
November 9, 2020 17:19 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book output

Bayesian Model Updating of Reliability Parameters using Transitional Markov Chain
Monte Carlo with Slice Sampling

Adolphus Lye
Institute for Risk and Uncertainty, University of Liverpool, United Kingdom.
E-mail: adolphus.lye@liverpool.ac.uk

Alice Cicirello
Dynamics, Vibration and Uncertainty (DVU) Lab, University of Oxford, United Kingdom.
E-mail: alice.cicirello@eng.ox.ac.uk

Edoardo Patelli
Centre for Intelligent Infrastructure, Civil and Environmental Engineering, University of Strathclyde, United
Kingdom.
E-mail: edoardo.patelli@strath.ac.uk

This research work presents a comparison of the performances between the Transitional Markov Chain Monte Carlo
(TMCMC) and the TMCMC-Slice algorithm. Transitional Markov Chain Monte Carlo (TMCMC) algorithm is a
popular approach in the estimation of epistemic parameters from Bayesian Inference. By sampling from a series
of intermediate probability density functions, the sampler can generate samples from any target probability density
functions. In the TMCMC algorithm, the Metropolis-Hastings sampling algorithm is adopted to generate samples
from the intermediate probability density functions whilst in TMCMC-Slice algorithm, the Slice sampling algorithm
is adopted to do so. In this work, the performance of the TMCMC-Slice over the TMCMC sampler is investigated
for different number of samples. For this purpose, the two samplers are then adopted in a reliability parameter
update of the Emergency Diesel Generator system that is employed in Daya Bay Nuclear Power Plant. The results
show that while the TMCMC-Slice approach is able to produce slightly more precise estimates compared to the
TMCMC approach, the computational time evolved in the case of the former was significantly greater compared to
the latter. In addition, the Two-sample Kolmogorov–Smirnov test also provided sufficient evidence to reject the null
hypothesis that the samples obtained from both techniques are from the same distribution at 5% level of significance.

Keywords: Nuclear Power Plant, Reliability, Bayesian Model Updating, Slice Sampling, Transitional Markov Chain
Monte Carlo .

1. Introduction
Transitional Markov Chain Monte Carlo (TM-
CMC) has been shown to be a robust sampler
to generate realisation from difficult distribution
including multi-modal Probability Distribution
Functions (PDFs), very peaked PDFs, and PDFs
with flat manifold according to Ching and Chen
(2007). TMCMC generates samples from simpler
intermediate distributions. Currently, Metropolis-
Hastings algorithm is adopted to perform re-
sampling of samples via Markov Chain Monte
Carlo. Here, we adopt the use of the TMCMC-
Slice sampling algorithm proposed by Zhang and
Yang (2014) to generate samples from the inter-
mediate distributions and the performance as well
as the results obtained from these two samplers are
critically compared with different number of sam-
ples. Both renditions of the TMCMC samplers
are applied on a Bayesian model update problem

in the form of updating the reliability parameters
for an Emergency Diesel Generator system of the
Daya Bay Nuclear Power Plant. In the work by
Zhang and Yang (2014), however, a similarity
test between the distributions of the samples ob-
tained using TMCMC and TMCMC-Slice sam-
pling method was not addressed. As such, in
this work, the similarity test will be done using
the Two-sample Kolmogorov–Smirnov (KS) test
at 5% level of significance for each sample size
used. This is done to compare the distributions of
the samples and to investigate if there is sufficient
evidence to reject the null hypothesis that their
respective samples follow the same distribution.
Details to the Two-sample KS Test can be found
in the literatures by Massey (1951), Miller (1956),
and Marsaglia et al. (2003).

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference.
Edited by Piero Baraldi, Francesco Di Maio and Enrico Zio
Copyright c© 2020 by ESREL 2020 PSAM 15 Organizers. Published by Research Publishing, Singapore
ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0 output 1



November 9, 2020 17:19 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book output

2 Adolphus Lye, Alice Cicirello, and Edoardo Patelli

1.1. Bayesian Model Updating
The concept of Bayesian model updating, intro-
duced by Beck and Katafygiotis (1998), is based
on the well-known Bayes’ Rule conceptualised by
Bayes (1958). Its mathematical formulation is as
follows:

P (θ|D) =
P (D|θ) · P (θ)

P (D)
(1)

whereby θ represents the vector of parameters
of interest, D represents the vector of observed
data, P (θ) represents the Prior distribution func-
tion, P (D|θ) represents the Likelihood function,
P (θ|D) represents the Posterior distribution, and
P (D) is the Evidence or the normalising constant
to ensure that the Posterior distribution integrates
to 1. Often, the denominator term, P (D), is
neglected as it is only a numerical constant. Thus,
Equation (1) can be re-expressed as such:

P (θ|D) ∝ P (D|θ) · P (θ) (2)

1.2. Transitional Markov Chain Monte
Carlo

In addressing Bayesian model updating problems,
the Posterior distribution, P (θ|D), is usually
known up to a normalising constant as suggested
by Equation (2). In such cases, direct Monte
Carlo simulations would not be able to perform
sampling effectively. One way to sample from
such distributions would be through the use of
TMCMC method, a sampling technique proposed
by Ching and Chen (2007). It is an iterative sam-
pling algorithm which is used to obtain samples
from complex Posterior distributions through a
series of intermediate “Transitional” distributions,
Pj , defined as such:

Pj(θ|D) ∝ P (D|θ)βj · P (θ) (3)

whereby j denotes the iteration number taking in-
teger values from 0 tom (form > 0), and βj takes
values such that β0 = 0 < β1 < ... < βm−1 <
βm = 1. This implies that the “Transitional”
distribution, Pj , is such that it gradually transits
from the Prior distribution initially to the Posterior
distribution in the final iteration m.

The workings of the TMCMC algorithm can
be summarized as such. Given N samples to be
obtained from the Posterior distribution, for each
iteration j, N samples are re-sampled from Pj−1
via N independent single-step MCMC sampling.
In essence, each of the N samples from Pj−1, in
the previous iteration j−1, would serve as starting
point of the MCMC chain and each MCMC chain
would generate 1 sample out of it for Pj in the
current iteration j. This procedure would repeat

itself from j = 1 to j = m. According to
Ching and Chen (2007), the MCMC sampling is
done through the use of the Metropolis-Hastings
algorithm whose tuning parameter is defined by
the covariance matrix, Σj :

Σj = β2

Nj∑
k=1

ω(θj,k)

Nj · Sj
{θj,k − θ̄j} × {θj,k − θ̄j}T

(4)
whereby

θ̄j =

∑N
r=1 ω(θr,j)θr,j∑N
r=1 ω(θr,j)

(5)

Sj =
1

Nj

Nj∑
k=1

ω(θj,k) (6)

Here, θj,k represents the kth sample in the jth it-
eration, ω(θj,k) denotes the statistical importance
weight of θj,k, Sj denotes the mean statistical
importance weight in the jth iteration, and β is
the scaling factor of the tuning parameter whose
optimum value is determined to be 0.2. The
workings of the TMCMC algorithm is as follows:

• Step 1: At iteration j = 0, a sample set of size
N is obtained from the Prior distribution, P (θ),
via direct Monte-Carlo sampling to ensure that
the obtained samples are evenly spread about
the sample space. (Note: Direct Monte-Carlo
sampling can be employed at this stage because
the Prior distribution is usually a well-defined
distribution function.)

• Step 2: A small increment, ∆β, is added to βj
such that βj+1 = βj + ∆β. ∆β has to be small
such that the Coefficient of Variation (COV) of
P (D|θ)βj+1−βj is close to 100%. This is done
so as to ensure that the transition from Pj to
Pj+1 is gradual and smooth.

• Step 3: For each iteration j, the plausibility
weight of the individual kth sample, ω(θj,k),
would be calculated via the following equation:

ω(θj,k) = P (D|θk)βj+1−βj (7)

• Step 4: In the same iteration j, the Resampling
procedure is executed to obtainN samples from
Pj to form the sample set for Pj+1. Resampling
is performed such that the individual θj+1,k
sample is sampled from θj,k with probability

ω(θj,k)∑N
k=1 ω(θj,k)

. This is achieved through the
use of MCMC sampling via the Metropolis-
Hastings algorithm with tuning parameter Σj .
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• Step 5: Repeat Steps (2) to (4) until iteration
j = m and obtain N samples from the Poste-
rior: Pm = P (θ|D).

For more information, the reader is referred to
the literature by Ching and Chen (2007).

2. Research Methodology
For this research, we will be looking into the
performance of the TMCMC-Slice sampling algo-
rithm proposed by Zhang and Yang (2014) com-
pared against the TMCMC sampling algorithm
which adopts the Metropolis-Hastings algorithm
to execute MCMC sampling.

The Metropolis-Hastings algorithm, devised by
Hastings (1970), is a random-walk algorithm
which provides a selection criteria to which sam-
ples are chosen during sampling. The samples are
chosen through the use of a Proposal distribution,
q(θ), to select proposed samples as seeds for the
next sample of the Markov Chain. The choice
of the Proposal distribution is usually such that
it is symmetric such as the Normal distribution.
The width of this Proposal distribution, σp, is also
known as the Tuning parameter as the choice of
σp would affect the acceptance rate of samples for
the Markov Chain, thereby having an impact on
the performance of the algorithm. As a guide,
the choice of σp should be one which achieves
an acceptance rate close to 0.234 as proposed by
Roberts and Rosenthal (2001). In the context
of TMCMC, this value of σp is the covariance
matrix Σj . A summary of the workings of the
Metropolis-Hastings algorithm is as follows:

• Step 1: Starting from a random sample, θ1,
the symmetric Proposal distribution would then
select the next random sample, θ2. For exam-
ple, if a Normal distribution is chosen as the
Proposal distribution, θ2 will be chosen ran-
domly from that distribution with mean θ1 and
a defined value of σp assigned by the user.

• Step 2: Upon choosing θ2, the value of the Pos-
terior distribution at θ2, P (θ2|D), is calculated.
This value is then compared to P (θ1|D) by
taking the ratio between these two quantities to
determine the acceptance ratio α:

α =
P (θ2|D)

P (θ1|D)
(8)

• Step 3: A random number, r, is drawn from
a Uniform distribution ranging between 0 and
1. If the value of α is greater than r, θ2 will
be accepted as the new sample and the process
repeats from Step 1 with θ2 as the seed. Other-
wise, θ2 will be rejected and Step 1 is repeated
using θ1 as the seed.

TMCMC-Slice sampling algorithm, on the
other hand, adopts the Slice sampling technique

to perform MCMC. Slice sampling, according to
Neal (2003), is a method which stems from the
assumption that a sample, θi, can be obtained
through uniform sampling of the region under the
curve representing the Posterior distribution. This
is done by introducing an auxiliary variable, y, as
seen in Figure 1 which will be explained subse-
quently. An auxiliary variable is one which does
not exist in the model initially, but is introduced
so as to facilitate the process of sampling. The
workings of the Slice sampling method to obtain
samples can be summarised as such:

• Step 1: Initiate the sampler by choosing an
initial sample from the Posterior distribution,
θ0. From there the value of the Posterior dis-
tribution at θ0 is evaluated, P (θ0|D).

• Step 2: The auxiliary variable, y, is sampled
from a uniformly between 0 and P (θ0|D).

• Step 3: A horizontal line is drawn across the
Posterior distribution as represented by the blue
line in Figure 1 such that it cuts across the
Posterior distribution function at P (θ|D) =
y. From there, a sample, θi, is obtained via
uniform sampling across region of the line
whereby P (θ|D) > y.

• Step 4: Repeat Steps 1 to 3 for new values of θ0
until sufficient samples are obtained.

From the workings described above, it can be
see that one key advantage of the Slice sam-
pling method is that it is highly automated in
the sense that unlike the Metropolis-Hastings al-
gorithm, there is no need for a Proposal distri-
butions. This eradicates the need of a Tuning
parameter thereby removing the need by the TM-
CMC algorithm to compute Σj , thus, providing
the motivation to observe the performance of the
TMCMC algorithm when Slice sampling is used
in the MCMC sampling step. To do so, we will
apply this TMCMC-Slice sampling algorithm on
a Bayesian model update problem by Zubair and
Zhijian (2013) which will be discussed in Section
3.

Fig. 1. An illustration of how Slice sampling is performed on
the Posterior distribution, P (θ|D).
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3. Application Case Study: Daya Bay
Nuclear Power Plant

3.1. Description
In the study by Zubair and Zhijian (2013), the
Bayesian model updating framework is adopted to
update the reliability parameters used to perform
Living Probabilistic Safety Assessment (LPSA)
on the EDG of Daya Bay NPP. The Daya Bay NPP
consists of two 900 MW Pressurized Water Re-
actors, whose design originated from France, and
has been in commercial operation within China
since the year 1994. Each nuclear power gener-
ating units of diesel generator system is made up
of two identical series A (LHP) components and
two identical series B (LHQ) components. These
diesel generator sets, together with their related
auxiliary equipment, are installed in separate fac-
tories. In the event of a loss of electricity, the EDG
would then supply 6.6KV of power to both series
A and B. Each diesel generator set consists of the
following:

(i) Two diesel engines along with its related
auxiliary equipment;

(ii) A generator along with the excitation and
protection equipment;

(iii) Auxiliary systems: fuel system, lubricating
system, engine cooling and preheating sys-
tem, air starting system, combustion air and
engine exhaust systems, ventilation systems,
and diesel engine plant instrumentation mea-
surement and control equipment.

This presents the need to update the reliability
parameters for the EDG to predict failure so as to
be able to perform predictive maintenance on the
components. For this purpose, 4-years worth of
operational data for the EDG has been collected
and presented in the literature by Zubair and Zhi-
jian (2013). Table 1 provides a summary of the
EDG data that was obtained.

Table 1. Summary of EDG data obtained from literature by
Zubair and Zhijian (2013).

Name Data

Start of data collection 1-Jan-1997
End of data collection 31-Dec-2001
Total operation time (hours) 579.37

Number of starts 290
Number of operational failure(s) 1
Total number of demand failure(s) 7

Source: Equipment failure data is sampled from Experience
Feedback System (EFS).

3.2. Bayesian Model Updating of
Parameters

In their work, Zubair and Zhijian (2013) per-
formed reliability parameter update for the follow-
ing two parameters:

• Demand failure probability, θ
• Operational failure rate, λ

According to IAEA (1992), a failure is defined
as the loss of an ability of a system to perform
its required function. Thus, the demand failure
probability can be interpreted as the probability of
the system failing to commence operation when
required while the operational failure rate can be
interpreted as number of times the system fails to
operate within the total operating time. The latter
can also be understood as the rate of failure per
unit operational time of the system.

The Bayesian set-up to estimate the demand
failure probability, θ, is as follows. The Prior
distribution of θ is set to follow a Beta distribu-
tion with shape parameters α and β. Its density
function is expressed as:

P (θ) =
Γ(α+ β)

Γ(α)Γ(β)
· θα−1 · (1− θ)β−1 (9)

whereby α = 23 and β = 6717 according to the
literature. The Likelihood function is chosen to be
a Binomial distribution, due to the data consisting
of k failures in n demands, whose density function
is expressed as:

P (X = k|θ) =
n!

k!(n− k)!
·θk ·(1−θ)n−k (10)

whereby X is a random variable denoting the
number of failure, k is the number of failures, and
n is the total demand. With reference to Table 1,
n = 290 and k = 7.

Making use of the conjugate relation between
the Prior distribution and the Likelihood function,
the Posterior distribution can be determined ana-
lytically to follow a Beta distribution with shape
parameters αpost and βpost:

P (θ|X = k) ∝ θαpost−1 · (1− θ)βpost−1 (11)

whereby αpost = k+α and βpost = n−k+β. In
the literature, αpost was determined to be 30 while
βpost was determined to be 7000. From there,
Zubair and Zhijian (2013) calculated the mean
demand failure probability, θmean, to be 0.0043
per hour using the following equation to obtain the
mean value from a Beta distribution:

θmean =
αpost

αpost + βpost
(12)
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The Bayesian set-up to estimate the operational
failure rate, λ, is as follows. The Prior distribution
of λ is set to follow a Gamma distribution with
shape and rate parameters µ and ν respectively.
Its density function is expressed as:

P (λ) =
νµ

Γ(µ)
· λµ−1 · exp−λν (13)

whereby µ = 22 and ν = 2920.63 according to
the literature. The Likelihood function is chosen
to be a Poisson distribution whose density func-
tion is expressed as:

P (Y = j|λ) =
exp−λt · (λt)j

j!
(14)

whereby Y is a random variable denoting the op-
erational failure time, j is the operational failure
time, and t is the total operation time. With
reference to Table 1, j = 1 and t = 579.37.

Making use of the conjugate relation between
the Prior distribution and the Likelihood function,
the Posterior distribution can be determined an-
alytically to follow a Gamma distribution with
shape and rate parameters µpost = 23 and νpost =
3500 respectively:

P (λ|Y = j) = λµpost−1 · exp−λνpost (15)

whereby µpost = j + µ and νpost = t + ν. In
the literature, µpost was determined to be 23 while
νpost was determined to be 3500. From there,
Zubair and Zhijian (2013) calculated the mean
operational failure rate, λmean, to be 0.0067 per
hour using the following equation to obtain the
mean value from a Gamma distribution:

λmean =
µpost
νpost

(16)

4. Results and Discussions

4.1. Estimation of Demand Failure
Probability, θ

The TMCMC-Slice algorithm was implemented
on the Posterior distribution, P (θ|X = k), along-
side with the TMCMC algorithm. Sample sizes of
N = 500, 1000, 5000, and 10000 were obtained
from the Posterior distribution with 0 Burn-in
length. The sampling process executed by both
samplers took 2 iterations each. The resulting
sample histograms for each value of N from the
respective samplers are superimposed for compar-
ison purposes and are presented in Figures 2, 3, 4,
and 5. The demand failure probability, θ, obtained
from literature and Electric de France (EDF) are
presented in Table 2 while the numerical results

obtained from TMCMC and TMCMC-Slice algo-
rithms are presented in Tables 3 and 4.

From the numerical results presented in Tables
3 and 4, the Coefficient of Variation (CoV) of

Fig. 2. Resulting histogram of θ samples obtained with sam-
ple size N = 500.

Fig. 3. Resulting histogram of θ samples obtained with sam-
ple size N = 1000.

Fig. 4. Resulting histogram of θ samples obtained with sam-
ple size N = 5000.



November 9, 2020 17:19 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book output

6 Adolphus Lye, Alice Cicirello, and Edoardo Patelli

Table 2. Demand failure probability, θ, values ob-
tained from literature and EDF.

Name Demand Failure Probability, θ

Literature 4.30× 10−3

EDF 3.40× 10−3

Source: Zubair and Zhijian (2013), and Electric de
France (EDF).

Table 3. Numerical results from TMCMC sampler.

N θmean θstd CoV Time
(%) (sec)

500 4.65× 10−3 1.01× 10−3 21.70 1.70

1000 4.32× 10−3 8.16× 10−4 18.87 3.32
5000 4.41× 10−3 8.29× 10−4 18.81 16.68

10000 4.36× 10−3 8.39× 10−4 19.24 33.49

Table 4. Numerical results from TMCMC-Slice
sampler.

N θmean θstd CoV Time
(%) (sec)

500 4.29× 10−3 8.01× 10−4 18.69 4.58

1000 4.29× 10−3 7.92× 10−4 18.48 9.16
5000 4.28× 10−3 7.82× 10−4 18.25 45.52

10000 4.27× 10−3 7.78× 10−4 18.21 94.15

the estimate of θ is consistently lower for the
TMCMC-Slice than TMCMC algorithm. This
indicates a relatively higher degree of precision of
the estimate by the former and this observation is
supported by the superimposed histograms from
both samplers in Figures 2 to 4 where it can be
observed that the histogram in red shows a smaller

Fig. 5. Resulting histogram of θ samples obtained with sam-
ple size N = 10000.

spread in general compared to the histogram in
blue. The Two-sample KS test is then performed
for each value of N at 5 % significance level
and the resulting p-values for N = 500, 1000,
5000, and 10000 are 6.77 × 10−8 , 1.30 × 10−1,
4.06×10−11, and, 9.52×10−17 respectively. This
indicates that the null hypothesis is rejected for all
values of N , except for N = 1000, implying that
the samples do not follow the same distribution
despite having a similar histogram shape profiles
as illustrated in Figures 2 to 5. There is insuffi-
cient evidence for N = 1000 to reject the null
hypothesis.

One notable observation is that the compu-
tational time elapsed for the TMCMC sampler
with Metropolis-Hastings algorithm is signifi-
cantly shorter compared to that for the TMCMC
sampler with Slice sampling algorithm. This
comes despite the latter not requiring the need
for a Proposal distribution as well as the need
to compute the tuning parameter, Σj , at each
iteration j. One reason to account for this is due to
the difference in the number of sampling sequence
undertaken by the Slice sampling algorithm and
the Metropolis-Hastings sampling algorithm. The
slice sampling algorithm involves the need un-
dergo two separate sampling sequences before
obtaining a new sample, θi from the starting seed
sample of the chain, θ0. As mentioned earlier in
Section 2, the Slice sampling algorithm first needs
to sample for an auxiliary variable, y, uniformly
between the values of 0 and the Posterior value
at the starting seed sample, P (θ0|D), and then
sample across the regions of the sample space, θ,
where P (θ0|D) > y. The Metropolis-Hastings
algorithm, on the other hand, undertakes just one
sequence of sampling from the Proposal distribu-
tion, centered about the seed sample θ0, to obtain
the new proposed sample, θi, and then passing θi
through the acceptance criteria to determine the
next sample of the chain.

4.2. Estimation of Operational Failure
Rate, λ

The TMCMC-Slice algorithm was implemented
on the Posterior distribution, P (λ|Y = j), along-
side with the TMCMC algorithm. Sample sizes of
N = 500, 1000, 5000, and 10000 were obtained
from the Posterior distribution with 0 Burn-in
length. The sampling process executed by both
samplers took 1 iterations each. The resulting
sample histograms for each value of N from the
respective samplers are superimposed for compar-
ison purposes and are presented in Figures 6, 7, 8,
and 9. The operational failure rate, λ, obtained
from literature and Electric de France (EDF) are
presented in Table 5 while the numerical results
obtained from TMCMC and TMCMC-Slice algo-
rithms are presented in Tables 6 and 7.

From the numerical results presented in Tables
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6 and 7, the Coefficient of Variation (CoV) of
the estimate of λ is consistently lower for the
TMCMC-Slice than TMCMC algorithm. This
indicates a relatively higher degree of precision of

Fig. 6. Resulting histogram of λ samples obtained with sam-
ple size N = 500.

Fig. 7. Resulting histogram of λ samples obtained with sam-
ple size N = 1000.

Fig. 8. Resulting histogram of λ samples obtained with sam-
ple size N = 5000.

Table 5. Operational Failure Rate, λ, values obtained
from literature and EDF.

Name Operational Failure Rate, λ (hr−1)

Literature 6.70× 10−3

EDF 7.70× 10−3

Source: Zubair and Zhijian (2013), and Electric de France
(EDF).

Table 6. Numerical results from TMCMC sampler.

N λmean λstd CoV (%) Time
(hr−1) (hr−1) (%) (sec)

500 6.56× 10−3 1.49× 10−3 22.79 2.13

1000 6.51× 10−3 1.48× 10−3 22.77 4.23
5000 6.49× 10−3 1.43× 10−3 22.03 21.43

10000 6.55× 10−3 1.44× 10−3 22.01 42.77

Table 7. Numerical results from TMCMC-Slice
sampler.

N λmean λstd CoV Time
(hr−1) (hr−1) (%) (sec)

500 6.61× 10−3 1.40× 10−3 21.18 3.55

1000 6.57× 10−3 1.34× 10−3 20.47 7.03
5000 6.57× 10−3 1.37× 10−3 20.93 35.23

10000 6.57× 10−3 1.36× 10−3 20.74 71.09

the estimate by the former and this observation is
supported by the superimposed histograms from
both samplers in Figures 6 to 9 where it can be
observed that the histogram in red shows a smaller
spread in general compared to the histogram in
blue. The Two-sample KS test is then performed
for each value of N at 5 % significance level

Fig. 9. Resulting histogram of λ samples obtained with sam-
ple size N = 10000.
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and the resulting p-values for N = 500, 1000,
5000, and 10000 are 7.09 × 10−1 , 1.30 × 10−1,
1.02 × 10−2, and 2.50 × 10−3 respectively. This
indicates that the null hypothesis is rejected for
the case of N = 5000 and 10000 whilst there is
insufficient evidence to reject the null hypothesis
for the case of N = 500 and 1000. This implies
that for N = 5000 and 10000, there is sufficient
evidence to suggest that the samples do not fol-
low the same distribution despite having a similar
histogram shape profiles as illustrated in Figure 8.

Like in the previous study, the computa-
tional time elapsed for the TMCMC sampler
with Metropolis-Hastings algorithm is signifi-
cantly shorter compared to that for the TMCMC
sampler with Slice sampling algorithm. The rea-
son behind this is as explained in Section 4.1.

5. Conclusion
In this paper, the TMCMC-Slice sampler devised
by Zhang and Yang (2014) is adopted applied on
a Bayesian model updating problem presented by
Zubair and Zhijian (2013) whereby the reliability
parameters, demand failure probability and oper-
ational failure rate, of the EDG in Daya Bay NPP
are to be updated. For each of the two reliability
parameters, the TMCMC sampler algorithm de-
vised by Ching and Chen (2007) is implemented
alongside for comparison. The comparison was
done on the basis of the accuracy of the estimated
results with respect to the literature values, the
Coefficient of Variation (CoV) of the estimation,
the computational time elapsed , as well as the
closeness of the distributions of the samples ob-
tained from both samplers.

In both studies, it can be seen that both TM-
CMC samplers yield results which are close to the
determined values by Zubair and Zhijian (2013).
However, for both reliability parameters, the de-
gree of the precision associated with the results
obtain from the TMCMC-Slice sampler is rela-
tively higher compared to the TMCMC sampler
which indicates an advantage the former has over
the latter for this case study. In addition, it
was also observed that the total computation time
elapsed for the TMCMC-Slice sampler was found
to be longer compared to the TMCMC algorithm
in both studies. This is attributed to the fact that
the Slice sampling algorithm has to also auto-
matically adjust the step-size of the random-walk
procedure whereas for the Metropolis-Hastings
algorithm, the step-size is already manually se-
lected by the user. This presents a key limitation
of the TMCMC-Slice sampler. Furthermore, the
Two-sample KS Test indicated that there is suf-
ficient evidence to reject the null-hypothesis that
the samples from both algorithms follow the same
distribution.

Further works which can be done from this
point on would include looking into ways to

improve the computational efficiency of the
TMCMC-Slice algorithm as well as accounting
for the reason as to why the Two-sample KS Test
provided sufficient evidence to reject the null hy-
pothesis.
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