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Abstract

We consider a plane flexural wave incident on a semi-infinite rigid strip in a Mindlin plate. The
boundary conditions on the strip lead to three Wiener–Hopf equations, one of which decouples,
leaving a scalar problem and a 2× 2 matrix problem. The latter is solved using a simple method
based on quadrature. The far field diffraction coefficient is calculated and some numerical results are
presented. We also show how the results reduce to the simpler Kirchhoff model in the low frequency
limit.

1 Introduction

The theory of wave propagation through elastic media plays an important role in the nondestructive
evaluation techniques widely used in engineering [1, chapter 7],[2]. These methods detect cracks and
other defects by measuring and analysing the response to a signal transmitted into a structure. To
correctly interpret these scattering patterns, it is first necessary to understand how the wave field
behaves when it interacts with inhomogeneities. Such interactions are difficult to capture using direct
numerical simulations, due to the intricate structure of the field close to an inhomogeneity, and the
singularities that can occur at sharp tips or corners. To overcome this, the geometrical theory of
diffraction [3, 4] assembles the field inside a complicated structure using solutions to canonical problems,
obtained by analytical means. Each canonical problem describes how waves interact with a small
number of inhomogeneities, such as edges, corners or cracks (often just one), and the solution yields a
diffraction coefficient which shows how the field varies as a function of position, angle of incidence and
any other parameters that appear in the problem (such as flexural rigidity, Poisson’s ratio, etc.).

Canonical diffraction problems in acoustics and electromagnetism have a long history, dating back
to Sommerfeld’s work on diffraction by a half-plane, published in 1896 [5]. Solutions to numerous
other canonical diffraction problems became available following the introduction of the Wiener–Hopf
technique in 1931 [6, 7]. Interest in elastodynamic wave diffraction is a relatively recent development.
The first paper on the subject considered diffraction by a semi-infinite crack and appeared in 1977 [8].
For reviews of subsequent papers in this field, see [9, 10]. The first paper to consider diffraction in
thin elastic media, which is important for modelling propagation through structures such as aeroplane
wings and panels in submarine hulls, was published in 1994 [11] and considered diffraction by rigid
strips and cracks in plates modelled by Kirchhoff theory. The results for cracks were later generalised
to certain classes of anisotropic media in [12, 13].

In this article, we consider diffraction caused by a plane wave striking a semi-infinite rigid strip
in a plate modelled by Mindlin theory [14, 15].1 Mindlin theory is valid at higher frequencies than
the classical Kirchhoff theory. From a mathematical perspective, the main difference between the
two models is that Mindlin represents the flexural wave field using a combination of three types of
mode, whereas Kirchhoff uses two. Three boundary conditions must be applied along the faces of the
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strip, leading to a system of three Wiener–Hopf equations. One of these decouples, leaving a scalar
problem and a 2× 2 matrix problem. The scalar problem can be solved using a standard procedure [6],
but matrix Wiener–Hopf problems are notoriously difficult, and as yet no general method for solving
these has been discovered. The main obstacle is the factorisation of a matrix function L(α), called the
kernel, into a product L+(α)L−(α), where the elements of L+(α) are analytic on and above a certain
contour in the complex plane (usually the real line with indentations), and the elements of L−(α) are
analytic on and below the same contour. Certain restricted classes can be factorised; these include
meromorphic matrices and those that can be expressed in Khrapkov form [16, 17, 9]. The matrix
kernel that appears in the diffraction problem considered here has three pairs of branch points, and its
entries are somewhat complicated. It is very unlikely that it can be reduced to Khrapkov form. To
overcome this problem, we introduce a simple but accurate approximate scheme that solves the matrix
Wiener–Hopf equation directly, bypassing the need for a kernel factorisation. The diffraction coefficient
for the tip of the rigid strip is obtained and a uniform asymptotic representation for the far field is
constructed. Numerical results are presented, using a nondimensionalisation scheme which eliminates
most of the physical parameters describing the plate.

2 Waves in Mindlin plates

Consider the motion of a plate with thickness h, density ρ and Poisson’s ratio ν, modelled using
Mindlin theory [14], [18, section 8.3]. The undisturbed midplane occupies z = 0, and the deformation
can be expressed in the form [19]

U = zΨ(x, y, t) +W (x, y, t)ez, (1)

where W is the transverse displacement and the in-plane vector of rotations is given by

Ψ = Ψx(x, y, t)ex + Ψy(x, y, t)ey. (2)

We will assume time-harmonic motion; thus for any function F (x, y, t), we write

F (x, y, t) = Re
[
f(x, y)e−iωt

]
, (3)

where ω is the angular frequency. The convention of using corresponding upper and lower case letters
in this way is not entirely standard in plate theory (often ψ and w are used to represent time-dependent
quantities), but it does introduce a degree of consistency. Following [20], we introduce the quantities

cs = κ

(
µ

ρ

)1/2

, cp =

[
E

ρ(1− ν2)

]1/2

, ks =
ω

cs
, kp =

ω

cp
and kf =

(
ρhω2

D

)1/4

. (4)

Here, κ is a shear correction factor [18, pp. 484, 492–3]. The Lamé constant µ and bending stiffness D
are defined in terms of the Young modulus E via

µ =
E

2(1 + ν)
and D =

Eh3

12(1− ν2)
. (5)

Note that kf is the wavenumber from Kirchhoff theory, and is O(
√
ω ) whereas ks and kp are O(ω).

Waves in a Mindlin plate can now be described using the three Helmholtz equations [14, 20](
∇2 + k2

j

)
wj = 0, j = 1, 2 and

(
∇2 + k2

3

)
φ = 0. (6)

The transverse displacement is then given by

w = w1 + w2, (7)

and components of the in-plane rotation vector are reconstructed via

ψx =
∂

∂x
(A1w1 +A2w2) +

∂φ

∂y
and ψy =

∂

∂y
(A1w1 +A2w2)− ∂φ

∂x
, (8)
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where
Aj = −1 + k2

s/k
2
j . (9)

The wavenumbers appearing in the Helmholtz equations are given by

k2
1 =

k2
p + k2

s

2
+

√
k4
f +

(k2
p − k2

s)
2

4
, k2

2 =
k2
p + k2

s

2
−

√
k4
f +

(k2
p − k2

s)
2

4
, (10)

and

k2
3 = κ2k2

1k
2
2/k

2
p. (11)

Clearly, k2
1 is always positive, whereas k2

2 < 0 at low frequencies. At the cut-on, where k2 = 0, we have
k4
f = k2

sk
2
p and k2

1 = k2
p + k2

s . The first of these reduces to

ω =
√

12 cs/h, (12)

and the second then yields
k1h =

√
12 + 6κ2(1− ν). (13)

However, it is noted in [15, section 5.07] that Mindlin theory is only expected to give accurate results if
the wavelength is at least twice the plate thickness, which corresponds to k1 ≤ π/h. Since 1

2 > ν > −1
[21, section 2.4], it follows that k2 is imaginary for all frequencies that satisfy this bound. We take k2,
and therefore also k3, to be positive imaginary. Finally, we observe that k1 > ks, because (10) shows
that k2

1 − k2
s > 0. In view of the fact that

κ2k2
s

k2
p

=
E

µ(1− ν2)
=

2

1− ν
, (14)

this shows that |k3| > |k2|. We also have

A1 < 0, A2 < 0 and A1 −A2 > 0. (15)

3 The diffraction problem

Consider a Mindlin plate that extends throughout the (x, y) plane, for |z| ≤ h/2, with a rigid barrier
occupying the strip y = 0, x > 0, |z| ≤ h/2; see figure 1. The plane wave

wi(x, y) = eik1(x cos Θ+y sin Θ), 0 ≤ Θ ≤ π, (16)

propagates through the plate and is incident at angle Θ on the rigid barrier. This is a propagating
mode because k1 is real. There are no contributions to the incident field with wavenumber k2 or k3

because these are evanescent modes. We seek a scattered field such that all components of the total
displacement vanish on the rigid strip, that is

wt(x, 0) = ψt
x(x, 0) = ψt

y(x, 0) = 0, for x > 0. (17)

Here, the superscript ‘t’ indicates that the field includes contributions from both incident and scattered
waves, i.e.

wt = wi + w, ψt
x = ψi

x + ψx and ψt
y = ψi

y + ψy. (18)

The incident components of ψx and ψy can be obtained using (8) and (16); thus

ψi
x = iA1k1 cos Θeik1(x cos Θ+y sin Θ) and ψi

y = iA1k1 sin Θeik1(x cos Θ+y sin Θ). (19)

The scattered field must satisfy the Sommerfeld radiation condition, meaning there can be no contribu-
tions that are incoming toward y = 0 or that grow as |y| → ∞.

To ensure a unique solution, we also require a tip condition, which restricts the behaviour of the
field in the vicinity of the origin. An appropriate condition is that the strain energy density must be
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Figure 1: (a) Schematic diagram of the diffraction problem, showing the rigid strip and flexural plane
wave inside a plate of thickness h. (b) Cross-section of the plate, for fixed z.

integrable [11]. Now the plate strain energy function is given in [14, eqn. (18)], and using equation (12)
from the same paper, we can write it in the form

S =
D

2

[(
∂Ψx

∂x

)2

+

(
∂Ψy

∂y

)2

+ 2ν
∂Ψx

∂x

∂Ψy

∂y
+

1− ν
2

(
∂Ψx

∂y
+
∂Ψy

∂x

)2 ]
+
κ2µh

2

[(
∂W

∂x
+ Ψx

)2

+

(
∂W

∂y
+ Ψy

)2 ]
. (20)

Since Ψx, Ψy and W are displacements, each must remain finite throughout the plate. In particular,

as r =
√
x2 + y2 → 0, it must be the case that W = O(rη), with η ≥ 0 and similarly for Ψx and Ψy.

It then follows that r2S → 0 as r → 0. Consequently, a solution in which all displacements remain
bounded automatically has an integrable strain energy density. We can make some further deductions
by differentiating (8) to obtain

∂ψx
∂y
− ∂ψy

∂x
= ∇2φ = −k2

3φ (21)

and
∂ψx
∂x

+
∂ψy
∂y

= ∇2
(
A1w1 +A2w2

)
= −k2

sw + k2
1w1 + k2

2w2. (22)

Since ψx, ψy and w are known to be bounded (and w = w1 + w2), it follows immediately that φ(x, 0),
w1(x, 0) and w2(x, 0) can at most have integrable singularities at the origin (here ‘integrable’ refers to
integrability in one dimension, not over a two-dimensional region as in the discussion of strain energy
density, above). Consequently, wj and φ can be represented as Fourier integrals, which converge for
all x except possibly x = 0. However, it may be that derivatives of wj and φ do not have Fourier
representations that are valid on y = 0. This leads to a technicality relating to the order in which
limits are taken, which will be addressed in the next section.

For the remainder of the paper, it is convenient to work with dimensionless coordinates

x∗ = k1x and y∗ = k1y. (23)

The Helmholtz equations (6) become(
∂2

∂x2∗
+

∂2

∂y2∗
+ q2

j

)
wj = 0, j = 1, 2, and

(
∂2

∂x2∗
+

∂2

∂y2∗
+ q2

3

)
φ = 0, (24)
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where the dimensionless wavenumbers are given by

qj = kj/k1, j = 1, 2, 3. (25)

Here we have introduced new symbols because it will be convenient to refer to both dimensional and
nondimensional wavenumbers in places. The scaling (23) does not affect the boundary conditions
for the total field, because these are homogeneous. However, we must express the incident field in
nondimensional form; that is

wi(x, y) = ei(x∗ cos Θ+y∗ sin Θ). (26)

Henceforth, all coordinates are taken to be dimensionless, and we will omit the subscript ‘∗’.
Finally, we introduce the nondimensional frequency

ω∗ = hω/cs, (27)

where cs is given by (4). Now (14) can be used to express k2
p/k

2
s in terms of the Poisson ratio ν, and

similarly
k4
f/k

4
s = 6κ2(1− ν)/(ω∗)2, (28)

having used (5). The ratios k2
s/k

2
j and kj/k1 appearing in (9) and (25) can both be expressed in terms

of ω∗, ν and κ. The dimensional physical parameters E, h and ρ are all eliminated. To determine the
maximum value for ω∗, we rearrange (10) to form a quartic equation for kj and then set this to π/h
(recalling that k1 = π/h corresponds to a wavelength equal to twice the plate thickness; see section 2).
In this way, we obtain

(1− ν)κ2(ω∗)4 −
[
2π2 + (1− ν)κ2(π2 + 12)

]
(ω∗)2 + 2π4 = 0. (29)

The frequency at which k2 = 0 corresponds to ω∗ =
√

12, (see (12)), and here the left-hand side of (29)
is negative. Since it is positive at ω∗ = 0, it follows that there are two positive roots, one to the left
and one to the right of

√
12. The larger root corresponds to k2 = π/h and is unimportant.

4 Integral solutions to the Helmholtz equation

The components of the scattered field will now be represented as inverse Fourier transforms. These
representations can be derived by applying Fourier transforms in x to (6), solving the resulting
ordinary differential equations, taking inverse transforms and using the radiation condition to eliminate
unphysical terms. Technically, one must introduce damping in order to do this, for example by assuming
that cos Θ > 0 and writing q1 = 1 + iε, with ε > 0. Without damping, forward Fourier transforms will
not converge due to the presence of plane waves in the problem. The same procedure is often used
in solving the Sommerfeld half-plane problem (see e.g. [6, Section 2.2]), so we do not repeat it here.
Instead, we simply observe that the transform functions may be different in the upper and lower halves
of the (x, y) plane, so the appropriate form for wj is

wj(x, y) =


1

2π

∫
Γ
ŵuj (α)e−γj(α)|y|−iαx dα if y > 0,

1

2π

∫
Γ
ŵ`j(α)e−γj(α)|y|−iαx dα if y < 0,

(30)

where
γj(α) =

(
α2 − q2

j

)1/2
. (31)

The contour Γ is the real line traversed from left to right, with indentations around singularities,
including the branch points at α = ±1 (but not α = ±q2 or α = ±q3, since these are imaginary). To
satisfy the radiation condition, γj(α) must be nonnegative real or negative imaginary for real arguments,
in view of (3). Consequently, we take γj(0) = −iqj , and the contour Γ is indented to pass over the
branch point at α = −1 and under the branch point at α = 1; see figure 2a. Other indentations can be
applied later, as necessary.
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Figure 2: (a) The contour Γ in the α plane, with vertical branch cuts. The directions of the indentations
around the branch points are determined by the radiation condition. The appearance of a pole at
α = α0 and the direction of the indentation around this singularity are discussed in section 5. (b)
The adjusted branch cuts used in solving the matrix Wiener–Hopf equation. The shaded regions show
where L(α) differs from its value in the original configuration (a).

Now (30) satisfies the appropriate Helmholtz equation in (24), except possibly across y = 0. Since
the plate itself is continuous for x < 0, the Helmholtz equation must hold on the half-line y = 0, x < 0.
To enforce continuity and differentiability here, we can employ Jordan’s lemma [22, Theorem 5.6],
which shows that if y = 0 then the contour Γ can be deformed in different directions for x > 0 and
x < 0. Let D+ (D−) represent the region consisting of all points on or above (on or below) Γ, and
introduce the convention that a superscript ‘+’ or ‘−’ applied to a function denotes analyticity within
D+ or D−, respectively. In addition, any function f± has the property that

f±(α)/αn → 0 as α→∞ ∈ D±, for some n ∈ {0, 1, 2, . . .}. (32)

This relatively weak condition allows us to address the fact that the limit y → 0 does not commute
with all the integral representations employed below. To see how this works, suppose that

u(x, y) =
1

2π

∫
Γ
û(α)e−γj(α)|y|−iαx dα (33)

and
u(x, 0) = 0 for all x < 0. (34)

In the limit y → 0, it must be possible to evaluate the integral in (33) in such a way that no singularity
contributions are collected for x < 0; otherwise (34) could not be satisfied for all negative x. If the
limit commutes with the integral, applying Jordan’s lemma shows that (34) is satisfied if û(α) = û+(α)
and û(α)→ 0 as α→∞ ∈ D+. To relax the condition on the behaviour of û+(α) at infinity, we indent
the contour to pass above the origin and integrate in x to obtain∫

u(x, y) dx = C(y) +
i

2π
_

∫
Γ

û+(α)

α
e−γj(α)|y|−iαx dα, (35)

for an arbitrary function C. Then, if û+(α)/α→ 0 as α→∞ ∈ D+, Jordan’s lemma yields∫
u(x, 0) dx = C(0), (36)
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and differentiating shows that u(x, 0) = 0. The process of integrating and differentiating in x can be
applied repeatedly, and the end result is that u(x, 0) = 0 for x < 0 provided û+(α) satisfies (32).

Let us now establish continuity of the displacement components wj and their normal derivatives
across the half-line y = 0, x < 0. We have

wj(x, y)− wj(x,−y) =
1

2π

∫
Γ

[
ŵuj (α)− ŵ`j(α)

]
e−γj(α)|y|e−iαx dα, (37)

and in the limit y → 0 this must evaluate to zero for all negative x. Therefore we write

ŵuj (α)− ŵ`j(α) = 2T+
j (α), (38)

where the factor 2 is included for algebraic convenience. Similarly, for y > 0, we have

∂wj
∂y

(x, y)− ∂wj
∂y

(x,−y) = − 1

2π

∫
Γ
γj(α)

[
ŵuj (α) + ŵ`j(α)

]
e−γj(α)|y|−iαx dα, (39)

and continuity on y = 0, x < 0 is enforced by writing

γj(α)
[
ŵuj (α) + ŵ`j(α)

]
= 2S+

j (α). (40)

Solving (38) and (40) for ŵuj (α) and ŵ`j(α), we find that

ŵj(α; y) = S+
j (α)/γj(α) + sgn(y)T+

j (α). (41)

Equation (38) can also be derived by applying a Fourier transform to the left-hand side of (37) and
using [6, eqn. (1.74)]. However, attempting to obtain (40) in this way leads to technical problems,
because the forward transform of ∂wj/∂y may not exist for x = 0 (even with damping), due to the
possibility of a nonintegrable singularity at the origin in the (x, y) plane.

Since φ is subject to the same continuity conditions as wj , we now have the Fourier representations

wj(x, y) =
1

2π

∫
Γ

[
S+
j (α)

γj(α)
+ sgn(y)T+

j (α)

]
e−γj(α)|y|−iαx dα (42)

and

φ(x, y) =
1

2π

∫
Γ

[
Q+(α)

γ3(α)
+ sgn(y)R+(α)

]
e−γ3(α)|y|−iαx dα. (43)

To prevent nonintegrable singularities at the origin in the (x, y) plane, we require that S+
j (α)/γj(α),

T+
j (α), Q+(α)/γ3(α) and R+(α) all tend to zero as α → ∞ ∈ Γ. With these definitions, wj and φ

satisfy the Helmholtz equation (with nondimensional wavenumber q1, q2 or q3 as appropriate), the
Sommerfeld radiation condition and continuity conditions on y = 0, x < 0. It remains to apply the
boundary conditions on y = 0, x > 0 and to ensure that w, ψx and ψy are bounded, so that the tip
condition is fully satisfied.

5 Derivation of Wiener–Hopf equations

To determine the unknown functions in (42) and (43), we begin by applying the condition wt(x, 0) = 0,
for x > 0. The scattered contribution to w is obtained by simply adding w1 to w2, so

w(x, y) =
1

2π

∫
Γ

{
S+

1

γ1
e−γ1|y| +

S+
2

γ2
e−γ2|y| + sgn(y)

[
T+

1 e−γ1|y| + T+
2 e−γ2|y|

]}
e−iαx dα. (44)

Here we have omitted the argument α from the functions S+
j , T+

j and γj for brevity. To enable w to
satisfy the boundary condition, cancelling the incident wave on both sides of the strip whilst remaining
bounded, the antisymmetric term must disappear identically on y = 0. It is already known to be zero
for y = 0 and x < 0. For x > 0 we require T+

1 (α) + T+
2 (α) to satisfy (32) in the lower half-plane. The

only way to achieve this is
T+

1 (α) = −T+
2 (α) = T+(α), (45)
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say. To cancel the contribution from the incident wave (26) on the faces of the strip, we write

S+
1 (α)

γ1(α)
+
S+

2 (α)

γ2(α)
= w+(α) + w−(α), (46)

where
w+(α) = −i/(α− α0), with α0 = − cos Θ. (47)

The contour Γ must be indented to pass above the pole at α = α0, so that the residue is included when
y = 0 and x > 0. Note that the contribution to wj from the indentation around α0 can be expressed
in terms of the residue at the pole, according to [22, Corollary 5.8]. It does not violate the radiation
condition, despite the fact that Re[γ1(α)] < 0 on this section of the contour in cases where cos Θ < 0
so that α0 > 0.

Further equations are now obtained from Fourier representations for the components of the in-plane
rotation vector, ψx and ψy, defined in (8). Once again omitting the argument α from γj and the
unknown functions, we have

ψx(x, y) = − 1

2π

∫
Γ

[
iαA1

S+
1

γ1
e−γ1|y| + iαA2

S+
2

γ2
e−γ2|y| +R+γ3e−γ3|y|

]
e−iαx dα

− sgn y

2π

∫
Γ

[(
A1e−γ1|y| −A2e−γ2|y|

)
iαT+ +Q+e−γ3|y|

]
e−iαx dα (48)

and

ψy(x, y) =
1

2π

∫
Γ

[(
A2γ2e−γ2|y| −A1γ1e−γ1|y|

)
T+ + iα

Q+

γ3
e−γ3|y|

]
e−iαx dα

− sgn y

2π

∫
Γ

[
A1S

+
1 e−γ1|y| +A2S

+
2 e−γ2|y| − iαR+e−γ3|y|

]
e−iαx dα. (49)

To eliminate the antisymmetric terms on y = 0, we require that

Q+(α) = iα(A2 −A1)T+(α) and R+(α) =
A1S

+
1 (α) +A2S

+
2 (α)

iα
. (50)

Inserting the formula for R+(α) into (48) and setting y = 0, we find that

ψx(x, 0) =
i

2π

∫
Γ

[(
γ3

α
− α

γ1

)
A1S

+
1 +

(
γ3

α
− α

γ2

)
A2S

+
2

]
e−iαx dα. (51)

Then, by setting x > 0 and deforming the contour Γ into the lower half-plane, we obtain

i

(
γ3(α)

α
− α

γ1(α)

)
A1S

+
1 (α) + i

(
γ3(α)

α
− α

γ2(α)

)
A2S

+
2 (α) = ψ+

x (α) + ψ−x (α), (52)

where
ψ+
x (α) = A1 cos Θ/(α− α0). (53)

Now the residue from a pole at the origin does not depend on x, and therefore violates the boundary
condition unless Θ = π/2, in which case α0 = 0. However, if α0 = 0 then ψ+

x (α) ≡ 0. Consequently,
the functions S+

j must be such that the singularity at the origin in (52) is removable. We will return
to this matter in section 7. Finally, we must apply the boundary condition for ψy. From (49) and (50),
we have

ψy(x, 0) =
1

2π

∫
Γ

[(
A2γ2 −A1γ1

)
− (A2 −A1)

α2

γ3

]
T+e−iαx dα, (54)

meaning that

− T+(α)

γ3(α)
K(α) = ψ+

y (α) + ψ−y (α), (55)
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where
ψ+
y (α) = A1 sin Θ/(α− α0) (56)

and
K(α) = A1γ1(α)γ3(α)−A2γ2(α)γ3(α) + (A2 −A1)α2. (57)

Evidently, (55) is a scalar Wiener–Hopf equation; the factor −1/γ3(α) has been included so that

K(α)→ K∞ as α→∞ ∈ Γ, (58)

where K∞ > 0. A straightforward calculation shows that

K∞ =
[
A2(q2

2 + q2
3)−A1(1 + q2

3)
]
/2, (59)

after which we use (9) and (25) followed by (11) to obtain

K∞ =
k2

1 − k2
2

2k2
1

(
1 +

κ2k2
s

k2
p

)
. (60)

On the other hand, (52) must be used in conjunction with (46) to form a 2× 2 matrix Wiener–Hopf
equation. Thus,

L(α)

[
S+

1 (α)
S+

2 (α)

]
=

[
w+(α) + w−(α)
ψ+
x (α) + ψ−x (α)

]
, (61)

where

L(α) =


1

γ1(α)

1

γ2(α)

iA1

(
γ3(α)

α
− α

γ1(α)

)
iA2

(
γ3(α)

α
− α

γ2(α)

)
 . (62)

The determinant of this matrix kernel is given by

det L(α) = − iK(α)

αγ1(α)γ2(α)
(63)

and the inverse by

L−1(α) =
1

K(α)

[
γ1(α) 0

0 γ2(α)

] [
−A2

(
γ2(α)γ3(α)− α2

)
−iα

A1

(
γ1(α)γ3(α)− α2

)
iα

]
. (64)

6 Solution to the scalar Wiener–Hopf equation

To solve (55), we must factorise K(α)/γ3(α) into a product of functions that are analytic in D+ or
D−. The function γ3 can be factorised by inspection. Indeed,

γ+
j (α) =

(
−i(α+ qj)

)1/2
p

and γ−j (α) =
(
i(α− qj)

)1/2
p
, j = 1, 2, 3, (65)

where the subscript ‘p’ denotes a principal value. These particular factors have been chosen so that
γ+
j (α) = γ−j (−α). The branch cut of γ+

j is located on the line arg[α+ qj ] = −π/2, whereas the cut of

γ−j lies on the line arg[α− qj ] = π/2. To factorise K(α), we use Cauchy integral formulae. Thus, from
[6, section 1.3]

K±(α) =
√
K∞ exp

[
± 1

2πi

∫
Γ∓

log[K(z)/K∞]

z − α
dz

]
, (66)

provided K is zero-free on the paths of integration. These are identical to the original contour Γ
used in (30) except that Γ+ is indented to pass above the pole at z = α, and Γ− is indented to pass
below. In principle, (66) can be evaluated by quadrature, but in practice its convergence is rather
slow. A transformation into an integral suitable for numerical evaluation can be achieved by contour
deformation, though there are some technical difficulties associated with this. The procedure is carried
out in detail in the supplement.
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Having obtained K+ and K−, we rewrite (55) in the form

− T+(α)K+(α)

γ+
3 (α)

− γ−3 (α0)

K−(α0)
ψ+
y (α) =

γ−3 (α)ψ−y (α)

K−(α)
+

(
γ−3 (α)

K−(α)
− γ−3 (α0)

K−(α0)

)
ψ+
y (α). (67)

The left-hand side has no singularities in D+, and the right-hand side has no singularities in D−.
Both sides are analytic on Γ, and therefore both must represent the same entire function, E(α), say.
This can be determined as follows. First note that there can be no branch point at infinity, because
branch points never occur individually. Next, observe that the factors K±(α) are expressed in terms
of finite integrals in the supplement, and limits can be commuted with these; it follows from (S2)
that K±(α)→

√
K∞ as α→∞ in any direction. Finally, since the unknown functions satisfy (32), it

follows that there exists n0 ∈ N such that E(α)/αn0 → 0 as α→∞ in any direction. By the extended
form of Liouville’s theorem, E(α) must be a polynomial. However any polynomial other than the zero
function will cause T+(α) and ψ−(α) to violate the tip condition. Hence E(α) ≡ 0, so on returning to
(67) we obtain

T+(α) = − γ−3 (α0)γ+
3 (α)

K−(α0)K+(α)
ψ+
y (α) and ψ−y (α) =

(
γ−3 (α0)K−(α)

K−(α0)γ−3 (α)
− 1

)
ψ+
y (α). (68)

The function Q+(α) from (43) is now determined through its relationship to T+(α) (50). Note that
ψ+
y (α) + ψ−y (α) = O(α−3/2) for large |α|, meaning the integral in (54) remains convergent in the limit
x→ 0, and therefore ψy(x, y) is bounded, in accordance with the tip condition.

7 Solution to the matrix Wiener–Hopf equation

The matrix equation (61) can be solved numerically by first expressing the unknowns in terms of
functions that are analytic except for finite branch cuts. We begin by reconfiguring the complex
plane so that now α = 1 is joined to α = q2 by a straight branch cut and likewise α = −1 is joined
to α = −q2; see figure 2b. The cuts emanating from α = ±q2 and α = ±q3, which run along the
imaginary axis, are unchanged. Next, we observe that winding once around the three branch points at
−1, −q2 and −q3 causes the matrix kernel L(α) in (61) to change sign, but leaves the right-hand side
unchanged. Consequently, S+

1 and S+
2 must also change sign. There is some flexibility in the means

by which this is achieved; we might try introducing factors of γ+
j (α) for j = 1, 2 or 3 to either the

numerator or denominator of S+
j (α). Since the implicit quadrature method described in appendix A

allows unknown functions to possess square root singularities, a correct solution can be obtained even
if the wrong factor is introduced at this stage. However, we must ensure that the construction does not
create spurious poles. For example if we assume that an unknown function has a factor γ±j (α) in the
numerator when in fact this should appear in the denominator, then a correct solution would require
the implicit quadrature method to numerically generate a pole at α = ∓qj , which is not possible.

Now there can be no factor γ+
j (α) in the denominator of S+

j (α), because this would create a pole
at α = −qj in the Fourier representation for wj (42). The residue from such a pole does not depend on
y, and such a contribution to the scattered field is unphysical. Therefore we may write

S+
j (α) =

(
S̃+
j (α) +

cj
α− α0

)
γ+
j (α), (69)

where we have introduced the convention that a function with the accent ‘˜’ has no branch point at
infinity. The second term in the brackets has been included because there must be simple poles at
α = α0 on the left-hand side of (61), to match the poles of w+ and ψ+

x . The constants c1 and c2 can
be determined by equating residues; thus

L(α0)

[
γ+

1 (α0) 0
0 γ+

2 (α0)

] [
c1

c2

]
= −

[
i

A1α0

]
. (70)

Then, using the inverse matrix (64) yields

c1 =
iγ−1 (α0)

K(α0)

[
A2γ2(α0)γ3(α0) + (A1 −A2)α2

0

]
(71)
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and

c2 = − iA1

K(α0)
γ−2 (α0)γ1(α0)γ3(α0). (72)

We must also set conditions so that the singularity at the origin in the lower row of the Wiener–Hopf
equation (which comes from (52)) is removable. In general, imposing the condition

A1S̃
+
1 (0)γ+

1 (0) +A2S̃
+
2 (0)γ+

2 (0) =
A1c1γ

+
1 (0) +A2c2γ

+
2 (0)

α0
, (73)

removes the pole, but this cannot be used directly if α0 = 0. However, using (71) and (72), it is not
difficult to show that the numerator on the right-hand side of (73) vanishes in the limit α0 → 0. To
resolve the limit, we write

A1c1γ
+
1 (0) +A2c2γ

+
2 (0)

α0
=
b1 + b2α0 + b3α

2
0

K(α0)
+O(α3

0), (74)

and expand K(α0)c1 and K(α0)c2 about α0 = 0 using the series

γj(α0) = −iqj +
iα2

0

2qj
+O(α4

0) and γ−j (α0) = γ−j (0)P (α0/qj) +O(α4
0), (75)

where

P (z) = 1− z

2
− z2

8
− z3

16
. (76)

A simple calculation with a computer algebra package then shows that

b1 =
A1A2

2
q3(q2 − 1), b2 = A2

1 −A1A2

[
1 +

3q3

8

(
q2 −

1

q2

)]
(77)

and

b3 = − A2
1

2
+
A1A2

2

[
1 +

1

2

(
1− q2

q3
+ q3 −

q3

q2

)
+
q3

8

(
q2 −

1

q2
2

)]
. (78)

The right-hand side of (73) can now be evaluated for small |α0| using (74).
We must also eliminate the infinite branch cut in the upper half-plane from the Wiener–Hopf

equation (61). As it stands, the left-hand side changes sign when α winds once around the three
points 1, q2 and q3, and we can match this behaviour by introducing a factor of γ−j (α) to each row on
the right-hand side. To avoid the possibility of creating spurious poles, we place these factors in the
denominators, writing

w+(α) + w−(α) =
w̃−(α)/γ−1 (α)

α− α0
and ψ+

x (α) + ψ−x (α) =
ψ̃−x (α)/γ−2 (α)

α− α0
. (79)

The values of the unknown functions at α = α0 can be deduced by matching residues; thus

w̃−(α0) = −iγ−1 (α0) and ψ̃−x (α0) = −A1α0γ
−
2 (α0). (80)

Returning to (61), we now have

M(α)

[
(α− α0)S̃+

1 (α) + c1

(α− α0)S̃+
2 (α) + c2

]
=

[
w̃−(α)

ψ̃−x (α)

]
, (81)

where

M(α) =

[
γ−1 (α) 0

0 γ−2 (α)

]
L(α)

[
γ+

1 (α) 0
0 γ+

2 (α)

]
(82)

=

 1
γ−1 (α)

γ−2 (α)
iA1γ

−
2 (α)

αγ−1 (α)

(
γ1(α)γ3(α)− α2

) iA2

α

(
γ2(α)γ3(α)− α2

)
 . (83)
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Note that (63) and (82) immediately give the determinant as

detM(α) = γ1(α)γ(α)2 det L(α). = −iK(α)/α (84)

Next let us consider the behaviour of the functions S̃+
j (α), w̃−(α) and ψ̃−x (α) as α → ∞. Since

S+
j (α) satisfies (32) in D+, it follows from (69) and (81) that there exists n1 ∈ N such that w̃−(α)/αn1

and ψ̃−x (α)/αn1 both tend to zero as α→∞ ∈ D+. Since w̃−(α) and ψ̃−x (α) satisfy (32) in D−, neither
can possess an essential singularity at infinity. Finally, since there is no branch point at infinity, the
behaviour of these functions as α→∞ cannot depend on direction. From (44), (46) and (79), if w̃−(α)
is O(αn) as α→∞ then w will be unbounded in the vicinity of the origin, violating the tip condition.
We can deduce that ψ̃−x (α) remains bounded as α→∞ in the same way. Therefore we may write

w∞ = lim
α→∞

w̃−(α) and ψx,∞ = lim
α→∞

ψ̃−x (α). (85)

By similar reasoning, we can show that the behaviour of S̃+
j (α) as α→∞ is the same in every direction.

Consequently, S̃+
j (α) must remain bounded as α→∞, or else S+

j (α)/γj(α) is also unbounded, leading
to a nonintegrable singularity at the origin in wj (see (42)), which is forbidden. A constant contribution
to S̃+

1 (α) produces an unbounded term in w1, and if such a term exists it must cancel a corresponding
term in w2. Therefore it must be the case that as α→∞,

S̃+
1 (α)→ −S̃+

2 (α)→ S∞, (86)

say, so that the transverse displacement w = w1 +w2 is bounded. A relationship between ψx,∞ and S∞
can be determined by multiplying (61) by L−1, taking the limit α→∞ and retaining only leading-order
terms. In this way, we find that

ψx,∞ = iK∞S∞. (87)

Despite considerable effort, we have not been able to find a similar result for w∞.
The implicit quadrature method from appendix A can be applied to (81). The unknowns are

f+(α) =

[
S̃+

1 (α)

S̃+
2 (α)

]
, g−(α) =

[
w̃−(α)

ψ̃−x (α)

]
, f∞ =

[
S∞
−S∞

]
and g∞ =

[
w∞

iK∞S∞

]
(88)

and the coefficients are

A(α) = (α− α0)M(α), B(α) ≡
[
−1 0

0 −1

]
and C(α) = −M(α)

[
c1

c2

]
. (89)

Since B(α) is entire, the products B`B
−1
r disappear from (A117). Also, in view of (84), zeros of detM(α)

coincide with zeros of the scalar kernel K(α). Now K(α) is zero free on the primary sheet of the
Riemann surface if the cuts are those used for the factorisation of the scalar kernel in the supplement.
However, these cuts are not suitable for use with the implicit quadrature method because they pass
close to each other in the neighbourhood of the origin. Using straight line cuts from ±1 to ±q2 changes
the value of γ1 within the regions bounded by the triangles (0, 1, q2) and (0,−1,−q2), so that detA(α)
may have zeros on the right face of the cut in the lower half-plane, but not on the left face (compare
figure 2b to figure S1a in the supplement). Consequently, we use the alternative form of (A118), with
the subscripts ` and r interchanged, and ∆Fp replaced by −∆Fp. This equation can be simplified
using the fact that ArA

−1
` C` = Cr, which means the right-hand side is identically zero.

Of the various constants appearing in (88) and (89), c1 and c2 have already been determined, and
the presence of S∞ can be countered by including (73) in the system of equations, with the right-hand
side evaluated using (74) if necessary. The presence of the additional constant w∞ means the process of
matching values at quadrature nodes does not fully determine f+(α) and g−(α). To close the system,
we can equate the two sides of one row from the Wiener–Hopf equation at one additional point. A
natural choice is the first row at the origin. Hence, we require that

γ−2 (0)[c1 − α0S̃
+
1 (0)] + γ−1 (0)[c2 − α0S̃

+
2 (0)] = γ−2 (0)w̃−(0). (90)

The relations (80) will now be satisfied automatically, since f+(α) and g−(α) are uniquely determined.
These can be used as a check on the correctness of the numerical code, because they are not directly
included in the linear system formed from (A110). Some technical details of the implementation used
to solve (81) are provided in the supplement.
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8 The low frequency limit

In the limit ω → 0, Mindlin’s model reduces to the classical (Kirchhoff) plate theory, and we can
recover the results of [11]. Some differences in notation must be taken into account: γ1 and γ2 here are
represented by λ and γ, respectively in [11], and the opposite sign convention for Fourier integrals is
used (compare (42) to [11, eqn. (2.3)]). The leading-order behaviour at low frequencies is obtained
by setting ks = kp = 0, in which case the Helmholtz equations for w1 and w2 are equivalent to the
governing equation for a Kirchhoff plate. We then have k2

2 = −k2
1 from (10) so that q2 = i. Also, (11)

shows that |q3| → ∞ as ω → 0 because ks = O(ω) whereas k2 = O(
√
ω ). For the boundary conditions

we observe that A2 → A1 → −1 as ω → 0 (see (9)), so (8) reduces to

ψx = − ∂w

∂x
+
∂φ

∂y
and ψy = − ∂w

∂y
− ∂φ

∂x
. (91)

Since the total transverse displacement wt vanishes on the rigid strip, it follows immediately that
∂wt/∂x = 0 here as well. Therefore the leading-order contributions to ψt

x and ψt
y vanish on the rigid

strip if φ(x, y) = 0 for all x and all y and ∂wt/∂y = 0 for y = 0 and x > 0. Thus we retrieve the
conditions for Kirchhoff theory. The scalar Wiener–Hopf equation (55) reduces to

− T+(α)

γ2(α)
Kc(α) = ψ+

y (α) + ψ−y (α), with Kc(α) = γ2(α)
[
γ2(α)− γ1(α)

]
. (92)

Multiplying the numerator and denominator on the right-hand side by γ2(α) + γ1(α) recovers the
antisymmetric case considered in [11]. Note that Kc(α) has no branch point at infinity and that
Kc(α)→ 1 as α→∞. After setting A1 = A2 = −1 in the matrix kernel (62), (61) can be reduced to a
single equation by observing that the choice

S+
2 (α) = −S+

1 (α) (93)

eliminates terms involving γ3. The second row is then a scalar multiple of the first, and corresponds to
requiring that ∂wt/∂x = 0 on the rigid strip. The first row of (61) becomes

Lc(α)S+
1 (α) = w+(α) + w−(α) with Lc(α) =

1

γ1(α)
− 1

γ2(α)
. (94)

This is equivalent to the symmetric problem in [11]. A factorisation of Lc(α) can be obtained from
the factorisation of Kc(α) because [γ2(α)]2γ1(α)Lc(α) = Kc(α). Finally, note that using (93) in (46)
shows that

α2
[
w+(α) + w−(α)

]
→ 0 as α→∞ ∈ Γ, (95)

since Sj(α)/α→ 0 in this limit. This is to be expected — with φ absent from (8) and A2 = A1, the
physical requirement that ψx and ψy must be bounded reduces to requiring that first derivatives of
w are bounded, which is guaranteed by (95). Another consequence of (95) is that second derivatives
of w are O(rη) with η > −1 in the vicinity of the origin, so a product of two is integrable (in the
two-dimensional sense). This shows that the approach taken in [11], the effect of which is to require
that each individual term in the strain energy density is integrable, is correct. However, it should be
noted that the authors of [11] assume slightly more than is actually necessary (see their equations
(2.6)–(2.8)): the strain energy density certainly is integrable if η ≥ −1/2 (and in fact the final results
show that η = −1/2), but η > −1 is a sufficient condition.

9 The far field displacement

To determine the far field pattern, we begin by calculating contributions from the pole at α = α0 in
the integral representation (42). These are not present at all locations, but the reflection coefficients
will appear in the analysis below. Now (69) shows that the residue of S+

j is cjγ
+
j (α0), and the values

for cj are given by (71)–(72). From (68) and (56), we obtain

Res
α=α0

T+(α) = −iA1 γ1(α0)γ3(α0)/K(α0), (96)
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having used the fact that sin Θ = iγ1(α0). For y > 0, the residue contribution to w1 cancels the incident
field, whereas the contribution to w2 evaluates to zero, meaning the singularity at α = α0 is removable
in this case. For y < 0, the residues represent the reflected field. We find that

wr
j = Rj eix cos Θ+yγj(cos Θ), j = 1, 2, (97)

with amplitude coefficients given by

R1 = −K(cos Θ)/K(cos Θ) and R2 = −2i Im[K(cos Θ)]/K(cos Θ), (98)

where the overbar denotes a complex conjugate. Note that |R1| = 1, which is to be expected on
physical grounds. Also, the total contribution from the residue terms and the incident field satisfies
the boundary conditions on the rigid strip, so R1 +R2 + 1 = 0.

Next, we write (x, y) = r(cos θ, sin θ) and apply the method of steepest descents [23, Chapter 3] to
(42) for large r, with the branch cuts returned to their original configuration from figure 2a. For the
integral with γj in the exponent, we find a simple saddle point at α = −qj cos θ, and

γj(−qj cos θ)| sin θ| − iqj cos2 θ = −iqj . (99)

The effect of deforming the contour of integration onto the steepest descents paths is considered in the
supplement. It turns out that w2 does not contribute to the diffracted field at leading order, except
near the boundary and then only at grazing incidence (Θ ≈ 0). For w1, a basic saddle point analysis
(ignoring the pole at α = α0) produces the approximation

wd
1(r, θ,Θ) =

eireiπ/4

√
2πr

d(θ,Θ) +O(r−3/2), (100)

where the diffraction coefficient is given by

d(θ,Θ) = S+
1 (− cos θ)− i sin θ T+(− cos θ). (101)

Using (68), (56), (69) and (71) this becomes

d(θ,Θ) = S̃+
1 (− cos θ)γ−1 (cos θ)− i

2s−s+

[
A1γ

+
3 (cos Θ)γ−3 (cos θ)

K+(cos Θ)K−(cos θ)
sin Θ sin θ

+
γ+

1 (cos Θ)γ−1 (cos θ)

K(cos Θ)

[
A2γ2(cos Θ)γ3(cos Θ) + (A1 −A2) cos2 Θ

]]
, (102)

where
s± = sin

(
Θ
2 ±

θ
2

)
, (103)

and we have simplified using the fact that γ+
j (−α) = γ−j (α) and likewise for K±(α). It follows from

the reduced matrix Wiener–Hopf equation (81) and (84) that S̃+
1 (α) remains bounded in the limit

α→ −1, provided α0 6= −1. Consequently, d(0,Θ) = d(2π,Θ) = 0, provided Θ 6= 0.
The approximation (100) breaks down in the vicinity of the shadow and reflection boundaries at

θ = Θ and θ = 2π −Θ, respectively. Mathematically, this is due to the pole at α = α0; physically it
corresponds to the Fresnel (or penumbra) regions [4, Chapter 5], across which the contribution from
either the incident or reflected field rapidly but continuously becomes visible as θ is increased. A
uniform approximation which takes the pole into account and remains valid in the Fresnel regions
follows immediately from [24, eqn. (2.25)]. Thus,

wt
1(r, θ,Θ) =

eir

2

{
eiπ/4

√
2πr

[
2d(θ,Θ)− 1

s−
− R1

s+

]
+ erfs

(√
2r eiπ/4s−

)
+R1 erfs

(√
2r eiπ/4s+

)}
+O(r−3/2), (104)
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where the term in square brackets remains bounded in the limits s± → 0 and erfs(·) represents the
scaled complex error function (usually denoted by w); that is

erfs(z) = e−z
2

erfc(−iz). (105)

Note that (104) is an approximation to the total field, whereas (100) includes the diffracted component
only and also that the terms in (104) involving scaled complex error functions are exact solutions to
the Helmholtz equation. If s+ or s− is negative, a plane wave term can be extracted from (104) using
the identity [25, eqn. (7.4.3)]

erfs(z) = 2e−z
2 − erfs(−z). (106)

A uniform approximation for the diffracted field only is therefore given by

wd
1(r, θ,Θ) =

eir

2

{
eiπ/4

√
2πr

[
2d(θ,Θ)− 1

s−
− R1

s+

]
+ sgn(s−) erfs

(√
2r eiπ/4|s−|

)
+R1 sgn(s+) erfs

(√
2r eiπ/4|s+|

)}
+O(r−3/2). (107)

If neither |s+| nor |s−| is close to zero, the asymptotic formula formula [25, eqn. (7.12.1)]

erfs(z) ∼ i

z
√
π
, − π

4
< arg z <

5π

4
(108)

can be used to retrieve (100) from (107). In the special case Θ = 0 (head-on incidence), one should
always take sgn(s−) = −1 and sgn(s+) = 1, including at θ = 0 and θ = 2π. This represents the fact
that the incident field is present everywhere whereas there is no reflected field at all. Therefore, in
order to obtain the diffracted component of the field in this case, (106) must always be applied to the
first error function in (104), but never the second. Another way to view this is that if Θ is small but
nonzero, then s− > 0 in the limit θ → 0, but if Θ = 0 exactly zero then s− < 0 in the same limit (and
similarly for s+ as θ → 2π).

Let us now consider the behaviour of the uniform approximation on the rigid strip. For nonzero Θ,
setting θ = 0 in (104), we find that

wt
1(r, 0,Θ) = 2A1 cos

(
Θ
2

)γ3(cos Θ)

K(cos Θ)
eir

{
e−iπ/4

√
2πr

+ i sin
(

Θ
2

)
erfs
(√

2r eiπ/4 sin Θ
2

)}
+O(r−3/2), (109)

having used (98) and (57) to write the reflection coefficient explicitly. If Θ is such that (108) can
be applied then the O(r−1/2) terms cancel. However, this fails at grazing incidence. We can obtain
a similar result for θ = 2π; the main difference in that case is the extra contribution −R2eir cos Θ,
which cancels the residue term from w2. In summary, the uniform approximation is bounded, correctly
includes the incident and reflected waves, and also the Fresnel type terms that capture the behaviour
of the field as the shadow and reflection boundaries are crossed. It also includes the correct O(r−1/2)
term except near the boundary at grazing incidence, when the rigid strip lies inside the Fresnel regions.
A conflicting remark concerning the Kirchhoff analogue of (104) between equations (3.5) and (3.6) of
[24] is incorrect: the O(r−1/2) term does not vanish on the boundary if Θ = 0; one cannot set c = 1
and θ = 0 simultaneously in (2.21) of [24].

Figures 3–5 show how the diffracted field varies with θ. The parameter r, representing the
nondimensional distance from the tip of the rigid strip to the observer (i.e. the actual distance
multiplied by k1; see (23)) is fixed at 100. The solid curves show the results for Kirchhoff theory. The
only variables remaining in this model are θ and Θ. The length scaling (23) removes k1, and there is
no dependence on the Poisson ratio because the boundary conditions reduce to wt = ∂wt/∂y = 0 (see
section 8). For the Mindlin model, the Poisson ratio used is ν = 0.26, which is the approximate value for
steel, and the shear correction factor κ is set at π/

√
12, which is one possible value suggested by Mindlin

[14] (see also [18, section 8.3.1]). According to (29), the frequency at which k1 = π/h corresponds
to ω∗ ≈ 2.59. Note that the symbols on the curves for ω∗ = 0.5, 1.0 and 2.5 are an aid to visual
distinction only; the actual number of data points used to create each curve is approximately 1000.
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Figure 3: Modulus and phase of the uniform approximation to the far field diffraction pattern, with
Θ = π/4. The nondimensional distance from the origin to the observation point is fixed at 100.
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Figure 4: Modulus and phase of the uniform approximation to the far field diffraction pattern, with
Θ = 0. The nondimensional distance from the origin to the observation point is fixed at 100.

In figure 3, the angle of incidence is π/4, and the peaks in the diffracted field at the shadow and
reflection boundaries are clearly evident. The modulus of wd

1 has only small discontinuities at these
points because erfs(0) = 1, whereas all other terms in (107) are O(1/

√
r). For the same reason, the

magnitude of the discontinuities in the argument of e−irwd
1 is approximately π. In the vicinity of

the shadow and reflection boundaries, the results from Kirchhoff theory are in close agreement with
Mindlin theory, and there is very little variation as the frequency is increased. This is because the
first error function term in (107) is determined by the incident field alone, and does not depend on ω∗.
The second error function term depends on ω∗ through the reflection coefficient R1, which always has
unit modulus (see (98)). For Kirchhoff theory, the phase of R1 is 2π/3. For Mindlin theory the phase
increases with ω∗; the value for ω∗ = 2.5 is approximately 0.927π. In the region where the incident
field is present but the reflected field is not (i.e. between the two peaks), the strength of the diffracted
field decreases as ω∗ is increased, except near the shadow boundary, where it initially increases. As
expected, the overall behaviour exhibited at higher frequencies is quite different to the predictions from
Kirchhoff theory.

Figure 4 shows the leading order diffracted field at head-on incidence, i.e. Θ = 0. In this case,
e−irwd

1 ≈ −1 for θ = 0 and θ = 2π because the diffracted field cancels the incident wave on the faces of
the strip; there is no specular reflection. Outside the Fresnel regions, the decrease in the diffracted
field as ω∗ increases is again visible. Finally, figure 5 shows the diffracted field at normal incidence,
that is Θ = π/2. In this case, the space between the Fresnel regions is narrow, and there is relatively
little variation of |wd

1 | with frequency. Consequently, Kirchhoff theory predicts the magnitude of the
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Figure 5: Modulus and phase of the uniform approximation to the far field diffraction pattern, with
Θ = π/2. The nondimensional distance from the origin to the observation point is fixed at 100.

diffracted field rather well in this case, though there are significant deviations in the phase.

10 Concluding remarks

The effect of diffraction by a rigid strip in a plate modelled by Mindlin theory has been determined,
and the results compared to predictions from the simpler Kirchhoff theory. As one might expect,
Kirchhoff theory performs well at low frequencies, but is inaccurate at higher frequencies. Diffraction
by a crack will be the subject of a future paper. This is a more challenging problem because the field
excites motion along the edges of the crack, and the boundary conditions (corresponding to zero shear
force, bending moment and twisting moment) are much more complicated than those for a rigid strip
(zero displacement). In addition, diffraction at a crack tip excites the localised ‘edge waves’ discovered
in [19]. These propagate along the faces of the crack and decay exponentially in the perpendicular
direction; their existence gives rise to poles in the Wiener–Hopf kernel [11, 12]. An outline solution to
the crack diffraction problem is contained in [9], but no results are presented.2

The implicit quadrature method used to solve the matrix Wiener–Hopf equation has a number
of attractive features. It directly determines the unknown functions, without the need for a kernel
factorisation, and can be applied to complicated equations with no particular difficulty. In those cases
where a matrix Wiener–Hopf equation can be solved ‘exactly,’ evaluation of the kernel factors typically
requires one or more quadrature calculations at each point in the complex plane (see e.g. [17]). This is
similar to the case of scalar factorisations such as (66). The implicit quadrature method generates
Cauchy integral representations for the unknown functions, and these can be used throughout the
complex plane. Evaluating one of these representations at a point requires a quadrature calculation.
Thus the added cost of the implicit quadrature method amounts to the formation and solution of the
relevant linear system of algebraic equations. This is a small price to pay for the ability to solve matrix
Wiener–Hopf equations of arbitrary complexity, especially in view of the fact that only one such system
is required for each set of parameters (frequency, angle of incidence, Poisson ratio, etc.). Further
improvements to the implicit quadrature method may be possible by designing a more sophisticated
algorithm to position the nodes.
The author would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge,
for support and hospitality during the programme Bringing pure and applied analysis together via the
Wiener-Hopf technique, its generalisations and applications where work on this paper was undertaken.
This work was supported by EPSRC grant no EP/R014604/1.

2The outline solution ends with a reference to an unpublished article; see earlier footnote on page 1.
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A Implicit quadrature method

Consider a matrix Wiener–Hopf equation of the form

A(α)f+(α) + B(α)g−(α) = C(α), (A110)

where the only singularities of the unknown vector functions f+(α) and g−(α) are finite branch cuts
in the lower and upper half-plane, respectively. Let Ω− and Ω+ be anticlockwise oriented contours
encircling the branch cuts in the lower and upper half-planes, respectively; see figure A1. Suppose that
f+(α)→ f∞ and g−(α)→ g∞ as α→∞ (it is possible to allow unbounded behaviour by replacing f∞
and g∞ with entire functions, but this is not necessary here). Then, if α is a point outside Ω±, we
have

f+(α) = f∞ −
1

2πi

∫
Ω−

f+(z)

z − α
dz and g−(α) = g∞ −

1

2πi

∫
Ω+

g(z)

z − α
dz. (A111)

These formulae can be verified by expanding the integration contours, collecting the residues at z = α,
writing z = Meiθ and then letting M →∞. The coefficients A(α) and B(α) are assumed to be matrices,
though one may in fact be scalar, leading to some slight simplifications. At this point, the shapes of
Ω+ and Ω− are somewhat arbitrary, but it turns out to be convenient to wrap the contours tightly
around the branch cuts (see figure A1). For simplicity in the text below, we will present the details of
the method for the case where there are two cuts: one each in the upper and lower half-planes, both
with identifiable left and right faces. Subscripts ‘`’ and ‘r’ will be used to denote function values on
the faces, and we will also use a subscript ‘s’ to mean either ‘`’ or ‘r’. For a horizontal cut one may
replace right and left with upper and lower, respectively. The method generalises immediately to cases
with multiple cuts, though care must be taken to determine on which face of a cut (if any) a zero of
detA(α) or detB(α) may occur.

Suppose now that the integrals in (A111) are evaluated by quadrature, using nodes z+
j and z−j ,

distributed along the branch cuts in the upper and lower half-planes, respectively. Then

f+(α) = f∞ −
1

2πi

n−∑
j=1

V −j (Fj,r − Fj,`)

z−j − α
and g−(α) = g∞ −

1

2πi

n+∑
j=1

V +
j (Gj,r −Gj,`)

z+
j − α

, (A112)

where V ±j are the quadrature weights, and

Fj,s = f+
s (z−j ) and Gj,s = g−s (z+

j ). (A113)

We have allowed different numbers of nodes in the upper and lower half-planes in (A112) because the
functions f+(α) and g−(α) may be rather different in nature. Evaluating (A110) at z = z+

p yields

Bs(z
+
p )Gp,s + As(z

+
p )

[
f∞ −

1

2πi

n−∑
j=1

V −j
(
Fj,r − Fj,`

)
z−j − z

+
p

]
= Cs(z

+
p ), p = 1, . . . , n+, (A114)

whereas evaluating at z = z−p yields

As(z
−
p )Fp,s + Bs(z

−
p )

[
g∞ −

1

2πi

n+∑
j=1

V +
j

(
Gj,r −Gj,`

)
z+
j − z

−
p

]
= Cs(z

−
p ), p = 1, . . . , n−. (A115)
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Figure A1: The contour Ω+ encircling the branch cuts in the upper half-plane, and the ‘collapsed’
version, wrapped tightly around the branch cuts.

Each of these provides two equations (s = ` and s = r) for every row in the Wiener–Hopf equation.
Further simplifications can often be achieved by exploiting the fact that computing f+(α) and g−(α)
using (A112) requires only the differences between the right and left values, and not the values
themselves. Therefore we define new unknowns

∆Fj = V −j (Fj,r − Fj,`) and ∆Gj = V +
j (Gj,r −Gj,`), (A116)

and solve for these directly. Provided detB(α) has no zeros on the right face of the cut in the upper
half-plane, we may multiply the ‘r’ version of (A114) by B`(z

+
p )B−1

r (z+
p ) and then subtract the ‘`’

version to obtain

B`(z
+
p )∆Gp + V +

p

[
B`(z

+
p )B−1

r (z+
p )Ar(z

+
p )− A`(z

+
p )
][

f∞ −
1

2πi

n−∑
j=1

∆Fj

z−j − z
+
p

]
= V +

p

[
B`(z

+
p )B−1

r (z+
p )Cr(z

+
p )−C`(z

+
p )
]
, p = 1, 2, . . . , n+. (A117)

If instead detB(α) has no zeros on the left face of the cut, then we obtain the same equation but with
∆Gp replaced by −∆Gp and ` and r interchanged throughout. If B`(α) and Br(α) are commutative
(e.g. if B(α) is a diagonal matrix), then the constraint regarding zeros can be dropped; in this case
(A117) can be formally multiplied by Br(z

−
p ) and simplified accordingly. The second part of the linear

system (A115) can be treated in exactly the same way. Provided detA(α) is zero free on the right face
of the branch cut in the lower half-plane, we find that

A`(z
−
p )∆Fp + V −p

[
A`(z

−
p )A−1

r (z−p )Br(z
−
p )− B`(z

−
p )
][

g∞ −
1

2πi

n+∑
j=1

∆Gj

z+
j − z

−
p

]
= V −p

[
A`(z

−
p )A−1

r (z−p )Cr(z
−
p )−C`(z

−
p )
]
, p = 1, 2, . . . , n−. (A118)

The indices ` and r can be interchanged provided ∆Fp is replaced by −∆Fp; this produces an alternative
form of (A118) which is valid if detA(α) has no zeros on the left face of the cut. The constraint on
zeros can be dropped following multiplication by Ar(z

−
p ) if A`(α) and Ar(α) are commutative.

The system formed from (A117) and (A118) (or (A114) and (A115)) can be solved numerically,
provided additional information is included to account for the presence of f∞ and g∞. It may be
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possible to obtain values for these constants directly; otherwise augmenting equations (such as (73))
can be included in the linear system. If no further information regarding f+(α) and g−(α) can be
obtained analytically, we choose a point β (or several points βp) at which both f+ and g− can be
computed by quadrature (i.e. β must not lie on or near the faces of the branch cuts) and close the
system by enforcing equality in (A110) at this point. That is,

A(β)

[
f∞ −

1

2πi

n−∑
j=1

∆Fj

z−j − β

]
+ B(β)

[
g∞ −

1

2πi

n+∑
j=1

∆Gj

z+
j − β

]
= C(β). (A119)

A final issue concerns the quadrature to be used when evaluating the integrals in (A111). The
locations of the nodes and the values of the weights must be adjusted to account for the possibility of
square root singularities on the path of integration. A simple approach is to divide each branch cut
into line sections in such a way that a singularity can occur at one end of each line section at most.
Suppose that L is a straight line section along the right face of a branch cut, starting at the point a
and ending at b, and consider the integral

J =

∫
L

[
hr(z)− h`(z)

]
dz, (A120)

where h(z) has a square root singularity at z = a. Then we simply write s2 = z − a to obtain

J = 2

∫ (b−a)1/2

0

[
hr(s

2 + a)− h`(s2 + a)
]
sds. (A121)

Since the integrand is an odd function of s, the sign taken for (b− a)1/2 is unimportant. If we now
apply a quadrature in the s plane, using nodes sj and weights Vj , we obtain

J ≈ 2
n∑
j=1

sjVj
[
hr(s

2
j + a)− h`(s2

j + a)
]
. (A122)

Thus the nodes in the z plane are given by s2
j + a, and the weights by 2sjVj . By applying quadrature

in this way, the effect of the singularity at z = a is eliminated, because the function sh(s2 + a) is
analytic at s = 0. The situation in which the singularity appears at z = b can be handled in the
same way. In the context of numerically solving Wiener–Hopf equations, these transformations are
very convenient because the weights are ‘absorbed’ into the unknown coefficients via (A116). If the
integrand is unbounded in the vicinity of a square root singularity, the coefficients ∆Fj and ∆Gj

remain bounded due to the influence of the factor sj .
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S1 Factorisation of the scalar kernel

To transform the kernel factorisation integral (66) into a form useful for numerical computation, it
is necessary to deform the paths of integration. Zeros of K(α) could interfere with this process, but
we can rule these out as follows. First, from (57), we observe that K(0) = −|q3|(A2|q2|+ iA1), which
is clearly nonzero. Hence there exists ε > 0 such that K(α) 6= 0 for |α| < ε. Next, we reposition
the branch cuts emanating from ±1 to run along the real and imaginary axes, joining 1 to q2 and
−1 to −q2. Near the origin, we use curved indentations that lie inside the circle |α| < ε. Since the
multivalued components of K(α) are the products γ1γ3 and γ2γ3, neither of which has a branch point
at infinity, the cuts above q3 and below −q3 now disappear, and the new configuration is as shown in
figure S1a. The paths of integration (Γ± in (66)) can pass between the curved sections of the cuts, so
that their orientation with respect to all of the branch points is preserved.

We may now use the principle of the argument [1, section 7.3] to prove that K is zero-free on the
primary sheet of the Riemann surface. We begin by observing that (58) now holds as α→∞ in any
direction, because we are using finite branch cuts. Consequently, log[K(α)] will return to its original
value if α traverses a circle of radius N , centred at the origin, provided N is sufficiently large. To
complete the proof, it is sufficient to show that K(α) cannot be real and negative on the faces of the
branch cuts. It then follows log[K(α)] remains unchanged after α encircles the branch cuts, because
there can be no winding around the origin in the K plane. For α = v and α = iq2v with −1 < v < 1,
γ1 is strictly negative imaginary whereas all other terms in K are real. Therefore K(α) cannot be
real here. The remaining sections of the cuts can be handled in a similar way, making use of the
inequalities (15).

Next, we observe that K is an even function, so it follows from (66) that K+(α) = K−(−α). Since
we also have the relationship K(α) = K+(α)K−(α), it is sufficient to determine K−(α) in the region
Re[α] < − Im[α]. To achieve this, we deform the contour Γ+ upwards. Letting ε→ 0 leaves an integral
along the faces of the ‘L’ shaped cut in the upper half-plane, which we denote by Γ′. This consists of
straight lines from α = 1 to the origin and then to α = q3 (see figure S1b). Then (66) becomes

K−(α) =
√
K∞ exp

[
1

2πi

∫
Γ′

{
log

(
K`(z)

K∞

)
− log

(
Kr(z)

K∞

)}
dz

z − α

]
, (S1)

where the subscripts ‘`’ and ‘r’ refer to evaluation on the left and right faces of the cut, respectively.
Note that Γ+ in (66) is traversed from left to right, and passes below the ‘L’ shaped cut, whereas Γ′ is
traversed from right to left, so that a factor −1 is introduced to the term involving K`. Since K(z)/K∞
cannot be negative real on the faces of the cuts, we may take principal values for both logarithms. On
the left face of the cut, values of the functions γj are unchanged from the original configuration in
figure 2a in the main body of the paper. Therefore γ1γ3 is negative imaginary, whereas γ2γ3 may be
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Figure S1: (a) Adjusted branch cuts chosen such that scalar kernel is zero free. The shaded rectangular
regions show where K(α) differs from its value in the original configuration in figure 2a in the main
body of the paper. The radius of the dark circle (ε) is such that K(α) 6= 0 for |α| < ε. (b) The contour
Γ′ used in computing the scalar kernel factors. The variable α lies in the shaded grey region.

positive real or negative imaginary. On the right face of the cut, the real terms are unchanged but the
imaginary terms switch sign, so that Kr(z) = K`(z). Therefore,

K−(α) =
√
K∞ exp

[
1

π

∫
Γ′

arg[K`(z)]
dz

z − α

]
, (S2)

where the argument is a principal value.
Finally, we address the fact that α may lie close to the integration contour. Since there are no

branch points at α = ±q3 in the Kirchhoff problem (see section 8), we also cause the contribution
from the path joining q2 to q3 to disappear as ω → 0. We begin by splitting Γ′ into two parts: Γ′1
joining α = 1 to the origin and then to q2, and Γ′2 joining q2 to q3. Now (S2) is only used for values of
α on or to the left of the line Re[α] = − Im[α]. Therefore, for the purpose of numerical integration, α
may lie close to Γ′1 but not to Γ′2. Also, since Aj → −1 as ω → 0, it follows from (57) that K`(z), the
value of the scalar kernel on the left face of the branch cut, is positive imaginary for z ∈ Γ′2 in the low
frequency limit. Next, we write∫

Γ′
arg[K`(z)]

dz

z − α =

∫
Γ′
1

(
arg[K`(z)]− arg[K(α)]

) dz

z − α

+

∫
Γ′
2

(
arg[K`(z)]−

π

2

) dz

z − α +H(α), (S3)

where

H(α) = arg[K(α)]

∫
Γ′
1

dz

z − α +
π

2

∫
Γ′
2

dz

z − α (S4)

= arg[K(α)] log

(
α− q2

α− 1

)
+
π

2
log

(
α− q3

α− q2

)
. (S5)

Since the variation in the argument of z−α cannot exceed π as z traverses either contour in (S4), both
logarithms in the last expression are principal values. The remaining integrals in (S3) are suitable for
numerical evaluation. The implementation used to produce the numerical results in the main body of
the paper employs mappings as in (A120)–(A122) to remove end-point square root singularities, and
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applies the seven point Gaussian quadrature rule with adaptive refinement. In this way, the kernel
factors are computed to near machine precision. Note that the second integral vanishes from (S3) as
ω → 0, and the last term produces a factor (α− q3)1/2(α− q2)−1/2 in K−(α) so that the branch points
at ±q3 disappear from the Wiener–Hopf equation in this limit.

S2 Implementation of the implicit quadrature method

The main obstacle to numerically evaluating the solution to the matrix problem discussed in section 7
of the main paper relates to the location of nodes for use in the implicit quadrature scheme. Choosing
the nodes a priori leads to a simple implementation but does not control errors in an efficient way.
Instead, we use an adaptive scheme that works as follows. First, the integration contours are each
divided into four sections, using the vertices

±1, ±(1 + q2)/2, ±q2, ±(q2 + q3)/2 and ± q3. (S6)

The end-point singularities are removed using (A120)–(A122). A small set of nodes is then generated
by applying a single step of a quadrature rule to each integral in the s plane. A second set of nodes is
generated by applying the same quadrature rule in two equal steps. The resulting linear systems are
solved, and contributions to S̃+

j (α), w̃−(α) and ψ̃−x (α) from each section are calculated for a set of
test points. Errors in the initial estimates can be computed using the second set of nodes, since these
produce more accurate results. Nodes on subintervals for which the results meet a specified tolerance
are retained, and subintervals on which the errors are too large are bisected again. This process is
repeated until all results satisfy the tolerance condition. Using code written in Fortran 2003, running
at double precision and configured to use the seven point Gaussian rule, a linear system sufficient to
provide results accurate to ten significant figures was formed and solved in under 30 seconds on a six
core machine running at 3GHz. Typically the number of nodes required was around one thousand.
Almost all of the CPU time was used in solving the necessary linear systems; the CPU time used by
other components of the implementation is very small in comparison.

Having applied the implicit quadrature method, the functions S̃+
j (α), w̃−(α) and ψ̃−x (α) can be

evaluated using their Cauchy integral representations. A useful test at this stage is to compute both
sides of the Wiener–Hopf equation (81) and compare their values. We can also make use of (81) to
avoid the situation in which quadrature becomes inaccurate due to branch cut proximity. The strategy
is similar to the use of the identity K+(α) = K−(−α) in the scalar problem, above. We begin by
dividing the plane across the line L : Imα = −|q2|Reα. On and to the right of L, we compute S̃+

j (α)

directly by quadrature. To the left of the line L, we compute w̃−(α) and ψ̃−x (α) by quadrature. It
follows from (84) that the removable singularity disappears from (81) upon multiplication by M−1.
Therefore we may compute S̃+

j (α) from w̃−(α) and ψ̃−x (α), including near the origin. If α ≈ α0 then

(viewed as an equation for determining S̃+
j (α)), (81) is subject to cancellation. In most cases this issue

can be avoided by simply computing S̃+
j (α) directly by quadrature. Both methods for computing

S̃+
j (α) may be inaccurate if α0 ≈ −1 and α ≈ α0 simultaneously. In practice this is unimportant

because the cancellation in (81) leads to a magnification of error roughly proportional to (α− α0)−1,
which does not cause all precision to be lost. This issue can be avoided entirely by using (79) and (64)
in (61) to obtain

S+
1 (α) =

−γ+
1 (α)

(α− α0)K(α)

[
A2

(
γ2(α)γ3(α)− α2

)
w̃−(α) +

iαγ−1 (α)ψ̃−x (α)

γ−2 (α)

]
, (S7)

after which the diffraction coefficient can be evaluated using (101).

S3 Steepest descents analysis

To apply the method of steepest descents to the diffraction integral (42), it is necessary to consider the
effects that singularities may have on the process of deforming the integration contour. Writing

γj(α)| sin θ|+ iα cos θ = −iqj + v, v ≥ 0, (S8)
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Figure S2: Steepest descents paths for (a) w1 (b) w2. The dotted lines show the diversions around
branch points needed for certain observation angles θ. Note that the descent path for w2 in the case
θ = π/2 is simply the real line.

we find that the descent paths can be parametrised via

α = − cos θ(qj + iv)± sin θ(v2 − 2iqjv)1/2, v ≥ 0. (S9)

First consider the case j = 1, shown in figure S2a. If x < 0 so that cos θ < 0, the steepest descents path
lies predominantly in the upper half-plane, and there are no branch points to obstruct the deformation
process (as sin θ → 0 the path wraps tightly around the cut emanating from α = q1 = 1). The pole at
α = α0 may lie to the right of the saddle point if cos Θ < 0, in which case its residue must be collected,
but this is addressed in the main body of the article. If x > 0, then a diversion is required if the
descent path crosses the imaginary axis at or below −q2, in order to retain the correct orientation with
respect to the branch point. Writing α = iu with u > 0 in (S9) shows that this occurs if cot θ > |q2|.
The largest contribution comes from the branch point itself, and here the real part of the exponent is

r|q2| cos θ ≥ r |q2|2√
1 + |q2|2

. (S10)

Consequently, this contribution is exponentially small unless q2 ≈ 0, which occurs at high frequencies,
such that the Mindlin model itself breaks down (see section 2). Therefore we may disregard the
contribution from this diversion; the most significant contributions to w1 are due to the pole and the
saddle.

The case j = 2 in (S9), shown in figure S2b, is similar though slightly more complicated. Since q2

is positive imaginary, (99) shows that the integrand is exponentially small at the saddle point. For
x < 0, the steepest descents path lies in the upper half-plane. Since the only singularity in the upper
half-plane is the branch point at α = q2, there are no obstructions to deforming the integration contour
onto the steepest descents path, and we may conclude that w2 = O(e−|q2|r). For x > 0, the steepest
descents path lies in the lower half-plane, and the residue from α = α0 is collected. The branch point
at α = −q3 does not interfere with the deformation of the path, but there is also a branch point at
α = −1, and the steepest descents path must be diverted around this. Now

γ2(−1)| sin θ| − i cos θ =
√

1− q2
2 | sin θ| − i cos θ, (S11)

meaning this contribution is exponentially small unless sin θ ≈ 0. For θ close to zero or 2π, the
branch point contribution is typically O(r−3/2), because it can be related to an integral of the form
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∫∞
0

√
se−rs ds. This changes if the pole at α = α0 lies close to the branch point, in which case the

contribution is O(r−1/2), meaning the diversion does contribute to the field at leading order. This pole
is only present for y < 0 (see section 9). Thus w2 can contribute to the diffracted field at leading order
if Θ ≈ 0 and θ ≈ 2π. This is related to the breakdown of the uniform approximation (104) at the
boundary in cases where Θ ≈ 0, noted in section 9.
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