
The Complexity of Gradient Descent:

CLS = PPAD ∩ PLS

John Fearnley Paul W. Goldberg
University of Liverpool, United Kingdom University of Oxford, United Kingdom

john.fearnley@liverpool.ac.uk paul.goldberg@cs.ox.ac.uk

Alexandros Hollender Rahul Savani
University of Oxford, United Kingdom University of Liverpool, United Kingdom

alexandros.hollender@cs.ox.ac.uk rahul.savani@liverpool.ac.uk

Abstract

We study search problems that can be solved by performing Gradient Descent
on a bounded convex polytopal domain and show that this class is equal to the
intersection of two well-known classes: PPAD and PLS. As our main underlying
technical contribution, we show that computing a Karush-Kuhn-Tucker (KKT) point of
a continuously differentiable function over the domain [0, 1]2 is PPAD∩PLS-complete.
This is the first natural problem to be shown complete for this class. Our results also
imply that the class CLS (Continuous Local Search) – which was defined by Daskalakis
and Papadimitriou as a more “natural” counterpart to PPAD∩PLS and contains many
interesting problems – is itself equal to PPAD∩PLS.

1

ar
X

iv
:2

01
1.

01
92

9v
1 

 [
cs

.C
C

] 
 3

 N
ov

 2
02

0

mailto:john.fearnley@liverpool.ac.uk
mailto:paul.goldberg@cs.ox.ac.uk
mailto:alexandros.hollender@cs.ox.ac.uk
mailto:rahul.savani@liverpool.ac.uk


1 Introduction

It is hard to overstate the importance of Gradient Descent. As noted by Jin et al. [2019],
“Machine learning algorithms generally arise via formulations as optimization problems, and,
despite a massive classical toolbox of sophisticated optimization algorithms and a major
modern effort to further develop that toolbox, the simplest algorithms—gradient descent,
which dates to the 1840s [Cauchy, 1847] and stochastic gradient descent, which dates to the
1950s [Robbins and Monro, 1951]—reign supreme in machine learning.” Jin et al. [2019]
continue by highlighting the simplicity of Gradient Descent as a key selling-point, and the
importance of theoretical analysis in understanding its efficacy in non-convex optimisation.

In its simplest form, which we consider in this paper, Gradient Descent attempts to find
a minimum of a continuously differentiable function f over some domain D, by starting at
some point x0 and iterating according to the update rule

xk+1 ← xk − η∇f(xk)

where η is some fixed step size. The algorithm is based on the fundamental fact that for
any point x the term −∇f(x) points in the direction of steepest descent in some sufficiently
small neighbourhood of x. However, in the unconstrained setting—where the domain is
the whole space—it is easy to see that Gradient Descent can at best find a stationary
point. Indeed, if the gradient is zero at some point, then there is no escape. Note that
a stationary point might be a local minimum, but it could also be a saddle point or
even a local maximum. Similarly, in the constrained setting—where the domain D is no
longer the whole space—Gradient Descent can at best find a point x that satisfies the
Karush-Kuhn-Tucker (KKT) optimality conditions. Roughly, the KKT conditions say that
the gradient of f is zero at x, or if not, x is on the boundary of D and any further local
improvement would take us outside D.

In this paper we investigate the complexity of finding a point where Gradient Descent
terminates—or equivalently, as we show, a KKT point—when the domain is bounded. It is
known that a global or even a local minimum cannot be found in polynomial time unless
P = NP [Murty and Kabadi, 1987; Ahmadi and Zhang, 2020a]. Indeed, even deciding
whether a point is a local minimum is already co-NP-hard [Murty and Kabadi, 1987]. In
contrast, it is easy to check whether a point satisfies the KKT conditions. In general,
finding a KKT point is hard, since even deciding whether a KKT point exists is NP-hard
in the unconstrained setting [Ahmadi and Zhang, 2020b]. However, when the domain is
bounded, a KKT point is guaranteed to exist! This means that in our case, we are looking
for something that can be verified efficiently and that necessarily exists. Intuitively, it
seems that this problem should be more tractable. This intuition can be made formal
by noting that these two properties place the problem in the complexity class TFNP of
total search problems in NP: any instance has at least one solution, and a solution can
be checked in polynomial time. A key feature of such problems is that they cannot be
NP-hard unless NP = co-NP [Megiddo and Papadimitriou, 1991]. TFNP problems have
been classified via certain “syntactic subclasses” of TFNP, of which PPAD and PLS are
two of the most important ones.

1.1 NP Total Search Classes: PPAD, PLS, and CLS

As discussed in Papadimitriou [1994], TFNP is unlikely to have complete problems, and
various syntactic subclasses have been used to classify the many diverse problems that
belong to it. Among them, the classes PPAD and PLS (introduced in Papadimitriou [1994]
and Johnson et al. [1988] respectively) have been hugely successful in this regard. Each of

2



these classes has a corresponding computationally inefficient existence proof principle, one
that when applied in a general context, does not yield a polynomial-time algorithm1. In the
case of PPAD this is the parity argument on a directed graph, equivalent to the existence
guarantee of Brouwer fixpoints: a Brouwer function is a continuous function f : D → D
where D is a convex compact domain, and Brouwer’s fixed point theorem guarantees a
point x for which f(x) = x. PPAD has been widely used to classify problems of computing
game-theoretic equilibria (a long line of work on Nash equilibrium computation beginning
with Daskalakis et al. [2009]; Chen et al. [2009b] and market equilibria, e.g., Chen et al.
[2009a]). PPAD also captures diverse problems in combinatorics and cooperative game
theory [Kintali et al., 2013].

PLS, for “Polynomial Local Search”, captures problems of finding a local minimum of an
objective function f , in contexts where any candidate solution x has a local neighbourhood
within which we can readily check for the existence of some other point having a lower
value of f . Many diverse local optimisation problems have been shown complete for PLS,
attesting to its importance. Examples include searching for a local optimum of the TSP
according to the Lin-Kernighan heuristic [Papadimitriou, 1992], and finding pure Nash
equilibria in multiplayer congestion games [Fabrikant et al., 2004].

The complexity class CLS (“Continuous Local Search”) was introduced by Daskalakis
and Papadimitriou [2011] to classify various important problems that lie both in PPAD
and PLS. PPAD and PLS are believed to be strictly incomparable — one is not a subset of
the other — a belief supported by oracle separations [Beame et al., 1998]. It follows from
this that problems belonging to both classes cannot be complete for either one of them.
CLS is seen as a strong candidate for capturing the complexity of some of those important
problems, but, prior to this work, only two problems related to general versions of Banach’s
fixed point theorem were known to be CLS-complete [Daskalakis et al., 2018; Fearnley
et al., 2017]. An important result—supporting the claim that CLS-complete problems are
hard to solve—is that the hardness of CLS can be based on the cryptographic assumption
of indistinguishability obfuscation [Hubáček and Yogev, 2017]. Prior to the present paper,
it was generally believed that CLS is a proper subset of PPAD ∩ PLS, as conjectured by
Daskalakis and Papadimitriou [2011].

1.2 Our Contribution and its Significance

Our main result is to show that finding a point where Gradient Descent on a continuously
differentiable function terminates—or equivalently a KKT point—is PPAD ∩ PLS-complete,
when the domain is a bounded convex polytope. This continues to hold even when the
domain is as simple as the unit square [0, 1]2. The PPAD ∩ PLS-completeness result applies
to the model where the function and its gradient are given in a “white box” manner, e.g., by
an arithmetic circuit. However, our reduction also has implications for the query complexity
of the problem in the “black box” model.

Computational Hardness. As an immediate consequence, our result provides convincing
evidence that the problem is computationally hard. First of all, there are reasons to believe
that PPAD ∩ PLS is hard simply because PPAD and PLS are believed to be hard. Indeed,
if PPAD ∩ PLS could be solved in polynomial time, then, given an instance of a PPAD-
complete problem and an instance of a PLS-complete problem, we would be able to solve at
least one of the two instances in polynomial time. Furthermore, since CLS ⊆ PPAD ∩ PLS,

1The other well-known such classes, less relevant to the present paper, are PPA and PPP; it is known
that PPAD is a subset of PPA and also of PPP. These set-theoretic containments correspond directly to
the strength, or generality, of the corresponding proof principles.

3



the above-mentioned cryptographic hardness of CLS applies automatically to PPAD ∩ PLS,
and thus to our problem of interest. Finally, our main reduction also has consequences in
the “black-box” model, where we obtain a lower bound on the query complexity of the
problem, i.e., when we only have oracle access to the function and its gradient.

Continuous Local Search. Since Gradient Descent is just a special case of continuous
local search, our hardness result implies that

CLS = PPAD ∩ PLS

which disproves the widely believed conjecture by Daskalakis and Papadimitriou [2011]
that the containment is strict. Our result also allows us to resolve an ambiguity in the
original definition of CLS by showing that the high-dimensional version of the class reduces
to the 2-dimensional version of the class (the 1-dimensional version is computationally
tractable, so no further progress is to be made). Equality to PPAD ∩ PLS also applies to
a linear version of CLS analogous to the class Linear-FIXP of Etessami et al. [2020].

PPAD ∩PLS. Perhaps more importantly, our result establishes PPAD ∩ PLS as an
important complexity class that captures the complexity of interesting problems. It was
previously known that one can construct a problem complete for PPAD ∩ PLS by gluing
together two problems, one for each class (see Section 2.2), but the resulting problem is
highly artificial. In contrast, the Gradient Descent problem we consider is clearly natural
and of separate interest. Some TFNP classes can be characterized as the set of all problems
solved by some type of algorithm. For instance, PPAD is the class of all problems that
can be solved by the Lemke-Howson algorithm. PLS is the class of all problems that
can be solved by general local search methods. Analogously, one can define the class
GD containing all problems that can be solved by the Gradient Descent algorithm on a
bounded domain, i.e., that reduce to our Gradient Descent problem in polynomial time.
Our result shows that GD = PPAD ∩ PLS. In other words, the class PPAD ∩ PLS, which
is obtained by combining PPAD and PLS in a completely artificial way, turns out to have
a very natural characterization:

PPAD ∩ PLS is the class of all problems that can be solved
by performing Gradient Descent on a bounded domain.

1.3 Further Related Work

Following the definition of CLS by Daskalakis and Papadimitriou [2011], two CLS-complete
problems were identified: Banach [Daskalakis et al., 2018] and MetametricContrac-
tion [Fearnley et al., 2017]. Banach is a computational presentation of Banach’s fixed
point theorem in which the metric is presented as part of the input (and could be com-
plicated). Banach fixpoints are unique, but CLS problems do not in general have unique
solutions, and the problem Banach circumvents that obstacle by allowing certain “violation”
solutions, such as a pair of points witnessing that f is not a contraction map.

Daskalakis et al. [2020] study nonlinear min-max optimisation, a conceptually more
complex problem than the purely “min” optimisation studied here. The PPAD-completeness
they obtain reflects the extra structure present in such problems. An important point
is that our hardness result requires inverse-exponential parameters, whereas Daskalakis
et al. [2020] achieve hardness with inverse-polynomial parameters — for us the inverse-
exponential parameters are a necessary evil, since the problem can otherwise be solved
in polynomial time, even in high dimension (Lemma C.4). Related work in nonlinear
optimisation is covered in Section 3.2.1.

4



2 Overview

In this section we give a condensed and informal overview of the concepts, ideas, and
techniques of this paper. We begin by providing informal definitions of the problems of
interest and the complexity classes. We then present an overview of our results, along with
the high-level ideas of our main reduction, and interesting open problems.

2.1 The problems of interest

The motivation for the problems we study stems from the ultimate goal of minimizing
a continuously differentiable function f : Rn → R over some domain D. As mentioned
in the introduction, this problem is known to be intractable, and so we instead consider
relaxations where we are looking for a point where Gradient Descent terminates, or for
a KKT point. Our investigation is restricted to bounded domains, namely we consider
the setting where the domain D is a bounded convex polytope defined by a collection of
linear inequalities. Furthermore, we also assume that the function f and its gradient ∇f
are Lipschitz-continuous over D, for some Lipschitz constant L provided in the input. Let
C1
L(D,R) denote the set of continuously differentiable functions f from D to R, such that

f and ∇f are L-Lipschitz.
In order to define our Gradient Descent problem, we need to specify what we mean

by “a point where Gradient Descent terminates”. We consider the following two stopping
criteria for Gradient Descent: (a) stop when we find a point such that the next iterate does
not improve the objective function value, or (b) stop when we find a point such that the
next iterate is the same point. In practice, of course, Gradient Descent is performed with
some underlying precision parameter ε > 0. Thus, the appropriate stopping criteria are:
(a) stop when we find a point such that the next iterate improves the objective function
value by less than ε, or (b) stop when we find a point such that the next iterate is at
most ε away. Importantly, note that, given a point, both criteria can be checked efficiently.
This ensures that the resulting computational problems lie in TFNP. The totality of the
problems follows from the simple fact that a local minimum must exist (since the domain is
bounded) and any local minimum satisfies the stopping criteria. The first stopping criterion
has a local search flavour and so we call the corresponding problem GD-Local-Search.
The second stopping criterion is essentially asking for an approximate fixed point of the
Gradient Descent dynamics, and yields the GD-Fixpoint problem.

Since we are performing Gradient Descent on a bounded domain, we have to ensure
that the next iterate indeed lies in the domain D. The standard way to achieve this is to
use so-called Projected Gradient Descent, which computes the next iterate as usual and
then projects it onto the domain. Define ΠD to be the projection operator, that maps any
point in D to itself, and any point outside D to its closest point in D (under the Euclidean
norm). The two Gradient Descent problems are defined as follows.

GD-Local-Search and GD-Fixpoint (informal)

Input: ε > 0, step size η > 0, domain D, f ∈ C1
L(D,R) and its gradient ∇f .

Goal: Compute any point where (projected) gradient descent for f on D terminates.
Namely, find x ∈ D such that x and its next iterate x′ = ΠD(x− η∇f(x)) satisfy:

• for GD-Local-Search: f(x′) ≥ f(x)− ε, (f decreases by at most ε)

• for GD-Fixpoint: ‖x− x′‖ ≤ ε. (x′ is ε-close to x)

5



In a certain sense, GD-Local-Search is a PLS-style version of Gradient Descent,
while GD-Fixpoint is a PPAD-style version.2 We show that these two versions are
computationally equivalent by a triangle of reductions (see Figure 3). The other problem
in that triangle of equivalent problems is the KKT problem, defined below.

KKT (informal)

Input: ε > 0, domain D, f ∈ C1
L(D,R) and its gradient ∇f .

Goal: Compute any ε-KKT point of the minimization problem for f on domain D.

A point x is a KKT point if x is feasible (it belongs to the domain D), and x is either
a zero-gradient point of f , or alternatively x is on the boundary of D and the boundary
constraints prevent local improvement of f . “ε-KKT” relaxes the KKT condition so as to
allow inexact KKT solutions with limited numerical precision. For a formal definition of
these notions see Section 3.2.1.

Representation of f and ∇f . We consider these computational problems in the “white
box” model, where some computational device computing f and ∇f is provided in the
input. In our case, we assume that f and ∇f are presented as arithmetic circuits. In more
detail, following Daskalakis and Papadimitriou [2011], we consider arithmetic circuits that
use the operations {+,−,×,max,min, <}, as well as rational constants.3 Another option
would be to assume that the functions are given as polynomial-time Turing machines,
but this introduces some extra clutter in the formal definitions of the problems. Overall,
the definition with arithmetic circuits is cleaner, and, in any case, the complexity of the
problems is the same in both cases. While the main focus of this paper is on the “white
box” complexity of these problems, we note that our reductions also have consequences for
the “black box” model, as explained in Section 2.3.

Promise-version and total-version. Given an arithmetic circuit for f and one for ∇f ,
we know of no easy way of checking that the circuit for ∇f indeed computes the gradient
of f , and that the two functions are indeed L-Lipschitz. There are two ways to handle this
issue: (a) consider the promise version of the problem, where we restrict our attention to
instances that satisfy these conditions, or (b) introduce “violation” solutions in the spirit
of Daskalakis and Papadimitriou [2011], i.e. allow as a solution some points that witness
the fact that one of the conditions is not satisfied. The first option is more natural, but
the second option ensures that the problem is formally in TFNP. Thus, we use the second
option for the formal definitions of our problems in Section 3.2. However, we note that our
“promise-preserving” reductions ensure that our hardness results also hold for the promise
versions of the problems.

2.2 Complexity classes

In this section we provide informal definitions of the relevant complexity classes, and
discuss their key features. The formal definitions can be found in Section 3.1, but the
high-level descriptions presented here are intended to be sufficient to follow the overview
of our main proof in Section 2.3.

2A very similar version of GD-Fixpoint was also defined by Daskalakis et al. [2020] and shown to be
equivalent to finding an approximate local minimum (which is essentially the same as a KKT point).

3A subtle issue is that it might not always be possible to evaluate such a circuit efficiently, because the
×-gates can be used to perform “repeated squaring”. To avoid this issue, we restrict ourselves to what we
call well-behaved arithmetic circuits. See Section 3.1.3 of the preliminaries for more details.

6



1 4

6
2

8

3
7

5

Figure 1: Example of an End-of-Line instance for n = 3. The 2n (= 8) vertices are represented
by circular nodes and the directed edges by arrows. Note that the graph is not provided explicitly in
the input, but is only represented implicitly by a successor and predecessor circuit. In this example,
the End-of-Line solutions are the vertices 3, 7 and 8. In more detail, vertices 3 and 8 are sinks,
while vertex 7 is a source. Note that the “trivial” source 1 is not a solution. Finally, the isolated
vertex 5 is also not a solution.

PPAD. The complexity class PPAD is defined as the set of TFNP problems that reduce
in polynomial time to the problem End-of-Line.

End-of-Line (informal)

Input: A directed graph on the vertex set [2n], such that every vertex has in- and
out-degree at most 1, and such that vertex 1 is a source.

Goal: Find a sink of the graph, or any other source.

Importantly, the graph is not provided explicitly in the input, but instead we are given
Boolean circuits that efficiently compute the successor and predecessor of each vertex.
This means that the size of the graph can be exponential with respect to its description
length. A problem is complete for PPAD if it belongs to PPAD and if End-of-Line
reduces in polynomial time to that problem. Many variants of the search for a fixed point
of a Brouwer function turn out to be PPAD-complete. This is essentially the reason why
GD-Fixpoint, and thus the other two equivalent problems, lie in PPAD. See Figure 1 for
an example of an instance of End-of-Line.

PLS. The complexity class PLS is defined as the set of TFNP problems that reduce in
polynomial time to the problem Localopt.

Localopt (informal)

Input: Functions V : [2n]→ R and S : [2n]→ [2n].

Goal: Find v ∈ [2n] such that V (S(v)) ≥ V (v).

The functions are given as Boolean circuits. A problem is complete for PLS if it belongs
to PLS and if Localopt reduces in polynomial time to that problem. PLS embodies
general local search methods where one attempts to optimize some objective function
by considering local improving moves. Our problem GD-Local-Search is essentially a
special case of local search, and thus lies in PLS. In this paper we make use of the problem
Iter, defined below, which is known to be PLS-complete [Morioka, 2001].

7



1 2 3 4 5 6 7 8

Figure 2: Example of an Iter instance C for n = 3. The 2n (= 8) nodes are represented by
squares. The arrows indicate the mapping given by the circuit C. In this example, nodes 2, 6 and 8
are the fixed points of C. Any node that is mapped by C to a fixed point is a solution to the Iter
instance. Thus, in this example, the solutions are nodes 3 and 7.

Iter (informal)

Input: A function C : [2n]→ [2n] such that C(v) ≥ v for all v ∈ [2n], and C(1) > 1.

Goal: Find v such that C(v) > v and C(C(v)) = C(v).

For this problem, it is convenient to think of the nodes in [2n] as lying on a line, in
increasing order. Then, any node is either a fixed point of C, or it is mapped to some node
further to the right. We are looking for any node that is not a fixed point, but is mapped
to a fixed point. It is easy to see that the condition C(1) > 1 ensures that such a solution
must exist. See Figure 2 for an example of an instance of Iter.

PPAD ∩PLS. The class PPAD ∩ PLS contains, by definition, all TFNP problems that lie
both in PPAD and in PLS. Prior to our work, the only known way to obtain PPAD ∩ PLS-
complete problems was to combine a PPAD-complete problem A and a PLS-complete
problem B as follows [Daskalakis and Papadimitriou, 2011].

Either-Solution(A,B)

Input: An instance IA of A and an instance IB of B.

Goal: Find a solution of IA or a solution of IB.

In particular, the problem Either-Solution(End-of-Line,Iter) is PPAD ∩ PLS-
complete, and this is the problem we reduce from to obtain our results.

CLS. Noting that all known PPAD ∩ PLS-complete problems looked very artificial, Daskalakis
and Papadimitriou [2011] defined the class CLS⊆PPAD ∩ PLS, which combines PPAD
and PLS in a more natural way. The class CLS is defined as the set of TFNP problems
that reduce to the problem 3D-Continuous-Localopt.

3D-Continuous-Localopt (informal)

Input: ε > 0, L-Lipschitz functions p : [0, 1]3 → [0, 1] and g : [0, 1]3 → [0, 1]3.

Goal: Compute any approximate local optimum of p with respect to g. Namely,
find x ∈ [0, 1]3 such that

p(g(x)) ≥ p(x)− ε.

This problem is essentially a special case of the Localopt problem, where we perform
local search over a continuous domain and where the functions are continuous. The formal

8



definition of 3D-Continuous-Localopt includes violation solutions for the Lipschitz-
continuity of the functions. We also consider a more general version of this problem, which
we call General-Continuous-Localopt, where we allow any bounded convex polytope
as the domain.

2.3 Results

The main technical contribution of this work is Theorem 4.1, showing that the KKT
problem is PPAD ∩ PLS-hard, even when the domain is the unit square [0, 1]2. The
hardness also holds for the promise version of the problem, because the hard instances that
we construct always satisfy the promises. We present the main ideas needed for this result
in the next section, but we first briefly present the consequences of this reduction here.

A chain of reductions, presented in Section 5 and shown in Figure 3, which includes
the “triangle” between three problems of interest, establishes the following theorem.

Theorem 5.1. The problems KKT, GD-Local-Search, GD-Fixpoint and General-
Continuous-Localopt are PPAD ∩ PLS-complete, even when the domain is fixed to be
the unit square [0, 1]2. This hardness result continues to hold even if one considers the
promise-versions of these problems, i.e., only instances without violations.

PPAD ∩ PLS KKT

GD-Fixpoint

GD-Local-
Search

General-
Continuous-
Localopt

PPAD ∩ PLS
Theorem 4.1

Prop. 5.3

Prop. 5.4

Prop. 5.2

Prop. 5.5

Prop. 5.6

Figure 3: Our reductions. The main one (Theorem 4.1) is on the left; note that the other
reductions are all domain- and promise preserving.

These reductions are domain-preserving—which means that they leave the domain D
unchanged—and promise preserving—which means that they are also valid reductions
between the promise versions of the problems. As a result, the other problems “inherit”
the hardness result for KKT, including the fact that it holds for D = [0, 1]2 and even for
the promise versions.

Consequences for CLS. The PPAD ∩ PLS-hardness of General-Continuous-Localopt
on domain [0, 1]2, and thus also on domain [0, 1]3, immediately implies the following sur-
prising collapse.

Theorem 6.1. CLS = PPAD ∩ PLS.

As a result, it also immediately follows that the two known CLS-complete problems
[Daskalakis et al., 2018; Fearnley et al., 2017] are in fact PPAD ∩ PLS-complete.

Theorem 6.2. Banach and MetametricContraction are PPAD ∩ PLS-complete.

The fact that our hardness result holds on domain [0, 1]2 implies that the n-dimensional
variant of CLS is equal to the two-dimensional version, a fact that was not previously known.
Furthermore, since our results hold even for the promise version of version of General-
Continuous-Localopt, this implies that the definition of CLS is robust with respect to

9



the removal of violations (promise-CLS = CLS). Finally, we also show that restricting the
circuits to be linear arithmetic circuits (that compute piecewise-linear functions) does not
yield a weaker class, i.e., 2D-Linear-CLS = CLS. This result is obtained by showing that
linear circuits can be used to efficiently approximate any Lipschitz-continuous function
with arbitrary precision (Appendix E), which might be of independent interest. All the
consequences for CLS are discussed in detail in Section 6.

Black box lower bounds. Our main reduction (Theorem 4.1) is a “black box” reduction,
meaning that it is also a valid reduction between the black box versions of the problems. As a
result, we can show that computing an ε-KKT point of a continuously differentiable function
over the domain [0, 1]2, where ∇f is L-Lipschitz, requires at least Ω(

√
L/ε) evaluations of

the function and its gradient. For more details see Theorem 4.4 in Section 4.5.

2.4 Proof overview for Theorem 4.1

In this section we provide a brief overview of our reduction from the PPAD ∩ PLS-complete
problem Either-Solution(End-of-Line,Iter) to the KKT problem on domain [0, 1]2.

Given an instance IEOL of End-of-Line and an instance IITER of Iter, we construct
an instance IKKT = (ε, f,∇f, L) of the KKT problem on domain [0, 1]2 such that from
any ε-KKT point of f , we can efficiently obtain a solution to either IEOL or IITER. The
function f and its gradient ∇f are first defined on an exponentially small grid on [0, 1]2,
and then extended within every small square of the grid by using bicubic interpolation.
This ensures that the function is continuously differentiable on the whole domain. The
most interesting part of the reduction is how the function is defined on the grid points, by
using information from IEOL, and then, where necessary, also from IITER.

Embedding IEOL. The domain is first subdivided into 2n × 2n big squares, where [2n] is
the set of vertices in IEOL. The big squares on the diagonal (shaded in Figure 4) represent
the vertices of IEOL and the function f is constructed so as to embed the directed edges in
the graph of IEOL. If the edge (v1, v2) in IEOL is a forward edge, i.e, v1 < v2, then there
will be a “green path” going from the big square of v1 to the big square of v2. On the
other hand, if the edge (v1, v2) in IEOL is a backward edge, i.e., v1 > v2, then there will be
an “orange path” going from the big square of v1 to the big square of v2. These paths are
shown in Figure 4 for the corresponding example instance of Figure 1.

The function f is constructed such that when we move along a green path, the value
of f decreases. Conversely, when we move along an orange path, the value of f increases.
Outside the paths, f is defined so as to decrease towards the origin (0, 0) ∈ [0, 1]2, where
the green path corresponding to the source of IEOL starts. As a result, we show that an
ε-KKT point can only occur in a big square corresponding to a vertex v of IEOL such that
(a) v is a solution of IEOL, or (b) v is not a solution of IEOL, but its two neighbours (in the
IEOL graph) are both greater than v, or alternatively both less than v. Case (b) exactly
corresponds to the case where a green path “meets” an orange path. In that case, it is
easy to see that an ε-KKT point is unavoidable.

The PLS-Labyrinth. In order to resolve the issue with case (b) above, we use the
following idea: hide the (unavoidable) ε-KKT point in such a way that locating it requires
solving IITER! This is implemented by introducing a gadget, that we call the PLS-Labyrinth,
at the point where the green and orange paths meet (within some big square). An important
point is that the PLS-Labyrinth only works properly when it is positioned at such a meeting
point. If it is positioned elsewhere, then it will either just introduce additional unneeded
ε-KKT points, or even introduce ε-KKT points that are easy to locate. Indeed, if we were
able to position the PLS-Labyrinth wherever we wanted, this would presumably allow us to

10



show PLS-hardness, which as we noted earlier we do not expect. In Figure 4, the positions
where a PLS-Labyrinth is introduced are shown as grey boxes labelled “PLS”.

Every PLS-Labyrinth is subdivided into exponentially many medium squares such
that the medium squares on the diagonal (shaded in Figure 5) correspond to the nodes
of IITER. The point where the green and orange paths meet, which lies just outside the
PLS-Labyrinth, creates an “orange-blue path” which then makes its way to the centre
of the medium square for node 1 of IITER. Similarly, for every node u of IITER that is
a candidate to be a solution (i.e., with C(u) > u), there is an orange-blue path starting
from the orange path (which runs along the PLS-Labyrinth) and going to the centre of the
medium square corresponding to u. Sinks of orange-blue paths introduce ε-KKT points,
and so for those u that are not solutions of IITER, the orange-blue path of u turns into a
“blue path” that goes and merges into the orange-blue path of C(u). This ensures that sinks
of orange-blue paths (that do not turn into blue paths) exactly correspond to the solutions
of IITER. An interesting point to note is that sources of blue paths do not introduce
ε-KKT points. This allows us to handle crossings between paths in a straightforward
manner. Figure 5 shows an overview of the PLS-Labyrinth that encodes the Iter example
of Figure 2.

1

2

3

4

5

6

7

8

PLS

PLS

1

Figure 4: A high-level illustration of our construction. The shaded squares on the diagonal
correspond to vertices of the graph represented by IEOL, in this case corresponding to the graph
in Figure 1. The green and orange arrows encode the directed edges of the graph. The positions
where IITER is encoded, i.e., the PLS-Labyrinths, are shown as boxes labelled “PLS”. They are
located at points where the embedding of IEOL would introduce false solutions, and their purpose
is to hide those false solutions by co-locating any such solution with a solution to IITER.

Computer-assisted proof of a required property of bicubic interpolation. Within
our construction, we specify how the objective function f behaves within the “small squares”
of [0, 1]2. At this stage, we have values of f and ∇f at the corners of the small squares,
and we then need to smoothly interpolate within the interior of the square. We use bicubic

11



1

2

3

4

5

6

7

8

Figure 5: High-level illustration of the PLS-Labyrinth corresponding to the Iter example of
Figure 2. Shaded squares on the diagonal correspond to the nodes of Iter. Colours of lines
correspond determine how f is constructed at these points. The horizontal blue lines (pointing left)
correspond to the 3 edges in Figure 2 that go out from non-solutions, and we do not use similar
lines going out from solutions (nodes 3 and 7).

interpolation to do this. It constructs a smooth polynomial over the small square given
values for f and ∇f at the square’s corners.

We must prove that using bicubic interpolation does not introduce any ε-KKT points
within any small square, unless that small square corresponds to a solution of IITER or
IEOL. Each individual small square leads to a different class of polynomials, based on
the color-coding of the grid point, and the direction of the gradient at each grid point.
Our construction uses 101 distinct small squares, and we must prove that no unwanted
solutions are introduced in any of them.

While it would be possible to prove this for all 101 squares by hand, writing such a
proof would be error-prone, and verifying it would be extremely tedious. For this reason,
we delegate the task to an SMT (Satisfiability modulo theories) solver. We are able to show,
for each of our 101 squares, that the statement “bicubic interpolation does not introduce
new solutions on this square” can be written down as a formula in the existential theory of
the reals, which can then be verified by an SMT solver. When we run the solver, it verifies
that bicubic interpolation introduces new solutions only when the small square lies at a
solution of IITER or IEOL.

3 Preliminaries

Let n ∈ N be a positive integer. Throughout this paper we use ‖ · ‖ to denote the standard
Euclidean norm in n-dimensional space, i.e., the `2-norm in Rn. The maximum-norm,
or `∞-norm, is denoted by ‖ · ‖∞. For x, y ∈ Rn, 〈x, y〉 :=

∑n
i=1 xiyi denotes the inner

product. For any non-empty closed convex set D ⊆ Rn, let ΠD : Rn → D denote the
projection onto D with respect to the Euclidean norm. Formally, for any x ∈ Rn, ΠD(x) is
the unique point y ∈ D that minimizes ‖x− y‖. For k ∈ N, let [k] := {1, 2, . . . , n}.

12



3.1 Computational Model, Classes and Arithmetic Circuits

We work in the standard Turing machine model. Rational numbers are represented as
irreducible fractions, with the numerator and denominator of the irreducible fraction given
in binary. Note that given any fraction, it can be made irreducible in polynomial time
using the Euclidean algorithm. For a rational number x, we let size(x) denote the number
of bits needed to represent x, i.e., the number of bits needed to write down the numerator
and denominator (in binary) of the irreducible fraction for x.

3.1.1 NP total search problems and reductions

Search Problems. Let {0, 1}∗ denote the set of all finite length bit-strings and let |x|
be the length of x ∈ {0, 1}∗. A computational search problem is given by a relation
R ⊆ {0, 1}∗ × {0, 1}∗, interpreted as the following problem: given an instance x ∈ {0, 1}∗,
find y ∈ {0, 1}∗ such that (x, y) ∈ R, or return that no such y exists.

The search problem R is in FNP (search problems in NP), if R is polynomial-time
computable (i.e., (x, y) ∈ R can be decided in polynomial time in |x|+|y|) and polynomially-
balanced (i.e., there exists some polynomial p such that (x, y) ∈ R =⇒ |y| ≤ p(|x|)).
Intuitively, FNP contains all search problems where all solutions have size polynomial in
the size of the instance and any solution can be checked in polynomial time. The class of
all search problems in FNP that can be solved by a polynomial-time algorithm is denoted
by FP. The question FP vs. FNP is equivalent to the P vs. NP question.

The class TFNP (total search problems in NP) is defined as the set of all FNP problems R
that are total, i.e., every instance has at least one solution. Formally, R is total, if for every
x ∈ {0, 1}∗ there exists y ∈ {0, 1}∗ such that (x, y) ∈ R. TFNP lies between FP and FNP.

Note that the totality of TFNP problems does not rely on any promise. Instead, there
is a syntactic guarantee of totality: for any instance, there is a solution. It is easy to see
that a TFNP problem cannot be NP-hard, unless NP = co-NP, Furthermore, it is also
believed that no TFNP-complete problem exists. For more details on this, see Megiddo
and Papadimitriou [1991].

Reductions between TFNP problems. Let R and S be two TFNP problems. We
say that R reduces to S if there exist polynomial-time computable functions f : {0, 1}∗ →
{0, 1}∗ and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that, for all x, y ∈ {0, 1}∗,

(f(x), y) ∈ S =⇒ (x, g(x, y)) ∈ R

Intuitively, this says that for any instance x of R, if we can find a solution y to instance
f(x) of S, then g(x, y) gives us a solution to instance x of R. In particular, note that if S
is polynomial-time solvable, then so is R.

3.1.2 The classes PPAD, PLS and PPAD ∩PLS

Since TFNP problems likely cannot be NP-hard, or TFNP-complete, one instead attempts
to classify the problems inside TFNP. Various subclasses of TFNP have been defined
and natural problems have been proved complete for these subclasses. In this section we
formally define the subclasses PPAD and PLS, which have both been very successful in
capturing the complexity of interesting problems.

The most convenient way to define these classes is using problems on Boolean circuits.
A Boolean circuit C : {0, 1}n → {0, 1}n with n inputs and n outputs, is allowed to use the
logic gates ∧ (AND), ∨ (OR) and ¬ (NOT), where the ∧ and ∨ gates have fan-in 2, and
the ¬ gate has fan-in 1. For ease of notation, we identify {0, 1}n with [2n].

13



PPAD. The class PPAD is defined as the set of all TFNP problems that reduce to the
problem End-of-Line [Papadimitriou, 1994; Daskalakis et al., 2009].

Definition 1. End-of-Line:
Input: Boolean circuits S, P : [2n]→ [2n] with P (1) = 1 6= S(1).
Goal: Find v ∈ [2n] such that P (S(v)) 6= v or S(P (v)) 6= v 6= 1.

The successor circuit S and the predecessor circuit P implicitly define a directed graph
on the vertex set [2n]. There is an edge from v1 to v2 if S(v1) = v2 and P (v2) = v1.
Every vertex has at most one outgoing edge and at most one incoming edge. Since the
vertex 1 has one outgoing edge and no incoming edge, it is a source. The goal is to find
another end of line, i.e., another source, or a sink of the graph. Note that such a vertex is
guaranteed to exist. The condition P (1) = 1 6= S(1) can be enforced syntactically, so this
is indeed a TFNP problem and not a promise problem. See Figure 1 for an example of an
End-of-Line instance.

PLS. The class PLS is defined as the set of all TFNP problems that reduce to the
problem Localopt [Johnson et al., 1988; Daskalakis and Papadimitriou, 2011].

Definition 2. Localopt:
Input: Boolean circuits S, V : [2n]→ [2n].
Goal: Find v ∈ [2n] such that V (S(v)) ≥ V (v).

This problem embodies local search over the node set [2n]. The output of the circuit V
represents a value and ideally we would like to find a node v ∈ [2n] that minimises V (v).
The circuit S helps us in this task by proposing a possibly improving node S(v) for any v.
We stop our search, when we find a v such that V (S(v)) ≥ V (v), i.e., S no longer helps us
decrease the value of V . This is local search, because the circuit S represents the search
for an improving node in some small (polynomial-size) neighbourhood.

In this paper, we also make use of the following PLS-complete problem [Morioka, 2001].

Definition 3. Iter:
Input: Boolean circuit C : [2n]→ [2n] with C(1) > 1.
Goal: Find v such that either

• C(v) < v, or

• C(v) > v and C(C(v)) = C(v).

In this problem, it is convenient to think of the nodes in [2n] as lying on a line from left
to right. Then, we are looking for any node v that is mapped to the left by C, or any node
v that is mapped to the right and such that C(v) is a fixed point of C. Since C(1) > 1, i.e.,
node 1 is mapped to the right, it is easy to see that such a solution must exist (apply C
repeatedly on node 1). Note that the condition C(1) > 1 can be enforced syntactically, so
this indeed a TFNP problem and is not a promise problem. See Figure 2 for an example of
an Iter instance.

PPAD ∩PLS. The class PPAD ∩ PLS is the set of all TFNP problems that lie both in
PPAD and in PLS. A problem in PPAD ∩ PLS cannot be PPAD- or PLS-complete, unless
PPAD ⊆ PLS or PLS ⊆ PPAD. Neither of these two containments is believed to hold, and

14



this is supported by oracle separations between the classes [Beame et al., 1998]. It is easy
to construct “artificial” PPAD ∩ PLS-complete problems from PPAD- and PLS-complete
problems.

Proposition 3.1 (Daskalakis and Papadimitriou [2011]). For any TFNP problems A and
B, let Either-Solution(A,B) denote the problem: given an instance IA of A and an
instance IB of B, find a solution of IA or a solution of IB. If A is PPAD-complete and B
is PLS-complete, then Either-Solution(A,B) is PPAD ∩ PLS-complete.

As a result, we obtain the following corollary, which we will use to show our main
PPAD ∩ PLS-hardness result.

Corollary 3.2. Either-Solution(End-of-Line,Iter) is PPAD ∩ PLS-complete.

Prior to our work, the problems Either-Solution(A,B), where A is PPAD-complete
and B is PLS-complete, were the only known PPAD ∩ PLS-complete problems.

3.1.3 Arithmetic circuits and the class CLS

Noting that PPAD ∩ PLS only seemed to have artificial complete problems, Daskalakis and
Papadimitriou [2011] defined a subclass of PPAD ∩ PLS with a more natural definition,
that combines PPAD and PLS nicely in a single problem. Unlike PPAD and PLS, CLS is
defined using arithmetic circuits.

Arithmetic circuits. An arithmetic circuit representing a function f : Rn → Rm, is a
circuit with n inputs and m outputs, and every internal node is a binary gate performing
an operation in {+,−,×,max,min, >} or a rational constant (modelled as 0-ary gate).
The comparison gate >, on input a, b ∈ R, outputs 1 if a > b, and 0 otherwise. For an
arithmetic circuit f , we let size(f) denote the size of the circuit, i.e., the number of bits
needed to describe the circuit, including the rational constants used therein. Obviously,
there are various different ways of defining arithmetic circuits, depending on which gates
we allow. The definition we use here is the same as the one used by Daskalakis and
Papadimitriou [2011] in their original definition of CLS.

These circuits are very natural, but they suffer from a subtle issue that seems to have
been overlooked in prior work. Using the multiplication gate, such an arithmetic circuit
can perform repeated squaring to construct numbers that have exponential representation
size with respect to the size of the circuit and the input to the circuit. In other words, the
circuit can construct numbers that are doubly exponential (or the inverse thereof). Thus,
in some cases, it might not be possible to evaluate the circuit on some input efficiently, i.e.,
in polynomial time in the size of the circuit and the given input.

This subtle issue was recently also noticed by Daskalakis and Papadimitriou, who
proposed a way to fix it in a corrigendum4 to the definition of CLS. Their modification
consists in having an additional input K (in unary) provided as part of the input such that
the evaluation of the arithmetic circuit—purportedly—only involves numbers of bit-size at
most K · size(x) on input x. Any point x where the arithmetic circuit fails to satisfy this
property is accepted as a solution.

In this paper, we use an alternative way to resolve the issue. We restrict our attention to
what we call well-behaved arithmetic circuits. An arithmetic circuit f is well-behaved if, on
any directed path that leads to an output, there are at most log(size(f)) true multiplication
gates. A true multiplication gate is one where both inputs are non-constant nodes of

4http://people.csail.mit.edu/costis/CLS-corrigendum.pdf

15

http://people.csail.mit.edu/costis/CLS-corrigendum.pdf


the circuit. In particular, note that we allow our circuits to perform multiplication by a
constant as often as needed without any restriction. Indeed, these operations cannot be
used to do repeated squaring.

It is easy to see that given an arithmetic circuit f , we can check in polynomial time
whether f is well-behaved. Furthermore, these circuits can always be efficiently evaluated.

Lemma 3.3. Let f be a well-behaved arithmetic circuit with n inputs. Then, for any
rational x ∈ Rn, f(x) can be computed in time poly(size(f), size(x)).

We provide a proof of this Lemma in Appendix A.
Using well-behaved arithmetic circuits, instead of the solution proposed by Daskalakis

and Papadimitriou, has the advantage that we do not need to add any additional inputs, or
any additional violation solutions to our problems. Indeed, the restriction to well-behaved
circuits can be enforced syntactically. Furthermore, we note that our problems defined
with well-behaved circuits easily reduce to the versions using the solution proposed by
Daskalakis and Papadimitriou (see Remark 1 below). Thus, this restriction only makes our
hardness results stronger. In fact, for CLS we show that restricting the circuits even further
to only use gates {+,−,max,min,×ζ} and rational constants (where ×ζ is multiplication
by a constant), so-called linear arithmetic circuits, does not make the class any weaker
(see Section 6.2).

For the problems we consider, it is quite convenient to use arithmetic circuits instead
of, say, polynomial-time Turing machines to represent the functions involved. Indeed, the
problems could also be defined with polynomial-time Turing machines, but that would
introduce some technical subtleties in the definitions (the polynomial used as an upper
bound on the running time of the machines would have to be fixed). The important
thing to note is that the Turing machine variants of the problems would continue to lie
in PPAD ∩ PLS. Thus, using arithmetic circuits just makes our hardness results stronger.
Note also that in the hard instances we construct, the arithmetic circuits only perform a
constant number of true multiplications (see the proof of Lemma 4.2).

Remark 1. The proof of Lemma 3.3 (in Appendix A) shows that if we evaluate a well-
behaved arithmetic circuit f on some input x, then, the value v(g) at any gate g of the
circuit will satisfy size(v(g)) ≤ 6 · size(f)3 · size(x). As a result, it immediately follows
that problems with well-behaved arithmetic circuits can be reduced to the versions of
the problems with the modification proposed by Daskalakis and Papadimitriou in the
corrigendum of the CLS paper. Indeed, it suffices to let K = 6 · size(f)3, which can be
written down in unary. In particular, this holds for the definition of CLS.

Remark 2. Our definition of well-behaved circuits is robust in the following sense. For
any k ∈ N, say that a circuit f is k-well-behaved if, on any path that leads to an output,
there are at most k · log(size(f)) true multiplication gates. In particular, a circuit is
well-behaved if it is 1-well-behaved. It is easy to see that for any fixed k ∈ N, if we are
given a circuit f that is k-well-behaved, we can construct in time poly(size(f)) a circuit
f ′ that is well-behaved and computes the same function as f . This can be achieved by
adding (size(f))k dummy gates to the circuit f , i.e., gates that do not alter the output
of the circuit. For example, we can add gates that repeatedly add 0 to the output of the
circuit.

Lipschitz-continuity. Note that even well-behaved arithmetic circuits might not yield
continuous functions, because of the comparison gate. Some of our problems require
continuity of the function, and the most convenient type of continuity for computational

16



purposes is Lipschitz-continuity. A function f : Rn → Rm is Lipschitz-continuous on the
domain D ⊆ Rn with Lipschitz-constant L, if for all x, y ∈ D

‖f(x)− f(y)‖ ≤ L · ‖x− y‖.

Violations and promise-preserving reductions. There is no known way of syntacti-
cally enforcing that an arithmetic circuit be Lipschitz-continuous. Thus, to ensure that
our problems indeed lie in TFNP, we allow any well-behaved circuit in the input, together
with a purported Lipschitz-constant L, and also accept a pair (x, y) witnessing a violation
of L-Lipschitz-continuity as a solution. This “trick” was also used by Daskalakis and
Papadimitriou [2011] for the definition of CLS.

One might wonder whether defining a problem in this way, with violations, makes it
harder than the (more natural) promise version, where we only consider inputs that satisfy
the promise (namely, L-Lipschitz-continuity). We show that for our problems, the promise
versions are just as hard. Indeed, the hard instances we construct for the KKT problem
satisfy the promises and we then obtain this for the other problems “for free”, because all
of our reductions are promise-preserving, as defined in [Fearnley et al., 2020, Definition 7].
A reduction (f, g) from problem R to problem S is promise-preserving, if for any instance
x of R, for any violation solution y of instance f(x) of S, it holds that g(x, y) is a violation
solution of instance x of R. Informally: any violation solution of S is mapped back to a
violation solution of R.

CLS. The class CLS is defined as the set of all TFNP problems that reduce to 3D-
Continuous-Localopt.

Definition 4. Continuous-Localopt:
Input:

• precision/stopping parameter ε > 0,

• well-behaved arithmetic circuits p : [0, 1]n → [0, 1] and g : [0, 1]n → [0, 1]n,

• Lipschitz constant L > 0.

Goal: Compute an approximate local optimum of p with respect to g. Formally,
find x ∈ [0, 1]n such that

p(g(x)) ≥ p(x)− ε.

Alternatively, we also accept one of the following violations as a solution:

• (p is not L-Lipschitz) x, y ∈ [0, 1]n such that |p(x)− p(y)| > L‖x− y‖,

• (g is not L-Lipschitz) x, y ∈ [0, 1]n such that ‖g(x)− g(y)‖ > L‖x− y‖.

For k ∈ N, we let kD-Continuous-Localopt denote the problem Continuous-
Localopt where n is fixed to be equal to k.

Continuous-Localopt is similar to Localopt, in the sense that we are looking for a
minimum of p over the domain [0, 1]n using the help of a function g. The membership of the
problem in PLS and in PPAD is easy to show [Daskalakis and Papadimitriou, 2011]. The
membership in PPAD follows from the observation that g is a Brouwer function and that
every (approximate) fixed point of g also yields a solution to the Continuous-Localopt
instance.

17



Note that the original definition of Continuous-Localopt in [Daskalakis and Pa-
padimitriou, 2011] uses arithmetic circuits without the “well-behaved” restriction. As
argued above, these circuits cannot always be evaluated efficiently, and so we instead
use well-behaved arithmetic circuits, to ensure that the problem lies in TFNP. The in-
teresting problems shown to lie in CLS by Daskalakis and Papadimitriou [2011] still
reduce to Continuous-Localopt even with this restriction on the circuits. It also
turns out that this restriction does not make the class any weaker, since we show that
2D-Continuous-Localopt with well-behaved arithmetic circuits is PPAD ∩ PLS-hard.

In this paper, we consider more general domains than just [0, 1]n and so we also define
a more general version of Continuous-Localopt.

Definition 5. General-Continuous-Localopt:
Input:

• precision/stopping parameter ε > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

• well-behaved arithmetic circuits p : Rn → R and g : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute an approximate local optimum of p with respect to g on domain D.
Formally, find x ∈ D such that

p(ΠD(g(x))) ≥ p(x)− ε.

Alternatively, we also accept one of the following violations as a solution:

• (p is not L-Lipschitz) x, y ∈ D such that |p(x)− p(y)| > L‖x− y‖,

• (g is not L-Lipschitz) x, y ∈ D such that ‖g(x)− g(y)‖ > L‖x− y‖.

Note that given (A, b) ∈ Rm×n ×Rm, it is easy to check whether the domain D = {x ∈
Rn : Ax ≤ b} is bounded and non-empty by using linear programming.

We use the projection ΠD in this definition, because it is not clear whether there is
some syntactic way of ensuring that g(x) ∈ D. Note that ΠD can be computed efficiently
by using convex quadratic programming, but it is unclear whether it can be computed
by our arithmetic circuits. When D = [0, 1]n, the projection ΠD can easily be computed
by arithmetic circuits, so ΠD is not needed in the definition of Continuous-Localopt.
Indeed, when D = [0, 1]n, we have [ΠD(x)]i = min{1,max{0, xi}} for all i ∈ [n] and
x ∈ Rn.

The definition of CLS using 3D-Continuous-Localopt, instead of 2D-Continuous-
Localopt, Continuous-Localopt, or General-Continuous-Localopt, leaves open
various questions about whether all these different ways of defining it are equivalent. We
prove that this is indeed the case. We discuss this, as well as the robustness of the definition
of CLS with respect to other modifications in Section 6.

3.2 Computational Problems from Nonlinear Optimization

In this section we formally define our three problems of interest. We begin by a brief
introduction to nonlinear optimization.

18



3.2.1 Background on Nonlinear Optimization

The standard problem of nonlinear optimization (also called nonlinear programming) can
be formulated as follows:

min
x∈Rn

f(x)

s.t. gi(x) ≤ 0 ∀i ∈ [m]

(1)

where f : Rn → R is the objective function to be minimised, and g1, . . . , gm : Rn → R
are the inequality constraint functions. It is assumed that f, gi are C1, i.e., continuously
differentiable. Throughout this paper we consider the minimisation problem, but our
results also apply to the maximisation problem, since we consider function classes that are
closed under negation.

Global minimum. Unfortunately, solving the optimisation problem (1), namely comput-
ing a global minimum, is intractable, even for relatively simple objective functions and
constraints ([Murty and Kabadi, 1987] in the context of quadratic programming, [Blum
and Rivest, 1992] in the context of neural networks).

Local minima. The most natural way to relax the requirement of a global minimum,
is to look for a local minimum instead. A point x ∈ Rn is a local minimum of (1), if it
satisfies all the constraints, namely x ∈ D, where D = {y ∈ Rn | gi(x) ≤ 0 ∀i ∈ [m]}, and if
there exists ε > 0 such that

f(x) ≤ f(y) ∀y ∈ D ∩Bε(x) (2)

where Bε(x) = {y ∈ Rn | ‖y − x‖ ≤ ε}.
However, while the notion of a local minimum is very natural, an important issue arises

when the problem is considered from the computational perspective. Looking at expression
(2), it not clear how to efficiently check whether a given point x is a local minimum or not.
Indeed, it turns out that deciding whether a given point is a local minimum is co-NP-hard,
even for simple objective and constraint functions [Murty and Kabadi, 1987]. Furthermore,
it was recently shown that computing a local minimum, even when it is guaranteed to
exist, cannot be done in polynomial time unless P = NP [Ahmadi and Zhang, 2020a], even
for quadratic functions where the domain is a polytope.

Necessary optimality conditions. In order to avoid this issue, one can instead look for
a point satisfying some so-called necessary optimality conditions. As the name suggests,
these are conditions that must be satisfied for any local minimum, but might also be
satisfied for points that are not local minima. Importantly, these conditions can usually be
checked in polynomial time. For this reason, algorithms attempting to solve (1), usually
try to find a point that satisfies some necessary optimality conditions instead.

KKT points. The most famous and simplest necessary optimality conditions are the
Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions are first-order conditions in
the sense that they only involve the first derivatives (i.e., the gradients) of the functions
in the problem statement. Formally, a point x ∈ Rn satisfies the KKT conditions if it is
feasible, i.e., x ∈ D = {y ∈ Rn | gi(x) ≤ 0∀i ∈ [m]} and if there exist µ1, . . . , µm ≥ 0 such
that

∇f(x) +

m∑
i=1

µi∇gi(x) = 0

and µigi(x) = 0 for all i ∈ [m]. This last condition ensures that µi > 0 can only occur if
gi(x) = 0, i.e., if the ith constraint is tight. In particular, if no constraint is tight at x,

19



then x is a KKT point if ∇f(x) = 0 (in other words, if it is a stationary point). A point
x that satisfies the KKT conditions is also called a KKT point. Note that given access
to ∇f(x), gi(x) and ∇gi(x), one can check in polynomial time whether x is a KKT point,
since this reduces to checking the feasibility of a linear program.

Every local minimum of (1) must satisfy the KKT conditions, as long as the problem
satisfies some so-called regularity conditions or constraint qualifications. In this paper,
we restrict our attention to linear constraints (i.e., gi(x) = 〈ai, x〉 − bi). In this case, it is
known that every local minimum is indeed a KKT point.

ε-KKT points. In practice, but also when studying the computational complexity in
the standard Turing model (because of issues of representation), it is unreasonable to
expect to find a point that exactly satisfies the KKT conditions. Instead, one looks for an
approximate KKT point. Given ε ≥ 0, we say that x ∈ Rn is an ε-KKT point if x ∈ D and
if there exist µ1, . . . , µm ≥ 0 such that∥∥∥∥∥∇f(x) +

m∑
i=1

µi∇gi(x)

∥∥∥∥∥ ≤ ε
and µigi(x) = 0 for all i ∈ [m]. In particular, if no constraint is tight at x, then x is an
ε-KKT point if ‖∇f(x)‖ ≤ ε. Since ‖ · ‖ denotes the `2-norm, we can check whether a
point is an ε-KKT point in polynomial time by solving a convex quadratic program. If
we instead use the `∞-norm or the `1-norm in the definition of ε-KKT point, then we can
check whether a point is an ε-KKT point in polynomial time by solving a linear program.

Since we focus on the case where D = {y ∈ Rn |Ay ≤ b}, (A, b) ∈ Rm×n × Rm, we can
rewrite the KKT conditions as follows. A point x ∈ Rn is an ε-KKT point if x ∈ D and if
there exist µ1, . . . , µm ≥ 0 such that∥∥∥∇f(x) +ATµ

∥∥∥ ≤ ε
and 〈µ,Ax− b〉 = 0. Note that this exactly corresponds to the earlier definition adapted
to this case. In particular, the condition “µi[Ax− b]i = 0 for all i ∈ [m]” is equivalent to
〈µ,Ax− b〉 = 0, since µi ≥ 0 and [Ax− b]i ≤ 0 for all i ∈ [m].

It is known that if there are no constraints, then it is NP-hard to decide whether a KKT
point exists [Ahmadi and Zhang, 2020b]. This implies that, in general, unless P = NP,
there is no polynomial-time algorithm that computes a KKT point of (1). However, this
hardness result does not say anything about one very important special case, namely when
the feasible region D is a compact set (in particular, when it is a bounded polytope defined
by linear constraints). Indeed, in that case, a KKT point is guaranteed to exist—since a
local minimum is guaranteed to exist—and easy to verify, and thus finding a KKT point is
a total search problem in the class TFNP. In particular, this means that, for compact D,
the problem of computing a KKT point cannot be NP-hard, unless NP = co-NP [Megiddo
and Papadimitriou, 1991]. In this paper, we provide strong evidence that the problem
remains hard for such bounded domains, and, in fact, even when the feasible region is as
simple as D = [0, 1]2.

3.2.2 The KKT problem

Given the definition of ε-KKT points in the previous section, we can formally define a
computational problem where the goal is to compute such a point. Our formalisation of this
problem assumes that f and ∇f are provided in the input as arithmetic circuits. However,

20



it is unclear if, given a circuit f , we can efficiently determine whether it corresponds to
a continuously differentiable function, and whether the circuit for ∇f indeed computes
its gradient. Thus, one has to either consider the promise version of the problem (where
this is guaranteed to hold for the input), or add violation solutions like in the definition of
Continuous-Localopt. In order to ensure that our problem is in TFNP, we formally
define it with violation solutions. However, we note that our hardness results also hold for
the promise versions.

The type of violation solution that we introduce to ensure that ∇f is indeed the gradient
of f is based on the following version of Taylor’s theorem, which is proved in Appendix B.2.

Lemma 3.4 (Taylor’s theorem). Let f : Rn → R be continuously differentiable and let
D ⊆ Rn be convex. If ∇f is L-Lipschitz-continuous (w.r.t. the `2-norm) on D, then for
all x, y ∈ D we have ∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ L

2
‖y − x‖2.

We are now ready to formally define our KKT problem.

Definition 6. KKT:
Input:

• precision parameter ε > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

• well-behaved arithmetic circuits f : Rn → R and ∇f : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute an ε-KKT point for the minimization problem of f on domain D.
Formally, find x ∈ D such that there exist µ1, . . . , µm ≥ 0 such that∥∥∥∇f(x) +ATµ

∥∥∥ ≤ ε
and 〈µ,Ax− b〉 = 0.
Alternatively, we also accept one of the following violations as a solution:

• (f or ∇f is not L-Lipschitz) x, y ∈ D such that

|f(x)− f(y)| > L‖x− y‖ or ‖∇f(x)−∇f(y)‖ > L‖x− y‖,

• (∇f is not the gradient of f) x, y ∈ D that contradict Taylor’s theorem
(Lemma 3.4), i.e.,∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ L

2
‖y − x‖2.

Note that all conditions on the input of the KKT problem can be checked in polynomial
time. In particular, we can use linear programming to check that the domain is bounded
and non-empty. With regards to a solution x ∈ D, there is no need to include the values
µ1, . . . , µm as part of a solution. Indeed, given x ∈ D, we can check in polynomial time

21



whether there exist such µ1, . . . , µm by solving the following convex quadratic program:

min
µ∈Rm

∥∥∇f(x) +ATµ
∥∥2

s.t. 〈µ,Ax− b〉 = 0
µ ≥ 0

If the optimal value of this program is strictly larger than ε2, then x is not an ε-KKT point.
Otherwise, it is an ε-KKT point and the optimal µ1, . . . , µm certify this. If we use the
`∞-norm or the `1-norm instead of the `2-norm for the definition of ε-KKT points, then
we can check whether a point is an ε-KKT point using the same approach (except that we
do not take the square of the norm, and we simply obtain a linear program). Whether we
use the `2-norm, the `∞-norm or the `1-norm for the definition of ε-KKT points has no
impact on the complexity of the KKT problem defined above. Indeed, is is easy to reduce
the various versions to each other.

Note that ε and L are provided in binary representation in the input. This is important,
since our hardness result in Theorem 4.1 relies on at least one of those two parameters
being exponential in the size of the input. If both parameters are provided in unary, then
the problem can be solved in polynomial time on domain [0, 1]n (see Lemma C.4).

3.2.3 Gradient Descent problems

In this section we formally define our two versions of the Gradient Descent problem. Since
we consider Gradient Descent on bounded domains D, we need to ensure that the next
iterate indeed lies in D. The standard way to handle this is by using so-called Projected
Gradient Descent, where the next iterate is computed using a standard Gradient Descent
step and then projected onto D using ΠD. Formally,

x(k+1) ← ΠD

(
x(k) − η∇f

(
x(k)

))
where η > 0 is the step size. Throughout, we only consider the case where the step size is
fixed, i.e., the same in all iterations.

Our first version of the problem considers the case where the stopping criterion is: stop
if the next iterate improves the objective function value by less than ε.

Definition 7. GD-Local-Search:
Input:

• precision/stopping parameter ε > 0,

• step size η > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

• well-behaved arithmetic circuits f : Rn → R and ∇f : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute any point where (projected) gradient descent for f on domain D
with fixed step size η terminates. Formally, find x ∈ D such that

f
(

ΠD

(
x− η∇f(x)

))
≥ f(x)− ε.

22



Alternatively, we also accept one of the following violations as a solution:

• (f or ∇f is not L-Lipschitz) x, y ∈ D such that

|f(x)− f(y)| > L‖x− y‖ or ‖∇f(x)−∇f(y)‖ > L‖x− y‖,

• (∇f is not the gradient of f) x, y ∈ D that contradict Taylor’s theorem
(Lemma 3.4), i.e.,∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ L

2
‖y − x‖2.

Our second version of the problem considers the stopping criterion: stop if the next
iterate is ε-close to the current iterate.

Definition 8. GD-Fixpoint:
Input:

• precision/stopping parameter ε > 0,

• step size η > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

• well-behaved arithmetic circuits f : Rn → R and ∇f : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute any point that is an ε-approximate fixed point of (projected)
gradient descent for f on domain D with fixed step size η. Formally, find x ∈ D
such that ∥∥x−ΠD

(
x− η∇f(x)

)∥∥ ≤ ε.
Alternatively, we also accept one of the following violations as a solution:

• (f or ∇f is not L-Lipschitz) x, y ∈ D such that

|f(x)− f(y)| > L‖x− y‖ or ‖∇f(x)−∇f(y)‖ > L‖x− y‖,

• (∇f is not the gradient of f) x, y ∈ D that contradict Taylor’s theorem
(Lemma 3.4), i.e.,∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ L

2
‖y − x‖2.

The comments made about the KKT problem in the previous section also apply to
these two problems. In particular, we show that even the promise versions of the two
Gradient Descent problems remain PPAD ∩ PLS-hard. In other words, the hard instances
we construct have no violations.

23



4 KKT is PPAD ∩PLS-hard

In this section, we prove our main technical result.

Theorem 4.1. KKT is PPAD ∩ PLS-hard, even when the domain is fixed to be the unit
square [0, 1]2. The hardness continues to hold even if one considers the promise-version of
the problem, i.e., only instances without violations.

In order to show this we provide a polynomial-time many-one reduction from Either-
Solution(End-of-Line,Iter) to KKT on the unit square.

Overview. Consider any instance of End-of-Line with 2n vertices and any instance
of Iter with 2m nodes. We construct a function f for the KKT problem as follows. We
first work on the domain [0, N ]2 with a grid G = {0, 1, 2, . . . , N}2, where N = 2n · 2m+4.
In the conceptually most interesting part of the reduction, we carefully specify the value
of the function f and the direction of −∇f (the direction of steepest descent) at all the
points of the grid G. Then, in the second part of the reduction, we show how to extend f
within every square of the grid, so as to obtain a continuously differentiable function on
[0, N ]2. Finally, we scale down the domain to [0, 1]2. We show that any ε-KKT point of
f (for some sufficiently small ε) must yield a solution to the End-of-Line instance or a
solution to the Iter instance.

4.1 Defining the Function on the Grid

Overview of the Embedding. We divide the domain [0, N ]2 into 2n × 2n big squares.
For any v1, v2 ∈ [2n], let B(v1, v2) denote the big square[

(v1 − 1)
N

2n
, v1

N

2n

]
×
[
(v2 − 1)

N

2n
, v2

N

2n

]
.

We use the following interpretation: the vertex v ∈ [2n] of the End-of-Line instance is
embedded at the centre of the big square B(v, v). Thus, the vertices are arranged along
the main diagonal of the domain. In particular, the trivial source 1 ∈ [2n] is located at the
centre of the big square that lies in the bottom-left corner of the domain and contains the
origin.

We seek to embed the edges of the End-of-Line instance in our construction. For
every directed edge (v1, v2) of the End-of-Line instance, we are going to embed a directed
path in the grid G that goes from the centre of B(v1, v1) to the centre of B(v2, v2). The
type of path used and the route taken by the path will depend on whether the edge (v1, v2)
is a “forward” edge or a “backward” edge. In more detail:

• if v1 < v2 (“forward” edge), then we will use a so-called green path that can only
travel to the right and upwards. The path starts at the centre of B(v1, v1) and moves
to the right until it reaches the centre of B(v2, v1). Then, it moves upwards until it
reaches its destination: the centre of B(v2, v2).

• if v1 > v2 (“backward” edge), then we will use a so-called orange path that can only
travel to the left and downwards. The path starts at the centre of B(v1, v1) and
moves to the left until it reaches the centre of B(v2, v1). Then, it moves downwards
until it reaches its destination: the centre of B(v2, v2).

24



Figure 6 illustrates the high-level idea of the embedding with an example.
For points of the grid G that are part of the “environment”, namely that do not lie on

a path, the function f will simply be defined by (x, y) 7→ x+ y. Thus, if there are no paths
at all, the only local minimum of f will be at the origin. However, a green path starts
at the origin and this will ensure that there is no minimum there. This green path will
correspond to the outgoing edge of the trivial source 1 ∈ [2n] of the End-of-Line instance.

The green paths will be constructed such that if one moves along a green path, the
value of f decreases, which means that we are improving the objective function value.
Furthermore, the value of f at any point on a green path will be below the value of f at
any point in the environment. Conversely, the orange paths will be constructed such that
if one moves along an orange path, the value of f increases, so the objective function value
becomes worse. Additionally, the value of f at any point on an orange path will be above
the value of f at any point in the environment.

As a result, if any path starts or ends in the environment, there will be a local minimum
or maximum at that point (and thus a KKT point). The only exception is the path
corresponding to the outgoing edge of the trivial vertex 1 ∈ [2n]. The start of that path
will not create a local minimum or maximum. Thus, in the example of Figure 6, there will
be KKT points in B(3, 3), B(7, 7) and B(8, 8), but not in B(1, 1).

Recall that every vertex v ∈ [2n] has at most one incoming edge and at most one
outgoing edge. Thus, for any vertex v 6= 1, one of the following cases occurs:

• v is an isolated vertex. In this case, the big square B(v, v) will not contain any path
and will fully be in the environment, thus not containing any KKT point. Example:
vertex 5 in Figure 6.

• v has one outgoing edge and no incoming edge. In this case, the big square B(v, v)
will contain the start of a green or orange path. There will be a KKT point at the
start of the path, which is fine, since v is a (non-trivial) source of the End-of-Line
instance. Example: vertex 7 in Figure 6.

• v has one incoming edge and no outgoing edge. In this case, the big square B(v, v)
will contain the end of a green or orange path. There will be a KKT point at the
end of the path, which is again fine, since v is a sink of the End-of-Line instance.
Example: vertices 3 and 8 in Figure 6.

• v has one outgoing and one incoming edge. In this case, there are two sub-cases:

– If both edges yield paths of the same colour, then we will be able to “connect”
the two paths at the centre of B(v, v) and avoid introducing a KKT point there.
Example: vertex 4 in Figure 6.

– If one of the paths is green and the other one is orange, then there will be a
local maximum or minimum in B(v, v) (and thus a KKT point). It is not too
hard to see that this is in fact unavoidable. This is where we use the main new
“trick” of our reduction: we “hide” the exact location of the KKT point inside
B(v, v) in such a way, that finding it requires solving a PLS-complete problem,
namely the Iter instance. This is achieved by introducing a new gadget at the
point where the two paths meet. We call this the PLS-Labyrinth gadget.

The construction of the green and orange paths is described in detail in Section 4.1.3.
The PLS-Labyrinth gadget is described in detail in Section 4.1.4.

25



1

2

3

4

5

6

7

8

B(4, 1)

B(8, 2)

B(6, 4)

B(3, 7)

B(2, 6)

Figure 6: Example of the high-level idea for the embedding of an End-of-Line instance in the
domain. In this example we are embedding an End-of-Line instance with the set of vertices
[8] (i.e., n = 3) and the directed edges: (1, 4), (2, 8), (4, 6), (6, 2) and (7, 3) (see Figure 1). The
domain is divided into 8× 8 big squares, and the big squares corresponding to the vertices of the
End-of-Line graph are coloured in grey. The solutions of this End-of-Line instance are the
vertices 3, 7 and 8.

26



4.1.1 Pre-processing

Consider any instance ((S, P ), C) of Either-Solution(End-of-Line,Iter), i.e., S, P :
[2n] → [2n] is an instance of End-of-Line and C : [2m] → [2m] is an instance of Iter.
Without loss of generality, we can assume that these instances satisfy the following:

1. The successor and predecessor circuits S, P agree on all edges. Formally, for all
v ∈ [2n], it holds that

• if S(v) 6= v, then P (S(v)) = v, and

• if P (v) 6= v, then S(P (v)) = v.

This property can be ensured by a simple pre-processing step. We modify the circuit
S, so that before outputting S(v), it first checks whether (S(v) 6= v)∧ (P (S(v)) 6= v),
and, if this holds, outputs v instead of S(v). It is easy to see that this new circuit for
S can be constructed in polynomial time in the size of S and P . We also perform
the analogous modification for P . It is easy to check that this does not introduce
any new solutions.

2. For all u ∈ [2m] we have C(u) ≥ u. We can ensure that this holds by modifying
the circuit C, so that before outputting C(u), it checks whether C(u) < u, and, if
this is the case, outputs u instead of C(u). Again, the modification can be done in
polynomial time and does not introduce new solutions, nor does it stop the problem
from being total.

4.1.2 The Value Regimes

Recall that we want to specify the value of f and −∇f (the direction of steepest descent)
at all points on the grid G = {0, 1, 2, . . . , N}2, where N = 2n · 2m+4. In order to specify
the value of f , it is convenient to define value regimes. Namely, if a point (x, y) ∈ G is in:

• the red value regime, then f(x, y) := x− y + 4N + 20.

• the orange value regime, then f(x, y) := −x− y + 4N + 10.

• the black value regime, then f(x, y) := x+ y.

• the green value regime, then f(x, y) := −x− y − 10.

• the blue value regime, then f(x, y) := x− y − 2N − 20.

Note that at any point on the grid, the value regimes are ordered: red > orange > black >
green > blue. Furthermore, it is easy to check that the gap between any two regimes at
any point is at least 10. Figure 7 illustrates the main properties of the value regimes.

The black value regime will be used for the environment. Thus, unless stated otherwise,
every grid point is coloured in black, i.e., belongs to the black value regime. Furthermore,
unless stated otherwise, at every black grid point (x, y), the direction of steepest descent,
i.e., −∇f(x, y), will point to the left.5 The only exceptions to this are grid points that lie
in paths, or grid points that lie on the left boundary of the domain (i.e., x = 0).

5Notice that that is not exactly the same as the negative gradient of the “black regime function”
(x, y) 7→ x + y, which would point south-west. Nevertheless, as we show later, this is enough to ensure that
the bicubic interpolation that we use, does not introduce any points with zero gradient in a region of the
environment.

27



x

y

Figure 7: The value regimes. On the left, the colours are ordered according to increasing value,
from left to right. On the right, we indicate for each value regime, the direction in which it improves,
i.e., decreases, in the x-y-plane.

4.1.3 Embedding the End-of-Line Instance: The Green and Orange Paths

The grid G = {0, 1, 2, . . . , N}2 subdivides every big square B(v1, v2) into 2m+4×2m+4 small
squares. The width of the paths we construct will be two small squares. This corresponds
to a width of three grid points.

Green paths. When a green path moves to the right, the two lower grid points will be
coloured in green, and the grid point at the top will be in black. Figure 8(a) shows a big
square that is traversed by a green path from left to right. Such a big square is said to be
of type G1. The black arrows indicate the direction of −∇f at every grid point.

When a green path moves upwards, the two right-most grid points will be coloured in
green, and the grid point on the left will be in black. Figure 8(b) shows a big square of
type G2, namely one that is traversed by a green path from the bottom to the top.

Recall that a green path implementing an edge (v1, v2) (where v1 < v2) comes into the
big square B(v2, v1) from the left and leaves at the top. Thus, the path has to “turn”.
Figure 8(c) shows how this turn is implemented. The big square B(v2, v1) is said to be of
type G3.

If a vertex v ∈ [2n] has one incoming edge (v1, v) and one outgoing edge (v, v2) such
that v1 < v < v2, then both edges will be implemented by green paths. The green path
corresponding to (v1, v) will enter B(v, v) from the bottom and stop at the centre of B(v, v).
The green path corresponding to (v, v2) will start at the centre of B(v, v) and leave the
big square on the right. In order to avoid introducing any KKT points in B(v, v) (since
v is not a solution of the End-of-Line instance), we will connect the two paths at the
centre of B(v, v). This will be achieved by a simple turn, as shown in Figure 8(d). The big
square B(v, v) is said to be of type G4.

If a vertex v ∈ [2n]\{1} has one outgoing edge (v, v2) such that v < v2, and no incoming
edge, then this will yield a green path starting at the centre of B(v, v) and going to the
right, as shown in Figure 8(e). The big square B(v, v) is said to be of type G5 in that case.
As we will show later, there will be a KKT point at the source of that green path. On the
other hand, if a vertex v ∈ [2n] \ {1} has one incoming edge (v1, v) such that v1 < v, and
no outgoing edge, then this will yield a green path coming from the bottom and ending at
the centre of B(v, v), as shown in Figure 8(f). The big square B(v, v) is said to be of type
G6 in that case. As we will show later, there will be a KKT point at the sink of that green
path.

Orange paths. The structure of orange paths is, in a certain sense, symmetric to the
structure of green paths. When an orange path moves to the left, the two upper grid points
will be coloured in orange, and the grid point at the bottom will be in black. Figure 9(a)
shows a big square that is traversed by an orange path from right to left. Such a big square

28



(a) [G1] Green path traversing big square from left
to right.

(b) [G2] Green path traversing big square from
bottom to top.

(c) [G3] Green path entering big square from the
left, turning, and leaving at the top.

(d) [G4] Green path entering big square from the
bottom, turning, and leaving on the right.

(e) [G5] Source: green path starting at the centre
of big square and leaving on the right.

(f) [G6] Sink: green path entering big square from
the bottom and ending at the centre.

Figure 8: Construction of the green paths. The figures show various types of big squares containing
different portions of green paths. In these illustrations, the big squares are assumed to have size
8× 8 instead of 2m+4 × 2m+4.

29



is said to be of type O1.
When an orange path moves downwards, the two left-most grid points will be coloured

in orange, and the grid point on the right will be in black. Figure 9(b) shows a big square
of type O2, namely one that is traversed by an orange path from top to bottom.

An orange path implementing an edge (v1, v2) (where v1 > v2) comes into the big
square B(v2, v1) from the right and leaves at the bottom. This turn is implemented as
shown in Figure 9(c). The big square B(v2, v1) is said to be of type O3.

If a vertex v ∈ [2n] has one incoming edge (v1, v) and one outgoing edge (v, v2) such
that v1 > v > v2, then both edges will be implemented by orange paths. The orange path
corresponding to (v1, v) will enter B(v, v) from the top and stop at the centre of B(v, v).
The orange path corresponding to (v, v2) will start at the centre of B(v, v) and leave the
big square on the left. As above, we avoid introducing a KKT point by connecting the two
paths at the centre of B(v, v). This is achieved by the turn shown in Figure 9(d). The big
square B(v, v) is said to be of type O4.

If a vertex v ∈ [2n]\{1} has one outgoing edge (v, v2) such that v > v2, and no incoming
edge, then this will yield an orange path starting at the centre of B(v, v) and going to the
left, as shown in Figure 9(e). The big square B(v, v) is said to be of type O5 in that case.
As we will show later, there will be a KKT point at the source of that orange path. On
the other hand, if a vertex v ∈ [2n] \ {1} has one incoming edge (v1, v) such that v1 > v,
and no outgoing edge, then this will yield an orange path coming from the top and ending
at the centre of B(v, v), as shown in Figure 9(f). The big square B(v, v) is said to be of
type O6 in that case. As we will show later, there will be a KKT point at the sink of that
orange path.

Crossings. Note that, by construction, green paths only exist below the diagonal, and
orange paths only exist above the diagonal. Thus, there is no point where an orange path
crosses a green path. However, there might exist points where green paths cross, or orange
paths cross. First of all, note that it is impossible to have more than two paths traversing
a big square, and thus any crossing involves exactly two paths. Furthermore, no crossing
can occur in big squares where a “turn” occurs, since, in that case, the turn connects the
two paths.

The only way for two green paths to cross is the case where a green path traverses a
big square from left to right, and a second green path traverses the same big square from
bottom to top. In that case, we say that the big square is of type G7. This problem always
occurs when one tries to embed an End-of-Line instance in a two-dimensional domain.
Chen and Deng [2009] proposed a simple, yet ingenious, trick to resolve this issue. The
idea is to locally re-route the two paths so that they no longer cross. This modification has
the following two crucial properties: a) it is completely local, and b) it does not introduce
any new solution (in our case a KKT point). Figure 10(a) shows how this modification is
implemented for crossing green paths, i.e., what our construction does for big squares of
type G7.

The same issue might arise for orange paths. By the same arguments as above, this can
only happen when an orange path traverses a big square from right to left, and a second
orange path traverses the same big square from top to bottom. In that case, we say that
the big square is of type O7. Figure 10(b) shows how the issue is locally resolved in that
case, i.e., what our construction does for big squares of type O7.

Boundary and origin squares. Any big square that is not traversed by any path
(including all big squares B(v, v) where v is an isolated vertex of the End-of-Line

30



(a) [O1] Orange path traversing big square from
right to left.

(b) [O2] Orange path traversing big square from
top to bottom.

(c) [O3] Orange path entering big square from the
right, turning, and leaving at the bottom.

(d) [O4] Orange path entering big square from the
top, turning, and leaving on the left.

(e) [O5] Source: orange path starting at the centre
of big square and leaving on the left.

(f) [O6] Sink: orange path entering big square from
the top and ending at the centre.

Figure 9: Construction of the orange paths. The figures show various types of big squares
containing different portions of orange paths. In these illustrations, the big squares are assumed to
have size 8× 8 instead of 2m+4 × 2m+4.

31



(a) [G7] Crossing of green paths.

(b) [O7] Crossing of orange paths.

Figure 10: Crossing gadgets for green and orange paths. In these two illustrations, the big squares
are assumed to have size 16× 16 instead of 2m+4 × 2m+4.

32



instance), will have all its grid points coloured in black, and −∇f pointing to the left.
These big squares, which are said to be of type E1, are as represented in Figure 11(a). The
only exceptions to this rule are the big squares B(1, v) for all v ∈ [2n] \ {1}. In those big
squares, which are said to be of type E2, the grid points on the left boundary have −∇f
pointing downwards, instead of to the left. The rest of the grid points have −∇f pointing
to the left as before. Note that none of these big squares is ever traversed by a path, so
they are always as shown in Figure 11(b).

(a) [E1] Big square not traversed by any path. (b) [E2] Big square on left boundary of domain.

Figure 11: Big squares not traversed by any path. In these two illustrations, the big squares are
assumed to have size 8× 8 instead of 2m+4 × 2m+4.

The big square B(1, 1) is special and we say that it is of type S. Since it corresponds to
the trivial source of the End-of-Line instance, it has one outgoing edge (which necessarily
corresponds to a green path) and no incoming edge. Normally, this would induce a KKT
point at the centre of B(1, 1) (as in Figure 8(e)). Furthermore, recall that, by the definition
of the black value regime, there must also be a KKT point at the origin, if it is coloured
in black. By a careful construction (which is very similar to the one used by Hubáček
and Yogev [2017] for Continuous-Localopt) we can ensure that these two KKT points
neutralise each other. In other words, instead of two KKT points, there is no KKT point
at all in B(1, 1). The construction for B(1, 1) is shown in Figure 12.

Figure 13 shows the whole construction for a small example where n = 1 and big
squares have size 8× 8 (instead of 2m+4 × 2m+4).

Green and orange paths meeting. Our description of the construction is almost
complete, but there is one crucial piece missing. Indeed, consider any vertex v that has
one incoming edge (v1, v) and one outgoing edge (v, v2) such that: A) v1 < v and v2 < v,
or B) v1 > v and v2 > v. As it stands, a green path and an orange path meet at the
centre of B(v, v) which means that there is a local minimum or maximum at the centre
of B(v, v), and thus a KKT point. However, v is not a solution to the End-of-Line
instance. Even though we cannot avoid having a KKT point in B(v, v), we can “hide” it,
so that finding it requires solving the Iter instance. This is implemented by constructing a
PLS-Labyrinth gadget at the point where the green and orange paths meet. Figures 14(a)
and 14(b) show where this PLS-Labyrinth gadget is positioned inside a big square of type
LA (namely when case A above occurs) and a big square of type LB (namely when case B
above occurs) respectively. The PLS-Labyrinth gadget can only be positioned at a point

33



Figure 12: [S] Construction for big square B(1, 1) (for size 8× 8 instead of 2m+4 × 2m+4).

Figure 13: [X] Full construction for a small example, in particular showing the whole boundary.
Here n = 1 and big squares have size 8× 8 (instead of 2m+4 × 2m+4).

34



PLS
Labyrinth

A

(a) [LA] Position of PLS-Labyrinth gadget in big
square of type LA.

PLS
Labyrinth

B

(b) [LB] Position of PLS-Labyrinth gadget in big
square of type LB.

Figure 14: Position of PLS-Labyrinth gadget in big squares of type LA and LB.

where a green path and an orange path meet. In particular, it cannot be used to “hide” a
KKT point occurring at a source or sink of a green or orange path, i.e., at a solution of
the End-of-Line instance.

In our construction, every big square is of type G1, G2, . . . , G7, O1, O2, . . . , O7, E1,
E2, S, LA or LB. Note that we can efficiently determine the type of a given big square, if
we have access to the End-of-Line circuits S and P .

4.1.4 Embedding the ITER Instance: The PLS-Labyrinth

PLS-Labyrinth. We begin by describing the PLS-Labyrinth gadget for case A, i.e., v
has one incoming edge (v1, v) and one outgoing edge (v, v2) such that v1 < v and v2 < v.
In particular, B(v, v) is of type LA. The PLS-Labyrinth gadget has size 2m+2× 2m+2 small
squares and is positioned in the big square B(v, v) as shown in Figure 14(a). Note, in
particular, that the bottom side of the gadget is adjacent to the orange path, and the
bottom-right corner of the gadget lies just above the point where the green and orange
paths intersect (which occurs at the centre of B(v, v)). Finally, observe that since B(v, v)
has 2m+4 × 2m+4 small squares, there is enough space for the PLS-Labyrinth gadget.

For convenience, we subdivide the PLS-Labyrinth gadget into 2m× 2m medium squares.
Thus, every medium square is made out of 4 × 4 small squares. We index the medium
squares as follows: for u1, u2 ∈ [2m], let M(u1, u2) denote the medium square that is the
u2th from the bottom and the u1th from the right. Thus, M(1, 1) corresponds to the
medium square that lies at the bottom-right of the gadget (and is just above the intersection
of the paths). Our construction will create the following paths inside the PLS-Labyrinth
gadget:

• For every u ∈ [2m] such that C(u) > u, there is an orange-blue path starting at
M(u, 1) and moving upwards until it reaches M(u, u).

• For every u ∈ [2m] such that C(u) > u and C(C(u)) > C(u), there is a blue path
starting at M(u, u) and moving to the left until it reaches M(C(u), u).

35



LA1

LA2

LA3 LA4

LA5

LA5LA6

LA7

LAX1 LAX2

Figure 15: Map of the PLS-Labyrinth for case A corresponding to the Iter example of Figure 2.
Shaded squares are the medium squares corresponding to the nodes of Iter. The horizontal blue
lines (pointing left) correspond to the 3 edges in Figure 2 that go out from non-solutions, and we
do not use similar lines going out from solutions (nodes 3 and 7). We have also indicated the parts
LA1-LA6, and LAX1-LAX2, that are constructed in Figure 16.

Figure 15 shows a high-level overview of how the Iter instance is embedded in the PLS-
Labyrinth. Note that if C(u) > u and C(C(u)) > C(u), then the blue path starting at
M(u, u) will move to the left until M(C(u), u) where it will reach the orange-blue path
moving up from M(C(u), 1) to M(C(u), C(u)) (which exists since C(C(u)) > C(u)). Thus,
every blue path will always “merge” into some orange-blue path. On the other hand,
some orange-blue paths will stop in the environment without merging into any other path.
Consider any u ∈ [2m] such that C(u) > u. The orange-blue path for u stops at M(u, u). If
C(C(u)) > C(u), then there is a blue path starting there, so the orange-blue path “merges”
into the blue path. However, if C(C(u)) ≤ C(u), i.e., C(C(u)) = C(u), there is no blue
path starting at M(u, u) and the orange-blue path just stops in the environment. Thus, the
only place in the PLS-Labyrinth where a path can stop in the environment is in a medium
square M(u, u) such that C(u) > u and C(C(u)) = C(u). This corresponds exactly to the
solutions of the Iter instance C. In our construction, we will ensure that KKT points can
indeed only occur at points where a path stops without merging into any other path.

36



Orange-blue paths. An orange-blue path moves from M(u, 1) upwards to M(u, u) (for
some u ∈ [2m] such that C(u) > u) and has a width of two small squares. The left-most
point is coloured in orange and the two points on the right are blue. Figure 16(a) shows
a medium square that is being traversed by the orange-blue path, i.e., a medium square
M(u,w) where w < u. We say that such a medium square M(u,w) is of type LA1. When
the orange-blue path reaches M(u, u), it either “turns” to the left and creates the beginning
of a blue path (medium square of type LA4, Figure 16(d)), or it just stops there (medium
square of type LA2, Figure 16(b)). The case where the orange-blue path just stops, occurs
when there is no blue path starting at M(u, u). Note that, in that case, u is a solution of
the Iter instance, and so it is acceptable for a medium square of type LA2 to contain a
KKT point.

The orange-blue path begins in M(u, 1) which lies just above the orange path. In
fact, the beginning of the orange-blue path is adjacent to the orange path as shown in
Figure 16(g). This is needed, since if the orange-blue path started in the environment, the
point coloured orange would yield a local maximum and thus a KKT point.

The beginning of the orange-blue path for u = 1 is special, since, in a certain sense,
this path is created by the intersection of the green and orange paths. Figure 16(h) shows
how the intersection is implemented and how exactly it is adjacent to M(1, 1). Note that
M(1, 1) is just a standard “turn”, i.e., a medium square of type LA4.

Blue paths. A blue path starts in M(u, u) for some u ∈ [2m] such that C(u) > u and
C(C(u)) > C(u). It moves from right to left and has a width of two small squares. All three
points on the path are coloured blue and the direction of steepest descent points to the left.
Figure 16(c) shows a medium square traversed by a blue path. Such a medium square is
said to be of type LA3. As mentioned above, the blue path starts at M(u, u) which of type
LA4 (a “turn”). When the blue path reaches M(C(u), u), it merges into the orange-blue
path going from M(C(u), 1) to M(C(u), C(u)). This merging is straightforward and is
implemented as shown in Figure 16(f). The medium square M(C(u), u) is then said to be
of type LA5.

Crossings. Note that two orange-blue paths cannot cross, and similarly two blue paths
can also not cross. However, a blue path going from M(u, u) to M(C(u), u) can cross
many other orange-blue paths, before it reaches and merges into its intended orange-blue
path. Fortunately, these crossings are much easier to resolve than earlier. Indeed, when a
blue path is supposed to cross an orange-blue path, it can simply merge into it and restart
on the other side. The important thing to note here is that, while a blue path cannot
stop in the environment (without creating a KKT point), it can start in the environment.
Figure 16(e) shows how this is implemented. In particular, we use a medium square of type
LA5 for the merging, and a medium square of type LA6 for the re-start of the blue path.

Note that if the blue path has to cross more than one orange-blue path in immediate
succession, then it will simply merge into the first one it meets, and restart after the last
one (i.e., as soon as it reaches a medium square that is not traversed by an orange-blue
path).

Finally, we say that a medium square is of type LA7, if it does not contain any path
at all. Medium squares of type LA7 are like the environment, i.e., all the grid points are
coloured black and the arrows of steepest descent point to the left. In our construction,
every medium square in the PLS-Labyrinth gadget is of type LA1, LA2, . . . , LA6, or LA7.
It is easy to check that the type of a given medium square can be determined efficiently,
given access to the Iter circuit C.

37



(a) [LA1] Orange-blue path
traversing medium square.

(b) [LA2] Orange-blue path end-
ing in medium square.

(c) [LA3] Blue path traversing
medium square.

(d) [LA4] Orange-blue path
turning in medium square and
creating start of blue path.

(e) [LA6] Blue path crossing over orange-blue path. Medium square
of type LA6 indicated in grey.

(f) [LA5] Blue path merging into orange-blue
path. Medium square of type LA5 indicated
in grey.

(g) [LAX1] Start of orange-
blue path, adjacent to or-
ange path.

(h) [LAX2] Start of orange-
blue path for u = 1, adjacent
to the intersection of green
and orange path. M(1, 1) is
indicated in grey.

Figure 16: Construction of blue and orange-blue paths in the PLS-Labyrinth gadget inside a big
square of type LA.

38



The PLS-Labyrinth gadget for case B is, in a certain sense, symmetric to the one
presented above. Indeed, it suffices to perform a point reflection (in other words, a rotation
by 180 degrees) with respect to the centre of B(v, v), and a very simple transformation of
the colours. With regards to the final interpolated function, this corresponds to rotating
B(v, v) by 180 degrees around its centre and multiplying the output of the function by
−1. Let φ : B(v, v)→ B(v, v) denote rotation by 180 degrees around the centre of B(v, v).
Then, the direction of steepest descent at some grid point (x, y) ∈ B(v, v) in case B is
simply the same as the direction of steepest descent at φ(x, y) in case A. The colour of
(x, y) in case B is obtained from the colour of φ(x, y) in case A as follows:

• black remains black,

• green becomes orange, and vice-versa,

• blue becomes red, and vice-versa.

Figure 17 shows a high-level overview of the PLS-Labyrinth gadget for case B. We obtain
corresponding medium squares of type LB1, LB2, . . . , LB7. The analogous illustrations
for case B are shown in Figure 18.

4.2 Extending the Function to the Rest of the Domain

Up to this point we have defined the function f and the direction of its gradient at
all grid points of G. In order to extend f to the whole domain [0, N ]2, we use bicubic
interpolation (see e.g. [Russell, 1995] or the corresponding Wikipedia article6). Note that
the more standard and simpler bilinear interpolation (used in particular by Hubáček and
Yogev [2017]) yields a continuous function, but not necessarily a continuously differentiable
function. On the other hand, bicubic interpolation ensures that the function will indeed be
continuously differentiable over the whole domain [0, N ]2.

We use bicubic interpolation in every small square of the grid G. Consider any small
square and let (x, y) ∈ [0, 1]2 denote the local coordinates of a point inside the square.
Then, the bicubic interpolation inside this square will be a polynomial of the form:

f(x, y) =

3∑
i=0

3∑
j=0

aijx
iyj (3)

where the coefficients aij are computed as follows
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33

 (4)

=


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

 ·

f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)
f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)
fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)
fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)

 ·


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1


Here fx and fy denote the partial derivatives with respect to x and y respectively. Similarly,
fxy denotes the second order partial derivative with respect to x and y. It remains to
explain how we set the values of f, fx, fy and fxy at the four corners of the square:

6https://en.wikipedia.org/wiki/Bicubic_interpolation

39

https://en.wikipedia.org/wiki/Bicubic_interpolation


LB1

LB2

LB3LB4

LB5

LB5 LB6

LB7

LBX1LBX2

Figure 17: Map of the PLS-Labyrinth for case B corresponding to the Iter example of Figure 2.
Shaded squares are the medium squares corresponding to the nodes of Iter. We have also indicated
the parts LB1-LB6, and LBX1-LBX2, that are constructed in Figure 18.

40



(a) [LB1] Red-green path
traversing medium square.

(b) [LB2] Red-green path ending
in medium square.

(c) [LB3] Red path traversing
medium square.

(d) [LB4] Red-green path turn-
ing in medium square and creat-
ing start of red path.

(e) [LB6] Red path crossing over red-green path. Medium square of
type LB6 indicated in grey.

(f) [LB5] Red path merging into red-green
path. Medium square of type LB5 indicated
in grey.

(g) [LBX1] Start of red-
green path, adjacent to
green path.

(h) [LBX2] Start of red-green
path for u = 1, adjacent to
the intersection of orange and
green path. M(1, 1) is indi-
cated in grey.

Figure 18: Construction of red and red-green paths in the PLS-Labyrinth gadget inside a big
square of type LB.

41



• The values f(0, 0), f(0, 1), f(1, 0) and f(1, 1) are set according to the value regimes
in our construction.

• The values of fx(0, 0), fx(0, 1), fx(1, 0), fx(1, 1), fy(0, 0), fy(0, 1), fy(1, 0) and fy(1, 1)
are set based on the direction of steepest descent (−∇f) in our construction, with a
length multiplier of δ = 1/2. For example, if the arrow of steepest descent at (0, 1) is
pointing to the left, then we set fx(0, 1) = δ and fy(0, 1) = 0. If it is pointing up,
then we set fx(0, 1) = 0 and fy(0, 1) = −δ.

• We always set fxy(0, 0) = fxy(0, 1) = fxy(1, 0) = fxy(1, 1) = 0.

By using this interpolation procedure in each small square, we obtain a function
f : [0, N ]2 → R. In fact, we can even extend the function to points (x, y) ∈ R2 \ [0, N ]2

by simply using the interpolated polynomial obtained for the small square that is closest
to (x, y). This will be done automatically by our construction of the arithmetic circuit
computing f and it will ensure that the gradient is well-defined even on the boundary of
[0, N ]2.

Lemma 4.2. The function f : R2 → R we obtain by bicubic interpolation has the following
properties:

• it is continuously differentiable on R2,

• f and its gradient ∇f are Lipschitz-continuous on [0, N ]2 with Lipschitz-constant
L = 218N ,

• well-behaved arithmetic circuits computing f and ∇f can be constructed in polynomial
time (in the size of the circuits S, P and C).

Proof. Regarding the first point, see, e.g., [Russell, 1995].

Lipschitz-continuity. In order to prove the second point, we first show that f and ∇f
are L-Lipschitz-continuous in every small square of the grid. Consider any small square.
In our construction, the values of f, fx, fy, fxy used in the computation of the coefficients
aij are clearly all upper bounded by 23N in absolute value. Thus, using Equation (4), it is
easy to check that |aij | ≤ 210N for all i, j ∈ {0, 1, 2, 3}. Furthermore, note that the partial
derivatives of f inside the small square can be expressed as:

∂f

∂x
(x, y) =

3∑
i=1

3∑
j=0

i · aijxi−1yj
∂f

∂y
(x, y) =

3∑
i=0

3∑
j=1

j · aijxiyj−1 (5)

using the local coordinates (x, y) ∈ [0, 1]2 inside the small square. Finally, it is easy to
check that the monomials xiyj , i, j ∈ {0, 1, 2, 3}, are all 6-Lipschitz continuous over [0, 1]2.
Putting everything together and using Equation (3) and Equation (5), it follows that f and
∇f are Lipschitz-continuous (w.r.t. the `2-norm) with Lipschitz constant L = 218N inside
the small square. Note that the change from local coordinates to standard coordinates is
just a very simple translation that does not impact the Lipschitzness of the functions.

Since f and ∇f are L-Lipschitz-continuous inside every small square and continuous
over all of [0, N ]2, it follows that they are in fact L-Lipschitz-continuous over the whole
domain [0, N ]2. Indeed, consider any points z1, z2 ∈ [0, N ]2. Then, there exists ` ∈ N
such that the segment z1z2 can be subdivided into z1w1w2 . . . w`z2 so that each of the

42



segments z1w1, w1w2, . . . , w`−1w`, w`z2 lies within a small square. For ease of notation,
we let w0 := z1 and w`+1 := z2. Then, we can write

‖∇f(z1)−∇f(z2)‖ ≤
∑̀
i=0

‖∇f(wi)−∇f(wi+1)‖ ≤ L
∑̀
i=0

‖wi − wi+1‖ = L‖z1 − z2‖

where we used the fact that
∑`

i=0 ‖wi−wi+1‖ = ‖z1− z2‖, since w0w1w2 . . . w`w`+1 is just
a partition of the segment z1z2. The exact same argument also works for f .

Arithmetic circuits. Before showing how to construct the arithmetic circuits for f and
∇f , we first construct a Boolean circuit B that will be used as a sub-routine. The Boolean
circuit B receives as input a point (x, y) on the grid G = {0, 1, . . . , N}2 and outputs the
colour (i.e., value regime) and steepest descent arrow at that point. It is not too hard to
see that the circuit B can be constructed in time that is polynomial in the sizes of the
circuits S, P and C. In more detail, it performs the following operations:

1. Compute End-of-Line-vertices v1, v2 ∈ [2n] such that (x, y) lies in the big square
B(v1, v2).

2. Using the End-of-Line circuits S and P determine the exact type of B(v1, v2),
namely one of the following: G1-G7, O1-O7, E1, E2, S, LA or LB.

3. If the type of B(v1, v2) is not LA or LB, then we know the exact structure of B(v1, v2)
and can easily return the colour and arrow at (x, y).

4. If the type of B(v1, v2) is LA or LB, then first determine whether (x, y) lies in the
PLS-Labyrinth inside B(v1, v2) or not.

5. If (x, y) does not lie in the PLS-Labyrinth, then we can easily determine the colour
and arrow at (x, y), since we know the exact structure of B(v1, v2) except the inside
of the PLS-Labyrinth.

6. If (x, y) lies in the PLS-Labyrinth, then we can compute Iter-vertices u1, u2 ∈ [2m]
such that (x, y) lies in the medium square M(u1, u2) of the PLS-Labyrinth inside
B(v1, v2).

7. Using the Iter circuit C determine the type of M(u1, u2), namely one of the following:
LA1-LA7, LB1-LB7. Given the type of M(u1, u2), we then know the exact structure
of M(u1, u2) and can in particular determine the colour and arrow at (x, y).

The arithmetic circuits for f and ∇f are then constructed to perform the following
operations on input (x, y) ∈ [0, N ]2:

1. Using the comparison gate < and binary search, compute the bits representing
(x̂, ŷ) ∈ {0, 1, . . . , N − 1}2: a grid point such that (x, y) lies in the small square that
has (x̂, ŷ) as its bottom left corner.

2. Simulate the Boolean circuit B using arithmetic gates to compute (a bit representa-
tion) of the colour and arrow at the four corners of the small square, namely (x̂, ŷ),
(x̂+ 1, ŷ),(x̂, ŷ + 1) and (x̂+ 1, ŷ + 1).

3. Using this information and the formulas for the value regimes, compute the 16 terms
for f, fx, fy and fxy needed to determine the bicubic interpolation. Then, compute
the coefficients aij by performing the matrix multiplication in Equation (4).

43



4. In the arithmetic circuit for f , apply Equation (3) to compute the value of f(x, y). In
the arithmetic circuit for ∇f , apply Equation (5) to compute the value of ∇f(x, y).
Note that in the interpolation Equations (3) and (5), we have to use the local
coordinates (x− x̂, y − ŷ) ∈ [0, 1]2 instead of (x, y).

The two arithmetic circuits can be computed in polynomial time in n,m and in the
sizes of S, P,C. Since n and m are upper bounded by the sizes of S and C respectively,
they can be constructed in polynomial time in the sizes of S, P,C. Furthermore, note
that the two circuits are well-behaved. In fact, they only use a constant number of true
multiplication gates. To see this, note that true multiplication gates are only used for the
matrix multiplication in step 3 and for step 4. In particular, steps 1 and 2 do not need
to use any true multiplication gates at all (see, e.g., [Daskalakis et al., 2009; Chen et al.,
2009b]).

4.3 Correctness

To show the correctness of the construction, we need to show the following lemma, which
states that 0.01-KKT points of f only lie at solutions for the End-of-Line instance or the
Iter instance.

Lemma 4.3. Let ε = 0.01. We have that (x, y) is a ε-KKT point of f on the domain
[0, N ]2 only if (x, y) lies in a “solution region”, namely:

• (x, y) lies in a big square B(v, v), such that v ∈ [2n] \ {1} is a source or sink of the
End-of-Line instance S, P , or

• (x, y) lies in a medium square M(u, u) of some PLS-Labyrinth gadget, such that
u ∈ [2m] is a solution to the Iter instance C, i.e., C(u) > u and C(C(u)) = C(u).

Note that we have defined ε-KKT points in Section 3.2.1 with respect to the `2-norm,
but here it is more convenient to consider the `∞-norm instead. Note that any ε-KKT
point w.r.t. the `2-norm is also an ε-KKT point w.r.t. the `∞-norm. Thus, if Lemma 4.3
holds for ε-KKT points w.r.t. the `∞-norm, then it automatically also holds for ε-KKT
points w.r.t. the `2-norm.

For the domain [0, N ]2, it is easy to see that a point x ∈ [0, N ]2 is an ε-KKT point
(with respect to the `∞-norm) if and only if

• for all i ∈ {1, 2} with xi 6= 0 : [∇f(x)]i ≤ ε

• for all i ∈ {1, 2} with xi 6= N : −[∇f(x)]i ≤ ε.

Intuitively, these conditions state that if x is not on the boundary of [0, N ]2, then it must
hold that ‖∇f(x)‖∞ ≤ ε. If x is on the boundary of [0, 1]2, then “−∇f(x) must point
straight outside the domain, up to an error of ε”.

In order to prove Lemma 4.3, we will show that any small square that does not lie in a
solution region, does not contain any ε-KKT point. The behaviour of the function in a
given small square depends on the information we have about the four corners, namely
the colours and arrows at the four corners, but also on the position of the square in our
instance, since the value defined by a colour depends on the position. For our proof, it is
convenient to consider a square with the (colour and arrow) information about its four
corners, but without any information about its position. Indeed, if we can show that
a square does not contain any ε-KKT point using only this information, then this will

44



always hold, wherever the square is positioned. As a result, we obtain a finite number of
squares (with colour and arrow information) that we need to check. Conceptually, this is a
straightforward task: for each small square we get a set of cubic polynomials that could be
generated by bicubic interpolation for that square, and we must prove that no polynomial
in that set has an ε-KKT point within the square.

Unfortunately, there are 101 distinct small squares7 used by our construction. So, while
we could write a proof for every single case, this would likely be an error-prone task, and
the result would be tens of pages of straightforward proofs that would be tedious to verify.

To avoid this, we instead delegate the proof to an SMT solver. For each square we write
down an SMT formula that encodes “there exists an ε-KKT point within this square”.
The SMT solver then checks this formula for satisfiability over the algebraic real numbers8

and if the formula is found to be unsatisfiable, then Lemma 4.3 has been proven for that
square. When we run the SMT solver on all 101 squares in our construction9, we find that
the formula is unsatisfiable for every square that does not lie directly at the end of a line of
the End-of-Line instance, or at a solution of the Iter instance, which proves Lemma 4.3.

The SMT formula. We now give some further details on how the SMT formula is
constructed. The full annotated source code for building the SMT formula can be found
in Appendix F of the appendix. As a running example, we will use the following square,
which appears in the gadget shown in Figure 16(h).

As described in our construction, the value of f at each point is determined by the
color of that point. Since this square could appear in multiple places, we do not know the
absolute values for f at any of the points, but we do have information about the relative
values. For example, we know that for green points, the value increases as we move down
and to the left. So we can introduce a symbolic variable green to represent the value of
the green function at the top-right point of the square, and then we know that the value of
f at the top-right point is green and the value of f at the bottom-right point is green+ 1.

The orange function also increases as we go down and left, so we can introduce a new
symbolic variable orange to represent the value of the orange function at the top-right
point, and then the value of f at the top-left point is orange + 1. The black function
increases as we go up or right, so for this color we introduce a symbolic variable black to
represent the value of the function at the bottom-left point of the square, and so the value
of f at the bottom-left point of the square is simply black. To summarize, we obtain the
following symbolic values for f on our square.

7This number could likely be cut down by considering symmetries, but there will still be a large number
of squares remaining even after accounting for this.

8SMT solvers are capable of deciding satisfiability for the existential theory of the reals. There are no
rounding issues or floating point errors to worry about.

9The full output is available at https://github.com/jfearnley/PPADPLS/blob/main/report/report_

static.pdf

45

https://github.com/jfearnley/PPADPLS/blob/main/report/report_static.pdf
https://github.com/jfearnley/PPADPLS/blob/main/report/report_static.pdf


black green+1

orange+1 green

We also know from our construction that at any given grid point, the orange value
regime has a higher value than the black regime, which has a higher value than the green
regime. Furthermore, by construction it is guaranteed that the gap between any two distinct
regimes at any given point is at least 10. Since any regime can change by at most 2 over
the square, we get the following inequalities10 orange > black+ 4 and black > green+ 4.

Given these symbolic values for the corners of the square, we can then introduce two
symbolic values x and y, and then carry out bicubic interpolation symbolically using the
formula given in (3), which yields a polynomial for f inside the square in terms of orange,
black, green, x, and y. We can then symbolically differentiate this polynomial to get
polynomials for fx and fy.

Finally, we write down the following formula

∀ orange, black, green, x, y ·
orange > black + 4

∧ black > green + 4

∧ x ∈ [0, 1] ∧ y ∈ [0, 1]

⇒ fx(x, y) 6∈ [−ε, ε] ∨ fy(x, y) 6∈ [−ε, ε],

which states that there is no ε-stationary point in the square, by insisting that either fx
or fy is not ε-close to zero. Note that this is equivalent to saying that there is no ε-KKT
point in the square, if this square is not positioned on the boundary of the instance. Since
we universally quantify over orange, black, and green, the formula states that no ε-KKT
points exist no matter what particular values f takes at the corners. So, if we ask the
SMT solver to satisfy the negation of this formula, and if it declares the negation to be
unsatisfiable, then Lemma 4.3 has been proven for the square.

For other squares, we likewise introduce symbolic variables for the colors red and blue,
and we follow a similar approach. See Appendix F in the appendix for the annotated
source code of the proof.

Boundary squares. For squares that lie on the boundary of the instance, there is an
additional property to check to ensure that they do not contain any ε-KKT points: the
direction of steepest descent for a point on the boundary should not point straight outside
the domain. An example of the boundary of the instance is shown in Figure 13.

There are 12 distinct small squares that can lie on the boundary of the instance. Using
the same machinery that we developed for the main proof, we can also write down an SMT
formula to verify the squares on the boundary of the instance.

If our example square lay on the left boundary of the instance, we would use the
following formula

∀ orange, black, green, x, y ·
orange > black + 4

10In fact we get orange > black+ 7 and so on, but the solver is able to verify the lemma for these weaker
inequalities

46



∧ black > green + 4

∧ x = 0 ∧ y ∈ [0, 1]

⇒ fx(x, y) < −ε ∨ fy(x, y) 6∈ [−ε, ε],

which is similar to the main formula, but with two changes. Firstly we only care about the
case where x = 0 since this corresponds to the left-hand border of the square, and secondly
we insist that either fy is not ε-close to 0, or that fx(x, y) < −ε, so either the y-gradient
ensures that we are not at an ε-stationary point with respect to y, or the x-gradient ensures
that the direction of steepest descent according to the x-gradient points into the instance.
These conditions exactly check that the point is not an ε-KKT point.

We write similar formulas for the other boundaries, and then check each square on
the boundary using these formulas. Further details can be found in Appendix F of the
appendix. Note that we do not need to use the SMT solver to check whether any of the four
corners of the domain is a solution. These four points are grid points and thus the gradient
there is directly given by the corresponding arrow in our construction. It is straightforward
to directly check that none of the four corners of the instance is an ε-KKT point, because
the arrows point inside the domain and have length δ = 1/2 > ε. The SMT solver verified
that no ε-KKT points lie anywhere else on the boundary, which completes the proof of
Lemma 4.3.

4.4 Re-scaling

The last step of the reduction is to re-scale the function f so that it is defined on [0, 1]2

instead of [0, N ]2. Thus, the final function, which we denote f̂ here, is defined by

f̂(x, y) = (1/N) · f(N · x,N · y).

The properties of f proved in Lemma 4.2 naturally also hold for f̂ , in the following
sense. Clearly, f̂ is also continuously differentiable. Furthermore, it holds that ∇f̂(x, y) =
∇f(N ·x,N ·y). Thus, we can easily construct well-behaved arithmetic circuits for f̂ and ∇f̂
in polynomial time given well-behaved circuits for f and∇f , which, in turn, can be efficiently
constructed according to Lemma 4.2. Furthermore, since ∇f is L-Lipschitz-continuous,
it is easy to see that ∇f̂ is L̂-Lipschitz-continuous with L̂ = N · L = 218N2 = 22n+2m+26.
Finally, note that since f is L-Lipschitz-continuous, f̂ is too, and in particular it is also
L̂-Lipschitz-continuous.

All these properties imply that the instance of KKT we construct does not admit any
violation solutions. In other words, it satisfies all the expected promises. Finally, note that
any ε-KKT point of f̂ on [0, 1]2 immediately yields an ε-KKT point of f on [0, N ]2. Thus,
the correctness of the reduction follows from Lemma 4.3.

Note that we can re-scale the instance depending on the parameter regime we are
interested in. The instance (ε, f̂ ,∇f̂ , L̂) we have constructed, is clearly equivalent to
the instance (αε, αf̂ ,∇(αf̂), αL̂) for any α > 0. For example, by letting α = 1/L̂, we
obtain hard instances with Lipschitz-constant 1, and with inversely exponential precision
parameter.

4.5 Consequences in the black box model

We can use our reduction to obtain a lower bound for the KKT problem in the black
box model. Namely, consider the problem where we are given ε, L and an oracle for a
continuously differentiable function f : [0, 1]2 → R with L-Lipschitz-continuous gradient.

47



On any query x ∈ [0, 1]2, the oracle returns (f(x),∇f(x)). The goal is to find any ε-KKT
point of f over [0, 1]2. We prove the following result.

Theorem 4.4. There exists a constant c > 0, such that for any ε > 0 and L > 0 with
L/ε ≥ 100 · 228, finding an ε-KKT point of a function f : [0, 1]2 → R with L-Lipschitz
gradient requires at least c ·

√
L/ε queries to f and ∇f .

For our proof it is useful to define the following problem.

Definition 9. Monotone-End-of-Line:
Input: Oracles S, P : [2n] → [2n] with P (1) = 1 6= S(1) and S(x) ≥ x for all
x ∈ [2n].
Goal: Find v ∈ [2n] such that P (S(v)) 6= v or S(P (v)) 6= v 6= 1.

Lemma 4.5. There exists a constant c > 0, such that for any n ≥ 1, solving Monotone-
End-of-Line requires at least c · 2n queries to S and P .

Proof. Given any deterministic algorithm, it is easy to construct an adversary that forces
it to query the neighbours of 2n − 1 vertices. Initially, let v∗ = 1 and let A = [2n] be the
set of possible solutions. The adversary works as follows. If the algorithm queries a vertex
v ∈ A \ {v∗}, then the adversary returns that v is an isolated vertex and removes v from
A. If the algorithm queries v∗ and it holds that |A| = 1, then the adversary returns that
v∗ is a sink. If the algorithm queries v∗ and it holds that |A| > 1, then the adversary picks
v′ to be the smallest vertex in A \ {v∗}, removes v∗ from A, returns that there is an edge
from v∗ to v′, and finally updates v∗ := v′. If the algorithm queries a vertex v /∈ A, then
the vertex has been queried before, and the adversary returns the same answer as before.

It is easy to check that v∗ is always the smallest vertex in A. Furthermore, every query
decreases the size of A by at most 1. Finally, as long as |A| ≥ 2, there are still two vertices
that can be the (unique) sink of the instance. Thus, after 2n − 2 queries, the algorithm
cannot possibly have located the solution.

We can now prove our main result in this section.

Proof of Theorem 4.4. The proof proceeds by reducing Monotone-End-of-Line to KKT
by using the reduction presented in the previous sections. A crucial observation about
the reduction in the proof of Theorem 4.1 is that if the End-of-Line instance we reduce
from only has forward edges (i.e., for any edge (v1, v2) it holds that v1 < v2), then the
PLS-Labyrinth is never actually used. In other words, any solution of the KKT instance
gives us a solution of the End-of-Line instance. Since Monotone-End-of-Line has this
forward edge property, we immediately obtain a reduction from Monotone-End-of-Line
to KKT. In particular, this means that we can set m = 0 in the reduction.

Furthermore, it is easy that the reduction is a black box constant-query reduction.
Namely, any query to (f,∇f) of the KKT instance, can be answered by performing a
constant number of queries to (S, P ). Indeed, in order to answer a query about some
point x ∈ [0, 1]2, we first determine v1, v2 such that x lies in the big square B(v1, v2).
Then, we query (S, P ) to determine the predecessor of v1 and the successor of v2. At this
point we have enough information to determine the colour and arrow at all the grid points
in B(v1, v2). Thus, we can return f(x) and ∇f(x). Similarly, given a solution x to the
KKT instance we can find a solution to the Monotone-End-of-Line instance by using
a constant number of queries.

48



Consider any ε > 0 and L > 0 such that L/ε ≥ 100 · 228. Then, there exists n ∈ N such
that

1

20 · 213
√
L/ε ≤ 2n ≤ 1

10 · 213
√
L/ε.

We perform the reduction from Theorem 4.1 with an instance of Monotone-End-of-Line
with vertex set [2n] and we set m = 0. As a result, we obtain a function f̂ : [0, 1]2 → R
with 22n+26-Lipschitz gradient, and such that any 0.01-KKT point of f̂ yields a solution
to the Monotone-End-of-Line instance. We let f = 100ε · f̂ . Then, any ε-KKT point
of f yields a solution to the Monotone-End-of-Line instance. Furthermore, ∇f is
Lipschitz-continuous with Lipschitz constant 22n+26 · 100ε ≤ 1

100·226
L
ε 226 · 100 · ε = L.

Finally, by Lemma 4.5 there exists a constant c > 0 (independent of n), such that at least
c · 2n queries to S, P are required to solve Monotone-End-of-Line. Since we have used a
constant-query reduction, it follows that there exists c1 > 0 (independent of n, L, ε) such
that at least c1 · 2n queries to (f,∇f) are needed to solve the KKT instance. Thus, at
least c1

1
20·213

√
L/ε queries to (f,∇f) are needed to solve the KKT instance.

5 Gradient Descent and KKT are PPAD ∩PLS-complete

In this section, we show how the PPAD ∩ PLS-hardness of KKT (Theorem 4.1) implies
that our problems of interest, including our Gradient Descent problems, are PPAD ∩ PLS-
complete. Namely, we prove:

Theorem 5.1. The problems KKT, GD-Local-Search, GD-Fixpoint and General-
Continuous-Localopt are PPAD ∩ PLS-complete, even when the domain is fixed to be
the unit square [0, 1]2. This hardness result continues to hold even if one considers the
promise-versions of these problems, i.e., only instances without violations.

The hardness results in this theorem are the “best possible”, in the following sense:

• promise-problem: as mentioned in the theorem, the hardness holds even for the
promise-versions of these problems. In other words, the hard instances that we
construct are not pathological: they satisfy all the conditions that we would expect
from the input, e.g., ∇f is indeed the gradient of f , ∇f and f are indeed L-Lipschitz-
continuous, etc.

• domain: the problems remain hard even if we fix the domain to be the unit square
[0, 1]2, which is arguably the simplest two-dimensional bounded domain. All the prob-
lems become polynomial-time solvable if the domain is one-dimensional (Lemma C.3).

• exponential parameters: in all of our problems, the parameters, such as ε and L, are
provided in the input in binary representation. This means that the parameters are
allowed to be exponentially small or large with respect to the length of the input.
Our hardness results make use of this, since the proof of Theorem 4.1 constructs an
instance of KKT where ε is some constant, but L is exponential in the input length.
By a simple transformation, this instance can be transformed into one where ε is
exponentially small and L is constant (see Section 4.4). It is easy to see that at least
one of ε or L must be exponentially large/small, for the problem to be hard on the
domain [0, 1]2. However, this continues to hold even in high dimension, i.e., when the
domain is [0, 1]n (Lemma C.4). In other words, if the parameters are given in unary,
the problem is easy, even in high dimension. This is in contrast with the problem of

49



finding a Brouwer fixed point, where moving to domain [0, 1]n makes it possible to
prove PPAD-hardness even when the parameters are given in unary.

Theorem 5.1 follows from Theorem 4.1, proved in Section 4, and a set of domain- and
promise-preserving reductions as pictured in Figure 3, which are presented in the rest of this
section as follows. In Section 5.1 we show that the problems KKT, GD-Local-Search
and GD-Fixpoint are equivalent. Then, in Section 5.2 we reduce GD-Local-Search to
General-Continuous-Localopt, and finally we show that General-Continuous-
Localopt lies in PPAD ∩ PLS.

5.1 KKT and the Gradient Descent problems are equivalent

The equivalence between KKT, GD-Local-Search and GD-Fixpoint is proved by
providing a “triangle” of reductions as shown in Figure 3. Namely, we show that GD-
Local-Search reduces to GD-Fixpoint (Proposition 5.2), GD-Fixpoint reduces to
KKT (Proposition 5.3), and KKT reduces to GD-Local-Search (Proposition 5.4). All
the reductions are domain- and promise-preserving.

Proposition 5.2. GD-Local-Search reduces to GD-Fixpoint using a domain- and
promise-preserving reduction.

Proof. Let (ε, η, A, b, f,∇f, L) be an instance of GD-Local-Search. The reduction
simply constructs the instance (ε′, η, A, b, f,∇f, L) of GD-Fixpoint, where ε′ = ε/L. This
reduction is trivially domain-preserving and it is also promise-preserving, because any
violation of the constructed instance is immediately also a violation of the original instance.
Clearly, the reduction can be computed in polynomial time, so it remains to show that any
(non-violation) solution of the constructed instance can be mapped back to a solution or
violation of the original instance.

Consider any solution x ∈ D of the GD-Fixpoint instance, i.e.,

‖x− y‖ = ‖x−ΠD(x− η∇f(x))‖ ≤ ε′.

where y = ΠD(x− η∇f(x)). If x, y do not satisfy the L-Lipschitzness of f , then we have
obtained a violation. Otherwise, it must be that

|f(x)− f(y)| ≤ L‖x− y‖ ≤ Lε′ = ε.

In particular, it follows that
f(y) ≥ f(x)− ε

which means that x is a solution of the original GD-Local-Search instance.

Proposition 5.3. GD-Fixpoint reduces to KKT using a domain- and promise-preserving
reduction.

Proof. Let (ε, η, A, b, f,∇f, L) be an instance of GD-Fixpoint. The reduction simply
constructs the instance (ε′, A, b, f,∇f, L) of KKT, where ε′ = ε/η. This reduction is
trivially domain-preserving and it is also promise-preserving, because any violation of
the constructed instance is immediately also a violation of the original instance. Clearly,
the reduction can be computed in polynomial time, so it remains to show that any (non-
violation) solution of the constructed instance can be mapped back to a solution or violation
of the original instance.

50



In more detail, we will show that any ε′-KKT point must be an ε-approximate fixed point
of the gradient descent dynamics. Consider any ε′-KKT point of the KKT instance, i.e., a
point x ∈ D such that there exists µ ≥ 0 with 〈µ,Ax− b〉 = 0 and ‖∇f(x) +ATµ‖ ≤ ε′.

Let y = ΠD(x− η∇f(x)). We want to show that ‖x− y‖ ≤ ε. Since y is the projection
of x− η∇f(x) onto D, by Lemma B.1 it follows that for all z ∈ D

〈x− η∇f(x)− y, z − y〉 ≤ 0.

Letting z := x, this implies that

‖x− y‖2 ≤ η〈∇f(x), x− y〉 = η〈∇f(x) +ATµ, x− y〉 − η〈ATµ, x− y〉
≤ η〈∇f(x) +ATµ, x− y〉
≤ η‖∇f(x) +ATµ‖ · ‖x− y‖

where we used the Cauchy-Schwarz inequality and the fact that 〈ATµ, x− y〉 ≥ 0, which
follows from

〈ATµ, x− y〉 = 〈µ,A(x− y)〉 = 〈µ,Ax− b〉 − 〈µ,Ay − b〉 ≥ 0

since 〈µ,Ax− b〉 = 0, µ ≥ 0 and Ay − b ≤ 0 (because y ∈ D).
We can now show that ‖x − y‖ ≤ ε. If ‖x − y‖ = 0, this trivially holds. Otherwise,

divide both sides of the inequality obtained above by ‖x− y‖, which yields

‖x− y‖ ≤ η‖∇f(x) +ATµ‖ ≤ η · ε′ = ε.

Proposition 5.4. KKT reduces to GD-Local-Search using a domain- and promise-
preserving reduction.

Proof. Let (ε,A, b, f,∇f, L) be an instance of KKT. The reduction simply constructs the

instance (ε′, η, A, b, f,∇f, L) of GD-Local-Search, where ε′ = ε2

8L and η = 1
L . This

reduction is trivially domain-preserving and it is also promise-preserving, because any
violation of the constructed instance is immediately also a violation of the original instance.
Clearly, the reduction can be computed in polynomial time, so it remains to show that any
(non-violation) solution of the constructed instance can be mapped back to a solution or
violation of the original instance.

Consider any x ∈ D that is a solution of the GD-Local-Search instance and let
y = ΠD(x− η∇f(x)). Then, it must be that f(y) ≥ f(x)− ε′. We begin by showing that
this implies that ‖x− y‖ ≤ ε

2L , or we can find a violation of the KKT instance.

Step 1: Bounding ‖x − y‖. If x and y do not satisfy Taylor’s theorem (Lemma 3.4),
then we immediately obtain a violation. If they do satisfy Taylor’s theorem, it holds that

〈∇f(x), x− y〉 − L

2
‖y − x‖2 ≤ f(x)− f(y) ≤ ε′.

Now, since y is the projection of x − η∇f(x) onto D, by Lemma B.1 it follows that
〈x− η∇f(x)− y, z − y〉 ≤ 0 for all z ∈ D. In particular, by letting z := x, we obtain that

〈∇f(x), x− y〉 ≥ 1

η
〈x− y, x− y〉 = L‖y − x‖2

51



where we used the fact that η = 1/L. Putting the two expressions together we obtain that

L

2
‖y − x‖2 = L‖y − x‖2 − L

2
‖y − x‖2 ≤ ε′

which yields that ‖x− y‖ ≤
√

2ε′/L = ε
2L .

Step 2: Obtaining an ε-KKT point. Next, we show how to obtain an ε-KKT point
or a violation of the KKT instance. Note that if y − x = −η∇f(x), then we immediately
have that ‖∇f(x)‖ = ‖x − y‖/η ≤ ε/2, i.e., x is an ε-KKT point. However, because
of the projection ΠD used in the computation of y, in general we might not have that
y − x = −η∇f(x) and, most importantly, x might not be an ε-KKT point. Nevertheless,
we show that y will necessarily be an ε-KKT point.

Since y is the projection of x− η∇f(x) onto D, by Lemma B.1 it follows that for all
z ∈ D

〈x− η∇f(x)− y, z − y〉 ≤ 0.

From this it follows that for all z ∈ D

〈−∇f(x), z − y〉 ≤ 1

η
〈y − x, z − y〉 ≤ 1

η
‖x− y‖ · ‖z − y‖ ≤ ε

2
‖z − y‖

where we used the Cauchy-Schwarz inequality, η = 1/L and ‖x−y‖ ≤ ε/2L. Next, unless x
and y yield a violation to the L-Lipschitzness of ∇f , it must hold that ‖∇f(x)−∇f(y)‖ ≤
L‖x− y‖ ≤ ε/2. Thus, we obtain that for all z ∈ D

〈−∇f(y), z − y〉 = 〈−∇f(x), z − y〉+ 〈∇f(x)−∇f(y), z − y〉

≤ ε

2
‖z − y‖+ ‖∇f(x)−∇f(y)‖ · ‖z − y‖

≤ ε‖z − y‖

(6)

where we used the Cauchy-Schwarz inequality.
Let I = {i ∈ [m] : [Ay − b]i = 0}, i.e., the indices of the constraints that are tight

at y. Denote by AI ∈ R(m−|I|)×n the matrix obtained by only keeping the rows of
A that correspond to indices in I. Consider any p ∈ Rn such that AIp ≤ 0. Then,
there exists a sufficiently small α > 0 such that z = y + αp ∈ D. Indeed, note that
[Az − b]i = [Ay − b]i + α[Ap]i and thus

• for i ∈ I, we get that [Az − b]i ≤ 0, since [Ay − b]i = 0 and [Ap]i ≤ 0,

• for i /∈ I, we have that [Ay − b]i < 0. If [Ap]i ≤ 0, then we obtain [Az − b]i ≤ 0 as

above. If [Ap]i > 0, then it also holds that [Az − b]i ≤ 0, as long as α ≤ − [Ay−b]i
[Ap]i

.

Thus, it suffices to pick α = min
{
− [Ay−b]i

[Ap]i
: i /∈ I, [Ap]i > 0

}
. Note that this indeed

ensures that α > 0.
Since z = y + αp ∈ D, using (6) we get that

〈−∇f(y), p〉 =
1

α
〈−∇f(y), z − y〉 ≤ ε

α
‖z − y‖ = ε‖p‖.

As a result, we have shown that the statement

∃p ∈ Rn : AIp ≤ 0, 〈−∇f(y), p〉 > ε‖p‖

does not hold. By a stronger version of Farkas’ Lemma, which we prove in the appendix

(Lemma B.3), it follows that there exists ν ∈ R|I|≥0 such that ‖ATI ν + ∇f(y)‖ ≤ ε. Let

52



µ ∈ Rm≥0 be such that µ agrees with ν on indices i ∈ I, i.e., µI = ν, and µi = 0 for i /∈ I.

Then we immediately obtain that ATI ν = ATµ and thus ‖ATµ +∇f(y)‖ ≤ ε. Since we
also have that 〈µ,Ay − b〉 = 〈µI , [Ay − b]I〉 = 0 (because [Ay − b]I = 0), it follows that y
indeed is an ε-KKT point of f on domain D.

5.2 From GD-Local-Search to PPAD ∩PLS

In this section we show that GD-Local-Search reduces to General-Continuous-
Localopt (Proposition 5.5), and that General-Continuous-Localopt lies in PPAD ∩ PLS
(Proposition 5.6).

Proposition 5.5. GD-Local-Search reduces to General-Continuous-Localopt
using a domain- and promise-preserving reduction.

Proof. This essentially follows from the fact that the local search version of Gradient
Descent is a special case of continuous local search, which is captured by the General-
Continuous-Localopt problem. Let (ε,A, b, η, f,∇f, L) be an instance of GD-Local-
Search. The reduction simply constructs the instance (ε,A, b, p, g, L′) of General-
Continuous-Localopt, where p(x) = f(x), g(x) = x−η∇f(x) and L′ = max{ηL+1, L}.
We can easily construct an arithmetic circuit computing g, given the arithmetic circuit
computing ∇f . It follows that the reduction can be computed in polynomial time. In
particular, since we extend ∇f by using only the gates − and ×ζ, the circuit for g is also
well-behaved.

Let us now show that any solution to the General-Continuous-Localopt instance
yields a solution to the GD-Local-Search instance. First of all, by construction of g,
it immediately follows that any local optimum solution of the General-Continuous-
Localopt instance is also a non-violation solution to the GD-Local-Search instance.

Next, we show that any pair of points x, y ∈ D that violate the (ηL+1)-Lipschitzness of
g, also violate the L-Lipschitzness of ∇f . Indeed, if x, y do not violate the L-Lipschitzness
of ∇f , then

‖g(x)− g(y)‖ ≤ ‖x− y‖+ η‖∇f(x)−∇f(y)‖ ≤ (ηL+ 1)‖x− y‖.

In particular, any violation to the L′-Lipschitzness of g yields a violation to the L-
Lipschitzness of ∇f .

Finally, any violation to the L′-Lipschitzness of p immediately yields a violation to the
L-Lipschitzness of f . Since any violation to General-Continuous-Localopt yields a
violation to GD-Local-Search, the reduction is also promise-preserving.

Proposition 5.6. General-Continuous-Localopt lies in PPAD ∩ PLS.

Proof. This essentially follows by the same arguments that were used by Daskalakis and
Papadimitriou [2011] to show that CLS lies in PPAD ∩ PLS. The only difference is that
here the domain is allowed to be more general. Consider any instance (ε,A, b, p, g, L) of
General-Continuous-Localopt.

The containment of General-Continuous-Localopt in PPAD follows from a
reduction to the problem of finding a fixed point guaranteed by Brouwer’s fixed point
theorem, which is notoriously PPAD-complete. Indeed, let x∗ ∈ D be any ε/L-approximate
fixed point of the function x 7→ ΠD(g(x)), i.e., such that ‖ΠD(g(x∗)) − x∗‖ ≤ ε/L.
Then, unless x∗ and ΠD(g(x∗)) yield a violation of L-Lipschitzness of p, it follows that

53



p(ΠD(g(x∗))) ≥ p(x∗)− ε, i.e., x∗ is a solution of the General-Continuous-Localopt
instance. Formally, the reduction works by constructing the instance (ε′, A, b, g, L) of
General-Brouwer, where ε′ = ε/L. The formal definition of General-Brouwer can
be found in Appendix D, where it is also proved that the problem lies in PPAD.

The containment of CLS in PLS was proved by Daskalakis and Papadimitriou [2011] by
reducing Continuous-Localopt to a problem called Real-Localopt, which they show
to lie in PLS. Real-Localopt is defined exactly as Continuous-Localopt, except
that the function g is not required to be continuous. In order to show the containment of
General-Continuous-Localopt in PLS, we reduce to the appropriate generalisation
of Real-Localopt, which we simply call General-Real-Localopt. Formally, the
reduction is completely trivial, since any instance of General-Continuous-Localopt
is also an instance of General-Real-Localopt, and solutions can be mapped back as is.
The formal definition of General-Real-Localopt can be found in Appendix D, where
it is also proved that the problem lies in PLS.

6 Consequences for Continuous Local Search

In this section, we explore the consequences of Theorem 4.1 (and Theorem 5.1) for the
class CLS, defined by Daskalakis and Papadimitriou [2011] to capture problems that can be
solved by “continuous local search” methods. In Section 6.2 we also consider a seemingly
weaker version of CLS, which we call Linear-CLS, and show that it is in fact the same as
CLS. Finally, we also define a Gradient Descent problem where we do not have access to
the gradient of the function (which might, in fact, not even be differentiable) and instead
use “finite differences” to compute an approximate gradient. We show that this problem
remains PPAD ∩ PLS-complete.

6.1 Consequences for CLS

The class CLS was defined by Daskalakis and Papadimitriou [2011] as a more natural
counterpart to PPAD ∩ PLS. Indeed, Daskalakis and Papadimitriou noted that all the
known PPAD ∩ PLS-complete problems were unnatural, namely uninteresting combinations
of a PPAD-complete and a PLS-complete problem. As a result, they defined CLS, a subclass
of PPAD ∩ PLS, which is a more natural combination of PPAD and PLS, and conjectured
that CLS is a strict subclass of PPAD ∩ PLS. They were able to prove that various
interesting problems lie in CLS, thus further strengthening the conjecture that CLS is
a more natural subclass of PPAD ∩ PLS, and more likely to capture the complexity of
interesting problems.

It follows from our results that, surprisingly, CLS is actually equal to PPAD ∩ PLS.

Theorem 6.1. CLS = PPAD ∩ PLS.

Recall that in Theorem 5.1, we have shown that General-Continuous-Localopt
with domain [0, 1]2 is PPAD ∩ PLS-complete. Theorem 6.1 follows from the fact that this
problem lies in CLS, almost by definition. Before proving this in Proposition 6.3 below, we
explore some further consequences of our results for CLS.

An immediate consequence is that the two previously known CLS-complete problems
are in fact PPAD ∩ PLS-complete.

Theorem 6.2. Banach and MetametricContraction are PPAD ∩ PLS-complete.

54



For the definitions of these problems, which are computational versions of Banach’s
fixed point theorem, see [Daskalakis et al., 2018] and [Fearnley et al., 2017], respectively.

Furthermore, our results imply that the definition of CLS is “robust” in the following
sense:

• Dimension: the class CLS was defined by Daskalakis and Papadimitriou [2011]
as the set of all TFNP problems that reduce to 3D-Continuous-Localopt, i.e.,
Continuous-Localopt with n = 3. Even though it is easy to see that kD-
Continuous-Localopt reduces to (k+1)D-Continuous-Localopt (Lemma C.1),
it is unclear how to construct a reduction in the other direction. Indeed, similar
reductions exists for the Brouwer problem, but they require using a discrete equivalent
of Brouwer, namely End-of-Line, as an intermediate step. Since no such discrete
problem was known for CLS, this left open the possibility of a hierarchy of versions of
CLS, depending on the dimension, i.e., 2D-CLS ⊂ 3D-CLS ⊂ 4D-CLS . . . . We show
that even the two-dimensional version is PPAD ∩ PLS-hard, and thus the definition
of CLS is indeed independent of the dimension used. In other words,

2D-CLS = CLS = nD-CLS.

Note that this is tight, since 1D-Continuous-Localopt can be solved in polynomial
time (Lemma C.3), i.e., 1D-CLS = FP.

• Domain: some interesting problems can be shown to lie in CLS, but the reduction pro-
duces a polytopal domain, instead of the standard hypercube [0, 1]n. In other words,
they reduce to General-Continuous-Localopt, which we have defined as a gen-
eralization of Continuous-Localopt. Since General-Continuous-Localopt is
PPAD ∩ PLS-complete (Theorem 5.1), it follows that CLS can equivalently be defined
as the set of all TFNP problems that reduce to General-Continuous-Localopt.

• Promise: the problem Continuous-Localopt, which defines CLS, is a problem with
violation solutions. One can instead consider promise-CLS, which is defined as the set
of all TFNP problems that reduce to a promise version of Continuous-Localopt.
In the promise version of Continuous-Localopt, we restrict our attention to
instances that satisfy the promise, i.e., where the functions p and g are indeed
L-Lipschitz-continuous. The class promise-CLS could possibly be weaker than CLS,
since the reduction is required to always map to instances of Continuous-Localopt
without violations. However, it follows from our results that promise-CLS = CLS, since
the promise version of Continuous-Localopt is shown to be PPAD ∩ PLS-hard,
even on domain [0, 1]2 (Theorem 5.1).

• Circuits: CLS is defined using the problem Continuous-Localopt where the
functions are represented by general arithmetic circuits. If one restricts the type
of arithmetic circuit that is used, this might yield a weaker version of CLS. Linear
arithmetic circuits are a natural class of circuits that arise when reducing from
various natural problems. We define Linear-CLS as the set of problems that reduce
to Continuous-Localopt with linear arithmetic circuits. In Section 6.2 we show
that Linear-CLS = CLS.

Before moving on to Section 6.2 and Linear-CLS, we provide the last reduction in the
chain of reductions proving Theorem 6.1.

55



Proposition 6.3. General-Continuous-Localopt with fixed domain [0, 1]2 reduces
to 2D-Continuous-Localopt using a promise-preserving reduction. In particular, the
problem lies in CLS.

Proof. Given an instance (ε, p, g, L) of General-Continuous-Localopt with fixed
domain [0, 1]2, we construct the instance (ε, p, g′, L) of 2D-Continuous-Localopt, where
g′(x) = ΠD(g(x)). Note that since D = [0, 1]2, the projection ΠD can easily be computed
as [ΠD(x)]i = min{1,max{0, xi}} for all x ∈ R2 and i ∈ [2]. In particular, since we extend
g by using only the gates −, ×ζ, min, max and rational constants, the circuit for g′ is also
well-behaved.

Any non-violation solution of the constructed instance is also a solution of the original
instance. Any violation of the constructed instance is immediately mapped back to a
violation of the original instance. In particular, it holds that ‖g′(x)−g′(y)‖ ≤ ‖g(x)−g(y)‖
for all x, y ∈ [0, 1]2, since projecting two points cannot increase the distance between
them. This implies that any violation of the L-Lipschitzness of g′ is also a violation of
the L-Lipschitzness of g. Note that by Lemma C.2 we do not need to ensure that the
codomain of p is in [0, 1]. Finally, it is easy to see that 2D-Continuous-Localopt lies in
CLS, since it immediately reduces to 3D-Continuous-Localopt (Lemma C.1).

6.2 Linear-CLS and Gradient Descent with Finite Differences

The class CLS was defined by Daskalakis and Papadimitriou [2011] using the Continuous-
Localopt problem which uses arithmetic circuits with gates in {+,−,min,max,×, <}
and rational constants. In this section we show that even if we restrict ourselves to linear
arithmetic circuits (i.e., only the gates in {+,−,min,max,×ζ} and rational constants
are allowed), the Continuous-Localopt problem and CLS remain just as hard as the
original versions.

Definition 10. Linear-Continuous-Localopt:
Input:

• precision/stopping parameter ε > 0,

• linear arithmetic circuits p : [0, 1]n → [0, 1] and g : [0, 1]n → [0, 1]n.

Goal: Compute an approximate local optimum of p with respect to g. Formally,
find x ∈ [0, 1]n such that

p(g(x)) ≥ p(x)− ε.

For k ∈ N, we let kD-Linear-Continuous-Localopt denote the problem Linear-
Continuous-Localopt where n is fixed to be equal to k. Note that the definition of
Linear-Continuous-Localopt does not require violation solutions, since every linear
arithmetic circuit is automatically Lipschitz-continuous with a Lipschitz-constant that can
be represented with a polynomial number of bits (Lemma A.1). In particular, Linear-
Continuous-Localopt reduces to Continuous-Localopt and thus to General-
Continuous-Localopt.

We define the class 2D-Linear-CLS as the set of all TFNP problems that reduce to
2D-Linear-Continuous-Localopt. We show that:

Theorem 6.4. 2D-Linear-CLS = PPAD ∩ PLS.

56



Note that, just as for CLS, the one-dimensional version can be solved in polynomial
time, i.e., 1D-Linear-CLS = FP. The containment 2D-Linear-CLS ⊆ PPAD ∩ PLS im-
mediately follows from the fact that 2D-Linear-CLS ⊆ CLS ⊆ PPAD ∩ PLS. The other,
more interesting, containment in Theorem 6.4 can be proved by directly reducing 2D-
Continuous-Localopt to 2D-Linear-Continuous-Localopt. This reduction mainly
relies on a more general result which says that any arithmetic circuit can be arbitrarily
well approximated by a linear arithmetic circuit on a bounded domain. This approxima-
tion theorem (Theorem E.1) is stated and proved in Appendix E. The proof uses known
techniques developed in the study of the complexity of Nash equilibria [Daskalakis et al.,
2009; Chen et al., 2009b], but replaces the usual averaging step by a median step, which
ensures that we obtain the desired accuracy of approximation.

Instead of reducing 2D-Continuous-Localopt to 2D-Linear-Continuous-Localopt,
we prove Theorem 6.4 by a different route that also allows us to introduce a problem which
might be of independent interest. To capture the cases where the gradient is not available
or perhaps too expensive to compute, we consider a version of Gradient Descent where the
finite differences approach is used to compute an approximate gradient, which is then used
as usual to obtain the next iterate. Formally, given a finite difference spacing parameter
h > 0, the approximate gradient ∇̃hf(x) at some point x ∈ [0, 1]n is computed as[

∇̃hf(x)
]
i

=
f(x+ h · ei)− f(x− h · ei)

2h

for all i ∈ [n]. The computational problem is defined as follows. Note that even though we
define the problem on the domain [0, 1]n, it can be defined on more general domains as in
our other problems.

Definition 11. GD-Finite-Diff:
Input:

• precision/stopping parameter ε > 0,

• step size η > 0,

• finite difference spacing parameter h > 0,

• linear arithmetic circuit f : Rn → R.

Goal: Compute any point where (projected) gradient descent for f on domain
D = [0, 1]n using finite differences to approximate the gradient and fixed step size η
terminates. Formally, find x ∈ [0, 1]n such that

f(ΠD(x− η∇̃hf(x))) ≥ f(x)− ε

where for all i ∈ [n] [
∇̃hf(x)

]
i

=
f(x+ h · ei)− f(x− h · ei)

2h
.

GD-Finite-Diff immediately reduces to Linear-Continuous-Localopt by setting
p := f and g := ΠD(x − η∇̃hf(x)). It is easy to construct a linear arithmetic circuit
computing g, given a linear arithmetic circuit computing f . Note, in particular, that the
projection ΠD can be computed by a linear circuit since D = [0, 1]n. Indeed, [ΠD(x)]i =
min{1,max{0, xi}} for all i ∈ [n] and x ∈ Rn. Finally, the restriction of the codomain of p
to [0, 1] can be handled exactly as in the proof of Lemma C.2.

57



In particular, the reduction from GD-Finite-Diff to Linear-Continuous-Localopt
is domain-preserving and thus Theorem 6.4 immediately follows from the following theorem.

Theorem 6.5. GD-Finite-Diff is PPAD ∩ PLS-complete, even with fixed domain [0, 1]2.

This result is interesting by itself, because the problem GD-Finite-Diff is arguably
quite natural, but also because it is the first problem that is complete for PPAD ∩ PLS (and
CLS) that has a single arithmetic circuit in the input. Note that our other problems which
we prove to be PPAD ∩ PLS-complete, as well as the previously known CLS-complete
problems, all have two arithmetic circuits in the input.

Proof. As explained above, GD-Finite-Diff immediately reduces to Linear-Continuous-
Localopt and thus to General-Continuous-Localopt, which lies in PPAD ∩ PLS
by Proposition 5.6. Thus, it remains to show that GD-Finite-Diff is PPAD ∩ PLS-hard
when we fix n = 2. This is achieved by reducing from GD-Local-Search on domain
[0, 1]2, which is PPAD ∩ PLS-hard by Theorem 5.1. In fact, we can even simplify the
reduction by only considering GD-Local-Search instances that have some additional
structure, but remain PPAD ∩ PLS-hard. Namely, consider an instance (ε, η, f,∇f, L) of
GD-Local-Search on domain D = [0, 1]2 such that:

• ∇f is the gradient of f ,

• f and ∇f are L-Lipschitz-continuous on [−1, 2]2.

To see that the problem remains PPAD ∩ PLS-hard even with these restrictions, note that
the restrictions are satisfied by the hard instances constructed for the KKT problem in
the proof of Theorem 4.1, and that the reduction from KKT to GD-Local-Search
in Proposition 5.4 also trivially preserves them. In particular, even though the proof of
Theorem 4.1 only mentions that f and ∇f are L-Lipschitz-continuous on [0, 1]2, the same
arguments also show that they are L-Lipschitz-continuous on [−1, 2]2 (where L has been
scaled by some fixed constant).

Let us now reduce from the instance (ε, η, f,∇f, L) of GD-Local-Search to GD-
Finite-Diff. We construct the instance (ε′, η, h, F ) of GD-Finite-Diff where ε′ =
ε/4, h = min{1, ε

8ηL2 } and F is a linear arithmetic circuit that is obtained as follows.

Let δ = min{ε/4, Lh2/2}. By Theorem E.1 and Remark 3, we can construct a linear
arithmetic circuit F : R2 → R in polynomial time in size(f), logL and log(1/δ) such that
|f(x) − F (x)| ≤ δ for all x ∈ [−1, 2]2. Note that the second possibility in Theorem E.1
cannot occur, since f is guaranteed to be L-Lipschitz-continuous on [−1, 2]2.

Consider any solution of that instance of GD-Finite-Diff, i.e., a point x ∈ [0, 1]2 such
that F (ΠD(x− η∇̃hF (x))) ≥ F (x)− ε/4. Let us show that x is a solution to the original
GD-Local-Search instance, i.e., that f(ΠD(x− η∇f(x))) ≥ f(x)− ε.

We have that for i ∈ {1, 2}∣∣∣∣[∇̃hf(x)
]
i
−
[
∇f(x)

]
i

∣∣∣∣
=

∣∣∣∣f(x+ h · ei)− f(x− h · ei)
2h

−
[
∇f(x)

]
i

∣∣∣∣
≤ 1

2h

(∣∣∣f(x+ h · ei)− f(x)− h
[
∇f(x)

]
i

∣∣∣+
∣∣∣−f(x− h · ei) + f(x)− h

[
∇f(x)

]
i

∣∣∣)
=

1

2h

(∣∣∣f(x+ h · ei)− f(x)−
〈
∇f(x), (x+ h · ei)− x

〉∣∣∣
58



+
∣∣∣−f(x− h · ei) + f(x) +

〈
∇f(x), (x− h · ei)− x

〉∣∣∣)
≤ 1

2h

(
L

2

∥∥h · ei∥∥2 +
L

2

∥∥−h · ei∥∥2) =
Lh

2

where we used Taylor’s theorem (Lemma 3.4). Note that x± h · ei ∈ [−1, 2]2, since h ≤ 1.
Furthermore, it is easy to see that

∣∣[∇̃hF (x)]i − [∇̃hf(x)]i
∣∣ ≤ δ/h, since F approximates f

up to error δ on all of [−1, 2]2. It follows that
∥∥∇̃hF (x)−∇f(x)

∥∥ ≤ √2(δ/h+Lh/2) ≤ 2Lh.
From this it follows that∣∣∣∣f(ΠD

(
x− η∇f(x)

))
− f

(
ΠD

(
x− η∇̃hF (x)

))∣∣∣∣
≤ L ·

∥∥∥ΠD

(
x− η∇f(x)

)
−ΠD

(
x− η∇̃hF (x)

)∥∥∥
≤ L ·

∥∥∥(x− η∇f(x)
)
−
(
x− η∇̃hF (x)

)∥∥∥
≤ ηL ·

∥∥∇̃hF (x)−∇f(x)
∥∥

≤ 2ηL2h.

Finally, note that |f(x)− F (x)| ≤ δ ≤ ε/4 and∣∣∣∣f(ΠD

(
x− η∇̃hF (x)

))
− F

(
ΠD

(
x− η∇̃hF (x)

))∣∣∣∣ ≤ δ ≤ ε/4.
Thus, since F

(
ΠD

(
x− η∇̃hF (x)

))
≥ F (x)− ε/4, it follows that

f
(

ΠD

(
x− η∇f(x)

))
≥ f(x)− 3ε/4− 2ηL2h

which means that x is a solution to the original GD-Local-Search instance, since
2ηL2h ≤ ε/4.

7 Future Directions

Problems that are known to lie in PPAD ∩ PLS and are now candidates for PPAD ∩ PLS-
completeness include:

• polynomial-KKT: The special case of the KKT problem where the function is a
polynomial, provided explicitly in the input (exponents in unary).

• Mixed-Congestion: The problem of finding a mixed Nash equilibrium of a conges-
tion game. It is currently known that finding a pure Nash equilibrium is PLS-complete
[Fabrikant et al., 2004].

• Contraction: Find a fixed point of a function that is contracting with respect to
some `p-norm.

• Tarski: Find a fixed point of an order-preserving function, as guaranteed by Tarski’s
theorem [Etessami et al., 2020; Fearnley and Savani, 2020; Dang et al., 2020].

• ColorfulCarathéodory: A problem based on a theorem in convex geometry
[Meunier et al., 2017].

59



The first three problems on this list were known to lie in CLS [Daskalakis and Papadim-
itriou, 2011], while the other two were only known to lie in PPAD ∩ PLS.

The collapse between CLS and PPAD ∩ PLS raises the question of whether the class
EOPL (for End of Potential Line), a subclass of CLS, is also equal to PPAD ∩ PLS. The
class EOPL, or more precisely its subclass UEOPL (with U for unique), is known to contain
various problems of interest that have unique solutions such as Unique Sink Orientation
(USO), the P-matrix Linear Complementarity Problem (P-LCP), Simple Stochastic Games
(SSG) and Parity Games [Fearnley et al., 2020]. We conjecture that EOPL 6= PPAD ∩ PLS.
Unlike CLS, EOPL has a more standard combinatorial definition that is simultaneously a
special case of End-of-Line and Localopt. While PPAD ∩ PLS captures problems that
have a PPAD-type proof of existence and a PLS-type proof of existence, EOPL seems to
capture problems that have a single proof of existence which is simultaneously of PPAD-
and PLS-type. The first step towards confirming this conjecture would be to provide an
oracle separation between EOPL and PPAD ∩ PLS, in the sense of Beame et al. [1998].

Acknowledgments

Alexandros Hollender is supported by an EPSRC doctoral studentship (Reference 1892947).

References

Amir Ali Ahmadi and Jeffrey Zhang. On the complexity of finding a local minimizer of a
quadratic function over a polytope. arXiv preprint, 2020a. URL https://arxiv.org/

abs/2008.05558.

Amir Ali Ahmadi and Jeffrey Zhang. Complexity aspects of local minima and related
notions. arXiv preprint, 2020b. URL https://arxiv.org/abs/2008.06148.

Paul Beame, Stephen Cook, Jeff Edmonds, Russell Impagliazzo, and Toniann Pitassi. The
Relative Complexity of NP Search Problems. Journal of Computer and System Sciences,
57(1):3–19, 1998. doi:10.1145/225058.225147.

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1999.

Avrim Blum and Ronald L. Rivest. Training a 3-node neural network is NP-complete.
Neural Networks, 5(1):117–127, 1992. doi:10.1016/S0893-6080(05)80010-3.

Augustin-Louis Cauchy. Méthode générale pour la résolution des systèmes d’équations
simultanées. C. R. Acad. Sci. Paris, 25:536–538, 1847.

Xi Chen and Xiaotie Deng. On the complexity of 2d discrete fixed point problem. Theoretical
Computer Science, 410(44):4448 – 4456, 2009. doi:10.1016/j.tcs.2009.07.052.

Xi Chen, Decheng Dai, Ye Du, and Shang-Hua Teng. Settling the complexity of Arrow-
Debreu equilibria in markets with additively separable utilities. In Proceedings of the
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
273–282. IEEE, 2009a. doi:10.1109/FOCS.2009.29.

Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of com-
puting two-player Nash equilibria. Journal of the ACM, 56(3):14:1–14:57, 2009b.
doi:10.1145/1516512.1516516.

60

https://arxiv.org/abs/2008.05558
https://arxiv.org/abs/2008.05558
https://arxiv.org/abs/2008.06148
https://doi.org/10.1145/225058.225147
https://doi.org/10.1016/S0893-6080(05)80010-3
https://doi.org/10.1016/j.tcs.2009.07.052
https://doi.org/10.1109/FOCS.2009.29
https://doi.org/10.1145/1516512.1516516


Chuangyin Dang, Qi Qi, and Yinyu Ye. Computations and complexities of Tarski’s fixed
points and supermodular games. arXiv preprint, 2020. URL https://arxiv.org/abs/

2005.09836.

Constantinos Daskalakis and Christos Papadimitriou. Continuous local search. In Proceed-
ings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
790–804. SIAM, 2011. doi:10.1137/1.9781611973082.62.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The com-
plexity of computing a Nash equilibrium. In SIAM Journal on Computing, volume 39,
pages 195–259, 2009. doi:10.1137/070699652.

Constantinos Daskalakis, Christos Tzamos, and Manolis Zampetakis. A converse to
Banach’s fixed point theorem and its CLS-completeness. In Proceedings of the 50th
Annual ACM Symposium on Theory of Computing (STOC), pages 44–50. ACM, 2018.
doi:10.1145/3188745.3188968.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of
constrained min-max optimization. arXiv preprint, 2020. URL http://arxiv.org/abs/

2009.09623.

Kousha Etessami and Mihalis Yannakakis. On the complexity of Nash equilib-
ria and other fixed points. SIAM Journal on Computing, 39(6):2531–2597, 2010.
doi:10.1137/080720826.

Kousha Etessami, Christos Papadimitriou, Aviad Rubinstein, and Mihalis Yannakakis.
Tarski’s Theorem, Supermodular Games, and the Complexity of Equilibria. In
Proceedings of the 11th Innovations in Theoretical Computer Science Conference
(ITCS), pages 18:1–18:19. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ITCS.2020.18.

Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure Nash
equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC), pages 604–612. ACM, 2004. doi:10.1145/1007352.1007445.

John Fearnley and Rahul Savani. A faster algorithm for finding Tarski fixed points. arXiv
preprint, 2020. URL https://arxiv.org/abs/2010.02618.

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. CLS: new problems and
completeness. arXiv preprint, 2017. URL https://arxiv.org/abs/1702.06017.

John Fearnley, Spencer Gordon, Ruta Mehta, and Rahul Savani. Unique End of
Potential Line. Journal of Computer and System Sciences, 114:1 – 35, 2020.
doi:10.1016/j.jcss.2020.05.007.

Pavel Hubáček and Eylon Yogev. Hardness of continuous local search: Query com-
plexity and cryptographic lower bounds. In Proceedings of the 28th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1352–1371. SIAM, 2017.
doi:10.1137/1.9781611974782.88.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M. Kakade, and Michael I. Jordan. On
nonconvex optimization for machine learning: Gradients, stochasticity, and saddle points.
arXiv preprint, 2019. URL http://arxiv.org/abs/1902.04811.

61

https://arxiv.org/abs/2005.09836
https://arxiv.org/abs/2005.09836
https://doi.org/10.1137/1.9781611973082.62
https://doi.org/10.1137/070699652
https://doi.org/10.1145/3188745.3188968
http://arxiv.org/abs/2009.09623
http://arxiv.org/abs/2009.09623
https://doi.org/10.1137/080720826
https://doi.org/10.4230/LIPIcs.ITCS.2020.18
https://doi.org/10.1145/1007352.1007445
https://arxiv.org/abs/2010.02618
https://arxiv.org/abs/1702.06017
https://doi.org/10.1016/j.jcss.2020.05.007
https://doi.org/10.1137/1.9781611974782.88
http://arxiv.org/abs/1902.04811


David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988. doi:10.1016/0022-
0000(88)90046-3.

Shiva Kintali, Laura J. Poplawski, Rajmohan Rajaraman, Ravi Sundaram, and Shang-Hua
Teng. Reducibility among Fractional Stability Problems. SIAM Journal on Computing,
42(6):2063–2113, 2013. doi:10.1137/120874655.

Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley Professional, 1998.

Nimrod Megiddo and Christos H. Papadimitriou. On total functions, existence theorems
and computational complexity. Theoretical Computer Science, 81(2):317–324, 1991.
doi:10.1016/0304-3975(91)90200-L.

Ruta Mehta. Constant rank bimatrix games are PPAD-hard. In Proceedings of the 46th
Annual ACM Symposium on the Theory of Computing (STOC), pages 545–554, 2014.
doi:10.1145/2591796.2591835.

Frédéric Meunier, Wolfgang Mulzer, Pauline Sarrabezolles, and Yannik Stein. The rainbow
at the end of the line—a PPAD formulation of the colorful Carathéodory theorem with
applications. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1342–1351. SIAM, 2017. doi:10.1137/1.9781611974782.87.

Tsuyoshi Morioka. Classification of search problems and their definability in bounded
arithmetic. Master’s thesis, University of Toronto, 2001. URL https://www.

collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf.

Katta G. Murty and Santosh N. Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Mathematical Programming, 39(2):117–129, 1987.
doi:10.1007/BF02592948.

Christos H. Papadimitriou. The complexity of the Lin-Kernighan heuristic for the
traveling salesman problem. SIAM Journal on Computing, 21(3):450–465, 1992.
doi:10.1137/0221030.

Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. Journal of Computer and System Sciences, 48(3):498–532, 1994.
doi:10.1016/S0022-0000(05)80063-7.

Herbert Robbins and Sutton Monro. A stochastic approximation method. Annals of
Mathematical Statistics, pages 400–407, 1951.

William S. Russell. Polynomial interpolation schemes for internal derivative distribu-
tions on structured grids. Applied Numerical Mathematics, 17(2):129 – 171, 1995.
doi:10.1016/0168-9274(95)00014-L.

62

https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1016/0022-0000(88)90046-3
https://doi.org/10.1137/120874655
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1145/2591796.2591835
https://doi.org/10.1137/1.9781611974782.87
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/MQ58775.pdf
https://doi.org/10.1007/BF02592948
https://doi.org/10.1137/0221030
https://doi.org/10.1016/S0022-0000(05)80063-7
https://doi.org/10.1016/0168-9274(95)00014-L


A More on arithmetic circuits

A.1 Evaluation of well-behaved arithmetic circuits (Proof of Lemma 3.3)

We restate the Lemma here for convenience.

Lemma 3.3. Let f be a well-behaved arithmetic circuit with n inputs. Then, for any
rational x ∈ Rn, f(x) can be computed in time poly(size(f), size(x)).

Proof. Recall that an arithmetic circuit f is well-behaved if, on any directed path that
leads to an output, there are at most log(size(f)) true multiplication gates. Without loss of
generality, we can assume that the circuit f only contains gates that are used to compute
at least one of the outputs.

Let x denote the input to circuit f and for any gate g of f let v(g) denote the value
computed by gate g when x is provided as input to the circuit. For any gate g that is
not an input gate or a constant gate, let g1 and g2 denote the two gates it uses as inputs.
Clearly, if g is one of {+,−,×,max,min, >}, v(g) can be computed in polynomial time in
size(v(g1)) + size(v(g2)), including transforming it into an irreducible fraction. Thus, in
order to show that the circuit can be evaluated in polynomial time, it suffices to show that
for all gates g of f , it holds that size(v(g)) ≤ p(size(f) + size(x)), where p is some fixed
polynomial (independent of f and x). In the rest of this proof, we show that

size(v(g)) ≤ 6 · size(f)3 · size(x).

It is convenient to partition the gates of the circuit depending on their depth. For
any gate g in f , we let d(g) denote the depth of the gate in f . The input gates and the
constant gates are at depth 1. For any other gate g, we define its depth inductively as
d(g) = 1 + max{d(g1), d(g2)}, where g1 and g2 are the two input gates of g. Note that
d(g) ≤ size(f) for all gates g in the circuit.

We also define a notion of “multiplication-depth” md(g). The gates g at depth 1 all
have md(g) = 0. For the rest of the gates, the multiplication-depth is defined inductively.
For a gate g whose inputs are g1 and g2, we let md(g) = 1 + max{md(g1),md(g2)} if g
is a true multiplication gate, and md(g) = max{md(g1),md(g2)} otherwise. Since f is
well-behaved, it immediately follows that md(g) ≤ log(size(f)) for all gates g of the circuit.

We begin by showing that for any gate g of f , it holds that |v(g)| ≤ 2size(f)
2(size(x)+size(f)).

This follows from the stronger statement that

|v(g)| ≤ 2d(g)·2
md(g)·(size(x)+size(f)),

which we prove by induction as follows. First of all, note that any gate at depth 1 satisfies
the statement, since any input or constant of the circuit is bounded by 2size(x) or 2size(f)

respectively. Next, assume that the statement holds for all gates with depth ≤ k − 1
and consider some gate g at depth k. Let g1 and g2 denote its two inputs, which must
satisfy that d(g1) ≤ k − 1 and d(g2) ≤ k − 1. If g is one of {min,max, <}, then the
statement immediately also holds for g. If g is an addition or subtraction gate, then
|v(g)| ≤ |v(g1)|+ |v(g2)| ≤ 2 max{|v(g1)|, |v(g2)|}, which implies that the statement also
hold for g, since d(g1), d(g2) ≤ k−1 and d(g) = k. If g is a multiplication by a constant, then
|v(g)| ≤ 2size(f)|v(g1)| (wlog g2 is the constant), and the statement holds for g too. Finally,
if g is a true multiplication gate, then |v(g)| = |v(g1)||v(g2)| ≤ (max{|v(g1)|, |v(g2)|})2.
Since md(g) = 1 + max{md(g1),md(g2)}, it follows that the statement also holds for g.

Let den(g) denote the absolute value of the denominator of v(g) (written as an irreducible
fraction). We show that for all gates g, it holds that den(g) ≤ 2size(f)

2(size(x)+size(f)). This is

63



enough to conclude our proof. Indeed, since we also have that |v(g)| ≤ 2size(f)
2(size(x)+size(f)),

it follows that the absolute value of the numerator of v(g) is

|v(g)| · den(g) ≤ 22·size(f)
2(size(x)+size(f)).

As a result, it follows that

size(v(g)) ≤ 2 · size(f)2(size(x)+size(f))+size(f)2(size(x)+size(f)) ≤ 6 · size(f)3 · size(x).

It remains to show that den(g) ≤ 2size(f)
2(size(x)+size(f)), which we prove by showing that

den(g) ≤ 2d(g)·2
md(g)·(size(x)+size(f)). Let M denote (the absolute value of) the product of

all denominators appearing in the input x and the description of f , i.e., the denominators
of the coordinates of the input x, and the denominators of the constants used by f . Note
that M ≤ 2size(x)+size(f). We prove by induction that for all gates g,

den(g) is a factor of Md(g)·2md(g)

which in particular implies the bound on den(g) above. First of all, note that any gate
at depth 1 is an input or a constant, and thus satisfies the statement. Next, assume
that the statement holds for all gates with depth ≤ k − 1 and consider some gate g at
depth k. Let g1 and g2 denote its two inputs, which must satisfy that d(g1) ≤ k − 1 and
d(g2) ≤ k − 1. If g is one of {min,max, <}, then it is easy to see that the statement
immediately also holds for g. If g is an addition or subtraction gate, then, since v(g1) and

v(g2) can both be expressed as fractions with denominator Md(g)·2md(g)
, so can v(g), and

the statement also holds for g. If g is a multiplication by a constant, then den(g) is a

factor of Md(g)·2md(g)
, since den(g1) is a factor of M (d(g)−1)·2md(g)

and the denominator of
the constant is a factor of M (wlog assume that g2 is the constant). Finally, if g is a true

multiplication gate, then den(g1) and den(g2) are factors of Md(g)·2md(g)−1
, and thus den(g)

is a factor of (Md(g)·2md(g)−1
)2 = Md(g)·2md(g)

as desired.

A.2 Linear arithmetic circuits are Lipschitz-continuous

Linear arithmetic circuits are only allowed to use the operations {+,−,max,min,×ζ}
and rational constants. The operation ×ζ denotes multiplication by a constant (which is
part of the description of the circuit). Every linear arithmetic circuit is in particular a
well-behaved arithmetic circuit, and so, by Lemma 3.3, can be evaluated in polynomial time.
Furthermore, every linear arithmetic circuit represents a Lipschitz-continuous function such
that the Lipschitz constant has polynomial bit-size with respect to the size of the circuit.

Lemma A.1. Any linear arithmetic circuit f : Rn → Rm is 2size(f)
2
-Lipschitz-continuous

(w.r.t. the `∞-norm) over Rn.

Proof. For any gate g of the circuit f , let L(g) denote the Lipschitz-constant of the function
which outputs the value of g, given the input x to the circuit. As in the proof of Lemma 3.3,
it is convenient to partition the gates of f according to their depth. Note that for all the
gates g at depth 1, i.e., the input gates and the constant gates, it holds that L(g) ≤ 1. We
show that any gate g at depth k satisfies L(g) ≤ 2k·size(f). It immediately follows from this
that f is 2size(f)

2
-Lipschitz-continuous (w.r.t. the `∞-norm) over Rn.

Consider a gate g at depth k with inputs g1 and g2 (which lie at a lower depth). If g is
+ or −, then L(g) ≤ L(g1) + L(g2) ≤ 2 max{L(g1), L(g2)} ≤ 2 · 2(k−1)·size(f) ≤ 2k·size(f). If
g is max or min, then it is easy to see that L(g) ≤ max{L(g1), L(g2)} ≤ 2k·size(f). Finally,
if g is ×ζ, then L(g) ≤ |ζ| · L(g1) ≤ 2size(f)2(k−1)·size(f) = 2k·size(f), where we used the fact
that |ζ| ≤ 2size(f).

64



B Mathematical Tools

B.1 Tools from Convex Analysis and a Generalization of Farkas’ Lemma

Let D ⊆ Rn be a non-empty closed convex set. Recall that the projection ΠD : Rn → D
is defined by ΠD(x) = argminy∈D ‖x− y‖, where ‖ · ‖ denotes the Euclidean norm. It is
known that ΠD(x) always exists and is unique. The following two results are standard
tools in convex analysis, see, e.g., [Bertsekas, 1999].

Lemma B.1. Let D be a non-empty closed convex set in Rn and let y ∈ Rn. Then for all
x ∈ D it holds that

〈y −ΠD(y), x−ΠD(y)〉 ≤ 0.

Proposition B.2. Let D1 and D2 be two disjoint non-empty closed convex sets in Rn and
such that D2 is bounded. Then, there exist c ∈ Rn \ {0} and d ∈ R such that 〈c, x〉 < d for
all x ∈ D1, and 〈c, x〉 > d for all x ∈ D2.

We will need the following generalization of Farkas’ Lemma, which we prove below. For
ε = 0, we recover the usual statement of Farkas’ Lemma.

Lemma B.3. Let A ∈ Rm×n, b ∈ Rn and ε ≥ 0. Then exactly one of the following two
statements holds:

1. ∃x ∈ Rn : Ax ≤ 0, 〈b, x〉 > ε‖x‖,

2. ∃y ∈ Rm : ‖AT y − b‖ ≤ ε, y ≥ 0.

Proof. Let us first check that both statements cannot hold at the same time. Indeed, if
this were the case, then we would obtain the following contradiction

ε‖x‖ < 〈b, x〉 = 〈AT y, x〉+ 〈b−AT y, x〉 ≤ 〈y,Ax〉+ ‖b−AT y‖‖x‖ ≤ ε‖x‖

where we used the fact that 〈y,Ax〉 ≤ 0 and the Cauchy-Schwarz inequality.
Now, let us show that if statement 2 does not hold, then statement 1 must necessarily

hold. Let D1 = {AT y : y ≥ 0} and D2 = {x : ‖x− b‖ ≤ ε}. Note that since statement 2
does not hold, it follows that D1 and D2 are disjoint. Furthermore, it is easy to check that
D1 and D2 satisfy the conditions of Proposition B.2. Thus, there exist c ∈ Rn \ {0} and
d ∈ R such that 〈c, x〉 < d for all x ∈ D1, and 〈c, x〉 > d for all x ∈ D2. In particular, we
have that for all y ≥ 0, 〈Ac, y〉 = 〈c, AT y〉 < d. From this it follows that Ac ≤ 0, since if

[Ac]i > 0 for some i, then 〈Ac, y〉 ≥ d for y = |d|
[Ac]i

ei.
In order to show that x := c satisfies the first statement, it remains to prove that

〈b, c〉 > ε‖c‖. Note that by setting y = 0, we get that 0 = 〈c, AT 0〉 < d. Let z = b− ε c
‖c‖ .

Since z ∈ D2, it follows that 〈c, z〉 > d > 0. Since 〈c, z〉 = 〈c, b〉 − ε‖x‖, statement 1 indeed
holds.

B.2 Proof of Lemma 3.4 (Taylor’s Theorem)

We restate the Lemma here for convenience.

Lemma 3.4 (Taylor’s theorem). Let f : Rn → R be continuously differentiable and let
D ⊆ Rn be convex. If ∇f is L-Lipschitz-continuous (w.r.t. the `2-norm) on D, then for
all x, y ∈ D we have ∣∣f(y)− f(x)− 〈∇f(x), y − x〉

∣∣ ≤ L

2
‖y − x‖2.

65



Proof. Let g : [0, 1] → R be defined by g(t) = f(x + t(y − x)). Then, g is continuously
differentiable on [0, 1] and g′(t) = 〈∇f(x+ t(y−x)), y−x〉. Furthermore, g′ is (L‖x− y‖2)-
Lipschitz-continuous on [0, 1], since

|g′(t1)− g′(t2)| = |〈∇f(x+ t1(y − x))−∇f(x+ t2(y − x)), y − x〉|
≤ ‖∇f(x+ t1(y − x))−∇f(x+ t2(y − x))‖ · ‖y − x‖
≤ L · ‖t1(y − x)− t2(y − x)‖ · ‖y − x‖
≤ L · |t1 − t2| · ‖y − x‖2

where we used the Cauchy-Schwarz inequality. We also used the fact that ∇f is L-Lipschitz
on D, and x+ t(y − x) ∈ D for all t ∈ [0, 1]. Now, we can write

f(y)− f(x)− 〈∇f(x), y − x〉 = g(1)− g(0)− g′(0) =

∫ 1

0
(g′(t)− g′(0)) dt

and thus

|f(y)− f(x)− 〈∇f(x), y − x〉| ≤
∫ 1

0
|g′(t)−g′(0)|dt ≤

∫ 1

0
L · ‖x−y‖2 · |t|dt =

L

2
‖y−x‖2.

C Minor Observations on Continuous-Localopt and KKT

Lemma C.1. For all integers k2 > k1 > 0, k1D-Continuous-Localopt reduces to
k2D-Continuous-Localopt using a promise-preserving reduction.

Proof. For x ∈ Rk2 , we write x = (x1, x2), where x1 ∈ Rk1 and x2 ∈ Rk2−k1 . Let (ε, p, g, L)
be an instance of k1D-Continuous-Localopt. The reduction constructs the instance
(ε, p′, g′, L) of k2D-Continuous-Localopt, where

p′(x) = p′(x1, x2) = p(x1) and g′(x) = g′(x1, x2) = (g(x1), 0).

Clearly, the arithmetic circuits for p′ and g′ can be constructed in polynomial time and are
well-behaved.

Since |p′(x) − p′(y)| = |p(x1) − p(y1)| ≤ L‖x1 − y1‖ ≤ L‖x − y‖, it is clear that any
violation x, y ∈ [0, 1]k2 of L-Lipschitzness for p′ also yields a violation x1, y1 ∈ [0, 1]k1 for p.
Similarly, since

‖g′(x)− g′(y)‖ = ‖(g(x1), 0)− (g(y1), 0)‖ = ‖g(x1)− g(y1)‖ ≤ L‖x1 − y1‖ ≤ L‖x− y‖,

any violation x, y of L-Lipschitzness for g′ also yields a violation x1, y1 for g. Thus, any
violation of the constructed instance is always mapped back to a violation of the original
instance, and the reduction is indeed promise-preserving.

Finally, note that any proper solution x ∈ [0, 1]k2 of the constructed instance, i.e.,
such that p′(g′(x)) ≥ p′(x)− ε, immediately yields a solution x1 ∈ [0, 1]k1 of the original
instance.

Lemma C.2. Continuous-Localopt with codomain [0, 1] for function p is equivalent
to Continuous-Localopt without this restriction.

66



Proof. It is clear that the version with the restriction trivially reduces to the version without
the restriction. Thus, it remains to show the other direction, namely that Continuous-
Localopt without the codomain restriction reduces to the restricted version.

Let (ε, p, g, L) be an instance of Continuous-Localopt with domain [0, 1]n and
without a codomain restriction for p. The reduction constructs the instance (ε′, p′, g, L′) of
Continuous-Localopt with domain [0, 1]n, where ε′ = ε

2nL , L′ = max{L, 1
2n} and

p′(x) = min

{
1,max

{
0,

1

2
+
p(x)− p(zc)

2nL

}}
where zc = (1/2, 1/2, . . . , 1/2) is the centre of [0, 1]n. Note that the arithmetic circuit
computing p′ can be computed in polynomial time given the circuit for p, and that the
modification of p will require using gates ×ζ, but no general multiplication gates. Thus,
the circuit for p′ is also well-behaved. Note, in particular, that the value p(zc) can be
computed in polynomial time in the size of the circuit for p. It follows that the reduction
can be computed in polynomial time.

First of all, let us show that any point x ∈ [0, 1]n such that p′(x) 6= 1
2 + p(x)−p(zc)

2nL will
immediately yield a violation of the L-Lipschitzness of p. Indeed, if x and zc satisfy the
L-Lipschitzness of p, then this means that

|p(x)− p(zc)| ≤ L‖x− zc‖ ≤ nL

since x, zc ∈ [0, 1]n. As a result, it follows that 1
2 + p(x)−p(zc)

2nL ∈ [0, 1] and thus p′(x) =
1
2 + p(x)−p(zc)

2nL .

In the rest of this proof we assume that we always have p′(x) = 1
2 + p(x)−p(zc)

2nL , since we
can immediately extract a violation if we ever come across a point x where this does not
hold. Let us now show that any solution of the constructed instance immediately yields
a solution of the original instance. Clearly, any violation of the L′-Lipschitzness of g is
trivially also a violation of L-Lipschitzness.

Next assume that x, y ∈ [0, 1]n are a violation of L′-Lipschitzness of p′. Let us show by
contradiction that x, y must be a violation of L-Lipschitzness for p. Indeed, assume that
x, y satisfy the L-Lipschitzness for p, then

|p′(x)− p′(y)| =
∣∣∣∣p(x)− p(y)

2nL

∣∣∣∣ ≤ 1

2n
‖x− y‖

which is a contradiction to x, y being a violation of L′-Lipschitzness of p′.
Finally, consider any proper solution of the constructed instance, i.e., x ∈ [0, 1]n such

that p′(g(x)) ≥ p′(x)− ε′. Then it follows straightforwardly that p(g(x)) ≥ p(x)− 2nLε′,
which implies that x is a solution to the original instance, since 2nLε′ = ε. Note that the
reduction is also promise-preserving, since we always map violations of the constructed
instance back to violations of the original instance.

Lemma C.3. General-Continuous-Localopt with fixed dimension n = 1 can be
solved in polynomial time. As a result, this also holds for KKT, GD-Local-Search and
GD-Fixpoint.

Proof. This is a straightforward consequence of the fact that finding Brouwer fixed points
in one dimension is easy. Consider any instance (ε,A, b, p, g, L) of General-Continuous-
Localopt with n = 1. It is easy to see that any ε/L-approximate fixed point of

67



x 7→ ΠD(g(x)) immediately yields a solution to the General-Continuous-Localopt
instance.

Thus, we proceed as follows. First of all, from A and b we can directly determine
t1, t2 ∈ R such that D = [t1, t2]. Note that the bit-size of t1 and t2 is polynomial in the
input size. Then define a grid of points on the interval [t1, t2] such that the distance
between consecutive points is ε/L2. Finally, using binary search, find two consecutive
points x1 and x2 such that g(x1) ≥ x1 and g(x2) ≤ x2. One of these two points has to be
an ε/L-approximate fixed point of x 7→ ΠD(g(x)) (or we obtain a violation of Lipschitz-
continuity). Binary search takes polynomial time, because the number of points is at most
exponential in the input size.

Since the other three problems reduce to General-Continuous-Localopt using
domain-preserving reductions (see Section 5), it follows that they can also be solved in
polynomial time when n = 1.

Lemma C.4. KKT on domain [0, 1]n can be solved in polynomial time in 1/ε, L and the
sizes of the circuits for f and ∇f .

Proof. This follows from the fact that the problem can be solved by Gradient Descent in
polynomial time in those parameters. Let (ε, f,∇f, L) be an instance of KKT with domain
[0, 1]n. First, compute f(0) in polynomial time in size(f). If f is indeed L-Lipschitz-
continuous, then it follows that f(x) ∈ I = [f(0)−

√
nL, f(0) +

√
nL] for all x ∈ [0, 1]n. If

we ever come across a point where this does not hold, we immediately obtain a violation of
L-Lipschitz-continuity of f . So, for the rest of this proof we simply assume that f(x) ∈ I
for all x ∈ [0, 1]n.

Note that the length of interval I is 2
√
nL, which is polynomial in L and n. By using

the reduction in the proof of Proposition 5.4, we can solve our instance by solving the
instance (ε′, η, f,∇f, L) of GD-Local-Search, where ε′ = ε2

8L and η = 1
L . The important

observation here is that this instance of GD-Local-Search can be solved by applying

Gradient Descent with step size η and with any starting point, in at most |I|ε′ = 16
√
nL2

ε2

steps. Indeed, every step must improve the value of f by ε′, otherwise we have found a
solution. It is easy to see that each step of Gradient Descent can be done in polynomial
time in size(∇f), n and logL. Since the number of steps is polynomial in 1/ε, L and n,
the problem can be solved in polynomial time in 1/ε, L, n, size(f) and size(∇f). Finally
note that n ≤ size(f) (because f has n input gates).

D General-Brouwer and General-Real-Localopt

In this section we define the computational problems General-Brouwer and General-
Real-Localopt and prove that they are PPAD- and PLS-complete respectively. These
two completeness results follow straightforwardly from prior work. The membership of
General-Brouwer in PPAD and of General-Real-Localopt in PLS are used in this
paper to show that our problems of interest lie in PPAD ∩ PLS.

Definition 12. General-Brouwer:
Input:

• precision parameter ε > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

68



• well-behaved arithmetic circuit g : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute an approximate fixed point of g on domain D. Formally, find x ∈ D
such that

‖ΠD(g(x))− x‖ ≤ ε.

Alternatively, we also accept a violation of L-Lipschitzness of g as a solution. Namely,
x, y ∈ D such that ‖g(x)− g(y)‖ > L‖x− y‖.

Proposition D.1. General-Brouwer is PPAD-complete.

Proof. Various formulations and special cases of the problem of finding a Brouwer fixed
point are known to be PPAD-complete [Papadimitriou, 1994; Chen and Deng, 2009;
Etessami and Yannakakis, 2010]. The PPAD-hardness of our General-Brouwer problem
immediately follows from the PPAD-hardness of the problem on the domain [0, 1]2 and
when g is a linear arithmetic circuit, which is known from [Mehta, 2014].

The containment in PPAD essentially follows from Proposition 2 in [Etessami and
Yannakakis, 2010], where it is shown that finding an approximate fixed point of a Brouwer
function that is efficiently computable and continuous, when the domain is a bounded
polytope, is in PPAD. In General-Brouwer, the function is not guaranteed to be
continuous, but instead we allow violations of Lipschitz-continuity as solutions. However,
it can easily be seen that the proof in [Etessami and Yannakakis, 2010] also applies to this
case. Alternatively, we can also use our Theorem E.1 to approximate the circuit g by a
linear arithmetic circuit (which is necessarily Lipschitz-continuous with a polynomially
representable Lipschitz-constant, see Lemma 3.3) and then use [Etessami and Yannakakis,
2010, Proposition 2] directly. Note that since D is bounded, we can easily compute M > 0
such that D ⊆ [−M,M ]n (using linear programming). Then, using Theorem E.1 and
Remark 3, we can approximate g by a linear arithmetic circuit on the domain D.

Definition 13. General-Real-Localopt:
Input:

• precision/stopping parameter ε > 0,

• (A, b) ∈ Rm×n × Rm defining a bounded non-empty domain D = {x ∈ Rn :
Ax ≤ b},

• well-behaved arithmetic circuits p : Rn → R and g : Rn → Rn,

• Lipschitz constant L > 0.

Goal: Compute an approximate local optimum of p with respect to g on domain D.
Formally, find x ∈ D such that

p(ΠD(g(x))) ≥ p(x)− ε.

Alternatively, we also accept a violation of L-Lipschitzness of p as a solution. Namely,
x, y ∈ D such that |p(x)− p(y)| > L‖x− y‖.

69



Proposition D.2. General-Real-Localopt is PLS-complete.

Proof. The PLS-hardness of General-Real-Localopt immediately follows from Theo-
rem 2.1 in [Daskalakis and Papadimitriou, 2011], where it is shown that the problem is
PLS-complete in the special case where the domain is [0, 1]3. The proof of membership in
PLS for the domain [0, 1]3 immediately generalizes to [0, 1]n, even for non-fixed n. Thus, it
remains to show that we can reduce General-Real-Localopt to the special case where
the domain is [0, 1]n.

Note that since D is bounded, we can easily compute M > 0 such that D ⊆ [−M,M ]n

(using linear programming). We extend p and g to the whole hypercube [−M,M ]n

by using the projection onto D, namely p̂(x) = p(ΠD(x)) and ĝ(x) = g(ΠD(x)). Since
‖x−y‖ ≥ ‖ΠD(x)−ΠD(y)‖ for all x, y ∈ Rn, it follows that any violation of L-Lipschitzness
for p̂ immediately yields a violation for p. If x ∈ [−M,M ]n is an ε-approximate local
optimum of p̂ with respect to ĝ, i.e., p̂(ΠD(ĝ(x))) ≥ p̂(x)− ε, then it immediately follows
that ΠD(x) ∈ D is an ε-approximate local optimum of p with respect to g. Thus, we have
reduced the problem to the case where the domain is a hypercube [−M,M ]n.

The final step is to change the domain from [−M,M ]n to [0, 1]n, which can easily be
achieved by letting p̃(x) = p̂(2M ·x−M ·e) and g̃(x) = (ĝ(2M ·x−M ·e)+M ·e)/2M . Here
e ∈ Rn denotes the all-ones vector. A violation of 2ML-Lipschitzness for p̃ immediately
yields a violation of L-Lipschitzness for p̂. Furthermore, if x ∈ [0, 1]n is an ε-approximate
local optimum of p̃ with respect to g̃, then it is easy to see that (2M ·x−M ·e) ∈ [−M,M ]n

is an ε-approximate local optimum of p̂ with respect to ĝ. We thus obtain an instance
on the domain [0, 1]n with the functions p̃ and g̃ and L′ = 2ML instead of L. By using
the same arguments as in [Daskalakis and Papadimitriou, 2011, Theorem 2.1], it follows
that the problem lies in PLS. Note that we do not actually need to construct arithmetic
circuits that compute p̃ and g̃ (from the given circuits for p and g), because it suffices to
be able to compute the functions in polynomial time for the arguments in [Daskalakis and
Papadimitriou, 2011] to go through.

E Approximation by Linear Circuits

In this section, we show that functions computed by arithmetic circuits can be approximated
by linear arithmetic circuits with a very small error. In linear arithmetic circuits we are
only allowed to use the gates +, −, max, min, ×ζ and rational constants. In particular,
we cannot use general multiplication gates or comparison gates.

Theorem E.1. Given a well-behaved arithmetic circuit f : [0, 1]n → Rd, a purported
Lipschitz constant L > 0, and a precision parameter ε > 0, in polynomial time in size(f),
logL and log(1/ε), we can construct a linear arithmetic circuit F : [0, 1]n → Rd such that
for any x ∈ [0, 1]n it holds that:

• ‖f(x)− F (x)‖∞ ≤ ε, or

• given x, we can efficiently compute y ∈ [0, 1]n such that

‖f(x)− f(y)‖∞ > L‖x− y‖∞.

Here “efficiently” means in polynomial time in size(x), size(f), logL and log(1/ε).

Our proof of this result relies on existing techniques introduced by Daskalakis et al.
[2009] and Chen et al. [2009b], but with a modification that ensures that we only get a

70



very small error. Indeed, using the usual so-called sampling trick with averaging does not
work here. We modify the sampling trick to output the median instead of the average.

Since we believe that this tool will be useful in future work, we prove a more general
version of Theorem E.1. This more general version is Theorem E.2 and it is presented and
proved in the next subsection, where we also explain how Theorem E.1 is easily obtained
from Theorem E.2.

Remark 3. Note that in Theorem E.1 the domain [0, 1]n can be replaced by [−M,M ]n

for any M > 0 (in which case the running time is polynomial in the same quantities and in
logM). This is easy to show by using a simple bijection between [0, 1]n and [−M,M ]n.
This also holds for the more general statement in Theorem E.2. In fact, the result holds for
any convex set S ⊆ [−M,M ]n, as long as we can efficiently compute the projection onto S.
Furthermore, the choice of the `∞-norm in the statement is not important, and it can be
replaced by any other `p-norm, if f is L-Lipschitz-continuous with respect to that norm.

E.1 General Statement and Proof

In order to make the statement of the result as general as possible, we consider a class
of functions F . Every function f ∈ F has an associated representation, and we let
size(f) denote the length of the representation of f . For example, if F is the class of
functions represented using a certain type of circuit, then size(f) is the size of the circuit
corresponding to f . The following definition is inspired by a similar notion in [Etessami
and Yannakakis, 2010].

Definition 14. A class F of functions is said to be polynomially-approximately-computable
if there exists a polynomial q such that for any function f ∈ F where f : [0, 1]n → Rd,
any point x ∈ [0, 1]n, and any precision parameter δ > 0, a value v ∈ Rd such that
‖f(x)− v‖∞ ≤ δ can be computed in time q(size(f) + size(x) + log(1/δ)).

The next theorem basically says that any polynomially-approximately-computable
class can be approximated by linear arithmetic circuits, as long as the functions are
Lipschitz-continuous.

Theorem E.2. Let F be a polynomially-approximately-computable class of functions.
Given f ∈ F where f : [0, 1]n → Rd, L > 0 and ε > 0, in polynomial time in size(f), logL
and log(1/ε), we can construct a linear arithmetic circuit F : [0, 1]n → Rd such that for
any x ∈ [0, 1]n it holds that:

• ‖f(x)− F (x)‖∞ ≤ ε, or

• given x, we can efficiently compute y ∈ [0, 1]n such that

‖f(x)− f(y)‖∞ > L‖x− y‖∞ + ε/2.

Here “efficiently” means in polynomial time in size(x), size(f), logL and log(1/ε).

Note that Theorem E.2 immediately implies Theorem E.1, since the class of all
well-behaved arithmetic circuits mapping [0, 1]n to Rd is polynomially-approximately-
computable. (In fact, it is even exactly computable.) Note that since L‖x− y‖∞ + ε/2 ≥
L‖x− y‖∞ for any ε > 0, we indeed immediately obtain Theorem E.1.

71



Proof of Theorem E.2. First of all, note that we can assume that d = 1. Indeed, if
f : [0, 1]n → Rd, then we can consider f1, . . . , fd : [0, 1]n → R where fi(x) = [f(x)]i,
and construct linear arithmetic circuits F1, . . . , Fd approximating f1, . . . , fd (as in the
statement of the theorem). By constructing F (x) = (F1(x), . . . , Fd(x)), we have then
obtained a linear arithmetic that satisfies the statement of the theorem. Indeed, if for
some x ∈ [0, 1]n we have ‖f(x) − F (x)‖∞ > ε, then it follows that there exists i ∈ [n]
such that |fi(x)− Fi(x)| > ε. From this it follows that we can efficiently compute y with
|fi(x)− fi(y)| > L‖x− y‖∞ + ε/2, which implies that ‖f(x)− f(y)‖∞ > L‖x− y‖∞ + ε/2.
Note that d ≤ size(f), so this construction remains polynomial-time with respect to size(f),
logL and log(1/ε).

Consider any L > 0, ε > 0 and f ∈ F where f : [0, 1]n → R. Pick k ∈ N such that
N := 2k ≥ 4L/ε. We consider the partition of [0, 1]n into Nn subcubes of side-length 1/N .
Every p ∈ [N ]n then represents one subcube of the partition, and we let p̂ ∈ [0, 1]n denote
the centre of that subcube. Formally, for all p ∈ [N ]n, p̂ ∈ [0, 1]n is given by

[ p̂ ]i =
2pi − 1

2N
for all i ∈ [n].

For any p ∈ [N ]n, let f̃(p̂) denote the approximation of f(p̂) with error at most ε/16.
Note that f̃(p̂) can be computed in time q(size(f) + size(p̂) + log(16/ε)) (where q is the
polynomial associated to F). Since size(p̂) is polynomial in logL and log(1/ε), we can
compute a rational number M > 0 such that size(M) is polynomial in size(f), logL and
log(1/ε), and it holds that |f̃(p̂)| ≤M for all p ∈ [N ]n. We then define

C(p) :=

⌊(
f̃(p̂) +M

) 16

ε

⌋
+ 1

for all p ∈ [N ]n. Note that C(p) ∈ [1, 32M/ε+1]∩N. Pick m ∈ N such that 2m ≥ 32M/ε+1.
Then, C : [N ]n → [2m] and we construct a boolean circuit {0, 1}kn → {0, 1}m that computes
C. Importantly, the Boolean circuit can be constructed in polynomial time in size(f), logL
and log(1/ε). Before we move on, note that for all p ∈ [N ]n, letting V (p) := (C(p)−1) ε16−M ,
it holds that

|f(p̂)− V (p)| ≤
∣∣∣f(p̂)− f̃(p̂)

∣∣∣+
∣∣∣f̃(p̂)− V (p)

∣∣∣ ≤ ε

8
(7)

since |f(p̂)− f̃(p̂)| ≤ ε/16 and∣∣∣f̃(p̂)− V (p)
∣∣∣

=

∣∣∣∣f̃(p̂) +M −
⌊(
f̃(p̂) +M

) 16

ε

⌋
ε

16

∣∣∣∣
≤
∣∣∣∣f̃(p̂) +M −

(
f̃(p̂) +M

) 16

ε

ε

16

∣∣∣∣+

∣∣∣∣(f̃(p̂) +M
) 16

ε
−
⌊(
f̃(p̂) +M

) 16

ε

⌋∣∣∣∣ ε16

≤ ε

16
.

Using Lemma E.3, which is our key lemma here and is stated and proved in the next
subsection, we can construct a linear arithmetic circuit F : [0, 1]n → R in polynomial time
in size(C) (and thus in size(f), logL and log(1/ε)), such that for all x ∈ [0, 1]n

F (x) ∈
[

min
p∈S(x)

C(p), max
p∈S(x)

C(p)

]
where S(x) ⊆ [N ]n is such that

72



1. |S(x)| ≤ n+ 1,

2. ‖x− p̂‖∞ ≤ 1/N for all p ∈ S(x), and

3. S(x) can be computed in polynomial time in size(x) and logN .

We modify the linear circuit so that instead of outputting F (x), it outputs (F (x)−1) ε16−M .
Note that this is straightforward to do using the arithmetic gates at our disposal. Since
V (p) = (C(p)− 1) ε

16 −M , we obtain that for all x ∈ [0, 1]n

F (x) ∈
[

min
p∈S(x)

V (p), max
p∈S(x)

V (p)

]
.

We are now ready to complete the proof. For this it suffices to show that if |f(x)−
F (x)| > ε, then the second point in the statement of the theorem must hold. Assume that
x ∈ [0, 1]n is such that |f(x)−F (x)| > ε. It immediately follows that there exists p∗ ∈ [N ]n

such that |f(x)−V (p∗)| > ε. By Equation (7), it follows that |f(x)−f(p̂∗)| > ε−ε/8 = 7ε/8.
Note that we might not be able to identify p∗, since we can only approximately compute f .
Thus, we instead proceed as follows. We compute p′ = argmaxp∈S(x) |f ′(x)− f ′(p̂)|, where
f ′ denotes computation of f with error at most ε/32. Note that p′ can be computed in
polynomial time in size(x), size(f), logL and log(1/ε), since f ′ and S(x) can be computed
efficiently.

We now show that y = p̂′ ∈ [0, 1]n satisfies the second point in the statement of
the theorem. First of all, note that |f ′(x) − f ′(p̂∗)| > 7ε/8 − 2ε/32 = 13ε/16. By the
choice of p′, it must be that |f ′(x) − f ′(p̂′)| ≥ |f ′(x) − f ′(p̂∗)| > 13ε/16, which implies
that |f(x) − f(p̂′)| > 13ε/16 − 2ε/32 > 3ε/4. On the other hand, since we have that
‖x− p̂′‖∞ ≤ 1/N ≤ ε/4L (because p′ ∈ S(x)), it follows that L‖x− p̂′‖∞ ≤ ε/4. Thus, we
indeed have that |f(x)− f(y)| > L‖x− y‖∞ + ε/2, as desired. Since p′ can be computed
efficiently, so can y = p̂′.

E.2 Key Lemma

Let us recall some notation introduced in the proof of Theorem E.2. For N ∈ N, consider
the partition of [0, 1]n into Nn subcubes of side-length 1/N . Every p ∈ [N ]n then represents
one subcube of the partition, and we let p̂ ∈ [0, 1]n denote the centre of that subcube.
Formally, for all p ∈ [N ]n, p̂ ∈ [0, 1]n is given by

[ p̂ ]i =
2pi − 1

2N

for all i ∈ [n].

Lemma E.3. Assume that we are given a Boolean circuit C : {0, 1}kn → {0, 1}m, inter-
preted as a function C : [N ]n → [2m], where N = 2k. Then, in polynomial time in size(C),
we can construct a linear arithmetic circuit F : [0, 1]n → R such that for all x ∈ [0, 1]n

F (x) ∈
[

min
p∈S(x)

C(p), max
p∈S(x)

C(p)

]
where S(x) ⊆ [N ]n is such that

1. |S(x)| ≤ n+ 1,

73



2. ‖x− p̂‖∞ ≤ 1/N for all p ∈ S(x), and

3. S(x) can be computed in polynomial time in size(x) and logN .

Proof. We begin by a formal definition of S(x) and prove that it has the three properties
mentioned in the statement of the Lemma. We then proceed with the construction of the
linear arithmetic circuit.

For N ∈ N, consider the partition of [0, 1] into N subintervals of length 1/N . Let
IN : [0, 1] → [N ] denote the function that maps any point in [0, 1] to the index of the
subinterval that contains it. In the case where a point lies on the boundary between two
subintervals, i.e., x ∈ B = {1/N, 2/N, . . . , (N − 1)/N}, the tie is broken in favour of the
smaller index. Formally,

IN (x) = min

{
` ∈ [N ]

∣∣∣∣x ∈ [`− 1

N
,
`

N

]}
.

We abuse notation and let IN : [0, 1]n → [N ]n denote the natural extension of the function
to [0, 1]n, where it is simply applied on each coordinate separately. Thus, if we consider
the partition of [0, 1]n into Nn subcubes of side-length 1/N , then, for any point x ∈ [0, 1]n,
p = IN (x) ∈ [N ]n is the index of the subcube containing x. For x ∈ Rn \ [0, 1]n, we let
IN (x) := IN (y) where y is obtained by projecting every coordinate of x onto [0, 1].

Letting e ∈ Rn denote the all-ones vector, we define

S(x) =

{
IN (x+ α · e)

∣∣∣∣α ∈ [0, 1

2N

]}
.

In other words, we consider a small segment starting at x and moving up simultaneously
in all dimensions, and we let S(x) be the set of subcubes-indices of all the points on the
segment. We can now prove the three properties of S(x):

1. Note that for any i ∈ [n], there exists at most one value α ∈ [0, 1/2N ] such that
[x+ α · e]i ∈ B = {1/N, 2/N, . . . , (N − 1)/N}. We let αi denote that value of α if it
exists, and otherwise we let αi = 1/2N . Thus, we obtain α1, α2, . . . , αn ∈ [0, 1/2N ]
and we rename them βi so that they are ordered, i.e., β1 ≤ β2 ≤ · · · ≤ βn and
{βi | i ∈ [n]} = {αi | i ∈ [n]}. By the definition of IN , it is then easy to see that
α 7→ IN (x + α · e) is constant on each of the intervals [0, β1], (β1, β2], (β2, β3], . . . ,
(βn−1, βn] and (βn, 1/2N ]. Since these n + 1 intervals (some of which are possibly
empty) cover the entirety of [0, 1/2N ], it follows that |S(x)| ≤ n+ 1.

2. Consider any p ∈ S(x). Let α ∈ [0, 1/2N ] be such that p = IN (y) where y = x+α · e.
For any i ∈ [n], it holds that xi ≤ yi ≤ xi + 1/2N . There are two cases to
consider. If IN (yi) = IN (xi), then this means that xi lies in the subinterval of length
1/N centred at [p̂]i, and thus, in particular, |xi − [p̂]i| ≤ 1/2N ≤ 1/N . The only
other possibility is that IN (yi) = IN (xi) + 1, since α ∈ [0, 1/2N ]. But for this to
happen, it must be that (2IN (xi)− 1)/2N ≤ xi ≤ 2IN (xi)/2N , since α ≤ 1/2N . By
definition, [p̂]i = (2IN (yi)− 1)/2N = (2IN (xi) + 1)/2N , and so we again obtain that
|xi − [p̂]i| ≤ 1/N . Since this holds for all i ∈ [n], it follows that ‖x− p̂‖∞ ≤ 1/N .

3. Given x ∈ [0, 1]n, the values α1, . . . , αn ∈ [0, 1/2N ], defined in the first point above,
can be computed in polynomial time in size(x), n and logN . Then, S(x) can be
computed by simply evaluating IN (x+α ·e) for all α ∈ {α1, . . . , αn, 1/2N}, which can
also be done in polynomial time in size(x), n and logN . Note that since n ≤ size(x),
the computation of S(x) runs in polynomial time in size(x) and logN .

74



We can now describe how the linear arithmetic circuit F : [0, 1]n → R is constructed.
Let C : {0, 1}kn → {0, 1}m be the Boolean circuit that is provided. It is interpreted as a
function C : [N ]n → [2m], where N = 2k.

Let x ∈ [0, 1]n be the input to the linear arithmetic circuit. F is constructed to perform
the following steps.
Step 1: Sampling trick. In the first step, we create a sample T of points close to x.
This is a standard trick that was introduced in the study of the complexity of computing
Nash equilibria [Daskalakis et al., 2009; Chen et al., 2009b]. Here we use the so-called
equi-angle sampling trick introduced by Chen et al. [2009b]. The sample T consists of
2n+ 1 points:

T =

{
x+

`

4nN
· e
∣∣∣∣ ` ∈ {0, 1, 2, . . . , 2n}} .

Note that these 2n+1 points can easily be computed by F given the input x. The following
two observations are important:

1. for all y ∈ T , IN (y) ∈ S(x) (by definition of S(x)),

2. Let Tb = {y ∈ T | ∃i ∈ [n] : dist(yi, B) < 1
8nN }, where B = {1/N, 2/N, . . . , (N −

1)/N} and dist(yi, B) = mint∈B |yi − t|. We call these the bad samples, because
they are too close to a boundary between two subcubes. The points in Tg = T \ Tb
are the good samples. It holds that |Tb| ≤ n. This is easy to see by fixing some
coordinate i ∈ [n], and noting that there exists at most one point y ∈ T such that
dist(yi, B) < 1

8nN . Indeed, since the samples are successively 1/4nN apart, at most
one can be sufficiently close to any given boundary. Furthermore, since the samples
are all 1/2N close, at most one boundary can be sufficiently close to any of them (for
every coordinate). Thus, since there is at most one bad sample for each coordinate,
there are at most n bad samples overall.

Step 2: Bit extraction. In the second step, we want to compute IN (y) for all y ∈ T .
This corresponds to extracting the first k bits of each coordinate of each point y ∈ T ,
because N = 2k. Unfortunately, bit extraction is not a continuous function and thus it is
impossible to always perform it correctly with a linear arithmetic circuit. Fortunately, we
will show that we can perform it correctly for most points in T , namely all the good points
in Tg.

Consider any y ∈ T and any coordinate i ∈ [n]. In order to extract the first bit of yi,
the arithmetic circuit computes

b1 = min{1,max{0, 8nN(yi − 1/2)} =: φ(yi − 1/2).

Note that if yi ≥ 1/2 + 1/8nN , then 8nN(yi − 1/2) ≥ 1 and thus b1 = 1. On the
other hand, if yi ≤ 1/2 − 1/8nN , then 8nN(yi − 1/2) ≤ −1 and thus b1 = 0. This
means that if dist(yi, B) ≥ 1/8nN , the first bit of yi is extracted correctly. Note that
B = {1/N, 2/N, . . . , (N − 1)/N} = {1/2k, 2/2k, . . . , (2k − 1)/2k}.

To extract the second bit, the arithmetic circuit computes t := yi − b1/2 and

b2 = φ(t− 1/4).

By the same argument as above, b2 is the correct second bit of yi, if |t− 1/4| ≥ 1/8nN ,
i.e., if |yi − 1/4| ≥ 8nN and |yi − 3/4| ≥ 8nN . Thus, if dist(yi, B) ≥ 1/8nN , the second
bit is also computed correctly, since 1/4, 3/4 ∈ B.

To extract the third bit, the arithmetic circuit updates t := t − b2/4 and computes
b3 = φ(t− 1/8). We proceed analogously up to the kth bit bk. By induction and the same

75



arguments as above, it follows that the first k bits of yi are computed correctly by the
arithmetic circuit as long as dist(yi, B) ≥ 1/8nN . In particular, this condition always
holds for y ∈ Tg.

By performing this bit extraction for each coordinate of each y ∈ T , we obtain the
purported bit representation of IN (y) for each y ∈ T . The argumentation in the previous
paragraphs shows that for all y ∈ Tg, we indeed obtain the correct bit representation of
IN (y). For y ∈ Tb, we have no control over what happens, and it is entirely possible that
the procedure outputs numbers that are not valid bits, i.e., not in {0, 1}.
Step 3: Simulation of the Boolean circuit. In the next step, for each y ∈ T , we
evaluate the circuit C on the bits purportedly representing IN (y). The Boolean gates of C
are simulated by the arithmetic circuit as follows:

• ¬b := 1− b,

• b ∨ b′ := min{1, b+ b′},

• b ∧ b′ := max{0, b+ b′ − 1}.

Note that if the input bits b, b′ are valid bits, i.e., in {0, 1}, then the Boolean gates are
simulated correctly, and the output is also a valid bit.

For y ∈ Tg, since the input bits indeed represent IN (y), the simulation of C will
thus output the correct bit representation of C(IN (y)) ∈ [2m]. We can obtain the value
C(IN (y)) ∈ [2m] itself by decoding the bit representation, i.e., multiplying every bit by the
corresponding power of 2 and adding all the terms together.

Let V (y) ∈ R denote the value that this step outputs for each y ∈ T . For y ∈ Tg, we
have that V (y) = C(IN (y)). For y ∈ Tb, there is no guarantee other than V (y) ∈ R.
Step 4: Median using a sorting network. In the last step, we want to use the
|T | = 2n + 1 values that we have computed (namely {V (y) | y ∈ T}) to compute the
final output of our arithmetic circuit. In previous constructions of this type, in particular
[Daskalakis et al., 2009; Chen et al., 2009b], the circuit would simply output the average of
the V (y). However, this is not good enough to prove our statement, because even a single
bad point y can introduce an inversely polynomial error in the average.

In order to obtain a stronger guarantee, the arithmetic circuit instead outputs the
median of the multiset {V (y) | y ∈ T}. The median of the given 2n + 1 values can be
computed by constructing a so-called sorting network (see, e.g., [Knuth, 1998]). The
basic operation of a sorting network can easily be simulated by the max and min gates.
It is easy to construct a sorting network for 2n + 1 values that has size polynomial in
n. The output of the sorting network will be the same values that it had as input, but
sorted. In other words, the sorting network outputs V1 ≤ V2 ≤ · · · ≤ V2n+1 such that
{Vj | j ∈ [2n+ 1]} = {V (y) | y ∈ T} as multisets. The final output of our arithmetic circuit
is Vn+1, which is exactly the median of the 2n+ 1 values.

Recall from step 1 that |Tb| ≤ n and thus |Tg| ≥ n + 1. It immediately follows that
either Vn+1 corresponds to V (y) of a good sample y, or there exist i < n+ 1 and j > n+ 1
such that both Vi and Vj correspond to good samples. In other words, the output of
the circuit satisfies F (x) ∈ [miny∈Tg C(IN (y)),maxy∈Tg C(IN (y))]. As noted in step 1,
IN (y) ∈ S(x) for all y ∈ T . Thus, we obtain that F (x) ∈ [minp∈S(x)C(p),maxp∈S(x)C(p)].

It follows that the linear arithmetic circuit F that we have constructed indeed satisfies
the statement of the Lemma. Furthermore, the construction we have described can be
performed in polynomial time in size(C), n, m and k. Since size(C) ≥ max{n, k,m}, it is
simply polynomial time in size(C).

76



F Annotated Source Code

This appendix is a literate Haskell file, which is a Haskell source file that is also a valid latex
document. This source file is Proof.lhs, which is responsible for carrying out the automated
proof for each square. Other modules in the program are responsible for parsing the input
templates and breaking them down into individual squares, and also creating the output
report as a pdf, but it is this module that is crucial for the correctness of the proof. The
full source code of the program is available at https://github.com/jfearnley/PPADPLS.

All of the Haskell code in the module will appear as inline listings in the document.
For example, the following code is the preamble of the module that imports the libraries
that we will be using.

module Proof where

import Data.SBV

import Data.Matrix

import Control.Monad

import GHC.Generics

A quick introduction to Haskell. In Haskell function application is written using
spaces. So calling a function f(x+ 1, y+ 2) would be written as f (x + 1) (y + 2). The
$ operator implements function application, so f $ a means “apply function f to argument
a. The $ operator is often used to remove brackets from expressions, so instead of writing
f (x + 1) we can instead write f $ x + 1.

The syntax f :: Int -> Float -> String is a type annotation that denotes that f
is a two argument function that takes an Int as its first argument, a Float as its second
argument, and it returns a String. The following example defines a two argument function
that takes two integers and returns their sum.

example :: Int -> Int -> Int

example x y = x + y

There are many resources available online if more information on Haskell syntax is
desired.

Introduction to the SBV library. The Haskell SBV library allows us to write programs
in Haskell and then prove theorems about those programs using an SMT solver. This will
allow us to succinctly specify the input to the solver as a readable and checkable Haskell
program, rather than a very long and unreadable SMT formula.

We will construct an SMT formula over the algebraic real numbers, which is represented
by the SReal type in SBV. It is important to understand that the SMT solver will genuinely
verify the correctness of the formula over the set of algebraic reals. So there will be no
approximations or rounding errors to worry about in the proof.

As a first example, the following code uses SBV to attempt to prove the formula

∀x · (x > 0⇒ x2 6= 2),

which states that there is no positive square root of two.

noRootTwo :: IO ThmResult

noRootTwo = prove $ do

77

https://github.com/jfearnley/PPADPLS


x <- symbolic "x" :: Symbolic SReal

return $ x .> 0 .=> x * x ./= 2

The first line defines x to be a symbolic algebraic real variable, and the second line then
directly constructs the formula in terms of x. Note that when we use the SReal type, we
must prefix all of our comparison operators with a . symbol, so the usual Haskell not-equal
operator /= becomes ./=.

The formula is clearly false, and so when we run the proof we get the following output.

ghci> noRootTwo

Falsifiable. Counter-example:

x = root(2, x^2 = 2) = 1.414213562373095... :: Real

Here the SMT solver identifies that the formula is false, and gives a counter example, which
is of course

√
2. Note that the answer is given symbolically.

If we configure SBV to print out its interaction with the solver, then the following
interaction is produced.

[GOOD] ; --- literal constants ---

[GOOD] (define-fun s1 () Real 0.0)

[GOOD] (define-fun s5 () Real (/ 2.0 1.0))

[GOOD] ; --- skolem constants ---

[GOOD] (declare-fun s0 () Real) ; tracks user variable "x"

[GOOD] ; --- formula ---

[GOOD] (define-fun s2 () Bool (> s0 s1))

[GOOD] (define-fun s3 () Bool (not s2))

[GOOD] (define-fun s4 () Real (* s0 s0))

[GOOD] (define-fun s6 () Bool (distinct s4 s5))

[GOOD] (define-fun s7 () Bool (or s3 s6))

[GOOD] (assert (not s7))

[SEND] (check-sat)

[RECV] sat

Here we can see that our formula has been translated into an SMT formula. Then the
SMT solver is asked to find a satisfying assignment of the formula’s negation. In this case
it succeeds, meaning that our formula was false.

For a slightly more involved example, we will prove that Pythagoras’s theorem is true.
We will use three symbolic points p, q, r ∈ R2. The following function detects whether ~pq
and ~qr form a right-angle, by checking whether their cross product is zero. Note that this
function returns an SBool, which is a symbolic Boolean variable.

rightAngle :: (SReal, SReal) -> (SReal, SReal) -> (SReal, SReal) -> SBool

rightAngle (p1, p2) (q1, q2) (r1, r2) = v1 * u1 + v2 * u2 .== 0

where (v1, v2) = (p1 - q1, p2 - q2)

(u1, u2) = (r1 - q1, r2 - q2)

The next function checks whether a2 + b2 = c2 for the triangle defined by p, q, and r.

pythagoras :: (SReal, SReal) -> (SReal, SReal) -> (SReal, SReal) -> SBool

pythagoras (p1, p2) (q1, q2) (r1, r2) = aSquared + bSquared .== cSquared

where aSquared = (p1 - q1)^2 + (p2 - q2)^2

bSquared = (q1 - r1)^2 + (q2 - r2)^2

cSquared = (r1 - p1)^2 + (r2 - p2)^2

78



Finally, we can ask SBV to prove the theorem. Here we define six symbolic variables
that encode the coordinates of p, q, and r, and then we encode a formula that states that
if p, q, and r form a right-angled triangle, then the conclusion of Pythagoras’s theorem
must hold.

pythagorasProof :: IO ThmResult

pythagorasProof = prove $ do

[p1, p2] <- symbolics ["p1", "p2"]

[q1, q2] <- symbolics ["q1", "q2"]

[r1, r2] <- symbolics ["r1", "r2"]

return $ rightAngle (p1, p2) (q1, q2) (r1, r2)

.=> pythagoras (p1, p2) (q1, q2) (r1, r2)

When we run the proof, the SMT solver verifies that Pythagoras’s theorem is true.

ghci> pythagorasProof

Q.E.D.

F.1 Our Proof

We now turn to our own proof. The first few lines simply define the constants that we will
use in the proof.

eps :: SReal

eps = 0.01

delta :: SReal

delta = 0.5

colorOffset :: SReal

colorOffset = 4

Next we define the types that will be used to input data into the proof. A RawPoint

contains a colour string that is one of "red", "orange", "black", "green", or "blue",
and a direction string that is one of "up", "down", "left", or "right".

data RawPoint = RawPoint

{ col :: String

, dir :: String

} deriving (Show, Eq, Generic)

A RawSquare contains four RawPoints, corresponding to the four corners of the square.
We will use zz as a suffix for the point at (0, 0), zo as the suffix for the point at (0, 1), oz
as the suffix for the point at (1, 0), and oo as the suffix for the point at (1, 1).

data RawSquare = RawSquare

{ rzz :: RawPoint

, rzo :: RawPoint

, roz :: RawPoint

, roo :: RawPoint

} deriving (Show, Eq, Generic)

79



For example, consider the following square.

This would be represented as the following value.

RawSquare { rzz = RawPoint {col = "black", dir = "down"}

, rzo = RawPoint {col = "orange", dir = "right"}

, roz = RawPoint {col = "green", dir = "right"}

, roo = RawPoint {col = "green", dir = "right"}

}

Symbolic squares. Next we define two types that represent the continuous function
that we will build from the input data. The type Point contains four symbolic values: f
gives the value of the function at the point, fx gives the gradient with respect to x at the
point, fy gives the gradient with respect to y at the point, and fxy gives the gradient with
respect to x and y at the point.

data Point = Point

{ f :: SReal

, fx :: SReal

, fy :: SReal

, fxy :: SReal

} deriving Show

A Square contains four symbolic points, one for each corner of the square. We use the
same naming convention as RawSquare for these points.

data Square = Square

{ zz :: Point

, zo :: Point

, oz :: Point

, oo :: Point

} deriving Show

Converting raw squares into squares. The next section of code turns the input data
into a symbolic square, following the instructions given by the reduction from the paper.

We begin by defining the five colors that we used in the paper. We will represent
the value of f at each point of the square symbolically. We will introduce five symbolic
values red, orange, black, green, and blue. Then, if a point in the square is red, we will
represent the value of f at that point as red + offset, where the offset is some number
between 0 and 2. We will then quantify over all values that satisfy red > orange + 4,
orange > black + 4, black > green + 4, and green > blue + 4. In this way, we are

80



able to show that the theorem holds no matter what particular values each color takes
within the square, so long as those values are sufficiently far apart.

The following functions define the offsets for each color. Each of them takes x and y

as inputs, which should both be assumed to belong to {0, 1}. The output is a number in
{0, 1, 2} that describes how that color behaves across the square.

The red function increases as we move right and down.

redGrad :: SReal -> SReal -> SReal

redGrad x y = x + (1-y)

The orange function increases as we go down or left.

orangeGrad :: SReal -> SReal -> SReal

orangeGrad x y = (1-x) + (1 - y)

The black function increases as we go up or right.

blackGrad :: SReal -> SReal -> SReal

blackGrad x y = x + y

The green function is the same as the orange function, while the blue function is the
same as the red function, so we just reuse the implementations.

greenGrad :: SReal -> SReal -> SReal

greenGrad = orangeGrad

blueGrad :: SReal -> SReal -> SReal

blueGrad = redGrad

The convertPotential function takes a raw point, the list of symbolic values

[red, orange, black, green, blue],

and an x and y coordinate for the point. It outputs the symbolic value of f at the point
computed as we describe above.

convertPotential :: RawPoint -> [SReal] -> SReal -> SReal -> SReal

convertPotential point vars x y = convert (col point)

where convert "red" = vars !! 0 + redGrad x y

convert "orange" = vars !! 1 + orangeGrad x y

convert "black" = vars !! 2 + blackGrad x y

convert "green" = vars !! 3 + greenGrad x y

convert "blue" = vars !! 4 + blueGrad x y

convert x = error ("unable to parse color " ++ show x)

The convertDirection function converts the direction given by the raw point into a
gradient. It outputs a pair of symbolic values (x′, y′), where x′ is the gradient with respect
to x, and y′ is the gradient with respect to y. Recall from the paper that an arrow pointing
upwards indicates that the function decreases as we move upwards, and does not move as
we move left or right. Therefore this corresponds to setting x′ = 0 and y′ = −δ, where
δ is the parameter indicating how steep the function should be. The following function
implements this, along with the other three cases.

81



convertDirection :: String -> (SReal, SReal)

convertDirection "up" = ( 0, -delta)

convertDirection "down" = ( 0, delta)

convertDirection "right" = (-delta, 0)

convertDirection "left" = ( delta, 0)

The next function converts a raw point to a symbolic point using the functions defined
above. It sets f to be the value of the potential at the point, it sets fx and fy according
to the gradients returned by convertDirection, and it sets fxy to be zero. All of these
are in accordance with the reduction defined in the paper.

rawPointToPoint :: RawPoint -> [SReal] -> SReal -> SReal -> Point

rawPointToPoint point vars x y = Point

{ f = convertPotential point vars x y

, fx = lr

, fy = ud

, fxy = 0

}

where (lr, ud) = convertDirection (dir point)

Finally, we can turn a raw square into a symbolic square. This function simply converts
each point of the raw square using the function above, while passing in the appropriate
coordinates.

rawSquareToSquare :: RawSquare -> [SReal] -> Square

rawSquareToSquare sq vars = Square

{ zz = rawPointToPoint (rzz sq) vars 0 0

, zo = rawPointToPoint (rzo sq) vars 0 1

, oz = rawPointToPoint (roz sq) vars 1 0

, oo = rawPointToPoint (roo sq) vars 1 1

}

Bicubic interpolation. Recall that the bicubic interpolation inside this square will be
a polynomial of the form:

f(x, y) =
3∑
i=0

3∑
j=0

aijx
iyj

where the coefficients aij are computed as follows
a00 a01 a02 a03
a10 a11 a12 a13
a20 a21 a22 a23
a30 a31 a32 a33



=


1 0 0 0
0 0 1 0
−3 3 −2 −1
2 −2 1 1

 ·

f(0, 0) f(0, 1) fy(0, 0) fy(0, 1)
f(1, 0) f(1, 1) fy(1, 0) fy(1, 1)
fx(0, 0) fx(0, 1) fxy(0, 0) fxy(0, 1)
fx(1, 0) fx(1, 1) fxy(1, 0) fxy(1, 1)

 ·


1 0 −3 2
0 0 3 −2
0 1 −2 1
0 0 −1 1


The following code implements this. We will use the matrix library to do the matrix

multiplications. We first define RealMatrix to be a matrix type that holds symbolic values,
and we then define the two constant matrices seen above.

82



type RealMatrix = Matrix SReal

leftMatrix :: RealMatrix

leftMatrix = fromList 4 4 [ 1, 0, 0, 0

, 0, 0, 1, 0

, -3, 3, -2, -1

, 2, -2, 1, 1

]

rightMatrix :: RealMatrix

rightMatrix = fromList 4 4 [ 1, 0, -3, 2

, 0, 0, 3, -2

, 0, 1, -2, 1

, 0, 0, -1, 1

]

Next we define the bicubic function that takes a square and outputs the coefficient
matrix, using the formula above.

bicubic :: Square -> RealMatrix

bicubic (Square zz zo oz oo) = leftMatrix * pointMatrix * rightMatrix

where pointMatrix = fromList 4 4 [ f zz, f zo, fy zz, fy zo

, f oz, f oo, fy oz, fy oo

, fx zz, fx zo, fxy zz, fxy zo

, fx oz, fx oo, fxy oz, fxy oo

]

Finally we provide two functions to extract the derivative of f(x, y) with respect to
x and with respect to y. These two functions take the coefficient matrix computed by
bicubic, an x coordinate and a y coordinate, and output the gradient at that point.

For the x derivative, we observe that for a fixed value of y, we have that

f(x, y) = c3x
3 + c2x

2 + c1x+ c0

where (c0, c1, c2, c3) = A · (1, y, y2, y3)T and A is the matrix of coefficients. Therefore the x
derivative at this point is 3c3x

2 + 2c2x+ c1.

xDerivative :: RealMatrix -> SReal -> SReal -> SReal

xDerivative interpolation x y = 3*c3*x^2 + 2*c2*x + c1

where yVec = fromList 4 1 [1, y, y^2, y^3]

[c0, c1, c2, c3] = toList (interpolation * yVec)

Similarly, for a fixed value of x we have that

f(x, y) = c3y
3 + c2y

2 + c1y + c0

where (c0, c1, c2, c3)
T = (1, x, x2, x3) ·A and A is the matrix of coefficients. Therefore the

y derivative at this point is 3c3y
2 + 2c2y + c1.

yDerivative :: RealMatrix -> SReal -> SReal -> SReal

yDerivative interpolation x y = 3*c3*y^2 + 2*c2*y + c1

where xVec = fromList 1 4 [1, x, x^2, x^3]

[c0, c1, c2, c3] = toList (xVec * interpolation)

83



The proof. We are now ready to specify the formula that we will present to the SMT
solver. We begin by specifying the constraints that will be used in the formula.

The following function checks that a symbolic value lies in [0, 1]. We will use this to
ensure that the symbolic point (x, y) lies in the [0, 1]2 square.

inSquare :: SReal -> SBool

inSquare x = (x .>= 0) .&& (x .<= 1)

The next constraint enforces the constraints on the symbolic values for the colors, which
we described earlier. It takes the list of symbolic values [red, orange, black, green, blue],
and checks that all of the values are suitably far apart (colorOffset was defined to be 4
earlier on in the file).

colorConstraints :: [SReal] -> SBool

colorConstraints vars = vars !! 0 .> vars !! 1 + colorOffset

.&& vars !! 1 .> vars !! 2 + colorOffset

.&& vars !! 2 .> vars !! 3 + colorOffset

.&& vars !! 3 .> vars !! 4 + colorOffset

Next we specify a list of tautologies. Note that each statement in the list is uncondi-
tionally true. We introduce these because, without them, the SMT solver does not verify
the formula within a reasonable amount of time. So, we modify our formula from “if A
then B”, to “if A and T then B”, where T is a tautology. Since the solver, at its core, is
based on the DPLL algorithm, this in effect suggests a possible case analysis to the solver,
which in practice dramatically speeds up the proof. Indeed, these tautologies were derived
from our own experience with useful cases when we proved the theorem for some of the
squares by hand.

Unfortunately we did not find one single tautology that worked for all of the squares.
So here we give three possibilities. For each square we will try the proof with each of the
tautologies, and we will consider the square to be verified if the solver terminates with at
least one tautology.

tautologies :: SReal -> SReal -> [SBool]

tautologies x y = [ x .>= y .|| y .>= x

, y .>= 0.5 .|| 0.5 .>= y

, x .>= 0.5 .|| 0.5 .>= x

]

Now we specify the conclusion of the proof. We want to prove that no ε-stationary
points exist within the square, which means that at each point (x, y) in the interpolated
square, it is not the case that both the x derivative and the y derivative are within ε of zero.
The nonZeroGradient function takes the matrix of coefficients from the interpolation, and
a symbolic point (x, y) as arguments. It computes the x derivative and the y derivative,
and returns true if the gradients satisfy the condition.

notEpsClose :: SReal -> SBool

notEpsClose x = (x .< -eps) .|| (x .> eps)

nonZeroGradient :: RealMatrix -> SReal -> SReal -> SBool

nonZeroGradient interpolation x y = notEpsClose (xDerivative interpolation x y)

.|| notEpsClose (yDerivative interpolation x y)

84



Finally we have the main proof function. This function takes as input a raw square,
and a number t between 0 and 2 indicating which tautology we would like to use. This
function defines the symbolic values for the potentials, as well as a symbolic point (x, y).
In then asks the SMT solver to prove the formula “if the colour constraints hold, and (x, y)
is in the [0, 1]2 square, and tautology t holds, then the gradient is not less than or equal to
ε at (x, y)”.

proof :: RawSquare -> Int -> IO ThmResult

proof raw tautologyIdx = prove $ do

setTimeOut 1000

vars <- symbolics ["red", "orange", "black", "green", "blue"]

[x, y] <- symbolics ["x", "y"]

let inter = bicubic $ rawSquareToSquare raw vars

tautology = tautologies x y !! tautologyIdx

return $ colorConstraints vars

.&& inSquare x

.&& inSquare y

.&& tautology

.=> nonZeroGradient inter x y

Dealing with proof output. The proof returns a ThmResult that tells us the output
of the solver. The following three functions tell us whether the SMT solver was successful
or timed out, and in the case where it was successful, whether it proved or disproved the
theorem.

successful :: ThmResult -> Bool

successful (ThmResult (Unknown _ _)) = False

successful (ThmResult (ProofError _ _ _)) = False

successful _ = True

proved :: ThmResult -> Bool

proved result = not $ modelExists result

disproved :: ThmResult -> Bool

disproved result = modelExists result

The following function verifies whether the theorem holds for a particular square. It
runs proof three times, once for each tautology. It then checks whether any of those runs
succeed, and if any run did succeed it returns the ThmResult from that run.

verifySquare :: RawSquare -> IO ThmResult

verifySquare square = do

results <- mapM (proof square) [0..2]

let finished = filter successful results

when (any proved finished && any disproved finished) $

error "solver returned inconsistent results!"

return $ if not . null $ finished then head finished

else head results

85



The boundary constraints. When a square lies on the boundary of the instance, there
are extra constraints to check on the boundary of the square. Specifically, in addition to
satisfying the theorem checked by verifySquare, we must also check that the direction
that we follow as we decrease the gradient does not move us outside the instance. The
following functions verify this condition, and they will be applied to any square that lies
on the boundary of the instance.

We first define the BoundarySide type that encodes which side of the instance the
square touches. For the four corners squares, which lie on two sides simultaneously, we will
run the proof twice, once for each side.

data BoundarySide = BoundaryLeft

| BoundaryRight

| BoundaryBottom

| BoundaryTop

deriving (Show, Eq)

In this setting, we only care about the points that lie directly on the boundary. So, for
a square that lies on the left side of the instance, we only need to consider the points (x, y)
satisfying x = 0, and for those on the right side of the instance we only consider the points
satisfying x = 1. The following function returns true for any point that lies directly on a
given boundary of the instance.

sideConstraint :: BoundarySide -> SReal -> SReal -> SBool

sideConstraint BoundaryLeft x _ = x .== 0

sideConstraint BoundaryRight x _ = x .== 1

sideConstraint BoundaryBottom _ y = y .== 0

sideConstraint BoundaryTop _ y = y .== 1

If a point lies on the boundary, we want the gradient to be larger than ε, while also
not causing gradient descent to walk directly outside the instance. For a point on the left
boundary of the instance, it is sufficient to check that either the y gradient has magnitude
larger than ε, or that the x gradient is negative and less than −ε. In the latter case, this
ensures that gradient descent will walk into the instance, rather than outside the boundary.

The following function takes as arguments the boundary side, the x gradient, and the
y gradient, and implements the appropriate check for the side that we are on. Note that
these conditions are correct for all boundary points except the four corners of the domain,
for which we have directly checked that they are not a solution in the paper.

sideTheorem :: BoundarySide -> SReal -> SReal -> SBool

sideTheorem BoundaryLeft x' y' = x' .< -eps .|| y' .< -eps .|| y' .> eps

sideTheorem BoundaryRight x' y' = x' .> eps .|| y' .< -eps .|| y' .> eps

sideTheorem BoundaryBottom x' y' = y' .< -eps .|| x' .< -eps .|| x' .> eps

sideTheorem BoundaryTop x' y' = y' .> eps .|| x' .< -eps .|| x' .> eps

Finally, we can implement the proof for the boundary. The following function is similar
to the proof function, but now we check the formula “if (x, y) is in the square and lies
on the given boundary of that square, and the colour constraints hold, then the gradients
must satisfy sideTheorem”. Fortunately, we do not need any tautologies for the SMT
solver to prove this theorem.

86



boundaryProof :: RawSquare -> BoundarySide -> IO ThmResult

boundaryProof raw side = prove $ do

setTimeOut 1000

vars <- symbolics ["red", "orange", "black", "green", "blue"]

[x, y] <- symbolics ["x", "y"]

let inter = bicubic $ rawSquareToSquare raw vars

xGrad = xDerivative inter x y

yGrad = yDerivative inter x y

return $ sideConstraint side x y

.&& colorConstraints vars

.&& inSquare x

.&& inSquare y

.=> sideTheorem side xGrad yGrad

87


	1 Introduction
	1.1 NP Total Search Classes: PPAD, PLS, and CLS
	1.2 Our Contribution and its Significance
	1.3 Further Related Work

	2 Overview
	2.1 The problems of interest
	2.2 Complexity classes
	2.3 Results
	2.4 Proof overview for thm:main-kkt-hard

	3 Preliminaries
	3.1 Computational Model, Classes and Arithmetic Circuits
	3.1.1 NP total search problems and reductions
	3.1.2 The classes PPAD, PLS and PPAD PLS
	3.1.3 Arithmetic circuits and the class CLS

	3.2 Computational Problems from Nonlinear Optimization
	3.2.1 Background on Nonlinear Optimization
	3.2.2 The KKT problem
	3.2.3 Gradient Descent problems


	4 KKT is PPAD PLS-hard
	4.1 Defining the Function on the Grid
	4.1.1 Pre-processing
	4.1.2 The Value Regimes
	4.1.3 Embedding the End-of-Line Instance: The Green and Orange Paths
	4.1.4 Embedding the ITER Instance: The PLS-Labyrinth

	4.2 Extending the Function to the Rest of the Domain
	4.3 Correctness
	4.4 Re-scaling
	4.5 Consequences in the black box model

	5 Gradient Descent and KKT are PPAD PLS-complete
	5.1 KKT and the Gradient Descent problems are equivalent
	5.2 From GD-Local-Search to PPAD PLS

	6 Consequences for Continuous Local Search
	6.1 Consequences for CLS
	6.2 Linear-CLS and Gradient Descent with Finite Differences

	7 Future Directions
	A More on arithmetic circuits
	A.1 Evaluation of well-behaved arithmetic circuits (Proof of lem:well-behaved-efficient)
	A.2 Linear arithmetic circuits are Lipschitz-continuous

	B Mathematical Tools
	B.1 Tools from Convex Analysis and a Generalization of Farkas' Lemma
	B.2 Proof of lem:taylor (Taylor's Theorem)

	C Minor Observations on Continuous-Localopt and KKT
	D General-Brouwer and General-Real-Localopt
	E Approximation by Linear Circuits
	E.1 General Statement and Proof
	E.2 Key Lemma

	F Annotated Source Code
	F.1 Our Proof


