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Abstract

In this paper, we propose a simple estimator of cross-covariance matrices for a multivariate time

series with an unknown mean based on a linear combination of the circular sample cross-covariance

estimator. Our estimator is exactly unbiased when the data generating process follows a Vector

Moving Average (VMA) model with an order less than one half of the sampling period, and is

nearly unbiased if such VMA model can approximate the data generating process well. In addition,

our estimator is shown to be asymptotically equivalent to the conventional sample cross-covariance

estimator. Via simulation, we show that the proposed estimator can to a large extent eliminate the

finite sample bias of cross-covariance estimates, while not necessarily increase the mean squared

error.
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1 Introduction

The cross-covariance is a fundamental statistic that plays a central role in multivariate analysis and

has extensive applications across many disciplines ranging from engineering, physics, geostatistics,

bioinformatics to finance. Among its various applications, it is of particular importance in system

identification and model diagnostics. It is frequently used in the testing for the multivariate white

noise property (e.g. Hosking (1980, 1981); Li and McLeod (1981); Mahdi and Ian McLeod (2012)),

heteroscedasticity and autocorrelation robust inference of long-run covariance matrix (e.g. Newey

and West (1987); Andrews (1991)), spectral density estimation (Priestley, 1981); principal component

analysis and factor modelling (Wei, 2019). It is usually estimated by the sample cross-covariance

estimator, which is known to be biased when the population mean is unknown. However, to the best

of our knowledge, there are no papers that directly address the bias of the sample cross-covariance

estimator for a vector-valued time series.

Several papers provide bias-reduction or correction methods for univariate autocovariances. In

a panel data framework, Okui (2010, 2011) propose an estimator that is asymptotically unbiased for

the within-group autocovariance. However, the number of time series also approaches infinity in their

asymptotic setting, which is in stark contrast to a common time-series setting with a fixed dimension.

More importantly, their inference target is still univariate in nature, as cross-covariances are not

estimated. A recent paper by Vogelsang and Yang (2016) documents a novel approach to correct for

the bias of autocovariance estimators. They show that the sample autocovariances can be written as

a linear combination of population covariances through a mapping matrix A. By inverting the h-th

order leading principal minor of A, they demonstrate that their A-estimator is able to deliver exactly

unbiased autocovariance estimates up to the h-th lag under the condition that the univariate time

series is a moving average (MA) process of order h, and is nearly unbiased when the MA(h) structure

provides a good approximation. They also show that their A-estimator is asymptotically equivalent

to the sample autocovariance estimator.

Inspired by the work of Vogelsang and Yang (2016), we propose an estimator that allows exactly

unbiased estimation of cross-covariance matrices if a multivariate time series is generated by a Vector

MA (VMA) model with a suitably chosen VMA order, and provides sizeable bias-reduction if the

VMA structure holds approximately true. Distinct from Vogelsang and Yang (2016) who builds a

bias-corrected estimator from conventional sample autocovariances, we start from a circular version

of sample cross-covariance estimator and show that it greatly simplifies the bias-correction problem

for cross-covariances. This circular design is also used in Li (2020) to derive a bias correction for the

sample third moment estimates.

Our circular-based estimator has the following unique features: (1) In a univariate framework,
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our estimator delivers comparable bias-reduction of autocovariances relative to the A-estimator, but

with a much simpler structure. Specifically, the A-estimator requires to construct the sophisticated A

matrix and invert its leading principal minors, while our estimator only relies on one simple mapping

matrix with no inversion involved; (2) For a suitably chosen VMA order h less than one half of the

sample time span and a fixed dimension N , we can estimate bias-corrected (h+ 1)N2 cross-covariance

parameters in one step, which is unavailable from the A-estimator that only applies to a univariate

setting; (3) Our estimator is asymptotically equivalent to the conventional sample cross-covariance

estimators, which suggests a straightforward implementation in hypothesis tests; (4) In a univariate

setting, both our circular-based estimator and the original A-estimator are different special cases of a

generalized A-estimator, which is also unbiased when the MA(h) assumption holds.

Our simulation study shows that in a univariate setting, the three bias-corrected autocovariance

estimators, namely our circular-based estimator, the original A-estimator and the generalized A-

estimator, are exactly unbiased under the MA(h) assumption, and can to a large extent reduce the bias

even when the MA(h) assumption fails. The generalized A-estimator has overall the smallest MSE

among the three bias-corrected estimators, while our circular-based estimator and the A-estimator

have very close performance. The cost to pay for the bias-reduction is a higher variance, whereas gains

in MSE can be achieved when the autocovariance structure is persistent. In a multivariate setting, we

confirm that our estimator is indeed effective in eliminating bias for sample cross-covariance estimates.

The rest of this paper is organized as follows: Section 2 describes the general econometric setting

and defines the circular-based sample cross-covariance estimator. The multivariate cross-covariance

estimator is derived in Section 3 which also includes the discussion of a generalized A-estimator in

the univariate case. Section 4 contains the finite sample simulation study of the proposed estimator

that includes both univariate and multivariate analyses. We discuss some empirical considerations and

further research topics in Section 5. Section 6 concludes. All proofs are provided in the Appendix.

2 Setting

On a filtered probability space in discrete time (Ω,F , {Ft}t≥0,P), we observe a real vector-valued

N -dimensional process Y = {Yt}t≥0, where Yt = {y(n)
t }′n=1:N . Throughout this paper, we will assume

that the indexing variables h, i, j and t take values in Z only whenever no confusion is caused. We will

also assume a fixed N throughout the paper. We impose the following assumption on Y throughout

the paper:

Assumption 1. The time series Y is a stationary and ergodic process with finite fourth moments

and satisfies the absolute summability condition
∑∞

j=1 ||Γj || < ∞ for some matrix norm || · ||, where

Γj = E[(Yt − µ)(Yt−j − µ)′] and µ = E[Yt].
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The sequence of N -by-N matrices {Γj}j∈Z is called the cross-covariances of Y , which is the main

inference target of this paper. The above assumption is satisfied by stationary VARMA models, and is

required for a meaningful estimation of the cross-covariance matrices. For a realization of Y denoted by

{Yt}t=1:T , a frequently used estimator of Γj is the following (conventional) cross-covariance estimator:

Γ̂j =
1

T

T+(j∧0)∑
t=(j∨0)+1

(Yt − Ȳ )(Yt−j − Ȳ )′, |j| ∈ [0, T − 1], (2.1)

where Ȳ is the sample mean, and ∨ (∧) is the maximum (minimum) operator. By a standard ergodic

argument, the above estimator consistently estimates Γj for any fixed j ∈ Z. However, due to the

problem of an unknown µ, it is well-known that the above estimator is biased, and the main research

interest of this paper is to provide a simple finite sample bias correction method for the estimation of

Γj , which, to the best of our knowledge, is not available in the extant literature.

To this end, we firstly introduce a circular definition of the sample cross-covariances in the spirit

of the circular block bootstrap of Politis and Romano (1992):

Definition 1. Given a realization of Y denoted as {Yt}t=1:T . For each |j| ∈ [0, T − 1], define the time

index circularly such that Y−j = YT−j . The circular sample cross-covariance is defined as:

Ψ̂j =
1

T

T∑
t=1

(Yt − Ȳ )(Yt−j − Ȳ )′, (2.2)

The circular sample cross-covariance has the following interesting properties:

Proposition 1. Let {Ψ̂j}j=0:T−1 denote the sequence of circular sample cross-covariances constructed

from {Yt}t=1:T . The following relations hold for |j| ∈ [1, T − 1]:

Ψ̂j = Γ̂j + Γ̂′T−j , Ψ̂j = Ψ̂′−j = Ψ̂′T−j ,
T−1∑
j=0

Ψ̂j = 0. (2.3)

Remark 1. Note that by definition Ψ̂0 = Γ̂0. The difference between Ψ̂j and Γ̂j is subtle. The

conventional estimator Γ̂j avoids the negative indices and uses T − |j| cross terms while Ψ̂j uses all

T cross terms by cycling the observations. Asymptotically, Ψ̂j and Γ̂j are equivalent for any fixed j

because Γ̂T−j vanishes as T diverges under the ergodic assumption. In a finite-sample setting, however,

Ψ̂j is in general inferior to Γ̂j for the following reasons. Firstly, Ψ̂j = Γ̂j + Γ̂′T−j suggests that for

j large relative to T , Γ′T−j can dominate Γj, yielding an estimator of Γ′T−j instead of Γj. This

implies that Ψ̂j is only applicable for j small relative to T such that Γ′T−j is close to a zero matrix.

Secondly, as the additional term Γ̂′T−j is irrelevant to the inference target (Γj), Ψ̂j can have a larger

bias and variance in comparison to Γ̂j. However, circular sample cross-covariance estimators are

computationally more convenient by simply reordering the rows of the data matrix. More importantly,

the symmetry of the circular structure greatly simplifies the computation of the finite sample bias of

Ψ̂j, which is summarized in the theorem below.
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Theorem 1. The following results hold for all |j| ∈ [1, T − 1]:

E[Ψ̂0] =
T − 1

T
Γ0 −

1

T
KT ,

E[Ψ̂j ] =
T − j
T

Γj +
j

T
Γ′T−j −

1

T
Γ0 −

1

T
KT ,

(2.4)

where KT =
∑T−1

j=1
T−j
T (Γj + Γ′j) is an N -by-N symmetric matrix.

Remark 2. We see that the bias of Ψ̂j depends on KT /T which collects all the cross-covariances to

the end of the dataset. Therefore, the bias can be sizeable when T is small, but converges to zero as

T → ∞ under the absolute summability condition. Also, for j large relative to T , the bias of Ψ̂j can

be substantial due to the term j
T Γ′T−j, which corroborates our discussions in Remark 1.

Note that the above simple result is fully attributed to the circular structure, as an analogous

result for conventional sample cross-covariances is much more difficult to derive. For example, in the

supporting document of Vogelsang and Yang (2016), they provide a lengthy derivation of the bias for

the conventional sample autocovariances, which involves a sophisticated A matrix. It is also not clear

whether such a result can be directly generalized to our N -dimensional setting.

To illustrate further on the estimation of Γj , we introduce some notations. Let us denote the j-th

order circular sample cross-covariance between the m-th and the n-th time series as Ψ̂j(m,n), which

is simply the element on the intersection of the m-th row and n-th column of Ψ̂j :

Ψ̂j(m,n) =
1

T

T∑
t=1

(y
(m)
t − ȳ(m))(y

(n)
t−j − ȳ

(n)), (2.5)

where ȳ(n) denotes the sample mean of y
(n)
t . The terms KT (m,n) and Γj(m,n) follow the same logic,

and it is clear that we have Ψ̂j(m,n) = Ψ̂T−j(n,m), Ψ̂0(m,n) = Ψ̂0(n,m), and KT (m,n) = KT (n,m)

for any m,n ∈ [1, N ]. Now consider the linear system of equations for all j ∈ [1, T − 1]:

E[Ψ̂j(m,n)] =
T − j
T

Γj(m,n) +
j

T
ΓT−j(n,m)− 1

T
Γ0(m,n)− 1

T
KT (m,n), (2.6)

We can write the above system of equations in a compact matrix format:

E[Ψ̂(m,n)︸ ︷︷ ︸
(T−1)×1

] = G︸︷︷︸
(T−1)×(2T−1)

Γ(m,n)︸ ︷︷ ︸
(2T−1)×1

, (2.7)

where:

Ψ̂(m,n) =


Ψ̂1(m,n)

...

Ψ̂T−1(m,n)

 , Γ(m,n) =



Γ0(m,n)

Γ1(m,n)
...

ΓT−1(m,n)

Γ1(n,m)
...

ΓT−1(n,m)


, (2.8)
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and the matrix G = {Gi,j}i=1:T−1,j=1:2T−1 is defined as follows:

Gi,j =


− 1
T , i ∈ [1, T − 1], j = 1

T−j+1
T

(
1l {i+1=j} − 1

T

)
, i ∈ [1, T − 1], j ∈ [2, T ]

GT−i,j−T+1, i ∈ [1, T − 1], j ∈ [T + 1, 2T − 1]

, (2.9)

where 1lA is the indicator function which equals 1 if the set A is non-empty, and zero otherwise. Note

that we deliberately exclude Ψ̂0(m,n) in the construction of Ψ̂(m,n) due to
∑T−1

j=0 Ψ̂j(m,n) = 0 from

Proposition 1, so it does not add any information to the system of equations. It is also clear that

since Ψ̂T−j(n,m) = Ψ̂j(m,n) from Proposition 1, we only need to include either Ψ̂(m,n) or Ψ̂(n,m).

We are now in a classic linear Generalized Method of Moments (GMM) setting, where an unbiased

estimator of Γ(m,n) can be formed by finding a (2T − 1)-by-(T − 1) matrix R such that:

RE[Ψ̂(m,n)] = Γ(m,n), (2.10)

or equivalently RG = I2T−1, where In is the n-by-n identity matrix. However, in our setting, such

an R does not exist because the G matrix does not have full column rank, thus the system is under-

identified. To illuminate this problem, let us consider two different scenarios.

Case 1: m = n. In this case, we have Ψ̂j(m,m) = Ψ̂T−j(m,m) for all j ∈ [1, T − 1]. Therefore,

there are bT2 c unique sample moments which means that only bT2 c moments from Γ(m,m) can be

identified. Suppose that Γ0(m,m) is always estimated, then we can at most identify bT2 c − 1 autoco-

variance terms from {Γj(m,m)}j=1:T−1. Assuming that the autocovariance structure of a time series

decays to zero as j expands, a reasonable choice in practice is to identify Γj(m,m) for j ∈ [1, bT2 c− 1]

and assume that Γj(m,m) = 0 for j ≥ bT2 c.

Case 2: m 6= n. In this case, all sample moments in Ψ̂j(m,n) are unique, thus at most T − 1

moments can be identified from Γ(m,n). Suppose that Γ0(m,n) = Γ0(n,m) is always estimated and

we would like to estimate an equal amount of lags from {Γj(m,n)}j=1:T−1 and {Γj(n,m)}j=1:T−1,

then it is also clear that at most bT2 c − 1 lags of cross-covariances can be identified in this case. From

a similar argument as in Case 1, we choose to identify Γj(n,m) and Γj(m,n) for j ∈ [1, bT2 c − 1] and

assume the remainder terms to be zero.

Based on the above discussion, it is clear that identification restrictions are required for such an

R to exist. Following the idea in Vogelsang and Yang (2016), we assume that Y follows a VMA(h)

model, formally defined as below:

Definition 2. The process Y is generated by a VMA(h) model with a fixed h < ∞ if Y has the

following representation:

Yt = µ+
h∑
i=0

Θiut−i, (2.11)
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where Θi are N -by-N real coefficient matrices and ut is a vector-valued weak white noise process.

Under the VMA(h) assumption, it is clear that Γj = 0N×N for all j > h, which provides iden-

tification restrictions for our estimation problem stated earlier. We are now ready to state the main

results in our paper.

3 Main Results

Our main result is the following theorem:

Theorem 2. Assume that Y follows a VMA(h) model with a fixed h < bT2 c as in Definition 2. Define

the (T − 1)-by-(2h+ 1) matrix Hh = {Hi,j}i=1:T−1,j=1:2h+1 as:

Hi,j =


− 1
T , i ∈ [1, T − 1], j = 1

T−j+1
T

(
1l {i+1=j} − 1

T

)
, i ∈ [1, T − 1], j ∈ [2, h+ 1],

HT−i,j−h, i ∈ [1, T − 1], j ∈ [h+ 2, 2h+ 1].

(3.1)

Let W denote a (T − 1)-by-(T − 1) non-random positive definite matrix, then for all m,n ∈ [1, N ], we

can construct the following estimator:

Ψ̂
∗
h(m,n)︸ ︷︷ ︸

(2h+1)×1

≡ (H ′hWHh)−1H ′hW︸ ︷︷ ︸
(2h+1)×(T−1)

Ψ̂(m,n)︸ ︷︷ ︸
(T−1)×1

. (3.2)

For all m,n ∈ [1, N ] and valid choices of W , it holds that:

E[Ψ̂
∗
h(m,n)] = Γh, Ψ̂

∗
h(m,n)

p→ Γh(m,n), (3.3)

where Γh(m,n) = {Γ0(m,n),Γ1(m,n), . . . ,Γh(m,n),Γ1(n,m), . . . ,Γh(n,m)}′ is the (2h+ 1)-by-1 vec-

tor collecting all the cross-covariances terms between the m-th and the n-th series up to lag h.

Remark 3. By construction, Hh is a sub-matrix of G that removes the columns representing Γj(m,n)

and Γj(n,m) for j > h. In fact we have HT−1 = G. The upper bound of h is a result from our

identification restriction as discussed in the previous section. In detail, Hh has full column rank for

all h < bT2 c, so that the linear GMM estimator is at least just-identified. As the above result holds for

any m and n, one can construct bias-corrected estimates for all elements in {Γj}j=0:h by computing

Ψ̂
∗
h(m,n) for all m and n. Throughout this paper, the superscript ∗ denotes a bias-corrected estimator.

Remark 4. The truncation parameter h plays a similar role as the parameter m in the A-estimator

(a definition is given in Section 3.1), which controls for the number of cross-covariance terms to be

estimated. In a finite sample, h can take any value below bT2 c, while Vogelsang and Yang (2016)

claim that m can be as large as T − 2. Therefore for autocovariance estimation, the A-estimator can

potentially correct for the bias caused by a more persistent dynamic structure than our approach, and
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can be more efficient as Γ̂j is superior to Ψ̂j. However, as will be clear from the results below, our

estimator is much simpler to construct and is directly applicable to the multivariate case. Moreover,

in our simulation section, we demonstrate that the performance of our estimator is almost as precise

as the A-estimator in a univariate setting.

We also have the following result which reconciles our estimator with the bias-corrected sample

variance-covariance estimator under the i.i.d. assumption:

Corollary 1. Suppose h = 0 and W = IT−1, then it holds that:

Ψ̂
∗
0(m,n) =

T

T − 1
Ψ̂0(m,n). (3.4)

Theorem 2 guarantees that Ψ̂
∗
h(m,n) will be nearly unbiased when VMA(h) is a good approxi-

mation to the covariance structure of y. In fact, it is easy to derive the exact bias of Ψ̂
∗
h(m,n) when

the VMA(h) assumption does not hold.

Proposition 2. Suppose Y follows a VMA(∞) process, then it holds that:

E[Ψ̂
∗
h(m,n)] = Γh(m,n) + (H ′hWHh)−1H ′hWε(m,n), (3.5)

where ε(m,n) = {εj(m,n)}j=1:T−1 and:

εj(m,n) =− 1

T

T−1∑
k=h+1

T − k
T

(Γk(m,n) + Γk(n,m))

+ 1l {j<T−h}
j

T
ΓT−j(n,m) + 1l {j>h}

T − j
T

Γj(m,n).

(3.6)

Remark 5. Intuitively, ε(m,n) contains all of the cross-covariance terms which are assumed to be

zero under the VMA(h) assumption. Note that the first term in ε(m,n) is only of the order O(T )

which is negligible compared to the other two terms. Suppose Γj(m,n) decays exponentially, then as

long as h is chosen such that Γj(m,n) ≈ Γj(n,m) = 0 for j > h, Ψ̂
∗
h(m,n) will be nearly unbiased

even when the VMA(h) assumption fails.

To construct Ψ̂
∗
h(m,n) in practice, we still have to choose W , which can be different for each m

and n. In fact, one can even choose an adaptive W for every m and n, which minimizes the variance of

the estimator. However, an adaptive W removes the unbiasedness property of Ψ̂
∗
h(m,n), and is thus

not considered in this paper. Even if we keep W fixed, we still need to compute (H ′hWHh)−1H ′hW ,

which involves a matrix inversion that can be undesirable in the case of large N .

To solve the aforementioned implementation issues, we derive an equivalent representation of

Ψ̂
∗
h(m,n) based on the identity weighting matrix W = IT−1, which can be computed explicitly

without any matrix inversion. As will be shown later, this choice actually implies an asymptotic

equivalence between Ψ̂
∗
h(m,n) and Γ̂j(m,n).
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Proposition 3. Set W = IT−1, then for every m and n, it holds that Ψ̂
∗
h(m,n) = RhΨ̂(m,n), where

Rh for 0 < h < bT2 c is defined as:

Rh︸︷︷︸
(2h+1)×(T−1)

=



−1, −1, . . . , −1, −(T − 2h)v′h, −1, . . . , −1, −1

T
T−1 , 0 . . . , 0, − T

T−1v
′
h, 0, 0, 0, 0

0, T
T−2 , . . . , 0, − T

T−2v
′
h, 0, 0, 0, 0

... ,
... ,

. . . ,
... ,

... ,
... ,

... ,
... ,

...

0, 0, . . . , T
T−h , − T

T−hv
′
h, 0, 0, 0, 0

0, 0, 0, 0, − T
T−1v

′
h, 0, 0 . . . , T

T−1

0, 0, 0, 0, − T
T−2v

′
h, 0, . . . , T

T−2 , 0
... ,

... ,
... ,

... ,
... ,

... , . .
. ... ,

...

0, 0, 0, 0, − T
T−hv

′
h,

T
T−h , 0 . . . , 0



, (3.7)

and vh is the (T − 2h − 1)-by-1 equal weight vector (with all elements equal and summing up to 1).

Specially, R0 = −Tv′0.

Proposition 3 allows us to estimate any selected elements of Γh(m,n) by taking the corresponding

rows from Rh and multiplying it with Ψ̂(m,n). In fact, we can even estimate all (h+1)N2 parameters

from {Γj}j=0:h in one step using the following result:

Corollary 2. Let vec(·) denote the vectorization operator which stacks all elements of a matrix into a

column vector (see e.g. Henderson and Searle (1979) for a detailed definition). Construct the matrices

Ψ̂
◦

and Γ̂
◦
h as follows:

Ψ̂
◦︸︷︷︸

(T−1)×N2

=


vec(Ψ̂1)′

...

vec(Ψ̂T−1)′

 , Γ◦h︸︷︷︸
(2h+1)×N2

=



vec(Γ0)′

vec(Γ1)′

...

vec(Γh)′

vec(Γ′1)′

...

vec(Γ′h)′


(3.8)

Let us denote Ψ̂
∗
h = RhΨ̂

◦
, then under the VMA(h) assumption of Y with a fixed h < bT2 c. It holds

that:

E[Ψ̂
∗
h] = Γ◦h, Ψ̂

∗
h

p→ Γ◦h. (3.9)

The above results demonstrate the simplicity and computational advantage of our estimator, as

we can construct a bias-corrected estimator for any sub-matrices of Γ◦h just by selecting an appropriate

range ofRh and Ψ̂
◦
, both of which can be constructed explicitly. We also have the following alternative

representation for estimating a specific Γj as a matrix:
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Corollary 3. Define the estimator Ψ̂∗j,h as follows:

Ψ̂∗j,h =
T

T − j

(
Ψ̂j +

1

T − 2h− 1

h∑
i=−h

Ψ̂i

)
, 0 ≤ |j| ≤ h. (3.10)

Under the VMA(h) assumption of Y with a fixed h < bT2 c, we have for all j ≤ h:

E[Ψ̂∗j,h] = Γj , Ψ̂∗j,h
p→ Γj (3.11)

Remark 6. In view of Proposition 2, the bias of Ψ̂∗j,h can be derived explicitly using the Rh matrix

after some simple calculation:

E[Ψ̂∗j,h]− Γj =
j

T − j
ΓT−j −

T

(T − 2h− 1)(T − j)

T−h−1∑
k=h+1

T − k
T

(Γk + Γ′k), j ∈ [0, h]. (3.12)

Therefore, this bias is in general very small if Γj is close to be a zero matrix for all j > h, and it is

indeed of order O(T−1) for any fixed h, which follows from the consistency of Ψ̂∗j,h. Comparing with

the expression in Eq. (2.6), we should expect the bias of Ψ̂∗j,h to be much smaller than that of Ψ̂j when

the low order cross-covariances dominates the high order ones, because the bias of Ψ̂∗j,h only consists

of Γj for j > h. In practice, one may plug Γ̂j into the above formula to approximate the bias of Ψ̂∗j,h,

however it should be noted that such approximation is in itself biased, which does not necessarily reflect

the actual bias of the estimator.

An important property of a variance-covariance estimator is that it should be positive definite.

We discuss the positive definiteness of Ψ̂∗0,h in the result below:

Proposition 4. Based on a sample size of T and some h < bT2 c, Ψ̂∗0,h is almost surely positive definite

if it satisfies the following criterion:

inf
x∈[−π,π]

2π(DT−1(x)−DT−h−1(x) +Dh(x)) > 1 + 2h− T, (3.13)

where Dh(x) = sin((2h+1)x/2)
2π sin(x/2) is the h-th order Dirichlet kernel.

Remark 7. The criterion in Eq. (3.13) can be easily checked for any T and h numerically. Using

the crude bound |Dh(x)| ≤ 2h+1
2π , it is easy to see that Ψ̂∗0,h must be almost surely positive definite for

all h ≤ T−1
6 . We are unable to sharpen this bound analytically. Instead, for each T , we calculate the

largest h∗ such that Eq. (3.13) is satisfied for all h ≤ h∗, which is presented in Figure 1. The figure

shows that h∗ can be very well approximated by −1.09+0.30T , which provides a sharp upper bound for

the choice of h in practice that guarantees a positive definite Ψ̂∗0,h. This, inevitably, further restricts the

range of h, which is a problem shared by the A-estimator if the strict positivity of variance estimates

is pursued.

Finally, we show that our cross-covariance estimator is asymptotically equivalent to the conven-

tional sample cross-covariance estimator:
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Figure 1: Numerically computed h∗ for T ∈ [5, 200]
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Note: For each T ∈ [5, 200], we compute numerically the largest h∗ such that Eq. (3.13) is satisfied for all h ≤ h∗. The black line

represents the linear least square fit to the h∗s.

Theorem 3. Assume that Y is a VMA(∞) process satisfying the conditions in Assumption 1. For

fixed integers N and h, it holds that:
√
T (Ψ̂

∗
h − Γ̂

◦
h) = op(1), where Γ̂

◦
h is the conventional sample

cross-covariance estimator of Γ◦h.

Remark 8. Note that the above result implies that Ψ̂
∗
h(m,m) is asymptotically equivalent to the

A-estimator of Vogelsang and Yang (2016), since the A-estimator is also asymptotically equivalent

to the sample autocovariance estimator. Therefore, one can use our estimator in tests by simply

replacing the conventional sample cross-covariance estimators, and it is likely to improve the finite

sample performance of the original test, which is supported by the findings in Vogelsang and Yang

(2016); Yang and Vogelsang (2018).

3.1 Connection to the A-Estimator in the Univariate Case

As both our estimator and the A-estimator of Vogelsang and Yang (2016) are unbiased in a univariate

setting, it is important to understand the relationship between these two estimators. To this end, we

firstly state the definition of the A-estimator. Let us denote γ = {γj}′i=0:T−1 as the T -by-1 vector

of true autocovariances for a univariate time series y, and denote γ̂ = {γ̂j}′j=0:T−1 denote the T -by-1

vector of conventional sample variance and autocovariances. For some h ≤ T − 2, the A-estimator γ̃∗h

is defined as:

γ̃∗h︸︷︷︸
(h+1)×1

= A−1
h︸︷︷︸

(h+1)×(h+1)

γ̂h︸︷︷︸
(h+1)×1

, (3.14)

where γ̂h = {γ̂j}′i=0:h, Ah is the leading principle minor of order h+ 1 of the T -by-T matrix A which

satisfies the property E[γ̂] = Aγ. Its expression can be found in Section 3 of Vogelsang and Yang

(2016). It then follows that E[γ̃∗h] = γh with γh = {γj}′i=0:h if y follows an MA(h) model, and γ̃∗h is

asymptotically equivalent to γ̂h. Note that here h is understood as the parameter m in Vogelsang and

Yang’s (2016) original notation.
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For some h < bT2 c, our univariate bias-corrected autocovariance estimator takes the following

form due to Proposition 3:

ψ̂
∗
h︸︷︷︸

(h+1)×1

= R̃h︸︷︷︸
(h+1)×(T−1)

ψ̂︸︷︷︸
(T−1)×1

, (3.15)

where ψ̂ = {ψ̂j}′j=1:T−1 is the (T−1)-by-1 vector of circular sample autocovariances, and R̃h is defined

as the first h + 1 rows of Rh in Eq. (3.7). Intuitively the last h rows of Rh are not needed due to

the fact that γj = γ−j by definition. To compare our estimator with γ̃∗h, we present the following

alternative representation of ψ̂
∗
h in terms of conventional sample autocovariances:

Corollary 4. The following result holds:

ψ̂
∗
h︸︷︷︸

(h+1)×1

= Mh︸︷︷︸
(h+1)×(2h+1)

γ̂J︸︷︷︸
(2h+1)×1

, (3.16)

where γ̂J = {γ̂j}j∈J , J = {0, 1, . . . , h, T − h, . . . , T − 1} and Mh = {Mi,j}i=1:h+1,j=1:2h+1 has the

following form:

Mi,j =


T

T−i+1(1l {i=1} + 1
T−2h−1), i ∈ [1, h+ 1], j = 1

T
T−i+1(1l {i=j}∪{i=T−j+1} + 2

T−2h−1), i ∈ [1, h+ 1], j ∈ [2, 2h+ 1]

(3.17)

Specially, M̃0 = T
T−1 .

Remark 9. The proposition reveals that ψ̂
∗
h is in general very different from γ̃∗h. Specifically, ψ̂

∗
h uses

2h+1 conventional sample moments {γ̂j}j∈J to identify h+1 population moments, while γ̃∗h only uses

h + 1 conventional sample moments {γ̂j}j=0:h to identify h + 1 population moments. Therefore, ψ̂
∗
h

corresponds to a particular solution of an over-identified system, whereas γ̃∗h is the unique solution of

a just-identified system. As a result, ψ̂
∗
h and γ̃∗h are never identical unless both estimators are based

on the same sets of sample moments with just-identified population moments, which only holds when

h = 0 with the index set j ∈ J = {0}.

In the spirit of Theorem 2, we can generalize the A-estimator to construct an unbiased autoco-

variance estimator using more than h conventional sample autocovariances, which nests both γ̃∗h and

ψ̂
∗
h. The generalized A-estimator is defined as follows:

Proposition 5. For any fixed h ≤ T − 2, choose an integer q ∈ [h+ 1, T ], and let Jq ⊆ {0, . . . , T − 1}

denote an increasing sequence of indices with q terms. Denote the vector γ̂Jq = {γj}′j∈Jq as the q-by-1

vector of conventional autocovariances, and define the q-by-(h+ 1) matrix AJq as the submatrix of A

with row index given by Jq and the last T − h− 1 columns removed. Also, let W denote an arbitrary

q-by-q non-random positive definite matrix. Assume that AJq has full column rank and that y is an

MA(h) process, the generalized A-estimator defined as:

γ̂∗h,Jq︸ ︷︷ ︸
(h+1)×1

≡ (A′JqWAJq)−1A′JqW︸ ︷︷ ︸
(h+1)×q

γ̂Jq︸︷︷︸
q×1

, (3.18)
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is an unbiased and consistent estimator of γh in the sense that:

E[γ̂∗h,Jq ] = γh, γ̂∗h,Jq
p→ γh. (3.19)

Remark 10. It turns out that γ̃∗h is just a special case of γ̂∗h,Jq by setting q = h + 1 and Jq = [0, h]

with arbitrary W . In view of Corollary 4, ψ̂
∗
h is also a special case of γ̂∗h,Jq with h < bT2 c, q = 2h+ 1,

Jq = J and any positive definite W satisfying the matrix equation:

A′JqW (Iq −A′JqMh) = 0(h+1)×q. (3.20)

This further illustrate our previous point that ψ̂
∗
h and γ̃∗h are indeed different special cases of the

generalized A-estimator, and the use of circular sample autocovariances in ψ̂
∗
h is equivalent to a specific

constraint placed on W . Due to the complicated structure of A, we are unable to provide an explicit

form of W that satisfies the above equation. However, solving for such W is empirically unimportant

as ψ̂
∗
h can always be constructed explicitly based on Eq. (3.15) or Eq. (3.16).

Remark 11. Note that the matrix AJq is of full column rank for any h ≤ T − 2 and q ∈ [h + 1, T ]

whenever rank(A) = T −1. Although Vogelsang and Yang (2016) did not prove this result analytically,

their numerical experiment shows that it holds for a large range of T ≥ 2. To provide more insights

into the rank of A, we conjecture that the reduced row echelon form (rref) of A has the following

simple form:

rref(A) =

 IT−1, −ι(T−1)×1

0′(T−1)×1, 0


T×T

, (3.21)

where ιm×n is an m-by-n matrix of ones. The above result can be easily verified by standard statistical

software which directly implies rank(A) = T −1 for arbitrary T ≥ 2. However, we are unable to derive

an analytical proof of this statement, and is left for future research.

We point out that for the generalized A-estimator, q can take any value from [h+1, T ]. Therefore,

one might expect that choosing q = T can further improve the performance of the original A-estimator

by involving all available sample moments. In our simulation we verify this claim by examining the

finite sample performance of the generalized A-estimator using all moment conditions with W = IT ,

which has the following form:

γ̂∗h,JT = (A′JTAJT )−1A′JT γ̂. (3.22)

Finite sample bias and variance of γ̂∗h,JT can be derive in a similar fashion based on the results of ψ̂
∗
h

and the discussion in Vogelsang and Yang (2016), and is omitted for brevity. We conclude this section

by establishing the asymptotic equivalence between γ̂∗h,JT and γ̂h:

Theorem 4. Suppose that y is an MA(∞) process satisfying Assumption 1. For a fixed h as T →∞,

it holds that
√
T (γ̂∗h,JT − γ̂h) = op(1).
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4 Finite Sample Performances

4.1 Univariate Analysis

In this section, we examine the finite sample performance of our circular-based autocovariance estima-

tor in a univariate setting and compare it with the original A-estimator of Vogelsang and Yang (2016)

and our generalized A-estimator. Following Vogelsang and Yang (2016), we assume that a univariate

time series y follows an ARMA(1,1) process with unknown mean:

yt = µ+ ut, t ∈ [1, T ],

ut = φut−1 + εt + θεt−1,

εt ∼ i.i.d.N (0, 1),

(4.1)

where µ is set to 0 without loss of generality. We initialize y0 = u0 = 0 with a burn-in period of 100

observations to eliminate the impact of initial conditions. All simulation results are based on 100,000

replications.

We focus on the bias, variance and MSE of the elements in ψ̂
∗
h = {ψ̂∗j,h}′j=0,h, and compare each

ψ̂∗j,h with its A-estimator and generalized A-estimator counterparts, namely γ̃∗j,h and γ̂∗j,h,JT . Following

the simulation design of Vogelsang and Yang (2016), we choose T ∈ {25, 100} with the parameter

choices of φ ∈ {0, 0.5, 0.9} and θ ∈ {0, 0.4,−0.4}. We also include the circular and conventional

sample autocovariance estimators (ψ̂j and γ̂j) in the simulation as benchmarks. To save space, we

present simulation results for j ∈ {0, 1, 4, 8} and h ∈ {j, j + 1, j + 2}. Results based on other values of

h and j are qualitatively similar and are available upon request.

Table 1 shows the bias, variance and MSE results for sample variance estimators, namely ψ̂0, γ̂0,

ψ̂∗0,h, γ̃∗0,h and γ̂∗0,h,JT . The following patterns can be observed from the table: (1) increasing h reduces

the biases of all bias-corrected estimators but also unsurprisingly increases their variances and MSEs.

MSE gains are only observed for the case with high persistence and small T , confirming the findings

in Vogelsang and Yang (2016). (2) As T increases, both bias and variance of all estimators decreases.

Importantly, the differences among ψ̂∗0,h, γ̃∗0,h and γ̂∗0,h,JT are also reduced. This demonstrates the

consistency of the estimators and the asymptotic equivalence among the bias-corrected estimators as

derived in Theorems 3 and 4; (3) For all MA(1) models (including MA(0)), all bias-corrected estimators

are exactly unbiased, which corroborates our results in Theorem 2 and Proposition 5; (4) Among the

three bias-corrected estimators, ψ̂∗0,h performs slightly better than γ̃∗0,h in terms of variance and MSE

with small T and high persistence, but its bias-reduction is also slightly worse than γ̃∗0,h. In most of

the cases, the difference between the two estimators are indistinguishable. γ̂∗0,h,JT has relatively the

largest bias among the three estimators, but it also has the smallest MSE for almost all cases. It is

worth noting that γ̂∗0,0,JT does not reduce to γ̃∗0,0 or ψ̂∗0,h due to the extra sample moments used.
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Results of ψ̂1, γ̂1, ψ̂∗1,h, γ̃∗1,h and γ̂∗1,h,JT are reported in Table 2, which are largely consistent

with the findings in Table 1. It is worth pointing out that for the case with T = 25, we can observe

some slight differences between ψ̂1 and γ̂1. In general, ψ̂1 is more biased than γ̂1 and has a slightly

larger variance, corroborating our discussion in Remark 1. This discrepancy is more observable on

higher-order autocovariance estimates, which we present in Tables 3 and 4. Overall, we find that ψ̂j is

inferior to γ̂j with a larger bias and variance. The performances of bias-corrected estimators are again

qualitatively similar to those in Tables 1 and 2, with more pronounced differences in terms of bias,

variance and MSE. Interestingly, when the persistence is high (φ = 0.9), ψ̂∗j,h can have a considerably

smaller variance than the γ̃∗j,h which outweighs its larger bias, while γ̃∗j,h is on average better than ψ̂∗j,h

for the moderate to no persistence case, especially when the sample size is small. γ̂∗j,h,JT consistently

outperforms the other two bias-corrected estimators in terms of the MSE but also has the largest bias.

Tables 1 to 4 also provide some guidance on choosing h empirically. The findings clearly show that

increasing h always leads to an inflated MSE while the bias reduction is in effect for relatively small

h. In fact, we see nontrivial bias reduction from all three bias-corrected estimators for estimating γj

even with h = j + 1 unless a strong AR component is present. Therefore, empirically it is desirable to

choose an h that covers the lags with the most prominent autocorrelation, but in general as small as

possible to fully exploit the bias correction mechanism and avoid a largely inflated MSE. An adaptive

choice of h remains an ongoing research question of this topic.

In summary, the simulation results above confirm that all three bias-corrected estimators (ψ̂∗j,h,

γ̃∗j,h and γ̂∗j,h,JT ) are exactly unbiased when the MA(h) assumption holds, and have significantly reduced

bias under the ARMA(1,1) specifications considered relative to ψ̂j and γ̂j . For the MA(1) specifications,

we find that γ̂∗j,h,JT has the lowest MSE, followed by γ̃∗j,h and ψ̂∗j,h, while the relative performances for

the ARMA(1,1) models depend on the parameter choices. Overall, all three bias-corrected estimators

have comparable finite sample performances with significant bias reduction even for small h, and some

gains in MSE can be obtained when the data is highly persistent.

4.2 Multivariate Analysis

In this section, we conduct a multivariate simulation study to validate our theoretical results on bias-

correction for cross-covariances. For simplicity, we simulate a VARMA(1,1) model as follows:

Yt = Φ1Yt−1 + Ut + Θ1Ut−1, Ut ∼ i.i.d.N (0N×1,Ω), (4.2)

where Φ1 and Θ1 are N -by-N coefficient matrices that satisfy the usual stationarity and invertibility

condition, and Ω is a N -by-N positive definite variance-covariance matrix. The true cross-covariances
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Table 1: Bias, Variance and MSE of ψ̂0, γ̂0, ψ̂∗0,h, γ̃∗0,h and γ̂∗0,h,JT

θ φ T = 25 ψ̂0 γ̂0 ψ̂∗
0,0 γ̃∗0,0 γ̂∗0,0,JT

ψ̂∗
0,1 γ̃∗0,1 γ̂∗0,1,JT

ψ̂∗
0,2 γ̃∗0,2 γ̂∗0,2,JT

Bias -0.040 -0.040 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.077 0.077 0.083 0.083 0.084 0.084 0.084 0.084 0.084 0.084 0.084

MSE 0.079 0.079 0.083 0.083 0.084 0.084 0.084 0.084 0.084 0.084 0.084

Bias -0.151 -0.151 -0.102 -0.102 -0.115 -0.053 -0.053 -0.060 -0.028 -0.028 -0.032
0 0.5 Var 0.185 0.185 0.201 0.201 0.192 0.228 0.228 0.222 0.250 0.250 0.246

MSE 0.208 0.208 0.211 0.211 0.205 0.231 0.231 0.225 0.251 0.251 0.247

Bias -2.591 -2.591 -2.480 -2.480 -2.600 -2.290 -2.287 -2.400 -2.123 -2.114 -2.220
0.9 Var 3.323 3.323 3.606 3.606 3.088 4.215 4.234 3.660 4.882 4.951 4.316

MSE 10.036 10.036 9.754 9.754 9.848 9.459 9.466 9.418 9.391 9.421 9.244

Bias -0.077 -0.077 -0.032 -0.032 -0.037 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.121 0.121 0.131 0.131 0.129 0.144 0.144 0.143 0.147 0.147 0.147

MSE 0.127 0.127 0.132 0.132 0.130 0.144 0.144 0.143 0.147 0.147 0.147

Bias -0.295 -0.295 -0.221 -0.221 -0.249 -0.115 -0.115 -0.130 -0.060 -0.060 -0.068
0.4 0.5 Var 0.584 0.584 0.634 0.634 0.600 0.734 0.734 0.707 0.819 0.818 0.799

MSE 0.671 0.671 0.683 0.683 0.662 0.747 0.747 0.724 0.822 0.822 0.804

Bias -5.072 -5.072 -4.871 -4.871 -5.107 -4.499 -4.493 -4.713 -4.171 -4.153 -4.361
0.9 Var 12.467 12.467 13.527 13.527 11.562 15.820 15.894 13.714 18.343 18.606 16.187

MSE 38.188 38.188 37.251 37.251 37.646 36.057 36.080 35.929 35.740 35.850 35.202

Bias -0.016 -0.016 -0.001 -0.001 -0.001 0.000 0.000 0.000 -0.001 -0.001 -0.001
0 Var 0.132 0.132 0.131 0.131 0.131 0.133 0.133 0.133 0.133 0.133 0.133

MSE 0.132 0.132 0.131 0.131 0.131 0.133 0.133 0.133 0.133 0.133 0.133

Bias -0.056 -0.056 -0.009 -0.009 -0.010 -0.004 -0.004 -0.005 -0.003 -0.003 -0.003
-0.4 0.5 Var 0.078 0.078 0.088 0.088 0.088 0.090 0.090 0.090 0.092 0.091 0.091

MSE 0.081 0.081 0.088 0.088 0.088 0.090 0.090 0.090 0.092 0.092 0.091

Bias -0.939 -0.939 -0.814 -0.814 -0.853 -0.755 -0.752 -0.789 -0.703 -0.696 -0.732
0.9 Var 0.503 0.503 0.633 0.636 0.557 0.727 0.737 0.650 0.827 0.848 0.753

MSE 1.385 1.385 1.296 1.297 1.285 1.298 1.302 1.274 1.322 1.333 1.289

θ φ T = 100 ψ̂0 γ̂0 ψ̂∗
0,0 γ̃∗0,0 γ̂∗0,0,JT

ψ̂∗
0,1 γ̃∗0,1 γ̂∗0,1,JT

ψ̂∗
0,2 γ̃∗0,2 γ̂∗0,2,JT

Bias -0.010 -0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

MSE 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

Bias -0.040 -0.040 -0.027 -0.027 -0.031 -0.014 -0.014 -0.016 -0.007 -0.007 -0.008
0 0.5 Var 0.056 0.056 0.057 0.057 0.056 0.059 0.059 0.058 0.060 0.060 0.060

MSE 0.057 0.057 0.057 0.057 0.057 0.059 0.059 0.058 0.060 0.060 0.060

Bias -0.909 -0.909 -0.865 -0.865 -0.963 -0.786 -0.786 -0.875 -0.714 -0.714 -0.796
0.9 Var 3.337 3.337 3.405 3.405 3.120 3.545 3.545 3.263 3.688 3.689 3.411

MSE 4.163 4.163 4.153 4.153 4.047 4.162 4.162 4.029 4.199 4.199 4.045

Bias -0.020 -0.020 -0.009 -0.009 -0.010 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
0 Var 0.032 0.032 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034

MSE 0.033 0.033 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034

Bias -0.078 -0.078 -0.058 -0.058 -0.067 -0.030 -0.030 -0.034 -0.015 -0.015 -0.018
0.4 0.5 Var 0.183 0.183 0.186 0.186 0.184 0.193 0.193 0.191 0.198 0.198 0.197

MSE 0.189 0.189 0.190 0.190 0.188 0.194 0.194 0.192 0.199 0.199 0.198

Bias -1.780 -1.780 -1.698 -1.698 -1.891 -1.543 -1.543 -1.719 -1.403 -1.403 -1.564
0.9 Var 12.732 12.732 12.990 12.990 11.899 13.523 13.523 12.444 14.073 14.074 13.010

MSE 15.901 15.901 15.875 15.875 15.476 15.905 15.905 15.401 16.042 16.042 15.455

Bias -0.004 -0.004 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
0 Var 0.034 0.034 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034

MSE 0.034 0.034 0.033 0.033 0.033 0.034 0.034 0.034 0.034 0.034 0.034

Bias -0.015 -0.015 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.001 -0.001 -0.001
-0.4 0.5 Var 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022

MSE 0.021 0.021 0.021 0.021 0.021 0.022 0.022 0.022 0.022 0.022 0.022

Bias -0.328 -0.328 -0.280 -0.280 -0.311 -0.254 -0.254 -0.283 -0.231 -0.231 -0.258
0.9 Var 0.453 0.453 0.481 0.481 0.444 0.500 0.500 0.464 0.520 0.520 0.484

MSE 0.561 0.561 0.559 0.559 0.541 0.565 0.565 0.544 0.573 0.573 0.551

Note: the data generating process is specified in Eq. (4.1). MSE stands for mean squared error. All results are generated based on

100,000 Monte Carlo draws.
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Table 2: Bias, Variance and MSE of ψ̂1, γ̂1, ψ̂∗1,h, γ̃∗1,h and γ̂∗1,h,JT

θ φ T = 25 ψ̂1 γ̂1 ψ̂∗
1,1 γ̃∗1,1 γ̂∗1,1,JT

ψ̂∗
1,2 γ̃∗1,2 γ̂∗1,2,JT

ψ̂∗
1,3 γ̃∗1,3 γ̂∗1,3,JT

Bias -0.039 -0.038 0.001 0.000 0.000 0.001 0.001 0.001 0.000 0.000 0.000
0 Var 0.037 0.035 0.047 0.046 0.046 0.048 0.046 0.046 0.048 0.046 0.046

MSE 0.038 0.037 0.047 0.046 0.046 0.048 0.046 0.046 0.048 0.046 0.046

Bias -0.178 -0.175 -0.055 -0.055 -0.069 -0.029 -0.028 -0.035 -0.015 -0.015 -0.018
0 0.5 Var 0.127 0.125 0.178 0.175 0.162 0.203 0.199 0.190 0.223 0.218 0.213

MSE 0.158 0.155 0.182 0.178 0.167 0.204 0.200 0.192 0.223 0.218 0.213

Bias -2.764 -2.728 -2.369 -2.333 -2.559 -2.195 -2.154 -2.349 -2.043 -1.992 -2.164
0.9 Var 2.679 2.835 3.784 3.980 2.908 4.460 4.710 3.607 5.189 5.532 4.393

MSE 10.319 10.276 9.394 9.424 9.457 9.277 9.348 9.126 9.363 9.498 9.076

Bias -0.092 -0.091 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0 Var 0.060 0.058 0.084 0.081 0.079 0.092 0.089 0.089 0.095 0.091 0.092

MSE 0.068 0.066 0.084 0.081 0.079 0.092 0.089 0.089 0.095 0.091 0.092

Bias -0.353 -0.348 -0.120 -0.119 -0.149 -0.063 -0.062 -0.077 -0.033 -0.033 -0.040
0.4 0.5 Var 0.431 0.426 0.609 0.601 0.549 0.701 0.690 0.655 0.778 0.764 0.742

MSE 0.555 0.548 0.624 0.615 0.571 0.705 0.694 0.661 0.780 0.765 0.744

Bias -5.412 -5.342 -4.653 -4.583 -5.027 -4.312 -4.231 -4.615 -4.013 -3.912 -4.251
0.9 Var 10.066 10.672 14.221 14.986 10.910 16.771 17.745 13.545 19.527 20.857 16.515

MSE 39.359 39.206 35.872 35.993 36.182 35.363 35.643 34.843 35.635 36.162 34.588

Bias 0.001 0.002 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
0 Var 0.071 0.069 0.085 0.082 0.084 0.078 0.076 0.075 0.079 0.077 0.077

MSE 0.071 0.069 0.085 0.082 0.084 0.078 0.076 0.075 0.079 0.077 0.077

Bias -0.060 -0.058 -0.008 -0.008 -0.011 -0.004 -0.004 -0.005 -0.002 -0.002 -0.003
-0.4 0.5 Var 0.041 0.039 0.054 0.052 0.051 0.056 0.054 0.054 0.058 0.056 0.056

MSE 0.044 0.042 0.054 0.052 0.051 0.056 0.054 0.054 0.058 0.056 0.056

Bias -1.000 -0.987 -0.842 -0.829 -0.910 -0.780 -0.766 -0.835 -0.726 -0.708 -0.769
0.9 Var 0.397 0.415 0.559 0.582 0.435 0.655 0.685 0.535 0.758 0.799 0.646

MSE 1.397 1.389 1.268 1.270 1.263 1.264 1.271 1.232 1.285 1.301 1.238

θ φ T = 100 ψ̂1 γ̂1 ψ̂∗
1,1 γ̃∗1,1 γ̂∗1,1,JT

ψ̂∗
1,2 γ̃∗1,2 γ̂∗1,2,JT

ψ̂∗
1,3 γ̃∗1,3 γ̂∗1,3,JT

Bias -0.010 -0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

MSE 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010

Bias -0.046 -0.046 -0.014 -0.014 -0.018 -0.007 -0.007 -0.009 -0.004 -0.004 -0.005
0 0.5 Var 0.042 0.042 0.046 0.045 0.044 0.047 0.047 0.046 0.048 0.048 0.047

MSE 0.044 0.044 0.046 0.046 0.045 0.047 0.047 0.046 0.048 0.048 0.047

Bias -0.956 -0.954 -0.794 -0.793 -0.973 -0.721 -0.720 -0.881 -0.656 -0.655 -0.799
0.9 Var 3.237 3.238 3.511 3.511 2.971 3.656 3.657 3.135 3.804 3.805 3.303

MSE 4.150 4.149 4.140 4.140 3.917 4.176 4.175 3.912 4.235 4.234 3.941

Bias -0.024 -0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.017 0.017 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

MSE 0.018 0.018 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019

Bias -0.092 -0.092 -0.029 -0.029 -0.039 -0.015 -0.015 -0.020 -0.008 -0.008 -0.010
0.4 0.5 Var 0.148 0.147 0.160 0.160 0.156 0.166 0.165 0.163 0.170 0.169 0.168

MSE 0.156 0.156 0.161 0.161 0.157 0.166 0.165 0.163 0.170 0.169 0.168

Bias -1.873 -1.871 -1.559 -1.557 -1.911 -1.417 -1.415 -1.731 -1.289 -1.287 -1.570
0.9 Var 12.361 12.366 13.408 13.411 11.339 13.962 13.966 11.964 14.530 14.533 12.605

MSE 15.870 15.865 15.838 15.835 14.989 15.971 15.969 14.961 16.191 16.189 15.069

Bias 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.018 0.018 0.019 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019

MSE 0.018 0.018 0.019 0.019 0.019 0.019 0.018 0.018 0.019 0.019 0.019

Bias -0.015 -0.015 -0.002 -0.002 -0.003 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
-0.4 0.5 Var 0.011 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

MSE 0.012 0.011 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

Bias -0.344 -0.344 -0.282 -0.282 -0.346 -0.256 -0.256 -0.313 -0.233 -0.233 -0.284
0.9 Var 0.435 0.435 0.472 0.472 0.401 0.491 0.491 0.423 0.511 0.511 0.445

MSE 0.554 0.553 0.551 0.551 0.521 0.557 0.557 0.521 0.565 0.565 0.526

Note: the data generating process is specified in Eq. (4.1). MSE stands for mean squared error. All results are generated based on

100,000 Monte Carlo draws.
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Table 3: Bias, Variance and MSE of ψ̂4, γ̂4, ψ̂∗4,h, γ̃∗4,h and γ̂∗4,h,JT

θ φ T = 25 ψ̂4 γ̂4 ψ̂∗
4,4 γ̃∗4,4 γ̂∗4,4,JT

ψ̂∗
4,5 γ̃∗4,5 γ̂∗4,5,JT

ψ̂∗
4,6 γ̃∗4,6 γ̂∗4,6,JT

Bias -0.040 -0.033 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.037 0.031 0.064 0.053 0.054 0.065 0.054 0.054 0.066 0.055 0.055

MSE 0.038 0.032 0.064 0.053 0.054 0.065 0.054 0.054 0.066 0.055 0.055

Bias -0.166 -0.147 -0.011 -0.010 -0.012 -0.007 -0.006 -0.007 -0.005 -0.004 -0.005
0 0.5 Var 0.069 0.060 0.169 0.144 0.131 0.204 0.170 0.163 0.235 0.193 0.189

MSE 0.097 0.081 0.169 0.144 0.131 0.204 0.170 0.163 0.235 0.193 0.189

Bias -3.055 -2.859 -2.099 -1.919 -2.117 -1.970 -1.773 -1.951 -1.861 -1.640 -1.803
0.9 Var 0.724 1.084 3.276 4.154 2.882 4.033 5.098 3.751 4.828 6.158 4.726

MSE 10.059 9.256 7.681 7.836 7.364 7.913 8.241 7.558 8.290 8.847 7.976

Bias -0.078 -0.066 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
0 Var 0.054 0.046 0.103 0.086 0.084 0.119 0.098 0.099 0.126 0.103 0.104

MSE 0.060 0.050 0.103 0.086 0.084 0.119 0.098 0.099 0.126 0.103 0.104

Bias -0.327 -0.290 -0.024 -0.022 -0.027 -0.016 -0.014 -0.016 -0.011 -0.010 -0.011
0.4 0.5 Var 0.204 0.178 0.543 0.465 0.415 0.668 0.562 0.529 0.786 0.648 0.630

MSE 0.310 0.262 0.543 0.466 0.416 0.668 0.562 0.530 0.786 0.648 0.631

Bias -5.983 -5.600 -4.122 -3.769 -4.158 -3.868 -3.482 -3.832 -3.653 -3.220 -3.541
0.9 Var 2.673 4.073 12.282 15.694 10.848 15.129 19.268 14.132 18.124 23.293 17.825

MSE 38.472 35.433 29.270 29.896 28.138 30.089 31.394 28.815 31.469 33.664 30.360

Bias -0.015 -0.011 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0 Var 0.065 0.055 0.105 0.088 0.091 0.092 0.078 0.078 0.095 0.080 0.081

MSE 0.065 0.055 0.105 0.088 0.091 0.092 0.078 0.078 0.095 0.080 0.081

Bias -0.058 -0.050 -0.002 -0.001 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
-0.4 0.5 Var 0.036 0.030 0.066 0.055 0.055 0.071 0.059 0.059 0.075 0.061 0.061

MSE 0.039 0.033 0.066 0.055 0.055 0.071 0.059 0.059 0.075 0.061 0.061

Bias -1.104 -1.031 -0.747 -0.683 -0.753 -0.701 -0.631 -0.694 -0.662 -0.584 -0.641
0.9 Var 0.122 0.165 0.496 0.600 0.427 0.606 0.732 0.551 0.721 0.879 0.687

MSE 1.342 1.229 1.054 1.066 0.994 1.097 1.130 1.032 1.159 1.219 1.099

θ φ T = 100 ψ̂4 γ̂4 ψ̂∗
4,4 γ̃∗4,4 γ̂∗4,4,JT

ψ̂∗
4,5 γ̃∗4,5 γ̂∗4,5,JT

ψ̂∗
4,6 γ̃∗4,6 γ̂∗4,6,JT

Bias -0.010 -0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.010 0.009 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

MSE 0.010 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011

Bias -0.043 -0.042 -0.002 -0.002 -0.003 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001
0 0.5 Var 0.027 0.026 0.033 0.032 0.031 0.034 0.033 0.033 0.035 0.034 0.034

MSE 0.029 0.028 0.033 0.032 0.031 0.034 0.033 0.033 0.035 0.034 0.034

Bias -1.047 -1.036 -0.616 -0.611 -0.751 -0.561 -0.556 -0.682 -0.511 -0.506 -0.619
0.9 Var 2.653 2.644 3.507 3.483 2.962 3.659 3.634 3.133 3.813 3.786 3.306

MSE 3.749 3.717 3.886 3.857 3.527 3.973 3.943 3.598 4.074 4.042 3.689

Bias -0.020 -0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.016 0.015 0.018 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018

MSE 0.016 0.016 0.018 0.018 0.018 0.019 0.018 0.018 0.019 0.018 0.018

Bias -0.085 -0.083 -0.005 -0.005 -0.006 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002
0.4 0.5 Var 0.088 0.085 0.110 0.107 0.103 0.114 0.111 0.109 0.118 0.114 0.113

MSE 0.095 0.092 0.110 0.107 0.103 0.114 0.111 0.109 0.118 0.114 0.113

Bias -2.052 -2.031 -1.210 -1.201 -1.476 -1.101 -1.092 -1.339 -1.003 -0.994 -1.215
0.9 Var 10.144 10.110 13.409 13.321 11.322 13.992 13.897 11.976 14.583 14.479 12.639

MSE 14.355 14.234 14.872 14.763 13.502 15.205 15.090 13.770 15.588 15.468 14.116

Bias -0.003 -0.003 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.000
0 Var 0.017 0.016 0.018 0.018 0.018 0.018 0.017 0.017 0.018 0.017 0.017

MSE 0.017 0.016 0.018 0.018 0.018 0.018 0.017 0.017 0.018 0.017 0.017

Bias -0.015 -0.014 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
-0.4 0.5 Var 0.010 0.010 0.012 0.011 0.011 0.012 0.011 0.011 0.012 0.011 0.011

MSE 0.010 0.010 0.012 0.011 0.011 0.012 0.011 0.011 0.012 0.011 0.011

Bias -0.377 -0.373 -0.219 -0.217 -0.267 -0.199 -0.198 -0.242 -0.181 -0.180 -0.220
0.9 Var 0.355 0.353 0.468 0.465 0.397 0.488 0.484 0.419 0.509 0.504 0.442

MSE 0.497 0.492 0.516 0.512 0.468 0.528 0.523 0.478 0.542 0.537 0.491

Note: the data generating process is specified in Eq. (4.1). MSE stands for mean squared error. All results are generated based on

100,000 Monte Carlo draws.
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Table 4: Bias, Variance and MSE of ψ̂8, γ̂8, ψ̂∗8,h, γ̃∗8,h and γ̂∗8,h,JT

θ φ T = 25 ψ̂8 γ̂8 ψ̂∗
8,8 γ̃∗8,8 γ̂∗8,8,JT

ψ̂∗
8,9 γ̃∗8,9 γ̂∗8,9,JT

ψ̂∗
8,10 γ̃∗8,10 γ̂∗8,10,JT

Bias -0.039 -0.027 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
0 Var 0.037 0.025 0.109 0.069 0.070 0.116 0.070 0.072 0.131 0.072 0.074

MSE 0.038 0.026 0.109 0.069 0.070 0.116 0.070 0.072 0.131 0.072 0.074

Bias -0.152 -0.107 -0.002 -0.001 -0.002 -0.002 -0.001 -0.002 -0.002 -0.001 -0.002
0 0.5 Var 0.069 0.052 0.239 0.176 0.152 0.336 0.223 0.206 0.439 0.266 0.254

MSE 0.092 0.064 0.239 0.176 0.152 0.336 0.223 0.206 0.439 0.266 0.254

Bias -3.037 -2.594 -1.817 -1.413 -1.581 -1.748 -1.300 -1.456 -1.700 -1.195 -1.339
0.9 Var 0.593 0.277 1.459 3.783 2.238 2.037 4.993 3.236 2.584 6.430 4.449

MSE 9.819 7.004 4.760 5.780 4.736 5.093 6.684 5.356 5.475 7.856 6.242

Bias -0.076 -0.052 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
0 Var 0.054 0.038 0.173 0.112 0.107 0.232 0.133 0.136 0.280 0.143 0.148

MSE 0.060 0.041 0.173 0.112 0.107 0.232 0.133 0.136 0.280 0.143 0.148

Bias -0.297 -0.210 -0.004 -0.003 -0.004 -0.004 -0.003 -0.003 -0.004 -0.003 -0.003
0.4 0.5 Var 0.202 0.158 0.724 0.561 0.464 1.054 0.728 0.655 1.404 0.888 0.834

MSE 0.291 0.202 0.724 0.561 0.464 1.054 0.728 0.655 1.404 0.888 0.834

Bias -5.949 -5.083 -3.568 -2.775 -3.104 -3.433 -2.553 -2.859 -3.338 -2.345 -2.629
0.9 Var 2.178 0.994 5.263 14.233 8.369 7.353 18.796 12.121 9.323 24.228 16.696

MSE 37.571 26.828 17.995 21.933 18.004 19.140 25.316 20.295 20.468 29.727 23.605

Bias -0.015 -0.010 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000
0 Var 0.065 0.044 0.181 0.113 0.120 0.144 0.097 0.097 0.162 0.101 0.103

MSE 0.065 0.044 0.181 0.113 0.120 0.144 0.097 0.097 0.162 0.101 0.103

Bias -0.056 -0.039 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 -0.001
-0.4 0.5 Var 0.036 0.025 0.110 0.071 0.070 0.127 0.077 0.077 0.149 0.083 0.084

MSE 0.039 0.027 0.110 0.071 0.070 0.127 0.077 0.077 0.149 0.083 0.084

Bias -1.097 -0.934 -0.646 -0.503 -0.562 -0.622 -0.463 -0.518 -0.605 -0.425 -0.477
0.9 Var 0.104 0.055 0.277 0.562 0.349 0.377 0.734 0.494 0.476 0.937 0.668

MSE 1.308 0.927 0.695 0.814 0.665 0.764 0.948 0.763 0.842 1.118 0.895

θ φ T = 100 ψ̂8 γ̂8 ψ̂∗
8,8 γ̃∗8,8 γ̂∗8,8,JT

ψ̂∗
8,9 γ̃∗8,9 γ̂∗8,9,JT

ψ̂∗
8,10 γ̃∗8,10 γ̂∗8,10,JT

Bias -0.010 -0.010 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 0.000 0.000
0 Var 0.010 0.009 0.012 0.011 0.011 0.012 0.011 0.011 0.012 0.011 0.011

MSE 0.010 0.009 0.012 0.011 0.011 0.012 0.011 0.011 0.012 0.011 0.011

Bias -0.040 -0.038 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
0 0.5 Var 0.026 0.024 0.035 0.033 0.032 0.037 0.034 0.033 0.038 0.035 0.034

MSE 0.028 0.026 0.035 0.033 0.032 0.037 0.034 0.033 0.038 0.035 0.034

Bias -1.089 -1.056 -0.441 -0.432 -0.532 -0.403 -0.393 -0.484 -0.367 -0.358 -0.439
0.9 Var 1.860 1.824 3.289 3.188 2.695 3.446 3.337 2.864 3.604 3.487 3.035

MSE 3.047 2.939 3.484 3.374 2.979 3.608 3.491 3.098 3.739 3.615 3.229

Bias -0.020 -0.019 0.000 -0.001 -0.001 0.000 -0.001 -0.001 0.000 -0.001 -0.001
0 Var 0.016 0.015 0.020 0.018 0.018 0.020 0.019 0.019 0.021 0.019 0.019

MSE 0.016 0.015 0.020 0.018 0.018 0.020 0.019 0.019 0.021 0.019 0.019

Bias -0.079 -0.074 -0.001 -0.001 -0.002 -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
0.4 0.5 Var 0.085 0.079 0.117 0.108 0.105 0.122 0.113 0.111 0.125 0.116 0.115

MSE 0.091 0.084 0.117 0.108 0.105 0.122 0.113 0.111 0.125 0.116 0.115

Bias -2.135 -2.071 -0.867 -0.848 -1.046 -0.790 -0.772 -0.950 -0.721 -0.704 -0.863
0.9 Var 7.107 6.968 12.577 12.193 10.303 13.176 12.763 10.949 13.785 13.339 11.604

MSE 11.664 11.256 13.329 12.913 11.396 13.801 13.360 11.851 14.305 13.834 12.349

Bias -0.004 -0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0 Var 0.017 0.015 0.020 0.018 0.019 0.020 0.018 0.018 0.020 0.018 0.018

MSE 0.017 0.015 0.020 0.018 0.019 0.020 0.018 0.018 0.020 0.018 0.018

Bias -0.015 -0.014 0.000 -0.001 -0.001 0.000 -0.001 -0.001 0.000 -0.001 -0.001
-0.4 0.5 Var 0.010 0.009 0.013 0.012 0.012 0.013 0.012 0.012 0.013 0.012 0.012

MSE 0.010 0.009 0.013 0.012 0.012 0.013 0.012 0.012 0.013 0.012 0.012

Bias -0.392 -0.380 -0.157 -0.154 -0.190 -0.143 -0.140 -0.172 -0.131 -0.128 -0.156
0.9 Var 0.251 0.245 0.439 0.425 0.361 0.460 0.445 0.383 0.481 0.465 0.406

MSE 0.404 0.389 0.464 0.449 0.397 0.481 0.464 0.413 0.498 0.481 0.430

Note: the data generating process is specified in Eq. (4.1). MSE stands for mean squared error. All results are generated based on

100,000 Monte Carlo draws.
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of Yt can be found via the following iterative relationship:

Υ0 = IN ,Υ1 = Φ1 + Θ1,Υj = Φ1Υj−1, j > 1, (4.3)

Γj =
∞∑
k=0

Υj+kΩΥ′k. (4.4)

Following the simulation setting in Koreisha and Pukkila (1988, 1989); Frutos and Serrano (2002);

Kascha (2012), we simulate two VARMA(1,1) models with N ∈ {3, 5}. The parameter setting for the

N = 3 case is:

Φ1 =


0.7, 0, 0

0, 0, 0

0, 0.4, 0

 , Θ1 =


0, 1.1, 0

0, −0.6, 0

0, 0, −0.5

 , Ω =


1,

−0.7, 1

−0.4, 0, 1

 . (4.5)

For the N = 5 case, we use:

Φ1 =



0.5, 0, 0, 0, 0

0, 0, 0.8, 0, 0

0, −0.4, 0, 0, 0

0, 0, 0, 0, 0

0.2, 0, 0, 0, 0


, Θ1 =



0, 0, 0, 1.1, 0

0, 0, 0, 0, 0.2

0, 0, 0, 0, 0

−0.55, 0, 0, 0.8, 0

0, 0, 0, 0, 0.6


, Ω =



1

0.2, 1

0, 0, 1

0, 0, 0.7, 1

0, 0, 0, −0.4, 1


. (4.6)

According to Koreisha and Pukkila (1989); Kascha (2012), the above two specifications have low

density of non-zero elements, broad variation in the magnitude of parameter variations and complex

causal mechanisms which are typical for real data applications. We also consider the corresponding

VMA(1) or VAR(1) model by setting Φ1 = 0N×N or Θ1 = 0N×N to further validate our results.

Similar to the univariate analysis, we simulate the models with 100,000 replications and T ∈ {25, 100}

for the four specifications considered with a burn-in period of 100 observations, and present the results

for j ∈ {0, 1, 4, 8} with h ∈ {j, j + 1, j + 2, j + 3}.

We firstly compare our estimator of cross-covariance matrices {Ψ̂∗j,h}j=0:h with the simple circular

and conventional cross-covariance estimators, namely Ψ̂j and Γ̂j . Each Ψ̂∗j,h can be easily computed

by reversing the vectorization operation for the corresponding row of Ψ̂
∗
h. We summarize the overall

performance of each estimator by calculating averages of the element-wise absolute bias, variance and

mean squared error. Taking the estimator Γ̂j as an example, we compute the Average Bias (AB),

Average Variance (AV) and Average Mean Squared Error (AMSE) as follows:

AB(Γ̂j) =
ι′N×1 E[Γj − Γ̂j ]ιN×1

N2
,

AV(Γ̂j) =
ι′N×1(E[Γ̂j ◦ Γ̂j ]− E[Γ̂j ] ◦ E[Γ̂j ])ιN×1

N2
,

AMSE(Γ̂j) =
ι′N×1 E[(Γj − Γ̂j) ◦ (Γj − Γ̂j)]ιN×1

N2
,

(4.7)

where ◦ denotes the Hadamard product, and ιm×n is a m-by-n matrix of ones. We present our

simulation results in Tables 5 and 6.
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Table 5: Average bias, variance and MSE of Ψ̂∗j,h, Ψ̂j and Γ̂j for N = 3

Model VMA(1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.004 -0.004 0.001 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000

0 AV 0.206 0.206 0.223 0.203 0.207 0.207 0.052 0.052 0.053 0.052 0.052 0.052

AMSE 0.206 0.206 0.225 0.203 0.207 0.207 0.052 0.052 0.053 0.052 0.052 0.052

AB -0.004 -0.004 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000

1 AV 0.143 0.138 0.166 0.153 0.156 0.157 0.036 0.036 0.038 0.037 0.037 0.037

AMSE 0.143 0.139 0.166 0.153 0.156 0.157 0.036 0.036 0.038 0.037 0.037 0.037

AB -0.004 -0.004 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000

4 AV 0.131 0.111 0.205 0.184 0.189 0.190 0.034 0.032 0.037 0.036 0.036 0.036

AMSE 0.131 0.111 0.205 0.184 0.189 0.190 0.034 0.032 0.037 0.036 0.036 0.036

AB -0.004 -0.003 0.000 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000 0.000 0.000

8 AV 0.131 0.090 0.345 0.280 0.310 0.373 0.033 0.031 0.040 0.039 0.039 0.039

AMSE 0.132 0.090 0.345 0.280 0.310 0.373 0.033 0.031 0.040 0.039 0.039 0.039

Model VAR(1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.020 -0.020 -0.013 -0.009 -0.006 -0.005 -0.005 -0.005 -0.004 -0.002 -0.002 -0.001

0 AV 0.126 0.126 0.136 0.152 0.166 0.180 0.040 0.040 0.041 0.042 0.043 0.044

AMSE 0.146 0.146 0.150 0.158 0.170 0.182 0.042 0.042 0.042 0.043 0.044 0.044

AB -0.022 -0.022 -0.009 -0.007 -0.005 -0.004 -0.006 -0.006 -0.002 -0.002 -0.001 -0.001

1 AV 0.101 0.098 0.135 0.151 0.166 0.181 0.035 0.035 0.038 0.039 0.039 0.040

AMSE 0.127 0.124 0.142 0.155 0.168 0.182 0.037 0.037 0.038 0.039 0.040 0.040

AB -0.022 -0.020 -0.004 -0.003 -0.002 -0.002 -0.006 -0.006 -0.001 -0.001 0.000 0.000

4 AV 0.066 0.057 0.149 0.170 0.191 0.212 0.026 0.025 0.032 0.033 0.034 0.034

AMSE 0.095 0.081 0.150 0.170 0.191 0.212 0.028 0.027 0.032 0.033 0.034 0.034

AB -0.021 -0.015 -0.002 -0.002 -0.001 -0.001 -0.006 -0.005 0.000 0.000 0.000 0.000

8 AV 0.064 0.044 0.184 0.225 0.271 0.328 0.024 0.022 0.032 0.033 0.034 0.035

AMSE 0.088 0.058 0.184 0.225 0.271 0.328 0.025 0.023 0.032 0.033 0.034 0.035

Model VARMA(1,1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.032 -0.032 -0.023 -0.020 -0.015 -0.011 -0.009 -0.009 -0.006 -0.005 -0.004 -0.003

0 AV 0.170 0.170 0.184 0.180 0.187 0.192 0.046 0.046 0.047 0.047 0.047 0.048

AMSE 0.178 0.178 0.190 0.182 0.189 0.193 0.047 0.047 0.047 0.047 0.047 0.048

AB -0.035 -0.034 -0.021 -0.016 -0.012 -0.009 -0.009 -0.009 -0.005 -0.004 -0.003 -0.002

1 AV 0.122 0.118 0.150 0.149 0.156 0.161 0.035 0.034 0.036 0.036 0.037 0.037

AMSE 0.133 0.128 0.152 0.151 0.157 0.162 0.035 0.035 0.036 0.036 0.037 0.037

AB -0.039 -0.035 -0.010 -0.008 -0.006 -0.005 -0.010 -0.010 -0.002 -0.001 -0.001 -0.001

4 AV 0.104 0.088 0.181 0.178 0.188 0.196 0.030 0.029 0.034 0.034 0.034 0.034

AMSE 0.116 0.098 0.181 0.178 0.188 0.197 0.031 0.029 0.034 0.034 0.034 0.034

AB -0.035 -0.026 -0.004 -0.004 -0.003 -0.003 -0.010 -0.009 -0.001 0.000 0.000 0.000

8 AV 0.103 0.071 0.280 0.265 0.302 0.367 0.029 0.027 0.036 0.036 0.036 0.037

AMSE 0.113 0.076 0.280 0.265 0.302 0.367 0.029 0.027 0.036 0.036 0.036 0.037

Note: AB, AV and AMSE are defined in Eq. (4.7). The data generating process is defined in Eq. (4.2) with parameters provided

in Eq. (4.5). The VMA(1) and the VAR(1) models have Φ1 = 03×3 and Θ1 = 03×3, respectively. All results are based on a Monte

Carlo size of 100,000.
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Table 6: Average bias, variance and MSE of Ψ̂∗j,h, Ψ̂j and Γ̂j for N = 5

Model VMA(1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.021 -0.021 -0.007 0.001 0.001 0.001 -0.006 -0.006 -0.002 0.000 0.000 0.000

0 AV 0.114 0.114 0.124 0.132 0.134 0.135 0.030 0.030 0.031 0.031 0.031 0.031

AMSE 0.116 0.116 0.124 0.132 0.134 0.135 0.030 0.030 0.031 0.031 0.031 0.031

AB -0.025 -0.025 0.000 0.000 0.000 0.000 -0.006 -0.006 0.000 0.000 0.000 0.000

1 AV 0.094 0.091 0.118 0.123 0.125 0.127 0.025 0.025 0.027 0.027 0.027 0.027

AMSE 0.098 0.094 0.118 0.123 0.125 0.127 0.026 0.025 0.027 0.027 0.027 0.027

AB -0.022 -0.019 0.000 0.000 0.000 0.000 -0.005 -0.005 0.000 0.000 0.000 0.000

4 AV 0.088 0.074 0.148 0.158 0.164 0.168 0.024 0.023 0.027 0.027 0.027 0.027

AMSE 0.091 0.076 0.148 0.158 0.164 0.168 0.024 0.023 0.027 0.027 0.027 0.027

AB -0.022 -0.015 0.000 0.000 0.000 0.000 -0.006 -0.005 0.000 0.000 0.000 0.000

8 AV 0.088 0.060 0.239 0.279 0.317 0.391 0.024 0.022 0.029 0.030 0.030 0.030

AMSE 0.091 0.061 0.239 0.279 0.317 0.391 0.024 0.022 0.029 0.030 0.030 0.030

Model VAR(1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.018 -0.018 -0.006 0.000 -0.002 -0.002 -0.005 -0.005 -0.001 0.000 -0.001 -0.001

0 AV 0.081 0.081 0.087 0.090 0.089 0.090 0.021 0.021 0.022 0.022 0.022 0.022

AMSE 0.082 0.082 0.088 0.091 0.089 0.090 0.021 0.021 0.022 0.022 0.022 0.022

AB -0.020 -0.020 0.001 -0.002 -0.002 0.000 -0.005 -0.005 0.000 0.000 0.000 0.000

1 AV 0.067 0.064 0.081 0.083 0.084 0.085 0.018 0.018 0.019 0.019 0.019 0.019

AMSE 0.069 0.066 0.081 0.083 0.084 0.085 0.018 0.018 0.019 0.019 0.019 0.019

AB -0.021 -0.019 -0.001 0.000 0.000 0.000 -0.005 -0.005 0.000 0.000 0.000 0.000

4 AV 0.066 0.055 0.107 0.111 0.110 0.113 0.017 0.017 0.020 0.020 0.020 0.020

AMSE 0.067 0.056 0.107 0.111 0.110 0.113 0.018 0.017 0.020 0.020 0.020 0.020

AB -0.019 -0.013 0.000 0.000 0.000 -0.001 -0.005 -0.004 0.000 0.000 0.000 0.000

8 AV 0.066 0.045 0.173 0.190 0.193 0.239 0.017 0.016 0.021 0.021 0.021 0.021

AMSE 0.067 0.045 0.173 0.190 0.193 0.239 0.018 0.016 0.021 0.021 0.021 0.021

Model VARMA(1,1) T = 25 T = 100

j = Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3 Ψ̂j Γ̂j Ψ̂∗
j,j Ψ̂∗

j,j+1 Ψ̂∗
j,j+2 Ψ̂∗

j,j+3

AB -0.047 -0.047 -0.028 -0.011 -0.010 -0.006 -0.012 -0.012 -0.007 -0.003 -0.002 -0.001

0 AV 0.187 0.187 0.203 0.221 0.225 0.231 0.051 0.051 0.052 0.054 0.054 0.054

AMSE 0.194 0.194 0.206 0.222 0.226 0.231 0.052 0.052 0.053 0.054 0.054 0.054

AB -0.056 -0.055 -0.012 -0.010 -0.007 -0.002 -0.014 -0.014 -0.003 -0.002 -0.001 0.000

1 AV 0.164 0.159 0.207 0.220 0.227 0.233 0.046 0.046 0.049 0.050 0.050 0.050

AMSE 0.175 0.169 0.208 0.221 0.227 0.233 0.047 0.047 0.049 0.050 0.050 0.050

AB -0.055 -0.048 -0.003 -0.001 -0.001 -0.001 -0.014 -0.014 0.000 0.000 0.000 0.000

4 AV 0.148 0.124 0.257 0.280 0.290 0.303 0.042 0.040 0.048 0.049 0.049 0.049

AMSE 0.157 0.131 0.257 0.280 0.290 0.303 0.043 0.041 0.048 0.049 0.049 0.049

AB -0.048 -0.035 -0.001 0.000 -0.001 -0.001 -0.012 -0.011 0.000 0.000 0.000 0.000

8 AV 0.148 0.101 0.400 0.478 0.527 0.640 0.042 0.038 0.052 0.053 0.053 0.053

AMSE 0.155 0.104 0.400 0.478 0.527 0.640 0.042 0.039 0.052 0.053 0.053 0.053

Note: AB, AV and AMSE are defined in Eq. (4.7). The data generating process is defined in Eq. (4.2) with parameters provided

in Eq. (4.6). The VMA(1) and the VAR(1) models have Φ1 = 05×5 and Θ1 = 05×5, respectively. All results are based on a Monte

Carlo size of 100,000.
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Results in Tables 5 and 6 are largely consistent with our findings in the univariate case, with Ψ̂∗j,h

having a smaller average bias which decreases as h increases at the cost of a larger variance and MSE

in general. The average bias is very close to zero for the VMA(1) model with h > 1 as expected, since

Ψ̂∗j,h is exactly unbiased for the VMA(h) model. All estimators perform better as T increases, but the

relative performances among Ψ̂∗j,h, Ψ̂j and Γ̂j are qualitatively unchanged.

5 Further Discussions and Empirical Considerations

To our best knowledge, the usage of circular sample moment estimators on non-circular data is rare

in the extant literature apart from the concurrent work of Li (2020). This could be due to its inferior

finite sample performance relative to its conventional counterpart, as is demonstrated in our simulation

study. Although we do not recommend to use the circular sample cross-covariance directly, we clearly

show that its symmetric structure can be exploited to construct nearly unbiased cross-covariance

estimators, which have a comparable performance to its conventional bias-corrected counterpart in a

univariate setting but with a much simpler structure. As the cross-covariance matrix is in itself an

important measure of association within a multivariate system, our proposed estimator provides a

simple non-parametric estimator that is less distorted by the time series dependence structure within

the system. For the readers who are interested in implementing our estimator or replicating our results,

we provide MATLAB codes for the implementation of all bias-corrected estimators in the supporting

information of the paper.

As an extension of this study, we expect that the A-estimator, and hence the generalized A-

estimator, can also be formulated in the multivariate case using our framework. The multivariate

generalized A-estimator by construction nests our circular-based cross-covariance estimator, and is

expected to have better finite sample properties based on our univariate simulation results. However,

the corresponding mapping matrix in the multivariate case differs from A, which requires individual

inspection that is beyond the scope of this paper.

An important potential application of our estimator is to compute a bias-corrected long run

variance-covariance matrix (e.g. Newey and West (1987); Andrews (1991)), which is used extensively

in diagnostic tests of GMM estimation (see e.g. Hall (1996) and the reference therein). However, a

major challenge here is to ensure the positive definiteness of the resulting estimates, which provides

room for future research.

6 Conclusion

In this paper, we propose a simple nearly unbiased estimator for cross-covariances based on circular

sample cross-covariance estimators. We show that this estimator is exactly unbiased under the VMA(h)
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model and is nearly unbiased when the VMA(h) structure provides a good approximation to the

data generating process. Similar to the A-estimator of Vogelsang and Yang (2016), our estimator is

asymptotically equivalent to the conventional sample cross-covariance estimation, which allows a bias

correction without sacrificing efficiency in large sample. We also propose a generalized A-estimator

that nests both our estimator and the A-estimator in the univariate case, which is also asymptotically

equivalent to the conventional sample autocovariance. Our simulation shows that in a univariate

setting, our circular-based estimator performs almost as good as the A-estimator in terms of bias,

variance and MSE, while the generalized A-estimator has overall the smallest MSE. Gains in MSE

can be achieved when the autocovariance structure of the data decays slowly. For multivariate time

series, we confirm our theoretical results that our estimator can correct the finite sample bias of

cross-covariance estimators.

Supporting Information

MATLAB codes for implementing the bias-corrected cross-covariance estimators and the generalized

A-estimator are provided, which can be found in the online version of this paper at the publisher’s

website.
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A Technical Proofs

Proof to Theorem 1. Fix the notation Ỹt = Yt − E[Yt] and Y̆ = 1
T

∑T
t=1 Ỹt. Starting with the first

claim:

E[Ψ̂0] =
1

T

T∑
t=1

E[(Ỹt − Y̆ )(Ỹt − Y̆ )′]

=
1

T

T∑
t=1

E[ỸtỸ
′
t ]− E[Y̆ Y̆ ′]

= Γ0 − E[Y̆ Y̆ ′].

(A.1)

We now examine the term E[Y̆ Y̆ ′] carefully:

Y̆ Y̆ ′ =
1

T 2

( T∑
t=1

ỸtỸ
′
t +

T∑
t=2

t−1∑
j=1

ỸtỸ
′
j +

T−1∑
t=1

T∑
j=t+1

ỸtỸ
′
j

)
(A.2)

Taking expectation on both sides of the above equation yields:

E[Y̆ Y̆ ′] =
1

T
Γ0 +

1

T

T−1∑
j=1

T − j
T

(Γj + Γ−j)

=
1

T
Γ0 +

1

T
KT .

(A.3)

Plugging the above into Eq. (A.1) yields claim 1 as desired. For claim 2:

E[Ψ̂j ] =
1

T

T∑
t=1

E[(Ỹt − Y̆ )(Ỹt−j − Y̆ )′]

=
1

T

T∑
t=1

E[ỸtỸt−j ]− E[Y̆ Y̆ ′]

=
T − j
T

Γj +
j

T
Γ′T−j −

1

T
KT −

1

T
Γ0.

(A.4)

This completes the proof.

Proof to Proposition 1. For the first relation:

Ψ̂j =
1

T

T∑
t=1

ŷtŷ
′
t−j =

1

T

T∑
t=j+1

ŷtŷ
′
t−j +

1

T

j∑
t=1

ŷtŷ
′
T−j+t = Γ̂j + Γ̂′T−j . (A.5)

The second relation follows directly from the first one and that Γ̂j = Γ̂′−j . The third relation follows

from:
T−1∑
j=0

Ψ̂j =
1

T

T−1∑
j=0

T∑
t=1

(Yt − Ȳ )(yY−j − Ȳ )′

=
1

T

T∑
t=1

T−1∑
j=0

(Yt − Ȳ )(Yt−j − Ȳ )′

=
1

T

T∑
t=1

(Yt − Ȳ )

T−1∑
j=0

(Yt−j − Ȳ )′

=
1

T

T∑
t=1

(Yt − Ȳ ) · 0′N×1 = 0N×N .

(A.6)
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This completes the proof.

Proof to Theorem 2. We begin with the following linear system of equations which holds for any m

and n under the VMA(h) assumption of Y :

E[Ψ̂(m,n)] = HhΓh(m,n). (A.7)

This can be derived directly from Eq. (2.6) by setting Γj(m,n) = Γj(n,m) = 0 for all j > h. Also, we

have:

Lemma 1. For all h < bT2 c, Hh has full column rank such that rank(Hh) = 2h+ 1.

Proof. It suffices to prove the above lemma for the h̃ = bT2 c − 1 case, since for any h < h̃, Hh can be

obtained by deleting 2(h̃ − h) columns from H h̃, which implies that Hh must also have full column

rank if H h̃ is of full column rank. The dimension of H h̃ depends on the parity of T , but the proof is

identical. For conciseness, we prove the slightly more complicated case when T is odd: T = 2h̃ + 3.

In this case, H h̃ is a (2h̃ + 2)-by-(2h̃ + 1) matrix. Also, for the trivial case when T = 2, 3, H h̃ is a

non-zero vector which is by construction of full rank.

We now prove the equivalent statement that H ′
h̃

has full row rank by computing its reduced row

echelon form (rref) explicitly. For a general matrix with a total of M rows, let us define the three

elementary row operations as follows:

• Switching rows m and n: Lm → Ln.

• Multiplying row m by a constant k ∈ R \ {0}: kLm → Lm.

• Add a multiple of row n to row m: Lm + kLn → Lm, for some k ∈ R.

For notational convenience, we also defined the following augmented row operation:

• Let α(I) = {α(1), α(2), . . . α(M)} be a permutation of the row index I = {1, 2, . . . ,M}. Per-

muting the rows from I to α(I): Lα(I) → LI .

The above augmented operation is elementary in the sense that it can always be achieved by applying

the switching row operation for a finite number of times. We now perform the following elementary

row operations on H ′
h̃
:

1. Define α(I) = {2, 3, . . . , h̃+ 1, 1, 2h̃+ 1, 2h̃, . . . , h̃+ 2}. Perform Lα(I) → LI .
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2. Perform the following row multiplication operations:
T 2

T−mLm → Lm, m ≤ h̃,

TLm → Lm, m = h̃+ 1,

T 2

T+h̃+1−mLm → Lm, m ≥ h̃+ 2.

(A.8)

3. Perform Lm − Lh̃+1 → Lm, ∀m 6= h̃+ 1.

4. Perform the following row multiplication operations:
1
T Lm → Lm, m 6= h̃+ 1,

−Lm → Lm, m = h̃+ 1.

(A.9)

5. Perform Lh − Lh̃+1 → Lh̃+1, ∀m 6= h̃+ 1.

After the above straightforward operations, the resulting rref ofH ′
h̃

is the following (2h̃+1)-by-(2h̃+2)

matrix:

rref(H ′
h̃
) =

 I h̃+1 0h̃×(h̃+1)

0h̃×(h̃+1) I h̃+1

 . (A.10)

Clearly the above matrix has full row rank, which implies the lemma for the odd T case. We note that

for the case when T is even, rref(H ′
h̃
) = I2h̃+1 by applying the same set of operations. As the above

set of operations can always be performed for any T ≥ 4, the proof is complete.

Lemma 1 implies that H ′hWHh must be positive-definite and hence invertible for any h < bT2 c

and a positive-definite W . The following result is then straightforward:

E[(H ′hWHh)−1H ′hW Ψ̂(m,n)] = (H ′hWHh)−1H ′hWHhΓh(m,n) = Γh(m,n). (A.11)

Note that for the above result to hold, it is crucial thatW is non-random. This proves the unbiasedness

of Ψ̂
∗
h(m,n). We note that the result also holds for the case m = n, however it may deliver different

estimates for Γj(m,n) and Γj(n,m). The consistency of Ψ̂
∗
h(m,n) follows directly from the consistency

of Ψ̂(m,n) and the continuous mapping theorem, and the proof is complete.

Proof to Corollary 1. When h = 0 and W = IT−1, H0 = − 1
T ι(T−1)×1, where ιm×n is an m-by-n

matrix of ones. We therefore sees that:

(H ′0H0)−1H ′0Ψ̂(m,n) =
T 2

T − 1
· − 1

T
ι(T−1)×1Ψ̂(m,n) =

T

T − 1
Ψ̂0(m,n), (A.12)

where we have used the relationship −ι(T−1)×1Ψ̂(m,n) = Ψ̂0(m,n) according to Proposition 1. This

completes the proof.
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Proof to Proposition 2. When Y follows a VMA(∞) model, we always have:

E[Ψ̂(m,n)] = HhΓh(m,n) + ε(m,n), (A.13)

which can be derived equation-by-equation from Eq. (2.6). It is then clear that the proposition can be

proved by multiplying both sides of the above equation by (H ′hWHh)−1H ′hW . This completes the

proof.

Proof to Proposition 3. We prove H ′h = H ′hHhRh, which implies (H ′hHh)−1H ′h = Rh and hence

the proposition. Note that H ′hHh is always invertible due to Lemma 1. Starting with the fact that

HhRh has a block-diagonal structure:

HhRh =


Ih, 0h×(T−2h−1), 0h×h

0′h×(T−2h−1) ι(T−2h−1)×1 ⊗ v′h, 0′h×(T−2h−1)

0h×h 0h×(T−2h−1), Ih,

 , (A.14)

where ⊗ is the tensor product. This is derived by direct calculation of the matrix multiplication. We

now write H ′h = (H
(1)
h ,H

(2)
h ,H

(3)
h ), where H

(1)
h and H

(3)
h cover the first and last h columns of H ′h.

It is therefore clear that H ′h = H ′hHhRh is equivalent to:

H
(2)
h = H

(2)
h ι(T−2h−1)×1 ⊗ v′h. (A.15)

Observe that H
(2)
h has the following structure:

H
(2)
h =



− 1
T ι
′
(T−2h−1)×1

−T−1
T 2 ι

′
(T−2h−1)×1

...

−T−h
T 2 ι

′
(T−2h−1)×1

−T−1
T 2 ι

′
(T−2h−1)×1

...

−T−h
T 2 ι

′
(T−2h−1)×1


. (A.16)

We also have the following identity:

ι′(T−2h−1)×1ι(T−2h−1)×1 ⊗ v′h = ι′(T−2h−1)×1. (A.17)

Equations (A.16) and (A.17) imply Eq. (A.15). This completes the proof.

Proof to Corollary 2. It suffices to notice that the columns of Ψ̂
◦

and Γ̂
◦
h are simply Ψ̂(m,n) and

Γh(m,n), and the corollary follows by principles of matrix multiplication. This completes the proof.
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Proof to Corollary 3. For the case j ≥ 1, let us write Rh(j) as the (j + 1)-th row of Rh. Using

Proposition 3, we see that:

vec(Ψ̂∗j )
′ = Rh(j)Ψ̂

◦
=

T

T − j
vec(Ψ̂j)

′ − T

(T − j)(T − 2h− 1)

T−h−1∑
i=h+1

vec(Ψ̂i)
′. (A.18)

For the case with j = 0, we note that:

vec(Ψ̂∗0)′ = Rh(0)Ψ̂
◦

= −
h∑
i=1

(
vec(Ψ̂i) + vec(Ψ̂T−i)

)
− T − 2h

T − 2h− 1

T−h−1∑
i=h+1

vec(Ψ̂i)
′. (A.19)

Proposition 1 implies that:

−
T−1∑
i=1

vec(Ψ̂i) = vec(Ψ̂0). (A.20)

Plugging the above into Eq. (A.19) yields:

vec(Ψ̂∗0)′ = vec(Ψ̂0)′ − 1

T − 2h− 1

T−h−1∑
i=h+1

vec(Ψ̂i)
′. (A.21)

Reversing the vectorization, we see that this is the identical to Eq. (A.19) with j = 0. Finally, again

using Eq. (A.20):

−
T−h−1∑
i=h+1

vec(Ψ̂i)
′ =

h∑
i=−h

vec(Ψ̂i)
′. (A.22)

Substituting the above into Eq. (A.19) and reversing the vectorization yield the desired result. The

unbiasedness and consistency follow directly from Proposition 2. This completes the proof.

Proof to Proposition 4. From Corollary 3, we have:

Ψ̂∗0,h = Ψ̂0 +
1

T − 2h− 1

h∑
i=−h

Ψ̂j . (A.23)

Since Ψ̂j = Γ̂j + Γ̂T−j , we can rewrite Ψ̂∗0,h in the following form:

Ψ̂∗0,h =
T−1∑

j=−(T−1)

k(j)Γ̂j , (A.24)

where:

k(j) =


T−2h
T−2h−1 , j = 0,

1
T−2h−1 , |j| ∈ [1, T − 1] \ [h+ 1, T − h− 1],

0, |j| ∈ [h+ 1, T − h− 1].

(A.25)

As a standard result of spectral density estimation (see e.g. Priestley (1981)), Ψ̂∗0,h is positive definite

with probability 1 if the following condition is met:

K(x) =
1

2π

T−1∑
j=−(T−1)

k(j)eijx ≥ 0, ∀x ∈ [−π, π], (A.26)
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where i =
√
−1 is the imaginary unit. Note that K(x) satisfies the following identity:

K(x) =
1

2π

(
1 +

∑T−1
j=−(T−1) e

ijx −
∑T−h−1

j=−(T−h−1) e
ijx +

∑h
j=−h e

ijx

T − 2h− 1

)
. (A.27)

Note that the Dirichlet kernel is defined via the following well-known identity:

Dh(x) =
1

2π

h∑
j=−h

eijx =
sin((2h+ 1)x/2)

2π sin(x/2)
. (A.28)

Plugging the above into Eq. (A.27), we arrive at:

K(x) =
1

2π

(
1 +

2π(DT−1(x)−DT−h−1(x) +Dh(x))

T − 2h− 1

)
≥ 0, ∀x ∈ [−π, π], (A.29)

which implies Eq. (3.13), and the proof is complete.

Proof to Theorem 3. From Proposition 1 it is clear that Ψ̂j and Γ̂j are asymptotically equivalent for

any finite j. To prove the theorem, we firstly write:

Ψ̂h(m,n) = {{Ψ̂j(m,n)}′j=0:h, {Ψ̂j(n,m)}′j=1:h}′, Γ̂h(m,n) = {{Γ̂j(m,n)}′j=0:h, {Γ̂j(n,m)}′j=1:h}′. (A.30)

We propose to show that Ψ̂
∗
h(m,n), which are the columns of Ψ̂

∗
h , is asymptotically equivalent to

Ψ̂h(m,n) for any m and n. Since Ψ̂h(m,n) is asymptotically equivalent to Γ̂h(m,n) for any fixed h,

which are the columns of Γ̂
◦
h, the theorem follows as each column of Ψ̂

∗
h is asymptotically equivalent

to the corresponding column of Γ̂
◦
h. Expanding Ψ̂

∗
h(m,n) explicitly yields:

Ψ̂
∗
h(m,n) = RhΨ̂(m,n) = Ψ̂h(m,n) +



−v′hΨ̂h+(m,n)

Ψ̂1(m,n)
T−1 − T

T−1v
′
hΨ̂h+(m,n)

...

hΨ̂h(m,n)
T−h − T

T−hv
′
hΨ̂h+(m,n)

Ψ̂1(n,m)
T−1 − T

T−1v
′
hΨ̂h+(m,n)

...

hΨ̂h(n,m)
T−h − T

T−hv
′
hΨ̂h+(m,n),


. (A.31)

where Ψ̂h+(m,n) = {Ψ̂j}′j=h+1:T−h−1. By the absolute summability condition in Assumption 1, it must

hold that ι′(T−2h−1)×1Ψ̂h+(m,n) = Op(1) for every m and n in the limit. Therefore we see that, for any

finite h, h
T−h = O(T−1), which implies

√
T (Ψ̂h+(m,n) − Ψ̂h(m,n)) = Op(T−1) −Op(T−0.5) = op(1),

and hence the required asymptotic equivalence. This completes the proof.

Proof of Corollary 4. Using the result in Corollary 3, we can easily construct the (h + 1)-by-(h + 1)

matrix M̃h that satisfies ψ̂
∗
h = M̃hψ̂h by collecting coefficients from Eq. (3.10), where ψ̂h = {ψ̂j}j=0:h.

Denote M̃h = {Mi,j}i=1:h+1,j=1:h+1, this gives:

M̃i,j =


T

T−i+1(1l {i=1} + 1
T−2h−1), i ∈ [1, h+ 1], j = 1

T
T−i+1(1l {i=j} + 2

T−2h−1), i ∈ [1, h+ 1], j ∈ [2, h+ 1].

(A.32)
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Now from Proposition 1, we have ψ̂j = γ̂j + γ̂T−j , which implies that the (h+ 1 + j)-th column of Mh

is just the (T − j + 1)-th column of M̃h for j ∈ [1, h], and the proof is complete.

Proof of Proposition 5. The proposition is a direct result of the following identity derived in Equation

(2) of Vogelsang and Yang (2016):

E[γ̂] = Aγ. (A.33)

Therefore, by removing the last T − h − 1 elements from γ and for any increasing sequence Jq ⊆

{0, . . . , T − 1}, the following relation holds due to the principle of matrix multiplication:

E[γ̂Jq ] = AJqγh. (A.34)

Under the condition that AJq has full column rank, A′JqWAJq is guaranteed to be invertible, and the

proof therefore follows analogously as the proof of Theorem 2. This completes the proof.

Proof of Theorem 4. Choose some fixed h ≤ T −2. We start with the following decomposition of AJT ,

which is a direct consequence of Lemma 1 in Vogelsang and Yang (2016):

AJT = Ch+1 − T−1BT , (A.35)

where Ch+1 = {Ih+1,0(h+1)×(T−h−1)}′ satisfies C ′h+1Ch+1 = Ih+1, BT = B+O(T−1) and B is some

constant T -by-(h+ 1) matrix that does not depend on T . We therefore have:

A′JTAJT = Ih+1 − 2T−1C ′h+1BT + T−2B′TBT

= Ih+1 + T−1UTBT ,
(A.36)

where UT = −2C ′h+1 + T−1B′T . The Woodbury matrix identity suggests that:

(A′JTAJT )−1A′JT = (Ih+1 − T−1UT (A′JTAJT )−1BT )A′JT

= A′JT − T
−1UT (A′JTAJT )−1BTA

′
JT

= C ′h+1 +O(T−1).

(A.37)

Using the identity C ′h+1γ̂ = γ̂h, we see that:

√
T (γ̂∗h,JT − γ̂h) =

√
T ((A′JTAJT )−1A′JT γ̂ − γ̂h) = O(T 0.5) · O(T−1) ·Op(1) = op(1), (A.38)

as desired, and the proof is complete.
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