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Abstract

Mobile localisation is one of the main functions of the fifth generation (5G) and beyond

5G (B5G) cellular networks, enabling high quality location services (LCSs). In this thesis,

a number of challenging problems on localisation are addressed for 5G and B5G networks

under different use cases, including device-to-device (D2D) connectivity, unmanned aerial

vehicle (UAV) mounted base station (BS), massive multiple-input multiple-output (MIMO)

antenna, and intelligent surface (IS) array. The detailed contributions are shown as fol-

lowing items.

In the first contribution, I propose a cooperative localisation technique based on time-

of-arrival (TOA), angle-of-arrival (AOA) and angle-of-departure (AOD) observed at BSs,

and received-signal-strength (RSS) collected from collaborative mobile stations (MSs) in

single-bounce multipath environment, named as CLTAAR, to mitigate non-line-of-sight

(NLOS) error due to single-bounce scattering. This scheme is further improved by a

proposed weight function of variance of measurements. Then, a grouping strategy is inte-

grated with the proposed work to reduce the running time of estimation progress, named

as eCLTAAR. The system performance is verified by simulations and Cramer-Rao Lower

Bound (CRLB). It is shown that the proposed techniques outperform existing approaches

in terms of localisation accuracy and running time.

In the second contribution, unmanned aerial vehicle (UAV)-base stations (BSs) assisted

and received signal strength (RSS) based mobile station (MS) localisation is investigated.

A practical air-to-ground path loss model is utilised, where the path loss exponent (PLE)

varies with the elevation angle and altitude of UAV, and the accurate PLE estimate is

often difficult to obtain. With unknown and unequal PLEs for different UAVs, the UAVs

assisted localisation problem becomes nonlinear and non-convex, which cannot be solved

by the existing methods. Two localisation approaches are proposed to solve the problem

with known transmit power, unknown and unequal PLEs, and one approach with estimated
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transmit power is proposed for the scenario with all the parameters unknown. Simulation

results show a much higher accuracy achieved by the proposed schemes than the exist-

ing approaches with perfect knowledge of either one or all the parameters. In addition,

an anti-intuitive finding verifies the analytical higher accuracy of localisation and ranging

distance obtained with estimated parameters than that of the real parameters. Thus, it

suggests to apply the estimated parameters rather than real parameters, even if the perfect

knowledge is available. The effectiveness of proposed approaches are also verified by the

Cramer-Rao lower bound (CRLB) derived.

In the last but not least contribution, we investigate an intelligent surface (IS) assisted

massive MIMO based localisation. Large IS array (Ix) that in near-field regime is divided

into multiple non-overlapping sub-arrays with approximated channel parameters allocated.

Both approximated Fisher information matrix (aFIM) and exact FIM (eFIM) are derived.

To improve performance of localisation, a localisation-aimed IS phase shifter (lo-ISpsf) is

first proposed to minimise position error bound and orientation error bound, rather than

maximise data rate as done by communication-aimed ISpsf (co-ISpsf) in the existing re-

search. Simulation results show the much higher accuracy of proposed lo-ISpsf than that

of existing co-ISpsf in different cases with various number of Ix elements and quantization

bits. ISpsf of 1-bit quantizer is the most efficient in most cases. The numerical results

also reflect the significant degradation on accuracy caused by absence of knowledge of IS

position and orientation.

iii



Acknowledgements

This thesis would not have been finished without loads of support and help from the

following people. Therefore, I would like to take this opportunity to thank them all.

I would like to give my deepest gratitude to my supervisor Dr. Xu Zhu, for her guidance,

support, and commitment. This work can not be finished without her invaluable comments

and constant encouragement. I also appreciate concerns from Prof. Yi Huang for my

research.

I would like to thank the University of Liverpool, as well as the Department of Electrical

Engineering and Electronics, for providing outstanding training to research students.

I am grateful to Dr. Zhongxiang Wei in University College London and Dr. Yujie Liu in

Xi’an Jiaotong-Liverpool University, who gave me lots of advices in my research work.

I would also like to thank Assistant Prof. Yufei Jiang in Harbin Institute of Technology,

China, where I obtained lots of advices and guidance in my research work.

Finally, my gratitude is dedicated to my parents. I would had no chance to pursue my

dreams in my life without their great support, patience and love. This thesis is dedicated

to them.

iv



Contents

Declaration i

Abstract ii

Acknowledgements iv

Contents viii

List of Figures xi

List of Tables xii

Nomenclature xii

List of Symbols xvi

1 Introduction 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Overview of Localisation Techniques 7

2.1 Classification of Network Based Localisation . . . . . . . . . . . . . . . . . . 7

2.2 Fundamental Network Based Localisation Techniques . . . . . . . . . . . . . 8

2.3 Measurement Models and Localisation Algorithms . . . . . . . . . . . . . . 9

2.4 Scattering for Multipath Effect . . . . . . . . . . . . . . . . . . . . . . . . . 11

v



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

2.5 Massive MIMO Uniform Rectangular Array . . . . . . . . . . . . . . . . . . 11

2.6 Beamforming for Massive Array . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7 Intelligent Surface Assisted Communication . . . . . . . . . . . . . . . . . . 13

2.8 Localisation Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.8.1 Least-Square Based Method . . . . . . . . . . . . . . . . . . . . . . . 15

2.8.2 Semi-Definite Programming Based Method . . . . . . . . . . . . . . 16

3 Low Complexity Cooperative Positioning in Multipath Environment 17

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 19

3.3 Cooperative Localisation for Mitigating NLOS Error Due to Single-Bounce

Scattering Effect and the Mobile Station Grouping Scheme . . . . . . . . . 21

3.3.1 Cooperative Loclisation for Mitigating NLOS Error Due to Single-

Bounce Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.2 Cooperative Localisation Enhanced by Mobile Station Grouping Scheme 22

3.3.3 Cramer-Rao Lower Bound on the Proposed Cooperative Localisation

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Unmanned Aircraft Vehicle Supported And Received Signal Strength

Based Localisation 30

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 System Model and Problem Formulation . . . . . . . . . . . . . . . . . . . . 33

4.3 UAV Assisted and Piecewise Convex Approximation Aided Localisation . . 35

4.3.1 Piecewise Convex Approximation Aided Localisation . . . . . . . . . 35

4.3.2 Elimination of Estimation Ambiguity . . . . . . . . . . . . . . . . . 37

4.3.3 Localisation with Unknown Transmit Power . . . . . . . . . . . . . . 38

4.3.4 CRLB of Localisation Error of PCAL Algorithm . . . . . . . . . . . 39

4.3.5 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Effective Transmit Power and Effective Pathloss Exponents . . . . . . . . . 41

4.4.1 Effective Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.2 Effective PLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

vi



Mobile Localisation of 5G and Beyond 5G Cellular Networks Boda Liu

4.4.3 Analysis on the Effect of Effective Transmit Power and Effective

Pathloss Exponents on Localisation . . . . . . . . . . . . . . . . . . 47

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 Intelligent Surface Assisted And Massive MIMO Based Localisation 59

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Array Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2.3 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3 CRLB of Channel Parameters and Localisation Error . . . . . . . . . . . . . 69

5.3.1 Fisher Information Matrix of Channel Parameters . . . . . . . . . . 69

5.3.2 Effective Fisher Information of Location Parameters . . . . . . . . . 71

5.3.3 Approximate Fisher Information Matrix for Intelligent Surface in the

Far-Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3.4 Analysis on Fisher Information Matrix and Effect of Intelligent Sur-

face Phase Shifter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Intelligent Surface Phase Shifter Design for Localisation . . . . . . . . . . . 76

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6 Conclusion and Future Work 82

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

References 87

Appendices 97

A Parameters in Lemma 1 98

B Derivation of Lemma 2 100

C Proof of Lemma 3 102

vii



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

D Derivation of Fisher Information Matrices of Position-Related Channel

Parameters 104

E Derivation of the Transition Matrix from Channel Parameters to Mobile

Station Location Information 111

viii



List of Figures

2.1 Layout of Mobile Localisation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Fundamental mobile localisation techniques . . . . . . . . . . . . . . . . . . 9

2.3 Circular scattering model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Layout of uniform rectangular array . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Cooperative localisation with the serving BS and MSs in single-bounce scat-

tering scenario, where the distribution of scatters follows the uniform disk

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Cooperative localisation enhanced by MS grouping, where 4 MSs are real-

located to 2 groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Accumulative percentage of estimation error of LS [55], ranging based co-

operative localisation [2], CLTAAR, wCLTAAR and eCLTAAR. . . . . . . . 27

3.4 Average localisation error of LS [55], CLTAAR, wCLTAAR and eCLTAAR

decreases with the number of NLOS measurements on each MS. . . . . . . . 28

4.1 Ground MS is located by multiple fixed-wing UAV-BSs . . . . . . . . . . . 34

4.2 Localisation error of MS fluctuates with substituted transmit power, xPt “

´50,´45, . . . , 50 dBm, when real transmit power Pt “ 23 dBm. . . . . . . . 42

4.3 Ranging error of the i -th BS derived from values in the EPt-range (4.23) is

lower than that from the real Pt “ 23 dBm, when real distance di “ 790 m,

real path loss value is PLi = 92 dB, measurement error is XPL,i “ 40, 5,´15

dB, corresponding to Events A, B and C, respectively. . . . . . . . . . . . . 44

ix



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

4.4 Ranging error of the i -th BS derived from values in the EPt-range (4.24) is

lower than that from the real Pt “ 23 dBm, when real distance di “ 790

m, real path loss value is PLi = 92 dB, fitted parameters are Ai,gi “

´2.6527e ` 04, Bi,gi “ ´0.9959, βi,gi “ 141.8248, measurement error is

XPL,i “ 40, 5,´15 dB, corresponding to Events D, E and F, respectively. . . 45

4.5 Ranging error of the i -th BS derived from values in the EPLE range is lower

than that from the real PLE ηi “ 3.5, when real distance di “ 200 m,

real path loss measure is PLi “ 81 dB, shadowing is XS,i “ ´20, 5, 20 dB,

corresponding to Events J, K and L. . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Estimation-line of LS estimator with varying eEPLE η̂e P r1.50, 5.50s and

varying eEPt Pte P r´50, 50s dBm. . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Localisation error of LS estimator with varying eEPLE η̂e P r1.5, 5.5s, when

the real PLE is η “ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8 Localisation error of LS estimator with varying eEPt Pte P r´50, 50s dBm,

when the real transmit power is Pt = 23 dBm. . . . . . . . . . . . . . . . . 50

4.9 Estimation sector obtained by N = 4 BSs of two groups with η̂g,r P r1.5, 5.5s

or xPtg,r P r´50, 50s dBm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Localisation error achieved by unEPLEs with N = 4 BSs of two groups, the

1st unEPLE is sampled with interval ∆η “ 0.01, the 2nd unEPLE fixed at

η̂2 “ 1.50, 3.28, 3.32, 3.36, 5.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.11 Localisation error achieved by unEPt with N = 4 BSs of two groups, the

1st unEPt is sampled with interval ∆Pt “ 1 dBm, the 2nd unEPt fixed at

xPtg,2 “ ´50,´18,´13,´8, 50 dBm. . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Curve fitted path loss model in comparison to EAPL [69] with UAV altitudes

hi = 500 m (i=1,. . . ,4) and cell radius R = 1000 m. . . . . . . . . . . . . . 54

4.13 CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS

[63] and LSO-PLEc [10] with N = 4 UAV-BSs and TS only. . . . . . . . . . 55

4.14 CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS

[63] and LSO-PLEc [10] with N = 4 UAV-BSs, TS and AS of standard

deviation σAS “ 4.4 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.15 Average localisation error of PCAL with real PLEs, PCAL-PLM [37], PCAL

without ambiguity, PCAL-GSAE, and average CRLB with N = 4 UAV-

BSs, UAV altitudes hi “ 200 m (i=1,. . . ,4), and AS of standard deviation

σAS “ 4.4 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

x



Mobile Localisation of 5G and Beyond 5G Cellular Networks Boda Liu

4.16 Average transmit power estimation error ratio of PCAL-gsDRSS, PCAL-

EPt-gsDRSS, LSRE-SDP [9], when the real Pt=23 dBm is unknown, and

AS of standard deviation σAS “ 4.4 dB. . . . . . . . . . . . . . . . . . . . . 57

4.17 Average localisation error of PCAL-gsDRSS, PCAL-EPt-gsDRSS, LSRE-

SDP [9], when the real Pt=23 dBm is unknown, and AS of standard devia-

tion σAS “ 4.4 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1 IS-assisted massive MIMO system . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Average of approximated PEB and exact PEB with known IS. . . . . . . . 79

5.3 Average of approximated OEB and exact OEB with known IS. . . . . . . . 79

5.4 Average of approximated PEB and exact PEB with unknown IS. . . . . . . 80

5.5 Average of approximated OEB and exact OEB with unknown IS. . . . . . . 80

xi



List of Tables

3.1 Computational Complexity of Estimation Solved by Quasi-Newton Method

of ε - Optimality for the Worst Case (Q : number of groups, Mq: number of

MS assigned to each group) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Normalised Computational Complexity of Estimation Solved by Quasi-Newton

Method of ε - Optimality for the Worst Case (ε “ 0.1, Q “ 2,M “ 4,M1 “

3,M2 “ 1, B “ 1, C “ 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 Computational Complexity Analysis. N : Number of UAV-BSs, V : Dimen-

sion of MS Coordinates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

xii



Nomenclature

2G second generation

3G third generation

4G fourth generation

5G fifth generation

6G sixth generation

A2G air-to-ground

aAOA azimuth angle of arrival

aAOD azimuth angle of arrival

aEFIM approximated effective Fisher information matrix

aFIM approximated Fisher information matrix

AOA angle-of-arrival

AOD angle-of-departure

aOEB approximated orientation error bound

aPEB approximated position error bound

AS airframe shadowing

B5G beyond fifth generation

BS base station

xiii



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

CDF cumulative density function

CLTAAR Cooperative localisation of TOA, AOA, AOD and RSS

co-ISpsf communication-aimed ISpsf

CQI channel quality information

CRLB Cramer-Rao lower bound

D2D device-to-device

DRSS differential received signal strength

eAOA elevation angle of arrival

eAOD elevation angle of arrival

eCLTAAR enhanced CLTAAR

Edist effective ranging distance

EFIM effective Fisher information matrix

EPLE effective path loss exponent

EPt effective transmit power

FIM Fisher information matrix

G2G ground-to-ground

GPS Global Positioning System

GSAE Grid search ambiguity elimination

IoT Internet of Things

ISpsf intelligent surface phase shifter

IS intelligent surface

Ix intelligent surface array

xiv



Mobile Localisation of 5G and Beyond 5G Cellular Networks Boda Liu

LCS location service

lo-ISpsf localisation-aimed ISpsf

LOS line-of-sight

LS least-square

MIMO multiple-input-multiple-output

mm millimetre

MS mobile station

NLOS non-line-of-sight

OEB orientation error bound

PCAL-EPt-gsDRSS PCAL-gsDRSS enhanced by estimated EPt

PCAL-gsDRSS PCAL enhanced by DRSS assisted grid search

PCAL Piecewise convex approximation localisation

PDF probability density function

PEB position error bound

PLE path loss exponent

RAE relative approximation error

RB resolvable resource block

RSS received signal strength

Rx receiver array

SDP semi-definite programming

SISO single-input single-output

SNR signal-to-noise ratio

xv



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

SOEB squared orientation error bound

SPEB squared position error bound

TDOA time-difference-of-arrival

TNN The Things Network

TOA time-of-arrival

TSE Taylor-series expansion

Tx transmitter array

UAV unmanned aerial vehicle

URA uniform rectangular array

wCLTAAR weighted CLTAAR

xvi



List of Symbols

The notations of frequently-used symbols are listed as follows.

M,N,C number of MSs, BSs, and scatters

PLi, xPLi, ĂPLi
real, estimated and measured value of path loss at BS

i

PLm,k path loss of signals from MS m to MS k

Pt,Pri transmit power, RSS at BS i

vm “ rxm, yms
T,

wi “ rxBSi, yBS,is
T,

qc “ rqx,c, qy,c, qz,cs
T,

rI “ rxI, yI, zIs
T

coordinates of MS m, BS i, scatter c and IS

Dmi direct distance between MS m and BS i

rR,jc distance between the c-th scatter c and MS m

rT,ci distance between the c-th scatter c and BS i

c0 speed of light

fc carrier centre frequency

τmci
TOA of the single bounced path from MS m to BS i

through scatter c

nmi observation noise of TOA

στ standard deviation of TOA

θmc AOA from scatter c to MS m

εθ,mc observation noise of AOA

ϑci AOD from BS i to scatter c

εθ,ci observation noise of AOD

xvii



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

Rc radius of scattering environment

λ wavelength

XS,m,k shadowing of path loss between MS m and MS k

σRSS standard deviation of shadowing of path loss

η path loss exponent

A RSS measured at reference distance

h1, h2 sets of group 1 and group 2

FCLTAAR,FBS´MS ,FMS´MS
FIM of CLTAAR estimator, FIMs of BS-MS and MS-

MS observations

Km,k correlation matrix between MS m and MS k

di distance between MS and BS i

θi elevation angle at i -th UAV BS

hi altitude of i -th UAV BS

dt,i transition distance on EAPL model of i -th UAV BS

dlower,i, dupper,i lower and upper bound of distance of interest

Ai,gi , Bi,gi , Ci,gi fitted parameters of sub-function of i -th UAV BS

XPL,i “ Saf,i `XS,i
measurement error of path loss at i -th UAV BS, as

sum of airframe bias and shadowing

αi,gi “ rpĂPLi ´

βi,giq{Ai,gis
1{Bi,gi

i -th ranging distance

vj j -th tentative estimate of MS location

DRSSi, {DRSSi
measured, sampled DRSS between UAV BS i and

UAV BS N (the BS of lowest RSS)

Ą

yPLi
path loss obtained with measured RSS and estimated

transmit power 0M , 1M

M ˆ 1 vectors with all ‘0’ ele-

ments and all ‘1’ elements

IM M ˆM identity matrix

Ypfq received frequency-band signals

ΛS,ΛR sets of cluster reflective paths and the IS-aided paths

oBS “ rϑBS, ϕBSs, oIS “

rνIS, µISs, oMS “ rθMS, φMSs
orientation of BS, IS and MS array

Rpoq rotation matrix of orientation o

xviii



Mobile Localisation of 5G and Beyond 5G Cellular Networks Boda Liu

kp¨, ¨q unit directional vector

∆d inter-element spacing

pT ,pR,pI element position at transmitter, receiver and IS array

AR,AT,Abw,Afw

sets of array response of receiver, transmitter, IS back-

ward link and forward link

θl, ϑl, νfw,l, νbw,l

elevation angles of l -th path at MS, BS, IS forward

link and backward link

φl, ϕl, µfw,l, µbw,l

azimuth angles of l -th path at MS, BS, IS forward link

and backward link

hI,1,hI,2
complex channel gain of forward link and backward

link at IS

TΛR
delay vector of IS-aided paths

ΨR, Ψ̃R continuous and discrete IS phase shifter

∆ψl,∆ψ̃l
continuous and discrete phase shifts at the l -th IS el-

ement

bI number of bits of IS quantizer

Aeff effective aperture of each Ix element

aeff, Geff range, effective aperture of each Ix element

ρfw, ρbw path attenuation of forward link and backward link

Hd,Hs,HR
channel state information of direct path, cluster re-

flected path and IS-aided path

FB directional beamforming matrix

NT, NR, NIS number of elements of Tx, Rx and Ix

PT transmit power

nobs, N0 observation noise and the PSD

xpfιq transmit signals

Ω,ω1, ψ̃,ω2
matrix of interested parameters, position-related pa-

rameters, location and orientation of MS and IS

zω1 ,zω2 ,zMS
equivalent Fisher information matrix of ω1,ω2 and

MS location information

Oω2pω1q Jacobian matrix of ω1 over ω2

PMS,orin,PMS,posi,AMS,orin, exact SOEB and SPEB, approximated SOEB and

AMS,posi SPEB

xix



Boda Liu Mobile Localisation of 5G and Beyond 5G Cellular Networks

The operator p̃¨q denotes the noisy measurements. p¨qT and p¨qH are the transpose

operator and conjugate transpose operator, respectively. diagtzu diagonalises the vector

z. d and ‚ stands for Hadamard product and dot product. <t¨u, =t¨u, | ¨ |, } ¨ }, and

=¨ respectively stand for real part, imaginary part, absolute, l2-norm, and phase angle
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its cardinality. The subscripts ‘fw’ and ‘bw’ represent the corresponding variables of the

forward link and backward link.
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Chapter 1

Introduction

1.1 Background and Motivation

Localisation techniques have attracted much attention of research and rapidly grown with

the popularisation of personal electronic devices and commercial wireless networks over the

past two decades. Location awareness is now an essential feature of many commonly used

LCSs in both public, commercial and military wireless networks [1], such as emergency call

and vehicle navigation, whose quality of service (QoS) is highly dependent on localisation

accuracy. Thus, localisation techniques play a major impact on the performance of wireless

networks [2].

The existing localisation techniques can be generally categorised as three types, network

based, handset based and hybrid. The Global Positioning System (GPS) is a conventional

handset based localisation system applied for localisation and navigation, but it has some

limitations. For example, GPS in city canyons suffers from degrade performance when

the satellite signals are usually blocked by buildings. Whereas a competitive technology,

network based localisation has gained a lot of interest, since it can be widely deployed in

any wireless networks with lower cost than GPS [1],[2]. Network based localisation systems

localise targets through estimation with the measured properties of received signals, e.g.,

time-of-arrival (TOA), angle-of-arrival (AOA), angle-of-departure (AOD) and received sig-

nal strength (RSS), with no additional cost. Moreover, network based localisation also

improves with the evolution of cellular networks from the second generation (2G) to the

fifth generation (5G).

Localisation in 5G networks is more accurate than that in the conventional networks,

1
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since several disruptive technologies employed by 5G [3], i.e., millimeter-wave (mmWave)

communication, massive multiple-input-multiple-output (MIMO) antenna, and device-

to-device (D2D) connectivity benefit the network based localisation with more accurate

position-related parameters than those in the conventional networks from second gener-

ation (2G) to fourth generation (4G). 5G network based localisation is able to achieve

sub-meter accuracy [4], which is even more accurate than GPS (1 „ 5-meter accuracy).

Location-awareness even becomes a key feature of 5G networks, where sufficiently accu-

rate localisation results can be used to improve wireless network design and optimisation

through many aspects, e.g., signalling overhead and networking [5], and even provide users

with multimedia applications of Gbps-order data rates and improved QoS required by 5G

networks [6]. However, due to the high frequency and low wavelength, 5G signals are easily

blocked by obstacles, resulting into high path loss (PL), non-line-of-sight (NLOS) propa-

gation, and multipath effect in harsh environment. Wherein, NLOS and multipath effect

might causes tremendous degradation on localisation based on TOA, AOA and AOD, if

they are not mitigated or treated properly. Solution to the problems lies in deploying more

relays, BSs and local networks, e.g., D2D and machine-to-machine networks, in order to

improve line-of-sight (LOS) probability and maintain the accuracy of measurements. 5G

is the first generation that natively supports D2D communication [3]. Even if D2D has

been included in 3G and 4G, it was just considered as an add-on to reduce the cost of local

service provision. Thanks to D2D connectivity, mobile stations (MSs) in proximity are

allowed to join the local network and collect the extra short-range relative measurements

between the MSs, which are more reliable than the long-range measurements observed by

base station (BS) in harsh environment. The advanced infrastructures of 5G are expected

to afford both non-cooperative and cooperative localisation approaches.

On the other hand, unmanned aerial vehicle (UAV) supported communication is first

standardised in 5G, where UAV mounted BSs is introduced as a flexible and temporary sup-

plement to the terrestrial networks, and support the jammed or destroyed terrestrial BSs

in disaster. Benefited from flexibility and wide field of vision of UAV BSs, UAV BS assisted

localisation seems to be easier and more accurate than terrestrial localisation. However,

UAV BS assisted localisation is challenging, since the practical UAV air-to-ground (A2G)

channel models are different with the conventional ground-to-ground (G2G) channel mod-

els. For example, path loss exponents (PLEs) and variance of ground shadowing of A2G

channel are not constants as those of G2G channel, but dependent on UAV altitude or

elevation angle. UAV airframe shadowing (AS) is a special parameter of fixed-wing UAV,
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and it is a function of time and fast fading. LOS probability of A2G channel is influenced

by statistical parameter of buildings in the communication environment. These nuisance

parameters must be estimated or considered in UAV BS assisted localisation, however, they

were usually ignored by the previous research, which only applied the G2G channel mod-

els. That may cause significant impact on localisation performance. This gap in previous

research motivates us to study UAV BSs assisted and RSS based localisation technique.

A common sense is widely recognised by the existing work [7]-[8],[9],[10] that the higher

accuracy of path loss parameters is, the better the localisation performs. However, we

noticed that high accuracy could happen to the localisation with imperfect knowledge of

path loss parameters. Based on this phenomenon, we study the effect of inaccurate path

loss parameters on accuracy of ranging and localisation, and find the principle to explain

it.

Massive MIMO is a promising technique for 5G, which exploits the potentially large

capacity gains on the system with signals of small wavelength. It reduces the interference

due to multipath components, and improves the resolvability of channels between BS and

MS. With large amount of observations of signals, therefore, the massive MIMO system

is able to extract sufficiently accurate position-related channel parameters from received

signals through the existing algorithms, e.g., maximum likelihood algorithm and orthogo-

nal matching pursuit algorithm, resulting into much higher accuracy than single antenna

based localisation. Thus, the measurements accuracy does not make the main impact on

massive MIMO based localisation. The Cramer-Rao lower bounds (CRLBs) of massive

MIMO based localisation accuracy in different scenarios are found inversely proportional

to signal-to-noise ratio (SNR) at MS, and realised at sub-meter accuracy in [11] - [12]. As a

result, the existing research mainly focused on beamforming optimisation for localisation,

which influences SNR at MSs in each direction.

Another recent emerging technology of large array, intelligent surface (IS) is consid-

ered as a promising technology envisioned for beyond 5G (B5G) networks. ISs can be

easily deployed on facades of a building, and ceiling and floor of indoor spaces. A passive

IS consisting of large amount of meta-surfaces works as a reflective antenna array. With

assistance of adjustable phase shifter on IS (ISpsf), which is used to adjust amplitudes

and phases of signals, the propagation environment near an IS becomes controllable for

the connected BSs. IS can also be applied to improve the performance of localisation

through optimising ISpsf. The existing research on IS assisted localisation exactly applied

the communication-aimed ISpsf, since it regards the IS factor as a scalar independent of
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Fisher information matrix (FIM) of other channel parameters. However, the impact of IS

incident and reflection angles on FIM was not considered. Moreover, for the IS of large

array (i.e. ą 1e3 elements) and extra-large array (i.e. ą 1e5 elements), various parameters

and FIMs appeal to different parts of the array, and far-field approximation in the existing

work is impractical for array in near-field. To address these issues, each parameter of FIM

must be considered in ISpsf design. FIM of near-field localisation is preferable than that

of far-field, otherwise the far-field approximation error must be mitigated.

1.2 Thesis Structure

The rest of this thesis is organised as follows. The overview of mobile localisation and the

applied algorithms and techniques are introduced in Chapter 2. In Chapter 3, cooperative

localisation system is considered for MS in single bounced NLOS environment. In Chapter

4, UAV BS assisted and RSS based localisation system is considered, which addresses the

problem with known and unknown path loss parameters. In Chapter 5, an IS assisted and

massive MIMO based localisation system is considered. The impacts of IS size, far-field

approximation error and number of ISpsf quantizer bits are investigated. The design of

proposed localisation-aimed ISpsf is presented. Conclusions and future work are presented

in the final chapter.

1.3 Contributions

Based on the perfect system (known system parameters, perfect channel estimation and

interference mitigation, no synchronisation error, etc), the research conducted during this

PhD study has produced the following main contributions:

1. A cooperative localisation technique with adaptive weights on hybrid measurements

RSS, TOA, AOA, and AOD, named as CLTAAR, to mitigate NLOS errors caused by

single-bounce scattering. To reduce the computation time of cooperative approach,

an UE grouping strategy is utilised to decompose the original centralised cooperative

localisation to two steps with little degradation on accuracy. Simulation results

show that the proposed CLTAAR approach integrated with UE grouping scheme

(eCLTAAR) outperforms the conventional cooperative localisation [2] in presence of

single-bounce scattering.
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2. The UAV BS assisted and RSS based localisation problem with unknown and unequal

PLEs is solved by the proposed piecewise convex approximation aided localisation

(PCAL) scheme. To the best of our knowledge, this is also the first work to consider

UAV AS in the system model and investigate the impact of AS on UAV assisted

and RSS based localisation. The ambiguous estimates of PCAL are dealt with by a

proposed grid search assisted ambiguity elimination (GSAE) approach with known

transmit power, and a proposed DRSS based grid search (gsDRSS) approach with

unknown transmit power, which are more effective than the existing methods. The

performance of PCAL-GSAE approaches the CRLB derived. Both analytical CRLB

and simulation results prove that the proposed PCAL and PCAL-GSAE approaches

with unknown and unequal PLEs achieves higher accuracy than the existing ap-

proaches with equal and perfectly known PLEs and approach with unknown and

unequal PLEs. We also propose an anti-intuitive finding that, the estimated trans-

mit power and PLEs of significant imperfection can achieve the higher accuracy of

ranging and localisation than the real PLE and transmit power. Based on this find-

ing, a new definition of effective PLE (EPLE) and effective transmit power (EPt) are

proposed. An estimation algorithm of EPt is proposed to enhance PCAL-gsDRSS to

PCAL-EPt-gsDRSS and approach the CRLB.The effect of equal and unequal EPLEs

and EPt on localisation are analysed with both numerical results and analytical proof.

3. We investigate the performance of IS assisted and massive MIMO based localisation

of single MS, through evaluating FIMs and CRLBs of all position-related channel

parameters and location information with IS in both near-field and far-field. Based

on the derived FIMs and CRLBs, an ISpsf optimisation algorithm is proposed to

minimise position error bound (PEB) of MS. To the best of our knowledge, this work

is exactly the first work on ISpsf design for localisation, which is different with the

ISpsf designed in [13],[14]. The far field approximation error on localisation is also

numerically assessed by various size of IS. Based on the numerical assessment, the ap-

proximation error of far-field localisation is mitigated by allocating non-overlapping

sub-arrays with approximated FIM derived. The impacts of number of IS size, num-

ber of ISpsf quantizer bits and knowledge of IS location information on fundamental

limits have been investigated with numerical results. Simulation results shows up to

100 times higher accuracy achieved by the proposed localisation-aimed ISpsf than

the existing work.
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Chapter 2

Overview of Localisation

Techniques

This chapter presents an overview of mobile localisation in cellular networks. The layout

of mobile localisation is introduced in section 2.1. In section 2.2, the basic system model

and most widely used measurements are described. In section 2.3, some fundamental

algorithms and techniques applied for localisation in this thesis are provided.

2.1 Classification of Network Based Localisation

Mobile localisation has been standardised in cellular network protocols. The earliest offi-

cial standardisation of mobile localisation was regulated by governmental institutions, the

Federal Communications Commission (FCC) of the United States (U.S.), as E911 used

for emergency services [15]-[16]. To dates, mobile localisation has been exploited for both

public, private and commercial services, and network optimisation, and become the main

feature of 5G networks. A fundamental layout of network based mobile localisation from

2G to 5G is displayed as Fig. 2.1, where the location server collects the observations from

BSs, and estimates the location of MSs according to different level of accuracy acquired

by the services.

This thesis only focuses on network based localisation approaches.

7
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Figure 2.1: Layout of Mobile Localisation

2.2 Fundamental Network Based Localisation Techniques

The three fundamental mobile localisation techniques [15]-[16], as well as the hybrid tech-

nique, are displayed in Fig. 2.2, as :

• Trilateration : The position of MS is determined by the intersection points of ranging

circles centred around the transmitter and in radius of distance measurements. This

method is suitable for TOA and RSS based methods.

• Triangulation : The position of MS is determined by the intersection points of lines

at the measured direction of signals. This method is suitable for AOA and AOD

based methods.

• Multilateration : The position of MS is determined by the intersection of multiple

hyperbolas obtained by the difference between two distance measurements. This

method is suitable for TDOA and DRSS based methods.

• Hybrid : using multiple types of measurements can improve performance of localisa-

tion.
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Figure 2.2: Fundamental mobile localisation techniques

2.3 Measurement Models and Localisation Algorithms

The most widely used measurements include ranging based measurements, e.g., TOA and

RSS, and angular based measurements, e.g., AOA and AOD.

TOA : TOA is measured as the flight time of signals τi from the transmitter to the

receiver, i.e., τi “ to ´ t0, where ti is the arrival time from transmitter w “ rxi, yis
T to

receiver v “ rx, ysT, t0 is the start time labelled in the signals. The measured propagation

distance is calculated by multiplying the measured TOA with speed of light c, as following

d̃i “ cpτi ` nτ q (2.1)

where nτ is the measurement error of TOA observations. The real distance is expressed as

di “ }v´wi} (2.2)

TOA based localisation techniques have been widely studied, due to its normally higher

accuracy than other positioning techniques. A linear LS estimator was proposed for TOA

based method under LOS environment [17]. TOA measurements of NLOS paths were

identified by a normalised residual error test proposed in [18], and the location of target

was determined by at least three LOS paths. Matched filter and energy detector based

TOA estimators were studied in [19] with a threshold selection algorithm proposed.
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AOA : AOA is derived by smart antenna array through estimating the direction of

strongest signals from transmitter to receiver. The measured AOA of received signals at

receiver can be expressed as

θ̃i “ tan´1

ˆ

yi ´ y

xi ´ x

˙

` nθ (2.3)

where tan´1
´

yi´y
xi´x

¯

is the real AOA. nθ is the measurement error. The advantage of AOA

based method is that only two AOA measurements of LOS paths suffice to localise one

MS.

AOA based localisation techniques were limited in 2G„ 3G, due to the lack of smart

antenna array, and finally standardised in 4G. AOA measurement, NLOS error has a major

influence on the precision. The estimation error of AOA measure could vary from 0 to 360˝.

In [20], AOA measurements of NLOS paths were identified by comparing measurements

with the Root Mean Square value. AOA based localisation was solved by LS estimator

in [21]. CRLBs of AOA based method and hybrid TOA and AOA based method were

evaluated for wideband signals in [22]. In [23], pre–coder indices of the MIMO were proved

as strong angular information for AOA estimation.

RSS : RSS read at receiver can be used to estimate propagation distance through path

loss model. RSS is obtained by calculating the integration of reference signals (RS), i.e.,

position reference signal (PRS) and cell-specific reference signal (CRS) for 4G LTE system,

during a certain sampling period. Denote the RSS as Pr, which is derived from path loss

model as

Pri “ Pt´ 10η log1 0pdiq `XS,i (2.4)

where η is PLE, XS,i is the shadowing. RSS based ranging distance is calculated as

d̃i “ 10
Pt´Pri`XS,i

10η (2.5)

RSS based methods can compromise with any networks without require any additional

cost on hardware. The problem of RSS based localisation can be solved by the algorithms

of TOA based localisation.

The system operational frequency also affects characteristics of radio propagation. For

example, 5G path loss model, e.g., close-in (CI) path loss model also contains a component

of system operational frequency, which reflects the greater path loss value of signals at 5G
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high band than that of low band, and consequently, the smaller cell radius than that of the

existing 2G-4G. Moreover, the higher operational frequency also provides higher robustness

against Doppler shift. However, the impact of system frequency fc is not studied in Chap-

ters 3 and 4, since it does not contain any location information. Based on the assumed

perfect channel estimation and perfect knowledge of system, the measurement models of

TOA, AOA, AOD and RSS employed by Chapter 3 are free of physical layer information,

e.g., fc and signal bandwidth W , and only focus on geographical information. In contrast,

fc has significant influence on Chapter 5, due to the signal model. The impacts of fc on

TOA, AOA and AOD are intuitively reflected in the derivatives and FIMs calculated in

(D.1)-(D.2), Appendix D.

2.4 Scattering for Multipath Effect

Scattering is a physical phenomena occurs when the radio wave is reflected by rough

surface. A geometrical scattering model describes distribution of AOA and TOA of the

received signals in multipath environment with a given PDF of scatters [24]. For simplicity,

the term ‘scattering’ employed by this thesis refers to both reflection, diffraction, and

scattering, and the term ‘scatters’ is referred to both reflectors, diffractors, and scatters

in multipath propagation. The most common scattering model includes uniform circular

scattering model [25], uniform ellipse scattering model [24], etc. An example of circular

scattering model is displayed in Fig. 2.3, where the scatters are distributed on the circle

around MS, and reflect signals to BS.

2.5 Massive MIMO Uniform Rectangular Array

In the massive MIMO communication system, the time-frequency resources are divided into

multiple blocks, each of which simultaneously provides frequency-flat and static channel

to serve multi-user. The normally defined massive MIMO contains at least 64 antennas,

which is much greater than the conventional MIMO (2, 4 or 8 antennas). Each antenna

has its own radio frequency (RF) and digital baseband chain. The number of RF chains

determines the number of directional beams, which provide location information of the

channel, i.e., TOA, AOA and channel coefficients. The more RF chains applied, the

narrower beams become, and the more accurate the estimated channel parameters are.
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Figure 2.3: Circular scattering model

However, the number of RF chains is limited, due to finite total power and requirement of

system complexity. Digital beamforming allows control of both amplitudes and phases of

baseband signals.

For massive MIMO operating on TDD mode, the performance of system is not limited

by the number of antennas. Moreover, due to reciprocity of propagation, channel estimation

by uplink pilot sequence can be applied for the downlink channel. Thus, TDD mode is

widely employed by massive MIMO systems.

In this thesis, uniform rectangular array (URA) (also named as uniform planar array)

with identical elements spacing is applied for massive MIMO based localisation. An URA

has NT antenna elements uniformly distributed on the grids on a plane, as shown by

Figure 2.4. For the massive MIMO array, the location of elements are the relative position

of elements to the centre of array, and AOA and AOD are defined as the direction of signals

with respect to the array orientation. Other commonly used models, like uniform linear

array and uniform circular arrays are suitable for different telecommunication environment.

The impact of different array shapes on FIM expressions obtained in this thesis is negligible,

and the FIM expressions can be extended to other arrays.
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Figure 2.4: Layout of uniform rectangular array

2.6 Beamforming for Massive Array

Beamforming techniques employed by antenna arrays is used to transmit or receive signals

on the desired direction. Beamforming is aimed at adjusting the amplitude and phase

of signals, in order to enhance the signals on the desired direction by constructively in-

terference while mitigate those on the other direction by destructive interference. The

performance of localisation also depend on the applied beamforming schemes, due to dif-

ferent signal power on each directional beam. Some common beamforming schemes include

directional beamforming [26], random beamforming [27], phased-array beamforming and

timed array beamforming [28]. Note that, the beamforming technique employed by this

thesis is only referred to analog beamforming (also named as RF chain beamforming),

while digital beamforming and hybrid beamforming are out of the scopes of our research,

since digital beamforming does not contain any location information.

2.7 Intelligent Surface Assisted Communication

IS is the promising technique envisioned for B5G and even future sixth generation (6G)

networks. IS in this thesis is referred to reflective surface of electromagnetic materials,

whose phase and amplitude responses at each individual element are electronically con-

trolled with integrated electronics [29]. From the perspective of hardware, ISs have PIN
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diodes embedded on connection parts to control each meta element switch on and off, and

tune phase shift by adjusting the bias voltage on capacitors. Thus, the amplitudes and

phase of reflected signals can be modified. Moreover, IS also works as steerable array.

Based on the detected channel quality information (CQI) reported by BSs and MSs, the

channel of CQI below the predefined threshold [30] is reinforced by IS, while for the channel

of CQI above the threshold, of which MSs are directly served by the BSs through LOS

paths. Therefore, IS can be utilised for many applications, such extending cell coverage

to dead-zone, suppressing inter-user interference and improving security through focusing

signals to desirable direction, etc.

IS design is always a challenging problem, which can be generally classified as two

categorises, i.e., electromagnetic based design and communication based design [31]. Elec-

tromagnetic based design of IS focuses on the functions of hardware, e.g., reflection, trans-

mission, polarization, etc. Communication based design of IS regards IS as a modification

on phases and amplitudes of signals, and concentrate on the functions of IS and the im-

pacts on the networks, e.g., capacity of channel, cell coverage, energy efficiency, etc. For

example, IS design of maximised data rate is formulated as optimisation problem of ISpsf

with respect to maximised SNR, which is different with the IS assisted energy efficiency

problem. Therefore, IS should be designed on a case-by-case basis.

The received signal power of IS-aided channel is up to 4 times than the LOS signal [29]

in the classical two-ray model, where the incidence angle equal to reflection angle. The

IS is also found more effective on increasing the signal-to-noise ratio (SNR) at MS than

massive MIMO, since the received signal power increases with the number of reflector ele-

ments NIS in the rate of OpN2
ISq, which is higher than OpNISq achieved by massive MIMO

arrays. The performance limits of near field large intelligent surface-assisted positioning

was evaluated by CRLB in [13],[14],[32],[33],[34]. However, some recent work states that

the benefits on SNR at the MS is upper bounded by the path loss from transmitter to the

IS [35], and the polarisation mismatch between the transmitter and the near field IS varies

with incident angle and plays a major impact on the received signal power [36].

2.8 Localisation Algorithms

There are hundreds of thousands of algorithms proposed in the existing work. Most of

them were based on (multi)lateration, optimisation, maximum likelihood, Bayesian net-

work, learning, database matching, etc. However, we focus on least-square and semi-
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definite programming localisation algorithms. LS estimator is one of most common used

(multi)lateration methods to derive the location of MS with closed form solution. It has

low complexity, and is vulnerable to large measurement error. The LS estimator can be

rewritten as optimisation of the higher accuracy through applying semi-definite relaxation.

2.8.1 Least-Square Based Method

Considering the localisation of one stationary MS assisted by N terrestrial BSs. Assume

that the MS at the position v “ rx, ysT, is detected and located by N BSs, where co-

ordinates of the i -th BS is wi “ rxi, yis
T, i “ 1, 2, . . . ,N. The real distance from MS to

the i -th BS is denoted by di “ }v ´wi}. The RSS based localisation problem solved by

optimisation is formulated as following [2]

pP2.1q min
v

ÿN

i“1
pxPLi ´ PLiq

2 (2.6)

where the estimated path loss xPLi and real path loss PLi at the i -th BS are respectively

expressed as xPLi “ 10ηi log10 d̃i and PLi “ 10ηi log10 di, and d̃i is ranging distance.

The i -th measured path loss value is obtained by ĂPLi “ PtrdBms´PrirdBms, where Pt

is the transmit power of MS, Pri is the RSS at the i -th BS. If the real PLE ηi is perfectly

known, the ranging distance is calculated as d̃i “ 10
ĂPLi{p10ηiq, otherwise, an estimated

PLE η̂ is applied for calculating the ranging distance as d̃i “ 10
ĂPLi{p10η̂iq. xPLi and PLi in

(P2.1) are only dependent on ranging distance and PLE. (P2.1) is converted to the general

ranging based localisation problem (P2.2), which is suitable for both RSS, DRSS, TOA

and/or TDOA based localisation [2].

pP2.2q min
v̂

N
ÿ

i“1

pd̂i ´ diq
2 (2.7)

where d̂i “ }v̂ ´wi} is the estimated distance between estimated location of MS and BS

i, The solution to (P2.2) is obviously d̂i “ di. However, the real distance di is always

unknown in practice, due to imperfect knowledge of position-related channel parameters.

Thus, the solution to (P2.2) lies in substituting ranging distance d̃i to di, whose accuracy

is determined by both applied algorithm and accuracy of ranging distance d̃i.
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2.8.2 Semi-Definite Programming Based Method

A general form of semi-definite programming (SDP) problem is formulated as [37]

minimise cTx (2.8)

s.t.

Fpxq ě 0 (2.9)

Ax “B (2.10)

where x is the target variable, c is the set of known parameters. An SDP problem consists

of a linear objective function and multiple equality and inequality constraints of both linear

and convex functions. The linear matrix inequality (2.9) collects all inequality constraints,

and (2.10) contains all equality constraints. An semi-definite cone can relax the inequality

constraints. For example, semi-definite relaxation can be illustrated as

«

x1 x2

xT
2 x3

ff

ě 0 ô x1x3 ě x2x
T
2 (2.11)

where x1 and x3 are symmetric matrices.

SDP is employed by our research, since the SDP relaxation can convert the quadratic

functions of variables in localisation problem to linear, e.g., (2.7).



Chapter 3

Low Complexity Cooperative

Positioning in Multipath

Environment

3.1 Introduction

Mobile localisation is an important yet challenging issue due to adverse propagation envi-

ronment [2]. Widely used mobile localisation methods are based on parameters like TOA

[38], AOA [20], AOD [39], and RSS [40],[41].

The main error of mobile localisation is the NLOS error caused by multipath and

scattering environment, which significantly affects TOA, AOA, and AOD. The study on

mitigating single-bounce NLOS error caused by scattering of different models can be found

in [42]-[43]. But these methods are based on stationary environment, and their localisation

accuracy is lower than that of the techniques in [44]-[45] which utilise successive mea-

surements and study mobile tracking in scattering environment. Their results show that

the accuracy can be improved by continuous iteration and utilising more measurements.

Therefore, it is crucial to improve the original work by other methods which can supply

more measurements, such as cooperative localisation.

The single-bounce scattering model is considered to be suitable for mm-wave trans-

mission environment [46],[47]. Thus, it is worth studying localisation with single-bounce

NLOS dominant scattering environment. The previous work on localisation with single-

17
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bounce scattering was based on non-cooperative localisation. In the design of weight for

each path in the problem formulation, they utilised equal weight [42],[43], or variance of

estimated location [44],[48], or only the variance of TOA ranging [45] as weight to reduce

the variation of estimation, but did not consider the effect of AOA and AOD on weight.

Cooperative localisation is an approach to localise the target with measurements col-

lected from both known and unknown nodes in collaboration. Distributed cooperative

localisation based on Bayesian estimation methods were investigated for wireless sensor

networks (WSN) [49],[50] and wireless local area network (WLAN) [51]. Centralised co-

operative localisation is more suitable for cellular networks thanks to the availability of

Evolved Serving Mobile Location Center (E-SMLC) [52]. Most work on cooperative local-

isation [52],[53] did not consider NLOS errors due to scattering and requires higher com-

putational complexity than non-cooperative localisation [54] in contrast to mobile users’

demands for timely estimation of their location. However, most previous work on reducing

running time of distributed cooperative localisation techniques like [49, 50] are limited by

their own problem formulation and Bayesian estimation methods, and they cannot be em-

ployed by Centralised cooperative localisation which is solved by nonlinear programming.

In this chapter, a cooperative localisation technique is proposed, which employs not

only RSS but also TOA, AOA, and AOD, to mitigate NLOS errors caused by single-bounce

scattering. This work is different from the conventional work on cooperative localisation

which usually ignore the NLOS error caused by scattering. To the best of our knowledge,

this is the first work to consider cooperative localisation for mitigating the scattering effect

on TOA, AOA, and AOD, named as CLTAAR. Also, it achieves higher accuracy than con-

ventional cooperative localisation [2] in presence of single-bounce scattering. With prior

knowledge on distribution of measurement error, an adaptive weight is proposed to improve

CLTAAR to wCLTAAR of the higher robustness against measurement error. Second, an

MS grouping strategy is utilised to decompose the original entire optimisation problem

to multiple fractional optimisation problems, and save running time. The proposed MS

grouping strategy does not make any change on estimation algorithm, so that it is com-

patible with others’ estimation algorithms. CLTAAR enhanced by MS grouping scheme,

named as eCLTAAR, is shown to achieve much less computational cost than CLTAAR and

little reduction on accuracy. The CRLB is also derived for analytical assessment. Finally,

a weight function of TOA, AOA, and AOD is also proposed to further mitigate NLOS

errors of BS-MS detection in scattering environment, which has not been studied by the

previous work [42]-[45].
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The rest of this chapter is organised as follows. Section 3.2 illustrates the assumptions

made and system model adopted by the work. CLTAAR and eCLTAAR technique with

MS grouping strategy are proposed in Section 3.3, along with the CRLB. The simulation

results and discussion are presented in Section 3.4. Finally, a summary is drawn in Section

3.5.

3.2 System Model and Problem Formulation

We assume a cluster of M collaborative MSs localised by B BSs through downlink obser-

vations collected from the l “ 1, . . . , C single-bounce NLOS paths. Figure 3.1 displays an

example of cooperative localisation with 1 BS and 2 collaborative MSs in single-bounce

scattering environment, and the LOS direction is selected as the reference. Denote the

position of m-th MS as vm “ rxm, yms
T,m “ 1, . . . ,M . The coordinate of i -th BS

wi “ rxBSi, yBSis
T, i “ 1, . . . , B is perfectly known. Thus, the direct distance between

the m-th MS and i -th BS is calculated as Dmi “ }vm ´ wi}, and the distances from

the c-th scatter to the MS and BS are respectively calculated as rR,jc “ }vj ´ qc} and

rT,ci “ }qc´wi}. Denote the real length of single-bounce path from MS m to BS i through

scatter c as Dmci, then the estimate of TOA is expressed as [2, 38]

τ̃mci “ prR,jc ` rT,ciq{c0 ` nmi (3.1)

where c0 “ 3e8 m/s is the speed of light. nmi „ N p0, σ2
τ q is the zero-mean Gaussian

distributed error. Thus, TOA derived ranging distance is r̃mci “ τ̃mci3e8. The AOA θci

and AOD ϑmc of signals in the NLOS environment are modelled as [2],[20],[39]

θ̃mc “ θmc ` εθ,mc ` ξθ,mc (3.2)

ϑ̃ci “ ϑci ` εϑ,ci ` ξϑ,ci (3.3)

where ξθ,mc and ξϑ,ci are the extra angle deflected by a scatter in a single-bounce NLOS

path for AOA and AOD, respectively. εθ,mc „ N p0, σ2
θq and εϑ,ci „ N p0, σ2

ϑq are the mea-

surement noise of AOA and AOD. With the fixed length between BS and MS, the position

of a scatter determines the trace of a NLOS path. Thus, the coordinate of the scatter is

calculated as qc “ wi`rT,ciKpϑciq, and the position of MS is v “ qc´rR,mcKpθmcq, where

Kpθq “ rcospθq, sinpθqsT is the unit direction function in 2D Cartesian coordinate system.
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Figure 3.1: Cooperative localisation with the serving BS and MSs in single-bounce scat-
tering scenario, where the distribution of scatters follows the uniform disk model.

Denote the angles of mci -th NLOS path apart from the BS-MS LOS direction as αT,mc

and αR,ci, i.e., αT,ci “ ϑ̃ci ´ ϑci, αR,mc “ θ̃mc ´ θmc, then the probability density function

(pdf) of a uniform disk scattering model can be expressed as [25]

pprR,mc, αR,mcq “

$

&

%

rR,mc
πR2

c
, 0 ď rR,mc ď Rc,´π ď αR,mc ď π

0, otherwise
(3.4)

where Rc is the radius of scattering environment. According to the cosine law, the total

length of deflected path is expressed by

Dmci “ rR,ci `

b

r2
R,ci `D

2
mi ` 2rR,ciDmi cospαR,mcq (3.5)

MS m localise the neighbouring MS k with the relative measurements RSS, and the

RSS at MS m is modelled as close-in path loss model, i.e., PrmrdBms “ PtkrdBms ´ pA`

10η log10pdm,kqq ` XS,m,k [2], where Pt is the transmit power, A “ 20 log10p4πfc{c0q is a

known constant, fc is the system frequency, η is path loss exponent, XS,m,k „ N p0, σ2
RSSq

is shadowing, dm,k “ }vm ´ vk} is the real distance between MS m and MS k. The

pathloss measurement model is converted to the classical exponential-like ranging function

dm,k “ 10pPtk´Prm`XS,m,k´Aq{p10ηq. Considering that shadowing XS,m,k is unknown in

practice, the measured ranging distance is calculated as

d̃m,k “ 10
ĄPLm,k

10η (3.6)
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where ĂPLm,k “ Ptk´Prm`XS,m,k´A is the pathloss observed at MS m. Note that, at least

two NLOS paths are required to guarantee acceptable localisation results [42],[43],[55].

3.3 Cooperative Localisation for Mitigating NLOS Error Due

to Single-Bounce Scattering Effect and the Mobile Sta-

tion Grouping Scheme

First, we present CLTAAR technique to search the optimal location of collaborated MSs

which achieve the minimum summation of residual error of BS-MS ranging and MS-MS

ranging. Second, MS grouping strategy is proposed to reduce the complexity of cooperative

approaches. Third, eCLTAAR is obtained from separating the unknown MSs in CLTAAR

according to MS grouping method.

3.3.1 Cooperative Loclisation for Mitigating NLOS Error Due to Single-

Bounce Scattering

Cooperative localisation is an approach to determine geographical location of the target

with measurements collected from a number of nodes. The cooperative localisation is

formalised as an optimisation problem with respect to multivariable objective function.

The CLTAAR is formed by the BS-MS ranging and angle objective function fBS´MS, and

MS-MS ranging objective function fMS´MS. The weight function wmci denotes the weight

of residual error for the c-th path between MS m and BS i, and it is derived as the variance

of each term introduced by fBS´MS

wmci “varpBmciq ` varpAmciqppvm ´wiq d pvm ´wiqq (3.7)

where

varpBmciq “pc
2
0σ

2
τ `D

2
miqp0.5´ 0.5e´2pσ2

θ`σ
2
ϑq cosp2θmci ´ 2ϑmciqq´

D2
mcpe

´0.5pσ2
θ`σ

2
ϑq sinpθmci ´ ϑmciqq

2

Bmci “rmci sinpθ̃mci ´ ϑ̃mciq

varpAmciq “

”

A1 A2
ı

Amci “

”

sinpθ̃mciq ` sinpϑ̃mciqq ´pcospθ̃mciq ` cospϑ̃mciqq
ı

A1 “1´ 0.5e´2σ2
θ cosp2θmciq ´ pe

´0.5σ2
θ sinpθmciqq

2 ´ 0.5e´2σ2
ϑ cosp2ϑmciq´
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pe´0.5σ2
ϑ sinpϑmciqq

2

A2 “1` 0.5e´2σ2
θ cosp2θmciq ´ pe

´0.5σ2
θ sinpθmciqq

2 ` 0.5e´2σ2
ϑ cosp2ϑmciq´

pe´0.5σ2
ϑ sinpϑmciqq

2

CLTAAR is formulated as a least-square optimisation problem

pP3.1q : V̂ “ argmin
V
tfBS´MSpVq ` fMS´MSpVqu (3.8)

fBS´MSpVq “
M
ÿ

m“1

B
ÿ

i“1

C
ÿ

c“1

1

wmci
pBmci ´AmciXmiq

2 (3.9)

fMS´MSpVq “
M
ÿ

m“1

M
ÿ

k“1,k‰j

1

σ2
m,k

pd̃j,k ´ dj,kq
2 (3.10)

where V “ rv1, . . . ,vM s, Xmi “ vm´wi. σ
2
m,k is the variance of ranging distance derived

from relative measurement between MS m and MS k. The nonlinear programming problem

pP3.1q can be solved by iterative numerical algorithms, e.g., Quasi-Newton method and

Nelder-Mead method.

3.3.2 Cooperative Localisation Enhanced by Mobile Station Grouping

Scheme

MS grouping scheme reallocates the MSs to different groups in terms of σRSS. Thus, the

original localisation problem is decomposed to multiple problems of smaller sets of unknown

variables with running time reduced. In order to maintain a certain degree of accuracy,

the MSs of the low measurement error are assigned to one group, and the MSs of the high

error are assigned to the other group, so that the MSs of high measurement error can be

isolated from those of low error. The degree of measurement error is indicated by the

standard deviation of relative measurements from each MS. Then, MSs m “ 1, . . . ,M1 of

the lower error are localised first, followed by those MSs m “M1 ` 1, . . . ,M of the higher

error. For example, a terminal group with two-grouping separation is shown in Figure 3.2,

where MS m “ 1, 2, 3 are in the group h1 to be first localised, while MS m “ 4 is in the

group h2 to be localised based on the results of group h1. Based on (3.9)-(3.10), the cost
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Figure 3.2: Cooperative localisation enhanced by MS grouping, where 4 MSs are reallocated
to 2 groups.

functions of localisation of the two groups of MSs are denoted by

fBS´MSh1pVh1q “
ÿ

mPh1

B
ÿ

i“1

C
ÿ

c“1

1

wmci
pBmci ´AmciXmiq

2

fMSh1´MSh1pVh1q “
ÿ

mPh1

ÿ

kPh1,k‰j

1

σ2
m,k

pd̃j,k ´ dj,kq
2

fBS´MSh2pVh2q “
ÿ

mPh2

B
ÿ

i“1

C
ÿ

c“1

1

wmci
pBmci ´AmciXmiq

2

fMSh1´MSh2pVh2q “
ÿ

mPh1

ÿ

kPh2,k‰j

1

σ2
m,k

pd̃j,k ´ dj,kq
2

fMSh2´MSh1pVh2q “
ÿ

mPh2

ÿ

kPh1,k‰j

1

σ2
m,k

pd̃j,k ´ dj,kq
2

fMSh2´MSh2pVh2q “
ÿ

mPh2

ÿ

kPh2,k‰j

1

σ2
m,k

pd̃j,k ´ dj,kq
2
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Table 3.1: Computational Complexity of Estimation Solved by Quasi-Newton Method of
ε - Optimality for the Worst Case (Q : number of groups, Mq: number of MS assigned to
each group)

Analytical Complexity

before MS grouping, i.e., pP3.1q after MS grouping, i.e., pP3.2q

OppM2 ` 6M2BC ` 4M3qε´2q Op
řQ
q“1pM

2
q ` 6BCM2

q ` 4M3
q qε

´2q

Table 3.2: Normalised Computational Complexity of Estimation Solved by Quasi-Newton
Method of ε - Optimality for the Worst Case (ε “ 0.1, Q “ 2,M “ 4,M1 “ 3,M2 “ 1, B “
1, C “ 4)

Normalised Complexity

before MS grouping, i.e., pP3.1q after MS grouping, i.e., pP3.2q

2.65 1

Then, the problem pP3.1q is divided to two parts

pP3.2q : V̂h1 “ argmin
Vh1

tf1pVh1qu (3.11)

f1pVh1q “ fBS´MSh1pVh1q ` fMSh1´MSh1pVh1q (3.12)

V̂h2 “ argmin
Vh2

tf2pVh2qu (3.13)

f2pVh2q “ fBS´MSh2pVh2q ` fMSh1´MSh2pVh2q ` fMSh2´MSh1pVh2q ` fMSh2´MSh2pVh2q

(3.14)

where V̂h1 obtained from (3.11) is substituted to (3.13) to assist the estimation of Vh2.

The MS grouping scheme does not change the original method, and reduce computation

time by divide the original optimisation problem into multiple optimisations with the less

computation and unknown variables. Table I and II display comparison of analytical

complexity of pP3.1q and pP3.2q solved by Quasi-Newton method of ε - optimality.

The complexity displayed in Tables I and II is evaluated in terms of the number of

multiplications and square root. MS grouping method is expected to be effective with

large terminal group which consists of many anchors and measurements.

Based on the above two parts, the eCLTAAR technique leverages the same objective

function as CLTAAR technique, but reallocate the estimation sequence with MS grouping.

The estimation of eCLTAAR technique can be summarised as Algorithm 1. For the real



Chapter 3. Low Complexity Cooperative Positioning in Multipath Environment 25

Algorithm 1 eCLTAAR Algorithm

1: Reallocate the terminal group based on the obtained standard deviation of MS-MS
relative measurement.

2: Estimate the coordinates of MS in group h1 V̂h1 through (3.11)-(3.12).
3: Substitute V̂h1 to (3.13)-(3.14), estimate the coordinates of the left MS in group h2

V̂h2.

practice, the number of collaborated MS is expected to be not greater than six. Thus, a

two-grouping separation is sufficient to apply for eCLTAAR in a cell.

3.3.3 Cramer-Rao Lower Bound on the Proposed Cooperative Localisa-

tion Methods

Cramer Rao Lower Bound (CRLB) expresses the minimum variance of an estimator. Now,

we present the CRLB of the proposed CLTAAR and eCLTAAR location problem. Denote

the mci -th variance of measurement error of TOA, AOA, AOD, and RSS as Qr,mci “

σ2
τ , Qθ,mci “ ε2θ,mci, Qϑ,mci “ ε2ϑ,mci, Qd,mi “ X2

S,m,k. Conditional pdf of TOA ranging

distance at MS m is

ppr̃m|vmq “
B
ź

i“1

C
ź

c“1

1
a

2πQr,mci
e
´
pr̃mci´rmciq

2

2Qr,mci (3.15)

The derivation of conditional pdf of the other measurements are omitted here, which follows

the same idea as (3.15). Then, the joint conditional log-likelihood of TOA, AOA, AOD is

ΛBS´MSpvmq “ lnpppr̃m|vmqppθ̃m|vmqppϑ̃m|vmqq (3.16)

The FIM of CLTAAR is calculated as

FCLTAAR “ FBS´MS ` FMS´MS (3.17)

where FBS´MS and FMS´MS represent the FIM of BS-MS observations and MS-MS obser-

vations, respectively. The FIM of MS m is calculated as that in [56]

FBS´MS,m “ ´E

«

ˆ

BΛBS´MS

Bvm

˙T ˆ

BΛBS´MS

Bvm

˙

ff

(3.18)
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FIM of eCLTAAR is similar as that of CLTAAR technique, but the FIM is separated into

two groups. Therefore, the derivation of FIM and CRLB of eCLTAAR are separated in

terms of different groups. FIM of the group h1 has the same format as that of MSs in

group h1 in CLTAAR

Fh1 “ FBS´MSh1 ` FMSh1´MSh1 (3.19)

FIM of MSs in group h2 is calculated as

Fh2 “ FBS´MS,h2 ` FMS´MS,h2 (3.20)

FBS´MS,h2 “

»

—

—

–

FBS´MS,M1`1 . . . 0
...

. . .
...

0 . . . FBS´MS,M

fi

ffi

ffi

fl

`

»

—

—

–

FMS´MS,M1`1 . . . 0
...

. . .
...

0 . . . FMS´MS,M

fi

ffi

ffi

fl

(3.21)

FMS´MS,h2 “

»

—

—

—

—

–

FMS´MS,M1`1 KM1`1,M1`2 . . . KM1`1,M

KM1`2,M1`1 FMS´MS,M1`2 . . . KM1`2,M

...
...

. . .
...

KM,M1`1 KM,M1`2 . . . FMS´MS,M

fi

ffi

ffi

ffi

ffi

fl

(3.22)

where Km,k is correlation matrix between MS m and MS k. Finally, the CRLBs for

CLTAAR and eCLTAAR are respectively calculated as inverse of their FIMs, where the

CRLB of for MS m is obtained as the corresponding m-th block of matrix.

3.4 Simulation Results

In this section, the effect of the proposed CLTAAR and weight function, and eCLTAAR

technique have been assessed by simulation. 1000 trials of 6-MS terminal group in radius

of 50 m randomly are generated among classical 7 hexagon cells in radius of 1000 m, where

only the serving BS is accessible for one trial. Signal frequency is 6 GHz. BS is 10 m high,

and MS was 1.5 m high. 4 scatters are uniformly distributed near each MS in the circular

area in radius of 200 m. And each NLOS path is measured once. Standard deviation

of localisation measurements, i.e. TOA ranging, AOA, and AOD, are 60 m, 5˝, and 5˝

respectively. MS-MS links are always LOS, and the standard deviation of shadowing of

MS belonging to group h1 is random value between 4 dB, and that of MS in group h2 is 12

dB. The D2D path loss model in [57] is leveraged to generate relative measurements. The
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Figure 3.3: Accumulative percentage of estimation error of LS [55], ranging based cooper-
ative localisation [2], CLTAAR, wCLTAAR and eCLTAAR.

setup data is same in all simulation unless specified otherwise. Least square (LS) estima-

tion based on TOA, AOA, and AOD measured on single-bounce NLOS scattered path in

[55] and conventional cooperative localisation based on BS-MS detected TOA and MS-MS

detected RSS in [2], labelled as ‘LS method’ and ‘ranging based cooperative localisation’,

are simulated to make comparisons with proposed work. The optimisation problems in the

three cooperative approaches are solved by the Nelder-Mead method.

Figure 3.3 describes the higher localisation accuracy achieved by the proposed CLTAAR

(no weight), weighted CLTAAR (wCLTAAR), and eCLTAAR techniques over the other

two methods. The average localisation errors (ALEs) of the LS [55], ranging based coop-

erative localisation [2], CLTAAR, eCLTAAR, and wCLTAAR were about 86 m, 224 m, 51

m, 54 m, and 39 m. And STDs of them were about 86 m, 103 m, 32 m, 33 m, and 29 m.

Whereas the ranging based cooperative localisation method [2] performed even worse than

LS method [55], because it was not designed for localisation with one BS and scattering

environment. But the proposed CLTAAR succeeds to integrate the ranging based cooper-

ative localisation [2] with LS [55] and outperforms these two methods. Another proposed
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Figure 3.4: Average localisation error of LS [55], CLTAAR, wCLTAAR and eCLTAAR
decreases with the number of NLOS measurements on each MS.

eCLTAAR technique is designed to reduce complexity of estimation, and its cumulative

percentage error curve almost overlaps that of CLTAAR, which reflects the same degree

of accuracy as CLTAAR. Due to weight function, estimation variation is reduced and an

improvement of 12-meter average error have been saved by wCLTAAR than CLTAAR.

Figure 3.4 shows that the ALEs of LS [55], CLTAAR, eCLTAAR, and wCLTAAR

methods decrease with the number of NLOS paths. eCLTAAR achieves the similar per-

formance as CLTAAR, reflecting the negligible degradation on accuracy casued by MS

grouping scheme. ALE of existing LS method [25] is much higher than our proposed

methods at the beginning, and decreases with the number of measurements increasing,

until approaching those of CLTAAR and eCLTAAR at the end. The proposed wCLTAAR

method achieves about half ALE than the other methods. However, it does not work well

at the beginning of the trace, since lack of measurements disables the effectiveness of pro-

posed weight function.

The running time is greatly saved by eCLTAAR technique, compared to CLTAAR. The

average time spent on localising each MS was about 0.131078 s by CLTAAR technique,
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while it were 0.034214 s and 0.997767 s by eCLTAAR and wCLTAAR, indicating a reduc-

tion of almost 74% running time. Whereas wCLTAAR consumed extra 5 times running

time, due to the additional variables brought by the weight function.

3.5 Summary

In this chapter, we have proposed CLTAAR, wCLTAAR and eCLTAAR approaches to

localise collaborative MSs in single-bounce scattering environment, and the CRLBs for

CLTAAR and eCLTAAR have been derived. The proposed eCLTAAR technique achieves

nearly the same accuracy as and much less computational cost than CLTAAR through

applying MS grouping scheme. According to simulation results, about 74% running time

was saved by eCLTAAR. The proposed wCLTAAR approach with weight function based

on the knowledge of distribution of TOA, AOA, and AOD measurements achieves about

twice accuracy than CLTAAR.



Chapter 4

Unmanned Aircraft Vehicle

Supported And Received Signal

Strength Based Localisation

4.1 Introduction

Unmanned aerial vehicle (UAV) mounted base station (BS) is regarded as a promising

complementary solution for 5G in emergency cases like network damage and congestion

[58]. UAV-BS provides better LCSs than ground BS due to higher probability of line of

sight [59].

Received signal strength (RSS) based localisation of mobile station (MS) [60] has been

widely used due to its low cost and low complexity. The terrestrial localisation approaches

in [7],[8],[61],[62],[63],[64],[65] utilised RSS based exponential-like ranging function, is ob-

tained by calculating the logarithm of RSS, to estimate mobile station (MS) location. In

[8], both RSS and differential RSS based localisation methods were proposed, with anchor

coordinates uncertainties and imperfect knowledge of PLE. A multilateration method, re-

ferred to as bias-compensated weighted least-square (bcWLS), was proposed in [63], where

the perturbations in both RSS measurement error and anchor uncertainties are mitigated.

In [64], geometric parameters were proposed for anchor deployment in localisation. A par-

ticle filter based on data fusion was proposed in [65]. Multi-dimensional scaling techniques

were proposed in [66] to build the connectivity map of deployed sensors.

30
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The ranging function in RSS based localisation is highly dependent on path loss model.

In [61],[66], a two-dimensional path loss model was utilised for terrestrial localisation. In

[67], [68], a three-dimensional terrestrial path loss model was utilised for UAV assisted

and RSS based localisation. However, the UAV air-to-ground path loss model has been

reported to be highly dependent on the elevation angle of the path and UAV’s altitude

[69],[70],[71][72],[73], which was not considered by most existing work. In [73], a localisation

approach for elevation angle dependent path loss (EAPL) model was proposed. However,

perfectly known and equal PLEs were assumed for all UAVs, which is impractical. With

unknown and unequal PLEs, the RSS based localisation problem becomes nonlinear and

non-convex, which cannot be solved by the existing approaches.

The accuracy of RSS based localisation with unknown path loss parameters is directly

influenced by the estimated PLEs and transmit power [7]-[10],[61]-[63],[74]. The impor-

tance of PLEs has been found by the existing work [8],[65],[75], which claimed that the

robustness of ranging function against shadowing increases with the values of PLEs. Lo-

calisation of MS with unknown transmit power was investigated in [61]. Noncooperative

and cooperative localisation approaches with unknown transmit power and unknown path

loss exponent (PLE) were studied in [62]. In [7], least-square absolute error of ranging was

minimised for localisation. In [10], the Levenberg-Marquardt algorithm (L-M) was pro-

posed to solve the nonlinear problem with unknown and unequal PLEs, whose accuracy is

largely subject to measurement errors, due to the potential inappropriate damping factor

employed by L-M and unreliable initialisation of PLEs. The above existing approaches

are mainly developed with respect to three objectives: 1. to optimise PLEs and transmit

power to minimise the differences between path loss measures and path loss estimates, e.g.,

[61]; 2. to calculate parameters as the ratio between the path loss measures and logarithm

of distance estimates, e.g., [62]; 3. to optimise parameters to minimise the residual error

of the objective function, e.g., [63]. All of these TSE approximated ranging distance based

schemes are severely deteriorated by the imperfect knowledge of path loss model and sig-

nificant measurement error in harsh environment. The authors of [9],[61],[62], [76] focused

on localisation algorithms and finding the optimal coordinates of MS, where the proposed

algorithms are aimed at estimating accurate PLEs and transmit power, since they insisted

on that localisation accuracy increases with accuracy of estimated PLE and transmit power

[77]. PLEs and transmit power are exclusively regarded as crucial environmental param-

eters of ranging function. However, we find that some proper values of estimated PLEs

and transmit power could offer higher accuracy of ranging distance and localisation than
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the real PLE and transmit power, which is contrary to the opinion of existing research.

Therefore, we are also motivated to investigate the effect of these proper values of PLE

and transmit power.

Moreover, the effect of airframe shadowing (AS) due to fixed-wings UAV [59] could

cause signal attenuation of up to 35 dB [72]. Therefore, it is necessary to consider the ef-

fect of AS on localisation when fixed-wings UAVs are employed, which is absent in existing

work, e.g., [78].

In this chapter, we propose a fixed-wings UAV-BSs aided and RSS based localisation

technique with unknown and unequal PLEs. Our work is different with the previous work

in the following aspects.

1. The nonlinear and non-convex RSS based localisation problem with unknown and un-

equal PLEs is solved by a piecewise convex approximation aided localisation (PCAL)

scheme, with two-step approximations: (a) convert the problem to a nonlinear convex

problem through piecewise convex approximation and curve fitting; (b) convert the

resulting nonlinear convex problem to a linear convex problem through Taylor’s series

expansion (TSE) approximation. Unlike the existing methods [7],[8],[61]-[63], PCAL

does not require the PLEs associated with different UAVs to be perfectly known and

equal to each other, and therefore it is more practical. In this work, the A2G path

loss model with unknown and unequal PLEs of different UAV BSs are considered as

nuisance parameters and estimated along with the locations of the source nodes.

2. Thanks to its robustness against shadowing, especially AS, the proposed PCAL

approach with unknown and unequal PLEs achieves higher accuracy than the ap-

proaches [7],[8],[63] with equal and perfectly known PLEs, as well as the approach

in [10] with unknown and unequal PLEs. This is because the ranging function via

piecewise convex approximation and TSE has much lower variance than those in

[7],[8],[10],[63]. To the best of our knowledge, this is also the first work to investigate

the impact of AS on UAV assisted and RSS based localisation. The Cramer-Rao

lower bound (CRLB) on localisation error is derived to verify the effectiveness of

PCAL.

3. With N UAV-BSs to locate one MS, PCAL produces 2N objective functions and

tentative estimates. A grid search assisted ambiguity elimination (GSAE) approach

and a differential RSS based grid search (gsDRSS) approach are proposed to obtain
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the final estimate of MS location by taking an average of the tentative estimates

selected via grid search. GSAE is more effective than the piecewise-linear minimi-

sation (PLM) method [37], because the uncertainty due to shadowing is mitigated

by the averaging progress. gsDRSS eliminates the ambiguity through searching the

grid of minimum estimation error of DRSS values, at the cost of lower complexity

than GSAE. Additionally, gsDRSS also can be used to estimate transmit power and

PLEs. The performance of PCAL-GSAE approaches the CRLB derived. PCAL-

gsDRSS with unknown transmit power achieves higher accuracy than PCAL with

perfectly known transmit power.

4. Through investigating PCAL-gsDRSS scheme and the existing RSS based approaches

with unknown PLEs and unknown transmit power, an anti-intuitive finding is drawn

by this work that, the real transmit power and PLEs cannot provide accurate lo-

calisation or ranging distance, however, some particular values, named as effective

transmit power (EPt) and effective PLE (EPLE), can provide 0 localisation and

ranging error. Moreover, analysis has proved that a range of values near EPt and

EPLE, named as effective transmit power range (EPt-range) and effective path loss

exponent range (EPLE-range), have higher accuracy of localisation and ranging than

the real parameters. An SDP based algorithm is proposed to estimate EPt, and de-

rive the PCAL-EPt-gsDRSS scheme, which is more accurate than PCAL-GSAE and

PCAL-gsDRSS. The effect of EPLE on localisation is investigated.

The rest of this chapter is organised as follows. The system model is presented in Section

4.2. The problem formulation of UAV BS assisted and RSS based localisation is formulated,

and solved by proposed algorithms with considering both known and unknown transmit

power in Section 4.3. The effects of transmit power and PLE on RSS based localisation

and ranging distance are analysed in section 4.4, based on which an enhanced algorithm

is proposed. Section 4.5 demonstrates the simulation results, and Section 4.6 gives the

summary.

4.2 System Model and Problem Formulation

We consider the localisation of an MS assisted by N UAV-BSs. Assume that the MS

with the coordinate vector v “ rx, y, zsT is detected and located by N UAV-BSs at a time

instant (Fig. 4.1). Each UAV-BS supported cell is of horizontal radius R, and the accurate
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Figure 4.1: Ground MS is located by multiple fixed-wing UAV-BSs

coordinates of the i -th UAV-BS is wi “ rxi, yi, zis
T , i “ 1, 2, . . . ,N. The elevation angle of

the i -th UAV-BS is θi, and the UAV roll angle is ϕi. ϕi and UAV’s altitude hi are available

at the UAV control system and barometer/GPS. The localisation problem is

pP4.1q min
v

ÿN

i“1
pxPLi ´ ĂPLiq

2 (4.1)

where xPLi and ĂPLi are the estimated and measured path loss at the i -th UAV-BS, respec-

tively.

Considering the effect of AS [72] on path loss, the sum of log-normal random term

of AS and the elevation angle dependent terrestrial shadowing (TS) [73] between MS and

the i -th UAV-BS is denoted by XS,i, with XS,i „ N p0, σ2
RSS,iq, and σ2

RSS,i “ σ2
TS,i ` σ

2
AS,i,

where σTS,i and σAS,i are standard deviation of TS and AS, respectively. With fading

smoothed out, the combined path loss and shadowing is expressed as

PLi “ Pt rdBms ´ Pri rdBms `XPL,i (4.2)

where XPL,i “ Saf,i`XS,i denotes the path loss measurement error, and Saf,i is a constant

predetermined by the roll angle ϕi. Obviously, ĂPLi “ Pt rdBms ´ Pri rdBms, where Pt is

the transmit power, and Pri is the receive signal power at the i -th UAV.

The EAPL of the i -th UAV is calculated as [73]

xPLi “ 10ηi log10pdiq (4.3)

ηi “
a1

1` a0e´b0θi
` b1 (4.4)
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where a0, a1, b0, b1 are the environmental related parameters, and θi “ arcsinphi{diq is the

elevation angle of the i -th UAV, with hi being altitude of the i -th UAV, and di “ }v´wi} is

defined as the distance from the i -th UAV-BS to MS. Assuming that the perfect knowledge

of UAV’s altitude hi is perfectly known, the EAPL in (3) is a function of single variable

di.

4.3 UAV Assisted and Piecewise Convex Approximation Aided

Localisation

It is obvious that (P4.1) is a nonlinear and non-convex optimisation problem. In Subsec-

tion 4.3.1, we convert (P4.1) into a convex problem via piecewise convex approximation

and curve fitting, and then into a linear problem via TSE. The approximation processes

yield 2N tentative estimates. The estimation ambiguity is eliminated by the GSAE ap-

proach in Subsection 4.3.2. Localisation with unknown transmit power is considered in

Subsection 4.3.3. The CRLB of PCAL is derived in Subsection 4.3.4.

4.3.1 Piecewise Convex Approximation Aided Localisation

1) Transformation to a Convex Problem via Piecewise Convex Approximation and Curve

Fitting : As EAPL is close to a sigmoid curve [73], it can be partitioned into two sub-

functions within the propagation distance of interest through piecewise convex approxima-

tion [79]. The transition point on EAPL of the i -th UAV is at distance di “ dt,i, which is

selected as either a global maxima of the first derivative of EAPL (suitable for model in

[73]) or a global minima of the EAPL function (suitable for model in [71]). Assume that the

EAPL of the i -th UAV is partitioned into a piecewise convex function of two sub-functions

in the intervals of rdlower,i, dt,is and rdt,i, dupper,is, respectively, where dlower,i and dupper,i

are the lower and upper bounds of the propagation distance of interest. Assisted by curve

fitting, all the sub-functions are approximated to power functions as

xPLi,gi « Ai,gid
Bi,gi
i ` Ci,gi (4.5)

where Ai,gi , Bi,gi , and Ci,gi are the fitted parameters of each sub-function, and gi “ 0 or 1

indicates the first or second sub-function, respectively. The approximated path loss (4.5)
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can be regarded as a two-slope model. Through simple mathematical manipulations on

(4.5), an explicit power-like ranging function is derived as

di “ p1´ giqdi,0 ` gidi,1 (4.6)

where di,gi “ pp
xPLi,gi´Ci,giq{Ai,giq

1{Bi,gi . Round ĄPLi to the interval rPLpdlower,iq,PLpdupper,iqs,

in case of complex distance estimation caused by significant shadowing. If one MS is de-

tected by N UAV-BSs, there are total 2N combinations of (4.5), and 2N tentative estimates

of MS localisation, vj , j = 1,2, . . . , 2N . Substituting (4.5) into (4.1) yields (P4.2) for one

of the 2N estimates as

pP4.2q min
vj ,di

ÿN

i“1
pAi,gid

Bi,gi
i ` βi,gi ´

ĂPLiq
2 (4.7)

where βi,gi “ Saf,i ` Ci,gi .

2) Transformation to a Linear Problem via Taylor’s Series Expansion: The above

nonlinear convex problem can be solved by maximum likelihood (ML) estimator. However,

it usually requires an accurate initial guess to achieve the global optimal point rather

than the local optimal point. To overcome the shortcoming of ML estimator, (4.7) can be

rewritten as a linear convex optimisation problem. If Saf,i is known, the distance estimation

of either interval in (4.6) can be further approximated to linear ranging function through

the first-order TSE

di,gi “

ˇ

ˇ

ˇ

ˇ

ˇ

ĂPLi ´ βi,gi `XS,i

Ai,gi

ˇ

ˇ

ˇ

ˇ

ˇ

1
Bi,gi

« αi,gi ` ni,gi (4.8)

where the absolute operator is utilised to guarantee real value of di,gi .

Taking the square of both left-hand and right-hand sides of (4.8) yields d2
i,gi
´2αi,gidi,gi`

α2
i,gi

“ n2
i,gi

, where αi,gi “ |p
ĄPLi ´ βi,giq{Ai,gi |

1{Bi,gi , and n2
i,gi

“ X2
S,i{pA

2
i,gi
B2
i,gi
q|pĄPLi ´

βi,giq{Ai,gi |
2{Bi,gi´2 is the mean square error (MSE) of ranging, and variance of ni is

σ2
i,gi

“ σ2
RSS,i|p

ĄPLi ´ βi,giq{Ai,gi |
2{Bi,gi´2{pAi,giBi,giq

2. The MSE is smaller than those

in [7],[8],[10],[63] due to the two-step approximations. For the scenario with MS in the cell

of radius R = 2000 m, hi “ 1000 m, and environmental data for urban area is a0 “ 45,

a1 “ ´1.5, b0 “ 10, b1 “ 3.5, the minimum standard deviation in (4.8) σi,gi « 30 σRSS,i,

is smaller than that in [7],[8],[10],[63] (about 115 σRSS,i). If gi is known, (P4.2) is further
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converted to a semi-definite programming (SDP) problem:

pP4.3q min
v,di,Di,Z

ÿN

i“1
pi,gipDi ´ 2αi,gidi,giq (4.9)

s.t.

Di “

»

—

–

wi

´1

fi

ffi

fl

T »

—

–

I3 v

vT Z

fi

ffi

fl

»

—

–

wi

´1

fi

ffi

fl

(4.10)

»

—

–

Di di,gi

di,gi 1

fi

ffi

fl

ě 0, (4.11)

dlower,i ď di,gi ď dt,i or dt,i ď di,gi ď dupper,i (4.12)

»

—

–

I3 v

vT Z

fi

ffi

fl

ě 0 (4.13)

where pi,gi “ 1{σ2
i,gi

is the weight of objective function, and I3 is 3-by-3 identity matrix,

and Z ě vTv is the auxiliary variable. (P4.3) can be solved by interior-point method.

4.3.2 Elimination of Estimation Ambiguity

The proposed PCAL approach benefits from the low MSE of ranging. However, when the

interval of ranging distance gi is unknown, estimation ambiguity introduced by piecewise

functions brings extra estimation error. It is eliminated by the GSAE approach: first

finding a reference point vGS through solving (4.7) by grid search, and then taking an

average of the coordinates of the M “ 2N ´N tentative estimates vj closest to vGS, which

forms the set Λ.

v̄ “
1

M

ÿ

jPΛ
vj (4.14)

The overall algorithm of PCAL alongside GSAE is summarised in Algorithm 2.

The proposed scheme can be extended to a multi-MS scenario. The number of simulta-

neously located MSs is limited by the number of resolvable resource blocks (RBs) within a

cell at each transmission time interval, and the number of MSs requesting the same quality

of LCS [80]. For example, within a cell where a total bandwidth of 10 MHz (50 RBs) [80]
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Algorithm 2 PCAL-GSAE Algorithm

1: Find the transition point of EAPL of each UAV, dt,i, i = 1, 2, . . . , N, in a certain
range of rdlower,i, dupper,is.

2: Obtain the 2N fitted functions (4.5) through piecewise convex approximation and curve
fitting.

3: Calculate the 2N ranging functions through (4.8). Substitute them into (4.9)„(4.13)
and obtain 2N tentative estimates of the MS location, vj , j = 1, 2, . . . , 2N .

4: Obtain the solution vGS to (4.7) through grid search.
5: Select the M “ 2N ´ N tentative estimates closest to the location of point vGS , and

calculate the average of their coordinates as in (4.14).

is uniformly allocated to 50 MSs, the number of MSs to be located simultaneously is less

than or equal to 50, due to different LCS qualities requested.

4.3.3 Localisation with Unknown Transmit Power

The transmit power Pt of MS is another key parameter of path loss model. It might be

unknown or inaccurate in practical networks. In the existing research [2],[7], [61],[62],[66],

the ranging functions can be approximated to a linear function of Pt through TSE, so that

Pt and v̂ are jointly estimated by the formulated convex optimisation problem. However,

they are not applicable for our proposed PCAL method, due to non-linearity of our power-

like ranging function (4.8). To enable PCAL localise MS with unknown transmit power, a

DRSS assisted grid search (gsDRSS) method is proposed to estimate the transmit power

of MS. Assume the N -th UAV BS observed the lowest RSS, the measured DRSS at i -th

UAV BS is DRSSi “ Pri´PrN ´Xsi`XsN ´Saf,i`Saf,N . Generate sampling grids gn “

rxgrid,n, ygrid,n, zgrid,ns
T, n “ 1, . . . , Nini on the coverage of N UAV BSs with grid spacing

Wgs, the distance from the n-th grid to i -th UAV BS is calculated as dn,i “ }gn ´ wi},

and the sampled DRSS is calculated as {DRSSn,i “ 10ηn,ilog10pdn,iq ´ 10ηn,N log10pdn,N q,

where dn,N is the corresponding propagation distance from n-th grid to i -th UAV BS. The

location of MS is roughly estimated at the grid achieving the minimum sum error between

sampled DRSS and measured DRSS

min
ĝPgn

N´1
ÿ

i“1

|{DRSSn,i ´DRSSn,i| (4.15)
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Algorithm 3 PCAL-gsDRSS Algorithm

1: Generate Nini grids on the coverage of N UAV BSs with spacing Wgs “ 0.01R. Calcu-

late {DRSSn,i at each grid gn, i “ 1, . . . , N ´ 1.

2: Substitute DRSSi and {DRSSn,i to (4.15) and obtain the optimal solution ĝ through
grid searching method.

3: Substitute ĝ into (4.3)-(4.6) to calculate estimated transmit power xPt, estimated path

loss values
x

ĂPLi, and select the fitted parameters Ãi,gi , B̃i,gi , C̃i,gi .

4: Substitute
x

ĂPLi and Ãi, B̃i, C̃i to PCAL and determine the final localisation of v.

Based on the rough estimate on MS location ĝ, the estimated distance d́i “ }ĝ ´ wi} is

substituted to (4.3)-(4.6) to obtain the sampled path loss |PLi, and select the sub-function

with fitted parameters Ãi,gi , B̃i,gi , C̃i,gi . Then the estimated transmit power is calculated

as

xPt “
1

N

N
ÿ

i“1

p|PLi ` Priq (4.16)

The estimation ambiguity is eliminated through comparing the estimated path loss mea-

surement
x

ĂPLi “xPt´Pri with the value at transition point PLpdt,iq. The entire algorithm

of PCAL-gsDRSS with unknown Pt is shown in Algorithm 3.

4.3.4 CRLB of Localisation Error of PCAL Algorithm

The CRLB on localisation error is derived to evaluate the effectiveness of the proposed

PCAL approach. In case of small curve fitting errors, the CRLB of localisation, σ2
CRLB,

is approximately an unbiased CRLB. The probability density function (PDF) of (4.5)

distorted by shadowing is given by

fPLi|di “
1

?
2πσRSS

e
´
pPLi´pAid

Bi
i
`βiqq

2

2σ2
RSS,i (4.17)

The Fisher information matrix (FIM) of location estimate is computed as the ex-

pectation of log-likelihood conditioned on v, i.e., F “ E
”

`

BG
Bv

˘ `

BG
Bv

˘T
ı

, where G “

rlnpfPL1|d1
q, . . . , lnpfPLN |dN qs. Thus, it can be derived that

F “
ÿN

i“1

1

σ2
RSS, i

pAiBiq
2d2Bi´4
i pv´wiqpv´wiq

T (4.18)
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Table 4.1: Computational Complexity Analysis. N : Number of UAV-BSs, V : Dimension
of MS Coordinates.

Algorithm
Computational Complex-
ity

PCAL-GSAE OpN4.5q

PCAL-EPt-gsDRSS OpN3.5q `OpN4.5q

LSRE [7] OpN4.5q

RSDPE [8] OpN3.5q

LSRE-SDP [9] OpN3.5q

LSO-PLEc [10] OppV ` 2q3q

Denoting J “ F´1 as the inverse of F, and the CRLB is computed as the trace of J, i.e.,

σ2
CRLB-PCAL ě trrJs.

Apparently, the unbiased CRLB is dependent on both fitted parameters and propaga-

tion distance. Note that, FIM and CRLB are independent of Saf,i and βi.

Define the ratio of the CRLB of distance estimation of the approaches in [7],[8],[10],[63]

to that of PCAL as ε “ σ2
CRLB-log,distance{σ

2
CRLB-PCAL,distance “ pA

2
iB

2
i d

2Bi
i ln210q{p100η2

i q,

where the CRLBs of [7],[8],[10],[63] are the same since they both apply the same path loss

model. When UAV is at hi = 500 m high, ε ě 38.46 is achieved at any position within a

cell, implying higher localisation accuracy of PCAL compared to [7],[8],[10],[63].

4.3.5 Complexity Analysis

Table I presents the complexity analysis following the analysis approach in [81]. The

complexities of LSRE [7], RSDPE [8], LSRE-SDP [9] and LSO-PLEc [10] are also presented

for comparison. The order of complexity of PCAL-GSAE is the same as that of LSRE [7].

PCAL-GSAE requires higher complexity than RSDPE [8] and LSE-PLEc [10], but achieves

a significant performance gain over all of them, as shown in Section 4.5. The complexity

of GSAE is negligible compared to that of PCAL. The complexity of PCAL-GSAE is the

same as that of PCAL without ambiguity, since the 2N tentative estimates are independent

of each other.
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4.4 Effective Transmit Power and Effective Pathloss Expo-

nents

In this section, we propose EPt and EPLE to reveal the effect of Pt and ηi on ranging ac-

curacy. An anti-intuitive finding is drawn as the accuracy of ranging and localisation is not

related to the accuracy of estimated transmit power xPt and estimated pathloss exponent η̂i.

4.4.1 Effective Transmit Power

In this subsection, we propose an anti-intuitive finding that proper values of Pti and

η̃i, named as “EPt” and “EPLE”, can compensate measurement error on path loss, e.g.,

XPL,i, and induce the higher accuracy of ranging distances and localisation than the real

values. On the contrary, a common sense on localisation techniques has recognised the

beneficial effects of accurate estimation of PLEs and transmit power on localisation [77].

However, according to our investigation on the proposed approaches and existing work,

it is unnecessary to maintain high accuracy of estimation of PLEs and transmit power.

For example, Fig. 4.2 shows the scenario where the highest accuracy of localisation is not

achieved at real transmit power Pt “ 23 dBm, but another value xPt “ 0 dBm. Therefore,

it is straightforward to infer that the real transmit power Pt works as a trivial parameter

in localisation.

EPt is defined as the proper value of transmit power with perfect compensation on

error of XPL,i, such that it induces ranging distance and localisation of 0 error. For both

exponential-like and power-like ranging functions, the basic localisation problem (P2.2) is

recalled, and the localisation problem with unknown EPt Pti can be rewritten as following

pP4.4q min
Pti

N
ÿ

i“1

pd̂i ´ diq
2 “ 0 (4.19)

where the estimated distance d̂i is obtained from distance estimation function as d̂exppxPtiq “

10p
xPti´Pri`XPL,iq{p10ηiq for the classical exponential-like ranging function, and d̂popxPtiq “

|pxPti ´ Pri ´ βi,gi `XPL,iq{pAi,giq|
1{Bi,gi for our proposed power-like ranging function.

Assuming perfect knowledge of path loss model, the solution to (P4.4), xPti “ Pti is ob-
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Figure 4.2: Localisation error of MS fluctuates with substituted transmit power, xPt “
´50,´45, . . . , 50 dBm, when real transmit power Pt “ 23 dBm.

tained by d̂i “ di, resulting into EPt for (3.6), Ptexp,i, and EPt for (4.6), Ptpo,i, as :

Ptexp,i “ Pt´XPL,i (4.20)

and

Ptpo,i “ Pt´XPL,i or ´ Pt` 2Pri ´XPL,i ` 2βi,gi (4.21)

(4.20)-(4.21) describe EPt as sum of Pt and an offset, which value is opposite to measure-

ment error, i.e., ´XPL,i. The second value of Ptpo,i is due to the absolute operator of d̂po.

A range of values near EPt, which is defined as “effective transmit power range”

(EPt-range), also performs better than real Pt. The resulting interval of ranging dis-

tance d̂i near real distance di is defined as “effective distance range” (Edist-range), where

xPti in EPt-range performs better than real Pt, i.e., |d̂i ´ di| ă |d̃i ´ di|, and d̃i “

|pĂPLi ´ βi,giq{Ai,gi |
1{Bi,gi or 10

ĂPLi{p10ηiq is the ranging distance of real Pt. After simple

mathematical manipulations, it is rewritten as

d̃i ă d̂i ă 2di ´ d̃i, or ,maxt0, 2di ´ d̃iu ă d̂i ă d̃i (4.22)

EPt-range is bounded by real Pt and another different value, named as ‘critical transmit

power’ (cr-Pt), of which the ranging error is equal to that of the real Pt.
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Lemma 1 : Ranging distances in EPt-range achieve higher accuracy than that of real Pt.

The cr-Pt defined for (3.6) is calculated as |Ptexp,i “ Pri´XPL,i`10ηi log10p2di´d̃iq, and the

cr-Pt defined for (4.6) is calculated as |Ptpo,1,i “ t1`t2, |Ptpo,2,i “ t1´t2, |Ptpo,3,i “ t1`t3,

|Ptpo,4,i “ t1´t3, where the parameters t1, t2, t3 are displayed in Appendix A. Substituting

(3.6) and (4.6) to (4.22), the EPt-range for exponential-like ranging function (3.6) is simply

derived as

xPti P

$

’

’

’

&

’

’

’

%

p´8,Ptq, Event A

p|Ptexp,i,Ptq, Event B

pPt,|Ptexp,iq, Event C

(4.23)

where the Event A „ Event C are defined in Appendix A. The EPt-range for power-like

ranging function (4.6) is

xPti P

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

p´8,|Ptpo,4,iq Y p|Ptpo,3,i,`8q, Event D

p|Ptpo,3,i,|Ptpo,1,iq Y p|Ptpo,2,i,|Ptpo,4,iq, Event E or Event G

p|Ptpo,1,i,|Ptpo,3,iq Y p|Ptpo,4,i,|Ptpo,2,iq, Event F or Event I

p|Ptpo,4,i,|Ptpo,3,iq Event H

(4.24)

where the Event D „ Event I are defined in Appendix A.

Lemma 1 is illustrated in Figs. 4.3 and 4.4. Event A refers to significant measure-

ment error XPL,i that produces ranging distance twice than real distance. Events B and

C claims that whether EPt-range and cr-EPt greater or smaller than real Pt is consistent

with the XPL,i. Events D, E and F reflect much lower ranging error and wider interval

than Events A, B and C, indicating the higher accuracy of power-like ranging function

(4.6) over exponential-like ranging function (3.6). Following the definition of EPLE and

EPLE-range, it is easy to expand to general communication environment with more types

of measurement error, e.g., thermal noise, fast fading, multipath effect, etc.

Due to poor knowledge of XPL,i and di, it is difficult to calculate EPt and EPt-range

in practice. However, estimated EPt can be obtained with assumed identical accuracy

improvement of ranging distance. Assuming that each Ptpo,i makes identical effect on

ranging distances, i.e., d̂po,i “ d̃iPcb, where Pcb ą 0 is the resulting calibration on rang-

ing distances, ∆Ptdf,i “ Ptpo,i ´ Pt is the difference between the i -th EPt and real Pt.

When Pcb ą 0, the ratio of estimated distance over ranging distance d̂po,i{di “ Pcbp1 `

XPL,i{pPLi´βi,giqq
1{Bpi,giq is a convex function with respect to XPL,i, with variance σcb,i “
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Figure 4.3: Ranging error of the i -th BS derived from values in the EPt-range (4.23) is
lower than that from the real Pt “ 23 dBm, when real distance di “ 790 m, real path
loss value is PLi = 92 dB, measurement error is XPL,i “ 40, 5,´15 dB, corresponding to
Events A, B and C, respectively.

σi,gi{p
ĂPLi ´ βi,giqq

2{Bi,gi . Thus, the squared ranging distance with calibration is rewritten

as Dcb,i “ Q2
cbd

2
i . The optimum is achieved at Dcb,i{d̃

2
i “ 1. Moreover, pDcb,i{d̃

2
i q
´1 should

be considered, since negative value of Bi,gi could result into Dcb,i{d̃
2
i ă 1. Therefore, the

estimation problem of EPt is formulated as minQcb

řN
i“1Dcb,i{d̃

2
i `pDcb,i{d̃

2
i q
´1, which can

be converted to an SDP problem

pP4.5q min
Qcb,Dcb,i,vcb

N
ÿ

i“1

Fratio,i (4.25)

s.t.

Fratio,i ě
Dcb,i

p̂2
i,gi

(4.26)

«

p̂2
i,gi
Dcb,i d̃i

d̃i Fratio,i

ff

ě 0 (4.27)

«

I2 vcb ´wiQcb

pvcb ´wiQcbq
T D2

cb,i

ff

ě 0 (4.28)
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Figure 4.4: Ranging error of the i -th BS derived from values in the EPt-range (4.24) is
lower than that from the real Pt “ 23 dBm, when real distance di “ 790 m, real path loss
value is PLi = 92 dB, fitted parameters are Ai,gi “ ´2.6527e` 04, Bi,gi “ ´0.9959, βi,gi “
141.8248, measurement error is XPL,i “ 40, 5,´15 dB, corresponding to Events D, E and
F, respectively.

where p̃i,gi “ 1{σcb,i is the weight of objective function. With η̃i obtained in gsDRSS and

the calculated Pcb “ 1{Qcb, the estimated EPt is calculated as

xPti “ Pt`∆Ptdf,i (4.29)

where ∆Ptdf,i “ βi,gi `
ĂPLi ´ P

Bi,gi
cb |pĂPLi ´ βi,giq|. Thus, the path loss measure is refined

xPLi “
xPti ´Pri. The entire progress of PCAL-EPt-gsDRSS with unknown Pt is shown in

Algorithm 4.

Algorithm 4 PCAL-EPt-gsDRSS Algorithm

1: Obtain estimated path loss measurement
x

ĂPLi and Ãi, B̃i, C̃i through steps 1 „ 3 of
PCAL-gsDRSS scheme, and substitute them to (4.8) to derive d̃i.

2: Obtain Qcb through solving (P4.5) with d̃i and Ãi, B̃i, C̃i.

3: Substitute Qcb and η̃i into (4.29) to obtain the estimated EPt xPti, and refine path loss

measurements as xPLi.

4: Substitute xPLi and Ãi, B̃i, C̃i to PCAL scheme.
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4.4.2 Effective PLE

EPLE and EPLE-range are defined in the similar way as that of EPt and EPt-range,

i.e., EPLE is the PLE that perfectly compensates the ranging error caused by XPL,i,

and EPLE-range is referred to the values near EPLE and of lower ranging error than

real PLE. To derive EPLE and EPLE-range, the terrestrial network based localisation

with conventional exponential-like ranging function is used to assess the effect of PLE on

accuracy of localisation and ranging distance, but the power-like ranging function is not

employed by this section, since it is free of PLE. Recall (P2.1) again, the ranging based

localisation problem is rewritten as optimisation of PLE, as shown by (P4.6).

pP4.6q min
η̂

N
ÿ

i“1

pdi ´ d̂iq
2 “ 0 (4.30)

s.t.

d̂i “ 10
ĄPLi
10η̂i (4.31)

The solution to (P4.6) is as well d̂i “ di. Assuming known real distance di, EPLE of the

i -th BS, η̄i is simply calculated as (4.32).

η̄i “
ĂPLiηi
PLi

(4.32)

A range of PLE values η̂i near the i -th EPLE and showing higher accuracy than real PLE

is defined as EPLE-range, and the corresponding interval of distances is also defined as

Edist-range, i.e., d̂i “ 10
ĂPLi{p10ηiq P pmaxt0, di ´ d̃iu, d̃iq. EPLE-range is bounded by both

real PLE and another different PLE value η̌i, named as ‘critical PLE’ (cr-PLE), of which

the ranging error is equal to that of real PLE.

Lemma 2: Ranging distance corresponding to any value in the EPLE range achieves

lower error than that with real PLE. Define the cr-PLE as η̌i “
pPLi`XS,iqηi

PLi`10ηi log10

˜

2´10

XS,i
10ηi

¸ ,

and the EPLE range is

η̂i P

$

’

’

’

&

’

’

’

%

pηi, η̌iq , Event J

pη̌i, ηiq , Event K

pηi,`8q , Event L

(4.33)
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Figure 4.5: Ranging error of the i -th BS derived from values in the EPLE range is lower
than that from the real PLE ηi “ 3.5, when real distance di “ 200 m, real path loss
measure is PLi “ 81 dB, shadowing is XS,i “ ´20, 5, 20 dB, corresponding to Events J, K
and L.

where εi “
XS,i

10 log10 2 . Events J, K and L are defined in Appendix B.

Proof: See Appendix B.

Lemma 2 is illustrated by Fig. 4.5. Events J and K claim that whether EPLE range

and cr-PLE greater or smaller than real PLE is dependent on XS,i. Event L indicates

significant XS,i that produces ranging distance twice than real distance di. The length of

EPLE range of Events J and K is proportional to |XS,i| with moderate measurement error

XS,i. EPLE range becomes infinitely long with sufficiently large value of XS,i. EPLEs

and EPLE-ranges of N BSs are difficult to obtain, due to unknown real path loss PLi and

unknown real distance di in practice.

4.4.3 Analysis on the Effect of Effective Transmit Power and Effective

Pathloss Exponents on Localisation

EPt and EPLE both improve the localisation performance through modifying ranging

function with Edist. Assume perfectly known EPt-ranges and EPLE-ranges, and denote

d̂e,i as both distances obtained with equal EPt (eEPt) Pte and equal EPLE (eEPLE) ηe,
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the existing LS estimator based localisation is expressed as

pP4.7q min
d̂e,i,ve

}Ave ´Bc}
2 (4.34)

s.t.

Bc “ rbe,1, . . . ,be,N s
T
´ S (4.35)

where Bc is the ranging matrix, and be,i “ d̂2
e,i is the squared ranging distance of eEPLE

or eEPt. A “ r´2WT
di 1Ns, Wdi “ rw1 ´ w2, . . . ,w1 ´ wN s. L “ rIV ,0V s, V is the

dimension of MS coordinates. S “ r}w1}
2, . . . , }wN}

2sT.

Proposition 1 The estimated location of MS v̂e converges from infinite far position to the

converged point v0 “ Φp1N ´ Sqq, when ηe increases from ηe “ 0 to ηe “ `8, or Pte

decreases from Pte “ `8 to 0. There is no closed form solution to (P4.7), since it is

nonlinear and non-convex problem.

Proof : The localisation result η̂e obtained by (P4.7) v̂e is consistent on ηe P p0
`,`8q

and Pte P p´8,`8q. It is straightforward to calculate that, when ηe Ñ 0` or Pte Ñ `8,

the ranging distance approaches infinite d̂2
e,i “ `8. Therefore, MS is localised at infinite

far point v̂e “ r˘8,˘8s
T; and when ηe Ñ `8 or Pte Ñ ´8, d̂2

e,i « 1, MS is localised at

v̂e “ Φp1N ´ Sq. Thus, Proposition 1 is proved.

Define the line formed by all the estimates v̂e with η̂e varying between p0`,`8q as

‘estimation-line’, there must be at least one point on the estimation-line closest to MS on

the 2D/3D plane, indicating at least one local minimum of localisation error function. Fig.

4.6 displays an example of estimation-lines obtained by grid searched eEPLE η̂e P r2 6s

and eEPt xPte P r´50, 50s dBm, and N “ 4 BSs deployed in square region, when the real

PLE is ηi “ 3, and real Pt = 23 dBm. The convergence directions of both estimation-lines

are toward the centre of BSs with η̂e Ñ `8, by passing the point of minimum localisation

error at η̂e « 2.66 and xPte “ 34 dBm, respectively. Figs. 4.7 and 4.8 display the ranging

error |d̂e,i´di| of the varying eEPLE and varying eEPt. If the real location of MS is on the

same side as the estimation-lines, e.g., when v “ r400,´400sT, the minimum error will be

achieved at the converged point r0, 0sT. The values of PLE η̂e,i ą ηe achieves less ranging

error than those PLE η̂e,i ă ηe. Thus, it is suggested to use the larger PLE values and

smaller Pt values for initialisation of RSS based localisation with unknown PLEs and/or

unknown Pt, which is consistent with the findings in [77].

Different with eEPLE that is shared by N BSs, unequal EPLE (unEPLE) ηg and
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Figure 4.6: Estimation-line of LS estimator with varying eEPLE η̂e P r1.50, 5.50s and
varying eEPt Pte P r´50, 50s dBm.

unequal EPt (unEPt) are referred to as an individual eEPLE and eEPt shared by several

of N BSs. Suppose N BSs are assigned to RBS groups, and the r -th group contains one

unEPLE ηg,r and one unEPt Ptg,r, nr ě 2 BSs, and coordinates of the Kr BSs in this

group is wg,r,k, k “ 1, . . . ,Kr. Let dg,r,k denote the Edist of BS k in the r -th group

obtained with unEPLE or unEPt, i.e., dg,r,k “ 10
ĂPLg,r,k{p10ηg,rq or 10

xPLg,r,k{p10ηrq, where

xPLg,r,k “ Ptg,r ´ Prr,k ` XS,r,k. For the default sequence of BSs, the vector of path loss

measures and information matrix are same as those of (P4.6), which is converted to (P4.8).

pP4.8q min
d̂g,v̂g

N
ÿ

i“1

}Av̂g ´Bg}
2 (4.36)

s.t.

Bg “ rb1, . . . ,bRs
T
´ S (4.37)

br “ rd
2
g,r,1, . . . , d

2
g,r,Kr s (4.38)

where Bg is ranging matrix of unEPLEs or unEPt, br is the submatrix of the r -th group.

There is no closed form solution to (P4.8), since it is nonlinear and non-convex problem.

The estimates v̂g obtained with continuous search on η̂g,r P r1.5, 5.5s and xPtg,r P



50 Boda Liu

η̂e

1.5 2 2.5 3 3.5 4 4.5 5 5.5

L
o

c
a
li

sa
ti

o
n
 e

rr
o
r 

(m
e
te

r)

10
1

10
2

10
3

10
4

10
5

Figure 4.7: Localisation error of LS estimator with varying eEPLE η̂e P r1.5, 5.5s, when
the real PLE is η “ 3.

Figure 4.8: Localisation error of LS estimator with varying eEPt Pte P r´50, 50s dBm,
when the real transmit power is Pt = 23 dBm.
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Figure 4.9: Estimation sector obtained by N = 4 BSs of two groups with η̂g,r P r1.5, 5.5s

or xPtg,r P r´50, 50s dBm.

r´50, 50s dBm are also continuous on the map. Define the region filled by the contin-

uous estimates as ‘estimation-sector’, the range of each estimation-sector can be expanded

to infinite farther when unEPLEs approaches 0 or unEPt approaches `8. Thus, MS

is probably covered by the estimation-sector derived. For the sake of convenience, the

two edges of each estimation-sector are approximated to straight lines from the converged

point v0 to infinitely far position. Therefore, the coverage of estimation-sector is only

determined by its central angle θC, which is bounded by the two edges, i.e., the two

outermost estimation-lines. The r -th estimation boundary is actually the estimation-line

obtained by η̂g,r P rηlow, ηups and the unEPLEs of other groups fixed at ηg,r Ñ `8, or

xPtg,r P rPtlow,Ptups and the unEPt of other groups fixed at xPtg,r Ñ ´8, where the pa-

rameters labelled by subscripts ‘low’ and ‘up’ corresponds to the lower and upper bound.

Fig. 4.9 presents the case that the real location of MS is covered by the estimation-

sector of unEPLEs and unEPt obtained by (P4.8), when N = 4 BSs are allocated to

RBS “ 2 groups, real PLEs are respectively 3.39, 3.40, 3.28, 2.06, and real Pt = 23 dBm.

The estimation-sector of unEPLEs and unEPt are completely overlapped with each other.

With proper values of unEPLEs or unEPt, (P4.8) could achieve 0 localisation error. Fig.

4.10 presents the localisation error varies with different unEPLEs, when 2nd unEPLE η̂g,2

is fixed at constants. The minimum error is realised at η̂g,1 “ 3.74, η̂g,2 “ 3.32. Fig. 4.11

presents that localisation error varies with different unEPt, when 2nd unEPLE xPtg,2 is
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Figure 4.10: Localisation error achieved by unEPLEs with N = 4 BSs of two groups,
the 1st unEPLE is sampled with interval ∆η “ 0.01, the 2nd unEPLE fixed at η̂2 “

1.50, 3.28, 3.32, 3.36, 5.5.

Figure 4.11: Localisation error achieved by unEPt with N = 4 BSs of two groups, the
1st unEPt is sampled with interval ∆Pt “ 1 dBm, the 2nd unEPt fixed at xPtg,2 “
´50,´18,´13,´8, 50 dBm.
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fixed at constants. The minimum error is realised at xPtg,1 “ 14 dBm, xPtg,2 “ ´13 dBm.

For both unEPLEs and unEPt, the localisation error is reduced dramatically near the op-

timal values. Thus, it is difficult to obtain the optimal unEPLEs and unEPt.

Lemma 3 Denote the localisation accuracy achieved by unEPLEs and eEPLE as }Eg}

and }Ee}, respectively. LS optimisation with unEPLE is usually more accurate than that

of eEPLE, i.e.,

}Eg} ď }Ee} (4.39)

Proof: See Appendix C.

Following the same progress as Appendix C, it is easy to draw the corresponding property

of unEPt and eEPt.

4.5 Simulation Results

The performance of the proposed PCAL-GSAE scheme is evaluated by Monte-Carlo simu-

lation with N = 4 UAV-BSs supported hexagon cells and system frequency of 2GHz. The

AS standard deviation is set to σAS,i “ 4.4 dB [72] in Figs. 4.14 „ 4.17. Assume perfect

knowledge of the EAPL parameters a0, a1, b0 and b1 given in Section 4.3.

Fig. 4.12 depicts the approximated path loss in (4.5), compared with the original EAPL

[73], when all UAVs’ altitude is hi = 500 m (i=1,. . . ,4) and the cell radius is R = 1000

m. The approximated path loss by piecewise convex approximation and curve fitting are

expressed as

yPLi «

$

&

%

5.772e-9 d3.15
i ` 52.31 dlower,i ď di ď dt

´6.772e4 d´0.9792
i ` 144.6 dt ă di ď dupper,i

where dlower,i “ hi, and dupper,i “ 2R, and dt,i “ 1098 m. The approximation results

without the PLE knowledge match the EAPL model perfectly within d P rdlower,i, dupper,is.

Fig. 4.13 shows the cumulative density function (CDF) of PCAL-GSAE, with the same

simulation setup as Fig. 4.12, in comparison to those of the approaches in [7],[8],[10],[63]

with perfectly known and equal PLEs and the LSO-PLEc approach in [10]. PCAL-GSAE

significantly outperforms the other approaches when the estimation error is larger than

50 m, due to its higher robustness against TS, while an error of less than 50 m indicates

an occasional case where ambiguity error plays a dominant role. Fig. 4.14 shows that

with AS, the proposed PCAL-GSAE scheme maintains a performance comparable to the

case without AS, while the other approaches suffer significant performance degradation
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Figure 4.12: Curve fitted path loss model in comparison to EAPL [69] with UAV altitudes
hi = 500 m (i=1,. . . ,4) and cell radius R = 1000 m.

compared to Fig. 4.13.

Fig. 4.15 shows the average localisation error versus cell radius, which varies from 500

m to 1000 m, with UAV altitude hi = 200 m (i=1,...,4). When combined with PCAL, the

proposed GSAE approach is more effective to eliminate ambiguity than the PLM approach

in [37]. The performance of PCAL-GSAE is close to the CRLB derived. Also, PCAL-

GSAE achieves higher accuracy than PCAL without ambiguity, because averaging over

the selected tentative estimates is effective in mitigating errors caused by shadowing. And

the localisation error caused by the ambiguity is much smaller than that of shadowing.

PCAL with real PLE values demonstrates a much worse performance than PCAL with

unknown PLEs, since the approximations in (4.5) and (4.6) and GSAE are disabled under

perfect knowledge of PLEs, which makes the algorithm more vulnerable to shadowing.

Fig. 4.16 illustrates the average estimation error of transmit power derived by proposed

PCAL-gsDRSS, PCAL-EPt-gsDRSS and existing LSRE-SDP [9] versus cell radius, when

the simulation setup data is same as Fig. 4.15. The three approaches have a deceasing

estimation error as the cell radius increase, where the error of PCAL-gsDRSS and PCAL-

EPt-gsDRSS is much higher than that of LSRE-SDP, in contrast to their performance

shown in Fig. 4.17. This result indicates the localisation accuracy is not related to the

accuracy of estimated transmit power. Comparing Fig. 4.17 with Fig. 4.15, it is obvious

that the accuracy of PCAL-gsDRSS, PCAL-EPt-gsDRSS and LSRE-SDP [9] is higher
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Figure 4.13: CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS [63]
and LSO-PLEc [10] with N = 4 UAV-BSs and TS only.

than that of PCAL and LSRE [7] with known transmit power. The results validate the

statement made in section 4.4, as the real Pt is not beneficial for localisation. However,

the estimated Pt and EPt improve accuracy of localisation through mitigating impact of

XS,i on ranging distances. Therefore, it is suggested to use estimated Pt rather than real

value in localisation, even if the real Pt was perfectly known.

The suggestion made by our work is opposite to the existing research, which reason

is attributed to the difference of localisation scenario. More specifically, for our work,

only a few measurements are accessible for localisation, and the uncertainties on RSS,

i.e., Gaussian distributed error XS,i, play the major impact on localisation than those

on ηi and Pt,. Thus, the estimated ηi and Pt are preferable to real values, in order

to alleviate the impact of XS,i. However, for localisation scenarios in [61],[62],[66], [77],

the uncertainties on RSS are efficiently mitigated by sufficiently large amount of RSS

measurements, while the uncertainties of ηi and Pt are remained as the major resource of

localisation error. Therefore, it is summarised that, the number of available measurements

determines whether using real parameters or estimated parameters.
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Figure 4.14: CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS [63]
and LSO-PLEc [10] with N = 4 UAV-BSs, TS and AS of standard deviation σAS “ 4.4
dB.

4.6 Summary

We have proposed a PCAL scheme for multiple UAV-BSs assisted and RSS based MS lo-

calisation without requiring PLEs to be equal and perfectly known. The two-step approx-

imations by piecewise convex approximation and curve fitting yield a convex localisation

problem that matches the EAPL model [73] very well. The localisation problem is then

converted to linear via TSE which can be solved by SDP with comparable complexity to

that of [7]. The proposed PCAL approach with unknown and unequal PLEs significantly

outperforms the approaches in [7],[8],[10],[63] with perfectly known and equal PLEs, and

[10] with unknown and unequal PLEs. It also demonstrates higher robustness against shad-

owing especially AS in the scenario of UAV. The proposed GSAE method can eliminate

ambiguity more effectively than the PLM method in [37]. For localisation with unknown

transmit power, the proposed PCAL-gsDRSS scheme achieves twice accuracy than that

of the approach in [9]. With assumed known EPt and EPLE, localisation and ranging

distance are proved more accurate than that using real PLE and Pt. Based on estimated

EPt, the proposed PCAL-EPt-gsDRSS can reduce at least 20 meter localisation error than

that of PCAL-gsDRSS. The effect of EPLE is verified by analysis.



Chapter 4. Unmanned Aircraft Vehicle Supported And Received Signal Strength Based
Localisation 57

500 600 700 800 900 1000

Cell radius (meter)

10
1

10
2

10
3

10
4

A
v

er
ag

e 
lo

ca
li

sa
ti

o
n

 e
rr

o
r 

(m
et

er
)

PCAL with real PLE

PCAL-PLM [37]

PCAL without ambiguity

PCAL-GSAE

Average CRLB

Figure 4.15: Average localisation error of PCAL with real PLEs, PCAL-PLM [37], PCAL
without ambiguity, PCAL-GSAE, and average CRLB with N = 4 UAV-BSs, UAV altitudes
hi “ 200 m (i=1,. . . ,4), and AS of standard deviation σAS “ 4.4 dB.

500 600 700 800 900 1000

Cell radius (meter)

10

15

20

25

30

35

40

45

50

55

60

 T
ra

n
sm

it
 P

o
w

er
 e

st
im

at
io

n
 e

rr
o

r 
ra

ti
o

 (
%

)

PCAL-gsDRSS

PCAL-EPt-gsDRSS

LSRE-SDP [9]

Figure 4.16: Average transmit power estimation error ratio of PCAL-gsDRSS, PCAL-
EPt-gsDRSS, LSRE-SDP [9], when the real Pt=23 dBm is unknown, and AS of standard
deviation σAS “ 4.4 dB.
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Figure 4.17: Average localisation error of PCAL-gsDRSS, PCAL-EPt-gsDRSS, LSRE-SDP
[9], when the real Pt=23 dBm is unknown, and AS of standard deviation σAS “ 4.4 dB.



Chapter 5

Intelligent Surface Assisted And

Massive MIMO Based Localisation

5.1 Introduction

The B5G or 6G networks will be intelligent systems and provide users with the wider

bandwidths, higher data rate ( 1 Tb/s) and higher accuracy localisation [82]. These re-

quirements are fufilled by massive arrays and IS based new architecture [83].

Massive MIMO based localisation will continue to develop towards the higher accuracy

empowered by the larger transmitter and receiver arrays. The existing research mainly

focuses on analysing the performance limits. In [84], PEB and OEB of both uplink and

downlink localisation was proved inversely proportional to the number of antenna ele-

ments. The asymptotic orthogonality of massive MIMO was proved with sufficiently large

array and signal bandwidth. In [85],[86], the FIM of NLOS components was presented as

significant location information for localisation [85], and [86] also stated that reasonable

performance of positioning gained by NLOS components of moving target [86]. In [87],

fundamental bounds on position and orientation of targets in mm-wave communication

system were derived. A refinement algorithm was proposed to resolve position-related

channel parameters of both LOS and NLOS paths. Single anchor based indoor localisation

was studied in [12]. The performance of different array configurations with signals syn-

chronisation error and beamforming quantization error was numerically evaluated by FIM

and CRLB.

A lot of recent research focused on exploiting randomness of propagation environment

59
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and improving QoS of communication, including two notable techniques, IS and spatial

modulation (SM) technique. Recent research on IS based IM [88] proposed to adjust the

IS phases according to the indices of selected receive antenna with the maximised instan-

taneous received SNR. The received signal quality in fading channels is improved. The

existing work on IS assisted localisation concentrates on the performance of near-field and

far-field localisation. For given propagation distances, a large IS could be in near-field

regime while transmitters and receivers are in far-field regime. IS assisted far-field localisa-

tion was studied in [13],[14]. In [14], the adaptive beamforming and ISpsf design algorithms

were proposed to optimise the performance of far-field IS assisted communication and po-

sitioning. In [13], PEB and OEB of IS assisted massive MIMO system were found decrease

with the size of IS. However, according to the signal models of IS proposed in [89],[35],[36],

the channel parameters of IS vary with the position of IS elements, thus the far-field regime

could bring non-negligible approximation error on near-field localisation. In [90], near-field

and far-field was distinguished by Fraunhofer distance, based on which the entire array was

divided into multiple sub-arrays of approximated parameters. The results show that the

performance of sub-arrays is getting close to that of standard entire array with increasing

propagation distance, in contrast with [32], [33],[34]. To clear up confusion, it is necessary

to investigate the impact of far-field approximation on the performance of localisation.

The existing work on ISpsf design in IS assisted localisation [13], [14],[32] propose to

optimise ISpsf with respect to maximising data rate, rather than maximising localisation

accuracy. The reason might be attributed to that, in the aforementioned work, the terms

containing IS parameters are merged to a scalar before calculating FIM. However, for a

large steerable IS assisted system, CRLBs of channel parameters and MS location informa-

tion vary with the position of IS elements and the directions of impinging signals [13], [36].

Thus, this gap on IS assisted localisation motivates us to study the optimal localisation-

aimed ISpsf.

In this chapter, we study the performance of localisation of an IS assisted massive

MIMO system with single BS and single MS, where BS and MS are in LOS links towards

the IS, and BS beamforming is pointing at the IS. Our work is different from the existing

works [13], [14],[32] in the following aspects.

1. We derive the expressions of exact FIMs (eFIMs), approximated FIMs (aFIMs) and

CRLBs of channel parameters and MS location information. eFIM of both channel
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parameters and the controllable phases of IS is proved non-invertible and meaningless

for localisation. Based on the derived FIMs and CRLBs, localisation assisted by

both ISs with known and unknown position is investigated. Numerical results reveal

that PEB and OEB of MS are generally increasing with the number of employed

IS elements, while that of unknown IS fluctuates severely, even if the number of IS

elements stays in near-field zone.

2. Based on the derived FIM and CRLB, a localisation-aimed ISpsf is proposed to max-

imise the performance of localisation, and the ISpsf that maximises the estimation

accuracy of each parameter is also investigated. To the best of our knowledge, this is

the first work studying the impact of IS parameters on the ISpsf design and the per-

formance of localisation. Our simulation results shows considerable improvement on

the performance of localisation brought by localisation-aimed ISpsf than that using

the communication-used ISpsf. With the derived localisation-aimed ISpsf, perfor-

mance of localisation is investigated with 1, 4, 8-bit quantizers. The results show

that the expensive quantizer is only valuable for large IS array with awareness of

both position and orientation.

The rest of this chapter is organised as follows. The system model, channel model and

signal model are presented in section 5.2. The power consumption model is introduced

in Section 5.2. FIMs and CRLBs of channel parameters and MS location information are

derived in section 5.3. The problem formulation of ISpsf design is described in section 5.4,

with localisation-aimed ISpsf derived. Section 5.5 demonstrates the simulation results, and

Section 5.6 gives the summary.

5.2 System Model

We consider the IS-based massive MIMO narrowband downlink communication FDD

system operating at frequency fc. Signal bandwidth W is separated into U frequency

bins, where the frequency of the ι-th subcarrier is fι. BS is selected as the reference

of the 3D Cartesian coordinate system, i.e., the coordinate and orientation angle of BS

is w “ r0, 0, zBSs
T and oBS “ rϑBS, ϕBSs

T “ r0, 0sT. The MS with coordinate v “

rxMS, yMS, zMSs
T and orientation of antenna array oMS “ rθMS, φMSs

T, is detected and lo-

calised by the BS. The observed location information at BS is collected from one direct path
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between BS and MS, C single bounced NLOS paths via C clusters, and NIS paths via an

IS. Both BS, MS and IS are respectively equipped with URA of NT, NR and NIS elements

distributed on rectangular grids with constant element spacing ∆d “ 0.5λ, where λ is wave-

length. The C clusters are located at unknown position qc “ rqx,c, qy,c, qz,cs, c “ 1, . . . , C,

and the IS with orientation oIS “ rνIS, µISs
T is located at rI “ rxI, yI, zIs. The IS can be

regarded as a reconfigurable planar array of NIS passive reflector elements, which adjusts

the reflected path to optimise the channel response by inducing various phase shifts and

amplitude attenuation to each path. In the scenario as shown by Fig. 5.1, the BS transmits

signals to the MS through L “ 1`C `NIS paths, including 1 direct path, C ě 0 reflected

paths via the clusters, and NIS ě 0 reflected paths via the IS. Assume that BS and MS are

in far-field scenario, IS is in near-field with various parameters at each reflector element.

The first arrival path from BS to MS is considered as the direct path, parameters and

matrices of which are labelled by subscript ‘1’. Whereas the sets of cluster reflective paths

and the IS-aided paths are denoted by Λs and ΛR, where |Λs| “ C, |ΛR| “ NIS. The IS

can be regarded as a reflective antenna array in the system, which works as the receiver

in BS-IS direct link and the transmitter in the IS-MS direct link, known as “forward link”

(fw) and “backward link” (bw) [31].

5.2.1 Array Model

In a downlink system, BS is the transmitter and MS is the receiver. The unit-norm antenna

steering vectors [40] of receiver antenna (Rx) and transmitter antenna (Tx) of the l -th path

are respectively expressed as

aR,lpθl, φl, θMS, φMSq ”
1

?
NR

e´j2πχRkpθl,φlq P CNRˆ1, (5.1a)

θl ” arccos

ˆ

vR,z,l

}vR,l}

˙

, (5.1b)

φl ” arctan

ˆ

vR,y,l

vR,x,l

˙

, (5.1c)

vR,l “ rvR,x,l, vR,y,l, vR,z,ls
T “ RpoMSq

´1pvl ´ vq (5.1d)

and

aT,lpϑl, ϕl, θBS, φBSq ”
1

?
NT

e´j2πχTkpϑl,ϕlq P CNTˆ1, (5.2a)
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Figure 5.1: IS-assisted massive MIMO system

ϑl ” arccos

ˆ

wT,z,l

}wT,l}

˙

, (5.2b)

ϕl ” arctan

ˆ

wT,y,l

wT,x,l

˙

, (5.2c)

wT,l “ rwT,x,l, wT,y,l, wT,z,ls
T “ RpoBSq

´1pvl ´wq (5.2d)

where χR “ pRpoMSqpRq
T
P CNRˆ3 and χT “ pRpoBSqpTq

T “ pT
T P CNTˆ3 are respec-

tively the coordinates of Rx elements and Tx elements. vR,l and wT,l are the coordinates of

either the BS, scatter, reflector element or MS. RpoMSq is the rotation matrix. pR P C3ˆNR

and pT P C3ˆNT are the matrices of relative coordinates of each antenna element from the

corresponding array centre. dR and dT are the element intervals of Rx and Tx. θl, φl, ϑl

and ϕl respectively represent the elevation angle and azimuth angle of the l -th path at the

MS, and those at the BS, which are named as elevation angle of arrival (eAOA), azimuth

angle of arrival (aAOA), elevation angle of departure (eAOD) and azimuth angle of depar-

ture (aAOD) in the downlink communication system. kpθl, φlq is the unit direction vector,

which is a function of pθl, φlq, and it is calculated as kpθ, φq “ rcosφ sin θ, sinφ sin θ, cos θsT.

Define AR “ raR,1, . . . ,aR,Ls and AT “ raT,1, . . . ,aT,Ls as the sets of receiver and trans-
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mitter steering vectors of all paths. µl and νl denote the azimuth angle and elevation angle

of signal observed at the IS.

For the l -th path reflected by the IS, the antenna steering vector of IS reflector (Ix)

toward the direction pνl, µlq is defined as aIpνl, µlq ”
1?
NIS

e´jχIkpνl,µlq, where χI P CNISˆ3

denotes the Ix element coordinates. Considering nonidentical incident angle and reflective

angle of the NIS Ix elements, the generic elements of array response of the p-th forward

path and the p-th backward path are respectively expressed as

afw,p ”
1

?
NIS

e´j2πχI,pkpµfw,p,νfw,pq P CNISˆ1 (5.3a)

µfw,p “ tan´1

ˆ

yp,BS

xp,BS

˙

(5.3b)

νfw,p “ cos´1

ˆ

zp,BS

}rp,BS}

˙

(5.3c)

rp,BS ” rxp,BS, yp,BS, zp,BSs
T (5.3d)

and

abw,p ”
1

?
NIS

e´j2πχI,pkpµbw,p,νbw,pq P CNISˆ1 (5.4a)

µbw,p “ tan´1

ˆ

yp,MS

xp,MS

˙

(5.4b)

νbw,p “ cos´1

ˆ

zp,MS

}rp,MS}

˙

(5.4c)

rp,MS ” rxp,MS, yp,MS, zp,MSs
T (5.4d)

where the subscript p “ t1, . . . , NISu is a special index of Ix elements. The coordinates of

rotated Ix elements are collected in the set χI “ pRpoISqpIq
T
P CNISˆ3, where the p-th

row vector is expressed as χI,p, and pI P C3ˆNR is the matrix of the relative position of Ix

element from the IS centre. Thus, the coordinates of the p-th Ix element observed at the

BS is χBS,p “ rI ` χ
P
I,p. µfw,p and νfw,p denote the observed azimuth angle and elevation

angle of the incident wave at the p-th Ix element, and µbw,p and νbw,p are those of the re-

flective wave. rp,BS and rp,MS respectively represent the relative coordinates of the BS and

MS from the p-th Ix element observed at the IS. The distance from BS and MS to the p-th

Ix element are calculated as rfw,p “ }rI`χI,p´w} and rbw,p “ }v´prI`χ
T
I,pq}. Therefore,

the BS coordinates observed at IS can be calculated as rp,BS “ RpoISq
´1pw´prI`χ

T
I,pqq or
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rp,BS “ rfw,pkpνfw,p, µfw,pq, and the observed coordinates of MS are calculated as rp,MS “

RpoISq
´1pv´ prI ` χ

T
I,pqq or rp,MS “ rbw,pkpνbw,p, µbw,pq.

The equations (5.1)„(5.4) interpret the relation between channel parameters and loca-

tion information. For the downlink system, the observed location of MS can be expressed

as

v “

$

&

%

r1,ckpϑl, ϕlq ´RpoMSqpr2,ckpθl, φlqq, l P Λs

rI ` χ
T
I,p `RpoISqprbw,pkpνbw,p, µbw,pqq, l P ΛR

(5.5)

where r1,c and r2,c are the distance from BS and MS to the c-th cluster. Note that, for the

uplink system and l P ΛR, the position of MS is v “ rI`χ
T
I,p`RpoISqprfw,pkpνfw,p, µfw,pqq.

5.2.2 Channel Model

Define AR “ raR,1, . . . ,aR,Ls and AT “ raT,1, . . . ,aT,Ls as the sets of receiver and trans-

mitter steering vectors of all paths, and β “ rβ1, . . . , βLs is the complex channel gain vector,

where βl “ ρle
jζl , ρl and ζl P r0, 2πs are respectively the signal power and arbitrary path

phase of the l -th path, and ατ “ rα1, . . . , αLs is the delay vector, then the direct channel

and cluster reflective channels can be expressed as given by:

Hd ” β1α1aRaH
T P CNRˆNT (5.6)

and

Hs ” AR,Λsbβ,sTsAT,Λs “
ÿ

lPΛs

βlαlaR,la
H
T,l P CNRˆNT (5.7)

where AR,Λs Ă AR and AT,Λs Ă AT are the collections of antenna steering vectors of

cluster reflective paths. bβ,s “ diagtβΛs
u, Ts “ diagtαΛsu, wherein βΛs

Ă β, αΛR
Ă ατ ,

the elements of the cluster reflective path l P Λs are βl P βΛs
, αl P αΛs , and |βl| “ 1,

αl “ e´j2πfτl , τl is the l -th time delay, f is the frequency.

Define Afw “ rafw,1, . . . , afw,NIS
sT and Abw “ rabw,1, . . . , abw,NIS

sT as the IS steering

vectors applied for forward link and backward link, the reflective channel via the IS of
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perfect efficiency can be obtained as:

HR ” HI,2TΛR
ΨIHI,1 P CNRˆNT (5.8a)

HI,1 ” AfwhI,1A
H
T,ΛR

P CNISˆNT (5.8b)

HI,2 ” AR,ΛR
hI,2A

H
bw P CNRˆNIS (5.8c)

where AR,ΛR
Ă AR and AT,ΛR

Ă AT are the sets of Rx and Tx steering vectors of

IS-aided paths. HI,1 and HI,2 denote the channel vectors of forward link and backward

link, where hI,1 “ diagtrhfw,1, . . . , hfw,NIS
su and hI,2 “ diagtrhbw,1, . . . , hbw,NIS

su are the

matrices of complex channel gain. TΛR
“ diagtαΛR

u is the delay vector of IS-aided paths.

ΨI “ diagtΓRudiagtΨRu, and ΓR “ rεeff,1, . . . , εeff,NIS
s and ΨR “ re

jψ1 , . . . , ejψNIS s are the

vectors of signal amplitude control and phase shifts, and εeff,p P r0, 1s is the energy efficiency

controlled by the p-th passive Ix element, ψp is the adjustable phase. To maximise the

reflected signals, ΓR “ 1T
NIS

is applied for the sequel of this paper, thus, ΨI “ diagtΨRu.

The practical IS with bI-bit quantizers cannot produce continuous phase shift between

r0, 2πs. Thus, a random quantization error ∆ψp P r´
2π

2bI`1 ,
2π

2bI`1 s should be considered for

the IS-aided paths, and the matrix of discrete phase shift is expressed as Ψ̃I “ diagtΨ̃Ru,

Ψ̃R “ re
ψ̃1 , . . . , eψ̃NIS s, where ψ̃l “ ψl `∆ψl.

The path loss model of the IS-aided channel in single-input single-output (SISO) system

proposed in [89] is utilised to derive channel coefficients of the IS-based massive MIMO

system. Assume identical effective aperture of each Ix element, i.e., Aeff “ aeffGeff, where

aeff “ λ2{p4πq, andGeffpψibq “ γcp cos2q0pψibq is the element radiation pattern, γcp “ 4q0`2

is the coefficient satisfying conservation of power, ψib denotes the broadside angle, q0 is the

element gain. Assume that the polarization between Tx, IS and Rx is perfectly matched,

and the effective aperture is aeff “ λ2{4, the path loss of IS-aided channel is given as [89]:

LIS “

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

NIS
ÿ

p“1

ejψpρI,pαp

ˇ

ˇ

ˇ

ˇ

ˇ

2

εeff,p

˛

‚

´1

(5.9)

ρI,p “

d

aeffp`r̂fw,p ‚ n̂Iq
2q0

4πr2
fw,p

loooooooooooomoooooooooooon

” ρfw,p

d

aeffp`r̂bw,p ‚ n̂Iq
2q0

4πr2
bw,p

looooooooooooomooooooooooooon

” ρbw,p

(5.10)
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αp “ e´j2πfτfw,p
loooomoooon

”αfw,p

e´j2πfτbw,p
looooomooooon

”αbw,p

(5.11)

where αp and ρI,p denote the time shift factor and power attenuation of the p-th path

induced by signal propagation, where the time delay is calculated as τp “ τfw,p ` τbw,p,

τfw,p “ rfw,p{c, τbw,p “ rbw,p{c, and c is the speed of light. When the radiation pattern

is Geffpψcp “ 0q “ π, it is obtained that the gain of each Ix element is q0 « 0.285. The

term cospψibq of the incident wave and reflected wave are respectively replaced by the dot

products p´r̂fw,p ‚ n̂Iq and p`r̂bw,p ‚ n̂Iq. The unit vectors r̂fw,p ” ´prI ` χ
T
I,p ´wq{rfw,p

and r̂bw,p ” ´prI ` χ
T
I,p ´ vq{rbw,p respectively indicate the direction of the incident wave

and reflected wave on the p-th Ix element. According to (5.3d) and (5.4d), these functions

satisfy that r̂fw,p “ RpoISqkpνfw,p, µfw,pq and r̂bw,p “ RpoISqkpνbw,p, µbw,pq. The outward-

facing perpendicular direction of the IS is expressed as n̂I “ rnx, ny, nzs
T “ RpoISqr0, 1, 0s

T.

And the dot product is calculated as `r̂bw,p ‚ n̂I “ r̂T
bw,pn̂I “ sinpµbw,pq sinpνbw,pq and

`r̂fw,p ‚ n̂I “ r̂T
fw,pn̂I “ sinpµfw,pq sinpνfw,pq, where the rotation matrix RpoISq is mitigated.

Thus, the path attenuation of the forward link and backward link are rewritten as ρfw,p “
c

aeffpsinpµfw,pq sinpνfw,pqq
2q0

4π2r2
fw,p

, ρbw,p “

c

aeffpsinpµbw,pq sinpνbw,pqq
2q0

4π2r2
bw,p

.

Path loss at IS LIS in (5.9) can be decomposed into three components: controllable

phase shift ejψp , power attenuation ρI,p, time shift factor αp. Substitute (5.9)-(5.11) to

(5.8), and replace the subscript ‘p’ with ‘l ’, then the l -th complex channel coefficient

can be obtained as hl “ βlαl, ρI,l “ ρfw,lρbw,l, which is decomposed into the channel

impulse response of the forward link and the backward link, i.e., |hfw,l|
2 “ aeffρ

2
fw,l and

|hbw,l|
2 “ aeffρ

2
bw,l. Following the same way, the time shift factor of the IS-aided path

can be obtained as αΛR
“ rα1, . . . , αNIS

s, αp “ αfw,pαbw,p. The IS-aided channel can be

obtained as follows:

HR “ TτbβPIVI (5.12a)

Tτ “ diagtα1, . . . , αLu (5.12b)

bβ “ diagtbβ,R d bβ,Tu,bβ,R “ rβ1:1`C , ρ̃bws,bβ,T “ r1
T
1`C ,ρfws (5.12c)

PI “ diagt1T
1`C , e

jψ1 , . . . , ejψNIS u (5.12d)

VI “ diagtAIu,AI “ r1
T
1`C , a

H
bw,1afw,1, . . . , a

H
bw,NIS

afw,NIS
us (5.12e)

where bβ “ diagtβu is the diagonal matrices of complex channel gain of all paths, and

β “ rβ1, . . . , βLs. The matrix of complex channel gain is expressed as the product of
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two intermediate matrices bβ “ bβ,Rbβ,T, in order to distinguish the contribution of

the forward link and the backward link on bβ, and ρ̃bw “ rρbw,1e
jζ2`C , . . . , ρbw,NIS

ejζLs,

ρfw “ rρfw,1, . . . , ρfw,NIS
s.

When the IS is sufficiently far from the transmitter, the NIS paths of forward link

are approximately parallel. Then it is reasonable to apply the approximation of path

attenuation and incident angles ρfw,p « ρfw,0, µfw,p « µfw,0, νfw,p « νfw,0. Similarly, when

the receiver is sufficiently far from the IS, the paths of backward link are approximately

parallel, resulting into approximation on path attenuation and reflection angles ρbw,p «

ρbw,0, αbw,p « αbw,0, reflective angles µbw,p « µbw,0, νbw,p « νbw,0. Therefore, IS array

responses respectively approximate to afw,p « afw,0, abw,p « abw,0. Then the approximated

channel vector of (5.10) is obtained as

HR,far «

˜

ρfw,0ρbw,0

ÿ

pPNIS

αpe
jψ̃p

¸

aR,0a
H
bw,0afw,0a

H
T,0 (5.13)

where aR,0 and aT,0 are the array response with approximated AOA and AOD of IS aided

paths.

5.2.3 Signal Model

Therefore, when the transmitter emits a signal xptq P CNBˆ1 through NB beams, the

perfectly synchronised narrowband received signal during observation time To is expressed

as

Yptq ”
L
ÿ

l“1

a

NRNTPT pHd `Hs `HRqFBxpt´ τlq
looooooooooooooooooooooooooomooooooooooooooooooooooooooon

” Yptq

`nobs P CNRˆ1, 0 ď t ď To (5.14)

where FB ”
?
PTrfB,1, . . . , fB,NB

s P CNTˆNB is the directional beamforming matrix, and

fB,b “ aT,bpϑb, ϕbq, PT is the transmit power. nobs is the additive white Gaussian noise

with PSD N0. Note that, the beamforming matrix is normalised tracetFH
BFBu “ 1, and

the direction of beams pϑb, ϕbq is uniformly distributed in the range of rϑl ´ π, ϑl ` πs

and rϕl ´ π{2, ϕl ` π{2s. Thus, the received signal follows the biased complex Gaussian

distribution, i.e., Yptq „ CN pYptq,nobsq.

If the sets of index of cluster reflective paths and IS-aided paths are Λs “ r2, . . . , 1`Cs,

ΛR “ r2`C, . . . , Ls, thus the paths labelled by subscripts c “ 1, . . . , C and p “ 1, . . . , NIS
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respectively corresponds to the subscripts l “ 2, . . . , 1`C and l “ 2`C, . . . , L. When IS

is in the far-field, the approximated channel of IS (5.13) is substituted into (5.14), and the

received signal is rewritten as

Yptq “
a

NRNTPTβ1α1aRaH
TFBxpt´ τ1q `

1`C
ÿ

l“2

βlαlaR,la
H
T,lFBxpt´ τlq

`

˜

ρfw,0ρbw,0

L
ÿ

l“2`C

αle
jψ̃l

¸

aR,0a
H
bw,0afw,0a

H
T,0FBxpt´ τlq ` nobs

(5.15)

5.3 CRLB of Channel Parameters and Localisation Error

In this section, we first present FIM of all channel parameters for the near-field IS, and

far-field MS and BS. Then, EFIM of position-related channel parameters is obtained and

used to eliminate the impact of phase shifts. Based on the EFIM, CRLB of MS location

parameters is obtained with unknown location of IS and clusters. The impact of NT and

NR on EFIM and CRLB are also analysed in this section.

5.3.1 Fisher Information Matrix of Channel Parameters

Define the set of interested parameters as Ω ” rω1, ψ̃s P C1ˆN1 , N1 “ 7L ` 5NIS,

where the position-related channel parameters are defined as ω1 ” rθ,φ,νbw,µbw,νfw,µfw,

ϑ,ϕ,β<,β=, τ s
T P CN2ˆ1, N2 “ 7L` 4NIS, and parameters of each path are respectively

defined as θ ” rθ1, . . . , θLs, φ ” rφ1, . . . , φLs, ν2 ” rνbw,1, . . . , νbw,NIS
s, µ2 ” rµbw,1,

. . . , µbw,NIS
s, ν1 ” rνfw,1, . . . , νfw,NIS

s, µ1 ” rµfw,1, . . . , µfw,NIS
s, ϑ ” rϑ1, . . . , ϑLs, ϕ ”

rϕ1, . . . , ϕLs, τ ” rτ1, . . . , τLs, β< “ <trβ1, . . . , βLsu, β= “ =trβ1, . . . , βLsu, ψ̃ ” rψ̃1,

. . . , ψ̃NIS
s. The FIM of the received signal Y over the vector of interested parameters Ω is

generally calculated as

JΩ “ ´E
"

B2 ln fpY|Ωq

BΩBΩT

*

(5.16)

and the log-likelihood of Yptq conditioned at Ω is calculated as

ln fpYptq|Ωq ∝ 2<tYptqHYptqu ´YptqHYptq (5.17)
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And the 1st derivative of received signal Yptq (5.14) over Ω is expressed as YΩ “ rYθ,Yφ,Yν2 ,

Yµ2
,Yν1 ,Yµ1

,Yϑ,Yϕ,Yβ< ,Yβ= ,Yτ ,Yψ̃s, wherein the derivative of signal over Rx AOA

Yθ “ ryθ1 , . . . ,yθLs is calculated as

yθl “

$

&

%

αlβl 9aR,la
H
T,lFBx, l P Λs or l “ 1

αlβle
jψlaH

bw,lafw,l 9aR,la
H
T,lFBx, l P ΛR

(5.18)

All the other derivative functions are calculated as (D.1) in Appendix D. Substitute (5.14)

to (5.16), the eFIM with IS in near-field is calculated as (5.19) in the next page, where

the element of FIM at the u-th row and v -th column is calculated as Ju,v “
1
N0

şTo
0

<
"

´

BYptq
BΩu

¯H
BYptq
BΩv

*

dt.

For the IS in far-field, channel parameters at Ix elements are approximated to those

at the IS centre, the approximated derivative functions are obtained by substituting the

the far-field signal model (5.15) to (5.16), as Yap,Ω “ rYap,θ,Yap,φ,Yap,ν2 ,Yap,µ2
,Yap,ν1 ,

Yap,µ1
,Yap,ϑ,Yap,ϕ,Yap,β< ,Yap,β= ,Yap,τ ,Yap,ψ̃s. For the sake of simplicity, the expres-

sion of Yap,Ω is omitted.

Assume L uncorrelated paths, the FIM (5.19) can be rewritten as a block diagonal

JΩ “ γ1

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

Jθθ Jθφ Jθν2 Jθµ2
Jθν1 Jθµ1

Jθϑ Jθϕ Jθβ< Jθβ= Jθτ Jθψ̃

Jφθ Jφφ Jφν2 Jφµ2
Jφν1 Jφµ1

Jφϑ Jφϕ Jφβ< Jφβ= Jφτ Jφψ̃

Jν2θ Jν2φ Jν2ν2 Jν2µ2
Jν2ν1 Jν2µ1

Jν2ϑ Jν2ϕ Jν2β< Jν2β= Jν2τ Jν2ψ̃

Jµ2θ Jµ2φ Jµ2ν2 Jµ2µ2
Jµ2ν1 Jµ2µ1

Jµ2ϑ Jµ2ϕ Jµ2β< Jµ2β= Jµ2τ Jµ2ψ̃

Jν1θ Jν1φ Jν1ν2 Jν1µ2
Jν1ν1 Jν1µ1

Jν1ϑ Jν1ϕ Jν1β< Jν1β= Jν1τ Jν1ψ̃

Jµ1θ Jµ1φ Jµ1ν2 Jµ1µ2
Jµ1ν1 Jµ1µ1

Jµ1ϑ Jµ1ϕ Jµ1β< Jµ1β= Jµ1τ Jµ1ψ̃

Jϑθ Jϑφ Jϑν2 Jϑµ2
Jϑν1 Jϑµ1

Jϑϑ Jϑϕ Jϑβ< Jϑβ= Jϑτ Jϑψ̃

Jϕθ Jϕφ Jϕν2 Jϕµ2
Jϕν1 Jϕµ1

Jϕϑ Jϕϕ Jϕβ< Jϕβ= Jϕτ Jϕψ̃

Jβ<θ Jβ<φ Jβ<ν2 Jβ<µ2
Jβ<ν1 Jβ<µ1

Jβ<ϑ Jβ<ϕ Jβ<β< Jβ<β= Jβ<τ Jβ<ψ̃

Jβ=θ Jβ=φ Jβ=ν2 Jβ=µ2
Jβ=ν1 Jβ=µ1

Jβ=ϑ Jβ=ϕ Jβ=β< Jβ=β= Jβ=τ Jβ=ψ̃

Jτθ Jτφ Jτν2 Jτµ2
Jτν1 Jτµ1

Jτϑ Jτϕ Jτβ< Jτβ= Jττ Jτψ̃

Jψ̃θ Jψ̃φ Jψ̃ν2
Jψ̃µ2

Jψ̃ν1
Jψ̃µ1

Jψ̃ϑ Jψ̃ϕ Jψ̃β<
Jψ̃β=

Jψ̃τ Jψ̃ψ̃

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(5.19)
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matrix in the sequence of number of paths. For the l -th path, the estimation of phase shift

of IS ψl and time delay τl is independent of other parameters. The complex channel gain

of IS-aided paths, βl, l P ΛR is dependent on the angle parameters νbw,p, µbw,p, νfw,p, µfw,p

and orientation of the IS n̂, while the phase shifts ψp, and channel gain of the cluster

reflective channels and the direct link channel, βl, l P Λs or l “ 1 are independent of the

other parameters. All the submatrices of JΩ are obtained as (D.2) in Appendix D. The

CRLB of all interested parameters is calculated as CRLBΩ “ J´1
Ω .

Based on the relation between channel parameters and location information, the FIM of

localisation error can be obtained by applying transformation [11] to that of channel param-

eters. Denote the set of location and orientation of MS and IS as ω2 ” ro
T
MS,v

T,Qcl,o
T
IS,PISs P

C1ˆN3 , where the set PIS “ rp
T
I,1, . . . ,p

T
I,NIS

s P C1ˆ3NIS ,Qcl “ rq
T
1 , . . . ,q

T
Cs, N3 “ 3NIS `

7` 3C, the FIM of localisation is calculated as

Jω2 “ 5ω2pΩqJΩ 5T
ω2
pΩq (5.20)

where 5ω2pΩq “ r5ω2pω1q,0NIS
s is the Jacobian matrix of Ω over ω2, and 5ω2pω1q is

expressed as (E.1) in Appendix E. Thus, the CRLB of localisation error is calculated as

CRLBω2 “ J´1
ω2

.

5.3.2 Effective Fisher Information of Location Parameters

Considering that the phase shift ψ̃p is unrelated to location parameters, the EFIM proposed

in [11] is used to eliminate the impact of ψ̃p on CRLB. According to the definition of EFIM

proposed by [11], EFIM of channel parameters ω1 is obtained as the Schur complement of

Jψ̃ in (5.19), which is

zω1 “ Jω1 ´ Jω1ψ̃
J´1

ψ̃
Jψ̃ω1

(5.21)

where Jω1 “ rJΩs1:N2,1:N2
, Jω1ψ̃

“ rJΩs1:N2,N2`1:N1
, Jψ̃ “ rJΩsN2`1:N1,N2`1:N1

, Jψ̃ω1
“

rJΩsN2`1:N1,1:N2
. Jψ̃ is a NIS ˆ NIS diagonal matrix, due to independent ψ̃. Thus, it is

straightforward to obtain that the FIMs of IS angles in zω1 are equal to 0, resulting into

infinite CRLBs. Therefore, it is necessary to set ψ̃ as given values when calculating FIM

and EFIM of other variables, thus

zω1 “ Jω1 (5.22)
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zω1 is converted to the EFIM of location information through multiplying zω1 with

the transition matrix 5ω2pω1q, as shown by the following:

zω2 “ 5ω2pω1qzω1 5T
ω2
pω1q (5.23)

The EFIM of MS position and orientation is obtained by inverse matrix theorem as

zMS “ rzω2s1:5,1:5 ´ rzω2s1:5,6:N3rzω2s
´1
6:N3,6:N3

rzω2s6:N3,1:5 (5.24)

Therefore, the squared position error bound (SPEB) PMS,posi and squared orientation error

bound (SOEB) PMS,orin of MS are calculated as

PMS,posi “ trace
!

“

z´1
MS

‰

3:5,3:5

)

(5.25a)

PMS,orin “ trace
!

“

z´1
MS

‰

1:2,1:2

)

(5.25b)

The dimension of z´1
MS seems generally increases with NIS.

Note that, the aforementioned FIMs JΩ and Jω2 are obtained with IS of unknown

position and orientation, whereas JΩ and Jω2 with perfectly known IS are free of the

forward link parameters, due to known channel between BS and IS.

5.3.3 Approximate Fisher Information Matrix for Intelligent Surface in

the Far-Field

When IS is sufficiently small, the difference of parameters at the Ix element p “ pe, where

pe “ 1, . . . , pc´1, pc`1, NIS, and those at the centre, p “ pc, is negligible, thus the IS param-

eters approximate to ω1,l « ω1,ap, l “ 2`C, . . . , L, where ω1,ap “ rθpc , φpc , νpc , µpc , νpc , µpc ,

ϑpc , ϕpc , β<,pc , β=,pc , τpcs, and pc is the index of the centre element. Substitute ω1,ap and

(5.15) to (5.16), and follow the same progress as (5.21)-(5.25), the approximated FIM

(aFIM)of the l -th path and approximated EFIM (aEFIM) of MS location information are

respectively calculated as

zω1,ap “ ´E

#

B2 ln fpY|ω1,apq

Bω1,apBωT
1,ap

+

(5.26a)

zap,MS “ rzap,ω2s1:5,1:5 ´ rzap,ω2s1:5,6:10rzap,ω2s
´1
6:10,6:10rzap,ω2s6:10,1:5 (5.26b)
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where zap,ω2 “ 5ω2pω1,apqzω1,ap 5T
ω2
pω1,apq is aFIM of location parameters. The

approximation error of ω1,ap mainly occur to the elements of kpθpe , φpeq, kpϑpe , ϕpeq,

kpνbw,pe , µbw,peq and kpνfw,pe , µfw,peq. The relative approximation error (RAE) of direction

vector of Rx kpθpe , φpeq is calculated as Kpθpe , φpeq “ |13 ´ pdiagtkpθl, φlquq
´1kpθpe , φpeq|.

If the distance error is sufficiently small, i.e., rfw,pc « rfw,pe , it is realised that Kpθpe , φpeq «

|13 ´ pdiagtχpeuq
´1χpc |{rbw,pc . RAE of direction vectors of Tx and Ix, Kpϑpe , ϕpeq,

Kpνfw,pe , µfw,peq and Kpνbw,pe , µbw,peq are obtained through the same progress. The de-

lay factors αp could be mitigated by IS phase shifter ψ̃p, thus, plays minor impact on FIM

and EFIM.

The approximate SPEB (aSPEB) AMS,posi and approximate SOEB (aSPOB) AMS,orin

of MS are calculated as

AMS,posi “ trace

"

”

z´1
ap,MS

ı

3:5,3:5

*

« PMS,posi (5.27a)

AMS,orin “ trace

"

”

z´1
ap,MS

ı

1:2,1:2

*

« PMS,orin (5.27b)

For a large IS array, the entire Ix URA array is separated into s “ 1, . . . , SIS non-

overlapping sub-arrays with number of elements smaller than Nsr “ p2di{λq, which is

determined by Fraunhofer distance of a near-field zone. Then, far-field approximated

parameters can be applied for each individual sub-array.

5.3.4 Analysis on Fisher Information Matrix and Effect of Intelligent

Surface Phase Shifter

According to Appendix D, each submatrix of (5.19) consists of the terms related to the Rx

and Tx steering vectors, named as ‘Rx factors’ and ‘Tx fractors’ respectively [8], and the

remaining terms of IS array response, phase shifts and complex channel, are named as ‘IS

factors’ in this research. The Rx factors contains the terms AH
T,lFB, 9A

H
T,lFB, or À

H
T,lFB,

while the Tx factor contains the terms AR,l, 9AR,l, or ÀR,l. The explicit expressions of

these Rx-related and Tx-related terms are calculated and interpret the properties of the

CRLBs.

For the Tx factors, assume the number of elements on each row and column of Tx,

Nx “ 0.5
?
NT ´ 0.5 being an integer value, and dT “ 0.5λ, the inner product

ˇ

ˇ

ˇ
aH

T,lfB,b

ˇ

ˇ

ˇ
is
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obtained as following:

ˇ

ˇaH
T,lfB,b

ˇ

ˇ “
1

NT

?
NB

ˇ

ˇ

ˇ

ˇ

ˇ

Nx
ÿ

t1“´Nx

Nx
ÿ

t2“´Nx

´

e´jπt1pxb´xqe´jπt2pzb´zq
¯

ˇ

ˇ

ˇ

ˇ

ˇ

paq
“

1

NT

?
NB

ˇ

ˇ

ˇ

ˇ

ˇ

˜

1` 2
Nx
ÿ

t1“1

cospt1πpxb ´ xqq

¸˜

1` 2
Nx
ÿ

t2“1

cospt2πpzb ´ zqq

¸ˇ

ˇ

ˇ

ˇ

ˇ

“
1

NT

?
NB

ˇ

ˇ

ˇ

ˇ

sinppNx ` 0.5qπpxb ´ xqq

sinp0.5πpxb ´ xqq

sinppNx ` 0.5qπpzb ´ zqq

sinp0.5πpzb ´ zqq

ˇ

ˇ

ˇ

ˇ

pbq
“

1

NT

?
NB

ˇ

ˇ

ˇ

ˇ

sinpp2Nx ` 1qx1bq

sinpx1bq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sinpp2Nx ` 1qz1bq

sinpz1bq

ˇ

ˇ

ˇ

ˇ

“
1

?
NB

F?NT
px1bqF

?
NT
pz1bq (5.28)

where x “ 2dT
λ r1, 0, 0sRpoMSq

Tkpϑl, ϕlq, z “
2dT
λ r0, 0, 1sRpoMSq

Tkpϑl, ϕlq, xb “
2dT
λ cosϕb

cosϑb, zb “
2dT
λ sinϑb are uniformly distributed in the range r´1, 1s. The progress (a)

utilises the trigonometric identity to convert the summation of exponential function to a

closed form function. The progress (b) utilises the substitution x1b “ 0.5πpxb ´ xq and

z1b “ 0.5πpzb ´ zq to convert the closed form function to the product of two Fejér kernel

F?NT
p¨q of order

?
NT [41]. Therefore, the value of

ˇ

ˇ

ˇ
aH

T,lfB,b

ˇ

ˇ

ˇ
fluctuates between the range

r0, 1{
?
NBs. If the direction of the b-th beam is sufficiently close to the real direction

of the transmitted signal, i.e., xb “ x ` δx,b and zb “ z ` δz,b, and δx,b and δz,b are

sufficiently small, the absolute value of transmitted beam in (5.18) is approximated to
ˇ

ˇ

ˇ
aH

T,lfB,b

ˇ

ˇ

ˇ
«

ˇ

ˇ

ˇ

ˇ

sin
πδx,b

2
πδx,b

2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sin
πδz,b

2
πδz,b

2

ˇ

ˇ

ˇ

ˇ

Ñ 1. Thus,

aH
T,lFBFH

BaT,l “

NB
ÿ

b“1

|aH
T,lfB,b|

2

“
1

N2
TNB

NB
ÿ

b“1

ˆ

sinppNx ` 0.5qπpxb ´ xqq

sinp0.5πpxb ´ xqq

˙2 ˆsinppNx ` 0.5qπpzb ´ zqq

sinp0.5πpzb ´ zqq

˙2

pbq
“

1

NB

NB
ÿ

b“1

´

F 2?
NT
px1bqF

2?
NT
pz1bq

¯

(5.29)

According to the property of the Fejér kernel, (5.19) decreases with NT, NB, x1b and z1b
increasing. This is attributed to: 1. the more elements and beams on the Tx of constant
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transmit power, the less power assigned to each element and each beam, and 2. the larger

difference between the beamforming direction and real direction of transmitted signal, the

less power given to the real direction of transmitted signal.

Based on (5.19), 9aH
T,lFBFH

BaT,l and àH
T,lFBFH

BaT,l are respectively calculated as

9aH
T,lFBFH

BaT,l “
BaH

T,l

Bϑl
FBFH

BaT,l “
1

N2
TNB

B
řNB
b“1

1´cospp2Nx`1qx1bq

1´cospx1bq

1´cospp2Nx`1qz1bq

1´cospz1bq

Bϑl

“
1

N2
TNB

NB
ÿ

b“1

ˆ

sinpp2Nx ` 1qx1bqp2Nx ` 1q

1´ cospx1bq
`
p1´ cospp2Nx ` 1qx1bqq sinpx1bq

p1´ cospx1bqq
2

˙

1´ cospp2Nx ` 1qz1bq

1´ cospz1bq
jπ 9x1b `

1´ cospp2Nx ` 1qx1bq

1´ cospx1bq

ˆ

sinpp2Nx ` 1qz1bqp2Nx ` 1q

1´ cospz1bq
`

p1´ cospp2Nx ` 1qz1bqq sinpz1bq

p1´ cospz1bqq
2

˙

p´jπq 9z1b (5.30)

where 9x1b “
Bx1b
Bϑ , 9z1b “

Bz1b
Bϑ . Therefore, the Tx factors with the terms in zω1 generally

increase with NT and NB.

For the Rx factors, it is straightforward to obtain the terms aH
R,laR,l “ 1, and

9aH
R,laR,l “

BaR,l

Bθl

H

aR,l “ aH
R,ldiag

"

j2πpT
R RpoMSq

T Bkpθl, φlq

Bθl
looooooooooomooooooooooon

”Kθ,lPC3ˆ1

*

aR,l “
1

NR
1T
NR

pT
RKθ,l

(5.31)

àH
R,laR,l “

BaR,l

Bφl

H

aR,l “ aH
R,ldiag

"

j2πpT
R RpoMSq

T Bkpφl, φlq

Bφl
looooooooooomooooooooooon

”Kφ,lPC3ˆ1

*

aR,l “
1

NR
1T
NR

pT
RKφ,l

(5.32)

where 1T
NR

pT
R represents the respective sum coordinates of all Rx elements on each dimen-

sion. When Rx elements are distributed symmetrically around the array centre, as the

assumption made in the section 5.2, the summation is calculated as 1T
NR

pT
R “ r0, 0, 0s, and

the Rx-related terms 9A
H
RAR and À

H
RAR are consequently equal to 0L0T

L . Kθ,l and Kφ,l

are constant matrices with given oMS, θl and φl.
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5.4 Intelligent Surface Phase Shifter Design for Localisation

The performance of localisation can be further improved by allocating localisation-aimed

ISpsf, which maximises the value of FIMs of IS related parameters ω3,p “ rνfw,p, µfw,p,

νbw,p, µbw,p, β<,p, β=,ps through allocating proper ΨR to minimise the imaginary parts. The

problem of deriving the localisation-aimed ISpsf of minimum PEB can be formulated as

an SDP programming problem

pP5.1q min
ΨR

tracetrMs3:5,3:5u (5.33)

s.t.
«

M I10

I10 zMS

ff

ě 0 (5.34)

M ě 0 (5.35)

where M is the auxiliary variable, and EFIM of location information zMS is semi-definite

matrix [11],[91]. (P5.1) can be solved by the existing iterative algorithms, e.g., gradient

descent method, when a proper initialisation is provided, and NIS is sufficiently small.

However, iterative algorithms may consume tremendous computation for large value of

NIS. The problem is turned to find the maximal derivatives related to ISpsf.

For the derivatives of IS array response displayed as (D.4) in Appendix D, the terms re-

lated to ISpsf are denoted by$p “ ρbw,pρfw,pe
jζpaH

bw,pe
jψ̃pafw,p, and tCfe,p, Cfa,p, Cbe,p, Cba,pu

and tEfe,p, Efa,p, Ebe,p, Eba,pu are respectively the amplitudes and phases of derivatives of

$p to ω3,p, which are rewritten as following :

B$p

Bνfw,p
“ Cfe,pEfe,pe

jψ̃p (5.36)

B$p

Bµfw,p
“ Cfa,pEfa,pe

jψ̃p (5.37)

B$p

Bνbw,p
“ Cbe,pEbe,pe

jψ̃p (5.38)

B$p

Bµbw,p
“ Cba,pEba,pe

jψ̃p (5.39)

B$p

Bβ<,p
“ aH

bw,pafw,pe
jψ̃p (5.40)
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B$p

Bβ=,p
“ jaH

bw,pafw,pe
jψ̃p (5.41)

where the expressions of the amplitudes and phases are shown as (D.5) in Appendix

D. Each of the maximum values of (5.36)-(5.41) are equal to their individual ampli-

tudes. The optimal ISpsfs for (5.36)-(5.41) are denoted by ψ́ “ rψ́1, . . . , ψ́NIS
s, where

ψ́p P tψν,bw,p, ψµ,bw,p, ψν,fw,p, ψµ,fw,p, ψβ,<,p, ψβ,=,pu can be obtained through the following

optimisation :

min
ψ̂p

|=Ep ´ ψ̂p| (5.42)

where Ep P tEfe,p, Efa,p, Ebe,p, Eba,pu are designed for optimal ISpsf in (5.36)-(5.41). Ep “

aH
bw,pafw,p is applied for the optimal ISpsf of other parameters ω4,p “ rθp, φp, ϑp, ϕp, τps,

and =paH
bw,pafw,pq “ 2πχI,ppkpνbw,p, µbw,pq ´ kpνfw,p, µfw,pqq{λ.

Note that, the information of ω3,p in received signals are eliminated by ψ̂p, even if

the corresponding elements of FIMs Jω1 are increased. Therefore, the optimal ISpsf of

other channel parameters rθp, φp, ϑp, ϕp, τps are not considered, in order to remain suffi-

cient position-related channel parameters to localisation. Therefore, the FIM with optimal

ISpsf can be calculated as

J́ω1 “ Jω1 dQor d Ṕ (5.43)

where Qor is the matrix that all elements are reciprocal of those in P, and Ṕ “ pH
I pI,

where pI “

”

11`C Ψ́R

ı

, Ψ́R is the ISpsf matrix of ψ́p. Substitute J́ω1 to (5.21)-(5.26), it is

straightforward to calculate the EFIM of localisation-aimed ISpsf as źω2 “ 5ω2pω1qJ́5T
ω2

pω1q. Therefore, (P5.1) is converted to

pP5.2q min
Ψ́R

tracetrMs3:5,3:5u (5.44)

s.t.
«

M 5ω2pω1q

5T
ω2
pω1q J́ω1

ff

ě 0 (5.45)

M ě 0 (5.46)

The optimal solution to (P5.2) is obtained as that of (5.43) which maximise the values of

(5.36)-(5.41).
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5.5 Simulation Results

We consider a scenario where single MS is localised by a BS operating at fc “ 30 GHz

(λ “ 0.01 m), bandwidth of W “ 100 MHz, observation noise of psd N0 “ 1e´8 mw/GHz,

transmit power Pt “ 1 mw, and 32 subcarriers through a LOS link, a single bounced NLOS

link and a RIS-aided link. Both BS and MS are equipped with NT, NR “ 10ˆ 10 antenna

elements, which are distributed as rectangular grids with element spacing 0.5λ “ 0.005 m.

IS is fixed at the position rI “ r24, 21, 15sT, and BS is at w “ r0, 0, 10sT. The position of

MS is randomly generated in the farther range than BS to IS, and Nsr “ 6456. Cell radius

is 100 m. The performance of localisation is evaluated by PEB and OEB of MS within

both cases of known and unknown IS, where known IS is referred to the IS with complete

awareness of its position and orientation, and unknown IS is the IS with the awareness

absent.

Figs. 5.2 and 5.3 present that the average PEB and OEB of MS are generally decreas-

ing when NIS P r6
2, 1282s, and location and orientation of IS are perfectly known. It is

observed that the localisation-aimed ISpsf (lo-ISpsf) always outperforms communication-

aimed ISpsf (co-ISpsf) [13],[14], since lo-ISpsf adjusts the phase of all derivatives, while

co-ISpsf[13],[14] only considers those of parameters at BS and MS. aPEB and aOEB usu-

ally approximate ePEB and eOEB with the relative approximation error (RAE) below 5%.

Thus, far-field approximation error is effectively reduced by restricting the sub-arrays to

Nsr elements. The 8-bit quantizer always achieve the highest performance than the other

quantizers. However, the prominent effectiveness of lo-ISPsf is reflected on 1-bit quantizer,

100 times improvement on PEB and OEB with co-ISpsf[13],[14], whose performance also

approximates to that of an 8-bit quantizer with co-ISpsf[13],[14].

Figs. 5.4 and 5.5 display the average PEB and OEB achieved by unknown ISs of 1, 4,

8-bit quantizers with the same simulation setup. PEB and OEB fluctuates severely and

even increases when NIS ą 841, since the absence of perfect knowledge of IS disables the

location information of IS-aided paths. These results emphases the importance of knowl-

edge of IS location information. The difference between approximated data and exact data

is only acceptable with NIS ď 64. The RAE of PEB and OEB is even up to 42% and 117%

at NIS “ 16384. Notice the minor superiority of 4 and 8-bit quantizers than the 1-bit

quantizer, it is down to conclude that the 1-bit quantizer is still the most valuable choice

for the scenario with unknown IS.



Chapter 5. Intelligent Surface Assisted And Massive MIMO Based Localisation 79

Number of IS elements

2000 4000 6000 8000 10000 12000 14000 16000

P
E

B
 (

m
et

er
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

aPEB with 1-bit co-ISpsf

aPEB with 1-bit lo-ISpsf

aPEB with 4-bit co-ISpsf

aPEB with 4-bit lo-ISpsf

aPEB with 8-bit co-ISpsf

aPEB with 8-bit lo-ISpsf

Number of IS elements

2000 4000 6000 8000 10000 12000 14000 16000

P
E

B
 (

m
et

er
)

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

ePEB with 1-bit co-ISpsf

ePEB with 1-bit lo-ISpsf

ePEB with 4-bit co-ISpsf

ePEB with 4-bit lo-ISpsf

ePEB with 8-bit co-ISpsf

ePEB with 8-bit lo-ISpsf

Figure 5.2: Average of approximated PEB and exact PEB with known IS.
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Figure 5.3: Average of approximated OEB and exact OEB with known IS.
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5.6 Summary

In this chapter, we have studied the fundamental limits of IS assisted and massive MIMO

based localisation. The impacts of number of IS elements and number of quantization bits

have been investigated with approximated FIM and exact FIM for far-field localisation.

Simulation results show minor approximation error derived by the approximated FIM

with perfect awareness of IS position and orientation, while huge values of up to 42% and

117% RAE of PEB and OEB are drawn by that without the awareness, which implies

the importance of the knowledge of IS position and orientation. A novel localisation-

aimed ISpsf is proposed to improve accuracy than the existing communication-aimed ISpsf

[13],[14]. However, it brings greater improvement on accuracy of 1-bit quantizer than

expensive quantizers. Moreover, localisation-aimed ISpsf could be disabled by the absence

of knowledge of IS, where the Ix elements deteriorate into single bounced scatters.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis investigated the mobile localisation technologies applied for 5G and B5G cellu-

lar networks, including centralised cooperative localisation based on hybrid measurements,

UAV BS assisted and RSS based localisation, and IS assisted massive MIMO based local-

isation.

In Chapter 3, the centralised cooperative localisation approach based on TOA, AOA,

AOD and RSS has been proposed to localise the MS in single bounced NLOS environ-

ment. The proposed approach is enhanced by another proposed weight functions and MS

grouping scheme, in order to further improve accuracy of localisation, and reduce the com-

putation cost. It has been shown that the proposed CLTAAR, wCLTAAR and eCLTAAR

approaches achieve higher accuracy, and eCLTAAR costs 74% less computation time than

the conventional approach in [2].

In Chapter 4, the fixed-wing UAV mounted BS assisted and RSS based localisation

with airframe shadowing has been studied. This localisation problem can not be effec-

tively solved by the existing approaches, due to the nonlinear and non-convex expression

of PLE. We first propose to partition the EAPL model to a power-like function of two

sub-functions through piecewise convex approximation and curve fitting. Based on the

approximated model, the problem of UAV assisted localisation with unknown and unequal

PLEs is addressed by the proposed PCAL approach. The ambiguous estimates caused

by the approximated model are eliminated by a proposed GSAE method, which is more

effective than the conventional PLM method in [37]. The localisation problem with un-

82
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known transmit power is solved by the proposed PCAL-gsDRSS approach with estimated

transmit power. Furthermore, an anti-common sense finding has proved the higher accu-

racy of localisation and ranging distance achieved by EPt and EPLEs than that of real

transmit power and real PLEs, and suggests to use estimated parameters rather than the

real parameters, even in the scenario with perfectly known real parameters. Besides, a

PCAL-EPt-gsDRSS localisation scheme has been proposed with estimated EPt. Simula-

tion results shown the much higher accuracy of proposed PCAL and PCAL-GSAE with

unknown and unequal PLEs, PCAL-gsDRSS and PCAL-EPt-gsDRSS with unknown trans-

mit power, and unknown and unequal PLEs than the existing approaches [7],[8],[10],[63]

with perfectly known PLEs and transmit power, and [9] with unknown transmit power,

and unknown and unequal PLEs. PCAL-GSAE and PCAL-EPt-gsDRSS approach the

CRLB derived.

In Chapter 5, an IS assisted massive MIMO based localisation has been investigated.

Large IS array is partitioned into non-overlapping sub-arrays, in order to mitigate far-

field approximation error on channel parameters and aFIM. The derived eFIM and eEFIM

prove the necessity on separating the progresses of localisation and ISpsf design. Through

analysing eFIM, localisation-aimed ISpsf is designed to decrease the theoretical limits on

PEB and OEB of MS. The impacts of number of Ix elements, number of ISpsf quantizer bits

and knowledge of IS on the obtained approximated PEB, OEB and exact PEB and OEB

of localisation have been investigated by numerical results. The overall results imply the

importance of the perfect knowledge of IS, and the effectiveness of proposed localisation-

aimed ISpsf. When the IS is perfectly known, aFIM achieves negligible RAE, and ISpsf

of 8-bit quantizer has the highest accuracy. However, when the knowledge of IS is absent,

RAE of PEB and OEB increases up to 42% and 117%, and ISpsf of 1-bit quantizer achieve

comparable accuracy as the other expensive quantizers. The proposed localisation-aimed

ISpsf with the perfect knowledge has performed 100 times higher accuracy than the ex-

isting communication-aimed ISpsf [13],[14], but also deteriorates dramatically when IS is

unknown.

6.2 Future Work

In the research on mobile localisation techniques in this thesis, some assumptions made

are far beyond the realistic. For example, in the practical system, the radio resource al-

located to localisation is limited and less important than other missions of the networks,
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like power control, interference management, channel estimation, etc, which might influ-

ence the accuracy and quantity of measurements accessible for localisation. Besides, the

upcoming 6G network offers an opportunity for localisation, including the enablers, like

THz communication, intelligent surface and artificial intelligent system. Hence, the future

research topics are summarised in the following.

1. Joint optimisation of available radio resources for each mission are needed for differ-

ent purposes of networks. Currently, most network missions are processing indepen-

dently. The impacts of different missions on localisation have not been adequately

investigated, except power control on fundamental limits of localisation. For exam-

ple, the performance of localisation may not be degraded by giving more resources to

channel estimation, which can beneficial for localisation through providing more ac-

curate measurements. Another example is that, inter-user interference may contain

eligible location information of users in neighbouring cells, which assists localisation

of the interfering users. Therefore, the joint optimisation of multiple missions for

improving the entire performance of multi-user localisation is still challenging and

will be investigated thoroughly.

2. Some promising technologies envisioned for the future 6G offer new opportunity to

localisation. Simultaneous localisation and mapping will be enabled by a unified

interface of 6G, which is a challenging problem due to the insufficient accuracy of

measurements. The passive IS has been investigated by this thesis, but the active IS,

which works as transmitter, and hybrid passive and active IS are different with passive

IS, which upper bound of power is limited by the transmit power of BS or MS, thus

active IS and hybrid IS could make the smart radio environment more configurable.

THz communication is different with the existing mmWave communication, and is

distorted by molecular absorption. The proposed methods could benefit from the

higher frequency, larger bandwidth and smaller wavelength, which bring more direct

and less indirect paths, more accurate estimation on position-related parameters

and smaller antennas. The envisioned challenging problems include investigation on

new channel model in THz communication environment, non-stationary channel for

extremely large array and channel estimation at ISs.

3. The models employed by this thesis could be more realistic, and the environmen-

tal and system parameters should be considered, such as transmit power, antenna
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gain, amplifier, multipath fading and interference. Polarization influences the direc-

tional antenna gain, and contains information of incident and reflection angle [36].

Multipath fading could be significant in 5G low-bands, as the delay spread and an-

gular spread of propagation in a cluster cause extra measurement error on TOA and

AOA. TOA measurements could be distorted by synchronisation error (caused by

imperfect channel estimation and interference), clock drift and clock skew (caused

by hardware). Consideration of the aforementioned more realistic factors could not

only enrich the knowledge of location information, but also paves the way for field

test in future.

4. The proposed work in Chapters 3-5 can be verified by field test. Chapter 3 can be ex-

amined with simplified facilities. For example, BSs can be replaced with RF sensors

or spectrum analysers equipped with receivers, and MSs can be replaced with mo-

bile phone or signal generators (such as E82257D PSG) equipped with transmitters

(such as Model-TRA-5960W). The measurements of TOA, AOA, AOD and RSS are

collected and processed by the connected computer, which works as location server

centre in cellular networks. The measurement system set for Chapter 4 includes four

aircraft and a ground station. The aircraft could be NASA’s S-3B Viking airplane

equipped with GPS and synchronised notebook. A four-channel ground station of

four monopoles is employed as the transmitter. Parameters of the airplane and col-

lected RSS measurements are sent to the notebook and processed online. However,

it is difficult to apply the work proposed in Chapter 5, due to the lack of massive

MIMO arrays. The relevant field test can utilise the aforementioned signal generators

and analysers to transmit and receive signals, and build an IS made of off-the-shelf

antenna elements, such as ‘RFocus prototype’ designed by researchers of the Mas-

sachusetts Institute of Technology.

5. The proposed methods in Chapters 3 and 4 can be applied for Internet of things

(IoT) through simply replacing the architecture of 5G system with other IoT based

system, such as LoraWAN system. In the LoraWAN system, end-node transmit data

to gateways, which pass the received data to The Things Network (TTN) through

UDP/IP. Then, TTN processes the data and deliver the message to the third party

client, which estimates the position of end-node with the proposed methods. Chap-

ter 5 can be examined with experiment, if the ongoing work on IoT connections

envisioned in 5G, massive machine-type communication (mMTC) and ultra-reliable
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low-latency communication (URLLC) come true. Then, IoT user equipments (UEs)

could be directly connected to 5G massive MIMO BSs. Additionally, Chapter 3 can

also be directly applied for emergency services, e.g., E911 emergency call, based on

the RSS measurements reported by either MSs or UAV BSs.
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Appendix A

Parameters in Lemma 1

The parameters t1 „ t6 employed by EPt-range of power-like ranging function in (4.24)

are calculated as

t1 “ Pri ´XPL,i ` Ci,gi (A.1)

t2 “ |Ai,gi |p2di ´ d̃iq
Bi,gi (A.2)

t3 “ |Ai,gi |d̃
Bi,gi
i (A.3)

The six events in (4.24) for EPt-range of power-like ranging function are defined as

Event D: d̃i ě 2di & Bi,gi ă 0 (A.4)

Event E: di ă d̃i ă 2di & Bi,gi ă 0 (A.5)

Event F: d̃i ă di & Bi,gi ă 0 (A.6)

Event G: d̃i ă di & Bi,gi ą 0 (A.7)

Event H: d̃i ě 2di & Bi,gi ą 0 (A.8)

Event I: di ă d̃i ă 2di & Bi,gi ą 0 (A.9)
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And the three events in (4.23) for EPt-range of exponential-like ranging function are defined

as

Event A: XPL,i ě 10ηi log10p2q ` Pt (A.10)

Event B: 0 ă XPL,i ă 10ηi log10p2q ` Pt (A.11)

Event C: XPL,i ă 0 (A.12)



Appendix B

Derivation of Lemma 2

Denote the i -th ranging distance using any PLE η̂i in EPLE range and that using real PLE

as d̂i “ 10
ĂPLi{p10η̂iq and d̃i “ 10

ĂPLi{p10ηiq, respectively. If the ranging error of d̂i is smaller

than that of d̃i, it claims that êi “ |d̂i ´ di| ď ẽi “ |d̃i ´ di|, which is equivalent with

pd̂i ´ diq
2 ď pd̃i ´ diq

2 ñ pd̂i ` d̃i ´ 2diqpd̂i ´ d̃iq ă 0

ñ

$

&

%

d̂i ă d̃i & d̂i ą 2di ´ d̃i

d̂i ą d̃i & d̂i ă 2di ´ d̃i
(B.1)

Substituting the expressions of d̂i and d̃i to (A.129), it is rewritten as that

$

’

&

’

%

10
ĄPLi
10η̂i ą 10

ĄPLi
10ηi & 10

ĄPLi
10η̂i ă 2ˆ 10

PLi
10ηi ´ 10

ĄPLi
10ηi , XS,i ą 0

10
ĄPLi
10η̂i ă 10

ĄPLi
10ηi & 10

ĄPLi
10η̂i ą 2ˆ 10

PLi
10ηi ´ 10

ĄPLi
10ηi , XS,i ă 0

(B.2)

When 2ˆ 10
PLi
10ηi ´ 10

ĄPLi
10ηi ą 0, real PLE is bounded by ηi ą εi “ XS,i{p10 log10 2q, then

taking logarithm of equations on both sides of inequality equations in (A.130) implies that

$

&

%

η̂i ą ηi & η̂i ă η̌i, Event J

η̂i ă ηi & η̂i ą η̌i, Event K
(B.3)
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where η̌i “
pPLi`nqηi

PLi`10ηi log10

˜

2´10

XS,i
10ηi

¸ . The events are defined as, Event J : ηi ą εi&XS,i ą 0,

Event K : ηi ą εi&XS,i ă 0.

Another case 2 ˆ 10
PLi
10ηi ´ 10

ĄPLi
10ηi ă 0, i.e., ηi ă εi, is contradictory with the condition

XS,i ă 0 in (A.130), since PLE must be greater than 0. Thus, (A.130) with ηi ă εi is

calculated as

η̂i ą ηi when Event L (B.4)

where Event L : ηi ă εi& XS,i ą 0. Combining (A.131) and (A.132) leads to (4.33).
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Proof of Lemma 3

Lemma 3 can be proved by verifying any values of v̂g near the optimal ve could reached

by unEPLEs or unEPt. This can be done through expanding the expression of }Eg} at the

points near optimal ve. If the expanded expression could achieve either greater or smaller

than minimum value of }Ee}, the lemma is proved.

In this appendix, “unEdist” is referred to Edist obtained with unEPLEs and unEpt, and

“eEdist” is referred to the Edist obtained with eEPLE and eEPt. The localisation error of

(P4.7) with eEPLE or eEPt, and that of (P4.8) with unEPLEs or unEPt, are respectively

calculated as

Eg ” ΦBg ´ v “
RBS
ÿ

r“1

gr (C.1)

Ee ” ΦBe ´ v “
RBS
ÿ

r“1

er (C.2)

where the information matrix is calculated as Φ “ pATAq´1A is information matrix ex-

pressed in (P4.7), φi is the i -th row of Φ. Bg and Be are the ranging matrices of unEdist

and eEdist. Let ΥRBS
“ rυ1, . . . , υRBS

s denotes the set of N BSs in RBS group, and any

symbol with the subscript υr denotes the corresponding submatrix or elements of the BSs in

r -th group. Thus, φυr and bυr represent the information submatrix and ranging submatrix

of r -th group. Therefore, the path loss measures ĄPL “ rĂPL1, . . . , ĂPLN s and information

matrix Φ, ranging B of these RBS groups are reordered as ĄPLro “ rPLυ1 , . . . ,PLυRs,

Φro “ rφυ1
, . . . ,φυRBS

s, respectively.Localisation error of estimated unEPLEs is calculated
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as }Eg} “ }ΦroBro,g ´ v}, where the reordered effective ranging matrix with unEPLE or

unEPt is Bro,g “ rbg,1, . . . ,bg,Rs
T, and bυr “ rd2

g,r,1 ´ sg,r,1, . . . , d
2
g,r,Kr ´ sg,r,Kr s

T, and

dg,r,1 is the effective ranging distance obtained with unEPLE or unEPt, as defined in

(P4.8). Thus, the partial estimation error of r -th group with unEPLE ηg,r is expressed as

gr “ φυrbg,r ´ v, and that with eEPLE is ηe is er “ φυrbe,r ´ v.

The exponential term of r -th unEdist and eEdist are respectively denoted by tg,r “

100.1{ηg,r and te,r “ 100.1{ηe , then the ranging matrix employed by LS optimisation with un-

EPLE (LSO-unEPLE) in (P4.8) and LS optimisation with eEPLE (LSO-eEPLE) in (P4.7)

are respectively rewritten as Bt,g “

”

t
PLυ1
g,1 , . . . , t

PLυR
g,R

ı

´S and Bt,e “

”

t
PLυ1
e , . . . , t

PLυR
e

ı

´

S.

Assume equal PLE applied for the BS groups r “ 1, . . . , k1´ 1, k1` 1, . . . ,Kr, except

the k1-th group of pK1q BSs, then the partial estimation error of these pKr ´ 1q unEPLEs

is equal to that of eEPLE, i.e., er “ gr, r “ 1, . . . , k1´ 1, k1` 1, . . . ,Kr. The problem is

converted to prove gk1 could be either greater or smaller than ek1. Assume optimal eEPLE

is obtained at ηe “ η0, corresponding to te,r “ t0. Apply Taylor series expansion for gr

near tg,k1 “ t0 ˘∆t as

gυk1
«eυk1

`
Bgυk1

Btg,k1

ˇ

ˇ

ˇ

ˇ

tg,k1“t0˘∆t

“eυk1
˘ φυk1

`

ĄPLυk1
d

”

t
PLυk1,1

´1

0 , . . . , t
PLυk1,K1

´1

0

ı

˘T
∆t (C.3)

Through modifying the value of ∆t, the partial estimation error gυk1
could be located at

any position surround eυk1
. As a result, Eg could reach any position near Ee, including

the points with the shorter distances to real location of MS than Ee.

Lemma 3 is proved.



Appendix D

Derivation of Fisher Information

Matrices of Position-Related

Channel Parameters

The derivative function of the received signal Yptq in (5.14) over the interested parameters,

besides Byptq
Bθl

in (5.14), are calculated as the following equations

Byptq

Bφl
“

$

&

%

αlβlàR,la
H
T,lFBxpt´ τlq, l P Λs or l “ 1

αlβle
jψlaH

bw,lafw,làR,la
H
T,lFBxpt´ τlq, l P ΛR

(D.1a)

Byptq

Bνbw,l
“

$

&

%

0, l P Λs or l “ 1

αle
jψlp 9βl,RaH

bw,lafw,l ` βl 9a
H
bw,lafw,lqaR,la

H
T,lFBxpt´ τlq, l P ΛR

(D.1b)

Byptq

Bµbw,l
“

$

&

%

0, l P Λs or l “ 1

αle
jψlpβ̀l,RaH

bw,lafw,l ` βlà
H
bw,lafw,lqaR,la

H
T,lFBxpt´ τlq, l P ΛR

(D.1c)

Byptq

Bνfw,l
“

$

&

%

0, l P Λs or l “ 1

αle
jψlp 9βl,TaH

bw,lafw,l ` βl 9a
H
bw,lafw,lqaR,la

H
T,lFBxpt´ τlq, l P ΛR

(D.1d)
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Byptq

Bµfw,l
“

$

&

%

0, l P Λs or l “ 1

αle
jψlpβ̀l,TaH

bw,lafw,l ` βlà
H
bw,lafw,lqaR,la

H
T,lFBxpt´ τlq, l P ΛR

(D.1e)

Byptq

Bϑl
“

$

&

%

αlβlaR,l 9a
H
T,lFBxpt´ τlq, l P Λs or l “ 1

αlβle
jψlaH

bw,lafw,laR,l 9a
H
T,lFBxpt´ τlq, l P ΛR

(D.1f)

Byptq

Bϕl
“

$

&

%

αlβlaR,la
H
T,làT,lFBxpt´ τlq, l P Λs or l “ 1

αlβle
jψlaH

bw,lafw,laR,là
H
T,lFBxpt´ τlq, l P ΛR

(D.1g)

Byptq

Bτl
“

$

&

%

p´j2πfqαlβlaR,la
H
T,lFBxpt´ τlq, l P Λs or l “ 1

p´j2πfqαlβle
jψlaH

bw,lafw,laR,la
H
T,lFBxpt´ τlq, l P ΛR

(D.1h)

Byptq

Bβ<,l
“

$

&

%

αlaR,la
H
T,lFBxpt´ τlq, l P Λs or l “ 1

αle
jψlaH

bw,lafw,laR,la
H
T,lFBxpt´ τlq, l P ΛR

(D.1i)

Byptq

Bβ=,l
“

$

&

%

αljaR,la
H
T,lFBxpt´ τlq, l P Λs or l “ 1

αle
jψljaH

bw,lafw,laR,la
H
T,lFBxpt´ τlq, l P ΛR

(D.1j)

Byptq

Bψ̃l
“

$

&

%

0, l P Λs or l “ 1

αlje
jψ̃lβlaR,la

H
T,lFBxpt´ τlq, l P ΛR

(D.1k)

where the derivative equations are calculated as 9aR,l “
BaR,l

Bθl
, àR,l “

aR,l

Bφl
, 9aT,l “

BaT,l

Bϑl
, àT,l “

aT,l

Bϕl
, 9βl,R “

Bβl
Bνbw,l

, β̀l,R “
Bβl
Bµbw,l

, 9βl,T “
Bβl
Bνfw,l

, β̀l,T “
Bβl
Bµfw,l

. All the elements of FIM in (5.19)

are calculated as

Jθθ “ <tp 9A
H
R

9ARq dPd pbH
βAH

I AIbβq d pA
H
TFBFH

BATq dB1u (D.2a)

Jφφ “ <tpÀH
RÀRq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2b)

Jν2ν2 “ <tpAH
RARq dPd rp 9AI,2bβ `AI

9bβ,2q
Hp 9AI,2bβ `AI

9bβ,2qs d pA
H
TFBFH

BATq dB1u

(D.2c)

Jµ2µ2
“ <tpAH

RARq dPd rpÀI,2bβ `AIb̀β,2q
HpÀI,2bβ `AIb̀β,2qs d pA

H
TFBFH

BATq dB1u

(D.2d)

Jν1ν1 “ <tpAH
RARq dPd rp 9AI,1bβ `AI

9bβ,1q
Hp 9AI,1bβ `AI

9bβ,1qs d pATFBFH
BATq dB1u

(D.2e)
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Jµ1µ1
“ <tpAH

RARq dPd rpÀI,1bβ `AIb̀β,1q
HpÀI,1bβ `AIb̀β,1qs d pA

H
TFBFH

BATq dB1u

(D.2f)

Jϑϑ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d p 9A

H
TFBFH

B
9ATq dB1u (D.2g)

Jϕϕ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d pÀ

H
TFBFH

BÀTq dB1u (D.2h)

Jττ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB3u (D.2i)

Jβ<β< “ Jβ=β= “ <tpAH
RARq dPd pAH

I AIq d pA
H
TFBFH

BATq dB1u (D.2j)

Jψ̃ψ̃ “ <trbH
β,2A

H
RARbβ,2s d :Pd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2k)

Jθφ “ <tp 9A
H
RÀRq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2l)

Jθϑ “ <tp 9A
H
RARq dPd pbH

βAH
I AIbβq d p 9A

H
TFBFH

BATq dB1u (D.2m)

Jθν2 “ <tp 9A
H
RARq dPd rpAIbβq

Hp 9AI,2bβ `AI
9bβ,2qs d pA

H
TFBFH

BATq dB1u (D.2n)

Jθµ2
“ <tp 9A

H
RARq dPd rpAIbβq

HpÀI,2bβ `AIb̀β,2qs d pA
H
TFBFH

BATq dB1u (D.2o)

Jθν1 “ <tp 9A
H
RARq dPd rpAIbβq

Hp 9AI,1bβ `AI
9bβ,1qs d pA

H
TFBFH

BATq dB1u (D.2p)

Jθµ1
“ <tp 9A

H
RARq dPd rpAIbβq

HpÀI,1bβ `AIb̀β,1qs d pA
H
TFBFH

BATq dB1u (D.2q)

Jθϕ “ <tp 9A
H
RARq dPd pbH

βAH
I AIbβq d pÀ

H
TFBFH

BATq dB1u (D.2r)

Jθτ “ <tp 9A
H
RARq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq d p´B2qu (D.2s)

Jθβ< “ <tpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq dB1u (D.2t)

Jθβ= “ <tjpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq dB1u (D.2u)

Jθψ̃ “ <tpAH
RARq d 9Pd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2v)

Jφν2 “ <tpÀH
RARq dPd rpAIbβq

Hp 9AI,2bβ `AI
9bβ,2qs d pA

H
TFBFH

BATq dB1u

(D.2w)

Jφµ2
“ <tpÀH

RARq dPd rpAIbβq
HpÀI,2bβ `AIb̀β,2qs d pA

H
TFBFH

BATq dB1u (D.2x)

Jφν1 “ <tpÀH
RARq dPd rpAIbβq

Hp 9AI,1bβ `AI
9bβ,1qs d pA

H
TFBFH

BATq dB1u (D.2y)

Jφµ1
“ <tpÀH

RARq dPd rpAIbβq
HpÀI,1bβ `AIb̀β,1qs d pA

H
TFBFH

BATq dB1u (D.2z)

Jφϑ “ <tpÀH
RARq dPd pbH

βAH
I AIbβq d p 9A

H
TFBFH

BATq dB1u (D.2aa)

Jφϕ “ <tpÀH
RARq dPd pbH

βAH
I AIbβq d pÀ

H
TFBFH

BATq dB1u (D.2ab)

Jφτ “ <tpÀH
RARq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq d p´B2qu (D.2ac)

Jφβ< “ <tpÀH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq dB1u (D.2ad)
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Jφβ= “ <tjpÀH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq dB1u (D.2ae)

Jφ̃ψ̃ “ <tpÀH
RARq d :Pd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2af)

Jν2µ2
“ <tpAH

RARq dPd rp 9AI,2bβ `AI
9bβ,2q

HpÀI,2bβ `AIb̀β,2qs d pA
H
TFBFH

BATq dB1u

(D.2ag)

Jν2ν1 “ <tpAH
RARq dPd rp 9AI,2bβ `AI

9bβ,2q
Hp 9AI,1bβ `AI

9bβ,1qs d pA
H
TFBFH

BATq dB1u

(D.2ah)

Jν2µ1
“ <tpAH

RARq dPd rp 9AI,2bβ `AI
9bβ,2q

HpÀI,1bβ `AIb̀β,1qs d pA
H
TFBFH

BATq dB1u

(D.2ai)

Jϑϕ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d pÀ

H
TFBFH

B
9ATq dB1u (D.2aj)

Jϑτ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

B
9ATq d p´B2qu (D.2ak)

Jϑβ< “ <tpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

B
9ATq dB1u (D.2al)

Jϑβ= “ <tjpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

B
9ATq dB1u (D.2am)

Jϑψ̃ “ <tpAH
RARq d 9Pd pbH

βAH
I AIbβq d pA

H
TFBFH

B
9ATq dB1u (D.2an)

Jϕτ “ <tpAH
RARq dPd pbH

βAH
I AIbβq d pA

H
TFBFH

BÀTq d p´B2qu (D.2ao)

Jϕβ< “ <tpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BÀTq dB1u (D.2ap)

Jϕβ= “ <tjpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BÀTq dB1u (D.2aq)

Jτβ< “ <tpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq d p´B2qu (D.2ar)

Jτβ= “ <tjpAH
RARq dPd pbH

βAH
I AIq d pA

H
TFBFH

BATq d p´B2qu (D.2as)

Jτψ “ <tpAH
RARq d 9Pd pbH

βAH
I AIbβq d pA

H
TFBFH

BATq d p´B2qu (D.2at)

Jβ<β= “ <tjpAH
RARq dPd pAH

I AIq d pA
H
TFBFH

BATq dB1u (D.2au)

Jβ<ψ̃
“ <tpAH

RARq d 9Pd pAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2av)

Jβ=ψ̃
“ <t´jpAH

RARq d 9Pd pAH
I AIbβq d pA

H
TFBFH

BATq dB1u (D.2aw)

where P is the matrix of phase shift of all paths, and

P “

«

11`C1T
1`C 11`CΨR

ΨH
R1T

1`C
2ΨH

RΨR

ff

(D.3)
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The derivative functions 9AR, ÀR, 9AT, ÀT, 9bβ,1,b̀β,1, 9bβ,2,b̀β,2, 9P, :P in (5.17) are calculated

as

9AR “
BAR

Bθ
“ r 9aR,1, . . . , 9aR,Ls , 9aR,l “

BpχRkpθl, φlqq

Bθl
d aR,l (D.4a)

ÀR “
BAR

Bφ
“ ràR,1, . . . , àR,Ls , àR,l “

BpχRkpθl, φlqq

Bφl
d aR,l (D.4b)

9AT “
BAT

Bϑ
“ r 9aT,1, . . . , 9aT,Ls , 9aT,l “

BpχTkpϑl, ϕlqq

Bϑl
d aT,l (D.4c)

ÀT “
BAT

Bϕ
“ ràT,1, . . . , àT,Ls , àT,l “

BpχTkpϑl, ϕlqq

Bϕl
d aT,l (D.4d)

9bβ,1 “
Bbβ
Bν1

“ diag
!

0T
1`C ,

9bβ,T,1, . . . , 9bβ,T,NIS

)

, 9bβ,T,p “ ρ̃bw,p
Bρfw,p

Bνfw,p
,

Bρfw,p

Bνfw,p
“
q0
?
aeffpk

Tpνfw,p, µfw,pqn̂Iq
q0´1

?
4πrfw,p

pkTpνfw,p ` π{2, µfw,pqn̂Iq

(D.4e)

b̀β,1 “
Bbβ
Bµ1

“ diag
!

0T
1`C , b̀β,T,1, . . . , b̀β,T,NIS

)

, b̀β,T,p “ ρ̃bw,p
Bρfw,p

Bµfw,p
,

Bρfw,p

Bµfw,p
“
q0
?
aeffpk

Tpνfw,p, µfw,pqn̂Iq
q0´1

?
4πrfw,p

pkTpνfw,p, µfw,p ` π{2qn̂Iq

(D.4f)

9bβ,2 “
Bbβ
Bν2

“ diag
!

0T
1`C ,

9bβ,R,1, . . . , 9bβ,R,NIS

)

, 9bβ,R,p “
Bρ̃bw,p

Bνbw,p
ρfw,p

Bρ̃bw,p

Bνbw,p
“
q0
?
aeffpk

Tpνbw,p, µbw,pqn̂Iq
q0´1

?
4πrbw,p

pkTpνbw,p ` π{2, µbw,pqn̂Iqe
jζp

(D.4g)

b̀β,2 “
Bbβ
Bµ2

“ diag
!

0T
1`C , b̀β,R,1, . . . , b̀β,R,NIS

)

, b̀β,R,p “
Bρ̃bw,p

Bµbw,p
ρfw,p

Bρ̃bw,p

Bµbw,p
“
q0
?
aeffpk

Tpνbw,p, µbw,pqn̂Iq
q0´1

?
4πrbw,p

pkTpνbw,p, µbw,p ` π{2qn̂Iqe
jζp

(D.4h)

9P “

«

11`C1T
1`C 11`C1T

NIS

1NIS
1T

1`C ΨH
R

9ΨR

ff

, 9ΨR “ rje
jψ̃1 , . . . , jejψ̃NIS s (D.4i)

:P “

«

11`C1T
1`C 11`C1T

NIS

1NIS
1T

1`C
9Ψ

H
R

9ΨR

ff

(D.4j)
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9AI,1 “
BAI

Bνfw
“

„

0T
1`C , a

H
bw,1

Bafw,1

Bνfw,1
, . . . , aH

bw,NIS

Bafw,NIS

Bνfw,NIS



,

aH
bw,p

Bafw,p

Bνfw,p
“ ej2πχI,ppkpνbw,p,µbw,pq´kpνfw,p,µfw,pqqp´j2πχI,pkpνfw,p, µfw,p ` π{2qq

(D.4k)

ÀI,1 “
BAI

Bµfw

“

„

0T
1`C , a

H
bw,1

Bafw,1

Bµfw,1
, . . . , aH

bw,NIS

Bafw,NIS

Bµfw,NIS



,

aH
bw,p

Bafw,p

Bµfw,p
“ ej2πχI,ppkpνbw,p,µbw,pq´kpνfw,p,µfw,pqqp´j2πχI,pkpνfw,p ` π{2, µfw,pqq

(D.4l)

9AI,2 “
BAI

Bνbw
“

«

0T
1`C ,

BaH
bw,1

Bνbw,1
afw,1, . . . ,

BaH
bw,NIS

Bνbw,NIS

afw,NIS

ff

,

BaH
bw,p

Bνbw,p
afw,p “ ej2πχI,ppkpνbw,p,µbw,pq´kpνfw,p,µfw,pqqpj2πχI,pkpνbw,p, µbw,p ` π{2qq

(D.4m)

ÀI,2 “
BAI

Bµbw

“

«

0T
1`C ,

BaH
bw,1

Bµbw,1
afw,1, . . . ,

BaH
bw,NIS

Bµbw,NIS

afw,NIS

ff

,

BaH
bw,p

Bµbw,p
afw,p “ ej2πχI,ppkpνbw,p,µbw,pq´kpνfw,p,µfw,pqqpj2πχI,pkpνbw,p ` π{2, µbw,pqq

(D.4n)

The amplitudes and phase of derivative functions in (5.26)-(5.29) are defined as Cfe,p “

cfe,pρbw,pρfw,p, Cfa,p “ cfa,pρbw,pρfw,p, Cbe,p “ cbe,pρbw,pρfw,p, Cba,P “ cba,pρbw,pρfw,p and

Efe,p “ ejθfw,pejζpaH
bw,pafw,p, Efa,p “ ejφfw,pejζpaH

bw,pafw,p, Ebe,p “ ejθbw,pejζpaH
bw,pafw,p, Eba,p “
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ejφbw,pejζpaH
bw,pafw,p, where

cfe,p “

d

cot2pνfw,pq `

ˆ

2π

λ
χI,p

9kpνfw,p, µfw,pq

˙2

(D.5a)

cfa,p “

d

cot2pµfw,pq `

ˆ

2π

λ
χI,pk̀pνfw,p, µfw,pq

˙2

(D.5b)

cbe,p “

d

cot2pνbw,pq `

ˆ

2π

λ
χI,p

9kpνbw,p, µbw,pq

˙2

(D.5c)

cba,p “

d

cot2pµbw,pq `

ˆ

2π

λ
χI,pk̀pνbw,p, µbw,pq

˙2

(D.5d)

θfw,p “ arcsinp
2π

λcfe,p
χI,p

9kpνfw,p, µfw,pqq (D.5e)

φfw,p “ arcsinp
2π

λcfa,p
χI,pk̀pνfw,p, µfw,pqq (D.5f)

θbw,p “ arcsinp
2π

λcbe,p
χI,p

9kpνbw,p, µbw,pqq (D.5g)

φbw,p “ arcsinp
2π

λcba,p
χI,pk̀pνbw,p, µbw,pqq (D.5h)

The convolution between the beamspace signals is calculated as xpt ´ τlqx
Hpt ´ τlq “

NBPsINB
, where Pspfq is the power spectral density of baseband signal spfq. Therefore,

according to Parsevar’s theorm, the discrete convolution of xpt ´ τlq and xHpt ´ τlq, the

1st derivative function and 2nd derivatives are respectively calculated as

B1 “

L
ÿ

l“1

xpt´ τlqx
Hpt´ τlq “

U
ÿ

ι“1

|Pspfιq|
2αT

τ ατdfι (D.6)

B2 “

L
ÿ

l“1

Bxpt´ τlq

Bτl
xHpt´ τlq “

U
ÿ

ι“1

2jπfι|Pspfιq|
2αT

τ ατdfι (D.7)

B3 “

L
ÿ

l“1

Bxpt´ τlq

Bτl

BxHpt´ τlq

Bτl
“

U
ÿ

ι“1

p2πfιq
2|Pspfιq|

2αT
τ ατdfι (D.8)



Appendix E

Derivation of the Transition

Matrix from Channel Parameters

to Mobile Station Location

Information

The transition matrix 5ω2pω1q in (5.21) and (5.24) is expressed as (E.1). The basic

rotation matrix employed by this research is in the format of the following equation

RpoMSq “

»

—

–

R1,MS

R2,MS

R3,MS

fi

ffi

fl

“

»

—

–

cospφMSq ´ sinpφMSq cospθMSq ´ sinpφMSq sinpθMSq

sinpφMSq cospφMSq cospθMSq cospφMSq sinpθMSq

0 ´ sinpθMSq cospθMSq

fi

ffi

fl

p5ω2pω1qq
T
“

ˆ

Bω1

BωT
2

˙

“

»

—

—

—

—

—

—

—

—

—

–

´

BθT

BoMS

¯ ´

BφT

BoMS

¯ ´

BνT
2

BoMS

¯ ´

BµT
2

BoMS

¯ ´

BνT
1

BoMS

¯ ´

BµT
1

BoMS

¯ ´

BϑT

BoMS

¯ ´

BϕT

BoMS

¯ ´

BτT

BoMS

¯

´

BθT

Bv

¯ ´

BφT

Bv

¯ ´

BνT
2
Bv

¯ ´

BµT
2

Bv

¯ ´

BνT
1
Bv

¯ ´

BµT
1

Bv

¯ ´

BϑT

Bv

¯ ´

BϕT

Bv

¯ ´

BτT

Bv

¯

´

BθT

BQT
cl

¯ ´

BφT

BQT
cl

¯ ´

BνT
2

BQT
cl

¯ ´

BµT
2

BQT
cl

¯ ´

BνT
1

BQT
cl

¯ ´

BµT
1

BQT
cl

¯ ´

BϑT

BQT
cl

¯ ´

BϕT

BQT
cl

¯ ´

BτT

BQT
cl

¯

´

BθT

BoRIS

¯ ´

BφT

BoRIS

¯ ´

BνT
2

BoRIS

¯ ´

BµT
2

BoRIS

¯ ´

BνT
1

BoRIS

¯ ´

BµT
1

BoRIS

¯ ´

BϑT

BoRIS

¯ ´

BϕT

BoRIS

¯ ´

BτT

BoRIS

¯

´

BθT

BPT
RIS

¯ ´

BφT

BPT
RIS

¯ ´

BνT
2

BPT
RIS

¯ ´

BµT
2

BPT
RIS

¯ ´

BνT
1

BPT
RIS

¯ ´

BµT
1

BPT
RIS

¯ ´

BϑT

BPT
RIS

¯ ´

BϕT

BPT
RIS

¯ ´

BτT

BPT
RIS

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(E.1)
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which is an orthogonal matrix. The rotation matrix of IS is of the same formula as the

function above, but replace the angles observed at MS pθMS, φMSq with those of IS pνIS, µISq.

Thus, these rotation matrices satisfy that RpoMSq
´1 “ RpoMSq

T,RpoISq
´1 “ RpoISq

T. For

the direct path and cluster reflective paths,

RpoMSq
´1 “

»

—

–

R1,MS

R2,MS

R3,MS

fi

ffi

fl

“

»

—

–

cospφMSq sinpφMSq 0

´ sinpφMSq cospθMSq cospφMSq cospθMSq ´ sinpθMSq

´ sinpφMSq sinpθMSq cospφMSq sinpθMSq cospθMSq

fi

ffi

fl

(E.2)

The derivative functions of RpoMSq
´1 over pθMS, φMSq are

9RMS “
BRpoMSq

´1

BθMS
“

»

—

–

9R1,MS

9R2,MS

9R3,MS

fi

ffi

fl

“

»

—

–

0 0 0

sinpφMSq sinpθMSq ´ cospφMSq sinpθMSq ´ cospθMSq

´ sinpφMSq cospθMSq cospφMSq cospθMSq ´ sinpθMSq

fi

ffi

fl

(E.3a)

R̀MS “
BRpoMSq

´1

BφMS
“

»

—

–

R̀1,MS

R̀2,MS

R̀3,MS

fi

ffi

fl

“

»

—

–

´ sinpφMSq cospφMSq 0

´ cospφMSq cospθMSq ´ sinpφMSq cospθMSq 0

´ cospφMSq sinpθMSq ´ sinpφMSq sinpθMSq 0

fi

ffi

fl

(E.3b)

The derivative functions of rotated Tx and Rx elements over the rotation angles are omit-

ted, since we consider the near-field case for Tx and Rx. For the cluster reflective paths

l P Λs, the derivative functions of channel parameters over the location information can be

calculated as

Bθl
Bv

“ ´
1

b

v2
R,x,l ` v

2
R,y,l

˜

vR,z,lv
T
R,lRpoMSq

´1

}vR,l}
2

´R3,MS

¸

(E.4a)

Bφl
Bv

“ ´
1

v2
R,x,l ` v

2
R,y,l

pvR,x,lR2,MS ´ vR,y,lR1,MSq (E.4b)

Bϑl
Bv

“ r0, 0, 0s (E.4c)

Bϕl
Bv

“ r0, 0, 0s (E.4d)
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Bθl
BθMS

“
1

b

v2
R,x,l ` v

2
R,y,l

˜

vR,z,lv
T
R,l

9RMSpvl ´ vq

}vR,l}
2

´ 9R3,MSpvl ´ vq

¸

(E.4e)

Bθl
BφMS

“
1

b

v2
R,x,l ` v

2
R,y,l

˜

vR,z,lv
T
R,lR̀MSpvl ´ vq

}vR,l}
2

´ R̀3,MSpvl ´ vq

¸

(E.4f)

Bφl
BθMS

“
vR,x,l

9R2,MSpvl ´ vq ´ vR,y,l
9R1,MSpvl ´ vq

v2
R,x,l ` v

2
R,y,l

(E.4g)

Bφl
BφMS

“
vR,x,lR̀2,MSpvl ´ vq ´ vR,y,lR̀1,MSpvl ´ vq

v2
R,x,l ` v

2
R,y,l

(E.4h)

Bϑl
BθMS

“ 0 (E.4i)

Bϕl
BφMS

“ 0 (E.4j)

Bθl
Bvl

“ ´
Bθl
Bv

“
1

b

v2
R,x,l ` v

2
R,y,l

˜

vR,z,lv
T
R,lRpoMSq

´1

}vR,l}
2

´R3,MS

¸

(E.4k)

Bφl
Bvl

“ ´
Bφl
Bv

“
1

v2
R,x,l ` v

2
R,y,l

pvR,x,lR2,MS ´ vR,y,lR1,MSq (E.4l)

Bϑl
Bvl

“
1

b

w2
T,x,l ` w

2
T,y,l

˜

wT,z,lw
T
T,l

}wT,l}
2
´ r0, 0, 1s

¸

(E.4m)

Bϕl
Bvl

“
1

w2
T,x,l ` w

2
T,y,l

r´wT,y,l, wT,x,l, 0s (E.4n)

Additionally, for the direct path l “ 1, the derivative function of parameters of the direct

path over the location information is calculated as

Bϑ1

Bv
“

1
b

x2
MS ` y

2
MS

ˆ

r0, 0, 1s ´
wT,z,1w

T
1

}v}2

˙

(E.5a)

Bϕ1

Bv
“

1

x2
MS ` y

2
MS

r´yMS, xMS, 0s (E.5b)
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For the IS-aided paths l P ΛR, when the rotation matrix of IS is

RpoISq
´1 “

»

—

–

R1,IS

R2,IS

R3,IS

fi

ffi

fl

“

»

—

–

cospµISq sinpµISq 0

´ sinpµISq cospνISq cospµISq cospνISq ´ sinpνISq

´ sinpµISq sinpνISq cospµISq sinpνISq cospνISq

fi

ffi

fl

RpoBSq
´1 “

»

—

–

R1,BS

R2,BS

R3,BS

fi

ffi

fl

“

»

—

–

1 0 0

0 1 0

0 0 1

fi

ffi

fl

And the derivative functions of RpoMSq
´1 over pθMS, φMSq are

9RIS “
BRpoISq

´1

BνIS
“

»

—

–

9R1,IS

9R2,IS

9R3,IS

fi

ffi

fl

“

»

—

–

0 0 0

sinpµISq sinpνISq ´ cospµISq sinpνISq ´ cospνISq

´ sinpµISq cospνISq cospµISq cospνISq ´ sinpνISq

fi

ffi

fl

(E.6a)

R̀IS “
BRpoISq

´1

BµIS
“

»

—

–

R̀1,IS

R̀2,IS

R̀3,IS

fi

ffi

fl

“

»

—

–

´ sinpµISq cospµISq 0

´ cospµISq cospνISq ´ sinpµISq cospνISq 0

´ cospµISq sinpνISq ´ sinpµISq sinpνISq 0

fi

ffi

fl

(E.6b)

As aforementioned in the section 5.2, we consider general case for IS, thus, the derivative

functions of rotated Ix elements over the rotation angles pνIS, µISq is calculated as 9χT
I,p “

BχI,p

BνIS
“ 9RISpI,p and χ̀T

I,p “
BχI,p

BµIS
“ R̀ISpI,p. The derivative functions of channel parameters

over location information can be calculated as

Bθp
BrI

“
Bθp

BχT
I,p

“ ´
Bθp
Bv

“
1

b

v2
R,x,p ` v

2
R,y,p

˜

vR,z,pv
T
R,pRpoMSq

´1

}vR,p}
2

´R3,MS

¸

(E.7a)

Bφp
BrI

“
Bφp

BχT
I,p

“ ´
Bφp
Bv

“
1

v2
R,x,p ` v

2
R,y,p

pvR,x,pR2,MS ´ vR,y,pR1,MSq (E.7b)

Bθp
BµIS

“
1

b

v2
R,x,p ` v

2
R,y,p

˜

vR,z,pv
T
R,pRpoMSq

´1χ̀T
I,p

}vR,p}
2

´R3,MSχ̀
T
I,p

¸

(E.7c)
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Bφp
BµIS

“
1

v2
R,x,p ` v

2
R,y,p

´

vR,x,pR2,MSχ̀
T
I,p ´ vR,y,pR1,MSχ̀

T
I,p

¯

(E.7d)

Bθp
BνIS

“
1

b

v2
R,x,p ` v

2
R,y,p

˜

vR,z,pv
T
R,pRpoMSq

´1 9χT
I,p

}vR,p}
2

´R3,MS 9χT
I,p

¸

(E.7e)

Bφp
BνIS

“
1

v2
R,x,p ` v

2
R,y,p

´

vR,x,pR2,MS 9χT
I,p ´ vR,y,pR1,MS 9χT

I,p

¯

(E.7f)

Bϑp
BµIS

“
1

b

w2
T,x,p ` w

2
T,y,p

˜

wT,z,pw
T
T,pRpoBSq

´1χ̀T
I,p

}wT,p}
2

´R3,BSχ̀
T
I,p

¸

(E.7g)

Bϕp
BµIS

“
1

w2
T,x,p ` w

2
T,y,p

´

wT,x,pR2,BSχ̀
T
I,p ´ wT,y,pR1,BSχ̀

T
I,p

¯

(E.7h)

Bϑp
BνIS

“
1

b

w2
T,x,p ` w

2
T,y,p

˜

wT,z,pw
T
T,pRpoBSq

´1 9χT
I,p

}wT,p}
2

´R3,BS 9χT
I,p

¸

(E.7i)

Bϕp
BνIS

“
1

w2
T,x,p ` w

2
T,y,p

´

wT,x,pR2,BS 9χT
I,p ´ wT,y,pR1,BS 9χT

I,p

¯

(E.7j)

Bµfw,p

Bv
“ r0, 0, 0sT (E.7k)

Bνfw,p

Bv
“ r0, 0, 0sT (E.7l)

Bµbw,p

Bv
“

1

x2
p,MS ` y

2
p,MS

pR2,ISxp,MS ´R1,ISyp,MSq (E.7m)

Bνbw,p

Bv
“

´1
b

x2
p,MS ` y

2
p,MS

˜

R3,IS ´
zp,MSrT

p,MSRpoISq
´1

}rp,MS}
2

¸

(E.7n)

Bµbw,p

BrI
“
Bµbw,p

BχI, p
“ ´

Bµbw,p

Bv
“

1

x2
p,MS ` y

2
p,MS

pR1,ISyp,MS ´R2,ISxp,MSq (E.7o)

Bνfw,p

BrI
“
Bνfw,p

BχI, p
“

1
b

x2
p,BS ` y

2
p,BS

˜

R3,IS ´
zp,BSrT

p,BSRpoISq
´1

}rp,BS}
2

¸

(E.7p)

Bµfw,p

BrI
“
Bµfw,p

BχI, p
“

1

x2
p,BS ` y

2
p,BS

pR1,ISyp,BS ´R2,ISxp,BSq (E.7q)

Bνbw,p

BrI
“
Bνbw,p

BχI, p
“ ´

Bνbw,p

Bv
“

1
b

x2
p,MS ` y

2
p,MS

˜

R3,IS ´
zp,MSrT

p,MSRpoISq
´1

}rp,MS}
2

¸

(E.7r)

Bµbw,p

BµIS
“
pxp,MSR̀2,IS ´ yp,MSR̀1,ISqpv´ rIq

x2
p,MS ` y

2
p,MS

(E.7s)
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Bµfw,p

BµIS
“
pxp,BSR̀2,IS ´ yp,BSR̀1,ISqpw´ rIq

x2
p,BS ` y

2
p,BS

(E.7t)

Bµbw,p

BνIS
“
pxp,MS

9R2,IS ´ yp,MS
9R1,ISqpv´ rIq

x2
p,MS ` y

2
p,MS

(E.7u)

Bµfw,p

BνIS
“
pxp,BS

9R2,IS ´ yp,BS
9R1,ISqpw´ rIq

x2
p,BS ` y

2
p,BS

(E.7v)

Bνbw,p

BµIS
“

´1
b

x2
p,MS ` y

2
p,MS

˜

R̀3,IS ´
zp,MSrT

p,MSR̀IS
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2

¸

pv´ rIq (E.7w)

Bνfw,p

BµIS
“

´1
b

x2
p,BS ` y

2
p,BS

˜

R̀3,IS ´
zp,BSrT

p,BSR̀IS

}rp,BS}
2

¸

pv´ rIq (E.7x)

Bνbw,p

BνIS
“

´1
b

x2
p,MS ` y

2
p,MS

˜

9R3,IS ´
zp,MSrT

p,MS
9RIS

}rp,MS}
2

¸

pv´ rIq (E.7y)

Bνfw,p

BνIS
“

´1
b

x2
p,BS ` y

2
p,BS

˜

9R3,IS ´
zp,BSrT

p,BS
9RIS

}rp,BS}
2

¸

pv´ rIq (E.7z)
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