree, loop, and random). As well as state in-

dependent probabilistic updating we investigate a state dependent scheme which

allows us to control the ‘accuracy’ of nodes. A node is accurate at n if it has been

updated at n, or if its state is as it would be if it had updated.

The state dependent re-evaluation probabilities are determined by the ‘ac-

curacy heuristic’: a stochastic equation which depends on the estimation of a

distribution; we look at ways of estimating this distribution and derive variance

expressions for the estimators.

Through our work on random Boolean trees we observe that (in general) the

output of a Boolean function with correlated inputs, becomes less correlated as

the number of inputs is increased. We also discover that the correlation of a

Boolean function’s output directly affects the ability of the heuristic to achieve

the node’s target accuracy.

Deterministic random Boolean network dynamics are viewed in a new way,

via the distribution of node output distributions (the probability a node’s state

is 1 or 0). This view shows the ‘activity’ of nodes across the network. We find

that as in-degree is increased the topology has less effect on the activity and the

distribution of the Boolean functions dominates. We present a theoretical result

to support this theory.

To understand the dynamics of probabilistically updating Boolean networks

we use a numerical approximation to Flyvbjerg’s frozen component.

The concept of stability in probabilistically updating Boolean networks is

addressed and investigated. For the loop topology the dynamics of active loops

fall into two categories: those with an odd number of inversion nodes and those

with an even number. We discuss the stability of a fixed point in both cases.

For the random topology we derive an annealed approximation which indicates a

phase transition similar to that previously found in the deterministic networks.
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Chapter 1

Introduction: Random Boolean

Networks

In 1969 Stuart Kauffman wrote a compelling paper that showed random Boolean

networks (RBNs) to be a useful tool in modelling genetic nets [11]. The most

surprising result at the time was what he went on to call ‘order for free’ [14]:

Kauffman found that a dynamical system consisting of N coupled randomly cho-

sen Boolean functions, each with two inputs, split the state space into a small

number of short cycles (around
√
N cycles, approximately

√
N in length). RBNs

with in-degree greater than 2 do not share these properties. Kauffman’s work

headed a surge of research activity and a great number of papers have been, and

are still being, written as a result. In the following sections we will introduce the

RBN and describe a few results which have been chosen for their relevance to

this thesis.

1.1 Deterministic RBN’s

1.1.1 Mathematical setup for deterministic RBNs

RBN’s are networks consisting of N ‘nodes’ (typically represented by small circles

or dots) where each node can take on the values 0 or 1. (These values collectively

form the state of the network; we also refer to the value adopted by a particular

node as the state of the node.) Each node is connected to other nodes; in par-

ticular, each node has k ‘predecessors’, nodes which provide inputs to it, in the

sense that its state at time n+ 1 is determined by the states of the predecessors

at time n. (k is the same for all nodes but the k predecessors are not necessar-

ily all distinct, and a node can be among its own predecessors.) Pictorially, the

fact that node A is a predecessor to node B is represented by a directed curve

from A to B. Thus each node has k incoming curves and a variable number of

11



outgoing curves, depending on how many other nodes have it as a predecessor,

no particular restrictions are placed on how many nodes a given node can output

to. A graph representing the input/output relationships of the nodes is called a

‘connection graph’ of the network.

Each node has a Boolean function f : {0, 1}k → {0, 1} which computes the

state of a node at time n + 1 from the states (at time n) of the k predecessors;

but these functions are not usually represented pictorially.

A complete specification of the network is made by specifying, for each node,

which k nodes form its predecessors, and what Boolean function links its state

to its predecessors states. The connections and Boolean functions constitute the

‘architecture’ of the network. Kauffman suggested that the architecture be cho-

sen at random (hence the name ‘random Boolean network’), and the idea was

then to investigate the behaviour of a typical network. (Note that once the ar-

chitecture is chosen the time evolution of the network is completely deterministic.)

There are 22k
possible Boolean functions of k variables; an example of such a

set (for k = 2) is shown in table 1.1. Each node in the network is assigned one

of these, and the predecessors can be assigned in N !/(N − k)! different (ordered)

ways. Thus the number of possible architectures is [9],

(

22k
N !

(N − k)!

)N

Many of these networks will be equivalent in the sense that they will show identi-

cal behaviour given the same initial conditions; for example, if a node is assigned

one of the two constant Boolean functions its predecessors can be changed with-

out effecting the dynamical behaviour in any way. Nevertheless it is clear that

the number of RBNs for given N , k can be extremely large.

The classic RBN (as introduced by Kauffman) is a dynamical system with states

Xn = xn
0x

n
1x

n
2 . . . x

n
N−1 ∈ {0, 1}N , governed by a deterministic map, F : {0, 1}N →

{0, 1}N . F consists of a system of Boolean functions, f : {0, 1}k → {0, 1},

xn+1
0 = f0(x

n
0,0, x

n
0,1, . . . , x

n
0,k−1)

xn+1
1 = f1(x

n
1,0, x

n
1,1, . . . , x

n
1,k−1)

...
...

xn+1
N−1 = fN−1(x

n
N−1,0, x

n
N−1,1, . . . , x

n
N−1,k−1)

12



xi,0 xi,1 f 0
i f 1

i f 2
i f 3

i f 4
i f 5

i f 6
i f 7

i

0 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 0 0

xi,0 xi,1 f 8
i f 9

i f 10
i f 11

i f 12
i f 13

i f 14
i f 15

i

0 0 0 1 0 1 0 1 0 1
0 1 0 0 1 1 0 0 1 1
1 0 0 0 0 0 1 1 1 1
1 1 1 1 1 1 1 1 1 1

Table 1.1: The truth table showing the finite set of all Boolean functions for
k = 2. f j

i is the Boolean function that gives a truth table according to the 2k

binary expansions of j, (top to bottom).

xi,j is the j’th variable of fi, xn
i,j ∈ {xn

0 , x
n
1 , x

n
2 , . . . , x

n
N−1}. An example of F for

N = 4 is given by map (1.1).

xn+1
0 = f0(x

n
1 , x

n
0 )

xn+1
1 = f1(x

n
2 , x

n
0 )

xn+1
2 = f2(x

n
1 , x

n
3 )

xn+1
3 = f3(x

n
1 , x

n
2 ) (1.1)

where f0, . . . , f3 are Boolean functions of two arguments.

0

1

2

3

Figure 1.1: Connection graph of the classic RBN described by (1.1)

As there are finitely many states (2N) in Boolean state space of a given net-

work, we can easily show the dynamical behaviour by a ‘phase portrait’; this

consists of a graph whose vertices represent the 2N states, and whose (directed)

edges show how each state evolves in one time step (thus there is an edge from

X to Y if and only if F (X) = (Y )). (This phase portrait is sometimes called the

‘iteration graph’ of the network.) As an example let f0 = f 2
0 , f1 = f 5

1 , f2 = f 7
2

13



and f3 = f 9
3 , in map (1.1). Perform F on each of the 16 states (= 24) (as shown

in table 1.2) giving the phase portrait shown in figure 1.2.

Xn 0000 0001 0010 0011 0100 0101 0110 0111
Xn+1 0111 0111 0110 0110 0110 0100 0111 0101
Xn 1000 1001 1010 1011 1100 1101 1110 1111
Xn+1 1011 1011 1010 1010 0010 0000 0011 0001

Table 1.2: One iterate of F on each state Xn ∈ {0, 1}4.

0111

0001

11111101

0011

1110

0010

1100

0101

0110

0100

1010

0000

1001 1000

1011

Figure 1.2: Phase portrait of F (given in table 1.2).

The phase portrait shows that F splits the state space into two periodic orbits, a

period 4 and a period 1 (a period 1 orbit is also called a fixed point). We will term

the states leading to a periodic orbit and the orbit itself as a basin of attraction.

The classic RBN splits the state space into disjoint basins of attraction, thus long

term behaviour of a deterministic RBN depends on the initial state (once F is

fixed).

Most physical systems are subject to noise so it is important to analyze the

stability of periodic orbits. In general, periodic behaviour is considered unstable

if small perturbations tend to grow (and stable if they do not). This requires

some notion of distance between states; the most commonly used distance for

Boolean state space is the normalized Hamming distance,

d(X,Y ) =
1

N

N−1∑

i=0

|xi − yi|

Kauffman investigated the stability of periodic orbits by considering noise of the

order 1/N , that is he considered the trajectories of states a normalized Hamming

distance 1/N apart. He recorded his observations in the form of transition ma-

trices. To illustrate, label the fixed point in map F as cycle 1 and the period 4

14



cycle, cycle 2, the cycle transition matrix for map F is,

A =

(
0.5 0
0.5 1

)

The element ai,j of A is the probability of going from cycle j to i when a state

in cycle j is subjected to random 1/N noise. As the network has only 4 nodes

we can draw its state space as a ‘torus’ (figure 1.3, opposite edges (top and bot-

tom, left and right) should be considered joined together). States with touching

edges have d = 1/4. The heavy rectangle on the upper left indicates the basin

of attraction of the fixed point; all other states are in the basin of the periodic

cycle. This representation of state space makes calculating A straightforward and

clearly illustrates the stability of cycle 2.

1011

1110

1111 1101

1100

1000

1001

0000 0010

0001 0011

0100 0110

01110101

1010

Figure 1.3: State space {0, 1}4 drawn as a torus, giving a geometric view of the
Hamming distance.

Kauffman generated transition matrices for maps with N up to 2000 and dif-

ferent values of k. He noted that for maps whose Boolean functions depended on

two variables, 95% of perturbations returned to their original orbit. Kauffman

termed this ‘homeostatic stability’ [12]. The k = 2 orbits also had restricted

local reachability, meaning that any one perturbed cycle could reach 6 others at

most. To put this into perspective, a RBN with N = 2000 would be expected to

have 45 periodic orbits [14]. Kauffman found for k > 2 the homeostatic stabil-

ity of periodic orbits becomes less frequent and reachability increases. Table 1.3

summarizes the classic RBN properties observed by Kauffman [14].

1.1.2 Dynamics of deterministic RBNs

The state space of k = 2 classic RBNs consists of few short cycles embedded in

large basins of attraction (giving them their (homeostatic) stability), and as k is

increased the cycles become longer and the basins smaller (see table 1.3). Kauff-

man and others observe a further difference between networks with high and low

k values. For k = 2 networks, once the long term (periodic) behaviour has been
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Reachability
Median state Number of state Homeostatic among cycles
cycle length cycle attractors stability after perturbation

k = N 0.5 × 2N/2 N/e Low High

k > 5 0.5 × 2BN ∼ N

[
log( 1

1/2±α)
2

]

Low High

B > 1 α = pk − 1/2

k = 2
√
N

√
N High Low

k = 1 (π/2)1/2(N1/2) Exponential in N Low High

Table 1.3: Summary of the properties of classic RBNs observed by Kauffman,
pk = Πk

i=1(1 − i/(2N)) [14]

established, most nodes are fixed in states which do not change with time (we

say such nodes are ‘frozen’); only a relatively small proportion show non-constant

behaviour (are ‘active’) [11] [7] [2]. For high values of k (k ≥ 5) a high proportion

of nodes are active even when the periodic orbit is reached. Intermediate values

of k show more complex behaviour with more parts of the network highly active,

other parts showing periods of low activity.

The first theoretical work to shed more light on this phenomenon was that of

Derrida and Pomeau [6]. They compared the evolution of two states of the net-

work, which they supposed to be a normalized Hamming distance dn apart at

time n and derived an approximate expression for dn+1 by averaging over all net-

works with fixed N , k. Effectively, they examined the behaviour of a network

whose nodes do not change but whose architecture is chosen randomly on every

iteration. Obviously this is different to the classic RBN, where architecture is

fixed; Derrida and Pomeau call their version an ‘annealed approximation’.

The derivation of Derrida and Pomeau’s expression is clearer if we consider the

normalized overlap of two states, an = 1 − dn, rather than the distance [22]. Let

the ‘overlap region’ be the set of nodes that have the same value in the two states;

an is just the fraction of nodes in the overlap region at n. What is the value of

an+1? Node i will certainly be in the overlap region at n + 1 if all its predeces-

sors are in the overlap region at n. But because these predecessors are randomly

assigned in the annealed approximation the probability of this is just ak
n. If one
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or more of the predecessors lies outside the overlap region (which happens with

probability 1 − ak
n) some of the values xn

i,j (j = 0, 1, . . . , k − 1) are different in

the two states, and node i will then be in the overlap region at n+ 1 only if the

values fi(xi,0, . . . , xi,k−1) are the same for the two states despite these differences.

Since the function fi is assigned randomly, the probability of this is 1/2. So,

an+1 = ak
n +

1

2
(1 − ak

n)

=
1

2
(1 + ak

n)

Substituting an = 1 − dn in the overlap equation we get,

dn+1 =
1

2
(1 − (1 − dn)k) (1.2)

Figure 1.4 shows Derrida and Pomeau’s equation (equation (1.2)) for k = 1, 2, 3, 4,

and dn = dn+1. From graphical analysis the fixed point at the origin is stable for

k ≤ 2 and unstable otherwise. The transition point (from stable to unstable) is

confirmed by the gradient of equation (1.2) at the origin.

d

ddn

dn+1

∣
∣
∣
∣
dn=0

=
k

2

The gradient is 1 at the transition point so k = 2 is a critical value (for k ≤ 2

close trajectories converge, k > 2 close trajectories are drawn to the other fixed

point, dn = dn+1 = 1 − (2/k)(k−1)/2).

0  0.5 1  
0  

0.5

1  

d
n

d
n+1

k = 1 k = 2 

k = 3 

k = 4 

d
n
 = d

n+1
 

Figure 1.4: Graph of equation (1.2) for k = 1, 2, 3, 4, and dn = dn+1.

Derrida and Pomeau’s argument does not provide a complete explanation for

the transition observed in classic RBNs because it assumes that the behaviour of

dn as n increases can be found by iterating equation (1.2). But this equation can
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only be iterated if the annealed approximation holds, that is if the architecture is

randomly reassigned each time step. It is clear that the annealed scheme will not

show the long term periodic behaviour of the classic RBNs. The precise relation-

ship between the annealed scheme and the classic one has in fact not been made

clear up to now. Another approach to describing the transition is considered later.

Luque and Solé (1995) extended the annealed approximation to encompass gen-

eralized RBNs [23]. For a general RBN the number of predecessors is not fixed:

node i has ki predecessors where ki is chosen randomly from some distribution.

This distribution is fixed, say Pki
is the probability that the number of prede-

cessors is ki. When defining a generalized RBN, ki is set and then the Boolean

function is chosen at random from the 22ki possibilities.

In the annealed approximation the distance equation for the generalized RBN

is very similar to that of the classic RBN (equation (1.2)) only now we must sum

over all ki,

dn+1 =
1

2
(1 −

kmax∑

ki=1

Pki
(1 − dn)ki) (1.3)
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0

0.5
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d
n
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n+1
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 > = 3 

< k
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d
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d
n
 

Figure 1.5: Graph of equation (1.3) for 〈ki〉 = 1, 2, 3, 4, and dn = dn+1.

In figure 1.5 we have drawn an example of equation (1.3) for ki chosen randomly

from the interval [1, kmax], making Pki
= 1/kmax and the expectation of ki (de-

noted 〈ki〉) (1+kmax)/2. As for the classic RBN, we have monotonically increasing

curves, and the fixed point at the origin appears stable for 〈ki〉 ≤ 2. To check

the transition value of 〈ki〉 differentiate equation (1.3) as before,

d

ddn

dn+1

∣
∣
∣
∣
dn=0

=
1

2

kmax∑

ki=1

Pki
ki
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for slope 1 we get,

kmax∑

ki=1

Pki
ki = 〈ki〉 = 2

So that if the distribution Pki
has mean less than or equal to two we can expect

stable dynamics.

In 2000 Luque and Solé used an annealed approximation (they called it the mean

field approximation) to derive a discrete space-time Lyapunov exponent for classic

RBN’s, which also gave k = 2 as the transition point [15]. For a Boolean func-

tion f : {0, 1}k → {0, 1} define the Boolean derivative at X = x0, x1, . . . xN−1 ∈
{0, 1}N , with respect to xl as,

δfl(X) = f(x0, . . . , xl, . . . xN−1) ⊕ f(x0, . . . , x̄l, . . . xN−1)

δfl(X) equals 1 if ‘flipping’ the value of xl (denoted x̄l) from 0 to 1 or vice

versa changes the value of f(X); otherwise δfl(X) = 0. As discussed earlier, the

stability of a point (or orbit) can be investigated by changing one of the node

values and seeing if this change grows. Luque and Solé proposed to do this by

looking at the Boolean derivatives of the node functions fi. Abbreviate δfi,l(X
n)

by δfi,l(n), so that in the notation of subsection 1.1.1,

δfi,l(n) = fi(x
n
i,0, . . . , x

n
i,l, . . . x

n
i,N−1) ⊕ fi(x

n
i,0, . . . , x̄

n
i,l, . . . x

n
i,N−1)

Luque and Solé consider a perturbation to the state Xn, which they call Dn:

Dn is a column vector of N binary elements, a one in position l signifying that

the value of xn
l is flipped (and 0 that it is not flipped). They then want to know

aboutDn+1, the resulting perturbation one time step later; in particular, is |Dn+1|
(where |Dn+1| is the normalized Hamming size - or distance from 00 . . . 0) larger

than |Dn|?

One can define a Jacobian, δF (n), which records the effects on map F of all

possible one variable flips.

δF (n) =














δf j
0,0(n) δf j

0,1(n) . . . δf j
0,N−1(n)

δf j
1,0(n) δf j

1,1(n) . . . δf j
1,N−1(n)

...

δf j
N−1,0(n) δf j

N−1,1(n) . . . δf j
N−1,N−1(n)













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Luque and Solé go on to define a Boolean matrix multiplication, ⊙, which is basic

matrix multiplication but every number greater than 1 is replaced with 1. This

can be used to estimate Dn+1 given δF (n) and Dn,

Dn+1 ≈ δF (n) ⊙Dn

To get a feel for this method generate δF (n) for F given by equation (1.1) with

Xn = (1010) (the fixed point, figure 1.2). The first element of the Jacobian is,

δf2
0,0(n) = f 2

0 (x̄n
1 , x

n
0 ) ⊕ f 2

0 (xn
1 , x

n
0 ) = 1. Similar calculations for all elements of

δF (n) give,

δF (n) =







1 1 0 0
1 0 0 0
0 0 0 0
0 1 1 0







We can see from δF (n) that the only way for |Dn+1| > |Dn| is forDn = (1, 0, 0, 0)T

or (0, 1, 0, 0)T . If we subject Xn to either Dn = (1, 0, 0, 0)T or (0, 1, 0, 0)T we get

a state outside the fixed points basin of attraction (see figure 1.2).

In order for Luque and Solé to get a general result for the ‘spread of damage’ (i.e.

growth of perturbations) with this method they estimated δF (n) using the mean

field approach. δF (n) is a direct result of the Boolean functions that make up

F , and Xn. If F is randomly redefined for every iteration (as it is in the mean

field approach), a random matrix Ω(n) can replace δF (n), the only constraints

of the matrix are; it must have at most k ones per row, and for Ω(n) to represent

choosing f j
i and its variables randomly the mean number of ones per row is k/2.

Using Ω(n) they defined the discrete Lyapunov exponent,

λ(T ) =
1

T

T∑

n=1

log

( |Dn+1|
|Dn|

)

(1.4)

Jensen’s inequality is used to estimate equation (1.4) with equation (1.5) [26].

The inequality states that equations (1.4) and (1.5) are equal if, |D1|/|D0| =

|D2|/|D1| = · · · = |DT |/|DT−1|, else (1.4) < (1.5), as log(x) is a concave function.

λ(T ) = log

(

1

T

T∑

n=1

|Dn+1|
|Dn|

)

(1.5)

The normalized Hamming size of a Boolean matrix is [15],

|Ω| =
1

N2

N−1∑

i=0

(
N−1∑

j=0

Ωi,j

)
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Ω(n) is generated so it has an average of k/2 ones per row, thus, |Ω(t)| = k/2N .

The normalized Hamming size is equivalent to the probability of each element of

the matrix (or vector) being 1. Use this and calculate, |Ω(n)Dn| using normal

matrix multiplication.

∣
∣
∣
∣
∣
∣
∣






k/2N . . .
...

k/2N






(

|Dn|
...

)
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

(
k
2
|Dn|
...

)∣
∣
∣
∣
∣

=
k

2
|Dn|

= N |Ω(n)||Dn|

Returning to equation (1.5),

λ(T ) = log

(

1

T

T∑

n=1

|Dn+1|
|Dn|

)

= log

(

1

T

T∑

n=1

N |Ω(n)||Dn|
|Dn|

)

= log

(

1

T

T∑

n=1

k

2

)

= log

(
k

2

)

(1.6)

Equation (1.6) agrees with Derrida and Pomeau: at k = 2 the dynamics of a

classic RBN undergo a transition from stable (k < 2) to unstable (k > 2).

The final derivation of a measure for classic RBN dynamics, to be discussed

here, is the stable core, sn, Flyvbjerg [7]. sn the proportion of nodes whose value

has become fixed and will remain fixed for all time after n, independent of initial

conditions. Flyvbjerg provides an analytical result for the transition in dynam-

ical behaviour that agrees with Derrida and Pomeau, Luque and Solé, but does

not use the annealed approximation (mean field approach). Flyvbjerg derives a

probabilistic equation to describe the size evolution of the stable core,

sn+1 =
k∑

j=0

(
k

j

)

sk−j
n (1 − sn)jpj (1.7)

j is the number of variables a particular function has outside the stable core, pj

is the probability that the Boolean function is independent of those variables,

p0 = 1.
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Flyvbjerg looks at the case where the stable core becomes fixed, sn+1 = sn = s.

Equation (1.7) with sn+1 = sn = s is always solved by s = 1 (which corresponds

to all the network being frozen). Differentiating the right hand side of (1.7) with

respect to sn, we see that s = 1 is a fixed point of the iteration defined by equa-

tion (1.7) as long as p1 > 1 − 1
k
.

Flyvbjerg refers to p1 = 1 − 1
k

as the critical condition for the network. Re-

call, pj is the probability of a Boolean function having all but j variables inside

the stable core and those j variables being ineffective. If there is only one vari-

able outside the stable core then the Boolean function is effectively reduced to

a Boolean function with one input. Two of the four Boolean functions with

one variable are independent of that variable, f 0
i and f 3

i , see table 1.4. As the

Boolean functions are chosen at random (when defining F ) we expect to get a

Boolean function equivalent to one of these functions with probability 1/2. Thus,

p1 = 1/2, and by the critical condition, k = 2. Once again we have a result

stating that if a classic RBN is to show stable dynamics (s = 1) then k = 2.

xi,l f 0
i f 1

i f 2
i f 3

i

0 0 1 0 1
1 0 0 1 1

Table 1.4: The truth table for all Boolean functions with one input

1.2 Probabilistic RBN’s

In the previous section we talked about the dynamics of deterministic RBN’s with

classic and general topologies. There have been extensive studies into determin-

istic RBN’s with more structured topologies, such as a mesh, ring, scale free, and

evolving topologies [1] [20] [16], as well as the dynamical effects of certain groups

of Boolean functions [24] [13]. We are interested in probabilistic (asynchronous)

updating schemes, these were first considered in the context of genetic modelling

as deterministic (synchronous) updating is thought to be a significantly incor-

rect assumption for gene behaviour [9]. In the deterministic setting dynamics

are governed by a map F , in the probabilistic case maps are based on F but

can change on each iteration. For example say we were considering the RBN

described by map (1.1) with a probabilistic updating scheme such that only one
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Boolean function (chosen randomly) is active on each iteration, the maps are,

xn+1
0 = f0(x

n
1 , x

n
0 ) xn+1

0 = xn
0 xn+1

0 = xn
0 xn+1

0 = xn
0

xn+1
1 = xn

1 xn+1
1 = f1(x

n
2 , x

n
0 ) xn+1

1 = xn
1 xn+1

1 = xn
1

xn+1
2 = xn

2 xn+1
2 = xn

2 xn+1
2 = f2(x

n
1 , x

n
3 ) xn+1

2 = xn
2

xn+1
3 = xn

3 xn+1
3 = xn

3 xn+1
3 = xn

3 xn+1
3 = f3(x

n
1 , x

n
2 )

When thinking about probabilistic updating schemes it is simpler to talk in terms

of networks and nodes. For the example above we say that one node is chosen at

random to update on every iteration.

In 1997 Harvey and Bossomaier looked into the dynamics of asynchronous RBN’s

(ARBN’s), their updating scheme is described above (each node has a mean up-

date probability of 1/N) [9]. They found that this updating scheme is a good

method for searching out fixed points. Note that the fixed points of a determinis-

tic RBN are preserved with the asynchronous updating scheme (and indeed any

probabilistic updating scheme): for example let 0000 be a fixed point of a deter-

ministic RBN with four nodes, i.e. Xn = 0000 = Xn+1 for all n, it is clear that if

node 0, 1, 2, 3 (or any combination of nodes) were to update the network would

still be in state 0000. The speed at which ARBN’s found fixed points in Harvey

and Bossomaiers work drew their attention to the fact that the fixed points of

ARBN’s have larger basins of attraction than their deterministic equivalents.

In order to get an idea of how often they should expect an ARBN to have a

fixed point Harvey and Bossomaier perform a small calculation: they consider

all possible networks with fixed N , k, and so can make the approximation that

when a node is updated its value remains the same with probability 1/2 (an an-

nealed approximation). Thus the probability of being in a fixed point is 1/2N

(the probability that the state of the network remains the same after all nodes

are updated). As 1/2N is the probability of any of the 2N states being a fixed

point we can expect 1 fixed point per network.

One fixed point per network is only an approximation and many networks have

no fixed points. Harvey and Bossomaier observed the dynamics of ARBN’s which

did not have fixed points fall into (what they define as) loose attractors. A loose

attractor is a set of states that captures the trajectory of an ARBN. Di Paolo

found that some trajectories in loose attractors had rhythmic properties (he used

the autocorrelation between states to determine periods) [19].

Gershenson performed numerous simulations to tackle the concept of dynami-
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cal stability in classic RBN’s for a number of probabilistic updating schemes [8].

Among the schemes is the asynchronous scheme of Harvey and Bossomaier and

a semi-synchronous scheme where a number of nodes are chosen at random on

each iteration and updated synchronously. Gershenson decided to characterise

stability using distance evolution (normalized Hamming distance). He chose two

states distance d0 = 1/N apart, let them both run on the same network, sub-

jecting both trajectories to the same random updating. After 10000 iterations

Gershenson compared the distance between the two new states with the initial

distance; he called this δ = d10000 − d0, −1/N ≤ δ ≤ (N − 1)/N . These exper-

iments were repeated a number of times and an average δ was found for various

N , k and updating schemes.

Gershenson drew curves for δ against k (figure 1.6). He found that for N = 100

and 200, δ k curves are practically the same for all probabilistic updating schemes.

In fact they follow the same trend as the deterministic δ k curve but the prob-

abilistic δ is slightly larger. For k = 2 probabilistic δ ≈ 0.08, then increases

rapidly to 0.5 as k increases (reaching 0.5 around k = 4, 5). Even though for

k = 2 probabilistic δ is positive (indicating an increase in distance) it is small.

That and the similarity between the probabilistic and deterministic δ k curves

gives an indication that probabilistic updating schemes do not throw network

dynamics into wildly unstable behaviours.

Figure 1.6: δ k curves for N = 200 classic RBN’s, from Gershenson [8].

We will discuss the dynamics of probabilistic RBN’s in this thesis, providing fur-

ther numerical investigation into their dynamics in subsection 5.1.2, and propos-

ing an annealed approximation for the transition between ‘stable’ and ‘unstable’

dynamics in subsection 5.1.3.
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Chapter 2

Accuracy Boolean Networks

2.1 Accuracy heuristic motivation

This work germinated from a discussion with Keith Briggs (British Telecom,

Adastral Park, Martlesham) 1 regarding internet traffic volume. Briggs talked

about an idea for reducing traffic which bypasses routing/queueing protocols and

topological issues, a method that could just sit in among existing software. The

central idea is to trade accuracy of information for traffic.

A possible application for such an approach is the domain name system (DNS),

particularly DNS replication (or redundancy). The DNS is a distributed database

used to map machine names to IP addresses. To prevent the loss of any data and

to improve performance, each DNS server is replicated at least twice [4]. The

replicated servers contact each other periodically, once or twice a day, to check

their files are up to date [4]. There were estimated to be over 2 million DNS

servers in 2002 [18]. It may be worth noting that the traffic generated by replica-

tion maintenance (approximately 4 million messages a day in 2002) is small when

we consider that some of the DNS root servers have reported 100 million queries

per day [27]. (A root server is a main server which deals with and passes on

queries regarding a particular zone. There are about 13 zones in all, an example

of one of these is ‘.com’.) It was predicted that by 2005 the DNS would be 10

times larger than it was in 2002, which is an indication of the rate of increase

in internet use [18]. We shall join the school of thought: if simple measures (no

matter how small) can be taken to preserve internet resources they should be

employed.

The DNS updating system is ‘unintelligent’, that is to say it uses fixed peri-

1http://keithbiggs.info
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odic updating to maintain its databases. If the DNS were to employ a traffic

minimizing updating scheme (in the same vein as the accuracy heuristic we will

go on to describe) each server would receive information on request, and the de-

cision on when to request would be based on the amount of changed data in the

previously updated files, i.e. the more changed data the sooner the next update.

More generally, the networks we are thinking about could be described as ‘con-

dition satisfaction’ networks. We have a collection of entries (the nodes of the

network) each of which has control over one or more quantities; the nodes try to

arrange their quantities (or ‘states’) to satisfy some conditions - but the condi-

tions involve the values of quantities from other nodes. (Gene regulatory or other

chemical networks are of this type.) Each node must communicate with other

nodes to find out what values their quantities currently take, and then adjusts its

own values to try and satisfy conditions. The main point about networks in this

thesis is that communication is thought to be expensive, and should be minimized

if possible. So the nodes try to minimize this traffic, but without having global

information about the rest of the network.

2.2 Accuracy heuristic model

The simplest possible representation of a computer network would be a graph in

which vertices represent individual computers and edges represent physical con-

nections. (Generating such graphs with topologies that correctly model those of

real computer networks, such as the internet, is a current area of research.) We

can also think about models of more abstract ‘information networks’. Here each

vertex represents a store or collection of information (it may or may not be a

single computer) and the edges represent the possibilities for passing information

between the stores, though how this happens is not specified. The DNS is a

computer network that is also an information network.

To account for what goes on within the nodes of the network some informa-

tion must be specified for each node, that is the ‘state’ of that node. Clearly the

internal state of a computer in a network can be very complicated, but in some

situations the essential information might be represented more compactly, per-

haps by just a few numbers. To make the most extreme simplification possible,

the state could be a single number, which takes only two different values i.e. a

Boolean variable. So the simplest possible model of an information network that

we can think of is a Boolean network.
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When thinking of using a Boolean network to model a distributed data base with

redundancy, the change in state of a Boolean node could represent an alteration

of the data stored in the processor being represented by the node. The dynamics

of boolean networks can be manipulated using network topology or the Boolean

function types (see chapter 1), so it is feasible that one could design a Boolean

network to encompass both topological and behavioural features of a real network.

Regarding information traffic, we can say that re-evaluating a Boolean function

generates traffic (as input states have to travel from predecessor nodes). This

makes the deterministic RBN expensive. To reduce traffic costs a Boolean net-

work could adopt a probabilistic updating scheme. So, not every node re-evaluates

every time. Frequent updating leads to high accuracy (or good satisfaction of con-

ditions) but also to high traffic; less frequent updating leads to lower accuracy

but also lower traffic. The accuracy heuristic imposes probabilistic updating with

a control parameter allowing the node to specify a minimum ‘accuracy’ of infor-

mation (the term accuracy is explained in full in the next chapter). The heuristic

itself is a stochastic equation employed by the node, that uses the node’s out-

put states to adjust state dependent re-evaluation probabilities, with the aim of

achieving the required accuracy.
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Chapter 3

Accuracy Heuristic

3.1 Accuracy heuristic

In order to discuss the accuracy heuristic we need only consider one node and its

predecessors.

X n
1

X n
k−1X n

0

Y nX n
or Y nX n

or

Y nX n
or

node

Figure 3.1: Diagram of a node, its inputs and output.

We are going to label two bit strings associated with the states of our node: At

each time n, Xn is the state the node would adopt if there were an update at time

n; Y n is the state the node actually adopts. (Thus if there is an update Y n = Xn

necessarily; if there is no update Y n may or may not equal Xn.) Assume {Xn}
is independent and identically distributed (iid).

When the node updates it uses the states of its predecessors at time n,

Xn
0 , X

n
1 , . . . , X

n
k−1 and its Boolean function f , to determine its state at n + 1,

Xn+1, (Xn, Xn
i ∈ B = {0, 1}).

Xn+1 = f(Xn
0 , X

n
1 , . . . , X

n
k−1) (3.1)
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We will call equation (3.1) the accuracy condition. The {Y n} string is the stochas-

tic process,

Y n+1 =

{
Xn+1 with probability τyn

Y n with probability 1 − τyn
(3.2)

The accuracy heuristic provides a method for the node to compute τ0 and τ1,

based upon (estimates of) the distributions of {Xn} and {Yn}. Since {Xn} is

assumed to be iid the values of τ0 and τ1 are taken to be independent of time.

The idea of the heuristic is to chose τ0, τ1 so that the node state satisfies the

accuracy condition with probability 1 − ǫ (where ǫ qualifies the extent to which

we allow inaccuracy). We choose ǫ in the range 0 ≤ ǫ < 0.5, where ǫ = 0 means

zero probability of inaccuracy, (and so τ0 = τ1 = 1). There are several ways of

choosing τ0, τ1 such that P (Y n+1 = Xn+1) = 1 − ǫ, so we are going to choose a

particular one.

Since the probability of update is state dependent it is convenient to express

the probability of accuracy as,

P (Y n+1 = Xn+1) = P (Y n+1 = Xn+1|Y n = 0)P (Y n = 0) +

+P (Y n+1 = Xn+1|Y n = 1)P (Y n = 1) (3.3)

Y n+1 = Xn+1 holds either if the node updates, or if it does not and Y n = Xn+1.

So P (Y n+1 = Xn+1|Y n = yn) = τyn + (1 − τyn)P (Xn+1 = yn). The probability

P (Xn+1 = yn) is just the iid distribution on {Xn}, let P (Xn = 1) = G1 and

P (Xn = 0) = G0. Also setting P (Y n+1 = Xn+1) = 1− ǫ, equation (3.3) becomes,

1 − ǫ = (τ0 + (1 − τ0)G0)P (Y n = 0) + (τ1 + (1 − τ1)G1)P (Y n = 1) (3.4)

Equation (3.4) is the raw version of the accuracy heuristic. One way to ensure

(3.4) is satisfied is to set τyn + (1 − τyn)Gyn = 1 − ǫ for both yn = 0 and yn = 1

(then the right hand side of (3.4) becomes (1 − ǫ)P (Y n = 0) + (1 − ǫ)P (Y n =

1) = (1 − ǫ)[P (Y n = 0) + P (Y n = 1)] = 1 − ǫ).

To find another way of satisfying (3.4) note that we can rewrite it (using H0 =

P (Y n = 0), H1 = P (Y n = 1)) in the following way:

1 − ǫ = 1 − (H0 +H1) + (τ0 + (1 − τ0)G0)H0 + (τ1 + (1 − τ1)G1)H1

= 1 −H0(1 − τ0 − (1 − τ0)G0) +H1(1 − τ1 − (1 − τ1)G1)

= 1 −H0(1 − τ0)(1 −G0) +H1(1 − τ1)(1 −G1)

= 1 −H0(1 − τ0)G1 +H1(1 − τ1)G0
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so it is sufficient to set Hyn(1 − τyn) = ǫ for yn = 0, 1 since then the right hand

side is 1 − ǫG1 − ǫG0 = 1 − ǫ. This leads to,

τyn = 1 − ǫ

Hyn

(3.5)

This might at first seem an attractive expression for τyn , since it involves only

the quantity Hyn which is directly accessible to the node. However from another

point of view equation (3.5) is less desirable since it leads to more updating than

the other expression (τyn +(1−τyn)Gyn = 1−ǫ). To see this observe that, however

τ0 and τ1 are assigned, the probability that an update occurs at time n+ 1 is,

P (update at n+ 1|Y n = 0)P (Y n = 0) + P (update at n+ 1|Y n = 1)P (Y n = 1)

= τ0H0 + τ1H1

If τ0, τ1 are updated from (3.5), this probability is always 1−2ǫ. So now suppose

τ0, τ1 are found from the other expression. For a given value of G0 the update

probabilities are fixed by τb = 1 − ǫ/Gb̄ (b ∈ {0, 1}, b̄ = NOT b), and these

probabilities together with G0 (and G1) determine H0 (and H1). Thus there

is a relationship between H0 and G0; this is shown in the next section to be

H0 = (G0 − ǫ)/(1 − 2ǫ) (similarly H1 = (G1 − ǫ)/(1 − 2ǫ)). Hence the update

probability in this case is,

τ0H0 + τ1H1 =

(

1 − ǫ

G1

)(
G0 − ǫ

1 − 2ǫ

)

+

(

1 − ǫ

G0

)(
G1 − ǫ

1 − 2ǫ

)

=
(G0 − ǫ)(G1 − ǫ)

(1 − 2ǫ)G0G1

=
1

1 − 2ǫ

(

1 − ǫ(1 − ǫ)

G0G1

)

This is clearly a maximum when G0G1 = G0(1 − G0) is a maximum, i.e. when

G0 = 1/2, in which case the update probability is [1−4ǫ(1− ǫ)]/(1−2ǫ) = 1−2ǫ.

Hence this method leads to as large an update probability as (3.5) only in the

maximum case.

And so, we will use the expression for τyn that satisfies equation (3.4),

τyn = 1 − ǫ

1 −Gyn

This expression is only meaningful for Gyn ≤ 1−ǫ; for Gyn > 1−ǫ it would imply

τyn < 0. So we still need to assign τyn in this case. If the node is in state yn and

Gyn > 1− ǫ then if the node never updated it would be accurate with probability
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Figure 3.2: Graph of τ = 1 − ǫ
1−G

for 0 ≤ G ≤ 1 − ǫ.

Gyn , which is a greater accuracy than required. So, for Gyn > 1 − ǫ it is sensible

to set τyn = 0, giving,

τyn =

{
1 − ǫ

1−Gyn
for, 0 ≤ Gyn ≤ 1 − ǫ

0 otherwise
(3.6)

Equation (3.6) is the accuracy heuristic without time dependence. When using

this equation in simulations the stationarity assumption on Gyn does not neces-

sarily hold. For a simulation, a Boolean network (of some topology) is set up

to model an information network. It seems sensible that the initial re-evaluation

probabilities on the network be equal to 1, giving an accurate network. Then

we can impose a required accuracy on the network as a whole, or on individual

nodes. The nodes running the heuristic estimate Gyn using a memory containing

{Y n}, or a subset of {Y n} (subsections 3.2.1, 3.2.2), and use it to find a new

value for τyn from (3.6). Once a node is updating probabilistically (τyn 6= 1) the

distribution of its output will be changed. If the number of nodes in the net-

work that convert to probabilistic updating is sufficiently small (and the network

is large and well-ramified) the inputs to a probabilistic node will be unaffected

and any further estimations of Gyn (τyn) should remain more or less constant.

However, if enough nodes change their output distributions, the inputs to our

probabilistic node will change, and a new computation of τyn at this node will

produce different re-evaluation probabilities. Thus the nodes may undergo a se-

ries of τyn re-evaluations, changing the state distributions across the network. We

can include this time dependence in equation (3.6):

τn+1
yn =

{

1 − ǫ
1−Gn

yn
for, 0 ≤ Gn

yn ≤ 1 − ǫ

0 otherwise
(3.7)
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Equation (3.7) is used like so: at time n the node is in state yn. Estimate Gn
yn

using {Y n}, (or a subset of {Y n}, which may not include the value yn). Equation

(3.7) is used to give τn+1
yn , which is the re-evaluation probability used to generate

yn+1. Note, that it is the current state yn which determines the re-evaluation

probability to be used when generating the next state yn+1, hence the notation

τn+1
yn . We may not re-evaluate the τyn ’s every time. (For more thorough descrip-

tions of network simulations see the Appendix.)

Dynamical studies and simulations strongly suggest that the values of Gn
yn (τn

yn)

converge (sections 4.1, 4.2, 5.1). Nodes which converge with re-evaluation prob-

abilities greater than zero always have a small probability of freezing due to the

nature of probabilistic updating.

3.2 Estimating G

3.2.1 Methods for estimating G distribution

The accuracy heuristic (equation (3.7)) relies heavily on the value of Gb. Recall

that Gb is the distribution of the process {Xn} (section 3.1). Once a node is up-

dating probabilistically it has no direct access to {Xn}, since we assume the node

only obtains information about states of its predecessors if it actually updates.

The node does have access to {Y n}, the sequence of states it actually adopts. In

this subsection we are going to introduce two methods of estimating Gb from the

stochastic process {Y n} (equation (3.2)).

Note that {Y n} satisfies the Markov property [3],

P (Y n = yn|Y n−1 = yn−1, Y n−2 = yn−2, . . . , Y 0 = y0) = P (Y n = yn|Y n−1 = yn−1)

Let T be the transition matrix, Ti,j = P (Y n = i|Y n−1 = j). The event (Y n =

0, Y n−1 = 0) happens if, the node does not update or if it does update and

Xn = 0. Thus,

P (Y n = 0|Y n−1 = 0) = (1 − τ0) + τ0G0

= (1 − τ0) + τ0(1 −G1)

= 1 − τ0G1

(Y n = 0, Y n−1 = 1) can only happen if the node updates and Xn = 0, giving

P (Y n = 0|Y n−1 = 1) = τ0G1. The arguments for the other two events in the

32



transition matrix are very similar so,

T =

(
1 − τ0G1 τ1G0

τ0G1 1 − τ1G0

)

The stationary distribution P (Y n = 0), P (Y n = 1) is the invariant distribution

for the Markov process, so to find it we need to find the eigenvector of T belonging

to the unit interval. Letting H0 = P (Yn = 0), H1 = P (Yn = 1) we find,

H0 = (1 − τ0G1)H0 + τ1G0H1

Rearrange to get Gb as a function of Hb, Hb̄, τb, and τb̄,

Gb =
τbHb

τbHb + τb̄Hb̄

(3.8)

To learn a little about equation (3.8) we are going to substitute for τb using

τb = 1 − ǫ/(1 −Gb),

Gb = Hb(1 − 2ǫ) + ǫ (3.9)

Hb ∈ [0, 1] so Gb ∈ [ǫ, 1 − ǫ] and τb ∈ [0, (1 − 2ǫ)/(1 − ǫ)]. Equation (3.9) gives

values for Gb which are within the interval [0, 1 − ǫ] (see equation 3.6).

The first method for estimating Gb is to find Hb by observing the node state,

and then to compute Gb using (3.8). Note however that this relationship may not

be valid for a node in a network because some of the assumptions used to derive

it may not be fulfilled, (i.e. {Xn} being iid).

When using equation (3.8) in a simulation the time dependence is,

Gn
b =

τn
b H

n
b

τn
b H

n
b + τn

b̄
Hn

b̄

To use the H G relationship (equation (3.8)) in a simulation, one has to calculate

both τn
0 and τn

1 in order to get the estimate for Gn
b . We will also see that the

variance of this Gb estimator is greater than the variance when estimating Gb

directly (subsection 3.2.3). We will now talk about estimating Gb directly.

The second method for estimating Gb is to look at the state of the node when it

updates. Although the node always knows Y n, this may or may not be the same as

Xn. However, if an update occurs at n (which the node can be assumed to know)
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then certainly Y n = Xn. Suppose n1, n2, n3, . . . is the sequence of times at which

updates occur, then the sequence Y n1 , Y n2 , . . . is identical to Xn1 , Xn2 , . . . ; and

it is known by the node. An approach to estimating Gb is therefore to estimate

the distribution of Xn1 , Xn2 , . . . . Of course {Xni} is not a random sampling of

{Xn} in the sense that ni+1 is strongly influenced by the value of Xni , (hence

the update probabilities). However, as we shall see in subsection 3.2.3 we can

estimate Gb from {Xni} so long as we treat the data in the right way. Note that

this again relies on {Xn} being iid, and the estimate may not be accurate if this

is false.

Estimating Gb directly involves a lot less computation than the first method

and it is subject to less error. The only draw back may be that we have to wait

longer than n to obtain n data points, drawing past events forward. This may

delay convergence of Gn
b .

3.2.2 Memory types for estimating G distribution

The memory of a node is used to estimate a distribution by observing bits. In

subsection 3.2.1 we discussed the nature of those bits, now we are going to de-

scribe what we mean by memory, and describe its various types.

We will say that a node has a vector memory, length N , if it fills a N × 1

vector with bits, bn, then performs the calculation,

P (bn = 1) =
1

N

N∑

n=1

bn (3.10)

Considered here are two ways to use the vector memory. One is emptying the

vector after P (bn = 1) has been calculated. In this case the current value of

P (bn = 1) is used until the vector is refilled and a more recent P (bn = 1) can be

found. We call this memory an empty/fill vector memory.

During a simulation that uses an empty/fill vector memory, an actual vector

is not necessary, the iteration sn can be used for n = 1, 2, . . . , N ,

s1 = b1

sn = sn−1
n− 1

n
+
bn
n
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The other method we will term, the sliding vector method. The sliding vec-

tor is filled and equation (3.10) is used to find P (bn = 1). However, once this

value is calculated, at each subsequent time step, the past most element of the

vector is disregarded and a new element is introduced, then P (bn = 1) is recal-

culated.

The sliding vector gives up-to-date estimations of the distribution being calcu-

lated, but the cost is great. When simulating this vector we must keep track of

all the bits (i.e. have an actual vector within the simulated node) which increases

computing time, especially as the larger the value of N the better the estimate

of P (bn = 1), see subsection 3.2.3. Also, it is our desire to have every node,

within large networks, run the accuracy heuristic, rendering the sliding vector

impractical.

To have an up-to-date estimate of P (bn = 1) is obviously desirable. We will

now introduce the scalar memory.

As each update of the scalar memory uses its past values we shall denote P (bn = 1)

at iteration n as Pn. The scalar memory uses an exponentially decaying average

[10],

ςn =
∞∑

l=0

wl+1bn−l

= ωbn + ω2bn−1 + ω3bn−2 + · · ·

Clearly, ςn is influenced by all past values of bn. The parameter, ω ∈ (0, 1),

is used to continually reduce the influence of each bit as its occurrence moves

further into the past. To make an estimator for Pn we normalize ςn to the range

[0, 1]; that is, we say Pn = λςn for some constant λ. To find a suitable λ, note

Pn = λ(ωbn + ω2bn−1 + · · · ), so assuming the sequence {bn} is stationary we find

(taking expectations) Pn = Pnλ(ω + ω2 + · · · ) = ω
1−ω

λPn. So λ = 1−ω
ω

, giving,

Pn = ςn
1 − ω

ω

In simulations we use the iteration,

Pn = (1 − ω)bn + ωPn−1

from which it is clear that Pn is given by (1 − ω)bn + ω(1 − ω)bn−1 + · · · . This

iteration avoids storing past bn’s. It also makes clear that the latest Pn is a

35



weighted average of bn with the previous estimate Pn−1, the larger ω the greater

the influence of past events.

3.2.3 Memory Variance

This subsection is arranged to look firstly at the variance when estimating H1

using the vector memory and the scalar memory, then the variance when esti-

mating G1 using both memories. We will derive general variance equations for

H1 and G1, which we will then specialize to suit the vector and scalar memories.

The data is generated with the state dependent sampling probabilities τ0, τ1. The

sampling probabilities will be constant throughout the analysis.

Variance when estimating H1

Consider the stochastic process {Yn}, defined as,

if Yn = b, Yn+1 =

{
Xn+1 with probability τb
Yn with probability 1 − τb

where {Xn} is iid, and is modelling the output of a node within a synchronously

updating network. The stochastic process, {Yn}, represents the output of the

same node updating with state dependent probabilities. Denote the estimate of

H1, on iteration n, as µ̂Yn : we will calculate the variance of µ̂Yn . The distribution

on {Yn} is stationary as it is generated by sampling an iid stochastic process,

using fixed sampling probabilities, and so H1 = 〈Yn〉 = µY is constant.

The simplest form of estimator is a weighted sum over Yn,

µ̂Yn = a0Yn + a1Yn−1 + · · · + aN−1Yn−(N−1) (3.11)

where N is the number of terms in the sum, and controls how far back into the

past we look when estimating µ̂Yn . Clearly,

〈µ̂Yn〉 =
N−1∑

i=0

ai 〈Yn−i〉

= µY

N−1∑

i=0

ai

Thus for an unbiased estimator we need to choose the ai’s so that
∑N−1

i=0 ai = 1.

With that choice, the variance of µ̂Yn is 〈(µ̂Yn − µY )2〉. Letting (Yn−i−µY ) = ψn−i,
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we have,

(µ̂Yn − µY )2 =
N−1∑

i=0

N−1∑

j=0

aiajψn−iψn−j

〈
(µ̂Yn − µY )2

〉
=

N−1∑

i=0

N−1∑

j=0

aiaj 〈ψn−iψn−j〉 (3.12)

The expectation, 〈ψn−iψn−j〉, is the autocovariance of {Yn} at lag m = j − i,

denoted c(m). Re-indexing equation (3.12),

〈
(µ̂Yn − µY )2

〉
=

N−1∑

m=0

N−1−m∑

i=0

aiai+m

〈
ψn−iψn−(i+m)

〉
+

+
−1∑

m=−(N−1)

N−1∑

i=−m

aiai+m

〈
ψn−iψn−(i+m)

〉

=
N−1∑

i=0

a2
i

〈
ψ2

n−i

〉
+

N−1∑

m=1

c(m)
N−1−m∑

i=0

aiai+m +

+
−1∑

m=−(N−1)

c(m)
N−1∑

i=−m

aiai+m

Note that c(m) = c(−m) because of stationarity. Also note that if m′ = −m we

have
∑N−1−m

i=0 aiai+m =
∑N−1

i=−m′ aiai+m′ , so the positive and negative m sums are

identical. Using
〈
ψ2

n−i

〉
= σ2

Y , the variance of Yi:

〈
(µ̂Yn − µY )2

〉
= σ2

Y

N−1∑

i=0

a2
i + 2

N−1∑

m=1

c(m)
N−1−m∑

i=0

aiai+m (3.13)

Equation (3.13) is the variance for the general estimator, equation (3.11).

Variance when estimating H1 using a vector memory

For vector estimation, a vector length N , is filled with the past N outputs of

the node, namely yn, yn−1, yn−2, . . . , yn−(N−1). We then estimate H1 by summing

the elements and dividing by N . It is not relevant to variance calculations if

the vector memory is a sliding vector or a empty/fill vector, (subsection 3.2.2).

If it is sliding, on the next iteration the past most element is replaced by the

next element of the stochastic process and H1 is calculated again. Otherwise,

the estimation for H1 is used for the next N iterations before H1 is recalculated.

Thus, for the case where µ̂Yn is being estimated by a vector, length N , ai = 1/N ,
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∀ i, and equation (3.13) becomes,

〈
(µ̂Yn − µY )2

〉

v
= σ2

Y

N−1∑

i=0

1

N2
+ 2

N−1∑

m=1

c(m)
N−1−m∑

i=0

1

N2

=
σ2

Y

N
+

2

N2

N−1∑

m=1

(N −m)c(m) (3.14)

Recall,

σ2
Y =

〈
ψ2

n−i

〉

= µY (1 − µY )

The HG relationship (equation (3.8)) can be re-arranged to give µY in terms of

τ0, τ1 and µX (µX = the expectation of {Xn}). Let µX = p.

µY =
τ0p

τ0p+ τ1(1 − p)

and so,

σ2
Y =

τ0τ1p(1 − p)

(τ0p+ τ1(1 − p))2

It is useful to let A = τ0p + τ1(1 − p) when calculating c(m). We want to know

c(m) as a function of τ0 and τ1.

c(m) = 〈YiYi+m〉 − µ2
Y

In order to find an expression for 〈YiYi+m〉, we can use the fact that {Yn} is

Markov and has transition matrix, T .

T =

(
1 − τ0p τ1(1 − p)
τ0p 1 − τ1(1 − p)

)

The element Tm
1,1 of Tm is the conditional probability P (yi+m = 1|yi = 1), so

〈YiYi+m〉 = P (Yi+m = 1|Yi = 1)P (Yi = 1), and c(m) = µY (Tm
1,1 − µY ).

Let,
∧

= diag{λ1λ2} and
∨

= (v1v2), where λi are the eigenvalues of T and

vi are the corresponding eigenvectors. We know that λ1 = 1, so from the trace

of T we find λ2 = 1 − τ0p − τ1(1 − p) = 1 − A. We solve (T − λI)v = 0 to get

eigenvectors, vT
1 = (1, τ0p/τ1(1 − p)) and vT

2 = (1,−1). Now we are in a position

to calculate Tm.

Tm =
∨∧m ∨−1

= −τ1(1 − p)
1

A

(
1 1

τ0p
τ1(1−p)

−1

)(
1 0
0 (1 − A)m

)( −1 −1
−τ0p

τ1(1−p)
1

)

= −τ1(1 − p)
1

A

(
1 (1 − A)m

τ0p
τ1(1−p)

−(1 − A)m

)( −1 −1
−τ0p

τ1(1−p)
1

)
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From here we can deduce Tm
1,1,

Tm
1,1 = −τ1(1 − p)

1

A

( −τ0p
τ1(1 − p)

− (1 − A)m

)

=
τ0p

A
+ τ1(1 − p)

1

A
(1 − A)m

and c(m),

c(m) =
τ0p

A

(
τ0p

A
+ τ1(1 − p)

1

A
(1 − A)m

)

− (τ0p)
2

A2

=
τ0τ1p(1 − p)

A2
(1 − A)m

= σ2
Y λ

m
2

We are now in a position to write down the equation for the variance of the vector

estimator. Equation (3.13) becomes,

〈
(µ̂Yn − µY )2

〉

v
=

σ2
Y

N

(

1 +
2

N

N−1∑

m=1

(N −m)λm
2

)

=
τ0τ1p(1 − p)

NA2

(

1 +
2

N

(

N
N−1∑

m=1

(1 − A)m −
N−1∑

m=1

m(1 − A)m

))

=
τ0τ1p(1 − p)

NA2

(

1 +
2

N

(

N
N−1∑

m=1

(1 − A)m −
N−1∑

m=1

N−1∑

l=m

(1 − A)l

))

=
τ0τ1p(1 − p)

NA2

(

1 +
2

N

(

N
N−1∑

m=1

(1 − A)m +

+
1

A

(
N−1∑

m=1

(1 − A)N −
N−1∑

m=1

(1 − A)m

)))

=
τ0τ1p(1 − p)

NA2

(

1 +
2

NA

((

N − 1

A

)

(1 − A)(1 − (1 − A)N−1)+

+ (N − 1)(1 − A)N
))

〈
(µ̂Yn − µY )2

〉

v
=

τ0τ1p(1 − p)

NA2

(

1 +
2

NA
(1 − A)

(

N +
1

A
((1 − A)N − 1)

))

〈(µ̂Yn − µY )2〉v is the variance when estimating µY . We require the variance

when estimating µX (G1), which can be found using the HG relationship (equa-

tion (3.8)),

µX =
τ1µY

τ0 + µY (τ1 − τ0)
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This relationship is not linear but as long as the variance is small we can use the

equation,

var µX =

(
dµX

dµY

)2

var µY

Giving,

var µX =

(
A

τ0τ1

)2
〈
(µ̂Yn − µY )2

〉
(3.15)

And so for the vector memory we have,

(var µX)v =
p(1 − p)

Nτ0τ1

(

1 +
2

NA
(1 − A)

(

N +
1

A
((1 − A)N − 1)

))

(3.16)

Variance when estimating H1 using a scalar memory

For the scalar memory, previous estimations of H1 influence the current estimate

of H1: thus we will use the notation Hn
1 . To estimate Hn

1 the output of a node is

weighted by ωi ∈ (0, 1), so that the past most output has the least effect,

Hn
1 = ωHn−1

1 + (1 − ω)yn (3.17)

When specializing equation (3.13) for the scalar estimator, N tends to infin-

ity, and the ai’s are now different for each i. To determine ai we look at the time

evolution of the estimator, equation (3.17),

µ̂Y0 = (1 − ω)Y0

µ̂Y1 = ω(1 − ω)Y0 + (1 − ω)Y1

µ̂Y2 = ω2(1 − ω)Y0 + ω(1 − ω)Y1 + (1 − ω)Y2

... =
...

µ̂Yn = ωn(1 − ω)Y0 + ωn−1(1 − ω)Y1 + ωn−2(1 − ω)Y2 + · · · + ω0(1 − ω)Yn

so, ai = ωi(1 − ω). Putting this into equation (3.13) and letting N → ∞ we get,

〈
(µ̂Yn − µY )2

〉

s
= (1 − ω)2σ2

Y

∞∑

i=0

ω2i + 2(1 − ω)2

∞∑

m=1

c(m)
∞∑

i=0

ωm+2i

= σ2
Y

(1 − ω)2

1 − ω2
+ 2

(1 − ω)2

1 − ω2

∞∑

m=1

c(m)ωm

=
1 − ω

1 + ω

(

σ2
Y + 2

∞∑

m=1

c(m)ωm

)

= σ2
Y

1 − ω

1 + ω

(

1 + 2
∞∑

m=1

(ω(1 − A))m

)

(3.18)
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σ2
Y and c(m) are as for the vector estimator.

ω ∈ (0, 1), so the infinite sum
∑∞

m=1(ω(1 − A))m converges if −1 < (1 − A) < 1

(i.e. if 0 < A < 2). In fact, A = τ0p + (1 − p)τ1 ≥ 0, and A = τ0p + (1 − p)τ1 ≤
p max{τ0, τ1} + (1 − p)max{τ0, τ1} = max{τ0, τ1} ≤ 1. So, 0 ≤ A ≤ 1, and the

sum converges.

〈
(µ̂Yn − µY )2

〉

s
=

τ0τ1p(1 − p)(1 − ω)

A2(1 + ω)

(

1 +
2ω(1 − A)

1 − ω(1 − A)

)

=
τ0τ1p(1 − p)(1 − ω)(1 + ω(1 − A))

A2(1 + ω)(1 − ω(1 − A))

Using equation (3.15) we get

(var µX)s =
p(1 − p)(1 − ω)(1 + ω(1 − A))

τ0τ1(1 + ω)(1 − ω(1 − A))
(3.19)

A special case of state dependent probabilistic updating is τ0 = τ1 = τ , state

independent probabilistic updating. Under this condition; µY = µX = p, σ2
Y =

p(1 − p), A = τ , and,

〈
(µ̂Yn − µY )2

〉

v
=

p(1 − p)

N

(

1 +
2

Nτ
(1 − τ)

(

N +
1

τ
((1 − τ)N − 1)

))

〈
(µ̂Yn − µY )2

〉

s
=

p(1 − p)(1 − ω)(1 + ω(1 − τ))

(1 + ω)(1 − ω(1 − τ))

Variance when estimating G1

To estimate G1 directly we record Yn (and include it in our estimation) only at

times n at which an update actually occurs; we know that at such times Yn = Xn.

The Yn’s recorded therefore form a subsequence of the complete {Yn} sequence

(and of the complete {Xn} sequence). The indices of the Yn’s that we include in

the subsequence are random variables depending on the update probabilities τ0

and τ1.

For each time n we say that the time of the latest update before, or at, n is

n − K0 (K0 = 0 if the latest update is at n); the time of the update before
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this is n − K0 − K1, and so on. K0, K1, . . . are integer random variables with

K0 ≥ 0, and Ki ≥ 1, i > 0. The state of the node is recorded when an update

occurs, so at time n the recorded values are Yn−K0 , Yn−K0−K1 , . . . (or equivalently

Xn−K0 , Xn−K0−K1 , . . . ).

To estimate G1 we use a weighted sum over the recorded states:

µ̂Xn = a0Xn−K0 + a1Xn−(K0+K1) + · · · + aN−1Xn−(K0+K1+···+KN−1) (3.20)

Note that expression (3.11) does not cover this case since the indices included in

the sum are now random. So the first thing we need to investigate is 〈µ̂X〉 (Is

this estimator unbiased?).

〈µ̂Xn〉 = a0 〈Xn−K0〉 + a1

〈
Xn−(K0+K1)

〉
+ · · · + aN−1

〈
Xn−(K0+K1+···+KN−1)

〉

The expectation of Xn−K0 is P (Xn−K0 = 1). The calculation of P (Xn−K0 = 1)

involves considering all possible values of K0.

〈Xn−K0〉 = P (Xn−K0 = 1)

= P

(
∞⋃

k0=0

{Xn−K0 = 1, K0 = k0}
)

=
∞∑

k0=0

P (Xn−K0 = 1, K0 = k0) (3.21)

The probability of {Xn−K0 = 1, K0 = k0} is, the probability that an update took

place n−k0 iterations ago, yielding Xn−K0 = 1, and no updates took place there-

after. We are dealing with state dependent update probabilities, so the value of

Xn−K0 , say x0, affects the value k0 in so much that it determines τx0 . However,

once τx0 is set the two events, Xn−K0 = x0 and K0 = k0, are essentially indepen-

dent.

To compute P (Xn−K0 = 1, K0 = k0) note that we can write the event {Xn−K0 =

1, K0 = k0} as {no update at n, no update at n − 1, . . . , no update at n − k0 +

1, update at n− k0, Xn−k0 = 1}, so

P (Xn−K0 = 1, K0 = k0) =

P (no update at n|no update at n−1, . . . , no update at n−k0 +1, update at n−
k0, Xn−k0 = 1)×P (no update at n−1, . . . , no update at n−k0+1, update at n−
k0, Xn−k0 = 1)
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Now the event {no update at n − 1, . . . , no update at n − k0 + 1, update at n −
k0, Xn−k0 = 1} implies that Yn−1 = 1, so the first factor in the above equation is

P (no update at n|Yn−1 = 1) = 1 − τ1

because once we know Yn−1 this fixes the update probability at time n, and the

inclusion of any further information about what happened before n− 1 does not

alter the update probability. Thus

P (Xn−K0 = 1, K0 = k0) = (1 − τ1)P (no update at n − 1, . . . , no update at n −
k0 + 1, update at n− k0, Xn−k0 = 1)

Applying the same reasoning k0 − 1 more times gives

P (Xn−K0 = 1, K0 = k0) = (1 − τ1)
k0P (update at n− k0, Xn−k0 = 1)

Since theX sequence is iid, the probability of update at time n−k0 is independent

of Xn−k0 (it depends only on previous Xi’s). So

P (update at n− k0, Xn−k0 = 1) = P (update at n− k0)P (Xn−k0 = 1)

= pPu

Where Pu is the probability that an update takes place at any given time, and

hence at n− k0. Thus,

P (Xn−K0 = 1, K0 = k0) = (1 − τ1)
k0pPu

and equation (3.21) becomes,

〈Xn−K0〉 = P

(
∞⋃

k0=0

{Xn−K0 = x0, K0 = k0}
)

= pPu

∞∑

k0=0

(1 − τ1)
k0

=
Pu

τ1
p

Calculating Pu: The probability of an update at any one time is either, τ0 with

probability (1−µY ), or τ1 with probability µY . Recall, µY = τ0p/(τ0p+τ1(1−p)).
so,

Pu = (1 − µY )τ0 + µY τ1

=
τ0τ1

τ0p+ τ1(1 − p)
(3.22)
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And so, the expectation of Xn−K0 is,

〈Xn−K0〉 = p
Pu

τ1
= µY

It transpires that,
〈
Xn−(K0+···+Kj)

〉
= p ∀ j ≥ 1. To show this we will use

induction.

First consider
〈
Xn−(K0+K1)

〉
.

〈
Xn−(K0+K1)

〉
= P (Xn−(K0+K1) = 1)

= P

(
1⋃

x0=0

∞⋃

k0=0

∞⋃

k1=1

{
Xn−(K0+K1) = 1, Xn−K0 = x0, K0 = k0, K1 = k1

}

)

=
1∑

x0=0

∞∑

k0=0

∞∑

k1=1

P (Xn−(K0+K1) = 1, Xn−K0 = x0, K0 = k0, K1 = k1)

To compute P (Xn−(K0+K1) = 1, Xn−K0 = x0, K1 = k1, K0 = k0) we write the
event as,

{no update at n, no update at n−1, . . . , no update at n−k0+1, update at n−
k0, Xn−k0 = x0, no update at n−k0−1, no update at n−k0−2, . . . , no update at n−
k0 − k1 − 1, update at n− k0 − k1, Xn−(k0+k1) = 1}

We break down the probability of this event in the same way as P (Xn−K0 =
1, K0 = k0), but now we are looking at P (Xn−K0 = x0, K0 = k0),

P (Xn−(K0+K1) = 1, Xn−K0 = x0, K1 = k1, K0 = k0)

= (1 − τx0)
k0P (Xn−k0 = x0, update at n − k0, . . . ,update at n − k0 − k1, Xn−(k0+k1) = 1)

= (1 − τx0)
k0P (Xn−k0 = x0)P (update at n − k0, . . . ,update at n − k0 − k1, Xn−(k0+k1) = 1)

(3.23)

(since Xn−k0 is independent of whether there is an update at n− k0, n− k0 − 1

etc, and is independent of Xn−k0−k1 , since {Xn} is iid). Noting that,

P (update at n−k0, no update at n−k0−1, . . . , update at n−k0−k1, Xn−k0−k1 = 1)

P (update at n−k0| no update at n−k0−1, . . . , update at n−k0−k1, Xn−k0−k1 = 1)

×P ( no update at n − k0 − 1, . . . , update at n − k0 − k1, Xn−k0−k1 = 1)

and that,

( no update at n−k0−1, . . . , update at n−k0−k1, Xn−k0−k1 = 1) implies Yn−k0−1 = 1,
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we see that the third factor in equation (3.23) is,

τ1P (no update at n− k0 − 1, . . . , update at n− k0 − k1, Xn−k0−k1 = 1)

Hence,

P (Xn−K0−K1 = 1, Xn−K0 = x0, K1 = k1, K0 = k0)

= (1 − τx0)
k0px0(1 − p)1−x0τ1P ( no update at n− k0 − 1, . . .

. . . , update at n− k0 − k1, Xn−k0−k1 = 1)

= (1 − τx0)
k0px0(1 − p)1−x0τ1(1 − τ1)

k1−1pPu

Finally,

〈Xn−K0−K1〉 =
1∑

x0=0

∞∑

k0=0

∞∑

k1=1

P (Xn−K0−K1 = 1, Xn−K0 = x0, K0 = k0, K1 = k1)

=
∞∑

k0=0

∞∑

k1=1

[
pPu(1 − p)τ1(1 − τ0)

k0(1 − τ1)
k1−1+

+p2Puτ1(1 − τ1)
k0(1 − τ1)

k1−1
]

= pPu

(
(1 − p)

τ0
+
p

τ1

)

= p

Let Lj be the sum of random variablesK0+K1+· · ·+Kj and lj = k0+k1+· · ·+kj.

To show
〈
Xn−Lj

〉
= p ∀ j ≥ 1, we are going to prove, by induction on i, that

P (K0 = k0, Xn−L0 = x0, K1 = k1, Xn−L1 = x1, . . . , Ki = ki, Xn−Li
= xi)

= (1 − τx0)
k0P (Xn−l0 = x0)τx1(1 − τx1)

k1−1P (Xn−l1 = x1) . . .

. . . τxi
(1 − τxi

)ki−1P (Xn−li = xi)Pu (3.24)

Note, we have established this for i = 0 above.

Write the event,

ui+1 = {K0 = k0, Xn−L0 = x0, K1 = k1, Xn−L1 = x1, . . . , Ki+1 = ki+1, Xn−Li+1
= xi+1}

as,

{no update at n, no update at n−1, . . . , no update at n− l0 +1, update at n−
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l0, Xn−l0 = x0, . . . , update at n− l1, Xn−l1 = x1, . . . update at n− li, Xn−li = xi}

Following the reasoning of previous calculations,

P (ui+1) = P (no update at n| no update at n− 1, . . . , Xn−li = xi)

×P ( no update at n− 1, . . . , Xn−li = xi)

= (1 − τx0)
k0P (Xn−l0 = x0, update at n− k0, . . . , Xn−li = xi)

= (1 − τx0)
k0P (Xn−l0 = x0)P (update at n− l0, . . . , Xn−li = xi)

= (1 − τx0)
k0P (Xn−l0 = x0)τx1P (no update at n− l0 − 1, . . . , Xn−li = xi)

= (1 − τx0)
k0P (Xn−l0 = x0)τx1

[
(1 − τx1)

k1−1P (Xn−l1 = x1)τx2(1 − τx2)
k2−1

× P (Xn−l2 = x2) . . . τxi+1
(1 − τxi+1

)ki+1−1P (Xn−li+1
= xi+1)Pu

]

Where for the last step we use the induction hypothesis (equation (3.24)), replac-
ing n by n− l0 − 1, k0 by k1 − 1, l1 by l2, and x0 by x1, etc. Thus the hypothesis
is true for i+1.

To find
〈
Xn−Lj

〉
we compute,

P (Xn−Lj = 1) =
∞∑

k0=0

∞∑

k1=1

· · ·
∞∑

kj=1

1∑

x0=0

· · ·
1∑

xj−1=0

P (K0 = k0, Xn−L0 = x0, K1 = k1,

Xn−L1 = x1, . . . , Kj = kj , Xn−Lj = 1)

=
∞∑

k0=0

∞∑

k1=1

· · ·
∞∑

kj=1

1∑

x0=0

· · ·
1∑

xj−1=0

(1 − τx0)
k0P (Xn−l0 = x0)τx1(1 − τx1)

k1−1

P (Xn−l1 = x1) . . . τxj (1 − τxj )
kj−1P (Xn−lj = x1)Pu

=
∞∑

k0=0

1∑

x0=0

· · ·
1∑

xj−1=0

(1 − τx0)
k0P (Xn−l0 = x0)P (Xn−l1 = x1) . . .

. . . P (Xn−lj = 1)Pu

=
∞∑

k0=0

1∑

x0=0

(1 − τx0)
k0P (Xn−l0 = x0)pPu

=

(
1 − p

τ0
+

p

τ1

)

pPu

= p

Hence 〈µ̂X〉 = a0µY + p
∑N−1

i=1 ai. The estimator is therefore an unbiased es-

timator of G1 (= p) only if a0µY + p
∑N−1

i=1 ai = p. In the absence of knowledge

about µY the only straightforward way to arrange this would be to take a0 = 0,

and
∑N−1

i=1 ai = 1.
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We now look at the variance of 〈µ̂X〉. Find
〈
µ̂2

Xn

〉
,

〈
µ̂2

Xn

〉
=

〈(
a0Xn−L0 + a1Xn−L1 + · · · + aN−1Xn−LN−1

)2
〉

=
N−1∑

i=0

N−1∑

j=0

aiaj

〈
Xn−Li

Xn−Lj

〉

The double sum is split into four parts: separate the terms containing Xn−L0

from those that do not, take out the X2
n−Lj

terms from both groups.

〈
µ̂2

Xn

〉
= a2

0

〈
X2

n−L0

〉
+ 2

N−1∑

j=1

a0aj

〈
Xn−L0Xn−Lj

〉
+

N−1∑

j=1

a2
j

〈
Xn−Lj

〉
+

+2
N−2∑

i=1

N−1∑

j=i+1

aiaj

〈
Xn−Li

Xn−Lj

〉

= a2
0µY + 2µY pa0

N−1∑

j=1

aj + p

N−1∑

j=1

a2
j + 2p2

N−2∑

i=1

N−1∑

j=i+1

aiaj

since X2
n−Li

= Xn−Li
. Thus the variance of 〈µ̂X〉 becomes,

〈
(µ̂Xn − µX)2〉 = a2

0µY + 2µY pa0

N−1∑

j=1

aj + p

N−1∑

j=1

a2
j + 2p2

N−2∑

i=1

N−1∑

j=i+1

aiaj

−a2
0µ

2
Y − 2µY pa0

N−1∑

j=1

aj − p2

N−1∑

i=1

N−1∑

j=1

aiaj

= a2
0µY (1 − µY ) + p

N−1∑

j=1

a2
j + p2

(

2
N−2∑

i=1

N−1∑

j=i+1

aiaj −
N−1∑

i=1

N−1∑

j=1

aiaj

)

(3.25)
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When specializing equation (3.25) for the vector memory all aj = 1/N .

〈
(µ̂Xn − µX)2〉

v
=

µY (1 − µY )

N2
+

p

N2

N−1∑

j=1

1 +
p2

N2

(

2
N−2∑

i=1

N−1∑

j=i+1

1 −
N−1∑

i=1

N−1∑

j=1

1

)

=
µY (1 − µY )

N2
+
p(N − 1)

N2
+

p2

N2

(
(N − 1)(N − 2) − (N − 1)2

)

=
1

N2
(µY (1 − µY ) + p(1 − p)(N − 1))

=
1

N2

(
τ0τ1p(1 − p)

τ0p+ τ1(1 − p)
+ p(1 − p)(N − 1)

)

=
N − 1

N2
p(1 − p) +

τ0τ1p(1 − p)

N2A

=
N − 1

N2
p(1 − p) +

Aσ2
Y

N2
(3.26)

Note that the bias for this estimator is

〈µ̂X〉 − µX =
1

N
µY +

N − 1

N
P − P =

µY − p

N

If we use the unbiased estimator a0 = 0, ai = 1/N − 1, the variance turns out to

be p(1−p)
N−1

.

For the scalar memory aj = (1 − ω)ωj, N → ∞.

〈
(µ̂Xn − µX)2〉

s
= (1 − ω)2µY (1 − µY ) + p(1 − ω)2

∞∑

j=1

ω2j +

+p2

(

2(1 − ω)2

∞∑

i=1

∞∑

j=i+1

ωiωj − (1 − ω)2

∞∑

i=1

∞∑

j=1

ωiωj

)

= (1 − ω)2µY (1 − µY ) + pω2 1 − ω

1 + ω
+ p2

(
2ω3

1 + ω
− ω2

)

= (1 − ω)2µY (1 − µY ) + p(1 − p)ω2 1 − ω

1 + ω

= (1 − ω)2 τ0τ1p(1 − p)

A
+ p(1 − p)ω2 1 − ω

1 + ω

= p(1 − p)ω2 1 − ω

1 + ω
+ (1 − ω)2Aσ2

Y (3.27)

To find the unbiased scalar estimator of G1 set a0 = 0 and ai = (1− ω)ωi−1, this

gives variance p(1 − p)1−ω
1+ω

In the special case where τ0 = τ1, a0 6= 0, then µY = p and,

〈
(µ̂Xn − µX)2〉

v
=

p(1 − p)

N
〈
(µ̂Xn − µX)2〉

s
= p(1 − p)

1 − ω

1 + ω
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Note that since {Xn} is an iid stochastic process with expectation, µX = p,

σ2
x = p(1 − p), and c(m) = 0 ∀ m, equations (3.14) and (3.18) show that if we

could apply the vector and scalar memory estimators to the {Xn} directly, we

should get

〈
(µ̂Xn − p)2

〉

v
=

p(1 − p)

N
〈
(µ̂Xn − p)2

〉

s
= p(1 − p)

1 − ω

1 + ω

Hence the estimator (3.20) seems to achieve as good results as looking at {Xn}
directly, in the equal τ case. The variance an the unbias scalar estimator is iden-

tical to 〈(µ̂Xn − p)2〉s, and the unbias vector estimator is only slightly larger than

〈(µ̂Xn − p)2〉v, but both are independent of τ0, τ1.

In this subsection we have investigated the variance of two G1 estimation meth-

ods (the HG relationship, and G1 direct), both using vector and scalar memories.

When comparing the memory types of either method one can set N and ω to give

equal variance, (example in section 4.1). To compare methods we shall look at

the variance of the unbias G1 estimator against the HG relationship.

The variance of the HG vector estimator is given by equation (3.16) which can

be written as,

(var µX)v =
p(1 − p)

N

1

τ0τ1

(

1 +
2

N

N−1∑

m=1

(N −m)(1 − A)m

)

> p(1 − p)/(N) (3.28)

since 1/(τ0τ1) > 1 and the summation is positive (A ∈ [0, 1]). The unbias vector

estimator has variance p(1 − p)/(N − 1) ≈ p(1 − p)/N , so we can say that the

vector HG estimator has a greater variance. The HG scalar estimator is also

greater than its unbias equivalent as 1 + ω(1−A) > 1− ω(1−A), (see equation

(3.19)).
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Chapter 4

Accuracy Boolean Networks

4.1 Accuracy trees

This section looks at the performance of the accuracy heuristic on trees, i.e. net-

works in which no node belongs to the set of its ancestors. Thus there are no

loops. For the tree each node (bar the root) has out-degree 1. As these networks

have no feedback it is straight forward to calculate values of Gi,1 for each node (i

is node index). For example suppose a node has two predecessors, where prede-

cessor 1 outputs 1 with probability 0.5, predecessor 2 outputs 1 with probability

0.3. The function on the node is XOR (Boolean addition), so the probability

of it outputting a 1 if it updates is 0.5. Say the node updates probabilistically,

then we can use the HG relationship (equation (3.8) if the τi,b’s are arbitrary) to

calculate the probability of the node being in state 1, which happens also to be 0.5.

The leaves of a tree are the nodes with no predecessors (nodes 3, 8, 9, . . . , 16,

in figure 4.1), call this set A1. In our simulations the leaves will be given the

distribution Gi,1 (i.e. they will update on every iteration), all other leaves update

using state dependent update probabilities, τi,0, τi,1, determined by the accuracy

heuristic. Given the distributions Gi,1 are independent, we can find the distribu-

tions on the nodes whose predecessors are all in A1, (those nodes together with

those in A1, form the set A2). This procedure can be repeated until all the nodes

in the network are dealt with.

In a tree the distributions of the set A2 are all independent. It is possible to

calculate the distributions of nodes in directed acyclic graphs (DAGs). A node

in a DAG can input to more than one other (but still, no node belongs to the

set of its ancestors). For a DAG the distributions of set A2 are not necessarily

independent, we will need joint distributions to find the distributions for all nodes
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whose predecessors are in A1, etc.

Studying nodes 0, 1, 2 and 6 of the tree in figure 4.1 illustrates most of the

key features experienced when simulating accuracy trees. Firstly we will look at

the theoretical and numerical standard deviation of Ĝn
i,1 (estimate of Gi,1 at n),

for all four estimation methods (note, if Ĝn
i,1 converges to its theoretical value

then so will simulated re-evaluation probabilities τn
i,b). We will then go on to talk

about the accuracy, considering further examples. An external observer will be

monitoring and recording the accuracy of relevant nodes.

0

1 3
4 2
5 6

7
8

9

10

11
12

13
14

15 16

Figure 4.1: Diagram of a random Boolean tree.

To construct a tree we set a maximum in-degree and minimum number of nodes,

then grow the tree from the root (node 0). Once the tree has the minimum num-

ber of nodes, leaves are assigned a Gi,1, chosen randomly. Finally all nodes with

predecessors are assigned a Boolean function at random from the 22ki possible

functions, ki = in-degree of node i. The function takes the form of a truth table:

for the tree in figure 4.1 nodes 0, 1, 2 and 6 output a 1 when the input is as shown

below,
0 1 2 6

000 001 000
001 100 010
010 111 100
100 110
101
110

As discussed in subsection 3.2.3, there is an unbiased method for estimating Gi,1

directly (set a0 = 0), giving the variances,

〈
(µ̂Xn − µX)2〉

v
= p(1 − p)

1

N − 1
〈
(µ̂Xn − µX)2〉

s
= p(1 − p)

1 − ω

1 + ω
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To compare the vector and scalar estimators it would be best to set the two

variances equal. We use N = 1000, ω = 0.998, to satisfy the equality. The bias

with this value of N and ω is negligible, thus in simulations we need not set a0 = 0

saving computation time. We also use these values of N , ω for Gi,1 estimation

when using the HG relationship. Table 4.1 confirms this is a suitable choice for

comparing vector and scalar HG estimators. Let the standard deviations of the

four estimators be denoted as,
√
〈
(µ̂Xn − µX)2〉

v
= σ(G, v)

√
〈
(µ̂Xn − µX)2〉

s
= σ(G, s)

√

(var µX)v = σ(H, v)
√

(var µX)s = σ(H, s)

The theoretical values of Gi,1 for the nodes under observation are (ǫ = 0.1),

Node 0 1 2 6
Gi,1 1.0 0.347 0.0 0.807

We have chosen to make ǫ = 0.1 for all non-leaf nodes, however as the heuristic

uses only local data there is no reason against each node having its own inaccu-

racy, ǫi. It is clear from the truth table that G2,1 = 0. Node 0 also freezes, but

in state 1 because the probability of inputs 011, 111, is zero as node 2 is frozen

in state 0.

The nodes of interest when considering standard deviation are 1 and 6. Ta-

ble 4.1 shows the standard deviations of G1,1 and G6,1, calculated using equations

(3.16),(3.19),(3.26) and (3.27). The numbers in table 4.1 suggest that estimating

Gi,1 directly is subject to less error than using the HG relationship. In table 4.2

we have the numerical values of the standard deviation of each estimator for both

nodes. Simulations ran for 50000 iterations, τ 0
i,0 = τ 0

i,1 = 1 for the first 1000 iter-

ations so a reasonable estimation of Gi,1 could be obtained. Calculations in table

4.2 use Ĝ5001
i,1 to Ĝ50000

i,1 , allowing a transient period for the network to settle. As

you can see the simulated standard deviation is similar for all estimation meth-

ods, with the scalar being slightly better than the vector estimator, contradicting

the theory.

When looking at the accuracy of nodes, the two frozen nodes were accurate with

probability 1. This is not always true for frozen nodes. When Gi,b > 1 − ǫ the
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node Gi,1 standard deviation
1 0.347 σ(G, v) = σ(G, s) = 0.015

σ(H, v) = σ(H, s) = 0.025
6 0.807 σ(G, v) = σ(G, s) = 0.012

σ(H, v) = σ(H, s) = 0.024

Table 4.1: Theoretical values of the standard deviation of nodes 1 and 6 of the
tree in figure 4.1, calculated using variance equations, (3.16),(3.19),(3.26) and
(3.27).

node
〈

Ĝn
i,1

〉

standard deviation

1 0.3486 σ(G, s) = 0.0131
0.3547 σ(H, s) = 0.0148
0.3485 σ(G, v) = 0.0167
0.3485 σ(H, v) = 0.0172

6 0.8076 σ(G, s) = 0.0110
0.8079 σ(H, s) = 0.0126
0.8096 σ(H, v) = 0.0129
0.8095 σ(G, v) = 0.0153

Table 4.2: Numerical values of the standard deviation of nodes 1 and 6 of the
tree in figure 4.1.

node is frozen in state b, but the nodes active predecessors continue to change.

This means that node i will be inaccurate with probability Gi,b̄, i.e. accurate with

probability Gi,b ∈ [1 − ǫ, 1].

The accuracy of nodes 1 and 6 are shown in figure 4.2. The vector estimator

on node 6 takes longer to reach 1 − ǫ than its scalar comparison. For node 1 the

estimators make little difference to the accuracy, however the required accuracy

is never reached, it converges around 0.913.

Further simulations show that nodes whose inputs are correlated (nodes with

probabilistically updating predecessors) rather than iid (nodes with leaf prede-

cessors), tend to converge on an accuracy higher than that required. A little later

(in this subsection) we calculate the correlation in {Xn} of an arbitrary node with

correlated input strings, and find it to be positive. This accounts for the increase

in accuracy as a positive correlation means that if a node is in state b at n it has

a greater probability of it being in state b at n + 1 (greater than choosing the

next state at random). It is not the case that correlation (accuracy) increases

with Ai. This point is illustrated in the simulation shown in table 4.3, figure

4.3: the accuracy of the root is closer to 1 − ǫ than its predecessors. We will see
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that the correlation of {Xn} depends on the number of correlated input strings.
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Figure 4.2: The accuracy of nodes 1 and 6 (figure 4.1) for all four estimators.

0 1 2 3
accuracy 0.91 0.918 0.915 0.913
Gi,1 0.557 0.779 0.391 0.326

001 010 000 000
010 011 010 100
011 110 110 101
100 111 110
111

Table 4.3: Accuracy, Gi,1 and truth table of nodes 0 to 3 in an accuracy tree,
(figure 4.3).
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0.915

0.91

0.9130.918

0.902

0.9

0.902

Figure 4.3: Accuracy of nodes 0 to 6 in an accuracy tree. Nodes 0 to 3 have
correlated input strings (table 4.3).

In section 4.2 we will consider Boolean necklaces (loops with in-degree 1). In

these networks the highly structured input strings (the structure is due to state

dependent probabilistic updating and feedback effects of the loop topology) force

nodes to have an accuracy close to 1 (subsection 4.2.4). For each node in such

a network the input sequence {Xn
i } is either identical with, or just the inversion

of, the output of the previous node, so the amount of correlation in the output

of node i− 1 is the same as the input to node i. Nodes in trees have more than

one predecessor, which serves to dilute the effects of input correlation on {Xn
i }.

To give an example of this we set up a numerical experiment in which one node

(node 0) has k predecessors (see figure 4.4).

0

1

2

k

Figure 4.4: Network for the accuracy/autocorrelation experiment.

The predecessors are assigned Gi,1 ∈ (ǫ, 1 − ǫ) (to prevent freezing of inputs)

at random, they then calculate τi,b and update probabilistically. That is to say

that when they update their state is 1 with probability Gi,1. As before we have

ǫ = 0.1. Node 0 has the XOR Boolean function and generates the {Xn
0 } time se-

ries (by updating on every iteration), which is stored for analysis. We calculated

its autocorrelation at different lags. If the random variables in a time series are

independent then it follows that their autocorrelation is zero, though the converse

is not necessarily true. However if we calculate non zero autocorrelations, at least

we can say that the random variables are not independent (as we have assumed
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when deriving the accuracy heuristic). The autocorrelation of {Xn
0 } at lag m is

estimated using,

rm
0 =

∑N−m−1
n=0 (Xn

0 − 〈Xn
0 〉)(Xn+m

0 − 〈Xn
0 〉)

∑N−1
n=0 (Xn

0 − 〈Xn
0 〉)2

(4.1)

N is the number of bits recorded for analysis, 50000 for our experiment. The

results are shown in figure 4.5. We can see that as k increases the correlation at

lag 1 decreases. The correlation at higher lags is insignificant for all k.

1 2 3 4 5 6 7 8 9 10

0

0.05

0.1

0.15

0.2

k = 2 

k = 3 

k = 4 

k = 5 

k = 6 

k = 1 

m 

r
0
m 

Figure 4.5: Autocorrelation of {Xn
0 } for a node with k correlated input strings.

To address the question of how correlated input effects accuracy, we performed

a similar experiment, where node 0 (figure 4.4) runs the accuracy heuristic, esti-

mating G0,1 directly using the scalar memory, ω = 0.998. Its Boolean function is

still XOR. The experiment is run for 50000 iterations, τ0,b = 1 for the first 1000

iterations, giving a reasonable first estimate of Gi,1. The experiment was run 20

times for each k, the accuracy of node 0 was recorded and averaged to give the

table below, ǫ = 0.1.

in-degree 2 3 4 5 6 7 8 9 10 11
accuracy 0.923 0.910 0.906 0.905 0.905 0.904 0.903 0.902 0.902 0.902

We see that as the correlation at lag 1 decreases the accuracy of node 0 approaches

its target.

4.2 Networks with in-degree one

In section 4.1 we looked at the performance of the accuracy algorithm on Boolean

trees. When the state of the leaves were iid the tree’s re-evaluation probabilities
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could be found theoretically (given leaf distributions). However, when it comes

to topologies with feedback, such as random networks, theoretical calculation of

re-evaluation probabilities becomes more complicated. To help us understand

the effects of feedback in an accuracy network we will look into random Boolean

networks with in-degree one.

The ‘activity’ in RBNs with in-degree one is governed by information loops. Infor-

mation loops consist only of nodes with Boolean functions f 1
i , f

2
i (negation and

identity, table 1.4) in a necklace topology. Throughout this document we will

refer to loops of active nodes as information loops. Apart from loops, the only

other topological structures within such RBNs are trees, and every tree is rooted

in a loop. If a node has a constant Boolean function, the state if its descendants

will become fixed in a finite time. For a constant node in a necklace, the whole

necklace and attached trees will freeze as they are all descendants. Figure 4.6

shows two necklaces with branching trees.

necklace A

necklace B

Figure 4.6: Example of a network with in-degree 1, showing necklaces with sprout-
ing trees.

For necklace A, length 1, to be an information loop the node must host the

negation function, otherwise the state of the node is frozen. A frozen state would

propagate up the tree, rendering all nodes within it inactive. For necklace B

to be an information loop all the nodes must be negation or identity, but this

condition is not enough to ensure activity. For example, if every node in necklace

B were identity then the fixed points 000 . . . 0, 111 . . . 1, would render it inactive.

We will see later that loops with odd numbers of inversions can not have fixed

points. Even numbers of inversions can lead to fixed points as in the following

example. Label the nodes in necklace B from 0 to 4 and assign them functions,
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f 1
0 , f

2
1 , f

1
2 , f

2
3 , f

2
4 , giving the dynamical system,

xn+1
0 = f 1

0 (xn
4 ) = x̄n

4

xn+1
1 = f 2

1 (xn
0 ) = xn

0

xn+1
2 = f 1

2 (xn
1 ) = x̄n

1

xn+1
3 = f 2

3 (xn
2 ) = xn

2

xn+1
4 = f 2

4 (xn
3 ) = xn

3

(4.2)

System (4.2) has a fixed points at x0x1x2x3x4 = 11000, 00111, all other states

belong to period 5 cycles, see figure 4.7. Thus, if necklace B, described by equa-

tions (4.2), is not in a fixed point, it is an information loop.

00000
10100
11110
11011
01001

11000 00111

11111
01011
00001
00100
10110

00011
00101
00110
10111
01111

11100
11010
11001
01000
10000

01010
10001
01100
10010
11101

10101
01110
10011
01101
00010

necklace

state space

Figure 4.7: Phase portrait for system (4.2).

A necklace whose system has an odd number of inversion functions is always an

information loop, it can not produce a fixed point. Consider a general necklace

length L, fix node i as an inversion node, xn
i = x̄n−1

i−1 , (note if i = 0, xn
0 = x̄n−1

L−1).

If the loop has an odd number of inversions, 2m + 1, then there are 2m further

inversion nodes, and L−2m−1 identity. As state xn
i travels around the informa-

tion loop it will be inverted 2m times over L− 1 iterations and so returns to its

original state. Thus, xn−1+L
i−1 = xn

i , giving, xn+L
i = x̄n−1+L

i−1 = x̄n
i . Following the

state around again we get back to the original state. This is true for all inversion

nodes and also the identity nodes. So, nodes will be in a particular state for half

the time making a fixed point impossible. Figure 4.8 shows the phase portrait
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for system (4.3), necklace B with inversion functions on nodes 0, 1 and 2.

xn+1
0 = f 1

0 (xn
4 ) = x̄n

4

xn+1
1 = f 1

1 (xn
0 ) = x̄n

0

xn+1
2 = f 1

2 (xn
1 ) = x̄n

1

xn+1
3 = f 2

3 (xn
2 ) = xn

2

xn+1
4 = f 2

4 (xn
3 ) = xn

3

(4.3)
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01001
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Figure 4.8: Phase portrait for system (4.3).

Because of this fundamental difference between necklaces with odd and even

inversions, namely the possibility of a fixed point for even inversions, we shall

consider the two cases separately from now on.

4.2.1 Number of periodic orbits, length g, in necklace

state space

In analyzing the behavior of information loops a useful property to know is,

how many periodic orbits does the state space of an information loop contain,

and what are their lengths? In the k = 1 case, the state mapping of a loop is

invertible (if there are only identities and inversions). It follows that every state

is periodic, so the periodic orbits partition the state space.

Even inversions

Consider a necklace with L nodes, each node having a Boolean function, fi, equal

to f 1
i (inversion) or f 2

i (identity). Suppose there are an even number of inversion
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nodes, then xn+L
i = xn

i and all states are L periodic. Their prime period, g, may

be less than L but must divide it. For any p such that p|L, we can create a state

in a period p orbit by setting x0
0, x

0
1, . . . , x

0
p−1 arbitrarily, then use equations (4.4)

to set the value of xi for i = p, p+ 1, . . . , L− 1.

x0
p = fp ◦ fp−1 ◦ · · · ◦ f1(x

0
0)

x0
p+1 = fp+1 ◦ fp ◦ · · · ◦ f2(x

0
1)

...

x0
2p−1 = f2p−1 ◦ f2p−2 ◦ · · · ◦ fp(x

0
p−1)

x0
2p = f2p ◦ f2p−1 ◦ · · · ◦ fp+1(x

0
p)

...

x0
L−1 = fL−1 ◦ fL−2 ◦ · · · ◦ fL−p+1(x

0
L−p) (4.4)

Thus, for i = p, p+ 1, . . . , L− 1, xp
i = x0

i by definition.

xp
i = fi ◦ fi−1 ◦ · · · ◦ fi−p+1(x

0
i−p)

= x0
i

To show this holds for i = 0, 1, . . . , p− 1, first look at node 0.

xp
0 = f0 ◦ fL−1 ◦ · · · ◦ fL−p+1(x

0
L−p)

L− p ∈ [p, p+ 1, . . . , L− 1], so x0
L−p = xp

L−p

xp
0 = f0 ◦ fL−1 ◦ · · · ◦ fL−p+1(x

p
L−p)

= f0 ◦ fL−1 ◦ · · · ◦ fL−p+1(fL−p ◦ fL−p−1 ◦ · · · ◦ fL−2p+1(x
0
L−2p))

Likewise x0
L−mp = xp

L−mp as L−mp ∈ [p, p+ 1, . . . , L− 1] up until L−mp = p.

xp
0 = f0 ◦ fL−1 ◦ · · · ◦ fL−2p+1(x

p
L−2p)

= f0 ◦ fL−1 ◦ · · · ◦ fL−3p+1(x
p
L−3p)

. . .

= f0 ◦ fL−1 ◦ · · · ◦ f1
︸ ︷︷ ︸

f1

(x0
0)

= x0
0

Similar arguments can be made for i = 1, 2, . . . , p−1 and so the state x0x1 . . . xL−1,

generated using this method is p periodic. There are 2p possible p periodic states

as they are completely defined by fixing p consecutive states, in particular there

are two fixed points for p > 1. The 2p states can not all have prime period p as
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the count will include all points of period q, such that q|p, most noticeably it will

contain the fixed points. Let g(p) be the number of states with prime period p.

Then the number of states with period p is given by the formula,

2p =
∑

d|p

g(d)

for all p such that p|L. We can invert this using the Möbius inversion formula

[29] [28],

g(p) =
∑

d|p

µ
(p

d

)

2d (4.5)

where, µ(a) =







1 if a = 1
0 if ρ2|a for some prime ρ

(−1)r if a = ρ1, ρ2, . . . , ρr where ρi are distinct primes

Equation (4.5) gives the number of states with prime period g(p), it does not

depend on f 1
i past the fact that inversions are even in number. We see that

the number and length of cycles in the state space of an even inversion necklace

depends only on its length, i.e. all even inversion necklaces of length L, have the

same number of period p orbits.

eg. Calculate the number and length of cycles in a necklace length 5, with an

even number of inversions.

The only two divisors of 5 are, 1 and 5. The number of states with prime period

1 are,

g(1) = µ (1) 2

= 2

There are two fixed points. The number of states with prime period 5 are,

g(5) =
∑

d|5

µ

(
5

d

)

2d

= µ (5) 2 + µ (1) 32

= −2 + 32

= 30

Giving, six period 5 orbits, see (figure 4.7).

Odd inversions

As discussed earlier, there are no period one orbits in necklaces with an odd

number of inversion nodes, they are all information loops. Furthermore, xn+L
i =
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x̄n
i , every state has period 2L and so we are looking for period p orbits where

p|2L but not L. Using prime decomposition we can write L, 2L and p as a

multiplication of primes, ρi,

L = 2α1ρα2
2 ρ

α3
3 . . .

2L = 2α1+1ρα2
2 ρ

α3
3 . . .

p = 2β1ρβ2

2 ρ
β3

3 . . .

where, ρ2 = 3, ρ3 = 5, etc. and αi, βi = 0, 1, 2, . . . . If p|2L but not L, α1 < β1 ≤
α1 + 1 ⇒ β1 = α1 + 1. Thus,

2L = 2α1+1ρα2
2 ρ

α3
3 . . . = 2α1+1L′

p = 2α1+1ρβ2

2 ρ
β3

3 . . . = 2α1+1m where m|L′

We will show that there are 2p/2 states with period p, let q = p/2. To count

the number of states with prime period p construct a similar argument as for the

even inversion case. Note that L is an odd multiple of q,

L

q
=

2L

p
=
L′

m
= ργ2

2 ρ
γ3

3 ρ
γ4

4 . . .

γi = αi − βi

Assign x0
0, x

0
1, . . . , x

0
q−1 arbitrarily. Using equations (4.6) we set the values of

x0
i in blocks, length q, starting with x0

mq−1, m even, until we set x0
L−1.

x0
2q = f2q ◦ f2q−1 ◦ · · · ◦ f1(x

0
0)

x0
2q+1 = f2q+1 ◦ f2q ◦ · · · ◦ f2(x

0
1)

...

x0
3q−1 = f3q−1 ◦ f3q−2 ◦ · · · ◦ fq(x

0
q−1)

x0
4q = f4q ◦ f4q−1 ◦ · · · ◦ f2q+1(x

0
2q)

...

x0
L−1 = fL−1 ◦ fL−2 ◦ · · · ◦ fL−2q(x

0
L−1−2q) (4.6)

Now the remaining q length blocks can be calculated as follows:

x0
q = fq ◦ fq−1 ◦ · · · ◦ f0 ◦ fL−1 ◦ fL−2 ◦ · · · ◦ fL+1−q(x

0
L−q)

x0
q+1 = fq+1 ◦ fq ◦ · · · ◦ fL+2−q(x

0
L+1−q)

...

x0
2q−1 = f2q−1 ◦ f2q−2 ◦ · · · ◦ f0(x

0
L−1)

x0
3q = f3q ◦ f3q−1 ◦ · · · ◦ fq−1(x

0
q)

...

x0
L−1−q = fL−1−q ◦ fL−2−q ◦ · · · ◦ fL−3q(x

0
L−1−3q)
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Thus, by definition, x2q
i = xp

i = x0
i for i = q, q + 1, . . . , L− 1. To show this holds

for the first q nodes is an identical argument to the even case: Consider node 0,

x2q
0 = f0 ◦ fL−1 ◦ · · · ◦ fL−2q+1(x

0
L−2q)

= f0 ◦ fL−1 ◦ · · · ◦ fL−2q+1(x
2q
L−2q)

= f0 ◦ fL−1 ◦ · · · ◦ fL−2q+1(fL−2q ◦ fL−2q−1 ◦ · · · ◦ fL−4q+1(x
0
L−4q))

= f0 ◦ fL−1 ◦ · · · ◦ fL−4q+1(x
2q
L−4q)

= f0 ◦ fL−1 ◦ · · · ◦ fL−6q+1(x
2q
L−6q)

...

= f0 ◦ fL−1 ◦ · · · ◦ fq+1(x
2q
q )

Recall L is an odd multiple of q, so,

x2q
0 = f0 ◦ fL−1 ◦ · · · ◦ fq+1(fq ◦ fq−1 ◦ · · · ◦ f0 ◦ fL−1 ◦ · · · ◦ fL−q+1(x

0
L−q))

= f0 ◦ fL−1 ◦ · · · ◦ f0 ◦ fL−1 ◦ · · · ◦ fL−q+1(x
2q
L−q)

= f0 ◦ fL−1 ◦ · · · ◦ f0 ◦ fL−1 ◦ · · · ◦ fL−3q+1(x
2q
L−3q)

...

= f0 ◦ fL−1 ◦ · · · ◦ f0 ◦ fL−1 ◦ · · · ◦ f1
︸ ︷︷ ︸

f1

(x0
0)

= x0
0

Similarly x1, x2, . . . , xq−1 can be shown to be period p points.

As we set q values arbitrarily, there are 2q period p points. Prime periods must

be of the form 2α1+1m′ where m′|m. This ensures that the prime period divides

p but not L. The number of states with period p is given by

2p/2 = 22α1m =
∑

m′|m

g(m′)

Note that, g(m′) is the number of states with period 2α1+1m′, a slightly different

definition to the even case. Using the Möbius inversion formula we get,

g(m) =
∑

m′|m

µ
(m

m′

)

22α1m′

which gives us the number of states with prime period 2α1+1m′. We see that g(m)

depends on the length of the information loop and inversion nodes must be odd

in number.
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4.2.2 Conjugacy, mapping even inversion necklaces to a

no inversion necklace, and odd inversion necklaces

to a one inversion necklace

In subsection 4.2.1 we saw that, numbers of periodic orbits depend on the length

of the necklace and whether the necklace has an odd or even number of inversion

nodes. As necklaces with even/odd inversions, length L, have the same number

of period g orbits, one may suspect that the state space of all even/odd neck-

laces, length L, may be mapped to one another. Here we are going to define a

conjugacy, T , which maps all odd inversion loops to a one inversion loop of the

same length, and all even inversion necklaces to a no inversion necklace of the

same length.

As we have seen, the state of a necklace is updated using a system of equations.

Define F0, F1, Fevn and Fodd as systems made up of L Boolean functions, f j
i , with

zero, one, an even or odd number of inversion functions, respectively. The state

space of the dynamical system generated by these equations is BL = {0, 1}L in

all cases, but we will distinguish each space, BL
0 , BL

1 , BL
evn, BL

odd. For convenience

we will represent F∗ as a Boolean vector, length L, where 1 in position i signifies

node i is an inversion node. This notation is particularly fitting as 1⊕ b = b̄ and

0 ⊕ b = b (⊕ is Boolean addition).

F0 = [0, 0, 0, . . . , 0] F0 : BL
0 → BL

0

F1 = [1, 0, 0, . . . , 0] F1 : BL
1 → BL

1

Fevn = [g0, g1, g2, . . . , gL−1],
⊕L−1

i=0 gi = 0, Fevn : BL
evn → BL

evn

Fodd = [g0, g1, g2, . . . , gL−1],
⊕L−1

i=0 gi = 1, Fodd : BL
odd → BL

odd

To illustrate how the F vector function systems are used, let

Xn = [xn
0 , x

n
1 , x

n
2 , . . . , x

n
L−1] ∈ BL

∗ , and look at F1, Fodd,

F1(X
n) = Xn+1 = [x̄n

L−1, x
n
0 , x

n
1 , . . . , x

n
L−2]

Fodd(X
n) = Xn+1 = [g0 ⊕ xn

L−1, g1 ⊕ xn
0 , g2 ⊕ xn

1 , . . . , gL−1 ⊕ xn
L−2]

Define the transformation T ,

T = [h0, h1, h2, . . . , hL−1] ,
T : BL

evn → BL
0

T : BL
odd → BL

1

hi =
i⊕

j=0

gj

T (Xn) = [h0 ⊕ xn
0 , h1 ⊕ xn

1 , h2 ⊕ xn
2 , . . . , hL−1 ⊕ xn

L−1]
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Note that T−1 = T as, T ◦ T = T ⊕ T = [0, 0, 0, . . . , 0].

Recall, we are interested in studying the behavior of information loops in the

hope of gaining some insight into the feedback effects on the accuracy heuris-

tic. If T is a conjugacy then any dynamical characteristics we find in loops with

zero/one inversion node will hold for all even/odd inversion loops. We will now

show the property of conjugacy holds, namely,

T ◦ F0(X
n) = Fevn ◦ T (Xn) (4.7)

T ◦ F1(X
n) = Fodd ◦ T (Xn) (4.8)

First we will look at condition (4.7), for the even inversion node case.

T ◦ F0(X
n) = T ([xn

L−1, x
n
0 , x

n
1 , . . . , x

n
L−2])

= [h0 ⊕ xn
L−1, h1 ⊕ xn

0 , h2 ⊕ xn
1 , . . . , hL−1 ⊕ xn

L−2]

Fevn ◦ T (Xn) = Fevn([h0 ⊕ xn
0 , h1 ⊕ xn

1 , h2 ⊕ xn
2 , . . . , hL−1 ⊕ xn

L−1])

= [g0 ⊕ hL−1 ⊕ xn
L−1, g1 ⊕ h0 ⊕ xn

0 , g2 ⊕ h1 ⊕ xn
1 , . . . , gL−1 ⊕ hL−2 ⊕ xn

L−2]

hL−1 = 0 for even inversion necklaces, h0 = g0, and gi ⊕ hi−1 = hi. Thus,

Fevn ◦ T (Xn) = [h0 ⊕ xn
L−1, h1 ⊕ xn

0 , h2 ⊕ xn
1 , . . . , hL−1 ⊕ xn

L−2]

= T ◦ F0(X
n)

Condition (4.7) holds. To show condition (4.8) holds we will use the fact that

hL−1 = 1 for even inversion loops.

T ◦ F1(X
n) = T ([x̄n

L−1, x
n
0 , x

n
1 , . . . , x

n
L−2])

= [h0 ⊕ x̄n
L−1, h1 ⊕ xn

0 , h2 ⊕ xn
1 , . . . , hL−1 ⊕ xn

L−2]

Fodd ◦ T (Xn) = Fodd([h0 ⊕ xn
0 , h1 ⊕ xn

1 , h2 ⊕ xn
2 , . . . , hL−1 ⊕ xn

L−1])

= [g0 ⊕ hL−1 ⊕ xn
L−1, g1 ⊕ h0 ⊕ xn

0 , g2 ⊕ h1 ⊕ xn
1 , . . . , gL−1 ⊕ hL−2 ⊕ xn

L−2]

= [h0 ⊕ 1 ⊕ xn
L−1, h1 ⊕ xn

0 , h2 ⊕ xn
1 , . . . , hL−1 ⊕ xn

L−2]

= [h0 ⊕ x̄n
L−1, h1 ⊕ xn

0 , h2 ⊕ xn
1 , . . . , hL−1 ⊕ xn

L−2]

= T ◦ F1(X
n)

T is a conjugacy 1.

1Proof by Nick Watson, www.pipie.co.uk
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4.2.3 Accuracy information loops

When investigating the effect of the accuracy heuristic on information loops we

are going to study the evolution of τi,b, which depends on Gi,b. As we have dis-

cussed, if τi,b 6= 1 there are two ways to estimate Gi,b: we either observe Hi,b then

use equation (3.8) to estimate Gi,b, or we estimate Gi,b directly (see subsection

3.2.1). The HG relationship described by equation (3.8) is not appropriate when

simulating loops as it depends on the current input being independent of the

current state. The loop structure means that input must depend on previous

states, so the current state will not be independent of it. Thus, when simulating

accuracy information loops we must estimate Gi,b directly.

In fact when analyzing the behaviour of an information loop we have an ex-

act value for Gi,b. Recall, Gi,b is the distribution of node i if it were to update on

every iteration, i.e. if τi,b = 1. It is clear that Gi,b = Hi−1,b if node i is an identity

node, or 1 −Hi−1,b if it is an inversion, (see figure 4.9).

Hi

Hi−1

Hi+1

Gi−1

Gi+1
Gi

Figure 4.9: Detail of nodes in an accuracy information loop.

Even inversion accuracy loops

The job of investigating the long term behaviour of accuracy information loops,

with no inversion nodes, is simplified by the realization that once the accuracy

heuristic is imposed on the information loop it gets drawn into one of the two

fixed points, [000 . . . 0] or [111 . . . 1]. To illustrate why this is look at the example

of a state in B12
0 .

Xn [000001011101]
F0(X

n) [100000101110]

It is not the case that any state in accuracy state space can lead to any another,

in fact movement around accuracy state space is guided by the deterministic state

space. This is clear from the above example. In particular, we see that all bits in
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a block, bar the first, are fixed during an iteration of F0, (underlined in example).

Thus, when probabilistic updating is enforced, blocks can shrink if the first node

of the block updates, but they can also grow if the node to the right of the block

updates.

Re-evaluation probabilities will influence the growth of blocks. If the loop in our

example ran deterministically (to establish G0
i,b, and hence τ 1

i,b), we would have

Gi,0 ≈ 7/12, Gi,1 ≈ 5/12. Equation (3.7) would then lead to τ 1
i,0 < τ 1

i,1, so if we

started to update probabilistically a node in state zero will update less frequently,

promoting the growth of zero blocks. As the zero blocks grow, τn
i,0 will decrease

further, guiding the loop to the zero fixed point. If the re-evaluation probabilities

were equal, block size is the major contributory factor when determining which

fixed point the loop converges to. The important point is that blocks can shrink

to zero size, and so disappear, but new blocks can never appear. The number of

blocks either remains the same or decreases. Eventually it decreases to one.

Odd inversion accuracy loops

Investigating the behaviour of probabilistic information loops with one inversion

node, (say node 0) is also simplified by observing that the state space contains a

cycle (which is one of the periodic orbits of the deterministic system) that absorbs

all other initial conditions. Once the cycle has been reached the trajectory visits

states on the cycle in a particular order, although the network may remain in any

one of these states for a number of iterations.

If a state Xn and its (deterministic) successor F1(X
n) are separated by Hamming

distance H, then the number of possible successors of Xn under probabilistic up-

dating is 2H - and one of these is Xn itself. A deterministic information loop of

length L has a periodic orbit of the form shown in figure 4.10. Note the distance

between each state and the next is 1, so each state has 2 possible successors under

probabilistic updating, one of which is itself. Hence any trajectory that reaches

this orbit remains on it for all time.

It is also clear that any state can reach the orbit by making transitions that

have a finite non-zero probability. For example, if node 0 fails to update for L−1

iterations, but all the other nodes do update, the network will be in state 000 . . . 0

or 111 . . . 1. So the invariant density for the states will all be concentrated on the

periodic orbit.
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...
...

0 000 . . . 00
1 100 . . . 00
2 110 . . . 00
...

...
L− 1 111 . . . 10
L 111 . . . 11

L+ 1 011 . . . 11
L+ 2 001 . . . 11

...
...

2L− 1 000 . . . 01
0 000 . . . 00
...

...

Figure 4.10: The right column shows states in the limit cycle of one inversion
accuracy information loop, length L. The left column gives the label of each
state.

The conjugacy between a loop with an odd number of inversions and the loop

with one inversion (see subsection 4.2.2) means there is a corresponding orbit

of length 2L in all such networks. This is because the conjugacy map preserves

distance as it simply flips certain bits within the states. T will flip the same bits

in Xn and Xn+1, so if the bits are the same in Xn, Xn+1, they will be the same

in T (Xn) and T (Xn+1), leaving the distance unaltered.

As xn+L
i = x̄n

i , xn+2L
i = xn

i , in odd inversion loops within the deterministic

regime, the value of Gi,b is 0.5. Thus, the first re-evaluation probabilities with a

value less than 1 will be τi,0 = τi,1 = 1 − 2ǫ. We will now show this to be a fixed

point, in the sense that if we assign these values to τi,b, compute the correspond-

ing Gi,b’s, and use these to find new τi,b values, these values remain at 1− 2ǫ. We

will also investigate the stability of the fixed point.

Denote Fn
1 : BL

1 → BL
1 to be the accuracy map on the information loop with

one inversion node. To investigate the long term behavior of Fn
1 (Xn) we are

going to exploit the fact that movement around accuracy state space is a Markov

process. To do this efficiently requires an alteration to our notation. Let,

τ(k) =

{
τk,0 for k = 0, 1, 2, . . . , L− 1
τk−L,1 for k = L,L+ 1, L+ 2, . . . , 2L− 1

The probability that state k (labelling as in figure 4.10) moves to state k + 1
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1 0 0 ... 0 0

0 0 0 ... 0 0

1 1 0 ... 0 0

0 0 0 ... 0 1

1 1 1 ... 1 00 1 1 ... 1 1

0 0 1 ... 1 1

1 1 1 ... 1 1

1−τ(1)

1−τ(2)

τ(0)

(1)τ

(2)τ

1−τ

1−τ

1−τ

1−τ

1−τ

(0)

(L−1)

τ(L−2)

τ(L−1)

(L)

τ(L)

(L+1)

τ(L+1)

(L+2)

τ(L+2)

τ (2L−2)

1−τ(2L−1)

τ(2L−1)

Figure 4.11: Transition Diagram for the limit cycle of an accuracy information
loop with one inversion node, node 0.

is the probability that node k (or node k − L if L ≤ k ≤ 2L− 1) updates, which
is τi,0 for 0 ≤ k ≤ L− 1 and τk−L,1 for L ≤ k ≤ 2L− 1; hence always τ(k).

We can use the transition matrix of the limit cycle (figure 4.11) to certify that
τ(k) = 1 − 2ǫ is a fixed point. µ(k) = probability of being in a particular state k,
where the states are labelled as in figure 4.10. And so the Markov eigenvector
equation for the µ(k)’s is,














µ(0)

µ(1)

µ(2)

µ(3)
...

µ(2(L−1))

µ(2L−1)














=














1 − τ(0) 0 . . . 0 τ(2L−1)

τ(0) 1 − τ(1) . . . 0 0

0 τ(1) . . . 0 0

0 0 . . . 0 0
...

...
...

...
...

0 0 . . . 1 − τ(2(L−1)) 0

0 0 . . . τ(2(L−1)) 1 − τ(2L−1)



























µ(0)

µ(1)

µ(2)

µ(3)
...

µ(2(L−1))

µ(2L−1)














(4.9)

Equations (4.9) give us 2L− 1 independent equations with 2L unknowns but we

can also use,

2L−1∑

k=0

µ(k) = 1 (4.10)
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From the first equation of (4.9), we get,

µ(0) = (1 − τ(0))µ(0) + τ(2L−1)µ(2L−1)

τ(0)µ(0) = τ(2L−1)µ(2L−1)

Now look at the general case,

µ(k) = (1 − τ(k))µ(k) + τ(k−1)µ(k−1)

τ(k)µ(k) = τ(k−1)µ(k−1)

We can find τ(k) in terms of τ(0),

τ(k) =
µ(k−1)

µ(k)
τ(k−1) =

µ(k−1)

µ(k)

µ(k−2)

µ(k−1)
τ(k−2) =

µ(k−2)

µ(k)

µ(k−3)

µ(k−2)
τ(k−3) = · · · =

µ(0)

µ(k)
τ(0)

(4.11)

Let ρ(k) = 1
τ(k)

, and sub equation (4.11) into equation (4.10) to get,

1 = τ(0)µ(0)

2L−1∑

k=0

ρ(k) = τ(0)µ(0)c

where, c =
∑2L−1

k=0 ρ(k).

µ(0) =
ρ(0)

c
⇒ µ(k) =

ρ(k)

c

It is straight forward to check that τ(k) = 1−2ǫ solves equations (4.9) and (4.10),

thus τ(k) = 1 − 2ǫ is indeed a fixed point of the accuracy information loop. We

will now investigate its stability.

Fix τ(k) and measure H(k) (the probability of a node i being in state b, Hi,b),

where we use the labelling,

H(k) =

{
Hk,0 for k = 0, 1, 2, . . . , L− 1
Hk−L,1 for k = L,L+ 1, L+ 2, . . . , 2L− 1

We then know G(k) because, G(k) = H(k−1). For convenience we extend the

range of the label k by saying, µ(k) = µ(k±2L), τ(k) = τ(k±2L), H(k) = H(k±2L)

and G(k) = G(k±2L) (see figure 4.9). Using the values of G(k) we can update the

re-evaluation probabilities to get,

τ̂(k) = 1 − ǫ

1 −G(k)

= 1 − ǫ

1 −H(k−1)

ρ̂(k) =
1 −H(k−1)

1 −H(k−1) − ǫ
(4.12)
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We have an expression for µ(k) in terms of ρ(k), and so we can write an expression

for H(k) in terms of ρ(k) (refer to figure 4.10),

H(k) =
k∑

j=k−L+1

µ(j)

=
1

c

k∑

j=k−L+1

ρ(j)

And so equation (4.12) becomes,

ρ̂(k) =
1 − 1

c

∑k−1
j=k−L ρ(j)

1 − 1
c

∑k−1
j=k−L ρ(j) − ǫ

=
c−

∑k−1
j=k−L ρ(j)

c−∑k−1
j=k−L ρ(j) − cǫ

=

∑k+L−1
j=k ρ(j)

∑k+L−1
j=k ρ(j) − cǫ

(4.13)

Equation (4.13) tells us how to find the new update probabilities from the old;

applying the accuracy heuristic thus corresponds to iterating this equation. (Note

that (4.13) uses the exact Gi,b’s corresponding to a given set of τi,b’s).

We are now in a position to generate the Jacobian of equation (4.13) and in-

vestigate the stability of ρ(k) = 1/(1 − 2ǫ).

Obviously

∂

∂ρi

(
k+L−1∑

j=k

ρj

)

=

{
1 if i ∈ {k, k + 1, . . . , k + L− 1}
0 otherwise

and

∂

∂ρ(i)

(
k+L−1∑

j=k

ρ(j) − ǫ

2L−1∑

j=0

ρ(j)

)

=

{
1 − ǫ if i ∈ {k, k + 1, . . . , k + L− 1}
−ǫ otherwise

so,

∂ρ̂(k)

∂ρ(i)

∣
∣
∣
∣
1/1−2ǫ

=







−ǫ
L(1−2ǫ)

if i ∈ {k, k + 1, . . . , k + L− 1}

ǫ
L(1−2ǫ)

otherwise
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Giving the Jacobian,

J =












∂ρ̂(0)

∂ρ(0)

∂ρ̂(0)

∂ρ(1)
. . .

∂ρ̂(0)

∂ρ(2L−1)

∂ρ̂(1)

∂ρ(0)

∂ρ̂(1)

∂ρ(1)
. . .

∂ρ̂(1)

∂ρ(2L−1)

...
...

...
...

∂ρ̂(2L−1)

∂ρ(0)

∂ρ̂(2L−1)

∂ρ(1)
. . .

∂ρ̂(2L−1)

∂ρ(2L−1)












=
ǫ

L(1 − 2ǫ)










−1 −1 . . . −1 1 1 . . . 1
1 −1 . . . −1 −1 1 . . . 1
1 1 . . . −1 −1 −1 . . . 1
...

...
...

...
...

...
...

...
−1 −1 . . . 1 1 1 . . . −1










J is a circulant matrix and so its eigenvalues have a general equation which

depends on its first row and the n’th roots of unity [5]. If (c0, c1, . . . , cn−1) is

the first row of an n × n circulant matrix the eigenvalues are given by, λj =

c0 + c1θj + c2θ
2
j + · · · + cn−1θ

n−1
j , where θj = e2πij/n, j = 1, 2, 3, . . . , n. Here we

have cj = ±1, θj = eπij/L.

λj =
ǫ

L(1 − 2ǫ)

(
L−1∑

k=0

θL+k
j −

L−1∑

k=0

θk
j

)

=
ǫ

L(1 − 2ǫ)

(

θL(1 − θL
j )

(1 − θj)
−

(1 − θL
j )

(1 − θj)

)

=
−ǫ(1 − θL

j )2

L(1 − 2ǫ)(1 − θj)

θL
j can be simplified,

θL
j = eπij = cos πj + i sin πj

=

{
1 if j is even

−1 if j is odd

And so,

λj =

{
0 if j is even

−4ǫ
L(1−2ǫ)(1−θj)

if j is odd
(4.14)

For the information loop to have a stable fixed point at ρ(k) = 1/(1−2ǫ), we need

|λj| < 1 ∀j. It is only necessary to analyze odd values of j. Recall, 0 < ǫ < 0.5.

|λj| =

∣
∣
∣
∣

−4ǫ

L(1 − 2ǫ)(1 − θj)

∣
∣
∣
∣

=
4ǫ

L(1 − 2ǫ)|1 − θj|
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|λj| is at its greatest when |1 − θj| is at its smallest, i.e. when j = 1 or 2L − 1.

We will look to see for what values of ǫ, |λ1| < 1 holds.

/ Lπ 

/ Lπ −

Im

Re

1

1

10

θ1

θ2L−1

Figure 4.12: Argand diagram showing the distance |1 − θ1| = |1 − θ2L−1|

The distance |1−θ1| = 2 sin(π/2L) is found using basic trigonometry, figure 4.12.

Thus,

|λ1| =
2ǫ

L(1 − 2ǫ) sin(π/2L)

For stability,

2ǫ

L(1 − 2ǫ) sin(π/2L)
≤ 1

2ǫ ≤ L(1 − 2ǫ) sin(π/2L)

2ǫ+ L2ǫ sin(π/2L) ≤ L sin(π/2L)

ǫ ≤ L sin(π/2L)

2(1 + L sin(π/2L))

Note that the function a/(2(1 + a)) is zero at a = 0 and rises monotonically

towards 1/2 as a→ ∞. So for every value of L there is a value ǫ∗ between 0 and

1/2 such that ρk = 1/(1 − 2ǫ) is a stable fixed point for ǫ < ǫ∗, and is unstable

for ǫ > ǫ∗. L sin(π/2L) is a monotonically increasing function of L, so ǫ∗ is also

monotonically increasing with L.

For small x, sin(x) ≈ x, so as L increases,

ǫ∗ =
L sin(π/2L)

2(1 + L sin(π/2L))

→ π

2(π + 2)
≈ 0.3055

Hence, for an accuracy information loop the theory suggests that ǫ can be no

greater than 0.3055 for there to be a stable fixed point at τ(k) = 1 − 2ǫ.
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Figure 4.13: Graph of ǫ = L sin(π/2L)
2(1+L sin(π/2L))

and ǫ = 0.3055.

4.2.4 Accuracy information loop simulations

Here we are going to show the results of a couple of accuracy information loop

simulations. Results for the no inversion accuracy information loops will not be

given, as the loops freeze so quickly. The first simulations show the evolution of

τn
i,b in the one-inversion information loop. The second concentrate on the accu-

racy of the nodes in an accuracy information loop.

It is only necessary to observe one value of τn
i,b when considering the loops general

activity. If this value of τn
i,b becomes 0 or (1 − 2ǫ)/(1 − ǫ), we know node i has

frozen, furthermore all other nodes either, have frozen or will soon freeze. We

set τ 0
i,b = 1 − 2ǫ ∀ i, b, and track the value of τn

0,0 in a loop length 40. A vector

memory, length 1000, records the state of its node on every iteration, and is used

to estimate Hn
i,1.

A point to note is that the simulated network does indeed enter the expected

limit cycle, and so a node will have output,

. . . , xn−1
i , xn

i , x
n+1
i , xn+2

i , · · · = . . . , 0, 0, 0, . . . , 0, 1, 1, 1, . . . , 1, 0, 0, . . .

Each block of 0’s or 1’s will be at least L long (L = 40 for our simulation). Thus

if the memory is length L the loop is likely to freeze. As we are investigating

the fixed point τn
i,b = 1 − 2ǫ, we can say that the average length of each block

is L(1 − 2ǫ). This means that, if we are to get a reliable estimation of Hn
i,1, the

length of our vector memory must be greater than 2L(1 − 2ǫ).

The memory used to estimate Hn
i,1 is an empty/fill vector (see section 3.2.2).

As in the theory, Gn
i,b = Hn

i−1,b for the identity nodes, and Gn
0,b = 1 − Hn

39,b for
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the inversion. τ 0
i,b = τ 1

i,b = · · · = τ 999
i,b , then G999

i,b is deduced using H999
i−1,b, and the

re-evaluation probabilities updated (τ 1000
i,b ). The vector is emptied and the cycle

runs again. Figure 4.14 shows 1000 such updates of τn
0,0, for three values of ǫ;

0.1, 0.2, and 0.3.
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τ

τ updates 

Figure 4.14: The value of τn
0,0 for 1000 updates.

We can see that for ǫ = 0.1 and 0.2, τn
0,0 has a mean of 1 − 2ǫ. By way of

explaining the larger variance on τn
0,0 when ǫ = 0.2, look at,

τ = 1 − ǫ

1 −G

∂τ

∂G

∣
∣
∣
∣
1/2

=
−ǫ

(1 −G)2

∣
∣
∣
∣
1/2

= −4ǫ

This shows that any deviation from 0.5 in the estimation of Gn
i,b has a greater

effect on τn
i,b as ǫ increases.

For ǫ = 0.3 the loop freezes, as expected.

The accuracy of an accuracy information loop

It was suspected that the accuracy heuristic would be ineffective on information

loops as a result of feedback effects. A number of simulations confirmed this to

be the case. The simulations did illuminate an interesting point: accuracy tends

to 1 as the loop increases in size even though average τn
i,b = 1−2ǫ (see figure 4.15).
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Figure 4.15: The average accuracy of the nodes in information loops, L =
1, 2, 3, . . . , 40, ǫ = 0.1, 0.2.

Figure 4.15 shows the average accuracy for information loops length 1 to 40.

The top curve shows the accuracy of the loops for ǫ = 0.1 and the bottom for

ǫ = 0.2. For these simulations τ 0
i,b = 1 − 2ǫ, the vector length was 500 and there

were 10 updates of τn
i,b, i.e. each simulation ran for 5000 iterations.

Once the accuracy loop has entered the cycle, each node outputs blocks of zeros

and ones. As discussed, the larger L the longer these blocks become. A node can

only be inaccurate in the period where it is possible for the block to change from

zeros to ones, or vice versa. The larger L, the less frequent that is, and the more

accurate the node becomes. For node 0 (for example) this is when the network

is in state 000 . . . 0 or 111 . . . 1. Thus node 0 is inaccurate at time n if it is in one

of those states at time n and the same state at time n− 1. This is equivalent to

being in the state at n− 1, and not updating at time n. Hence the probability of

being inaccurate is,

2ǫµ(0) + 2ǫµ(2L−1) =
2ǫ

L

Figure 4.16 shows the accuracy data and the curve 1 − 2ǫ/L, for ǫ = 0.1, 0.2.
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Figure 4.16: Accuracy data, and curve 1 − 2ǫ/L

77



Chapter 5

Random Boolean Networks

In this chapter we will look at the dynamics of deterministic, probabilistic and

accuracy RBNs. We will also present results of accuracy simulations and say a

few words about the reduction in traffic volume (as a result of the heuristic).

5.1 Dynamics

5.1.1 Distribution of G(b) for classic RBN

The idea behind the accuracy heuristic is that it sits on a deterministic Boolean

network (nodes update synchronously on every iteration), to be ‘switched on’

when required (i.e. initial re-evaluation probabilities are equal to 1). In this

subsection we are going to look at the distribution of Gi,1 across classic RBN’s

(subsection 1.1.1), which will give us insight into the first non-trivial re-evaluation

probabilities (equation (3.6)). Of course the introduction of non-trivial re-evaluation

probabilities may alter the distribution of Gi,1 and thus change the re-evaluation

probabilities further; this will be discussed in subsection 5.1.2.

To investigate the existence of a general Gi,1 distribution across a network with

fixed k we set up RBN simulations. Each simulation generated 100 networks with

N nodes, with inputs and Boolean functions chosen randomly in the usual way,

(subsection 1.1.1). The networks were run for a transient period of 1000 before

a vector memory (length 1000) was used to estimate Gi,1, the hope being that

the memory was observing long term behaviour as the dynamics had reached an

attractor. We considered networks with 100 and 300 nodes, hence state spaces

with 2100, 2300 states. A 20 bin histogram of Gi,1 was constructed for each of the

100 k-networks, and an average histogram was taken. We constructed the 100

histograms separately to calculate the standard deviation of the histograms from

their average, to ensure we were not finding a general distribution for Gi,1 which is

78



uncharacteristic of most networks with a particular k. RBN simulations were run

for k = 1, 2, 3, 4, 5, 6 and N = 100, 300. Figure 5.1 shows average histograms for

N = 100, figure 5.2 shows the Gi,1 histograms for six randomly chosen N = 100

networks.

Figure 5.1: The average Gi,1 distribution and standard deviation, for classic
deterministic RBN’s simulations, k = 1, 2, 3, 4, 5, 6, N = 100.

Figure 5.2: The Gi,1 distribution for one randomly chosen network, N = 100,
k = 1, 2, 3, 4, 5, 6.

As we have stated, we are looking at state spaces with 2100, 2300 states, so it may

seem that a memory of a node’s behaviour for 1000 of those states will not give an
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adequate estimation of Gi,1. In k = 2 networks most nodes become frozen greatly

reducing the state space (subsection 1.1.2). For k ≥ 3 most, if not all, nodes are

active so the memory is probably not observing a node’s complete orbit. However

we observe the nodes from a random point on the cycle, and do so for a number

of networks (100) thus we consider the distribution of Gi,1 calculated in this way

to be representative.

When comparing the average histograms for N = 100 and N = 300 (figure 5.1

and 5.3) we see that N does not alter the average distribution of Gi,1, larger N

does however decrease the standard deviation. The standard deviation for both

N = 100 and 300 is sufficiently small for us to consider these distributions to be

describing a general characteristic of classic RBN’s for a specified k, (supported

by figure 5.2).

Figure 5.3: The average Gi,1 distribution and standard deviation, for classic
deterministic RBN’s simulations, k = 1, 2, 3, 4, 5, 6, N = 300.

For k = 4, 5, 6 the distributions in figures 5.1 and 5.3 look normal. To investi-

gate the normality of RBN Gi,1 distribution histograms with k ≥ 4 we fit normal

curves to k = 4, 5, 6, 7, 8, 9, 12, 15 histograms, N = 100. The fitting was done by

eye. We varied the number of bins per average histogram to get a clearer indi-

cation of its point of inflection, hence a better estimate of the normal standard

deviation, σG. Table 5.1 shows the estimated values σG of for each histogram.

Figure 5.4 shows the Gi,1 histograms and the fitted normal curves.
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k 4 5 6 7 8 9 12 15
σG 0.155 0.1 0.07 0.048 0.037 0.029 0.018 0.017

Table 5.1: Estimated values of σG for each Gi,1 histogram shown in figure 5.4

Figure 5.4: The normal fit for average Gi,1 distribution histograms, k =
4, 5, 6, 7, 8, 9, 12, 15, N = 100

To find a relationship between σG and k, consider a typical node. If all the pos-

sible input patterns to the node have equal probability the distribution of the

output is controlled by the Boolean function of the node, and in particular Gi,1

will be the proportion of entries in the truth table equal to one. Since the Boolean

functions are chosen at random, the number of 1’s in the truth table is binomially

distributed, and if this effect dominates the Gi,1 distributions it could account

for their gaussian shape. Below is an example of the distribution of 1’s in the
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Boolean function truth tables for k = 2.

f 0 f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10 f 11 f 12 f 13 f 14 f 15

00 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
11 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
X 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4

The random variable X is the number of ones in the truth table of f j. So we have,

X ∼ B(n, p) =
(

n
x

)
px(1 − p)n−x, where p is the probability of on entry being a 1,

so p = 1/2. For k = 2 (above example) n = 4 and X ∼ B(4, 1/2) =
(

4
x

)
2−4. More

generally, n = 2k, giving the Binomial distribution X ∼ B(2k, 1/2) =
(
2k

x

)
2−2k

,

with mean µ = np = 2k−1 and standard deviation σ =
√

np(1 − p) = 2(k/2)−1.

For us to compare the Binomial standard deviation to σG we need to normalize

it so we are looking at the distribution of the proportion of 1’s in in the Boolean

function truth tables (rather than the number of 1’s). Thus, we divide everything

by 2k giving σf = 2−(k/2)−1.

Figure 5.5 shows the result of comparing σf with the σG (table 5.1). Even though

σG does not fit the curve σf it follows a similar trend. σG is always greater than

σf suggesting there is source of randomness contributing to the spread of Gi,1

values.
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Figure 5.5: A graph showing the estimated σG and σf

The value of σf is the standard deviation of the exact normalised Binomial distri-

bution. Recall the values of Gi,1 were estimated with a vector length 1000. The

fact this length is finite means the estimates are subject to a sampling error. We
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shall now derive the normalised Binomial standard deviation for Gi,1 estimated

with a vector length m.

As before, let X be the number of 1’s in the truth table of f j, p = 1/2, n = 2k.

Now define P (f j outputs a 1) = p1 = x/2k, m is the length of the vector used

to estimate X, and Y be the number of 1’s in that vector (so Y/m is our esti-

mate of p1). We are asking: What would the distribution look like (its mean and

standard deviation) if we picked N Boolean functions (with k inputs) at random,

and then estimated their p1 values by using a vector memory and choosing the

input vectors at random? Hence, we want to find the variance of normalised Y

and take its square root to get,

σfm =

√
√
√
√ 1

m2

2k
∑

y=0

(y − µY )2P (Y = y)

The probability of having y 1’s in the vector depends on p1 which in turn depends

on x. Thus,

P (Y = y) =
2k
∑

x=0

P (Y = y|p1 = x/2k)P (p1 = x/2k)

=
2k
∑

x=0

P (Y = y|p1 = x/2k)P (X = x)

=
1

22k

(
m

y

) 2k
∑

x=0

( x

2k

)y (

1 − x

2k

)m−y
(

2k

x

)

as both P (X = x) and P (Y = y|p1 = x/2k) are binomially distributed.

µY =
m∑

y=0

yP (Y = y)

=
1

22k

2k
∑

x=0

(
2k

x

) m∑

y=0

y

(
m

y

)( x

2k

)y (

1 − x

2k

)m−y

The
∑m

y=0 term is the mean of the binomial, Y ∼ B(m,x/2k).

µY =
m

2k

2k
∑

x=0

x

(
2k

x

)
1

22k

Likewise, the
∑2k

x=0 term is the mean of the binomial, X ∼ B(2k, 1/2), giving,

µY =
m

2
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The variance of Y is,

var Y =
m∑

y=0

(

y − m

2

)2

P (Y = y)

=
1

22k

2k
∑

x=0

(
2k

x

) m∑

y=0

(

y − m

2

)2
(
m

y

)( x

2k

)y (

1 − x

2k

)m−y

(5.1)

Note,

var B(m,x/2k) =
m∑

y=0

(

y − xm

2k

)2
(
m

y

)( x

2k

)y (

1 − x

2k

)m−y

= m
x

2k

(

1 − x

2k

)

and

(

y − m

2

)2

=
(

y − xm

2k
+
xm

2k
− m

2

)2

=
(

y − xm

2k

)2

+ 2m
(

y − xm

2k

)( x

2k
− 1

2

)

+m2

(
x

2k
− 1

2

)2

(5.2)

so we can break the sum over m, in equation (5.1), into three parts. One part is
simply var B(m,x/2k). The expression created by the middle term in equation
(5.2) is expanded further to give,

2m

(
x

2k
− 1

2

)




m∑

y=0

y

(
m

y

)( x

2k

)y (

1 − x

2k

)m−y
−

m∑

y=0

xm

2k

(
m

y

)( x

2k

)y (

1 − x

2k

)m−y





= 2m

(
x

2k
− 1

2

)(xm

2k
− xm

2k

)

= 0

Finally, we have,

m2

(
x

2k
− 1

2

)2 m∑

y=0

(
m

y

)( x

2k

)y (

1 − x

2k

)m−y

= m2

(
x

2k
− 1

2

)2

Put all this back into equation (5.1) to get,

var Y = m
2k
∑

x=0

(

x

2k

(

1 − x

2k

)

+m

(
x

2k
− 1

2

)2
)(

2k

x

)
1

22k
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We are going to manipulate this expression to use the property,

var B(2k, 1/2) =
∑2k

x=0(x− 2k−1)2
(
2k

x

)
2−2k

= 2k−1

var Y =
m

22k

2k
∑

x=0

(
x2k − x2 +m

(
x2 − x2k + (2k−1)2

))
(

2k

x

)
1

22k

=
m(m− 1)

22k

2k
∑

x=0

(

x2 − x2k +
m

m− 1
(2k−1)2

)(
2k

x

)
1

22k

=
m(m− 1)

22k

2k
∑

x=0

(

x2 − x2k + (2k−1)2 +
(2k−1)2

m− 1

)(
2k

x

)
1

22k

=
m(m− 1)

22k

(

2k−2 +
(2k−1)2

m− 1

)

=
m

2k+2
(m− 1 + 2k)

We now normalize var Y (dividing by m2) and take the square root to get,

σfm =

√

m+ 2k − 1

m2k+2
(5.3)

Figure 5.6 shows the graph of equation (5.3) for m = 1000, 6000. The correlation

between σG and σfm improves as k increases, suggesting that as k is increased the

nodes output 0 and 1 with probability 1/2. Note that as expected for increasing

m, σfm → σf , this can be seen to be true from their equations as well as figure

5.6.

σfm =

√

m+ 2k − 1

m2k+2

= σf

√

1 +
2k − 1

m

2k − 1

m
→ 0 as m→ ∞

5.1.2 Frozen component

In this subsection we are going to look at what we term the ‘frozen component’.

The idea behind the frozen component was taken from Flyvbjerg who charac-

terised the dynamics of an RBN by its ‘stable core’ [7]. For a node to contribute

to the stable core its value had to remain fixed for all iterations after some point,

independent of initial conditions. Flyvbjerg completed a theoretical analysis of

the stable core and concluded that, for k = 2 networks the stable core engulfs all
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Figure 5.6: A graph comparing the estimated σG to σf ,σf1000 and σf6000

nodes, for k ≥ 3 networks it contains hardly any (section 1.1.2).

Investigations into the frozen component are numerical. We define the frozen

component as the proportion of nodes that have had a fixed value for a mini-

mum period. The size of the frozen component depends on the minimum period,

though if this is long enough (say 2N for deterministic networks, N being the

number of nodes) the frozen component will contain only nodes which are truly

frozen that is, nodes whose state is guaranteed not to change for all time. For

practical computing, it is likely that the minimum period will be shorter than

required (to catch only truly frozen nodes) so unlike the stable core the size of

the frozen component can decrease.

The distribution of Gi,1 over deterministic RBNs gives us information about the

first re-evaluation probabilities to have a value less than 1, thus we can make

statements about the proportion of nodes that will be frozen immediately by the

heuristic (those whose Gi,1 falls outside the interval [ǫ, 1− ǫ]). However this tells

us nothing about the new Gi,1 distribution (the Gi,1 distribution is altered by

the onset of non-trivial re-evaluation probabilities), thus we have no information

about the new re-evaluation probabilities and if more nodes subsequently become

frozen.

In subsection 4.2.2 we discussed how movement through probabilistic state space

is guided by movement through deterministic state space. This was illustrated by

the example of a state (in state space) Xn ∈ B12
0 and its deterministic Boolean
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map F (consisting of 12 Boolean functions),

Xn [000001011101]
F (Xn) [100000101110]

We see that the underlined states in Xn do not change value under the map F

so cannot change under probabilistic updating. Hence a probabilistic Boolean

map could not map Xn to 110000101110, for example. For k = 2 deterministic

networks once the network has entered its cycle most nodes become frozen (see

subsection 1.1.2, and figure 5.1). If we were then to impose probabilistic updat-

ing, the only possible way for the frozen nodes to unfreeze is for the network to

enter another basin of attraction (i.e. to become a state which leads to another

cycle (in deterministic state space) or a state in another cycle). For k = 2 net-

works with probabilistic updating, this is very unlikely as cycles are separated

by large basins of attraction. As k is increased the deterministic cycles become

fewer and longer with smaller basins. In fact for k ≥ 3 most if not all nodes in

the deterministic network are active, eliminating the question of unfreezing.

The accuracy heuristic has been designed to reduce nodal activity (traffic): a

node updates with the minimum probability to assure a certain accuracy, and in

some cases the heuristic imposes freezing. We are going to use the frozen com-

ponent to investigate if and how the freezing imposed by the heuristic spreads

across the network. We will show results from three classic RBNs, k = 2, k = 3,

and k = 5 (networks 01, 02, and 03 respectively), under two types of probabilis-

tic updating. One set of results will be from the networks running the accuracy

heuristic (after a deterministic transient period) for various values of ǫ. The

other set of results will be from the same networks running a state independent,

probabilistic updating scheme (termed as probabilistic RBNs). During proba-

bilistic RBN simulations a fixed number of nodes, m, are synchronously updated

on each iteration. The m nodes are chosen at random on each iteration, giving

each node a re-evaluation probability of m/N . Comparing probabilistic RBN

results with accuracy RBN results illuminates the dynamical changes due to the

enforced freezing of the heuristic. If we were to observe re-evaluation probabilities

we would know which nodes were truly frozen (as τi,0 or τi,1 would be equal to

zero) but this method does not encompass probabilistic RBNs, and so we chose

to use the minimum period.

Network simulations had initial re-evaluation probabilities τ 0
i,0 = τ 0

i,1 = 1, al-

lowing us to record the frozen component of the deterministic dynamics before

probabilistic updating occurred. No frozen component measurements were taken
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before a transient period of 7000 iterations (so network was on a cycle). For

accuracy networks Gi,1 was estimated at the end of the deterministic phase (di-

rectly with scalar memory, ω = 0.998 (see subsection 3.2.1)) and used to give the

first non-deterministic re-evaluation probabilities. The minimum period during

simulations was 1000.

For k = 2 RBNs we expect most of the nodes to be frozen and a small num-

ber to have Gi,1 close to 0.5 (figure 5.1), and so the accuracy heuristic will not

initially freeze any extra nodes unless ǫ ≈ 0.5. In subsection 4.2.3 we saw that

for odd inversion accuracy information loops Gi,b = 0.5 was a stable fixed point

of the heuristic.

If most of the nodes in a k = 2 network are frozen, one of the inputs to a

non-frozen node is likely to be frozen, so the node is effectively k = 1, and the

active nodes form information loops. Figure 5.7 shows the active sub-network in

network 01, Gi,b ≈ 0.5 for nodes 4, 9, 15.94 and 95. This does suggest that for

large enough ǫ freezing will occur, but the active component seems more stable

in figure 5.8 than we would expect on this basis (subsection 4.2.3). If it were

unstable the introduction of re-evaluation probabilities would alter Gi,1 enough

to force it out of [ǫ, 1 − ǫ], and freeze the nodes.

4

15

95

94

9

Figure 5.7: Active sub-network of network 01.

The top graph in figure 5.8 shows the frozen component of network 01 (a k = 2

RBN with 100 nodes) running the accuracy heuristic. The deterministic frozen

component is 0.95, this remains unchanged for ǫ < 0.49 suggesting Gi,b ≈ 0.5 is

a stable fixed point of the heuristic for this network. One can think of proba-

bilistic updating as subjecting the deterministic network to noise (a method used

by Kauffman to test stability [11]. However, Kauffman flipped bits at random so
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the noise he subjected networks to could free dynamics from a fixed point, unlike

probabilistic networks. Map (1.1) has an unstable fixed point). The accuracy

RBN simulation suggests that the deterministic cycle (ǫ=0) is stable (resilient

to noise) as the frozen component remains unchanged. This is supported by the

frozen component results for the same network running probabilistic updating

(bottom graph in figure 5.8).
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Figure 5.8: Frozen component graphs for network 01 (a k = 2 RBN with 100
nodes) running the accuracy heuristic (top), and probabilistic updating (bottom).

The Gi,1 distribution for k = 3 (figure 5.1) shows values of Gi,1 across the unit

interval, so all values of ǫ have the potential to freeze nodes. As k is increased

further the interval supporting Gi,1 shrinks until Gi,1 ≈ 0.5 for all nodes (figure

5.4) reducing the chance of freezing by smaller values of ǫ. Figures 5.9 and 5.10

show the frozen components of a k = 3 and k = 5 RBN, (networks 02 and 03

respectively). Looking first at the accuracy networks: the onset of freezing in net-

work 03 is at a higher value of ǫ than that of network 02, as expected. However,

their frozen components evolve in a similar manner: for most values of ǫ (which

promote freezing) there is a gradual increase in the frozen component before a

levelling off. The major difference in the two networks is network 02 has a fixed

point that can be reached from the perturbed deterministic cycle. The values

of ǫ (in network 02) that have not resulted in the network becoming frozen may

have done if the simulation was run for longer. Another reason why these values

of ǫ have not caused the network to freeze is that the accuracy heuristic may

have frozen a node to a value which is not in the fixed point. We see from the

probabilistic frozen component of network 02 (right graph in figure 5.9) that the
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more noise (the smaller the value of m/N) we subject the network to, the sooner

it finds the fixed point.

When Kauffman did his stability experiments he only perturbed one node at

a time, equivalent to m/N = 0.99 in our experiments: for this value of m/N our

stable component remains constant. In network 01 we assumed that if the frozen

component remained constant (for increasing ǫ, decreasing m) the network had

not left the deterministic cycle. We know from the literature (subsection 1.1.2)

that k = 2 RBNs have small cycles separated by large basins of attraction. It is

unlikely that the number of active nodes in these cycles are the same, thus we

would expect the size of the frozen component to change if the networked moved

from one (deterministic) cycle to another. It becomes more difficult to say if a

constant frozen component indicates the network is in the same (deterministic)

cycle for larger k as the cycles become longer forcing most if not all nodes to be

active, i.e. cycles usually have the same deterministic frozen component of zero.
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Figure 5.9: Frozen component graphs for network 02 (a k = 3 RBN with 100
nodes) running the accuracy heuristic (left), and probabilistic updating (right).

If the value of the frozen component stabilises for a given ǫ it is possible that

the network has converged (i.e. τi,b’s have converged) and Gi,b’s are stationary.

This is certainly not true if the frozen component continues to increase. We see

from frozen component graphs that the value of the frozen component can level

off, but can also have constant periods before periods of increase. In fact there is

always a finite probability of nodes (in an accuracy RBN) freezing because of the

probabilistic nature of updates and the finite memory estimation of Gi,b. As for

the possible lack of stationarity, the heuristic can react to a change in Gi,b but the
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Figure 5.10: Frozen component graphs for network 03 (a k = 5 RBN with 100
nodes) running the accuracy heuristic (left), and probabilistic updating (right).

reaction is delayed by the number of iterations needed to correct the estimation

of the distribution.

The general picture suggested by the simulations is that for k = 2 the accuracy

networks, like their deterministic counterparts, have large frozen components.

The size of the frozen component can increase from the deterministic value, but

only for relatively high values of ǫ. For k ≥ 3, the accuracy networks can de-

velop significant frozen components, their size increasing with ǫ. As k increases,

the value of ǫ needed to produce a frozen component of a given size also increases.

Frozen components of general RBNs behave very similarly to those of classic

RBNs. The in-degree (ki) of nodes in general RBNs are chosen randomly from

the interval [1, kmax] so there are, on average, N/kmax nodes with in-degree 1,

N/kmax nodes with in-degree 2 etc. General RBNs with average in-degree 〈k〉 = 2

behave similarly to k = 2 classic RBNs: they have short cycles with large basins

of attraction. As 〈k〉 is increased the cycles become longer and basins smaller. So,

the frozen component similarity between general and classic RBNs with 〈k〉 = k

it is not such a surprise. The major difference when comparing general RBNs

is the value of their deterministic frozen components: for 〈k〉 = 2 networks it is

smaller due to nodes with in-degree greater than 2, for 〈k〉 ≥ 3 it is larger due to

nodes with in-degree 1, 2.

Frozen component results show there is a qualitative difference in the dynam-
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ical behaviour of RBNs when k = 2 and k ≥ 3, with probabilistic updating

(either state dependent or independent), which stands up to reason: though it

is possible for probabilistic RBNs to move into basins with greater activity, it

is highly unlikely, thus it is rare for probabilistic updating to increase the effec-

tive size of the state space. As a result trajectories in probabilistic k = 2 state

space cannot move far from each other (distance measured using the Hamming

distance), regardless of their non-deterministic property. Trajectories in proba-

bilistic k ≥ 3 state space, like their deterministic equivalent, have the ability to

jump from one basin to another making it highly probable that they will become

separated by a reasonable distance.

5.1.3 Annealed approximation

Let X ∈ {0, 1}N be a state in the state space of a RBN with N nodes. Denote

the state of node i as xi, thus X = x0x1x2 . . . xN−1. A method for gauging the

stability of RBN dynamics is to take a state in a cycle X, flip one of the node

states (xi ⊕ 1) giving a new state X̃, then see if X̃ is in the same basin of attrac-

tion as X. If the perturbed state (X̃) is in the same basin of attraction as X then

we may have a stable cycle. Numerous states in the cycle are chosen randomly

and perturbed (the perturbed node is also chosen randomly): if all or most of

the perturbed states are in the basin of attraction then the cycle is considered to

be stable. It is well documented that for k = 2 RBNs most cycles are stable, for

k = 3 most cycles are unstable, and as k is increased the likelihood of finding a

stable cycle is dramatically decreased (subsection 1.1.2).

Let dn denote the normalised Hamming distance between the two states Xn and

X̃n at time n,

dn =
1

N

N−1∑

i=0

|xn
i − x̃n

i |

Derrida and Pomeau derived an expression for dn+1 as a function of dn by aver-

aging over many boolean networks with fixed k, N , but random architecture. In

other words they considered dn+1 of a Boolean network with fixed N , k, but the

links and Boolean functions were randomly assigned on every iteration (discussed

in full in subsection 1.1.2 [6]). Their expression is,

dn+1 =
1

2
(1 − (1 − dn)k) (5.4)

Figure 5.11 shows the graph of Derrida and Pomeau’s equation, equation (5.4),

for k = 1, 2, 3, 4, and dn = dn+1. From graphical analysis the fixed point at the
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origin is stable for k ≤ 2 and unstable otherwise, confirmed by the gradient of

equation (5.4) at the origin.

d

ddn

dn+1

∣
∣
∣
∣
dn=0

=
k

2

The gradient is 1 at the point where this fixed point changes from stable to un-

stable and so k = 2 is a critical value: for k ≤ 2 close trajectories (i.e. with initial

points dn << 1 apart) converge, k > 2 close trajectories diverge (they are drawn

to the other fixed point dn = dn+1 = 1 − (2/k)(k−1)/2).
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Figure 5.11: Graph of equation (5.4) for k = 1, 2, 3, 4, and dn = dn+1.

Mesot and Teuscher go on to develop Derrida and Pomeau’s annealed approx-

imation for semi-synchronous, probabilistic RBNs [17]. The updating scheme

updates m nodes synchronously on every iteration where m is chosen randomly

in the range [1, N ]; given m, the expected (state independent) update probability

for a node is m/N , and the overall probability of being updated is,

Pu =
1

N

N∑

m=1

m

N
=
N + 1

2N

As the size of the network increases Pu → 1/2.

The limit cycle attractors of the deterministic RBNs no longer occur in the semi-

synchronous probabilistic RBNs, but we may still regard the evolution of dn of

two nearby states as giving some indication of stability. Mesot and Teuscher at-

tempt to give an approximate description of this evolution using similar ideas to

those of Derrida and Pomeau, (who considered only deterministic RBNs). Mesot

and Teuscher’s annealed approximation is based on the following procedure:
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Method I

(IA) Fix N , k

(IB) Generate a RBN

(IC) Choose Xn and X̃n distance dn apart

(ID) Choose and fix m

(IE) Choose m nodes for updating, and generate Xn+1

(IF) Choose another m nodes for updating, and generate X̃n+1

(IG) Calculate dn+1

Mesot and Teuscher choose m randomly on each iteration, (ID). It is not clear

why, if they allow the update nodes to be different in the two networks, why they

do not allow m to be different.

Let; P0 be the probability of node i being updated in neither (IE) or (IF), P1

be the probability of node i being updated in (IE) or (IF) but not both, and P2

be the probability of node i being updated in both (IE) and (IF). Pu = 1/2 (as

we are dealing with very large networks) giving, P0 = 1/4, P1 = 1/2 and P2 = 1/4.

Denote the set of nodes for which xn
i = x̃n

i as A, and the set containing all

other nodes as set B. Let an be the probability that a node chosen at random is

in set A; note that an = 1 − dn. If a node has all its inputs in set A at n then

the probability of that node being in set A at n+ 1 is Pα,

Pα = ak
n

(

P2 +
P1

2
+ anP0

)

P1 is multiplied by 1/2 because of the annealed approximation, (there is a prob-

ability 1/2 of node i being in A if it is only updated in one of the states in Xn or

X̃n because the links and Boolean functions are re-assigned on every iteration).

P0 is multiplied by an as the node must be in A at n if it is to be in A at n+ 1,

with no update. Thus,

Pα = ak
n

(
1

2
+
an

4

)

If a node does not have all its inputs in A then the probability of it being in set

A at n+ 1 is Pβ,

Pβ = (1 − ak
n)

(
P2

2
+
P1

2
+ anP0

)

= (1 − ak
n)

(
3

8
+
an

4

)
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And so,

an+1 = Pα + Pβ

=
1

8
(ak

n + 2an + 3)

Rewriting this in terms of the Hamming distance we get,

dn+1 =
1

8
(5 − 2(1 − dn) − (1 − dn)k) (5.5)
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Figure 5.12: The graph of equation (5.5) for k = 1, 2, 3, 4, and dn = dn+1.

Figure 5.12 shows the graph of Mesot and Teuscher’s annealed approximation

(equation (5.5)) for k = 1, 2, 3, 4.

One way to think about the difference between deterministic RBNs and prob-

abilistic ones is to regard the probabilistic networks as systems with inputs. For

probabilistic networks it is no longer sufficient to know the state of the network to

be able to deduce the next state; further information must be supplied, which con-

stitutes an input to the system. For the semi-synchronous (or accuracy) RBNs,

this extra information is the identities of the nodes that update - so the input in

these cases is random.

We discussed above the idea that the stability of a system relates to how the

behaviour is affected if a small change is made to the initial state (we say the

system is stable if these behaviours are similar). For autonomous systems (with-

out input) this is simply a matter of comparing the evolutions of two distinct

(but nearby) states. For systems with input there are two situations; in both we

again compare the behaviour of nearby states, but in the first case we say the
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subsequent evolutions are governed by the same inputs, whereas in the second we

allow the states to be subjected to different inputs.

Both of these give rise to notions of stability. This notion is clearly stronger

in the second case than in the first. In the second we are saying that the system

is stable if nearby states have similar behaviours irrespective if input, thus in such

systems the input is (or eventually becomes) irrelevant. This is clearly the sense

that Mesot and Teuscher are using, because they subject their different initial

conditions to different inputs. Their conclusion is that semi-synchronous RBNs

are not stable in this sense. This is hardly surprising since we would not expect

the random input to be irrelevant in these networks (although one way it could

become so would be if there were a fixed point which could capture trajectories).

Less obvious is how the stability of the first sense varies with k. Here we ap-

ply the annealing idea to this case.

Method II

(IIA) Fix N , k

(IIB) Generate a RBN

(IIC) Choose Xn and X̃n distance dn apart

(IID) Choose and fix m

(IIE) Choose m nodes for updating, and generate Xn+1, X̃n+1

(IIF) Calculate dn+1

For method II there are only two ways to produce xn+1
i , x̃n+1

i from xn
i , x̃n

i :

either node i updates or it does not, both events occur with equal probability

(Pu = (1 − Pu) = 1/2 for N → ∞). As before we look at nodes with all inputs

in set A, and nodes with at least one input in set B, separately. If a node has

all its inputs in set A it will be in set A after one iteration if: it updates, or it

does not update and is itself in A. If a node has at least one input in set B at

n, then it will be in set A at n + 1 if: it does not update and is itself in A at n,

or it does update thus will be in set A with the probability 1/2 (because of the

annealed approximation). So,

an+1 = ak
n

(
1

2
(1 + an)

)

+ (1 − ak
n)

1

4
(2an + 1)

=
1

4
(ak

n + 2an + 1)

giving the distance equation,

dn+1 =
1

4
(3 − 2(1 − dn) − (1 − dn)k) (5.6)
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Figure 5.13: The graph of equation (5.6) for k = 1, 2, 3, 4 and dn = dn+1

We see that equation (5.6) has a fixed point at dn = dn+1 = 0 which changes

stability at k = 2.

d

ddn

dn+1

∣
∣
∣
∣
dn=0

=
2 + k

4

When the gradient at the origin equals 1, (2 + k)/4 = 1 ⇒ k = 2.

Equation (5.6) gives the same critical value for k as equation (5.4). This is

supported by the numerical experiments in the previous subsection (see figures

5.8, 5.9 and 5.10) with the survival of the frozen component in the k = 2 network.

Rather than choosing m at random each iteration and using Pu = 1/2 in the

derivation of equation (5.6) we could fix m and use P = m/N to see how the

choice of m effects the convergence to the fixed points. And so we get,

an+1 =
1

2

(
ak

nP + 2an(1 − P ) + P
)

thus,

dn+1 = 1 − (1 − P )(1 − dn) − P

2
(1 + (1 − dn)k) (5.7)

Curves of equation (5.7) are shown in figure 5.14 for P = 1 (deterministic, Derrida

plot) and P = 1/2 (m = N/2). There are two points on each curve independent

of k, (0, 0) and (1, 1− P/2). We see that, as one might expect, the higher m the

quicker dn converges to its fixed points.

We will extend our annealed approximation (equation (5.6)) to general RBNs.
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Figure 5.14: The solid lines show equation (5.7) for P = 1/2, the dashed lines
show equation (5.7) for P = 1 (deterministic).

For a general RBN each node has ki ∈ [1, kmax] inputs. Let Pki
be the distribu-

tion of ki, so the expectation of ki is,

〈ki〉 =
kmax∑

ki=1

Pki
ki

Using an argument similar to the one that led to equation (5.6) we get,

dn+1 =
1

4

(

3 − 2(1 − dn) −
kmax∑

ki=1

Pki
(1 − dn)ki

)

(5.8)

One way to determine ki is to choose it randomly from the interval [1, kmax],

making Pki
= 1/kmax and 〈ki〉 = (1 + kmax)/2. Figure 5.15 shows equation (5.8)

for 〈ki〉 = 2, 3, 4, 5 (kmax = 1, 3, 5, 7 respectively). The curves are similar to those

in figure 5.13. The slope at the origin is,

d

ddn

dn+1 =
2 + 〈ki〉

4

so there is a critical value at 〈ki〉 = 2, as in the deterministic case.

Annealed approximation for accuracy RBNs

The accuracy RBN is a semi-synchronous, state dependent, probabilistic RBN.

A node’s re-evaluation probabilities (τi,b) depend on its Gi,b distribution (equa-

tion (3.6)). In the annealed approximation of accuracy RBNs Gi,b = 1/2 so

re-evaluation probabilities become state independent and equal to τ = 1 − 2ǫ,

ǫ ∈ [0, 0.5]. We see that the annealed approximation for accuracy RBNs is simi-

lar to that of the the probabilistic RBN (we can set P = 1 − 2ǫ, equation (5.7)),
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Figure 5.15: Equation (5.8) for 〈ki〉 = 2, 3, 4, 5 (kmax = 1, 3, 5, 7 respectively)

since the argument leading to this equation does not use the fact that P = m/N

for integers m,N .

The annealed approximation reduces accuracy RBNs to probabilistic RBNs as

the continual reassignment of links and Boolean functions eliminates long term

behaviour and forces Gi,b = 1/2. Thus the approximation can not show the ef-

fects of enforced freezing (recall a node is frozen if Gi,b falls outside the interval

[ǫ, 1 − ǫ]). So although the annealed approximation indicates a change of be-

haviour at k = 2 as usual, it does not capture the smoother change over from

frozen (at k = 2) to active (for increasing k), seen in subsection 5.1.2.

5.2 Accuracy

Within this section we are going to look at the accuracy of nodes in accuracy

RBN’s. In deriving the accuracy heuristic (equation (3.6)) we assume Gi,b to be

iid. From our work on accuracy Boolean trees (subsection 4.1) we know that Gi,b

is not independent but is positively correlated (at lag 1 at least). This tends to

increase the accuracy of a node: a node with positively correlated input is more

likely to be accurate (when it has not updated) than it would be if the input

were i.i.d. It does however mean there is scope for reducing the re-evaluation

probabilities further (hence reducing traffic); this idea is not developed here. In

subsection 5.1.2 we observed the frozen component of accuracy RBNs. Frozen

component analysis suggested that the behaviour of a network was more likely

to stabilize for smaller ǫ (making Gi,b stationary). As we discussed, the heuristic

can accommodate changes in Gi,b, with a reaction time depending on the weight

parameter for the scalar estimator, or the length of the vector for the vector es-
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timator (subsection 3.2.2).

We will show the accuracy of nodes in networks 01 and 03 (the k = 2 and

k = 5 classic RBNs discussed in subsection 5.1.2) calculated by an external ob-

server i.e. one who can see all the node states, or at least the states of the node

and its predecessors. For network 01 there are only 5 of the 100 nodes active for

most values of ǫ. We observe nodal accuracy for ǫ = 0.1 i.e. we are looking for

an accuracy of 0.9. Gi,1 is estimated directly using the scalar memory, ω = 0.998.
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Figure 5.16: Left: The accuracy of active nodes in network 01 (a k = 2 RBN),
ǫ = 0.1. Right: Autocorrelation of {Xn

i } for active (non-self inputting) nodes in
the same network.

We see in figure 5.16 that 4 of the 5 active nodes have an accuracy around 0.935.

The high accuracy is expected because of the positive correlation in the {Xn
i }

(the bit string used to estimate Gi,b). The low accuracy reading is given by node

9 which is a self inputting node (the other input is frozen, see figure 5.7) with

Gi,1 = 0.5 hence τi,b = 1 − 2ǫ = 0.8, this explains its accuracy, since to be active

its Boolean function (with one input frozen) must be the inversion, so it can only

be accurate when it updates. The autocorrelations, (rm
i , for lag m = 1, 2, . . . , 10,

equation (4.1)) of the four connected nodes are shown in figure 5.16. The nodes

have approximately the same autocorrelation at all lags, and the autocorrelation

at lag 1 is more twice that for a node in a tree with one probabilistic updating

input (figure 4.5), both these facts can be attributed to the loop topology. This

high correlation explains the excessive accuracy of the nodes (note that the self-

inputting node 9 has negative correlation at lag 1).
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For network 03, ǫ = 0.1, no nodes become frozen. The accuracies of the nodes

are shown in figure 5.17 (left). The average accuracy is closer to 0.9 (ranging

from 0.9 to 0.915) than the active, non-self inputting, nodes in network 01, this

is due to the increased in-degree of each node and hence the reduction in auto-

correlation (figure 5.17, right). RBNs contain feedback loops that will increase

the correlation in {Xn
i }, and so the autocorrelations at lag 1, for the 2 randomly

chosen network 03 nodes, are much higher than that shown in figure 4.5 (node

with probabilistic inputs, in a tree topology). Feedback effects decrease as the

number of nodes in a RBN increase, thus the correlation of {Xn
i } (for nodes in a

RBN) will approach the values shown for nodes in a tree as N increases.
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Figure 5.17: Left: The accuracy of nodes in network 03 (a k = 5 RBN, all nodes
remain active), ǫ = 0.1. Right: Autocorrelation of {Xn

i } for two randomly chosen
nodes in the same network.

Figure 5.18 shows the average accuracy of active (non-self inputting) nodes in

RBNs with k = 2, 3, 5 and 9. The average accuracy was taken for 3 classic RBNs,

for each in-degree, and then an average (over the 3 networks) was taken and

plotted against time. We can see that as k increases (and the autocorrelation at

lag 1 decreases) the actual accuracy approaches the desired accuracy.

Note that as well as k, and N , the autocorrelation depends on ǫ; the larger ǫ

the smaller the re-evaluation probabilities and the larger the positive correlation.
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Figure 5.18: The average accuracy of active (non-self inputting) nodes in RBNs
with k = 2, 3, 5 and 9, ǫ = 0.1

5.3 Traffic reduction

The motivation behind the accuracy heuristic was traffic reduction in computer

networks (section 2.1). In this section we are going to give a little thought to the

effect of the heuristic on traffic in our abstracted information networks (RBNs).

A probabilistically updating Boolean network can be thought of as a push-pull

network, that is a node requests information from its predecessors when it wants

to update, and the predecessors send the information in the form of a reply. Call

one unit of traffic a request for information and the reply, i.e. whenever a node

updates it generates k units of traffic, (or ki if the node is in a general RBN). We

will go on to talk about normalised traffic volume, ν, at time n, defined as the

total units of traffic divided by Nk (N = number of nodes in the network). If all

nodes are updating synchronously on each iteration (we have previously called

this deterministic updating) the network will have a normalised traffic volume of

1.

Assuming node i has been implementing the accuracy heuristic the probability

of updating is (equation (3.22)):

Pui
=

τi,0τi,1
Gi,1(τi,0 − τi,1) + τi,1

102



Rewriting Pui
with the substitution (equation 3.6),

τi,1 =

{
1 − ǫ

1−Gi,1
for 0 ≤ Gi,1 ≤ 1 − ǫ

0 otherwise

τi,0 =

{
1 − ǫ

Gi,1
for ǫ ≤ Gi,1 ≤ 1

0 otherwise

gives,

Pui
=

{
1

1−2ǫ

(

1 − ǫ(1−ǫ)
Gi,1(1−Gi,1)

)

for ǫ ≤ Gi,1 ≤ 1 − ǫ

0 otherwise
(5.9)

0 

1 − 2ε 

ε 0.5 1 − ε G
i,b

 

P
u

i

 

1 

Figure 5.19: The graph of Pui
, equation (5.9).

We can see from figure 5.19 that the probability of updating is greatest at

Gi,b = 0.5, becoming smaller as Gi,b moves away from 0.5, and hitting zero when

the node freezes (for Gi,b outside [ǫ, 1 − ǫ]). As node i generates k units of traf-

fic with probability Pui
we could say that node i generates kPui

units of traffic

on every iteration, making it clear that traffic reduction increases with |Gi,b−0.5|.

In subsection 5.1.1 we looked into the distribution of Gi,1 over deterministic clas-

sic RBN’s and noticed that for k ≥ 4 the distribution can be estimated by a

normal curve fG, with mean µ = 0.5 and standard deviation σG = 2−(k/2+1). We

derived a standard deviation which took into account the variance when estimat-

ing Gi,1 with a finite memory, allowing us to compare theory with simulation

results. Here we will only look at the exact Gi,1 distribution using σG (i.e. Gi,1

estimated with infinite memory). The distribution fG can be used to find the

initial traffic reduction on the network, hence give an upper bound. (We saw

when observing the frozen component (subsection 5.1.2) that freezing of nodes
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can spread throughout the network, thus reducing traffic further.) Let Gi,1 = G

in the expressions fG and Pui
(= Pu), for clearer notation.

fG =
1

σ
√

2π
exp

(−(G− µ)2

2σ2

)

=

√

2k+1

π
exp(−2k+1(G− 0.5)2)

Using fG and Pu we can find the expectation of an arbitrary node updating,

which is the same as the expected normalised traffic volume of the whole network

(denoted νu) because,

νu =
1

Nk

N−1∑

i=0

(expectation of an arbitrary node updating) k

= expectation of an arbitrary node updating

So,

νu =

∫ 1

0

fGPudG

=

√

2k+1

π

1

1 − 2ǫ

(∫ 1−ǫ

ǫ

1

exp(2k+1(G− 0.5)2)
dG

−ǫ(1 − ǫ)

∫ 1−ǫ

ǫ

1

G(1 −G) exp(2k+1(G− 0.5)2)
dG

)

=

√

2k+1

π

1

1 − 2ǫ
(F1 − ǫ(1 − ǫ)F2)

The integrals F1 and F2 can not be found in closed form and so we estimate

F1, F2 numerically (using the trapezium rule). Figure 5.20 (left) shows the ap-

proximations of νu for k = 4, 5, 9 and ǫ = 0, 0.05, 0.1, . . . , 0.5. As k increases,

νu approaches 1 − 2ǫ. This is predicted by the normal curves in figure 5.4: as k

increases more nodes have Gi,1 ≈ 0.5, (the more nodes have Gi,1 ≈ 0.5, the more

have τi,0 = τi,1 = 1 − 2ǫ and Pui
= 1 − 2ǫ, thus νu → 1 − 2ǫ). We see a decrease

in the gradient of νu as ǫ increases, this corresponds to nodes being frozen as the

activity interval (Gi,1 ∈ [ǫ, 1 − ǫ]) contracts.

As mentioned earlier, νu is only an upper bound on the traffic reduction, so

we took a snap shot of the traffic on simulated networks to get an idea how the

normalised traffic volume (ν) developed with time, (figure 5.20 (right)). The

numerical results were generated using three networks with the same in-degree

for k = 2, 3, 4, 5, 9, N = 100. The networks were in a cycle when the accuracy

algorithm was switched on (ǫ = 0, 0.05, 0.1, . . . , 0.5), they were then left to run
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Figure 5.20: Left: approximations of νu for k = 4, 5, 9. Right: traffic snapshots
of simulated networks k = 2, 3, 4, 5, 9 and ǫ = 0, 0.05, 0.1, . . . , 0.5.

for 20000 iterations before a traffic snapshot of 6000 iterations as taken. The

traffic snapshot consists of finding the normalised traffic volume on each iteration

(counting the number of requests/replies and dividing by Nk), then calculating

the average of these over the 6000 iterations. This was then averaged with the

other two traffic snapshots generated by the networks with the same k.

ν for k = 4, 5, 9 takes on a similar shape to their upper bound νu, they fol-

low ν = 1 − 2ǫ (not as closely as νu) then drop away from this path at a similar

place to νu, though the drop is more dramatic. The curves for k = 2, 3 are similar,

they have a sharp decrease followed by a more gradual decline. As the k = 2

accuracy networks freeze more often than not the optimal accuracy networks may

be considered to be k = 3 networks; by optimal we mean that they often remain

functional and benefit from a large traffic loss whilst retaining a high accuracy.
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Chapter 6

Further work

6.1 Probabilistic RBN dynamics

In subsection 5.1.1 we looked at the distribution of Gi,1 (node output distribu-

tions) for deterministic classic RBNs, and generated a theoretical result to predict

the distribution of Gi,1 as a function of in degree (for in-degree ≥ 4). The same

could be done for semi-synchronous probabilistic networks (networks of nodes

updating with probability m/N , m ≤ N). Of course in order to give this a sensi-

ble meaning we would need to establish the stationarity of the state distribution

in the network. The existence of loose attractors (subsection 1.2) in probabilis-

tic RBNs support the possibility of stationarity, plus we can consider the whole

RBN, with vector memories etc. included, as a Markov chain.

As the trajectories of probabilistic RBNs are closely related to those of their

deterministic equivalents (subsection 4.2.2) one may expect the distribution of

Hi,1 to be related to the distribution of Gi,1.

6.2 Correlation of input and output strings of

Boolean functions

In section 4.1 we presented results of a numerical experiment supporting the idea

that the output of a Boolean function with correlated inputs, becomes less corre-

lated as the number of inputs increased. The Boolean function in the experiment

was XOR (Boolean addition). Obviously looking at one function only gives a

partial view of what is happening: for example, if the Boolean function returned

1 regardless of input then the correlation of the output would be 1 independent

of the number of inputs and their statistical properties.
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It would be interesting to explore the possibility of deriving a general expression

for output correlation given input correlations (including higher order correla-

tions and cross correlation, if necessary) and the Boolean function. (If such an

expression were attainable, it could be used to improve the accuracy heuristic.)

6.3 Accuracy heuristic without freezing

A ‘real’ network is unlikely to be fixed, either in its topology or nodal behaviour

(Boolean functions), so freezing nodes may be an impractical feature of the ac-

curacy heuristic. This is easily fixed by setting the minimum re-evaluation prob-

ability greater than zero.

One could investigate the effects of this modification on the dynamics of ac-

curacy networks, which must now not only depend on the inaccuracy (ǫ) but also

on the minimum re-evaluation probability. When considering the frozen compo-

nent (subsection 5.1.2) as a measure of dynamics, we might expect the the frozen

component of the accuracy network (with non-freezing heuristic) to behave more

like that of the semi-synchronous probabilistic network, than the heuristic with

freezing.

6.4 Using the Accuracy heuristic to approxi-

mate Boolean functions

A boolean function can be represented as a tree: the leaf nodes supply the vari-

ables (or inputs) of the function, and the state of the root node is the value of

the evaluated function (we looked at trees in section 4.1). Each node of the tree

has one Boolean function; AND (∧), OR (∨) or NOT (all Boolean functions can

be re-written in terms of AND, OR, NOT: one method of doing this is the Quine

McCluskey algorithm [25]). An example of the tree for the Boolean function

f = [(x5 ∧ x6) ∧ (x7 ∧ x8)] ∧ x2 is shown in figure 6.1.

Now consider letting the leaf nodes of a Boolean function tree output 1 with

probability 1/2 (i.e. all (25, as the function has 5 variables) possible inputs have

an equal probability of being realized). If we then impose the accuracy heuris-

tic (section 3.1) on the tree and disregard nodes which are predecessors to frozen

nodes (making the frozen node a leaf), we get a new tree describing a new Boolean

function. What can we say about the new Boolean function as an approximation

to the old one? i.e. how reliable an approximation is this new function and how
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Figure 6.1: The tree representing the Boolean function f = [(x5 ∧ x6) ∧ (x7 ∧
x8)] ∧ x2.

is this reliability related to ǫ (the inaccuracy the network)?

Returning to the example function, f : the left tree in figure 6.2 shows the proba-

bility of each node outputting 1 if all nodes in the tree are updated synchronously

on every iteration. Now impose the heuristic on the tree (with ǫ = 0.1), this alters

the probability that nodes with predecessors are in state 1 (see subsection 3.2.1).

The right tree in figure 6.2 gives the new probabilities. We see that the root node

is frozen, suggesting f can be approximated by a constant, 0. As f = 1 with

probability 1/32 the output of the new function will be inaccurate with proba-

bility 1/32.
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Figure 6.2: Probability of nodes having state 1 in the tree of f ; deterministic
network probabilities on the left, accuracy network probabilities on the right.

Now consider g = [(x5 ∧ x6) ∧ (x7 ∧ x8)] ∨ x2, this has an identical tree to f

bar the root node, which is now OR rather than AND. The left tree in figure

6.3 shows the probabilities of nodes outputting 1 when the network is updated

deterministically. The center tree gives the probabilities for the accuracy net-

work. The right tree is the probabilities of nodes in the new function (g′ which
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approximates g) outputting 1. This suggests that g′ = 0∨ x2 ≈ g, and indeed we

can see that g′ 6= g with probability 1/32.
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Figure 6.3: The probability of nodes in the tree of g = [(x5 ∧ x6)∧ (x7 ∧ x8)]∨ x2

outputting 1. Left: deterministic updating. Center: updating using the accuracy
heuristic. Right: deterministic updating of g′ = 0 ∨ x2.

It would be desirable to investigate this idea further, draw some general conclu-

sions about the accuracy of the approximations, and automate the approximation

process.
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Appendix

Accuracy heuristic simulations

We have simulated accuracy networks with various topologies (loop, tree and

random) recording the accuracy, traffic, frozen components and calculating the

autocorrelations. Here we will discuss the basic accuracy heuristic simulation

program, then talk a little about the modifications to the basic program which

allowed us to obtain the numerical results.

The accuracy network simulation programs were written in Python which is a

object orientated language based on C [21]. It was chosen because of its simple

syntax, however Python is slow when dealing with large calculations.

Basic accuracy simulation

The network architecture and Boolean functions were set in a separate program

from the main network simulation, and stored in a file for the simulation program

to read. The initial condition (or state) was also generated in a separate program

for the simulation to read, enabling us to carry out numerous tests on the same

network with the same initial conditions.

The simulation program was only concerned with the evolution of states, the evo-

lution of re-evaluation probabilities, and recording network properties (accuracy,

traffic, frozen component and autocorrelation). For all the simulations discussed

in this thesis the accuracy (1 − ǫ, see section 3.1) is the same for all nodes. If

simulations are to be run for several values of ǫ these are set in the simulation pro-

gram and stored in a list. We will explain the use of the ǫ vector a little further on.

The initial re-evaluation probabilities (τi,b b ∈ {0, 1}) were set to 1 for each new

simulation and fixed there for a transient period. During the transient period

the simulation runs a deterministic network by evaluating all Boolean functions

synchronously on every iteration. After this period the deterministic network
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should be exhibiting long term behaviour ( i.e. the network state should be on a

cycle) which is useful when comparing network properties for various ǫ.

In order to run the accuracy heuristic each node needs to estimate Gi,1 (see

section 3.1), thus the network is run deterministically for a further period deter-

mined by the size of the vector estimator or the weight of the scalar estimator

(see section 3.2.2). Once nodes have Gi,1 estimates a copy of the current network

state and all Gi,1 values are stored, this is considered to be the end of the deter-

ministic phase.

To start the accuracy (probabilistic) phase the simulation uses the first value of ǫ

(from the ǫ vector) and calculates the initial non-deterministic re-evaluation prob-

abilities using Gi,1. Let the state of the network at time n be Y n = yn
0 y

n
1 . . . y

n
N−1.

Each node updates its state using its Boolean function like so,

yn+1
i = fi(y

n
i,0y

n
i,1 . . . y

n
i,k−1) = fi(Y

n
i ) (recall there are k inputs per node). The

loop below is performed for each iteration of the probabilistic network. This loop

shows the Gi,1 estimation method which estimates Gi,1 directly (see subsection

3.2.1) as we use this most in the thesis.

for i = 0, 1, . . . , N − 1 :

• R = random number in the unit interval

if R < τi,yn
i

:

• yn+1
i = fi(Y

n
i )

• update estimation of Gi,1 (and hence Gi,0)

• τn+1

i,yn+1
i

= 1 − ǫ/(1 −Gi,yn+1
i

) (equation (3.7))

else :

• yn+1
i = yn

i

At the end of the accuracy period the simulation checks for another value of ǫ

(from the ǫ vector), if there is one it calculates another set of initial re-evaluation

probabilities using the stored Gi,1 (from the end of the deterministic phase) and

the new ǫ. The accuracy phase is then re-started using the state stored at the

end of the deterministic phase as the initial condition.

For the tree topology some nodes have no predecessors (leaf nodes, see section

??), the states of these nodes are chosen at random on every iteration, with prob-

ability Pi of being 1. The strings (. . . , yn−1
i , yn

i , y
n+1
i , . . . ) generated by leaf nodes
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are iid. All other nodes in the tree have a Boolean function determining their

state. In our accuracy tree simulations we chose to let the leaf nodes update on

every iteration even after the accuracy heuristic had been enforced.

Recording the accuracy

To monitor the accuracy of a network we modified the basic loop (above) to

include an accuracy counter A = [a0, a1, . . . , aN−1], ai is the accuracy of node i

(A is a ‘list’). Initially ai = 1 as the network is run deterministically. Once the

network updates probabilistically the value of ai is altered using a running average

(see the accuracy loop shown below). If a node updates it must be accurate and

so we can simply increase ai in this case. If the node does not update then it

can only be accurate if yn
i = fi(Y

n
i ) is true, so this is tested and if it holds ai

is increased, otherwise ai is decreased. Values of ai were recorded in files for

plotting. The accuracy loop is shown below,

for i = 0, 1, . . . , N − 1 :

• R = random number in the unit interval

if R < τi,yn
i

:

• yn+1
i = fi(Y

n
i )

• update estimation of Gi,1

• τn+1

i,yn+1
i

= 1 − ǫ/(1 −Gi,yn+1
i

)

• ai = ai(n− 1)/n+ 1/n

else :

• yn+1
i = yn

i

if yn
i = fi(Y

n
i ) :

• ai = ai(n− 1)/n+ 1/n

else :

• ai = ai(n− 1)/n

When calculating the average accuracy of a network, âi, only the accuracy of

active nodes was used in the calculation. To do this we stored ai as a ‘dictio-

nary’, which is a Python object where each element is labelled enabling one to

locate a node’s accuracy in the absence of an ordered list. Once a node became

inactive (τi,b = 0) the accuracy of that node was struck from the dictionary, so

the elements of dictionary A were accuracies of active nodes. At the end of each
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iteration loop the average accuracy was calculated,

âi =
1

|A|
∑

ai∈A

ai

and written to a file for plotting.

Recording traffic volume

The traffic volume, ν, of an accuracy network was also calculated by a modifica-

tion to the basic loop. For the deterministic network ν = 1 as all nodes update

on each iteration. In the accuracy phase ν was set to zero at the start of each

iteration, then increasing by 1/N each time a node updated. The value of ν was

written to a file for plotting at the end of each iteration. The traffic volume loop

is shown below,

• ν = 0

for i = 0, 1, . . . , N − 1 :

• R = random number in the unit interval

if R < τi,yn
i

:

• yn+1
i = fi(Y

n
i )

• update estimation of Gi,1

• τn+1

i,yn+1
i

= 1 − ǫ/(1 −Gi,yn+1
i

)

• ν = ν + 1/N

else :

• yn+1
i = yn

i

Recording the frozen component

The frozen component (subsection 5.1.2) was calculated outside the basic loop,

by counting how long a node had been in a particular state (when the state of

a node changed its counter was set to zero). If the count reached a specified

minimum period the node was added to the frozen component but it could be

removed if its state were to change whilst it was in there. The size of the frozen

component was written to a file for plotting.

Autocorrelation calculations

For the autocorrelation calculations strings of node states

(. . . , yn−1
i , yn

i , y
n+1
i . . . ) were stored for analysis. Because if the length of these
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strings (50000 elements for our calculations) a number of nodes were chosen at

random for observation at the stare of simulations. Once the accuracy phase for

a particular value of ǫ was completed the autocorrelation was calculated using

equation (4.1), and written to a file for plotting.
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