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Abstract

Mobile localisation is one of the main functions of the fifth generation (5G) and beyond
5G (B5G) cellular networks, enabling high quality location services (LCSs). In this thesis,
a number of challenging problems on localisation are addressed for 5G and B5G networks
under different use cases, including device-to-device (D2D) connectivity, unmanned aerial
vehicle (UAV) mounted base station (BS), massive multiple-input multiple-output (MIMO)
antenna, and intelligent surface (IS) array. The detailed contributions are shown as fol-
lowing items.

In the first contribution, I propose a cooperative localisation technique based on time-
of-arrival (TOA), angle-of-arrival (AOA) and angle-of-departure (AOD) observed at BSs,
and received-signal-strength (RSS) collected from collaborative mobile stations (MSs) in
single-bounce multipath environment, named as CLTAAR, to mitigate non-line-of-sight
(NLOS) error due to single-bounce scattering. This scheme is further improved by a
proposed weight function of variance of measurements. Then, a grouping strategy is inte-
grated with the proposed work to reduce the running time of estimation progress, named
as eCLTAAR. The system performance is verified by simulations and Cramer-Rao Lower
Bound (CRLB). It is shown that the proposed techniques outperform existing approaches
in terms of localisation accuracy and running time.

In the second contribution, unmanned aerial vehicle (UAV)-base stations (BSs) assisted
and received signal strength (RSS) based mobile station (MS) localisation is investigated.
A practical air-to-ground path loss model is utilised, where the path loss exponent (PLE)
varies with the elevation angle and altitude of UAV, and the accurate PLE estimate is
often difficult to obtain. With unknown and unequal PLEs for different UAVs, the UAVs
assisted localisation problem becomes nonlinear and non-convex, which cannot be solved
by the existing methods. Two localisation approaches are proposed to solve the problem

with known transmit power, unknown and unequal PLEs, and one approach with estimated
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transmit power is proposed for the scenario with all the parameters unknown. Simulation
results show a much higher accuracy achieved by the proposed schemes than the exist-
ing approaches with perfect knowledge of either one or all the parameters. In addition,
an anti-intuitive finding verifies the analytical higher accuracy of localisation and ranging
distance obtained with estimated parameters than that of the real parameters. Thus, it
suggests to apply the estimated parameters rather than real parameters, even if the perfect
knowledge is available. The effectiveness of proposed approaches are also verified by the
Cramer-Rao lower bound (CRLB) derived.

In the last but not least contribution, we investigate an intelligent surface (IS) assisted
massive MIMO based localisation. Large IS array (Ix) that in near-field regime is divided
into multiple non-overlapping sub-arrays with approximated channel parameters allocated.
Both approximated Fisher information matrix (aFIM) and exact FIM (eFIM) are derived.
To improve performance of localisation, a localisation-aimed IS phase shifter (lo-ISpsf) is
first proposed to minimise position error bound and orientation error bound, rather than
maximise data rate as done by communication-aimed ISpsf (co-ISpsf) in the existing re-
search. Simulation results show the much higher accuracy of proposed lo-ISpsf than that
of existing co-ISpsf in different cases with various number of Ix elements and quantization
bits. ISpsf of 1-bit quantizer is the most efficient in most cases. The numerical results
also reflect the significant degradation on accuracy caused by absence of knowledge of IS

position and orientation.
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Chapter 1

Introduction

1.1 Background and Motivation

Localisation techniques have attracted much attention of research and rapidly grown with
the popularisation of personal electronic devices and commercial wireless networks over the
past two decades. Location awareness is now an essential feature of many commonly used
LCSs in both public, commercial and military wireless networks [1], such as emergency call
and vehicle navigation, whose quality of service (QoS) is highly dependent on localisation
accuracy. Thus, localisation techniques play a major impact on the performance of wireless
networks [2].

The existing localisation techniques can be generally categorised as three types, network
based, handset based and hybrid. The Global Positioning System (GPS) is a conventional
handset based localisation system applied for localisation and navigation, but it has some
limitations. For example, GPS in city canyons suffers from degrade performance when
the satellite signals are usually blocked by buildings. Whereas a competitive technology,
network based localisation has gained a lot of interest, since it can be widely deployed in
any wireless networks with lower cost than GPS [I],[2]. Network based localisation systems
localise targets through estimation with the measured properties of received signals, e.g.,
time-of-arrival (TOA), angle-of-arrival (AOA), angle-of-departure (AOD) and received sig-
nal strength (RSS), with no additional cost. Moreover, network based localisation also
improves with the evolution of cellular networks from the second generation (2G) to the
fifth generation (5G).

Localisation in 5G networks is more accurate than that in the conventional networks,
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since several disruptive technologies employed by 5G [3], i.e., millimeter-wave (mmWave)
communication, massive multiple-input-multiple-output (MIMO) antenna, and device-
to-device (D2D) connectivity benefit the network based localisation with more accurate
position-related parameters than those in the conventional networks from second gener-
ation (2G) to fourth generation (4G). 5G network based localisation is able to achieve
sub-meter accuracy [4], which is even more accurate than GPS (1 ~ 5-meter accuracy).
Location-awareness even becomes a key feature of 5G networks, where sufficiently accu-
rate localisation results can be used to improve wireless network design and optimisation
through many aspects, e.g., signalling overhead and networking [5], and even provide users
with multimedia applications of Gbps-order data rates and improved QoS required by 5G
networks [6]. However, due to the high frequency and low wavelength, 5G signals are easily
blocked by obstacles, resulting into high path loss (PL), non-line-of-sight (NLOS) propa-
gation, and multipath effect in harsh environment. Wherein, NLOS and multipath effect
might causes tremendous degradation on localisation based on TOA, AOA and AOD, if
they are not mitigated or treated properly. Solution to the problems lies in deploying more
relays, BSs and local networks, e.g., D2D and machine-to-machine networks, in order to
improve line-of-sight (LOS) probability and maintain the accuracy of measurements. 5G
is the first generation that natively supports D2D communication [3]. Even if D2D has
been included in 3G and 4G, it was just considered as an add-on to reduce the cost of local
service provision. Thanks to D2D connectivity, mobile stations (MSs) in proximity are
allowed to join the local network and collect the extra short-range relative measurements
between the MSs, which are more reliable than the long-range measurements observed by
base station (BS) in harsh environment. The advanced infrastructures of 5G are expected
to afford both non-cooperative and cooperative localisation approaches.

On the other hand, unmanned aerial vehicle (UAV) supported communication is first
standardised in 5G, where UAV mounted BSs is introduced as a flexible and temporary sup-
plement to the terrestrial networks, and support the jammed or destroyed terrestrial BSs
in disaster. Benefited from flexibility and wide field of vision of UAV BSs, UAV BS assisted
localisation seems to be easier and more accurate than terrestrial localisation. However,
UAV BS assisted localisation is challenging, since the practical UAV air-to-ground (A2G)
channel models are different with the conventional ground-to-ground (G2G) channel mod-
els. For example, path loss exponents (PLEs) and variance of ground shadowing of A2G
channel are not constants as those of G2G channel, but dependent on UAV altitude or

elevation angle. UAV airframe shadowing (AS) is a special parameter of fixed-wing UAV,
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and it is a function of time and fast fading. LOS probability of A2G channel is influenced
by statistical parameter of buildings in the communication environment. These nuisance
parameters must be estimated or considered in UAV BS assisted localisation, however, they
were usually ignored by the previous research, which only applied the G2G channel mod-
els. That may cause significant impact on localisation performance. This gap in previous
research motivates us to study UAV BSs assisted and RSS based localisation technique.
A common sense is widely recognised by the existing work [7]-[8],[9],[10] that the higher
accuracy of path loss parameters is, the better the localisation performs. However, we
noticed that high accuracy could happen to the localisation with imperfect knowledge of
path loss parameters. Based on this phenomenon, we study the effect of inaccurate path
loss parameters on accuracy of ranging and localisation, and find the principle to explain
it.

Massive MIMO is a promising technique for 5G, which exploits the potentially large
capacity gains on the system with signals of small wavelength. It reduces the interference
due to multipath components, and improves the resolvability of channels between BS and
MS. With large amount of observations of signals, therefore, the massive MIMO system
is able to extract sufficiently accurate position-related channel parameters from received
signals through the existing algorithms, e.g., maximum likelihood algorithm and orthogo-
nal matching pursuit algorithm, resulting into much higher accuracy than single antenna
based localisation. Thus, the measurements accuracy does not make the main impact on
massive MIMO based localisation. The Cramer-Rao lower bounds (CRLBs) of massive
MIMO based localisation accuracy in different scenarios are found inversely proportional
to signal-to-noise ratio (SNR) at MS, and realised at sub-meter accuracy in [I1] - [I2]. As a
result, the existing research mainly focused on beamforming optimisation for localisation,
which influences SNR at MSs in each direction.

Another recent emerging technology of large array, intelligent surface (IS) is consid-
ered as a promising technology envisioned for beyond 5G (B5G) networks. ISs can be
easily deployed on facades of a building, and ceiling and floor of indoor spaces. A passive
IS consisting of large amount of meta-surfaces works as a reflective antenna array. With
assistance of adjustable phase shifter on IS (ISpsf), which is used to adjust amplitudes
and phases of signals, the propagation environment near an IS becomes controllable for
the connected BSs. IS can also be applied to improve the performance of localisation
through optimising ISpsf. The existing research on IS assisted localisation exactly applied

the communication-aimed ISpsf, since it regards the IS factor as a scalar independent of
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Fisher information matrix (FIM) of other channel parameters. However, the impact of IS
incident and reflection angles on FIM was not considered. Moreover, for the IS of large
array (i.e. > le3 elements) and extra-large array (i.e. > leb elements), various parameters
and FIMs appeal to different parts of the array, and far-field approximation in the existing
work is impractical for array in near-field. To address these issues, each parameter of FIM
must be considered in ISpsf design. FIM of near-field localisation is preferable than that

of far-field, otherwise the far-field approximation error must be mitigated.

1.2 Thesis Structure

The rest of this thesis is organised as follows. The overview of mobile localisation and the
applied algorithms and techniques are introduced in Chapter 2. In Chapter 3, cooperative
localisation system is considered for MS in single bounced NLOS environment. In Chapter
4, UAV BS assisted and RSS based localisation system is considered, which addresses the
problem with known and unknown path loss parameters. In Chapter 5, an IS assisted and
massive MIMO based localisation system is considered. The impacts of IS size, far-field
approximation error and number of ISpsf quantizer bits are investigated. The design of
proposed localisation-aimed ISpsf is presented. Conclusions and future work are presented

in the final chapter.

1.3 Contributions

Based on the perfect system (known system parameters, perfect channel estimation and
interference mitigation, no synchronisation error, etc), the research conducted during this

PhD study has produced the following main contributions:

1. A cooperative localisation technique with adaptive weights on hybrid measurements
RSS, TOA, AOA, and AOD, named as CLTAAR, to mitigate NLOS errors caused by
single-bounce scattering. To reduce the computation time of cooperative approach,
an UE grouping strategy is utilised to decompose the original centralised cooperative
localisation to two steps with little degradation on accuracy. Simulation results
show that the proposed CLTAAR approach integrated with UE grouping scheme
(eCLTAAR) outperforms the conventional cooperative localisation [2] in presence of

single-bounce scattering.
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2. The UAV BS assisted and RSS based localisation problem with unknown and unequal
PLEs is solved by the proposed piecewise convex approximation aided localisation
(PCAL) scheme. To the best of our knowledge, this is also the first work to consider
UAV AS in the system model and investigate the impact of AS on UAV assisted
and RSS based localisation. The ambiguous estimates of PCAL are dealt with by a
proposed grid search assisted ambiguity elimination (GSAE) approach with known
transmit power, and a proposed DRSS based grid search (gsDRSS) approach with
unknown transmit power, which are more effective than the existing methods. The
performance of PCAL-GSAE approaches the CRLB derived. Both analytical CRLB
and simulation results prove that the proposed PCAL and PCAL-GSAE approaches
with unknown and unequal PLEs achieves higher accuracy than the existing ap-
proaches with equal and perfectly known PLEs and approach with unknown and
unequal PLEs. We also propose an anti-intuitive finding that, the estimated trans-
mit power and PLEs of significant imperfection can achieve the higher accuracy of
ranging and localisation than the real PLE and transmit power. Based on this find-
ing, a new definition of effective PLE (EPLE) and effective transmit power (EPt) are
proposed. An estimation algorithm of EPt is proposed to enhance PCAL-gsDRSS to
PCAL-EPt-gsDRSS and approach the CRLB.The effect of equal and unequal EPLEs

and EPt on localisation are analysed with both numerical results and analytical proof.

3. We investigate the performance of IS assisted and massive MIMO based localisation
of single MS, through evaluating FIMs and CRLBs of all position-related channel
parameters and location information with IS in both near-field and far-field. Based
on the derived FIMs and CRLBs, an ISpsf optimisation algorithm is proposed to
minimise position error bound (PEB) of MS. To the best of our knowledge, this work
is exactly the first work on ISpsf design for localisation, which is different with the
ISpst designed in [13],[14]. The far field approximation error on localisation is also
numerically assessed by various size of IS. Based on the numerical assessment, the ap-
proximation error of far-field localisation is mitigated by allocating non-overlapping
sub-arrays with approximated FIM derived. The impacts of number of IS size, num-
ber of ISpsf quantizer bits and knowledge of IS location information on fundamental
limits have been investigated with numerical results. Simulation results shows up to
100 times higher accuracy achieved by the proposed localisation-aimed ISpsf than

the existing work.
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Chapter 2

Overview of Localisation

Techniques

This chapter presents an overview of mobile localisation in cellular networks. The layout
of mobile localisation is introduced in section 2.1. In section 2.2, the basic system model
and most widely used measurements are described. In section 2.3, some fundamental

algorithms and techniques applied for localisation in this thesis are provided.

2.1 Classification of Network Based Localisation

Mobile localisation has been standardised in cellular network protocols. The earliest offi-
cial standardisation of mobile localisation was regulated by governmental institutions, the
Federal Communications Commission (FCC) of the United States (U.S.), as E911 used
for emergency services [15]-[16]. To dates, mobile localisation has been exploited for both
public, private and commercial services, and network optimisation, and become the main
feature of 5G networks. A fundamental layout of network based mobile localisation from
2G to 5G is displayed as Fig. 2.1, where the location server collects the observations from
BSs, and estimates the location of MSs according to different level of accuracy acquired
by the services.

This thesis only focuses on network based localisation approaches.
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Figure 2.1: Layout of Mobile Localisation

2.2 Fundamental Network Based Localisation Techniques

The three fundamental mobile localisation techniques [15]-]16], as well as the hybrid tech-
nique, are displayed in Fig. 2.2, as :

o Trilateration : The position of MS is determined by the intersection points of ranging
circles centred around the transmitter and in radius of distance measurements. This
method is suitable for TOA and RSS based methods.

o Triangulation : The position of MS is determined by the intersection points of lines
at the measured direction of signals. This method is suitable for AOA and AOD
based methods.

o Multilateration : The position of MS is determined by the intersection of multiple
hyperbolas obtained by the difference between two distance measurements. This
method is suitable for TDOA and DRSS based methods.

e Hybrid : using multiple types of measurements can improve performance of localisa-

tion.
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Figure 2.2: Fundamental mobile localisation techniques

2.3 Measurement Models and Localisation Algorithms

The most widely used measurements include ranging based measurements, e.g., TOA and
RSS, and angular based measurements, e.g., AOA and AOD.

TOA : TOA is measured as the flight time of signals 7; from the transmitter to the
receiver, i.e., 7; = t, — tg, where t; is the arrival time from transmitter w = [z;,;]T to
receiver v = [z,y]", to is the start time labelled in the signals. The measured propagation

distance is calculated by multiplying the measured TOA with speed of light ¢, as following

d; = c(1; + ny) (2.1)

where n, is the measurement error of TOA observations. The real distance is expressed as
di = |v —wi (2.2)

TOA based localisation techniques have been widely studied, due to its normally higher
accuracy than other positioning techniques. A linear LS estimator was proposed for TOA
based method under LOS environment [I7]. TOA measurements of NLOS paths were
identified by a normalised residual error test proposed in [1§], and the location of target
was determined by at least three LOS paths. Matched filter and energy detector based
TOA estimators were studied in [19] with a threshold selection algorithm proposed.
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AOA : AOA is derived by smart antenna array through estimating the direction of
strongest signals from transmitter to receiver. The measured AOA of received signals at

receiver can be expressed as

Ty — T

0; = tan™* <yl_y> + ng (2.3)

where tan~! (gfb—:g) is the real AOA. ng is the measurement error. The advantage of AOA
based method is that only two AOA measurements of LOS paths suffice to localise one
MS.

AOA based localisation techniques were limited in 2G~ 3G, due to the lack of smart
antenna array, and finally standardised in 4G. AOA measurement, NLOS error has a major
influence on the precision. The estimation error of AOA measure could vary from 0 to 360°.
In [20], AOA measurements of NLOS paths were identified by comparing measurements
with the Root Mean Square value. AOA based localisation was solved by LS estimator
in [2I]. CRLBs of AOA based method and hybrid TOA and AOA based method were
evaluated for wideband signals in [22]. In [23], pre—coder indices of the MIMO were proved
as strong angular information for AOA estimation.

RSS : RSS read at receiver can be used to estimate propagation distance through path
loss model. RSS is obtained by calculating the integration of reference signals (RS), i.e.,
position reference signal (PRS) and cell-specific reference signal (CRS) for 4G LTE system,
during a certain sampling period. Denote the RSS as Pr, which is derived from path loss
model as

Pr; = Pt—10nlog, 0(d;) + Xs, (2.4)

where 7 is PLE, Xg; is the shadowing. RSS based ranging distance is calculated as

B Pi—Pri+Xg ;

di =107 10 (2.5)

RSS based methods can compromise with any networks without require any additional
cost on hardware. The problem of RSS based localisation can be solved by the algorithms
of TOA based localisation.

The system operational frequency also affects characteristics of radio propagation. For
example, 5G path loss model, e.g., close-in (CI) path loss model also contains a component

of system operational frequency, which reflects the greater path loss value of signals at 5G
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high band than that of low band, and consequently, the smaller cell radius than that of the
existing 2G-4G. Moreover, the higher operational frequency also provides higher robustness
against Doppler shift. However, the impact of system frequency f. is not studied in Chap-
ters 3 and 4, since it does not contain any location information. Based on the assumed
perfect channel estimation and perfect knowledge of system, the measurement models of
TOA, AOA, AOD and RSS employed by Chapter 3 are free of physical layer information,
e.g., fo and signal bandwidth W, and only focus on geographical information. In contrast,
fc has significant influence on Chapter 5, due to the signal model. The impacts of f. on
TOA, AOA and AOD are intuitively reflected in the derivatives and FIMs calculated in
(D.1)-(D.2), Appendix D.

2.4 Scattering for Multipath Effect

Scattering is a physical phenomena occurs when the radio wave is reflected by rough
surface. A geometrical scattering model describes distribution of AOA and TOA of the
received signals in multipath environment with a given PDF of scatters [24]. For simplicity,
the term ‘scattering’ employed by this thesis refers to both reflection, diffraction, and
scattering, and the term ‘scatters’ is referred to both reflectors, diffractors, and scatters
in multipath propagation. The most common scattering model includes uniform circular
scattering model [25], uniform ellipse scattering model [24], etc. An example of circular
scattering model is displayed in Fig. 2.3, where the scatters are distributed on the circle

around MS, and reflect signals to BS.

2.5 Massive MIMO Uniform Rectangular Array

In the massive MIMO communication system, the time-frequency resources are divided into
multiple blocks, each of which simultaneously provides frequency-flat and static channel
to serve multi-user. The normally defined massive MIMO contains at least 64 antennas,
which is much greater than the conventional MIMO (2, 4 or 8 antennas). Each antenna
has its own radio frequency (RF) and digital baseband chain. The number of RF chains
determines the number of directional beams, which provide location information of the
channel, i.e., TOA, AOA and channel coefficients. The more RF chains applied, the

narrower beams become, and the more accurate the estimated channel parameters are.
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Figure 2.3: Circular scattering model

However, the number of RF chains is limited, due to finite total power and requirement of
system complexity. Digital beamforming allows control of both amplitudes and phases of
baseband signals.

For massive MIMO operating on TDD mode, the performance of system is not limited
by the number of antennas. Moreover, due to reciprocity of propagation, channel estimation
by uplink pilot sequence can be applied for the downlink channel. Thus, TDD mode is
widely employed by massive MIMO systems.

In this thesis, uniform rectangular array (URA) (also named as uniform planar array)
with identical elements spacing is applied for massive MIMO based localisation. An URA
has Nt antenna elements uniformly distributed on the grids on a plane, as shown by
Figure 2.4. For the massive MIMO array, the location of elements are the relative position
of elements to the centre of array, and AOA and AOD are defined as the direction of signals
with respect to the array orientation. Other commonly used models, like uniform linear
array and uniform circular arrays are suitable for different telecommunication environment.
The impact of different array shapes on FIM expressions obtained in this thesis is negligible,

and the FIM expressions can be extended to other arrays.
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Figure 2.4: Layout of uniform rectangular array

2.6 Beamforming for Massive Array

Beamforming techniques employed by antenna arrays is used to transmit or receive signals
on the desired direction. Beamforming is aimed at adjusting the amplitude and phase
of signals, in order to enhance the signals on the desired direction by constructively in-
terference while mitigate those on the other direction by destructive interference. The
performance of localisation also depend on the applied beamforming schemes, due to dif-
ferent signal power on each directional beam. Some common beamforming schemes include
directional beamforming [26], random beamforming [27], phased-array beamforming and
timed array beamforming [28]. Note that, the beamforming technique employed by this
thesis is only referred to analog beamforming (also named as RF chain beamforming),
while digital beamforming and hybrid beamforming are out of the scopes of our research,

since digital beamforming does not contain any location information.

2.7 Intelligent Surface Assisted Communication

IS is the promising technique envisioned for B5G and even future sixth generation (6G)
networks. IS in this thesis is referred to reflective surface of electromagnetic materials,
whose phase and amplitude responses at each individual element are electronically con-

trolled with integrated electronics [29]. From the perspective of hardware, ISs have PIN
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diodes embedded on connection parts to control each meta element switch on and off, and
tune phase shift by adjusting the bias voltage on capacitors. Thus, the amplitudes and
phase of reflected signals can be modified. Moreover, IS also works as steerable array.
Based on the detected channel quality information (CQI) reported by BSs and MSs, the
channel of CQI below the predefined threshold [30] is reinforced by IS, while for the channel
of CQI above the threshold, of which MSs are directly served by the BSs through LOS
paths. Therefore, IS can be utilised for many applications, such extending cell coverage
to dead-zone, suppressing inter-user interference and improving security through focusing
signals to desirable direction, etc.

IS design is always a challenging problem, which can be generally classified as two
categorises, i.e., electromagnetic based design and communication based design [31]. Elec-
tromagnetic based design of IS focuses on the functions of hardware, e.g., reflection, trans-
mission, polarization, etc. Communication based design of IS regards IS as a modification
on phases and amplitudes of signals, and concentrate on the functions of IS and the im-
pacts on the networks, e.g., capacity of channel, cell coverage, energy efficiency, etc. For
example, IS design of maximised data rate is formulated as optimisation problem of ISpsf
with respect to maximised SNR, which is different with the IS assisted energy efficiency
problem. Therefore, IS should be designed on a case-by-case basis.

The received signal power of IS-aided channel is up to 4 times than the LOS signal [29]
in the classical two-ray model, where the incidence angle equal to reflection angle. The
IS is also found more effective on increasing the signal-to-noise ratio (SNR) at MS than
massive MIMO, since the received signal power increases with the number of reflector ele-
ments Nig in the rate of O(NZ), which is higher than O(Nis) achieved by massive MIMO
arrays. The performance limits of near field large intelligent surface-assisted positioning
was evaluated by CRLB in [13],[14],[32],[33],[34]. However, some recent work states that
the benefits on SNR at the MS is upper bounded by the path loss from transmitter to the
IS [35], and the polarisation mismatch between the transmitter and the near field IS varies

with incident angle and plays a major impact on the received signal power [36].

2.8 Localisation Algorithms

There are hundreds of thousands of algorithms proposed in the existing work. Most of
them were based on (multi)lateration, optimisation, maximum likelihood, Bayesian net-

work, learning, database matching, etc. However, we focus on least-square and semi-
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definite programming localisation algorithms. LS estimator is one of most common used
(multi)lateration methods to derive the location of MS with closed form solution. It has
low complexity, and is vulnerable to large measurement error. The LS estimator can be

rewritten as optimisation of the higher accuracy through applying semi-definite relaxation.

2.8.1 Least-Square Based Method

Considering the localisation of one stationary MS assisted by N terrestrial BSs. Assume
that the MS at the position v = [x,y]T, is detected and located by N BSs, where co-
ordinates of the i-th BS is w; = [x5,5]%,i = 1,2,..., N. The real distance from MS to
the i-th BS is denoted by d; = |v — w;||. The RSS based localisation problem solved by

optimisation is formulated as following [2]
. N g 2
(P21)  min Zizl(PLi — PL;) (2.6)

where the estimated path loss JB\LZ and real path loss PL; at the i-th BS are respectively
expressed as 1/37)2 = 10m; log;q CZz and PL; = 10n;log¢ d;, and d} is ranging distance.

The i-th measured path loss value is obtained by PL; = Pt{dBm]— Pr;[dBm], where Pt
is the transmit power of MS, Pr; is the RSS at the i-th BS. If the real PLE #; is perfectly
known, the ranging distance is calculated as d; = 1()]311'/ (107:) " otherwise, an estimated
PLE 7 is applied for calculating the ranging distance as d; = 10P~Li/ (107:). 16\Lz and PL; in
(P2.1) are only dependent on ranging distance and PLE. (P2.1) is converted to the general
ranging based localisation problem (P2.2), which is suitable for both RSS, DRSS, TOA

and/or TDOA based localisation [2].

N
(P22)  min ) (d; — d;)? (2.7)
V=1
where d; = |V — w;| is the estimated distance between estimated location of MS and BS

i, The solution to (P2.2) is obviously a?z = d;. However, the real distance d; is always
unknown in practice, due to imperfect knowledge of position-related channel parameters.
Thus, the solution to (P2.2) lies in substituting ranging distance d; to d;, whose accuracy

is determined by both applied algorithm and accuracy of ranging distance d;.
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2.8.2 Semi-Definite Programming Based Method

A general form of semi-definite programming (SDP) problem is formulated as [37]

minimise ¢’x (2.8)
s.t.
F(x)>0 (2.9)
Ax =B (2.10)

where x is the target variable, c is the set of known parameters. An SDP problem consists
of a linear objective function and multiple equality and inequality constraints of both linear
and convex functions. The linear matrix inequality (2.9) collects all inequality constraints,
and (2.10) contains all equality constraints. An semi-definite cone can relax the inequality

constraints. For example, semi-definite relaxation can be illustrated as

X1 X
[ ; 2] >0 < X|X3 > XgXa (2.11)

where x; and x3 are symmetric matrices.
SDP is employed by our research, since the SDP relaxation can convert the quadratic

functions of variables in localisation problem to linear, e.g., (2.7).



Chapter 3

Low Complexity Cooperative
Positioning in Multipath

Environment

3.1 Introduction

Mobile localisation is an important yet challenging issue due to adverse propagation envi-
ronment [2]. Widely used mobile localisation methods are based on parameters like TOA
[38], AOA [20], AOD [39], and RSS [40],[41].

The main error of mobile localisation is the NLOS error caused by multipath and
scattering environment, which significantly affects TOA, AOA, and AOD. The study on
mitigating single-bounce NLOS error caused by scattering of different models can be found
in [42]-[43]. But these methods are based on stationary environment, and their localisation
accuracy is lower than that of the techniques in [44]-[45] which utilise successive mea-
surements and study mobile tracking in scattering environment. Their results show that
the accuracy can be improved by continuous iteration and utilising more measurements.
Therefore, it is crucial to improve the original work by other methods which can supply
more measurements, such as cooperative localisation.

The single-bounce scattering model is considered to be suitable for mm-wave trans-
mission environment [46],[47]. Thus, it is worth studying localisation with single-bounce

NLOS dominant scattering environment. The previous work on localisation with single-

17
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bounce scattering was based on non-cooperative localisation. In the design of weight for
each path in the problem formulation, they utilised equal weight [42],[43], or variance of
estimated location [44],[48], or only the variance of TOA ranging [45] as weight to reduce
the variation of estimation, but did not consider the effect of AOA and AOD on weight.
Cooperative localisation is an approach to localise the target with measurements col-
lected from both known and unknown nodes in collaboration. Distributed cooperative
localisation based on Bayesian estimation methods were investigated for wireless sensor
networks (WSN) [49],[50] and wireless local area network (WLAN) [5I]. Centralised co-
operative localisation is more suitable for cellular networks thanks to the availability of
Evolved Serving Mobile Location Center (E-SMLC) [52]. Most work on cooperative local-
isation [52],[53] did not consider NLOS errors due to scattering and requires higher com-
putational complexity than non-cooperative localisation [54] in contrast to mobile users’
demands for timely estimation of their location. However, most previous work on reducing
running time of distributed cooperative localisation techniques like [49] 50] are limited by
their own problem formulation and Bayesian estimation methods, and they cannot be em-
ployed by Centralised cooperative localisation which is solved by nonlinear programming.
In this chapter, a cooperative localisation technique is proposed, which employs not
only RSS but also TOA, AOA, and AOD, to mitigate NLOS errors caused by single-bounce
scattering. This work is different from the conventional work on cooperative localisation
which usually ignore the NLOS error caused by scattering. To the best of our knowledge,
this is the first work to consider cooperative localisation for mitigating the scattering effect
on TOA, AOA, and AOD, named as CLTAAR. Also, it achieves higher accuracy than con-
ventional cooperative localisation [2] in presence of single-bounce scattering. With prior
knowledge on distribution of measurement error, an adaptive weight is proposed to improve
CLTAAR to wCLTAAR of the higher robustness against measurement error. Second, an
MS grouping strategy is utilised to decompose the original entire optimisation problem
to multiple fractional optimisation problems, and save running time. The proposed MS
grouping strategy does not make any change on estimation algorithm, so that it is com-
patible with others’ estimation algorithms. CLTAAR enhanced by MS grouping scheme,
named as eCLTAAR, is shown to achieve much less computational cost than CLTAAR and
little reduction on accuracy. The CRLB is also derived for analytical assessment. Finally,
a weight function of TOA, AOA, and AOD is also proposed to further mitigate NLOS
errors of BS-MS detection in scattering environment, which has not been studied by the

previous work [42]-[45].



Chapter 3. Low Complexity Cooperative Positioning in Multipath Environment 19

The rest of this chapter is organised as follows. Section 3.2 illustrates the assumptions
made and system model adopted by the work. CLTAAR and eCLTAAR technique with
MS grouping strategy are proposed in Section 3.3, along with the CRLB. The simulation
results and discussion are presented in Section 3.4. Finally, a summary is drawn in Section
3.5.

3.2 System Model and Problem Formulation

We assume a cluster of M collaborative MSs localised by B BSs through downlink obser-
vations collected from the [ = 1,...,C single-bounce NLOS paths. Figure 3.1 displays an
example of cooperative localisation with 1 BS and 2 collaborative MSs in single-bounce
scattering environment, and the LOS direction is selected as the reference. Denote the
position of m-th MS as v, = [Zm,ym]T,m = 1,..., M. The coordinate of i-th BS
w; = [oBsi,yBsi]',i = 1,..., B is perfectly known. Thus, the direct distance between
the m-th MS and i-th BS is calculated as Dy,; = |v,, — w;|, and the distances from
the c-th scatter to the MS and BS are respectively calculated as 7r jo = |vj — q.| and
rT.ci = |d.—W;|. Denote the real length of single-bounce path from MS m to BS i through
scatter ¢ as Dy, then the estimate of TOA is expressed as [2, 3]

Tmei = (TR,jc + TT,Ci)/CO + N (31)

where ¢y = 3e8 m/s is the speed of light. n,,; ~ AN(0,02) is the zero-mean Gaussian
distributed error. Thus, TOA derived ranging distance is Tme; = Tmeide8. The AOA 6,
and AOD ¥, of signals in the NLOS environment are modelled as [2],[20],[39]

Hmc = emc + €0,mc + Se,mc (32)

Vei = Vi + 9,01 + Ev.i (3.3)
where &g e and &y ; are the extra angle deflected by a scatter in a single-bounce NLOS
path for AOA and AOD, respectively. €g e ~ N(0,02) and €90 ~ N(0,03) are the mea-
surement noise of AOA and AOD. With the fixed length between BS and MS, the position
of a scatter determines the trace of a NLOS path. Thus, the coordinate of the scatter is
calculated as q, = w; + 77, K(U¢;), and the position of MS is v = q, —7R,mcK (0mc), where

K(0) = [cos(f),sin(8)]" is the unit direction function in 2D Cartesian coordinate system.
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Scatter2

Figure 3.1: Cooperative localisation with the serving BS and MSs in single-bounce scat-
tering scenario, where the distribution of scatters follows the uniform disk model.

Denote the angles of mci-th NLOS path apart from the BS-MS LOS direction as ot e
and oR ¢, 1.€., QAT ¢ = @ci — Veiy ORme = émc — One, then the probability density function

(pdf) of a uniform disk scattering model can be expressed as [25]

r
R,me 0< TR,mc < Rc, —T S QRme ST

2 )
p(rR,mca aR,mc) = Rz (34)

0, otherwise

where R, is the radius of scattering environment. According to the cosine law, the total

length of deflected path is expressed by

D = TR,ci + T%,Ci + D?m + QTchiDmi COS(OJme) (35)

MS m localise the neighbouring MS k with the relative measurements RSS, and the
RSS at MS m is modelled as close-in path loss model, i.e., Pry,[dBm]| = Pt[dBm| — (A +
10nlogio(dm,k)) + Xsmk [2], where Pt is the transmit power, A = 20logo(47 f./co) is a
known constant, f. is the system frequency, 7 is path loss exponent, Xg, 1 ~ N (0, O'%{SS)
is shadowing, d,x = |vm — vi| is the real distance between MS m and MS k. The
pathloss measurement model is converted to the classical exponential-like ranging function
dmp = 1O(Ptk*Pr’”*XS»m*k*A)/(lO"). Considering that shadowing Xg ,,  is unknown in

practice, the measured ranging distance is calculated as

~ PL'm,k

e = 107100 (3.6)
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where ]Bimk = Pty — Pry, +Xg m r—A is the pathloss observed at MS m. Note that, at least
two NLOS paths are required to guarantee acceptable localisation results [42],[43],[55].

3.3 Cooperative Localisation for Mitigating NLOS Error Due
to Single-Bounce Scattering Effect and the Mobile Sta-

tion Grouping Scheme

First, we present CLTAAR technique to search the optimal location of collaborated MSs
which achieve the minimum summation of residual error of BS-MS ranging and MS-MS
ranging. Second, MS grouping strategy is proposed to reduce the complexity of cooperative
approaches. Third, eCLTAAR is obtained from separating the unknown MSs in CLTAAR
according to MS grouping method.

3.3.1 Cooperative Loclisation for Mitigating NLOS Error Due to Single-
Bounce Scattering

Cooperative localisation is an approach to determine geographical location of the target
with measurements collected from a number of nodes. The cooperative localisation is
formalised as an optimisation problem with respect to multivariable objective function.
The CLTAAR is formed by the BS-MS ranging and angle objective function fgg_g, and
MS-MS ranging objective function fyprgs_nms. The weight function wy,.; denotes the weight
of residual error for the c-th path between MS m and BS i, and it is derived as the variance

of each term introduced by fgs_mgs

Winei =var(Bmei) + var(Ane ) (Vi — Wi) © (Vi — W5)) (3.7)
where
var(Bpmei) Z(C(Q)O'Z + Dfm«)(().5 — 0.5e 205 +05) c08(20,mci — 29mei))—
D2, (€020 sin (O — Vnes))?

Brici =Tmei Sin(emci - ﬁmcz)

var(Ape) = [Al AQ]

A = [sin(émci) + sin(@mci)) —(cos(émci) + cos(@mci))]
Al =1 — 0.5¢729% co8(20,mci) — (6_0'5"g sin(@md))Q — 0.5¢729% cos(20mei) —
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(67575 $in(Uymei )2
A2 =1+ 0.5¢72% co8(20,ci) — (6_0‘5”3 sin(Bmei))? + 0.5¢72% co8(20mei)—

(679575 $in(Dpmes ) )2

CLTAAR is formulated as a least-square optimisation problem

(P3.1) : V = argmin{fps—ns (V) + fus-ms(V)} (3.8)

fps—ms(V) = Y. Z > ! -(Bmei — AmciXmi)? (3.9)

m=1i=1c=1 Wmei
M M 1
5 2
fus-ms(V) = >0 > (i —djp) (3.10)
m=1k=1,k#j ™Mk
where V = [vy,...,vy], Xpni = v — Wi 07271 ;. is the variance of ranging distance derived

from relative measurement between MS m and MS k. The nonlinear programming problem
(P3.1) can be solved by iterative numerical algorithms, e.g., Quasi-Newton method and
Nelder-Mead method.

3.3.2 Cooperative Localisation Enhanced by Mobile Station Grouping
Scheme

MS grouping scheme reallocates the MSs to different groups in terms of orgs. Thus, the
original localisation problem is decomposed to multiple problems of smaller sets of unknown
variables with running time reduced. In order to maintain a certain degree of accuracy,
the MSs of the low measurement error are assigned to one group, and the MSs of the high
error are assigned to the other group, so that the MSs of high measurement error can be
isolated from those of low error. The degree of measurement error is indicated by the
standard deviation of relative measurements from each MS. Then, MSs m = 1,..., M; of
the lower error are localised first, followed by those MSs m = My + 1,..., M of the higher
error. For example, a terminal group with two-grouping separation is shown in Figure 3.2,
where MS m = 1,2,3 are in the group hl to be first localised, while MS m = 4 is in the
group h2 to be localised based on the results of group hl. Based on (3.9)-(3.10), the cost
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Figure 3.2: Cooperative localisation enhanced by MS grouping, where 4 MSs are reallocated

to 2 groups.

functions of localisation of the two groups of MSs are denoted by

fes—msn1 (V1) =

fvsni—msn1 (Vi) =

fes—msh2 (Vi) =

favsni—msn2(Vig) =

favsne—msn1 (Vig) =

fvsh2—msh2 (Vi) =

Z Z %(&j,k—dj,k)z

mehl kehl k;éj m,k

PP

meh2i=1c=1 wmcz

. D (i —dig)?

mehl keh2,k+#j Tm, k

. (i —dig)?

meh2 kehl,k+#j Tm, k

> > (e —dig)?

meh2 keh2,k+#j Tm, k

2
mci - A—mC’LXml)
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Table 3.1: Computational Complexity of Estimation Solved by Quasi-Newton Method of
¢ - Optimality for the Worst Case (Q: number of groups, M,: number of MS assigned to
each group)

Analytical Complexity
before MS grouping, i.e., (P3.1) after MS grouping, i.e., (P3.2)
O((M? + 6M2BC + 4M3)e~2) O(XF (M2 +6BOM? +4M?)e?)

Table 3.2: Normalised Computational Complexity of Estimation Solved by Quasi-Newton
Method of ¢ - Optimality for the Worst Case (¢ =0.1,Q =2, M =4,M; =3,My =1,B =
1,C =4)

Normalised Complexity
before MS grouping, i.e., (P3.1) after MS grouping, i.e., (P3.2)
2.65 1

Then, the problem (P3.1) is divided to two parts

(P3.2) : Vi1 = arg min{fy (Va)} (3.11)
h1l
f1 (Vi) = fes—msn1 (Vi) + fvsni—msni (Vi) (3.12)
th =arg min{fg(th)} (3.13)
Vo

f2(Vina) = fes—msn2(Viz) + fvsni—msn2(Viz) + fusha—msr (Viz) + fvsne—msn2(Viz)
(3.14)

where V1 obtained from (3.11) is substituted to (3.13) to assist the estimation of Vps.
The MS grouping scheme does not change the original method, and reduce computation
time by divide the original optimisation problem into multiple optimisations with the less
computation and unknown variables. Table I and II display comparison of analytical
complexity of (P3.1) and (P3.2) solved by Quasi-Newton method of ¢ - optimality.

The complexity displayed in Tables I and II is evaluated in terms of the number of
multiplications and square root. MS grouping method is expected to be effective with
large terminal group which consists of many anchors and measurements.

Based on the above two parts, the eCLTAAR technique leverages the same objective
function as CLTAAR technique, but reallocate the estimation sequence with MS grouping.
The estimation of eCLTAAR technique can be summarised as Algorithm 1. For the real
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Algorithm 1 eCLTAAR Algorithm

1: Reallocate the terminal group based on the obtained standard deviation of MS-MS
relative measurement.

2: Estimate the coordinates of MS in group hl Vy; through (3.11)-(3.12).

3: Substitute Vi1 to (3.13)-(3.14), estimate the coordinates of the left MS in group h2
Via.

practice, the number of collaborated MS is expected to be not greater than six. Thus, a

two-grouping separation is sufficient to apply for eCLTAAR in a cell.

3.3.3 Cramer-Rao Lower Bound on the Proposed Cooperative Localisa-
tion Methods

Cramer Rao Lower Bound (CRLB) expresses the minimum variance of an estimator. Now,
we present the CRLB of the proposed CLTAAR and eCLTAAR location problem. Denote
the mci-th variance of measurement error of TOA, AOA, AOD, and RSS as Q,mei =
az,ngmCi = egma»,Qg’mci = 6129,mci7Qd7m’i = X%,m,k- Conditional pdf of TOA ranging

distance at MS m is

_ 2
_ (Frnci—Tmei)

B
- 1 :
palin) = [1T] e (219

The derivation of conditional pdf of the other measurements are omitted here, which follows
the same idea as (3.15). Then, the joint conditional log-likelihood of TOA, AOA, AOD is

ABS—MS(Vm) = hl(p(f'm|Vm)p(ém|vm)p({9m‘vm)> (316)
The FIM of CLTAAR is calculated as
Fcrraar = Fes—ms + Fus—us (3.17)

where Fps_ms and Fys_wms represent the FIM of BS-MS observations and MS-MS obser-
vations, respectively. The FIM of MS m is calculated as that in [50]

OAgs_ms\ © [ OAps—
FBS—Ms,m=—E[< BS MS) ( BS MS)] (3.18)

OV, OV,
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FIM of eCLTAAR is similar as that of CLTAAR technique, but the FIM is separated into
two groups. Therefore, the derivation of FIM and CRLB of eCLTAAR are separated in

terms of different groups. FIM of the group hl has the same format as that of MSs in
group hl in CLTAAR

Fp1 = Fes—msn1 + Fysni—Msni (3.19)

FIM of MSs in group h2 is calculated as

Fj2 = Fps_ms,n2 + Fas—wis n2 (3.20)
Fps_msvp+1 - 0 Fyms-msav+1 - 0
Fps_ms,n2 = : : + :
| 0 .. Fs-msm 0 oo Fusoms,m
(3.21)
Fys—vsvn+1 Kanvian+2 o0 Kangim
Kynrom+1 Fyms—vsavn+2 -0 Kagowm
Frs—msne = . ) . (3.22)
K v +1 K +2 ... Fysovs,m

where K, ;, is correlation matrix between MS m and MS k. Finally, the CRLBs for
CLTAAR and eCLTAAR are respectively calculated as inverse of their FIMs, where the
CRLB of for MS m is obtained as the corresponding m-th block of matrix.

3.4 Simulation Results

In this section, the effect of the proposed CLTAAR and weight function, and eCLTAAR
technique have been assessed by simulation. 1000 trials of 6-MS terminal group in radius
of 50 m randomly are generated among classical 7 hexagon cells in radius of 1000 m, where
only the serving BS is accessible for one trial. Signal frequency is 6 GHz. BS is 10 m high,
and MS was 1.5 m high. 4 scatters are uniformly distributed near each MS in the circular
area in radius of 200 m. And each NLOS path is measured once. Standard deviation
of localisation measurements, i.e. TOA ranging, AOA, and AOD, are 60 m, 5°, and 5°
respectively. MS-MS links are always LOS, and the standard deviation of shadowing of
MS belonging to group hl is random value between 4 dB, and that of MS in group h2 is 12

dB. The D2D path loss model in [57] is leveraged to generate relative measurements. The
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Figure 3.3: Accumulative percentage of estimation error of LS [55], ranging based cooper-
ative localisation [2], CLTAAR, wCLTAAR and eCLTAAR.

setup data is same in all simulation unless specified otherwise. Least square (LS) estima-
tion based on TOA, AOA, and AOD measured on single-bounce NLOS scattered path in
[55] and conventional cooperative localisation based on BS-MS detected TOA and MS-MS
detected RSS in [2], labelled as ‘LS method’ and ‘ranging based cooperative localisation’,
are simulated to make comparisons with proposed work. The optimisation problems in the
three cooperative approaches are solved by the Nelder-Mead method.

Figure 3.3 describes the higher localisation accuracy achieved by the proposed CLTAAR
(no weight), weighted CLTAAR (wCLTAAR), and eCLTAAR techniques over the other
two methods. The average localisation errors (ALEs) of the LS [55], ranging based coop-
erative localisation [2], CLTAAR, eCLTAAR, and wCLTAAR were about 86 m, 224 m, 51
m, 54 m, and 39 m. And STDs of them were about 86 m, 103 m, 32 m, 33 m, and 29 m.
Whereas the ranging based cooperative localisation method [2] performed even worse than
LS method [55], because it was not designed for localisation with one BS and scattering
environment. But the proposed CLTAAR succeeds to integrate the ranging based cooper-

ative localisation [2] with LS [55] and outperforms these two methods. Another proposed
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Figure 3.4: Average localisation error of LS [55], CLTAAR, wCLTAAR and eCLTAAR
decreases with the number of NLOS measurements on each MS.

eCLTAAR technique is designed to reduce complexity of estimation, and its cumulative
percentage error curve almost overlaps that of CLTAAR, which reflects the same degree
of accuracy as CLTAAR. Due to weight function, estimation variation is reduced and an
improvement of 12-meter average error have been saved by wCLTAAR than CLTAAR.

Figure 3.4 shows that the ALEs of LS [55], CLTAAR, eCLTAAR, and wCLTAAR
methods decrease with the number of NLOS paths. eCLTAAR achieves the similar per-
formance as CLTAAR, reflecting the negligible degradation on accuracy casued by MS
grouping scheme. ALE of existing LS method [25] is much higher than our proposed
methods at the beginning, and decreases with the number of measurements increasing,
until approaching those of CLTAAR and eCLTAAR at the end. The proposed wCLTAAR
method achieves about half ALE than the other methods. However, it does not work well
at the beginning of the trace, since lack of measurements disables the effectiveness of pro-
posed weight function.

The running time is greatly saved by eCLTAAR technique, compared to CLTAAR. The
average time spent on localising each MS was about 0.131078 s by CLTAAR technique,
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while it were 0.034214 s and 0.997767 s by eCLTAAR and wCLTAAR, indicating a reduc-
tion of almost 74% running time. Whereas wCLTAAR consumed extra 5 times running

time, due to the additional variables brought by the weight function.

3.5 Summary

In this chapter, we have proposed CLTAAR, wCLTAAR and eCLTAAR approaches to
localise collaborative MSs in single-bounce scattering environment, and the CRLBs for
CLTAAR and eCLTAAR have been derived. The proposed eCLTAAR technique achieves
nearly the same accuracy as and much less computational cost than CLTAAR through
applying MS grouping scheme. According to simulation results, about 74% running time
was saved by eCLTAAR. The proposed wCLTAAR approach with weight function based
on the knowledge of distribution of TOA, AOA, and AOD measurements achieves about
twice accuracy than CLTAAR.



Chapter 4

Unmanned Aircraft Vehicle
Supported And Received Signal
Strength Based Localisation

4.1 Introduction

Unmanned aerial vehicle (UAV) mounted base station (BS) is regarded as a promising
complementary solution for 5G in emergency cases like network damage and congestion
[58]. UAV-BS provides better LCSs than ground BS due to higher probability of line of
sight [59].

Received signal strength (RSS) based localisation of mobile station (MS) [60] has been
widely used due to its low cost and low complexity. The terrestrial localisation approaches
in [7],[8],[61],[62],[63],]64],[65] utilised RSS based exponential-like ranging function, is ob-
tained by calculating the logarithm of RSS, to estimate mobile station (MS) location. In
[8], both RSS and differential RSS based localisation methods were proposed, with anchor
coordinates uncertainties and imperfect knowledge of PLE. A multilateration method, re-
ferred to as bias-compensated weighted least-square (bcWLS), was proposed in [63], where
the perturbations in both RSS measurement error and anchor uncertainties are mitigated.
In [64], geometric parameters were proposed for anchor deployment in localisation. A par-
ticle filter based on data fusion was proposed in [65]. Multi-dimensional scaling techniques

were proposed in [66] to build the connectivity map of deployed sensors.

30



Chapter 4. Unmanned Aircraft Vehicle Supported And Received Signal Strength Based
Localisation 31

The ranging function in RSS based localisation is highly dependent on path loss model.
In [61],[66], a two-dimensional path loss model was utilised for terrestrial localisation. In
[67], [68], a three-dimensional terrestrial path loss model was utilised for UAV assisted
and RSS based localisation. However, the UAV air-to-ground path loss model has been
reported to be highly dependent on the elevation angle of the path and UAV’s altitude
[69],[70],[71][72],[73], which was not considered by most existing work. In [73], a localisation
approach for elevation angle dependent path loss (EAPL) model was proposed. However,
perfectly known and equal PLEs were assumed for all UAVs, which is impractical. With
unknown and unequal PLEs, the RSS based localisation problem becomes nonlinear and
non-convex, which cannot be solved by the existing approaches.

The accuracy of RSS based localisation with unknown path loss parameters is directly
influenced by the estimated PLEs and transmit power [7]-[10],[61]-[63],[74]. The impor-
tance of PLEs has been found by the existing work [],[65],[75], which claimed that the
robustness of ranging function against shadowing increases with the values of PLEs. Lo-
calisation of MS with unknown transmit power was investigated in [6I]. Noncooperative
and cooperative localisation approaches with unknown transmit power and unknown path
loss exponent (PLE) were studied in [62]. In [7], least-square absolute error of ranging was
minimised for localisation. In [I0], the Levenberg-Marquardt algorithm (L-M) was pro-
posed to solve the nonlinear problem with unknown and unequal PLEs, whose accuracy is
largely subject to measurement errors, due to the potential inappropriate damping factor
employed by L-M and unreliable initialisation of PLEs. The above existing approaches
are mainly developed with respect to three objectives: 1. to optimise PLEs and transmit
power to minimise the differences between path loss measures and path loss estimates, e.g.,
[61]; 2. to calculate parameters as the ratio between the path loss measures and logarithm
of distance estimates, e.g., [62]; 3. to optimise parameters to minimise the residual error
of the objective function, e.g., [63]. All of these TSE approximated ranging distance based
schemes are severely deteriorated by the imperfect knowledge of path loss model and sig-
nificant measurement error in harsh environment. The authors of [9],[61],[62], [76] focused
on localisation algorithms and finding the optimal coordinates of MS, where the proposed
algorithms are aimed at estimating accurate PLEs and transmit power, since they insisted
on that localisation accuracy increases with accuracy of estimated PLE and transmit power
[77]. PLEs and transmit power are exclusively regarded as crucial environmental param-
eters of ranging function. However, we find that some proper values of estimated PLEs

and transmit power could offer higher accuracy of ranging distance and localisation than
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the real PLE and transmit power, which is contrary to the opinion of existing research.
Therefore, we are also motivated to investigate the effect of these proper values of PLE
and transmit power.

Moreover, the effect of airframe shadowing (AS) due to fixed-wings UAV [59] could
cause signal attenuation of up to 35 dB [72]. Therefore, it is necessary to consider the ef-
fect of AS on localisation when fixed-wings UAVs are employed, which is absent in existing
work, e.g., [78].

In this chapter, we propose a fixed-wings UAV-BSs aided and RSS based localisation
technique with unknown and unequal PLEs. Our work is different with the previous work

in the following aspects.

1. The nonlinear and non-convex RSS based localisation problem with unknown and un-
equal PLEs is solved by a piecewise convex approximation aided localisation (PCAL)
scheme, with two-step approximations: (a) convert the problem to a nonlinear convex
problem through piecewise convex approximation and curve fitting; (b) convert the
resulting nonlinear convex problem to a linear convex problem through Taylor’s series
expansion (TSE) approximation. Unlike the existing methods [7],[8],[61]-[63], PCAL
does not require the PLEs associated with different UAVs to be perfectly known and
equal to each other, and therefore it is more practical. In this work, the A2G path
loss model with unknown and unequal PLEs of different UAV BSs are considered as

nuisance parameters and estimated along with the locations of the source nodes.

2. Thanks to its robustness against shadowing, especially AS, the proposed PCAL
approach with unknown and unequal PLEs achieves higher accuracy than the ap-
proaches [7],[8],[63] with equal and perfectly known PLEs, as well as the approach
in [I0] with unknown and unequal PLEs. This is because the ranging function via
piecewise convex approximation and TSE has much lower variance than those in
[7],[8],[10],]63]. To the best of our knowledge, this is also the first work to investigate
the impact of AS on UAV assisted and RSS based localisation. The Cramer-Rao
lower bound (CRLB) on localisation error is derived to verify the effectiveness of
PCAL.

3. With N UAV-BSs to locate one MS, PCAL produces 2V objective functions and
tentative estimates. A grid search assisted ambiguity elimination (GSAE) approach

and a differential RSS based grid search (gsDRSS) approach are proposed to obtain



Chapter 4. Unmanned Aircraft Vehicle Supported And Received Signal Strength Based
Localisation 33

the final estimate of MS location by taking an average of the tentative estimates
selected via grid search. GSAE is more effective than the piecewise-linear minimi-
sation (PLM) method [37], because the uncertainty due to shadowing is mitigated
by the averaging progress. gsDRSS eliminates the ambiguity through searching the
grid of minimum estimation error of DRSS values, at the cost of lower complexity
than GSAE. Additionally, gsDRSS also can be used to estimate transmit power and
PLEs. The performance of PCAL-GSAE approaches the CRLB derived. PCAL-
gsDRSS with unknown transmit power achieves higher accuracy than PCAL with

perfectly known transmit power.

4. Through investigating PCAL-gsDRSS scheme and the existing RSS based approaches
with unknown PLEs and unknown transmit power, an anti-intuitive finding is drawn
by this work that, the real transmit power and PLEs cannot provide accurate lo-
calisation or ranging distance, however, some particular values, named as effective
transmit power (EPt) and effective PLE (EPLE), can provide 0 localisation and
ranging error. Moreover, analysis has proved that a range of values near EPt and
EPLE, named as effective transmit power range (EPt-range) and effective path loss
exponent range (EPLE-range), have higher accuracy of localisation and ranging than
the real parameters. An SDP based algorithm is proposed to estimate EPt, and de-
rive the PCAL-EPt-gsDRSS scheme, which is more accurate than PCAL-GSAE and
PCAL-gsDRSS. The effect of EPLE on localisation is investigated.

The rest of this chapter is organised as follows. The system model is presented in Section
4.2. The problem formulation of UAV BS assisted and RSS based localisation is formulated,
and solved by proposed algorithms with considering both known and unknown transmit
power in Section 4.3. The effects of transmit power and PLE on RSS based localisation
and ranging distance are analysed in section 4.4, based on which an enhanced algorithm
is proposed. Section 4.5 demonstrates the simulation results, and Section 4.6 gives the

summary.

4.2 System Model and Problem Formulation

We consider the localisation of an MS assisted by N UAV-BSs. Assume that the MS
with the coordinate vector v = [z,y,2]” is detected and located by N UAV-BSs at a time
instant (Fig. 4.1). Each UAV-BS supported cell is of horizontal radius R, and the accurate
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UAV BS1

Figure 4.1: Ground MS is located by multiple fixed-wing UAV-BSs

coordinates of the i-th UAV-BS is w; = [z4,v:, 27, 4= 1,2,..., N. The elevation angle of
the i-th UAV-BS is 6;, and the UAV roll angle is ;. ¢; and UAV’s altitude h; are available
at the UAV control system and barometer/GPS. The localisation problem is

(P41) min))" (PL; — PL)’ (4.1)

where P/’L and ﬁl are the estimated and measured path loss at the i-th UAV-BS, respec-
tively.

Considering the effect of AS [72] on path loss, the sum of log-normal random term
of AS and the elevation angle dependent terrestrial shadowing (TS) [73] between MS and
the i-th UAV-BS is denoted by Xg;, with Xg,; ~ N (0, UIQ%SSJ-), and U%SSJ- = UQTSJ- + O'is’i,
where org; and 049, are standard deviation of TS and AS, respectively. With fading

smoothed out, the combined path loss and shadowing is expressed as
PL; = Pt[dBm]| — Pr; [dBm] + Xpr; (4.2)

where Xpr; = Sar; + X, denotes the path loss measurement error, and Sy ; is a constant
predetermined by the roll angle ;. Obviously, PL; = Pt [dBm] — Pr; [dBm], where Pt is
the transmit power, and Pr; is the receive signal power at the i-th UAV.

The EAPL of the i-th UAV is calculated as [73]

PL; = 10m; log,o(ds) (4.3)

ay

= 71 n aoefbogi + b (4.4)

i
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where ag, a1, by, b1 are the environmental related parameters, and 6; = arcsin(h;/d;) is the
elevation angle of the i-th UAV, with h; being altitude of the i-th UAV, and d; = |v—w;| is
defined as the distance from the i-th UAV-BS to MS. Assuming that the perfect knowledge
of UAV’s altitude h; is perfectly known, the EAPL in (3) is a function of single variable
d;.

4.3 UAYV Assisted and Piecewise Convex Approximation Aided

Localisation

It is obvious that (P4.1) is a nonlinear and non-convex optimisation problem. In Subsec-
tion 4.3.1, we convert (P4.1) into a convex problem via piecewise convex approximation
and curve fitting, and then into a linear problem via TSE. The approximation processes
yield 2V tentative estimates. The estimation ambiguity is eliminated by the GSAE ap-
proach in Subsection 4.3.2. Localisation with unknown transmit power is considered in
Subsection 4.3.3. The CRLB of PCAL is derived in Subsection 4.3.4.

4.3.1 Piecewise Convex Approximation Aided Localisation

1) Transformation to a Convex Problem via Piecewise Convexr Approrimation and Curve
Fitting: As EAPL is close to a sigmoid curve [73], it can be partitioned into two sub-
functions within the propagation distance of interest through piecewise convex approxima-
tion [79). The transition point on EAPL of the i-th UAV is at distance d; = d;;, which is
selected as either a global maxima of the first derivative of EAPL (suitable for model in
[73]) or a global minima of the EAPL function (suitable for model in [71]). Assume that the
EAPL of the i-th UAV is partitioned into a piecewise convex function of two sub-functions
in the intervals of [dipwer.i, dei] and [dy i, dupper,i], respectively, where djoyeri and dypperi
are the lower and upper bounds of the propagation distance of interest. Assisted by curve

fitting, all the sub-functions are approximated to power functions as
-5 Bi,g<
PLig ~ Aig,d; ™" + Cig, (4.5)

where A; 4,, Bi g, and C; 4, are the fitted parameters of each sub-function, and g; = 0 or 1

indicates the first or second sub-function, respectively. The approximated path loss (4.5)
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can be regarded as a two-slope model. Through simple mathematical manipulations on

(4.5), an explicit power-like ranging function is derived as
di = (1= gi)dio + gidin (4.6)

where d; 4, = ((PLi.g,—Cig,)/ A g:) P9 Round PL; to the interval [ PL(djower.i), PL(dupper.i)],
in case of complex distance estimation caused by significant shadowing. If one MS is de-
tected by N UAV-BSs, there are total 2%V combinations of (4.5), and 2V tentative estimates
of MS localisation, v;, j = 1,2, ..., 2. Substituting (4.5) into (4.1) yields (P4.2) for one
of the 2V estimates as

(P42) min Y (Aigd’" " + By, — PL)? (4.7)

Vj,di i=1

where 3; 5, = Safi + Ci g,

2) Transformation to a Linear Problem wvia Taylor’s Series Expansion: The above
nonlinear convex problem can be solved by maximum likelihood (ML) estimator. However,
it usually requires an accurate initial guess to achieve the global optimal point rather
than the local optimal point. To overcome the shortcoming of ML estimator, (4.7) can be
rewritten as a linear convex optimisation problem. If S,¢; is known, the distance estimation
of either interval in (4.6) can be further approximated to linear ranging function through
the first-order TSE

Bi,gi

PL; — Big, + X5
) Bz,gz S,i X Qg + Mg, (4.8)

Alvgz

dZaQ'L =

where the absolute operator is utilised to guarantee real value of d; 4, .

Taking the square of both left-hand and right-hand sides of (4.8) yields diz’ 9 20 g,di g, +
a2, = n2,, whete iy, = [(PL = B/ Asg VP, and n2,, = X3,/(42, B2, )|(PL; -
Bigi)/Ai g |¥Pi9i? is the mean square error (MSE) of ranging, and variance of n; is
Uzz,gi = 0%55,1-](15\[; — Bigi)/Ai g |2 Pisi=?)(A; 4, Big)?. The MSE is smaller than those
in [7],[8],[10],[63] due to the two-step approximations. For the scenario with MS in the cell
of radius R = 2000 m, h; = 1000 m, and environmental data for urban area is ag = 45,
a; = —1.5, by = 10, by = 3.5, the minimum standard deviation in (4.8) ;4 ~ 30 oRss,,
is smaller than that in [7],[8],[10],[63] (about 115 orss;). If g; is known, (P4.2) is further
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converted to a semi-definite programming (SDP) problem:

. N
(P4.3) V’Cg}gl’z izlpi,gi(Di - 2aiugidivgi) (4.9)
s.t.
T
w; Is v W
D; = (4.10)
-1 A/ ~1
D; d;,
=0, (4.11)
d; g, 1
dlower,i < di,gi < dt,i or dt,i < di,gi < dupper,i (412)
13 \%
>0 (4.13)
vl 7

where p; 4, = 1/01-2, g 1s the weight of objective function, and I3 is 3-by-3 identity matrix,

and Z > v’'v is the auxiliary variable. (P4.3) can be solved by interior-point method.

4.3.2 Elimination of Estimation Ambiguity

The proposed PCAL approach benefits from the low MSE of ranging. However, when the
interval of ranging distance g; is unknown, estimation ambiguity introduced by piecewise
functions brings extra estimation error. It is eliminated by the GSAE approach: first
finding a reference point vgg through solving (4.7) by grid search, and then taking an
average of the coordinates of the M = 2V — N tentative estimates v, closest to vgg, which
forms the set A.

V= %ZjeAvj (4.14)

The overall algorithm of PCAL alongside GSAE is summarised in Algorithm 2.
The proposed scheme can be extended to a multi-MS scenario. The number of simulta-
neously located MSs is limited by the number of resolvable resource blocks (RBs) within a

cell at each transmission time interval, and the number of MSs requesting the same quality
of LCS [80]. For example, within a cell where a total bandwidth of 10 MHz (50 RBs) [80]
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Algorithm 2 PCAL-GSAE Algorithm

1: Find the transition point of EAPL of each UAV, d;;, ¢ =1, 2, ..., N, in a certain
range of [dlower,ia dupper,i]-

2: Obtain the 2N fitted functions (4.5) through piecewise convex approximation and curve
fitting.

3: Calculate the 2N ranging functions through (4.8). Substitute them into (4.9)~(4.13)
and obtain 2V tentative estimates of the MS location, vi,j=1,2,..., 2N,

4: Obtain the solution vgg to (4.7) through grid search.

5. Select the M = 2V — N tentative estimates closest to the location of point vgg, and
calculate the average of their coordinates as in (4.14).

is uniformly allocated to 50 MSs, the number of MSs to be located simultaneously is less

than or equal to 50, due to different LCS qualities requested.

4.3.3 Localisation with Unknown Transmit Power

The transmit power Pt of MS is another key parameter of path loss model. It might be
unknown or inaccurate in practical networks. In the existing research [2],[7], [61],[62],[66],
the ranging functions can be approximated to a linear function of Pt through TSE, so that
Pt and v are jointly estimated by the formulated convex optimisation problem. However,
they are not applicable for our proposed PCAL method, due to non-linearity of our power-
like ranging function (4.8). To enable PCAL localise MS with unknown transmit power, a
DRSS assisted grid search (gsDRSS) method is proposed to estimate the transmit power
of MS. Assume the N-th UAV BS observed the lowest RSS, the measured DRSS at i-th
UAV BS is DRSS; = Prj — Pry — Xs; + Xsy — Sat;i + Sat,n. Generate sampling grids g,, =
[Tgrid,n» Yerid,n zgridyn]T, n =1,..., Ny on the coverage of N UAV BSs with grid spacing
W, the distance from the n-th grid to i-th UAV BS is calculated as d,,; = |g, — wil|,
and the sampled DRSS is calculated as m’m = 10mp5logio(dn;) — 100, Nlogio(dn N ),
where d,, x is the corresponding propagation distance from n-th grid to i-th UAV BS. The
location of MS is roughly estimated at the grid achieving the minimum sum error between
sampled DRSS and measured DRSS

N—-1

min Y. |DRSS,; — DRSS, | (4.15)
&8n
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Algorithm 3 PCAL-gsDRSS Algorithm
1: Generate Nip; grids on the coverage of N UAV BSs with spacing Wys = 0.01R. Calcu-
late Ez?sm at each grid g,,,i=1,...,N — 1.
2: Substitute DRSS; and B?zﬁs*m to (4.15) and obtain the optimal solution g through

grid searching method. .
3: Substitute g into (4.3)-(4.6) to calculate estimated transmit power Pt, estimated path

loss values 13\24, and select the fitted parameters A@gi, Bi,gi, C~’Z-7gi.
4: Substitute PNLZ and /Nli, Bi, C~'l to PCAL and determine the final localisation of v.

Based on the rough estimate on MS location g, the estimated distance d; = ||§ — w;| is
substituted to (4.3)-(4.6) to obtain the sampled path loss PL;, and select the sub-function
with fitted parameters Az"gi, B%W C’Z-,gi. Then the estimated transmit power is calculated

as

N
Z PL; + Pry) (4.16)

The estimation ambiguity is eliminated through comparing the estimated path loss mea-
surement PL; = Pt— Pr; with the value at transition point PL(dy ;). The entire algorithm
of PCAL-gsDRSS with unknown Pt is shown in Algorithm 3.

4.3.4 CRLB of Localisation Error of PCAL Algorithm

The CRLB on localisation error is derived to evaluate the effectiveness of the proposed
PCAL approach. In case of small curve fitting errors, the CRLB of localisation, O'QCR LB
is approximately an unbiased CRLB. The probability density function (PDF) of (4.5)
distorted by shadowing is given by

) (PLi—(Agdy i 48;))2

fPL~|d~ = ——€ 2612255’1' (417)
" A/27moRss

The Fisher information matrix (FIM) of location estimate is computed as the ex-
)(%(5') ], where G =

pectation of log-likelihood conditioned on v, i.e., F = E [(
(In(fpryja;)s - - In(fpryjay )] Thus, it can be derived that

F = Z AiB)2d* B (v —wy) (v — wi)T (4.18)
= IURSS i ’
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Table 4.1: Computational Complexity Analysis. N: Number of UAV-BSs, V: Dimension
of MS Coordinates.

Algorithm i(tj}(:mputational Complex-
PCAL-GSAE O(N4'5)
PCAL-EPt-gsDRSS O(N33) + O(N9)
LSRE [7] O(N4‘5)

RSDPE [§] O(N3%)

LSRE-SDP [9] O(N37%)

LSO-PLEc [10] O(V +2)3)

Denoting J = F~! as the inverse of F, and the CRLB is computed as the trace of J, i.e.,
otrLs-pear = trlJ].

Apparently, the unbiased CRLB is dependent on both fitted parameters and propaga-
tion distance. Note that, FIM and CRLB are independent of Su¢; and f;.

Define the ratio of the CRLB of distance estimation of the approaches in [7],[§],[10],[63]

2B;

to that of PCAL as € = 0%, 10g. distance/ T CRLB-PCAL distance = (A7 Bd; " n*10)/(10077),
where the CRLBs of [7],[8],[10],[63] are the same since they both apply the same path loss
model. When UAV is at h; = 500 m high, € > 38.46 is achieved at any position within a
cell, implying higher localisation accuracy of PCAL compared to [7],[S],[10],[63].

4.3.5 Complexity Analysis

Table I presents the complexity analysis following the analysis approach in [8I]. The
complexities of LSRE [7], RSDPE [§], LSRE-SDP [9] and LSO-PLEc [10] are also presented
for comparison. The order of complexity of PCAL-GSAE is the same as that of LSRE [7].
PCAL-GSAE requires higher complexity than RSDPE [§] and LSE-PLEc [10], but achieves
a significant performance gain over all of them, as shown in Section 4.5. The complexity
of GSAE is negligible compared to that of PCAL. The complexity of PCAL-GSAE is the
same as that of PCAL without ambiguity, since the 2V tentative estimates are independent

of each other.
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4.4 Effective Transmit Power and Effective Pathloss Expo-

nents

In this section, we propose EPt and EPLE to reveal the effect of Pt and 7; on ranging ac-
curacy. An anti-intuitive finding is drawn as the accuracy of ranging and localisation is not

related to the accuracy of estimated transmit power Pt and estimated pathloss exponent 7).

4.4.1 Effective Transmit Power

In this subsection, we propose an anti-intuitive finding that proper values of Pt; and
n;, named as “EPt” and “EPLE”, can compensate measurement error on path loss, e.g.,
Xp1,;, and induce the higher accuracy of ranging distances and localisation than the real
values. On the contrary, a common sense on localisation techniques has recognised the
beneficial effects of accurate estimation of PLEs and transmit power on localisation [77].
However, according to our investigation on the proposed approaches and existing work,
it is unnecessary to maintain high accuracy of estimation of PLEs and transmit power.
For example, Fig. 4.2 shows the scenario where the highest accuracy of localisation is not
achieved at real transmit power Pt = 23 dBm, but another value Pt = 0 dBm. Therefore,
it is straightforward to infer that the real transmit power Pt works as a trivial parameter
in localisation.

EPt is defined as the proper value of transmit power with perfect compensation on
error of Xpr, ;, such that it induces ranging distance and localisation of 0 error. For both
exponential-like and power-like ranging functions, the basic localisation problem (P2.2) is

recalled, and the localisation problem with unknown EPt Pt; can be rewritten as following

(P4.4)  min Y (d; —d;)*> =0 (4.19)
Pt; i=1

where the estimated distance a?z is obtained from distance estimation function as czexp(j’\ti) =
10(Pi—Pri+Xp1i)/(10:) for the classical exponential-like ranging function, and Jpo(ﬁti) =
|(Pt; — Pr; — Bi g + Xpri)/(Aig,)|/Bisi for our proposed power-like ranging function.

Assuming perfect knowledge of path loss model, the solution to (P4.4), i’\ti = Pt is ob-
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Figure 4.2: Localisation error of MS fluctuates with substituted transmit power, Pt =
—50,—45,...,50 dBm, when real transmit power Pt = 23 dBm.

tained by d; = d;, resulting into EPt for (3.6), Plexp,i, and EPt for (4.6), Py, as :

Plexpi = Pt— Xpr; (4.20)
and

?tpo,i = Pt— Xpp;or — Pt+2Pr; — Xpr,; + 252'791. (4.21)

(4.20)-(4.21) describe EPt as sum of Pt and an offset, which value is opposite to measure-
ment error, i.e., —Xpr ;. The second value of ?tpo,i is due to the absolute operator of cipo.

A range of values near EPt, which is defined as “effective transmit power range”
(EPt-range), also performs better than real Pt. The resulting interval of ranging dis-
tance d; near real distance d; is defined as “effective distance range” (Edist-range), where
ﬁ\ti in EPt-range performs better than real Pt, i.e., |ciZ —d;| < |J, — d;|, and d; =
](IBVLZ — Big:)/ Aig; |V Proi or 10PLi/(10m) i the ranging distance of real Pt. After simple

mathematical manipulations, it is rewritten as
CZZ‘ < Ciz < Qdi — Ji, or ,max{O, Qdi — CL} < CZZ < Ciz (4.22)

EPt-range is bounded by real Pt and another different value, named as ‘critical transmit

power’ (cr-Pt), of which the ranging error is equal to that of the real Pt
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Lemma 1: Ranging distances in EPt-range achieve higher accuracy than that of real Pt.
The cr-Pt defined for (3.6) is calculated as f’/texp,i = Pr;—Xp1,;+10n; log (Qdi—cii), and the
cr-Pt defined for (4.6) is calculated as ]\3/tp0717¢ =t1+1t2, ]\D/tpoyg,i = t1—1t2, F)tpqg,i =t1+13,
Ftpo’47i = t1—t3, where the parameters t1,¢2,t3 are displayed in Appendix A. Substituting
(3.6) and (4.6) to (4.22), the EPt-range for exponential-like ranging function (3.6) is simply
derived as

(—o0, Pt), Event A
Pt; € { (Ptexp., Pt), Event B (4.23)
(Pt, f\’/texp,i), Event C

where the Event A ~ Event C are defined in Appendix A. The EPt-range for power-like

ranging function (4.6) is

o0 Ptp04z) (P/tpogi, JrOO) Event D

Ptpo 3,is ]\D/proJ i) U (Ptpo 2 Ptpo4 i), Event E or Event G

Pt; e { (4.24)

(—
(
(PtpO,l,uPtpofiz) (Ptpo,4,i,Ptpo,2,i), Event F or Event I
( po4uPtpo3z) Event H

where the Event D ~ Event I are defined in Appendix A.

Lemma 1 is illustrated in Figs. 4.3 and 4.4. Event A refers to significant measure-
ment error Xpr,; that produces ranging distance twice than real distance. Events B and
C claims that whether EPt-range and cr-EPt greater or smaller than real Pt is consistent
with the Xpy,;. Events D, E and F reflect much lower ranging error and wider interval
than Events A, B and C, indicating the higher accuracy of power-like ranging function
(4.6) over exponential-like ranging function (3.6). Following the definition of EPLE and
EPLE-range, it is easy to expand to general communication environment with more types
of measurement error, e.g., thermal noise, fast fading, multipath effect, etc.

Due to poor knowledge of Xpr,; and d;, it is difficult to calculate EPt and EPt-range
in practice. However, estimated EPt can be obtained with assumed identical accuracy
improvement of ranging distance. Assuming that each Pf,,; makes identical effect on
ranging distances, i.e., dp0 i =d; i Per,, where P, > 0 is the resulting calibration on rang-
ing distances, APtys; = Ptpoyl- — Pt is the difference between the i-th EPt and real Pt.
When P, > 0, the ratio of estimated distance over ranging distance dpo’i/di = Pp(1+

Xpri/(PL; — 5¢7gi))1/3(i’9i) is a convex function with respect to Xpy, ;, with variance oy, ; =
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Figure 4.3: Ranging error of the i-th BS derived from values in the EPt-range (4.23) is
lower than that from the real Pt = 23 dBm, when real distance d; = 790 m, real path
loss value is PL; = 92 dB, measurement error is Xpr,; = 40,5, —15 dB, corresponding to
Events A, B and C, respectively.

Tig:/ (131Z - Bi,gi))z/ Bigi. Thus, the squared ranging distance with calibration is rewritten
as Depi = szdf. The optimum is achieved at D, ; /JZQ = 1. Moreover, (Dgp, ; /Jf)_l should
be considered, since negative value of B; 4, could result into ch,i/cizz < 1. Therefore, the
estimation problem of EPt is formulated as ming_, Zf\i 1 Deb i/ ch + (Deb,i/ Jg)_l, which can
be converted to an SDP problem

N
P45 min Flatio. 4.25
( ) ch’DCb,i7va ; atio;t ( )

s.t.

D .
Fratio,i = AQCb’Z (426)

i7gi

~D ~‘
PigDevi  di ) (4.27)
di Fratio,i

(Veb — WiQep) T D2,
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Figure 4.4: Ranging error of the i-th BS derived from values in the EPt-range (4.24) is
lower than that from the real Pt = 23 dBm, when real distance d; = 790 m, real path loss
value is PL; = 92 dB, fitted parameters are 4; 5, = —2.6527¢ + 04, B; 5, = —0.9959, 8; 4, =
141.8248, measurement error is Xpr,; = 40,5, —15 dB, corresponding to Events D, E and
F, respectively.

where p; g, = 1/0qp,; is the weight of objective function. With 7); obtained in gsDRSS and
the calculated P, = 1/Qcp, the estimated EPt is calculated as

ﬁi = Pt+ APtdei (4.29)

where APty = Bi g, + PNLZ — ij’g" |(P~LZ — Big:)|- Thus, the path loss measure is refined
PL; = Pt; — Pr;. The entire progress of PCAL-EPt-gsDRSS with unknown Pt is shown in
Algorithm 4.

Algorithm 4 PCAL-EPt-gsDRSS Algorithm

1: Obtain estimated path loss measurement ]3Z/Z and A;, B;, C; through steps 1 ~ 3 of
PCAL-gsDRSS scheme, and substitute them to (4.8) to derive d;.

2: Obtain Q. through solving (P4.5) with d; and A;, B;, C;. .

3: Substitute Q.p, ancl\ﬁi into (4.29) to obtain the estimated EPt Pt;, and refine path loss
measuremerlt\s as ﬁi.

4: Substitute PL; and A;, B;, C; to PCAL scheme.
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4.4.2 Effective PLE

EPLE and EPLE-range are defined in the similar way as that of EPt and EPt-range,
i.e., EPLE is the PLE that perfectly compensates the ranging error caused by Xpry,;,
and EPLE-range is referred to the values near EPLE and of lower ranging error than
real PLE. To derive EPLE and EPLE-range, the terrestrial network based localisation
with conventional exponential-like ranging function is used to assess the effect of PLE on
accuracy of localisation and ranging distance, but the power-like ranging function is not
employed by this section, since it is free of PLE. Recall (P2.1) again, the ranging based

localisation problem is rewritten as optimisation of PLE, as shown by (P4.6).

N
(P4.6)  min ) (d; —d;)* =0 (4.30)
i
s.1.
d; = 1010 (4.31)

The solution to (P4.6) is as well d; = d;. Assuming known real distance d;, EPLE of the
i-th BS, 7; is simply calculated as (4.32).

__ PLm;
i = PL,

(4.32)

A range of PLE values 7; near the i-th EPLE and showing higher accuracy than real PLE
is defined as EPLE-range, and the corresponding interval of distances is also defined as
Edist-range, i.e., d; = 10PLi/(10m:) ¢ (max{0,d; — d;},d;). EPLE-range is bounded by both
real PLE and another different PLE value 7);, named as ‘critical PLE’ (cr-PLE), of which
the ranging error is equal to that of real PLE.

Lemma 2: Ranging distance corresponding to any value in the EPLE range achieves
lower error than that with real PLE. Define the cr-PLE as 7); = (PLitXsi)mi

XS,'L 9
PL;+10m; logyg (210 10m; >

and the EPLE range is
(M3, 1) Event J

ni € 4 (M, mi) Event K (4.33)
(n;i,+0), Event L
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Figure 4.5: Ranging error of the i-th BS derived from values in the EPLE range is lower
than that from the real PLE n; = 3.5, when real distance d; = 200 m, real path loss
measure is PL; = 81 dB, shadowing is Xg; = —20,5,20 dB, corresponding to Events J, K
and L.

where ¢; = 1()?(072502' Events J, K and L are defined in Appendix B.

Proof: See Appendix B.

Lemma 2 is illustrated by Fig. 4.5. Events J and K claim that whether EPLE range
and cr-PLE greater or smaller than real PLE is dependent on Xg;. Event L indicates
significant Xg; that produces ranging distance twice than real distance d;. The length of
EPLE range of Events J and K is proportional to | Xg ;| with moderate measurement error
Xg,i. EPLE range becomes infinitely long with sufficiently large value of Xg;. EPLEs
and EPLE-ranges of N BSs are difficult to obtain, due to unknown real path loss PL; and

unknown real distance d; in practice.

4.4.3 Analysis on the Effect of Effective Transmit Power and Effective

Pathloss Exponents on Localisation

EPt and EPLE both improve the localisation performance through modifying ranging
function with Edist. Assume perfectly known EPt-ranges and EPLE-ranges, and denote

de,; as both distances obtained with equal EPt (eEPt) Pt. and equal EPLE (eEPLE) 7.,
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the existing LS estimator based localisation is expressed as

(P4.7)  min |Ave — B|? (4.34)
s.t.
B. = [bei,...,ben]t =S (4.35)

where B is the ranging matrix, and be; = dgz is the squared ranging distance of eEPLE
or eEPt. A = [—QWEi In], Wy = [w1 — wo,...,w; —wy]. L = [Iy,0y], V is the
dimension of MS coordinates. S = [||w1[?, ..., |wx|?]*.

Proposition 1 The estimated location of MS Vv, converges from infinite far position to the
converged point vg = ®(1xy — S)), when 7, increases from 7, = 0 to 7. = +o0, or Pt
decreases from Pt, = +00 to 0. There is no closed form solution to (P4.7), since it is
nonlinear and non-convex problem.

Proof : The localisation result 7, obtained by (P4.7) V. is consistent on 7, € (0T, +00)
and Pt € (—o0,4+00). It is straightforward to calculate that, when n, — 0% or Pt, — +o0,
the ranging distance approaches infinite ng = +00. Therefore, MS is localised at infinite
far point v, = [+00, £0]T; and when 7, — +00 or Pt, — —o0, cigz ~ 1, MS is localised at
Ve = ®(1y — S). Thus, Proposition 1 is proved.

Define the line formed by all the estimates V. with 7, varying between (07, +00) as
‘estimation-line’; there must be at least one point on the estimation-line closest to MS on
the 2D /3D plane, indicating at least one local minimum of localisation error function. Fig.
4.6 displays an example of estimation-lines obtained by grid searched eEPLE 7, € [2 6]
and eEPt ﬁ\te € [—50,50] dBm, and N = 4 BSs deployed in square region, when the real
PLE is n; = 3, and real Pt = 23 dBm. The convergence directions of both estimation-lines
are toward the centre of BSs with 7, — +00, by passing the point of minimum localisation
error at 7, ~ 2.66 and ﬁ\te = 34 dBm, respectively. Figs. 4.7 and 4.8 display the ranging
error ydez —d;| of the varying eEPLE and varying eEPt. If the real location of MS is on the
same side as the estimation-lines, e.g., when v = [400, —400]T, the minimum error will be
achieved at the converged point [0,0]T. The values of PLE #e; > 7. achieves less ranging
error than those PLE 7.; < n.. Thus, it is suggested to use the larger PLE values and
smaller Pt values for initialisation of RSS based localisation with unknown PLEs and/or
unknown Pt, which is consistent with the findings in [77].

Different with eEPLE that is shared by N BSs, unequal EPLE (unEPLE) 7, and
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Figure 4.6: Estimation-line of LS estimator with varying eEPLE 7, € [1.50,5.50] and
varying eEPt Pt, € [—50,50] dBm.

unequal EPt (unEPt) are referred to as an individual eEPLE and eEPt shared by several
of N BSs. Suppose N BSs are assigned to Rpg groups, and the r-th group contains one
unEPLE 7., and one unEPt Pt; ., n, > 2 BSs, and coordinates of the K, BSs in this
group is wg .,k = 1,...,K,. Let dg, ) denote the Edist of BS k in the r-th group
obtained with unEPLE or unEPt, i.e., dg,p = 1Oﬁ%vrvk/(10”gvr) or 101§Lgm’v/(10’”), where
f/’igmk = Pty — Pryj, + Xg, . For the default sequence of BSs, the vector of path loss

measures and information matrix are same as those of (P4.6), which is converted to (P4.8).

N
(P48)  min ) [AV, — B’ (4.36)
Ve =1
S.t.
B, = [by,...,bg]" — S (4.37)
by =[d},1,....d2, k] (4.38)

where By is ranging matrix of unEPLEs or unEPt, b, is the submatrix of the r-th group.
There is no closed form solution to (P4.8), since it is nonlinear and non-convex problem.

The estimates vV, obtained with continuous search on 7, € [1.5,5.5] and ﬁg,r €
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Figure 4.7: Localisation error of LS estimator with varying eEPLE 17, € [1.5,5.5], when
the real PLE is n = 3.
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Figure 4.8: Localisation error of LS estimator with varying eEPt Pt € [—50,50] dBm,
when the real transmit power is Pt = 23 dBm.



Chapter 4. Unmanned Aircraft Vehicle Supported And Received Signal Strength Based
Localisation 51

600 T T T

= I cstimation-sector
X BS

400 + + MS

200 -

y-axis (meter)

-200

-400

-600

600 400 200 0 200 400 600

x-axis (meter)
Figure 4.9: Estimation sector obtained by N = 4 BSs of two groups with 7, € [1.5,5.5]
or Pty , € [-50,50] dBm.

[—50,50] dBm are also continuous on the map. Define the region filled by the contin-
uous estimates as ‘estimation-sector’, the range of each estimation-sector can be expanded
to infinite farther when unEPLEs approaches 0 or unEPt approaches +c0. Thus, MS
is probably covered by the estimation-sector derived. For the sake of convenience, the
two edges of each estimation-sector are approximated to straight lines from the converged
point vg to infinitely far position. Therefore, the coverage of estimation-sector is only
determined by its central angle 6c, which is bounded by the two edges, i.e., the two
outermost estimation-lines. The r-th estimation boundary is actually the estimation-line
obtained by g € [Niow, Mup] and the unEPLEs of other groups fixed at 7, — +00, or
ﬁfg,r € [Pliow, Ptyp] and the unEPt of other groups fixed at ﬁ\tw — —o0, where the pa-
rameters labelled by subscripts ‘low’ and ‘up’ corresponds to the lower and upper bound.

Fig. 4.9 presents the case that the real location of MS is covered by the estimation-
sector of unEPLEs and unEPt obtained by (P4.8), when N = 4 BSs are allocated to
Rps = 2 groups, real PLEs are respectively 3.39, 3.40, 3.28, 2.06, and real Pt = 23 dBm.
The estimation-sector of unEPLEs and unEPt are completely overlapped with each other.
With proper values of unEPLEs or unEPt, (P4.8) could achieve 0 localisation error. Fig.
4.10 presents the localisation error varies with different unEPLEs, when 2nd unEPLE 7, o
is fixed at constants. The minimum error is realised at 7)g1 = 3.74,1)2 = 3.32. Fig. 4.11

presents that localisation error varies with different unEPt, when 2nd unEPLE l/D\th is
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Figure 4.10: Localisation error achieved by unEPLEs with N = 4 BSs of two groups,
the 1st unEPLE is sampled with interval An = 0.01, the 2nd unEPLE fixed at 72 =
1.50, 3.28, 3.32, 3.36, 5.5.
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Figure 4.11: Localisation error achieved by unEPt with N' = 4 BSs of two groups, the
1st unEPt is sampled with interval APt = 1 dBm, the 2nd unEPt fixed at Pt;o =
—-50,—18,—13, —8,50 dBm.
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fixed at constants. The minimum error is realised at ﬁ\th = 14 dBm, @g,g = —13 dBm.
For both unEPLEs and unEPt, the localisation error is reduced dramatically near the op-
timal values. Thus, it is difficult to obtain the optimal unEPLEs and unEPt.

Lemma 3 Denote the localisation accuracy achieved by unEPLEs and eEPLE as |Eq|
and |E||, respectively. LS optimisation with unEPLE is usually more accurate than that
of eEPLE, i.e.,

By < |Ed| (4:39)

Proof: See Appendix C.
Following the same progress as Appendix C, it is easy to draw the corresponding property
of unEPt and eEPt.

4.5 Simulation Results

The performance of the proposed PCAL-GSAE scheme is evaluated by Monte-Carlo simu-
lation with N = 4 UAV-BSs supported hexagon cells and system frequency of 2GHz. The
AS standard deviation is set to o45; = 4.4 dB [72] in Figs. 4.14 ~ 4.17. Assume perfect
knowledge of the EAPL parameters ag, a1, by and b; given in Section 4.3.

Fig. 4.12 depicts the approximated path loss in (4.5), compared with the original EAPL
[73], when all UAVs’ altitude is h; = 500 m (i=1,...,4) and the cell radius is R = 1000
m. The approximated path loss by piecewise convex approximation and curve fitting are
expressed as
T 5.772e-9 d315 + 52.31 dioweri < di < dy

—6.772e4 d; 09792 1144.6  dy < d; < dupper.

4

where djpweri = hi, and dypper; = 2R, and d;; = 1098 m. The approximation results
without the PLE knowledge match the EAPL model perfectly within d € [diower.i, dupper,i]-

Fig. 4.13 shows the cumulative density function (CDF) of PCAL-GSAE, with the same
simulation setup as Fig. 4.12, in comparison to those of the approaches in [7],[8],[10],[63]
with perfectly known and equal PLEs and the LSO-PLEc approach in [10]. PCAL-GSAE
significantly outperforms the other approaches when the estimation error is larger than
50 m, due to its higher robustness against T'S, while an error of less than 50 m indicates
an occasional case where ambiguity error plays a dominant role. Fig. 4.14 shows that
with AS, the proposed PCAL-GSAE scheme maintains a performance comparable to the

case without AS, while the other approaches suffer significant performance degradation
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Figure 4.12: Curve fitted path loss model in comparison to EAPL [69] with UAV altitudes
h; = 500 m (i=1,...,4) and cell radius R = 1000 m.

compared to Fig. 4.13.

Fig. 4.15 shows the average localisation error versus cell radius, which varies from 500
m to 1000 m, with UAV altitude h; = 200 m (i=1,...,4). When combined with PCAL, the
proposed GSAE approach is more effective to eliminate ambiguity than the PLM approach
in [37]. The performance of PCAL-GSAE is close to the CRLB derived. Also, PCAL-
GSAE achieves higher accuracy than PCAL without ambiguity, because averaging over
the selected tentative estimates is effective in mitigating errors caused by shadowing. And
the localisation error caused by the ambiguity is much smaller than that of shadowing.
PCAL with real PLE values demonstrates a much worse performance than PCAL with
unknown PLEs, since the approximations in (4.5) and (4.6) and GSAE are disabled under
perfect knowledge of PLEs, which makes the algorithm more vulnerable to shadowing.

Fig. 4.16 illustrates the average estimation error of transmit power derived by proposed
PCAL-gsDRSS, PCAL-EPt-gsDRSS and existing LSRE-SDP [9] versus cell radius, when
the simulation setup data is same as Fig. 4.15. The three approaches have a deceasing
estimation error as the cell radius increase, where the error of PCAL-gsDRSS and PCAL-
EPt-gsDRSS is much higher than that of LSRE-SDP, in contrast to their performance
shown in Fig. 4.17. This result indicates the localisation accuracy is not related to the
accuracy of estimated transmit power. Comparing Fig. 4.17 with Fig. 4.15, it is obvious
that the accuracy of PCAL-gsDRSS, PCAL-EPt-gsDRSS and LSRE-SDP [9] is higher
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Figure 4.13: CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS [63]
and LSO-PLEc [10] with N = 4 UAV-BSs and TS only.

than that of PCAL and LSRE [7] with known transmit power. The results validate the
statement made in section 4.4, as the real Pt is not beneficial for localisation. However,
the estimated Pt and EPt improve accuracy of localisation through mitigating impact of
Xg,; on ranging distances. Therefore, it is suggested to use estimated Pt rather than real
value in localisation, even if the real Pt was perfectly known.

The suggestion made by our work is opposite to the existing research, which reason
is attributed to the difference of localisation scenario. More specifically, for our work,
only a few measurements are accessible for localisation, and the uncertainties on RSS,
i.e., Gaussian distributed error Xg;, play the major impact on localisation than those
on 7; and Pt,. Thus, the estimated 7; and Pt are preferable to real values, in order
to alleviate the impact of Xg;. However, for localisation scenarios in [61],[62],[66], [77],
the uncertainties on RSS are efficiently mitigated by sufficiently large amount of RSS
measurements, while the uncertainties of n; and Pt are remained as the major resource of
localisation error. Therefore, it is summarised that, the number of available measurements

determines whether using real parameters or estimated parameters.
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Figure 4.14: CDFs of estimation error of PCAL-GASE, LSRE [7], RSDPE [8], bcWLS [63]
and LSO-PLEc [10] with N = 4 UAV-BSs, TS and AS of standard deviation o45 = 4.4
dB.

4.6 Summary

We have proposed a PCAL scheme for multiple UAV-BSs assisted and RSS based MS lo-
calisation without requiring PLEs to be equal and perfectly known. The two-step approx-
imations by piecewise convex approximation and curve fitting yield a convex localisation
problem that matches the EAPL model [73] very well. The localisation problem is then
converted to linear via TSE which can be solved by SDP with comparable complexity to
that of [7]. The proposed PCAL approach with unknown and unequal PLEs significantly
outperforms the approaches in [7],[8],[10],[63] with perfectly known and equal PLEs, and
[10] with unknown and unequal PLEs. It also demonstrates higher robustness against shad-
owing especially AS in the scenario of UAV. The proposed GSAE method can eliminate
ambiguity more effectively than the PLM method in [37]. For localisation with unknown
transmit power, the proposed PCAL-gsDRSS scheme achieves twice accuracy than that
of the approach in [9]. With assumed known EPt and EPLE, localisation and ranging
distance are proved more accurate than that using real PLE and Pt. Based on estimated
EPt, the proposed PCAL-EPt-gsDRSS can reduce at least 20 meter localisation error than
that of PCAL-gsDRSS. The effect of EPLE is verified by analysis.
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without ambiguity, PCAL-GSAE, and average CRLB with N =4 UAV-BSs, UAV altitudes

h; =200 m (i=1,...,4), and AS of standard deviation o045 = 4.4 dB.
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Figure 4.16: Average transmit power estimation error ratio of PCAL-gsDRSS, PCAL-
EPt-gsDRSS, LSRE-SDP [9], when the real Pt=23 dBm is unknown, and AS of standard

deviation o495 = 4.4 dB.
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[9], when the real Pt=23 dBm is unknown, and AS of standard deviation 045 = 4.4 dB.



Chapter 5

Intelligent Surface Assisted And
Massive MIMO Based Localisation

5.1 Introduction

The B5G or 6G networks will be intelligent systems and provide users with the wider
bandwidths, higher data rate ( 1 Tb/s) and higher accuracy localisation [82]. These re-
quirements are fufilled by massive arrays and IS based new architecture [83].

Massive MIMO based localisation will continue to develop towards the higher accuracy
empowered by the larger transmitter and receiver arrays. The existing research mainly
focuses on analysing the performance limits. In [84], PEB and OEB of both uplink and
downlink localisation was proved inversely proportional to the number of antenna ele-
ments. The asymptotic orthogonality of massive MIMO was proved with sufficiently large
array and signal bandwidth. In [85],[86], the FIM of NLOS components was presented as
significant location information for localisation [85], and [86] also stated that reasonable
performance of positioning gained by NLOS components of moving target [86]. In [87],
fundamental bounds on position and orientation of targets in mm-wave communication
system were derived. A refinement algorithm was proposed to resolve position-related
channel parameters of both LOS and NLOS paths. Single anchor based indoor localisation
was studied in [I2]. The performance of different array configurations with signals syn-
chronisation error and beamforming quantization error was numerically evaluated by FIM
and CRLB.

A lot of recent research focused on exploiting randomness of propagation environment

59
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and improving QoS of communication, including two notable techniques, IS and spatial
modulation (SM) technique. Recent research on IS based IM [88] proposed to adjust the
IS phases according to the indices of selected receive antenna with the maximised instan-
taneous received SNR. The received signal quality in fading channels is improved. The
existing work on IS assisted localisation concentrates on the performance of near-field and
far-field localisation. For given propagation distances, a large IS could be in near-field
regime while transmitters and receivers are in far-field regime. IS assisted far-field localisa-
tion was studied in [13],[14]. In [14], the adaptive beamforming and ISpsf design algorithms
were proposed to optimise the performance of far-field IS assisted communication and po-
sitioning. In [13], PEB and OEB of IS assisted massive MIMO system were found decrease
with the size of IS. However, according to the signal models of IS proposed in [89],[35],[36],
the channel parameters of IS vary with the position of IS elements, thus the far-field regime
could bring non-negligible approximation error on near-field localisation. In [90], near-field
and far-field was distinguished by Fraunhofer distance, based on which the entire array was
divided into multiple sub-arrays of approximated parameters. The results show that the
performance of sub-arrays is getting close to that of standard entire array with increasing
propagation distance, in contrast with [32], [33],[34]. To clear up confusion, it is necessary
to investigate the impact of far-field approximation on the performance of localisation.
The existing work on ISpsf design in IS assisted localisation [13], [14],[32] propose to
optimise ISpsf with respect to maximising data rate, rather than maximising localisation
accuracy. The reason might be attributed to that, in the aforementioned work, the terms
containing IS parameters are merged to a scalar before calculating FIM. However, for a
large steerable IS assisted system, CRLBs of channel parameters and MS location informa-
tion vary with the position of IS elements and the directions of impinging signals [13], [36].
Thus, this gap on IS assisted localisation motivates us to study the optimal localisation-

aimed ISpsf.

In this chapter, we study the performance of localisation of an IS assisted massive
MIMO system with single BS and single MS, where BS and MS are in LOS links towards
the IS, and BS beamforming is pointing at the IS. Our work is different from the existing
works [13], [14],[32] in the following aspects.

1. We derive the expressions of exact FIMs (eFIMs), approximated FIMs (aFIMs) and

CRLBs of channel parameters and MS location information. eFIM of both channel
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parameters and the controllable phases of IS is proved non-invertible and meaningless
for localisation. Based on the derived FIMs and CRLBs, localisation assisted by
both ISs with known and unknown position is investigated. Numerical results reveal
that PEB and OEB of MS are generally increasing with the number of employed
IS elements, while that of unknown IS fluctuates severely, even if the number of IS

elements stays in near-field zone.

2. Based on the derived FIM and CRLB, a localisation-aimed ISpsf is proposed to max-
imise the performance of localisation, and the ISpsf that maximises the estimation
accuracy of each parameter is also investigated. To the best of our knowledge, this is
the first work studying the impact of IS parameters on the ISpsf design and the per-
formance of localisation. Our simulation results shows considerable improvement on
the performance of localisation brought by localisation-aimed ISpsf than that using
the communication-used ISpsf. With the derived localisation-aimed ISpsf, perfor-
mance of localisation is investigated with 1, 4, 8-bit quantizers. The results show
that the expensive quantizer is only valuable for large IS array with awareness of

both position and orientation.

The rest of this chapter is organised as follows. The system model, channel model and
signal model are presented in section 5.2. The power consumption model is introduced
in Section 5.2. FIMs and CRLBs of channel parameters and MS location information are
derived in section 5.3. The problem formulation of ISpsf design is described in section 5.4,
with localisation-aimed ISpsf derived. Section 5.5 demonstrates the simulation results, and

Section 5.6 gives the summary.

5.2 System Model

We consider the IS-based massive MIMO narrowband downlink communication FDD
system operating at frequency f.. Signal bandwidth W is separated into U frequency
bins, where the frequency of the ¢-th subcarrier is f,. BS is selected as the reference
of the 3D Cartesian coordinate system, i.e., the coordinate and orientation angle of BS

is w = [0,0,2ps]T and ops = [Uss,¢Bs]’T = [0,0]*. The MS with coordinate v =

[2Ms, Yms, 2ms] T and orientation of antenna array ons = [fus, ¢ms] T, is detected and lo-

calised by the BS. The observed location information at BS is collected from one direct path
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between BS and MS, C single bounced NLOS paths via C clusters, and Nig paths via an
IS. Both BS, MS and IS are respectively equipped with URA of N1, Ng and Nig elements
distributed on rectangular grids with constant element spacing Ay = 0.5\, where ) is wave-
length. The C clusters are located at unknown position q, = [¢z.c, @y,c; ¢zc], ¢ = 1,...,C,
and the IS with orientation org = [v1s, u1s]T is located at r; = [z, y1, 21]. The IS can be
regarded as a reconfigurable planar array of Nig passive reflector elements, which adjusts
the reflected path to optimise the channel response by inducing various phase shifts and
amplitude attenuation to each path. In the scenario as shown by Fig. 5.1, the BS transmits
signals to the MS through L = 1+ C + Nig paths, including 1 direct path, C = 0 reflected
paths via the clusters, and Nig > 0 reflected paths via the IS. Assume that BS and MS are
in far-field scenario, IS is in near-field with various parameters at each reflector element.
The first arrival path from BS to MS is considered as the direct path, parameters and
matrices of which are labelled by subscript ‘1’. Whereas the sets of cluster reflective paths
and the IS-aided paths are denoted by Ag and Agr, where |As| = C, |Ar| = Nis. The IS
can be regarded as a reflective antenna array in the system, which works as the receiver
in BS-IS direct link and the transmitter in the IS-MS direct link, known as “forward link”

(fw) and “backward link” (bw) [31].

5.2.1 Array Model

In a downlink system, BS is the transmitter and MS is the receiver. The unit-norm antenna
steering vectors [40] of receiver antenna (Rx) and transmitter antenna (Tx) of the [-th path

are respectively expressed as

1

ag (01, b1, Oris, dus) = e I2mxrk(060) ¢ CNrX1 (5.1a)

0, = arccos ( Rzl ) , (5.1b)

E

Ivr.l

¢; = arctan <URyl> , (5.1c)
UR,x,l

VR = [UR20, VR y 1 VR 21] T = R(oms) ' (Vi — V) (5.1d)

and

1 omxrk(ien) CNrx1 (5.2a)

ar (91, ¢1,0Bs, PBs) =

5
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Figure 5.1: IS-assisted massive MIMO system
WT, 2,1
Y; = arccos ( % ) , (5.2b)
[wr,|
WT,y,1
¢ = arctan <y) , (5.2¢c)
WT 2,1
T -1
wr = [wrel, wrys,wrz] = R(oss) ™ (vi —w) (5.2d)

where xr = (R(OMS)pR)T e CNV»*3 and x1 = (R(ops)pr)T = p+t € CNT*3 are respec-
tively the coordinates of Rx elements and Tx elements. vg; and wr ; are the coordinates of
either the BS, scatter, reflector element or MS. R(oys) is the rotation matrix. pg € C3*Vr
and pp € C3*NT are the matrices of relative coordinates of each antenna element from the
corresponding array centre. dg and dr are the element intervals of Rx and Tx. 6;, ¢;, ¥
and () respectively represent the elevation angle and azimuth angle of the [-th path at the
MS, and those at the BS, which are named as elevation angle of arrival (eAOA), azimuth
angle of arrival (aAOA), elevation angle of departure (eAOD) and azimuth angle of depar-
ture (aAOD) in the downlink communication system. k(6;, ¢;) is the unit direction vector,
which is a function of (6, ¢;), and it is calculated as k(6, ¢) = [cos ¢ sin 6, sin ¢ sin 6, cos 0] T.

Define Ag = [aR,1,...,agr,.] and Ap = [ar,...,ar, 1] as the sets of receiver and trans-
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mitter steering vectors of all paths. u; and v; denote the azimuth angle and elevation angle
of signal observed at the IS.
For the [-th path reflected by the IS, the antenna steering vector of IS reflector (Ix)
—Jxak(vi,m) Nisx3
o , where x1 € C

denotes the Ix element coordinates. Considering nonidentical incident angle and reflective

toward the direction (v, u;) is defined as ar(vy, ;) =

angle of the Nig Ix elements, the generic elements of array response of the p-th forward

path and the p-th backward path are respectively expressed as

Aty p = 1 e—jzﬁxl,pk(ﬂfw,pﬂ’fwyp) I= (CNIS><1 (533)
Nig
Miw,p = tan™" <ipiz> (5.3b)
p?
z
Vtw,p = cos~! p.BS (5.3c)
’ Irp,Bs|
rp.BS = [TpBS, Up.BS, ZpBs] (5.3d)
and
Gy = e 2P X0 K b ) € CNES X1 (5.4a)
Nig
_ Yp,MS
iy =t (22255 (5.4b)
p?
z
Vbwp = COS™* pMS (5.4c)
’ Irpnas]
TpMS = [TpMSs YpMSs ZpMS] (5.4d)
where the subscript p = {1,..., Nig} is a special index of Ix elements. The coordinates of

rotated Ix elements are collected in the set x1 = (R(ors)py)’ € CVs*3| where the p-th
row vector is expressed as Xg ,, and py € C3*NR is the matrix of the relative position of Ix
element from the IS centre. Thus, the coordinates of the p-th Ix element observed at the
BSis xgg, =11 + XE pe Mw,p and vgy ;, denote the observed azimuth angle and elevation
angle of the incident wave at the p-th Ix element, and iy, and 14, ), are those of the re-
flective wave. rp, gs and rj, Mg respectively represent the relative coordinates of the BS and
MS from the p-th Ix element observed at the IS. The distance from BS and MS to the p-th
Ix element are calculated as 71y, = [r1+ X1, — W[ and 74y = [v— (r1+ Xfp) |. Therefore,

the BS coordinates observed at IS can be calculated as rp gs = R(org) ™1 (w— (r1 + xfp)) or
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rpBS = Tw,pK(Viwp, iw,p), and the observed coordinates of MS are calculated as r,vs =
R(015) 1 (v = (r1 + X{)) OF TpMS = Thw pK(Vow p» fibw.p)-

The equations (5.1)~(5.4) interpret the relation between channel parameters and loca-
tion information. For the downlink system, the observed location of MS can be expressed

as

v = r1.k(01, 1) — R(ons) (r2,ck(0r, ¢1)), behs (5.5)

rr + X1, + R(018) (Tbw oK (Vbw ps bwp)), | € AR

where 71 . and 72 . are the distance from BS and MS to the c-th cluster. Note that, for the
uplink system and [ € Ag, the position of MS is v = r; + X[Tp + R(018) (7w pK (Vew,ps otw,p) ) -

5.2.2 Channel Model

Define Ag = [aR,1,...,agr,] and Ap = [ar1,...,ar, ] as the sets of receiver and trans-
mitter steering vectors of all paths, and 3 = [f1,. .., 81 ] is the complex channel gain vector,
where 8; = pe?t, p; and (; € [0, 2] are respectively the signal power and arbitrary path
phase of the I-th path, and @, = [ay,...,ar] is the delay vector, then the direct channel

and cluster reflective channels can be expressed as given by:

Hy = f1ajagall € CVr*NT (5.6)
and
H, = ApabssTsAr s, = ). Bioagalf; € CVNr (5.7)
leAs

where Ag a, © Ar and A1, © At are the collections of antenna steering vectors of
cluster reflective paths. bgg = diag{B,_}, Ts = diag{a,}, wherein 8, < B, ap, < a,
the elements of the cluster reflective path [ € Ag are 3 € B, , oy € ap,, and |3j] = 1,
a; = e 7217 7 is the I-th time delay, f is the frequency.

Define Agy = [afw 1, - -- 7G/fW7NIS]T and Apy = [abw,1,-- .,abW,NIS]T as the IS steering

vectors applied for forward link and backward link, the reflective channel via the IS of
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perfect efficiency can be obtained as:

Hy = H 2Ty, U Hy; € CVr>NT (5.8a)
Hii = Aghp AT, e Vs (5.8b)
His = Ag o hr2AfL e CVR* s (5.8¢)

where Agrr, © Ar and A1, < At are the sets of Rx and Tx steering vectors of
IS-aided paths. Hj; and Hjs denote the channel vectors of forward link and backward
link, where hy; = diag{[htw 1, .-, hw ng]} and hio = diag{[hbw1,-- -, hbw,N|} are the
matrices of complex channel gain. Ty, = diag{a} is the delay vector of IS-aided paths.
U; = diag{T'r}diag{ PR}, and TR = [ecfr 1, .- -, €ernys] and Wr = [e/¥1, ... e/¥NMs] are the
vectors of signal amplitude control and phase shifts, and eeg, € [0, 1] is the energy efficiency
controlled by the p-th passive Ix element, 1, is the adjustable phase. To maximise the
reflected signals, I'r = 1%15 is applied for the sequel of this paper, thus, 1 = diag{PR}.
The practical IS with b-bit quantizers cannot produce continuous phase shift between
[0,27]. Thus, a random quantization error A, € [—%, %] should be considered for
the IS-aided paths, and the matrix of discrete phase shift is expressed as ¥y = diag{W¥r},
Uy = [e‘;l, . ,elZ’NIS], where ¢ = ¢ + Aiy.

The path loss model of the IS-aided channel in single-input single-output (SISO) system
proposed in [89] is utilised to derive channel coefficients of the IS-based massive MIMO
system. Assume identical effective aperture of each Ix element, i.e., Aegr = aeqfGemr, Where
et = A%/(47), and Gegr(¥in) = Yep €052 (131,) is the element radiation pattern, vep = 4go+2
is the coefficient satisfying conservation of power, 1, denotes the broadside angle, qq is the
element gain. Assume that the polarization between Tx, IS and Rx is perfectly matched,

and the effective aperture is acg = A\?/4, the path loss of IS-aided channel is given as [89]:

5 1
NMs
Lig = Z I prpay| Eottp (5.9)
p=1
Qe (+Tfy p © 01)290 | aeg(+ Ty, @ Ap)290
PLp = yo — (5.10)
fw,p bw,p

g v

= Ptw,p = Pbw,p
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ap = e 127 Ttw.p =327 fTow p (5.11)
. S o
R
=0fw,p =Qbw,p

where ay, and pr;, denote the time shift factor and power attenuation of the p-th path
induced by signal propagation, where the time delay is calculated as 7, = Trwp + Thw,ps
Thwp = Tfwp/C Thwp = Tbhw,p/C, and c is the speed of light. When the radiation pattern
is Gei(tbep = 0) = m, it is obtained that the gain of each Ix element is go ~ 0.285. The
term cos(tj,) of the incident wave and reflected wave are respectively replaced by the dot
products (—Tgy,p, ® i) and (+Tpyp ® Ar). The unit vectors fgy, = —(r1 + XITJ, — W) /T p
and Ty, = —(r7 + xfp — V) /Tbw,p respectively indicate the direction of the incident wave
and reflected wave on the p-th Ix element. According to (5.3d) and (5.4d), these functions
satisfy that Ty, = R(01s)k(Vtw p, fiewp) and Thyp = R(018)K(Vbw,p, Hbw,p). The outward-
facing perpendicular direction of the IS is expressed as fiy = [n, ny,n,]"T = R(o5s)[0, 1,0]T.
And the dot product is calculated as +Tpy, ® Dy = f'kT)vaﬁI = sin(tpw,p) Sin(Vpwp) and
gy p @ = fgwﬁl = sin(ftfw,p) sin(Vsw,p), where the rotation matrix R(org) is mitigated.

Thus, the path attenuation of the forward link and backward link are rewritten as pgyp, =

aeff(Sin(;u'fw,p) Sin('/fw,p))QqO _ aeff(Sin(;ubw,p) Sin(ybw,p))2q0

5.2 s Pow,p = 5.2
4 Thw.p ’ 47 Thw,p

Path loss at IS Lig in (5.9) can be decomposed into three components: controllable
phase shift e/¥», power attenuation py,, time shift factor a,. Substitute (5.9)-(5.11) to
(5.8), and replace the subscript ‘p’ with ‘I’, then the [-th complex channel coefficient
can be obtained as h; = By, pri = Piw,iPbw,, Which is decomposed into the channel
impulse response of the forward link and the backward link, i.e., |I’wa7l|2 = aeﬁrp%ml and

2 = aeﬂp%w,l‘ Following the same way, the time shift factor of the IS-aided path

| P 1
can be obtained as az, = [ou,...,aNg], 0p = Oy pQbwp. The IS-aided channel can be

obtained as follows:

Hy = T,bsP/V; (5.12a)
T, = diag{o,...,aL} (5.12b)
b = diag{bsr Obs 1}, bgr = [Bri1scr Powls b = (11105 O] (5.12¢)
P = diag{1T, ¢, V", ... &¥Ms} (5.12d)
Vi = diag{A1}, A1 = [11T+C,agw71afw71, . 7agw,leafw7N1s H (5.12e)

where bg = diag{B} is the diagonal matrices of complex channel gain of all paths, and

B = [f1,...,0c]. The matrix of complex channel gain is expressed as the product of
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two intermediate matrices bg = bgrbg T, in order to distinguish the contribution of
the forward link and the backward link on bg, and py,, = [pbw.167524C .. Pow, leejCL],
Pty = [pfw,17 BRI 7hW,NIS]~

When the IS is sufficiently far from the transmitter, the Nig paths of forward link
are approximately parallel. Then it is reasonable to apply the approximation of path
attenuation and incident angles pryp ~ Pfw,0s fhtwp X Hw,05 Viw,p = Viw,0- Similarly, when
the receiver is sufficiently far from the IS, the paths of backward link are approximately
parallel, resulting into approximation on path attenuation and reflection angles ppy,, =~
Pbw,0> Obw,p X Qbw,o, reflective angles pihwp & fbw,0s Vowyp X Vbw,o. Lherefore, IS array
responses respectively approximate to afy, & afw,0, Gbw,p ¥ Gbw,0. Then the approximated

channel vector of (5.10) is obtained as
HR’far 5 (pfw,Opbw,O Z apeWP) aR’OaEwOafw,ga%O (513)
PENIS

where aR o and at g are the array response with approximated AOA and AOD of IS aided
paths.

5.2.3 Signal Model

Therefore, when the transmitter emits a signal x(t) € CV8*! through Np beams, the
perfectly synchronised narrowband received signal during observation time T, is expressed

as

Y(t) = Z A/ NRNTPrp (Hd + H; + HR) FBX(t - Tl) +n.ps € (CNRXI, 0<t<T, (5.14)
=1 D

= Y(t)

where Fg = /Pr[fg1,....f3 Ny € CNt*NB is the directional beamforming matrix, and
fep = ar (P, vp), Pr is the transmit power. ngps is the additive white Gaussian noise
with PSD Ny. Note that, the beamforming matrix is normalised trace{FEFg} = 1, and
the direction of beams (¥, ¢p) is uniformly distributed in the range of [¢; — 7, ¥ + 7]
and [¢; — m/2,¢; + 7/2]. Thus, the received signal follows the biased complex Gaussian
distribution, i.e., Y(t) ~ CN (Y (t), nobs).

If the sets of index of cluster reflective paths and IS-aided paths are Ag = [2,...,1+C],
Ar = [2+C,..., L], thus the paths labelled by subscripts c =1,...,C and p=1,..., Nig
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respectively corresponds to the subscripts | =2,..., 1+ C and [ =2+ C,...,L. When IS
is in the far-field, the approximated channel of IS (5.13) is substituted into (5.14), and the

received signal is rewritten as

1+C

Y(t) =1/ NRNTPTﬂ1a1aRa¥FBX(t — T1) + Z ﬂlalaR,la%lFBx(t — Tl)

=2 (5.15)

L
job 5| H
+ (wa,opbw,o > Oélem> aR, 08y, 0afw,027,0FBX (L — 7)) + Nobs
1=2+C

5.3 CRLB of Channel Parameters and Localisation Error

In this section, we first present FIM of all channel parameters for the near-field IS, and
far-field MS and BS. Then, EFIM of position-related channel parameters is obtained and
used to eliminate the impact of phase shifts. Based on the EFIM, CRLB of MS location
parameters is obtained with unknown location of IS and clusters. The impact of Nt and
Ngr on EFIM and CRLB are also analysed in this section.

5.3.1 Fisher Information Matrix of Channel Parameters

Define the set of interested parameters as Q = [wl,{p] e CM Ny = 7L + 5Nis,
where the position-related channel parameters are defined as w1 = [0, @, Vbw, Ubw, Viw, Mfws
9,9, By, By, T]T € CN2X1 Ny = 7L + 4Nig, and parameters of each path are respectively
defined as @ = [61,...,0L], & = [¢1,...,0L], V2 = [Vbw,1r-- s VowNisl, B2 = [Lbw,1,
o Hbw N, Y1 = [Viwds - ViwNig ], 1 = [Bw,ls - - s Mw Nig)s O = [01,...,9L], ¢ =
[1,. oLl T = [, 7] Br = R{[Br.---. ]} Bs = S{[Br,---. 6]}, ¥ = [dh,

. @ENIS]. The FIM of the received signal Y over the vector of interested parameters €2 is

o [PInf(Y|Q)
Jo = E{mmT } (5.16)

and the log-likelihood of Y (¢) conditioned at €2 is calculated as

generally calculated as

In f(Y(1)|Q) o 2R{Y ()HY (1)} — Y(O)PY (2) (5.17)
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And the 1st derivative of received signal Y (¢) (5.14) over 2 is expressed as Yo = [Yg, Y¢, Yu,,
Y Yo, Y, Y9, Y4, Yg,., Yg,, Yr, Y{p], wherein the derivative of signal over Rx AOA
Yo = [yq,,---,¥g,] is calculated as

alﬂlémla%lFBx, leAgorl=1 (5.18)
yel = .
. H . H
Oélﬁleﬂ’bl abw’lafWJaR’laT’lFBx, le AR

All the other derivative functions are calculated as (D.1) in Appendix D. Substitute (5.14)
to (5.16), the eFIM with IS in near-field is calculated as (5.19) in the next page, where

the element of FIM at the u-th row and v-th column is calculated as J,, = NLOSOO
o)\ ! oy ()
R (5R2) 24 }dt.

For the IS in far-field, channel parameters at Ix elements are approximated to those
at the IS centre, the approximated derivative functions are obtained by substituting the
the far-field signal model (5.15) to (5.16), as Yap.o = [Yap,6, Yap,és Yapwas Yap,uys Yapwis
Yapuy> Yapd Yap.or Yap,Bys Yap,Bg> Yaps Yap,d:]' For the sake of simplicity, the expres-
sion of Y, o is omitted.

Assume L uncorrelated paths, the FIM (5.19) [|can be rewritten as a block diagonal

[ Joo Jog Jou, Jopu, Jou, Jou, Jew Joy Jopy, Jopg Jor Jou ]
Jeo Jee  Jevs  Jep,  Jovr Jouy, Jev Joe  Jepr  Jess  Jer  Jup
Joso Juso Juavs Jemus Juaor Jeawy Jewo Juse Juapn Juaps Juar I
Juso Juse Jpors Jpops Jporn Jpppy Jupo Jpse Jﬂzﬁm Juzﬁg Jpor Juﬂ,
Joio Juvie Joiws Joipy, Joiwy Jogpy Juw Juie Juipy Juigg Juir Julﬂ,
Jo = Juo Jue Jpws Jpipy v Jpipy Juo Juge Julﬁ% ']Hqﬁg Jpr Jpl{z,
Joo  Joe  Jovo  Jop, Jou,  Jou,  Joe  Joe  Jegy  Jepy  Jor  Jyy
J<P9 JLNS JLPVz J<Pu2 Jou, Jc/ml Jtpt‘) pr Jcpﬁm Japﬁg Jor ij,
Jore  Jpne Jopre Ispus Isger IBgu Isge JIsne Ispsy  Jsess Ispr Jgng
Joge Jpge Jpgre Ipgus, Isgrn Ipgus JIsge Jsse Jsesr Jssss Josr Jply
Jro Jee Trus Jeuy T e I Jre Jepy  Jepy I I
oo Jio Jawe Jgu, o Jou Jee Jie Jisn Jese Jor Jeg |

(5.19)
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matrix in the sequence of number of paths. For the [-th path, the estimation of phase shift
of IS ¢y and time delay 7; is independent of other parameters. The complex channel gain
of IS-aided paths, 3,1 € AR is dependent on the angle parameters vy p, fbw,ps Viw,p» Hfw.p
and orientation of the IS n, while the phase shifts v,, and channel gain of the cluster
reflective channels and the direct link channel, 5;,1 € Ag or [ = 1 are independent of the
other parameters. All the submatrices of Jo are obtained as (D.2) in Appendix D. The
CRLB of all interested parameters is calculated as CRLBg = J 51.

Based on the relation between channel parameters and location information, the FIM of
localisation error can be obtained by applying transformation [I1] to that of channel param-
eters. Denote the set of location and orientation of MS and IS as wo = [OE/IS, vl Q. oITS7 Pis] €
C™Ns_ where the set Pig = [pgl""’pEle] e CV3Ns, Qg = [af,...,al], N3 = 3Nis +
7 4+ 3C, the FIM of localisation is calculated as

Jus = V(W0 V4, () (5.20)

where 4, (2) = [Vw,(wi1),0n,] is the Jacobian matrix of € over ws, and Vu,(w1) is
expressed as (E.1) in Appendix E. Thus, the CRLB of localisation error is calculated as
CRLB,, =J ;21.

5.3.2 Effective Fisher Information of Location Parameters

Considering that the phase shift 1;7) is unrelated to location parameters, the EFIM proposed
in [I1] is used to eliminate the impact of @Ep on CRLB. According to the definition of EFIM
proposed by [11], EFIM of channel parameters w; is obtained as the Schur complement of
J;p in (5.19), which is

For=Jw =34, 39535, (5.21)

Where le = [JQ]LNQ,I:N27 le’ll' = [JQ]I:NQ,N2+1:N17 ']12; = [JQ]N2+1:N1,N24:1:N1’ J’IZJL‘.U -
Jaln, 1.8, 1:8,- Jy is a Nig x Nig diagonal matrix, due to independent 4. Thus, it is

straightforward to obtain that the FIMs of IS angles in [, are equal to 0, resulting into
infinite CRLBs. Therefore, it is necessary to set 1 as given values when calculating FIM
and EFIM of other variables, thus

Fo =Ju, (5.22)
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F w, is converted to the EFIM of location information through multiplying F,, with

the transition matrix v/, (w1), as shown by the following:

FWQ = Vws (wl)le Vzg (wl) (5'23)

The EFIM of MS position and orientation is obtained by inverse matrix theorem as

FMS = [Fw2]1:5,1:5 - [sz]1:5,6:N3[sz]f;}\fsﬁ:]\[s[Fw2]61N3,125 (5-24)

Therefore, the squared position error bound (SPEB) Puis posi and squared orientation error
bound (SOEB) Pyts orin of MS are calculated as

PMS,posi = trace {[FIT/IIS]3;573;5} (525&)

Puis orin = trace {[FIT/IIS]1:2,1:2} (5.25Db)

The dimension of F 1\7[18 seems generally increases with Nig.
Note that, the aforementioned FIMs Jq and J,,, are obtained with IS of unknown
position and orientation, whereas Jo and J., with perfectly known IS are free of the

forward link parameters, due to known channel between BS and IS.

5.3.3 Approximate Fisher Information Matrix for Intelligent Surface in
the Far-Field

When IS is sufficiently small, the difference of parameters at the Ix element p = p,, where
Pe =1,...,p.—1,p.+1, Nig, and those at the centre, p = p, is negligible, thus the IS param-
eters approximate to wq; ~ Wi ap,l = 2+C, ..., L, where Wi ap = [0p., Ppe, Vpes lpes Vpes Iope
Upes Ppes B pes B3 pes Tpe s and pe is the index of the centre element. Substitute wi o, and
(5.15) to (5.16), and follow the same progress as (5.21)-(5.25), the approximated FIM
(aFIM)of the [-th path and approximated EFIM (aEFIM) of MS location information are

respectively calculated as

2
o = —E { ¥ |wrap) } (5.26a)

T
0w1,ap0w1’ap

FapMs = [F apws]1:5,1:5 — [Fap,wz]1:5,6:10[Fap,wz]ao,&m[Fap,w2]6;10,1:5 (5.26b)
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where Fapw, = Vao(Wiap)F wiw Vi, (Wiap) is aFIM of location parameters. The
approximation error of wj,p, mainly occur to the elements of k(f,, ,¢p.), k(Up., ¢p.),
K (Vow pe» Hbw.p. ) and K(Vey p. , tew p. ). The relative approximation error (RAE) of direction
vector of Rx k(0,,, ¢y, ) is calculated as K(0p,, ¢p.) = |13 — (diag{k(0;, ¢1)}) " k(Op,, ¢p.)|-
If the distance error is sufficiently small, i.e., rgy p, & Ty p,, it is realised that K(6,,, ¢p, ) ~
113 — (diag{x,,}) " Xp.|/Towp.- RAE of direction vectors of Tx and Ix, K(dp,, ¢p.),
K (Vtw pe, tewp.) and K(Vbw p.; bwp.) are obtained through the same progress. The de-
lay factors «y, could be mitigated by IS phase shifter ﬁp, thus, plays minor impact on FIM
and EFIM.

The approximate SPEB (aSPEB) Aws posi and approximate SOEB (aSPOB) Aws orin

of MS are calculated as

AMS,posi = trace { [F;pl’MS]g;g) 3:5} X PMS,posi (527&)
AMS orin = trace {[Fapl,MS]m 112} ~ PwMS,orin (5.27Db)
For a large IS array, the entire Ix URA array is separated into s = 1,...,5[g non-
overlapping sub-arrays with number of elements smaller than Ny = (2d;/)\), which is

determined by Fraunhofer distance of a near-field zone. Then, far-field approximated

parameters can be applied for each individual sub-array.

5.3.4 Analysis on Fisher Information Matrix and Effect of Intelligent
Surface Phase Shifter

According to Appendix D, each submatrix of (5.19) consists of the terms related to the Rx
and Tx steering vectors, named as ‘Rx factors’ and ‘Tx fractors’ respectively [8], and the
remaining terms of IS array response, phase shifts and complex channel, are named as ‘IS
factors’ in this research. The Rx factors contains the terms A%IFB, A%lFB, or A%lFB,
while the Tx factor contains the terms AR, ARJ, or AR,Z. The explicit expressions of
these Rx-related and Tx-related terms are calculated and interpret the properties of the
CRLBs.

For the Tx factors, assume the number of elements on each row and column of Tx,
N, = 0.5y/Nt — 0.5 being an integer value, and dt = 0.5, the inner product ‘aI!FIJfB,b’ is
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obtained as following:

|a¥7ZfB,b| Z Z ( —jmt1(zp—2x) —jTl'tQ(Zb—Z)>
t1=—Ng ta=—N,

@ 1 N, N,
= NovVa (1 + 2t§1 cos(tym(xp — m))) (1 + 2,;;1 cos(tam(zp — z))) I
_ 1 sin((Ng + 0.5)m(xp — ) sin((N, + 0.5)7(z, — 2)) ‘

Nt+/Np sin(0.57(zp — x)) sin(0.57 (2 — 2))
() 1 sin((2Nz + 1)ap) | [sin((2N, + 1)z;)

Nt+/Np sin(z}) sin(z})

1 / /

where 2 = 2411, 0, 0]R(oms) "k(91, 1), 2 = 29[0, 0, 1]R(oms) Tk (9y, 1), 2 = 29T cos

cos ¥y, 2p = 2dTTsin ¥y are uniformly distributed in the range [—1, 1]. The progress (a)
utilises the trigonometric identity to convert the summation of exponential function to a
closed form function. The progress (b) utilises the substitution z = 0.57(x, — ) and
2, = 0.5m(2, — z) to convert the closed form function to the product of two Fejér kernel
F /5 (+) of order /N [41]. Therefore, the value of ’a%lf]gyb‘ fluctuates between the range
[0,1/4/Ng]. If the direction of the b-th beam is sufficiently close to the real direction
of the transmitted signal, i.e., x, = o + d,p and 2z, = 2z + d,p, and 6, and 0, are

sufficiently small, the absolute value of transmitted beam in (5.18) is approximated to

. T . T,
H -~ sin —5>— | | sln —5—
all fis| ~ |32 | [T — 1. Thus,
2 2
N
H H H 2
aT,lFBFBaT,l = Z |aT,lfB,b\
b=1

1 %B] (sin((Nx +0.5)m(zp — a:))>2 (m((z\rx +0.5)m(zp — z))>2

B N2Ng = sin(0.57(xp — x)) sin(0.57(z, — 2))
® 1 % <F2 (}) F? (z’)) (5.29)
" Ny = VN b/ Np Vb '

According to the property of the Fejér kernel, (5.19) decreases with Nt, Np, z; and z;

increasing. This is attributed to: 1. the more elements and beams on the Tx of constant
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transmit power, the less power assigned to each element and each beam, and 2. the larger
difference between the beamforming direction and real direction of transmitted signal, the
less power given to the real direction of transmitted signal.

Based on (5.19), ét%lFBFgaT,l and é%lFBF}BIaTJ are respectively calculated as

H P NB 1—cos((2Nz+1)x}) 1—cos((2Nx+1)z;)
éH F FHa F F 1 Z 1—cos(x}) 1—cos(z})
T BEBELL T 60 BEBATLL T N2 N, 0,
1 %‘j <sin((2Nx + 1)x}) (2N, + 1) N (1 —cos((2N, + 1)xy)) sin(wé))
NiNg = 1 — cos(z}) (1 — cos(z}))?
1 —cos((2Nz +1)z;) . ., 1 —cos((2N + 1)a}) (sin((2Ny + 1)z;) (2N, + 1)
_ / bt I / IR !
1 — cos(z) 1 — cos(z},) 1 — cos(z)
(1 — cos((2Ny + 1)z;)) sin(z;) N
_ 5.30
(1—COS(ZI,)))2 ( jﬂ)zb ( )
where &) = a(;f;’, Z = %{’. Therefore, the Tx factors with the terms in F,, generally

increase with N7 and Ng.

For the Rx factors, it is straightforward to obtain the terms aglaRJ =1, and

, dagr 1! e k(0 ¢y 1
aRaR,; = Te, ag, = ap diagy j27pp R(OMS)T(&%QZ)) ag,, = El%RPEKe,z
EK&;(@SXl
(5.31)
. oag | = . . k(oi, P 1
R jaR, = p ¢z’ ag, = ap diag] j2npR R(OMS)T(&@) ar,; = N*Rl%RPEKm
EK¢,;r€(C3><1
(5.32)

where I%Rp%; represents the respective sum coordinates of all Rx elements on each dimen-
sion. When Rx elements are distributed symmetrically around the array centre, as the
assumption made in the section 5.2, the summation is calculated as 1% pg = [0,0,0], and
the Rx-related terms ARAR and ARAR are consequently equal to OLOE. Ky; and Ky

are constant matrices with given oyg, 6; and ¢;.
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5.4 Intelligent Surface Phase Shifter Design for Localisation

The performance of localisation can be further improved by allocating localisation-aimed
ISpsf, which maximises the value of FIMs of IS related parameters w3z, = [Vt p, ffwp;
Vbw ps bw.ps PR p» Bs,p| through allocating proper Wy to minimise the imaginary parts. The
problem of deriving the localisation-aimed ISpsf of minimum PEB can be formulated as

an SDP programming problem

(P5.1) r\rﬁin trace{[M];.s 5.5} (5.33)
R o
s.t.
M 1
=0 (5.34)
Lio Fums
M > 0 (5.35)

where M is the auxiliary variable, and EFIM of location information F s is semi-definite
matrix [11],[91]. (P5.1) can be solved by the existing iterative algorithms, e.g., gradient
descent method, when a proper initialisation is provided, and Nig is sufficiently small.
However, iterative algorithms may consume tremendous computation for large value of
Nig. The problem is turned to find the maximal derivatives related to ISpsf.

For the derivatives of IS array response displayed as (D.4) in Appendix D, the terms re-
lated to ISpsf are denoted by @), = pbw,ppprej@ angpejlzp afyw.p, A {Cte s Ctap, Cheps Chap}
and {Efe p, Ea p, Eve p, Fbap} are respectively the amplitudes and phases of derivatives of

@), to w3, which are rewritten as following :

owp

= CtopFro 3p .
I Cte pFrte pe (5.36)
owp 5
= Cto pEpa pe??? 5.37
a,“/fw,p f P f 7p6 ( )
0 7
P ChepEepel?r (5.38)
OVbw,p
owp 7
= ChapFpape’t? 5.39
a,Ube,p b P b Y ( )
Owp _ agmpafw,pej% (5.40)

aﬁ?ﬁ,p
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ow . 7
P jagwmafwmej% (5.41)
aﬂ%m

where the expressions of the amplitudes and phases are shown as (D.5) in Appendix
D. Each of the maximum values of (5.36)-(5.41) are equal to their individual ampli-
tudes. The optimal ISpsfs for (5.36)-(5.41) are denoted by ) — [1/;1,...,1/31\/15], where
@ﬁp € {Uu.bwp> Vubw,ps Vv fw,ps Y tw,pr U8.5%,ps ¥3,5,p) can be obtained through the following
optimisation :
min |ZE), — lzp‘ (5.42)
p
where Ey, € {Efe p, Etap, Ebep, Evap} are designed for optimal ISpsf in (5.36)-(5.41). E, =
(IEW’pafW’p is applied for the optimal ISpsf of other parameters wa, = [0p, dp, Up, ©p, ),
and A(agw7pafw7p) = 27TXI,p(k(wa,p’ ,Ubw7p) - k(Vfw,zn ,Ufw,p))/)" R
Note that, the information of w3, in received signals are eliminated by 1, even if
the corresponding elements of FIMs J,,, are increased. Therefore, the optimal ISpsf of
other channel parameters [0, ¢,,Up, ¢p, 7| are not considered, in order to remain suffi-
cient position-related channel parameters to localisation. Therefore, the FIM with optimal

ISpsf can be calculated as

Jo, =3u,0Q, 0P (5.43)
where Q,, is the matrix that all elements are reciprocal of those in P, and P = p%{pl,
where p; = [11+C \flR], WUy is the ISpsf matrix of ¢),. Substitute J,,, to (5.21)-(5.26), it is
straightforward to calculate the EFIM of localisation-aimed ISpsf as F w, = Ve, (w1)J Vo
(w1). Therefore, (P5.1) is converted to

(P5.2) r‘ril’in trace{[M]3 5 3.5} (5.44)
s.t.
M wo (W
B o
M > 0 (5.46)

The optimal solution to (P5.2) is obtained as that of (5.43) which maximise the values of
(5.36)-(5.41).
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5.5 Simulation Results

We consider a scenario where single MS is localised by a BS operating at f. = 30 GHz
(A = 0.01 m), bandwidth of W = 100 MHz, observation noise of psd Ny = 1le—8 mw/GHz,
transmit power Pt = 1 mw, and 32 subcarriers through a LOS link, a single bounced NLOS
link and a RIS-aided link. Both BS and MS are equipped with N1, Ng = 10 x 10 antenna
elements, which are distributed as rectangular grids with element spacing 0.5\ = 0.005 m.
IS is fixed at the position rj = [24,21,15]T, and BS is at w = [0,0,10]T. The position of
MS is randomly generated in the farther range than BS to IS, and Ny, = 6456. Cell radius
is 100 m. The performance of localisation is evaluated by PEB and OEB of MS within
both cases of known and unknown IS, where known IS is referred to the IS with complete
awareness of its position and orientation, and unknown IS is the IS with the awareness
absent.

Figs. 5.2 and 5.3 present that the average PEB and OEB of MS are generally decreas-
ing when Nis € [62,128%], and location and orientation of IS are perfectly known. It is
observed that the localisation-aimed ISpsf (lo-ISpsf) always outperforms communication-
aimed ISpsf (co-ISpsf) [13],[14], since lo-ISpsf adjusts the phase of all derivatives, while
co-ISpsf[13],[14] only considers those of parameters at BS and MS. aPEB and aOEB usu-
ally approximate ePEB and eOEB with the relative approximation error (RAE) below 5%.
Thus, far-field approximation error is effectively reduced by restricting the sub-arrays to
Ng elements. The 8-bit quantizer always achieve the highest performance than the other
quantizers. However, the prominent effectiveness of lo-ISPsf is reflected on 1-bit quantizer,
100 times improvement on PEB and OEB with co-ISpsf[13],[14], whose performance also
approximates to that of an 8-bit quantizer with co-ISpsf[13],[14].

Figs. 5.4 and 5.5 display the average PEB and OEB achieved by unknown ISs of 1, 4,
8-bit quantizers with the same simulation setup. PEB and OEB fluctuates severely and
even increases when Nig > 841, since the absence of perfect knowledge of IS disables the
location information of IS-aided paths. These results emphases the importance of knowl-
edge of IS location information. The difference between approximated data and exact data
is only acceptable with Nig < 64. The RAE of PEB and OEB is even up to 42% and 117%
at Nig = 16384. Notice the minor superiority of 4 and 8-bit quantizers than the 1-bit
quantizer, it is down to conclude that the 1-bit quantizer is still the most valuable choice

for the scenario with unknown IS.
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5.6 Summary

In this chapter, we have studied the fundamental limits of IS assisted and massive MIMO
based localisation. The impacts of number of IS elements and number of quantization bits
have been investigated with approximated FIM and exact FIM for far-field localisation.
Simulation results show minor approximation error derived by the approximated FIM
with perfect awareness of IS position and orientation, while huge values of up to 42% and
117% RAE of PEB and OEB are drawn by that without the awareness, which implies
the importance of the knowledge of IS position and orientation. A novel localisation-
aimed ISpsf is proposed to improve accuracy than the existing communication-aimed ISpsf
[13],[14]. However, it brings greater improvement on accuracy of 1-bit quantizer than
expensive quantizers. Moreover, localisation-aimed ISpsf could be disabled by the absence

of knowledge of IS, where the Ix elements deteriorate into single bounced scatters.
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Conclusion and Future Work

6.1 Conclusion

This thesis investigated the mobile localisation technologies applied for 5G and B5G cellu-
lar networks, including centralised cooperative localisation based on hybrid measurements,
UAV BS assisted and RSS based localisation, and IS assisted massive MIMO based local-
isation.

In Chapter 3, the centralised cooperative localisation approach based on TOA, AOA,
AOD and RSS has been proposed to localise the MS in single bounced NLOS environ-
ment. The proposed approach is enhanced by another proposed weight functions and MS
grouping scheme, in order to further improve accuracy of localisation, and reduce the com-
putation cost. It has been shown that the proposed CLTAAR, wCLTAAR and eCLTAAR
approaches achieve higher accuracy, and eCLTAAR costs 74% less computation time than
the conventional approach in [2].

In Chapter 4, the fixed-wing UAV mounted BS assisted and RSS based localisation
with airframe shadowing has been studied. This localisation problem can not be effec-
tively solved by the existing approaches, due to the nonlinear and non-convex expression
of PLE. We first propose to partition the EAPL model to a power-like function of two
sub-functions through piecewise convex approximation and curve fitting. Based on the
approximated model, the problem of UAV assisted localisation with unknown and unequal
PLEs is addressed by the proposed PCAL approach. The ambiguous estimates caused
by the approximated model are eliminated by a proposed GSAE method, which is more

effective than the conventional PLM method in [37]. The localisation problem with un-

82
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known transmit power is solved by the proposed PCAL-gsDRSS approach with estimated
transmit power. Furthermore, an anti-common sense finding has proved the higher accu-
racy of localisation and ranging distance achieved by EPt and EPLEs than that of real
transmit power and real PLEs, and suggests to use estimated parameters rather than the
real parameters, even in the scenario with perfectly known real parameters. Besides, a
PCAL-EPt-gsDRSS localisation scheme has been proposed with estimated EPt. Simula-
tion results shown the much higher accuracy of proposed PCAL and PCAL-GSAE with
unknown and unequal PLEs, PCAL-gsDRSS and PCAL-EPt-gsDRSS with unknown trans-
mit power, and unknown and unequal PLEs than the existing approaches [7],[8],[10],[63]
with perfectly known PLEs and transmit power, and [9] with unknown transmit power,
and unknown and unequal PLEs. PCAL-GSAE and PCAL-EPt-gsDRSS approach the
CRLB derived.

In Chapter 5, an IS assisted massive MIMO based localisation has been investigated.
Large IS array is partitioned into non-overlapping sub-arrays, in order to mitigate far-
field approximation error on channel parameters and aFIM. The derived eFIM and eEFIM
prove the necessity on separating the progresses of localisation and ISpsf design. Through
analysing eFIM, localisation-aimed ISpsf is designed to decrease the theoretical limits on
PEB and OEB of MS. The impacts of number of Ix elements, number of ISpsf quantizer bits
and knowledge of IS on the obtained approximated PEB, OEB and exact PEB and OEB
of localisation have been investigated by numerical results. The overall results imply the
importance of the perfect knowledge of IS, and the effectiveness of proposed localisation-
aimed ISpsf. When the IS is perfectly known, aFIM achieves negligible RAE, and ISpsf
of 8-bit quantizer has the highest accuracy. However, when the knowledge of IS is absent,
RAE of PEB and OEB increases up to 42% and 117%, and ISpsf of 1-bit quantizer achieve
comparable accuracy as the other expensive quantizers. The proposed localisation-aimed
[Spsf with the perfect knowledge has performed 100 times higher accuracy than the ex-
isting communication-aimed ISpsf [13],[14], but also deteriorates dramatically when IS is

unknown.

6.2 Future Work

In the research on mobile localisation techniques in this thesis, some assumptions made
are far beyond the realistic. For example, in the practical system, the radio resource al-

located to localisation is limited and less important than other missions of the networks,
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like power control, interference management, channel estimation, etc, which might influ-
ence the accuracy and quantity of measurements accessible for localisation. Besides, the
upcoming 6G network offers an opportunity for localisation, including the enablers, like
THz communication, intelligent surface and artificial intelligent system. Hence, the future

research topics are summarised in the following.

1. Joint optimisation of available radio resources for each mission are needed for differ-
ent purposes of networks. Currently, most network missions are processing indepen-
dently. The impacts of different missions on localisation have not been adequately
investigated, except power control on fundamental limits of localisation. For exam-
ple, the performance of localisation may not be degraded by giving more resources to
channel estimation, which can beneficial for localisation through providing more ac-
curate measurements. Another example is that, inter-user interference may contain
eligible location information of users in neighbouring cells, which assists localisation
of the interfering users. Therefore, the joint optimisation of multiple missions for
improving the entire performance of multi-user localisation is still challenging and

will be investigated thoroughly.

2. Some promising technologies envisioned for the future 6G offer new opportunity to
localisation. Simultaneous localisation and mapping will be enabled by a unified
interface of 6G, which is a challenging problem due to the insufficient accuracy of
measurements. The passive IS has been investigated by this thesis, but the active IS,
which works as transmitter, and hybrid passive and active IS are different with passive
IS, which upper bound of power is limited by the transmit power of BS or MS, thus
active IS and hybrid IS could make the smart radio environment more configurable.
THz communication is different with the existing mmWave communication, and is
distorted by molecular absorption. The proposed methods could benefit from the
higher frequency, larger bandwidth and smaller wavelength, which bring more direct
and less indirect paths, more accurate estimation on position-related parameters
and smaller antennas. The envisioned challenging problems include investigation on
new channel model in THz communication environment, non-stationary channel for

extremely large array and channel estimation at ISs.

3. The models employed by this thesis could be more realistic, and the environmen-

tal and system parameters should be considered, such as transmit power, antenna
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gain, amplifier, multipath fading and interference. Polarization influences the direc-
tional antenna gain, and contains information of incident and reflection angle [36].
Multipath fading could be significant in 5G low-bands, as the delay spread and an-
gular spread of propagation in a cluster cause extra measurement error on TOA and
AOA. TOA measurements could be distorted by synchronisation error (caused by
imperfect channel estimation and interference), clock drift and clock skew (caused
by hardware). Consideration of the aforementioned more realistic factors could not
only enrich the knowledge of location information, but also paves the way for field

test in future.

4. The proposed work in Chapters 3-5 can be verified by field test. Chapter 3 can be ex-
amined with simplified facilities. For example, BSs can be replaced with RF sensors
or spectrum analysers equipped with receivers, and MSs can be replaced with mo-
bile phone or signal generators (such as E82257D PSG) equipped with transmitters
(such as Model-TRA-5960W). The measurements of TOA, AOA, AOD and RSS are
collected and processed by the connected computer, which works as location server
centre in cellular networks. The measurement system set for Chapter 4 includes four
aircraft and a ground station. The aircraft could be NASA’s S-3B Viking airplane
equipped with GPS and synchronised notebook. A four-channel ground station of
four monopoles is employed as the transmitter. Parameters of the airplane and col-
lected RSS measurements are sent to the notebook and processed online. However,
it is difficult to apply the work proposed in Chapter 5, due to the lack of massive
MIMO arrays. The relevant field test can utilise the aforementioned signal generators
and analysers to transmit and receive signals, and build an IS made of off-the-shelf
antenna elements, such as ‘RFocus prototype’ designed by researchers of the Mas-

sachusetts Institute of Technology.

5. The proposed methods in Chapters 3 and 4 can be applied for Internet of things
(IoT) through simply replacing the architecture of 5G system with other IoT based
system, such as LoraWAN system. In the LoraWAN system, end-node transmit data
to gateways, which pass the received data to The Things Network (TTN) through
UDP/IP. Then, TTN processes the data and deliver the message to the third party
client, which estimates the position of end-node with the proposed methods. Chap-
ter 5 can be examined with experiment, if the ongoing work on IoT connections

envisioned in 5G, massive machine-type communication (mMTC) and ultra-reliable
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low-latency communication (URLLC) come true. Then, IoT user equipments (UEs)
could be directly connected to 5G massive MIMO BSs. Additionally, Chapter 3 can
also be directly applied for emergency services, e.g., E911 emergency call, based on
the RSS measurements reported by either MSs or UAV BSs.



Bibliography

1]

[4]

[5]

8]

F. Gustafsson and F. Gunnarsson, “Mobile positioning using wireless networks: pos-
sibilities and fundamental limitations based on available wireless network measure-
ments,” IEEE Sig. Process. Mag., vol. 22, no. 1, pp. 41-53, Jan. 2019.

S. Frattasi and F. D. Rosa, Mobile positioning and tracking: from conventional to

cooperative techniques, 2nd ed. Wiley Press, 2017.

F. Boccardi and R. W. Heath, “Five disruptive technology directions for bg,” IFEFE
Commun. Mag., vol. 52, no. 3, pp. 74-80, Feb. 2014.

Y. Liu, X. Shi, S. He, and Z. Shi, “Prospective positioning architecture and technolo-
gies in 5g networks,” IEEE Netw., vol. 31, no. 6, p. 115-121, Nov. 2017.

R. D. Taranto and et al, “Location-aware communications for 5g networks: how lo-
cation information can improve scalability, latency, and robustness of 5g,” IEEFE Sig.
Process. Mag., vol. 31, no. 6, pp. 102-112, Oct. 2014.

M. Agiwal, A. Roy, and N. Saxena, “Next generation 5g wireless networks: a com-
prehensive survey,” IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 1617-1655, 3rd
Quart., 2016.

Z. Wang, H. Zhang, T. Lu, and T. A. Gulliver, “Cooperative rss-based localization
in wireless sensor networks using relative error estimation and semidefinite program-
ming,” IEEE Trans. Veh. Tech., vol. 68, no. 1, pp. 483-497, Jan. 2019.

Y. Hu and G. Leus, “Robust differential received signal strength - based localization,”
IEEE Trans. Sig. Process., vol. 65, no. 12, pp. 3261 — 3276, Jul. 2017.

87



88

Boda Liu

[9]

[11]

[12]

[13]

[14]

J. Shi, G. Wang, and L. Jin, “Least squared relative error estimator for rss based
localization with unknown transmit power,” IEEE Sig. Process. Lett., vol. 27, pp.
1165 — 1169, Jun. 2020.

S. Mazuelas and et al, “Robust indoor positioning provided by real-time rssi values in
unmodified wlan networks,” IFEFE J. Sel. Topics Sig. Process., vol. 3, no. 5, pp. 821
— 831, Oct. 2009.

Y. Shen and M. Z. Win, “Fundamental limits of wideband localization - part i: a
general framework,” ITEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 49564980, Oct.
2010.

A. Guerra, F. Guidi, and D. Dardari, “Single-anchor localization and orientation per-
formance limits using massive arrays: Mimo vs. beamforming,” IEEE Trans. Wireless
Commun., vol. 17, no. 8, pp. 5241 — 5255, Aug. 2018.

Y. Liang and et al, “Large intelligent surface/antennas (lisa): making reflective radios
smart,” J. Commun. Inf. Netw., vol. 4, no. 2, p. 40 — 50, Jun. 2019.

H. W. J. He, T. Sanguanpuak, O. Silven, and M. Juntti, “Adaptive beamforming
design for mmwave ris-aided joint localization and communication,” in Proc. 2020
IEEE Wireless Commun. Netw. Conf. Wkshps. (WCNCW). Seoul, Korea (South),
Apr. 2020.

J. A. del Peral-Rosado, R. Raulefs, J. A. L. spez Salcedo, and G. SecoGranados,
“Survey of cellular mobile radio localization methods: from 1g to 5g,” IEEE Commun.
Surveys Tuts., vol. 20, no. 2, pp. 1124-1148, Secondquarter 2018.

C. Laoudias, A. Moreira, S. Kim, S. Lee, L. Wirola, and C. Fischione, “A survey
of enabling technologies for network localization, tracking, and navigation,” [EFEFE
Commun. Surveys Tuts., vol. 20, no. 4, p. 3607-3644, Jul. 2018.

J. J. Caffery, “A new approach to the geometry of toa location,” in Proc. IEEE 52nd
Veh. Tech. Conf. Fall 2020 (VTC Fall 2020). Boston, MA, U.S.A., Sep. 2000.

Y. T. Chan and et al, “Time of arrival based localization under nlos conditions,” IEEE
Trans. Veh. Tech., vol. 55, no. 1, pp. 17-24, Jan 2006.



Bibliography 89

[19]

[21]

[22]

[26]

[27]

D. Dardari, C. C. Chong, and M. Z. Win, “Threshold-based time of arrival estimators
in uwb dense multipath channels,” IEEE Trans. Commun., vol. 56, no. 8, pp. 1366—
1378, Aug. 2008.

L. Xiong, “A aelective model to suppress nlos signals in angle-of-arrival (aoa) location
estimation,” in Proc. IEEE 9th Inter. Symposium on Pers. Ind. and Mobile Radio
Commun. (PIMRC). Boston, MA, U.S.A., Sep. 1998.

A. Pages-Zamora, J. Vidal, and D. H. Brooks, “Closed-form solution for positioning
based on angle of arrival measurements,” in Proc. IEEE 13th Inter. Symposium on
Pers. Ind. and Mobile Radio Commun. (PIMRC). Pavilhao Altantico, Portugal, Sep.
2002.

A. Mallat, J. Louveaux, and L. Vandendorpe, “Uwb based positioning in multipath
channels: Crbs for aoa and for hybrid toa-aoa based methods,” in Proc. 2007 IEEE
Inter. Conf. Commun. Glasgow, U.K., Jun. 2007.

A. Kangas and T. Wigren, “Angle of arrival localization in Ite using mimo pre-coder
index feedback,” IEEE Commun. Lett., vol. 17, no. 8, pp. 1584-1587, Aug. 2013.

R. B. Ertel and J. H. Reed, “Angle and time of arrival statistics for circular and
elliptical scattering models,” IEEE J. Sel. Areas Commun., vol. 17, p. 1829 — 1840,
Nov. 1999.

A. Borhani and M. Patzold, “A unified disk scattering model and its angle-of-departure
and time-of-arrival statistics,” IEEE Trans. Veh. Technol., vol. 62, no. 2, p. 473 — 485,
Feb. 2013.

G. Lee, Y. Sung, and J. Seo, “Randomly-directional beamforming in millimeter-wave
multi-user miso downlink,” IEEE Trans. Wireless Commun., vol. 15, no. 2, p. 1086 —
1100, Feb. 2016.

J. Chung, C. S. Hwang, K. Kim, and Y. K. Kim, “A random beamforming technique in
mimo systems exploiting multiuser diversity,” IEEFE J. Sel. Areas Commun., vol. 21,
p. 848 — 855, Jun. 2003.

K. Zarb-Adami, A. Faulkner, J. G. B. de Vaate, G. W. Kant, and P. Picard, “Beam-

forming techniques for large-n aperture arrays,” in Proc. 4th IEEE Inter. Symposium



90

Boda Liu

[31]

[35]

[36]

on Phased Array Syst. and Technol. (ARRAY ’10). Waltham, MA, U.S.A., Oct.
2010.

E. Basar and et al, “Wireless communications through reconfigurable intelligent sur-
face,” IEEE Access, vol. 7, pp. 116 753 — 116 773, Aug. 2019.

3rd Generation Partnership Project, “Technical specification group radio access net-
work; user equipment (ue) conformance specification; radio transmission and recep-
tion; part 1: Conformance testing,” TS 36.521-1, V14.5.0, Aug. 2017.

M. D. Renzo and et al, “Smart radio environments empowered by reconfigurable in-
telligent surfaces: How it works, state of research, and road ahead,” arXiv:2004.09352
[es.IT], Apr. 2020.

J. V. Alegria and F. Rusek, “Cramér-rao lower bounds for positioning with large
intelligent surfaces using quantized amplitude and phase,” in Proc. 2019 53rd Asilomar
Conf. on Sig., Syst., and Computers. Pacific Grove, CA, U.S.A., Nov. 2019.

S. Hu, F. Rusek, and O. Edfors, “Cramer-rao lower bounds for positioning with large
intelligent surfaces,” in Proc. IEEE Veh. Technol. Conf. (VTC). Toronto, Canada,
Sep. 2017.

S. Hu, F.Rusek, and O. Edfors, “Beyond massive mimo: The potential of data trans-
mission with large intelligent surfaces,” IEEE Trans. Signal Process., vol. 66, no. 10,
p. 2746-2758, May 2018.

E. Bjornson and L. Sanguinetti, “Demystifying the power scaling law of intelligent
reflecting surfaces and metasurfaces,” in Proc. IEEE Int. Wkshps. Computat. Adv.
Multi-Sensor Adaptive Process. (CAMSAP). Le gosier, Guadeloupe, Dec. 2019.

E. Bjornson and L.Sanguinetti, “Power scaling laws and near-field behaviors of massive
mimo and intelligent reflecting surfaces,” IEEE Open Journal of the Communications
Society, vol. 1, pp. 1306-1324, Sep. 2020.

S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press,
2004.



Bibliography 91

[38]

[40]

[41]

[42]

[45]

Z. Abu-Shaban, X. Zhou, and T. D. Abhayapala, “A novel toa-based mobile localiza-
tion technique under mixed los/nlos conditions for cellular networks,” IEEE Trans.
Veh. Technol., vol. 65, no. 11, p. 8841 — 8853, Nov. 2016.

W. Zhang, Q. Yin, H. Chen, F. Gao, and N. Ansari, “Distributed angle estimation
for localization in wireless sensor networks,” IEEE Trans. Wireless Commun., vol. 12,
no. 2, p. 527 — 537, Feb. 2013.

J. Li, J. Conan, and S. Pierre, “Mobile terminal location for mimo communication
systems,” IEEE Trans. Antennas Propag., vol. 55, no. 8, p. 2417 — 2420, Aug. 2007.

C. Chen and K. Feng, “Statistical distance estimation algorithms with rss measure-
ments for indoor lte-a networks,” IEEE Trans. Veh. Technol., vol. 66, no. 2, p. 1709
— 1722, Feb. 2017.

Y. Xie, Y. Wang, and X. You, “Closed-form location estimator from toa/aoa/aod
measurements in mimo communication systems,” in Proc. IEEE Sarnoff Symposium.
Princeton, NJ, U.S.A., Apr. 2009.

B. Y. Shikur and T. Weber, “T'doa/aod/aoa localization in nlos environments,” in
Proc. IEEE Int. Conf. on Acoustics, Speech and Sig. Process. (ICASSP). Florence,
Italy, May 2014.

S. W. Chen, C. K. Seow, and S. Y. Tan, “Elliptical lagrange-based nlos tracking
localization scheme,” IEEE Trans. Wireless Commun., vol. 15, no. 5, pp. 3212 — 3225,
May 2016.

D. Liu, K. Liu, Y. Ma, and J. Yu, “Joint toa and doa localization in indoor environment
using virtual stations,” IEEE Commun. Lett., vol. 18, no. 8, pp. 1423 — 1426, Aug.
2014.

M. Kyro, V. Kolmonen, and P. Vainikainen, “Experimental propagation channel char-
acterization of mm-wave radio links in urban scenarios,” IEEE Antennas Wireless
Propag. Lett., vol. 11, p. 865 — 868, Jul. 2012.

A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H. Wymeersch,
“bg position and orientation estimation through millimeter wave mimo,” in Proc.

IEEE Globecom Wkshps. (GC Wkshps). San Diego, CA, U.S.A., Dec. 2015.



92

Boda Liu

[48]

[49]

[51]

[52]

[54]

[55]

[56]

S. A. Banani, M. Najibi, and R. G. Vaughan, “Range-based localisation and tracking
in non-line-of-sight wireless channels with gaussian scatterer distribution model,” IET
Commun., vol. 7, no. 18, p. 2034 — 2043, Jul. 2013.

K. Das and H. Wymeersch, “Censoring for bayesian cooperative positioning in dense
wireless networks,” IFEE J. Sel. Areas in Commun., vol. 30, no. 9, p. 1835 — 1842,
Oct. 2012.

J. Cui, Z. Wang, C. Zhang, Y. Zhang, and Z. Zhu, “Message passing localisation al-
gorithm combining bp with vmp for mobile wireless sensor networks,” IET Commun.,
vol. 11, no. 7, pp. 1106-1113, May 2017.

F. D. Rosa, T. Paakki, H. Leppékoski, , and J. Nurmi, “A cooperative framework
for path loss calibration and indoor mobile positioning,” in Proc. IEEE 7th Wkshps.
Positioning Navig. and Commun. (WPNC). Dresden, Germany, Mar. 2010.

K. McDermott, R. M. Vaghefi, and R. M. Buehrer, “Cooperative utdoa positioning
in lte cellular systems,” in Proc. IEEE Globecom Wkshps. (GC Wkshps). San Diego,
CA, U.S.A., Dec. 2015.

A. Dammann, R. Raulefs, , and S. Zhang, “On prospects of positioning in 5g,” in
Proc. IEEE Inter. Conf. Commun. Wkshps. (ICCW). London, U.K., Jun. 2015.

C. Gentile, N. Alsindi, R. Raulefs, and C. Teolis, Geolocation Techniques Principles
and Applications. Springer, 2013.

X. Wei, N. Palleit, and T. Weber, “Aod/aoa/toa-based 3d positioning in nlos multi-
path environments,” in Proc. IEEE 22nd Inter. Symposium on Pers. Ind. and Mobile
Radio Commun. (PIMRC). Toronto, Canada, Sep. 2011.

F. Penna, M. A. Caceres, and H. Wymeersch, “Cramér-rao bound for hybrid gnss-
terrestrial cooperative positioning,” IEEE Commun. Lett., vol. 14, no. 11, p. 1005 —
1007, Nov. 2010.

I.-R. report M.2135, “Guidelines for evaluation of radio interface technologies for imt-
advanced,” 2008.



Bibliography 93

[58]

[62]

[63]

M. Alzenad, F. L. A. El-Keyi, and H. Yanikomeroglu, “3-d placement of an unmanned
aerial vehicle base station (uav-bs) for energy-efficient maximal coverage,” IEEE Wire-
less Commun. Lett., vol. 6, no. 4, pp. 434 — 437, Aug. 2017.

A. Merwaday and I. Guvenc, “Uav assisted heterogeneous networks for public safety
communications,” in Proc. 2015 IEEE Wireless Commun. Netw. Conf. Wkshps. New
Orleans, LA, U.S.A., Mar. 2015.

C. Luo, S. I. McClean, G. Parr, L. Teacy, and R. D. Nardi, “Uav position estimation
and collision avoidance using the extended kalman filter,” IEFEE Trans. Veh. Tech.,
vol. 62, no. 6, pp. 2749 — 2162, Jul. 2013.

R. M. Vaghefi, M. R. Gholami, R. M. Buehrer, and E. G. Strom, “Cooperative re-
ceived signal strength-based sensor localization with unknown transmit powers,” IEEE
Trans. Sig. Process., vol. 61, no. 6, pp. 1389 — 1403, Mar. 2013.

S. Tomic, M. Beko, and R. Dinis, “Rss-based localization in sensor networks using
convex relaxation: noncooperative and cooperative schemes,” IEEFE Trans. Veh. Tech.,
vol. 64, no. 5, pp. 2037 — 2050, May 2015.

V. Kumar, R. Arablouei, R. Jurdak, B. Kusy, and N. W. Bergmann, “Rssi-based
self-localization with perturbed anchor positions,” in Proc. IEEE 28th Int. Symp.
Personal, Indoor and Mobile Radio Communications (PIMRC). Montreal, Canada,
Oct. 2017.

S. Mazuelas and et al, “Topology assessment provided by weighted barycentric pa-
rameters in harsh environment wireless location systems,” IEFE Trans. Sig. Process.,
vol. 58, no. 7, pp. 3842 — 3857, Jul. 2010.

J. Prieto and et al, “Adaptive data fusion for wireless localization in harsh environ-
ments,” IEEE Trans. Sig. Process., vol. 60, no. 4, pp. 1585 — 1596, Apr. 2012.

S. Fang, Y. Hsu, B. Lu, and W. Kuo, “A calibration-free rss-based mobile positioning
system,” in Proc. IEEE VTC-Spring 2012. Yokohama, Japan, May 2012.

L. Cheng, C. Wu, Y. Zhang, and Y. Wang, “An indoor localization strategy for a
mini-uav in the presence of obstacles,” Int. J. Advanced Robot. Syst., vol. 9, no. 4, pp.
1 -8, Oct. 2012.



94

Boda Liu

[68]

[74]

[75]

[76]

I. Ahmad, N. W. Bergmann, R. Jurdak, and B. Kusy, “Towards probabilistic localiza-
tion using airborne mobile anchors,” in Proc. 2016 IEEE PerCom. Wkshps. Sydney,
Australia, Mar. 2016.

D. W. Matolak and R. Sun, “Air—ground channel characterization for unmanned air-
craft systems—part i- methods, measurements, and models for over-water settings,”
IEEFE Trans. Veh. Tech., vol. 66, no. 1, pp. 26 — 44, Jan. 2017.

K. Wang and et al, “Path loss measurement and modeling for low-altitude uav access
channels,” in Proc. IEEE VTC-Fall 2017. Toronto, Canada, Sep. 2017.

A. Al-Hourani and K. Gomez, “Modeling cellular-to-uav path-loss for suburban envi-
ronments,” IEEE Wireless Commun. Lett., vol. 7, no. 1, pp. 82 — 85, Feb. 2018.

D. W. Matolak, R. Sun, and W. Rayess, “Air-ground channel characterization for
unmanned aircraft systems—part iv airframe shadowing,” IEEE Trans. Veh. Tech.,
vol. 66, no. 9, pp. 7643 — 7652, Sep. 2017.

H. Sallouha, M. M. Azari, A. Chiumento, and S. Pollin, “Aerial anchors positioning
for reliable rss-based outdoor localization in urban environments,” IEEE Wireless
Commun. Lett., vol. 7, no. 3, pp. 376 — 379, Jun. 2018.

S. Chang, Y. Li, H. Wang, and G. Wang, “Received signal strength—based target
localization under spatially correlated shadowing via convex optimization relaxation,”
Int. J. of Distrib. Sens. Netw., vol. 14, no. 6, pp. 1-9, Jun. 2018.

J. H. Lee and R. M. Buehrer, “Location estimation using differential rss with spatially
correlated shadowing,” in Proc. 2009 IEEE Global Telecom. Conf. (GLOBECOM).
Honolulu, HI, U.S.A., Dec. 2009.

J. Huang, P. Liu, W. Lin, and G. Gui, “Rss based method for sensor localization with
unknown transmit power and uncertainty in path loss exponent,” Sensors, vol. 16, no.
1452, pp. 1-20, Sep. 2016.

N. Salman, M. Ghogho, and A. H. Kemp, “On the joint estimation of the rss-based
location and path-loss exponent,” IEEE Wireless Commun. Lett., vol. 1, no. 1, p.
34-37, Feb. 2012.



Bibliography 95

[78]

[36]

M. Hasanzade and et al, “Localization and tracking of rf emitting targets with mul-
tiple unmanned aerial vehicles in large scale environments with uncertain transmitter
power,” in Proc. 2017 Int. Conf. Unmanned Aircraft Syst. Miami, FL, U.S.A., Jul.
2017.

M. D. Buhmann and A. Iserles, Approzimation theory and optimization. Cambridge
University Press, 1997.

3GPP, “3gpp specification release 15.” [Online]. Available: https://www.3gpp.org/
DynaReport/SpecReleaseMatrix.htm.

L. A. Vandenberghe and S. B. Boyd, “Semidefinite programming,” SIAM Rev., vol. 38,
no. 1, p. 49-95, Mar. 1996.

A. Bourdoux and et al, “6g white paper on localization and sensing,” arXiv:2006.01779
[eess.SY], Jun. 2020.

M. D. Renzo and et al, “Smart radio environments empowered by reconfigurable ai
meta-surfaces: an idea whose time has come,” EURASIP J. Wireless Commun. and
Netw., vol. 129, 2019.

Z. Abu-Shaban, X. Zhou, T. Abhayapala, G. Seco-Granados, and H. Wymeersch,
“Error bounds for uplink and downlink 3d localization in 5g millimeter wave systems,”
IEEFE Trans. Wireless Commun., vol. 17, no. 8, pp. 4939 — 4954, Aug. 2018.

R. Mendrzik, H. Wymeersch, G. Bauch, and Z. Abu-Shaban, “Harnessing nlos com-
ponents for position and orientation estimation in 5g millimeter wave mimo,” IFEFE
Trans. Wireless Commaun., vol. 18, no. 1, pp. 93-107, Jan. 2019.

A. Kakkavas, M. H. C. Garcia, R. A. Stirling-Gallacher, and J. A. Nossek, “Per-
formance limits of single-anchor millimeter-wave positioning,” IEEE Trans. Wireless
Commun., vol. 18, no. 11, pp. 5196 — 5210, Nov. 2019.

A. Shahmansoori, G. E. Garcia, G. Destino, G. Seco-Granados, and H. Wymeersch,
“Position and orientation estimation through millimeter-wave mimo in 5g systems,”
IEEE Trans. Wireless Commun., vol. 17, no. 3, p. 1822—-1835, Mar. 2018.


https://www.3gpp.org/DynaReport/SpecReleaseMatrix.htm.
https://www.3gpp.org/DynaReport/SpecReleaseMatrix.htm.

96 Boda Liu

[88] E. Basar, “Reconfigurable intelligent surface-based index modulation: A new beyond
mimo paradigm for 6g,” IEFE Transactions on Communications, vol. 68, no. 5, pp.
3187-3196, 2020.

[89] S. Ellingson, “Path loss in reconfigurable intelligent surface-enabled channels,” arXiv:
1912.06759 [eess.SP], Dec. 2019.

[90] H. Wymeersch, “A fisher information analysis of joint localization and synchronization
in near-field,” in Proc. IEEE Inter. Conf. Commun. Wkshps. (ICCW).  Dublin,
Ireland, Jun. 2020.

[91] Y. Han, Y. Shen, X. Zhang, M. Z. Win, and H. Meng, “Performance limits and
geometric properties of array localization,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp- 1054-1075, Feb. 2016.



Appendices

97



Appendix A

Parameters in Lemma 1

The parameters t1 ~ t6 employed by EPt-range of power-like ranging function in (4.24)

are calculated as

tl = Pr; — Xpr; +Cig, (A.1)
t2 = ’Az,gl‘(de — CZZ‘)Bi’gi (AQ)
t3 = |Ai g, |d; " (A.3)

The six events in (4.24) for EPt-range of power-like ranging function are defined as

Event D: d; > 2d; & Biy, <0 (A.4)
Event E: d; < d; < 2d; & Bi g, <0 (A.5)
Event F: d; < d; & Big, <0 (A.6)
Event G: d; < d; & B;g, >0 (A7)
Event H: d; > 2d; & B4, > 0 (A.8)
Event I: d; <d; < 2d; & Big >0 (A.9)
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And the three events in (4.23) for EPt-range of exponential-like ranging function are defined

as

Event A: Xpr,; = 10n;log(2) + Pt (A.10)
Event B: 0 < Xpr,; < 10m;log(2) + Pt (A.11)
Event C: Xpr; <0 (A.12)



Appendix B

Derivation of Lemma 2

Denote the i-th ranging distance using any PLE 7; in EPLE range and that using real PLE
as d; = 10P°Li/(100:) and d; = 10PLi/(10m:) respectively. If the ranging error of d; is smaller

than that of d;, it claims that é; = |ch —di| <é = |d~l — d;|, which is equivalent with

i < i&dl>2di—dz
é A ~ ~
Z>dz&d1<2dl dl

Substituting the expressions of d; and d; to (A.129), it is rewritten as that

10107 > 10107 & 1010% < 2 x 1019% —10% . Xg; >0
PL; PL; PL; PL; PL;

10707 < 1007 & 1010% > 2 x 10107 — 10107, Xg; <0

PL; PL;

(B.2)

When 2 x 1007 — 1017 > 0, real PLE is bounded by 7; > ¢; = Xg,/(10log;, 2), then
taking logarithm of equations on both sides of inequality equations in (A.130) implies that

M >mn; & f; < 1;, Event J
0 < ni & Ny > 1, Event K

100

(B.3)
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(PLi+n)n;

where 7); = . The events are defined as, Event J : 1; > ;& Xg; > 0,

Xs,i
PL;+10m; logyo | 2—10 1074

Event K : n; > Ei&X&i < 0.
Another case 2 x 101%% — 10197 < 0, d.e., n; < €;, is contradictory with the condition

Xs;i < 0in (A.130), since PLE must be greater than 0. Thus, (A.130) with 7; < ¢ is
calculated as
f; > 1; when Event L (B.4)

where Event L : 7; < ;& Xg; > 0. Combining (A.131) and (A.132) leads to (4.33).



Appendix C

Proof of Lemma 3

Lemma 3 can be proved by verifying any values of v, near the optimal ve could reached
by unEPLEs or unEPt. This can be done through expanding the expression of |E,|| at the
points near optimal ve. If the expanded expression could achieve either greater or smaller
than minimum value of |Ee|, the lemma is proved.

In this appendix, “unEdist” is referred to Edist obtained with unEPLEs and unEpt, and
“eEdist” is referred to the Edist obtained with eEPLE and eEPt. The localisation error of
(P4.7) with eEPLE or eEPt, and that of (P4.8) with unEPLEs or unEPt, are respectively

calculated as

Rps
E,=®B,—-v=)g (C.1)

r=1
Rgpg
E.=®B.—v=) e (C.2)

r=1

where the information matrix is calculated as ® = (ATA)7'A is information matrix ex-
pressed in (P4.7), ¢; is the i-th row of ®. B, and B, are the ranging matrices of unEdist
and eEdist. Let Yry, = [v1,...,URys| denotes the set of N BSs in Rpg group, and any
symbol with the subscript v, denotes the corresponding submatrix or elements of the BSs in
r-th group. Thus, ¢,, and b, represent the information submatrix and ranging submatrix
of r-th group. Therefore, the path loss measures PL = [ﬁl, cel ]BiN] and information
matrix ®, ranging B of these Rpg groups are reordered as ﬁm = [PLy,,...,PLy,],

D=0y, (,vaBS], respectively.Localisation error of estimated unEPLESs is calculated
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as |Egl| = |®r0Bro,g — V||, where the reordered effective ranging matrix with unEPLE or
unEPt is Brog = [bg1,. .- ,bgﬁ]T, and b, = [alé,,71 — Sgrly- e, dngT — sngr]T, and
dg 1 is the effective ranging distance obtained with unEPLE or unEPt, as defined in
(P4.8). Thus, the partial estimation error of r-th group with unEPLE 1, , is expressed as
g, = ¢, bg, — v, and that with eEPLE is 7. is e, = ¢,, be, — V.

The exponential term of r-th unEdist and eEdist are respectively denoted by tg, =
10%1/72r and ter = 10%1/7¢ | then the ranging matrix employed by LS optimisation with un-
EPLE (LSO-unEPLE) in (P4.8) and LS optimisation with eEPLE (LSO-eEPLE) in (P4.7)
are respectively rewritten as B¢, = t;f’“l - ,t;g”*] —Sand By, = [ EL” ey SL“R] -
S.

Assume equal PLE applied for the BS groups r =1,..., k1 —1,k1+1,..., K., except
the k1-th group of (K1) BSs, then the partial estimation error of these (K, — 1) unEPLEs
is equal to that of eEPLE, i.e., e, =g,,r=1,...,k1 —1,k1 +1,..., K,. The problem is
converted to prove g, could be either greater or smaller than eg;. Assume optimal eEPLE
is obtained at n. = 1o, corresponding to t., = tg. Apply Taylor series expansion for g,

near ty 1 = to + At as

g’Ukl %evkl +
tg k1=tot At

fon—g PL,,  1—1 PL,, ., k,—1 T
_ k1> k1K1
=e,,, = ¢Uk1 (Pka1 ® [to 1 A 1 ] )

At (C.3)
Through modifying the value of At, the partial estimation error g,, —could be located at
any position surround e,,,. As a result, E; could reach any position near E., including

the points with the shorter distances to real location of MS than Ee.

Lemma 3 is proved.



Appendix D

Derivation of Fisher Information
Matrices of Position-Related

Channel Parameters

The derivative function of the received signal Y (¢) in (5.14) over the interested parameters,

dy(t)
0Py

dy(t)
OVl

Jy(t)
Olibw,]

dy(t)
anW,l

r"y(t)

|
£
!
E

n (5.14), are calculated as the following equations

OélﬁzéR,la%lFBX(t - 1), leAsorl=1

iy o H s H
Oélﬁlejwlabw,lafw,laR,laTJFBX(t —7), leAr

e (B Rabw Aty + Bzabw 18fw,1)aR, 12T H Fpx(t—7),

Ozlejwl /Bl Rabw 1Qfw,l T ﬁlabw 1w, l)aR laT lFBX(

- 7),

el (B Tap, A + Biatt, 185w,)aR alt Fex(t—m7), leAr

104

(D.1a)
leAsorl=1
le AR

(D.1b)
leAgorl=1
le AR

(D.1c)
leAjorl=1

(D.1d)
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dy(t) 0, leAgorl=1
bt ] el (/Bl,TaEWJafw,l + Blégw,lafw,l)aR,la%lFBX(t —7), leAr
(D.1e)
ﬁy(t) _ alﬁlaR,la%lFBX(t - Tl), leAgorl=1 (D lf)
oYy Ozlﬁlejwl aEW,lafWJaR’lé%lFBx(t — Tl), le AR
ﬁy(t) _ alﬁla371a¥7léT7lFBx(t — Tl), le AS orl=1 (D 1g)
6SOZ Oélﬁlejwl aEW,lafWJaRJé%lFBx(t — Tl), le AR
oy(t) | (=i2nf)aubraralt Fex(t —7), leAsori=1 (D.1h)
om (—j2n flaufre’al, jag, jar ak Fpx(t —7), 1€ Ag
6y(t) _ alaR’la%lFBx(t — Tl), leAsorl=1 (D 1i)
aﬁ%vl aleﬂ/’lagwlafw,laR’la%lFBx(t —7), l€ARr
oy (t) _ aljaR,la%lFBx(t - 1), leAsorl=1 (D.1)
aﬁ%vl aleﬂ/’ljangafW,lavaa%lFBx(t —7), l€ARr
0, leAjorl=1
ay(t) _ - (D.1k)
oYy aljerﬂlavaa%lFBx(t —7), l€ARr
where the derivative equations are calculated as ag ; = ag—;’l, ap, = z%’ll, ar; = ag—;l’l, ap; =
AL B =P B =0 = OBy~ 9B Al the elements of FIM in (5.19)
Oy PLR = Qo0 PUR = Qe 10 PLT = o 0 PUT = Oy )
are calculated as
. H .
Joo = R{(ARAR) OP O (bjA['A1bs) © (ATFEFEAT) © By} (D.2a)
«H s
Jop = R{(ARAR) OP O (bjA{'Atbg) © (ATFFEAT) © By} (D.2b)
Juss = RUARAR) OP O [(A12bs + Arbs ) (Ar2bs + Arbs )] © (ATFRFEAT) O By}
(D.2c)
o, = R{(ARAR) OP O [(Arby + Arby o) (Arsbg + Arby2)] © (AfFEFEAT) O Bi}
(D.2d)

JV1V1 = ?R{(AEAR) GOPOG [(Aleg + Aﬂg)g,l)H(Aleﬁ + Albg,l)] ® (ATFBFIE_;IAT) ® Bl}
(D.2e)
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Jn, = R{AFAR) OP O [(A11bs + Arbg 1) (A 1bs + Aibs )] © (AYFFiAT) © By}

(D.2f)
Joo = R{(AAR) OP O (bJA['A[bg) O (A TFeFHAL) OB} (D.
Jopo = R{(AHAR) OP O (b A['A1bs) © (A TFRFHAL) O B1) (D.
Jrr = R{(ARAR) OP O (bjA['A1bs) © (AfFEFiAT) © B3} (D.
Jﬁmﬁm = Jp,8, = R{(ARAR) OP O (A{'A1) © (AYFpFiAT) ©B1} (D.2j
R{ AHARbﬁ 2] OP © (bjA'A1bg) © (ATFEFAT) OBy} (D.2k
J9¢ = R{(ARAR) OP © (bjA['A1bg) © (ATFEFAT) © By} (D.21
Jo9 = R{(ARAR) O P © (b} A Aby) © (ArFFiAL) © By} (D.2m

Jg,/Q = §R{ A AR)OPO H(ALng + A.It.)572

[bf

(Ay

(

( ) )] © (AfFFEAT) ©Bi} (D2
Jou, = R{(ARAR Arbg)H(Arabs + Arbg )] © (ARFRFEAT) OB} (D20

( ) )] )©B1} (D2p

( )

(

(Ag

AIbg)H(Aleg + AIt\)ﬁJ)] ® (A%FBFEAT ® Bl} (D 2q

)
rRAR)
RAR)
RAR)
Jou, = R{(ARAR) H(Ap1bs + Aibs1)] © (ARFEFEAL
J(,M — R{(ARAR)OP O
E )
)

2g)

2h)

2i)

)

)

( 21)

( )

[ n)

[ )
AR)OPO| )
[ )

( )

( )

)
)
)

— R{(ARAr) OP © (bAFAbs) O (ATFFEAT) OBy} (D.2r

= R{(AgRAR) OP © (bJA['A1bs) © (ATFEF{AT) © (—B2)} (D.2s

Jﬂﬁm — R{(ARAR) OP O (bjAJ'A1) © (A¥FFjAT) © By} (D.2t
Jop, = R{j(ARAR) OP O (bjA['A1) © (AfFpFEAT) O By} (D.2u
Jos = R{(AHAR) OP © (b A{'A1bs) © (AFFRFEAT) © By} (D.2v

v, = R{(ARAR) OP O [(Arbg)"(Ar2bs + Arbs )] © (ATFEFEAT) © By}
(D.2w

Jou, = R{ ALAR) OP O [(Arbs) (Arsbs + Arbga)] © (ARFEFEAT) OBy} (D.2x

(
ARAR)©OP O [(A1bg) (A1 1bs + A1bs1)] © (AFFEFEAT) @By} (D.2y
(

— R{(ApAr) OP © (b ANAb,) © (ATFRFEAT) © By} D.2ab

ARAR)OPO

)

)

)

Jou, = R{U(ARAR) OP O [(A1bs) (A1 1bs + Arbs )] © (ANFEFHAT) ©B1} (D.22)
)

)

BA['Arbg) © (ATFFEAT) O (-Ba)} (D.2ac)

)

( ) [
(ARAr) [
(ARAR) O PO

.](,5,9 — R{(ARAR) OP ® (bjA{'Abg) © (ATFpFIAL) © By} (D.2aa
(ARAR) OP O (b (
(ARAR) OP O (b
( ) (

JW% — R{(ARAR)OPO by A{'A;) © (A}FEFEAT) OBy} (D.2ad
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Jop, = R{i(ARAR) OP O (bJAA)) © (ALFsFIAT) O By} (D.2ac)
J55 = R{(ApAr) O P O (bJAJA1by) © (ALFEFAT) OBy (D.2af)

Joop, = R{(ARAR) OP O [(Ar2bs + Arbg o)t (A12bs + Arbss)] © (ANFRFEAT) © By}
(D.2ag)

Juow, = R{(AHAR) OP O [(A12bs + Arbs) (A1 1bs + A1bs )] © (ATFRFEAT) © By}
(D.2ah)

Joop, = R{(ARAR) OP O [(Ar2bs + Atbg o) (A1 1bs + Arbs )] © (ANFRFEAT) © By}
(D.2ai)
Jop = R{(AlAR) OP © (b AlAb) © (AYFRFAT) O B} (D.2aj)
Jor = R{(AlAR) OP O (bJA['A1bg) © (ATFEFEAT) O (-B2)} (D.2ak)
Jos, = R{(ARAR) OP © (bJAf'A|) © (ATFEFiAT) OB} (D.2al)
Jos, = R{j(ALAR) OP O (bfA['A1) © (AYFpFEAT) © By} (D.2am)
Jop = R{(ARAR) OP © (bjA{'A1bs) © (A}FpF5AT) © By} (D.2an)
Jor = R{(AFAR) OP © (bJA['A[bg) © (ATFEFiAT) O (—Bs)} (D.2a0)
Jop, = RIARAR) OP © (b A{'A}) © (ANFRFiAT) © By} (D.2ap)
Jop, = R{i(ARAR) OP © (b A{'A1) © (AYFEFRAT) O Bi} (D-2aq)
Jr5, = R{(ARAR) OP O (bfA{'A1) © (AXFpF{AT) © (—B2)} (D.2ar)
Jr8, = R{j(ARAR) OP © (bjAT'A1) © (A}FF5AT) © (—Bs)} (D.2as)
Jrp = R{(ARAR) OP O (b A{'Atbs) © (AYFEF{AT) O (—Bo)} (D.2at)
I8, = R{I(ARAR) OP O (A['A1) © (AYFpF5AT) © By} (D.2au)
5.5 = R{(ARAR) OP O (A{'A1bg) O (AfFsF{AT) © B} (D.2av)
5.5 = R{—j(ARAR) OP O (A'A1bs) © (AfFEFAT) O Bi} (D.2aw)

where P is the matrix of phase shift of all paths, and

(1ol e Liie¥r
= H{T 2w H
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The derivative functions Ag, Ag, A, AT, 55,1,55,1,5572,55,2, P,Pin (5.17) are calculated

as

\. _ OAR _ . . . d(xrk(0;, ¢y
AR = W = [aR,L e ,aR7L] 7aR,l = W GaR,l
AR _ ; N o(xrk(b:; &1
AR = W = [aR,l, e 7aR,L] 7aR,l = (Rafm)) QaR,l
OAT _ .. L d(xrk(dy, o1
AT = 8719 = [aT,l, e 7aT,L] 7aT,l = W GaT,l
A aA S BN < 8 k ’19l, 1
At = TcpT =lar,...,arr],ar; = (XT&EQZSO)) ®ar,
. oby . - .  om
bsg1 = Tuf = diag {O’II‘—&-Cv baT15 s bﬂvTvNIS} 5T p = Powp avav,107
W7p
appr qo\/@(kT(l/pr,lu,pr)flI)qo—l T A
) — . ) k U + . 2, i
OVtw,p \/Erfw,p (k™ ( fw,p / #fw,p) 1)
oby \ \ \ y
8,1 = Tpf = dzag {0?+C, bﬁ,T,l, . ’bﬁ’T,NIS} 7b6,T,p = Pbwyp aZfWJ) 7
W’p
ivy _ a0/l W i) oy
a,ufw,p \/Erfw,p w,ps Hfw,p
bge = —F =d {()T JOBR 1,y b },b = Pbwp
8,2 o ag 1+Cs Y8,R,1 8,R,N1s B,R,p aVbWJ, Ptw.p
a[)bw D qo\/@(kT(VbW p> Mbw p)flI)QO—l . A .
P ) > k Vbw, + 7 27wa, ny e]<p
awayp \/E""bw,p (k- ( P / P) )

(}bﬁ 3 N N
bgo = —L =di {()T D8R, b }71) _
8,2 o1, tagiyYirc, Y8,R,1 B,R,N1s 8.R.p B Ptw.p

aﬁbw,p

W?p

OPbw q0/@ett (KT (Vbw.ps fbw,p) )01 WY
o SOt P U O i+ /2)0) 5
W, p wW,p
T T _ .
_ Litclie Lliyelyg Wy — [jejT/Jl jejwzvls]
1n 1T wlog [0 T
Nis+t1+C R*R
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T T
Litelyic 11+01N1s]
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Viw Vtw,1 Vfw,Nig (D 4k)
oa '
H fw,p 2 K(Vbw.pbw.p ) —K(Vkw s fbfw .
bw,p 4 WXLP( (o potttow,p) (8w it ) (_]27TXI pk(Vfw,zn Hfw,p + 7T/2))
? al/pr ’
- JAr 0T o 00w, H 0w, Ny
L1 = 0 = 1+C Abw,1 o »+ -+ Qbw Nig 0
fw Hfw,1 Hfw, Nig (D 41)
day ; . '
aEWp wp 6327rx1,p(k(ubw,pyubw,p)—k(ufw,mufw,p))(_]QWXI Dk (U p + /2, i p))
’ a:u'fw,p ’
i H
0A; v OOy Ol Ny
A = 2 = [O140, aiafw,la ceey ﬁafw,NIs )
Vbw Vbw,1 Vbw, N1g (D 4 )
4m
8aIb{WP j2mxy , (k(v )—k(v (i
P : Qfw,p = € Lp bw,poHibw,p fw,poHttw,p (]27FXI,pk(wa,pa HUbw,p T 71—/2))
OVbw,p
H H
\ 0Aq v OOy ; 0y, Ny as
L2 = = 1+C» fw,1y-+-s 73— — Ufw,Nig | »
O Wiy Oltbw,1 Oltbw, Nis (D.4n)

bw,p afw,p — ejQﬂ'XI,p(k(wa,p7wa,p)7k(l’fw,p:,ulfw,p)) (j2ﬂ-Xka(wa7p + 7-[-/27 /’LbW,p))

The amplitudes and phase of derivative functions in (5.26)-(5.29) are defined as Cf. ) =

Cfe,pPbw,pPfw,ps C’fa,p = Cfa,pPow,pPfw,p> Cbe,p = Cbe,pPbw,pPfw,ps Cba,P = Cba,pPbw,pPfw,p and
0 . H Y . H 6 1 H —
Efe Ny = 6] vaP ej Cp abW,pafva’ Efa,’p - ej (j)nyP e] Cp abW,pafW7p7 Ebe7p - e] vaP e] Cp abW,pafW7p7 Ebavp -
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JPbw,p 0 Cp o 1
eIPrwrelray Ay p, where

2
Cfe,p = \/COt Vfw,p + ( XIp Vfw,pyﬂfw,p)
2 N 2
Crap = cot ,upr )+ TX k( I/fwm,,upr)
27T - 2
Che,p = COt Vpr + VbW,pa Mbw,p)
2
Cbayp = COt ,ubw,p ( X[p wa,p, MbW,p)

Ofw,p = arcsin(—— )\cf XI,pk(VfWJ?’ [ifw,p))
271'

(bfw,p = arcsin( X1 pk<VfW,pa Mfw,p))

Ac Cfa,p

. 27 :
Obw,p = arCSIH(WXka(VbW,pa /wa,p))
e7p

2m .
Pbw,p = arcsin(—— o X1, K (Vbw,ps Hbw,p))

ba,p

The convolution between the beamspace signals is calculated as x(t — 7)x

1st derivative function and 2nd derivatives are respectively calculated as

L U
B, = Y x(t — n)x(t —n) = Y |A(f)Palasdf,
=1 =1
L ox(t —m)_y
B2 =), o - 1t —m) Z 2jm f.|P.(f)Paf ardf,
I=1 =1
L U
ox(t — ) oxM(
B3 = Z (an 1) an Z rf)?|P(f))Pat e, df,
I=1 =1

(D.5a)

(D.5b)

(D.5¢)

(D.5d)
(D.5e)
(D.5f)

(D.5g)

(D.5h)

Hit —7) =
NpPslng, where Py(f) is the power spectral density of baseband signal s(f). Therefore,

according to Parsevar’s theorm, the discrete convolution of x(t — 7;) and x"(t — 7;), the

(D.6)

(D.7)



Appendix E

Derivation of the Transition
Matrix from Channel Parameters

to Mobile Station Location

Information

The transition matrix V/,(w1) in (5.21) and (5.24) is expressed as (E.1)] The basic

rotation matrix employed by this research is in the format of the following equation

Ry ] [ cos(dus) —sin(dus) cos(Ons)  —sin(gus) sin(Ons)

(fe) (op) (o) () (o) (k) (&) (Fsg) (&%)
doms Joms doms IVES IV donms donms donms Jdoms
(7)) (%) (%) (=) (&) (%) (&) (%)

ov ov ov ov ov ov ov ov ov
(ar) CGar) (ap) Gap) (b)) () (&) (G&) ()
Q] QY OQ; OQ; o &,TJ anJ QY Q] Q]
00T a¢T vy oy vy opy 09T aLpT o+T
(%RIS ) (00R,Is ) <(70R,Is ) <00R,Is ) (30R15 ) (00R15 ) (00R 1s ) (50RIS ) (%RIS )
) () ) Go) ) () B (B) (3)
L \oPgig OPR1s OPR1s OPR1s oPR1s oPR1s OPR1s OPR1s oPR1s
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which is an orthogonal matrix. The rotation matrix of IS is of the same formula as the
function above, but replace the angles observed at MS (fys, ¢ms) with those of IS (vg, s).-
Thus, these rotation matrices satisfy that R(oys) ™' = R(oyms)™, R(ors) ™! = R(os)T. For

the direct path and cluster reflective paths,

Rams || cos(ms) _______sin(dms) 0o___.
Rioms)™ = | Roys | = | —sin(éus) cos(fus) _cos(dns) cos(fs) —sin(fs)
Rs vis —sin(¢pms) sin(fOnsg)  cos(odms) sin(fys)  cos(fus)
(E.2)
The derivative functions of R(oyg) ™! over (fys, dus) are
. OR (oyg) !
R Ms [ 0 0 0
Roms | = | _sin(éus)sin(ys) = cos(Pus) sin(Bs)  —cos(fhs)
Rs vis | —sin(¢ms) cos(fms)  cos(Pums) cos(Onvs)  — sin(fus)
(E.3a)
C Rloyg) ! | Dams | [ osinGws)  cos(ows) O
Ras == s~ | . Bewms | = | —cos(dwms)cos(fhs) —sin(¢us) cos(fms) O
| Rsvs —cos(pms) sin(fnvg)  — sin(pus) sin(Ous)
(E.3b)

The derivative functions of rotated Tx and Rx elements over the rotation angles are omit-
ted, since we consider the near-field case for Tx and Rx. For the cluster reflective paths
[ € Ag, the derivative functions of channel parameters over the location information can be

calculated as

00 1 VR 2 1VE R(oms) ™!

a—l =— ( b — R ms (E.4a)
v \/ UIQ%,ac,l + UIQ%,y,l HVR’I ’

ody 1

O (. Roms — vr. R E.4b
T T T (na
9

2J=m@m (E.4c)
0

22 _ 10,0, 0] (E.4d)

ov
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00 1 UR2iVR Rums(vi — V) .
4 l _ ; : < z |,|V | R — R3,MS (Vl — V) (E4e)
M5 VR T Ry !
00 1 vRVE Rus(vi —v) .
- L : ( . L ~ Ryns(vi—v) (E.4f)
M5 VR T Ry !
01 VR Rams(vi . v) — U?,yJRl,MS(Vl - V) (F.4g)
aeMS vR,x,l + vR,y,l
o1 _ vreiRoms(Vi —2 V) — Ul;,y,lRl,MS(Vl -v) (E.4h)
Opwms VRt T YRyl
09,
=0 E.4i
00ns (E.4i)
o1
=0 E.4j
ddms (E-4))
00 00 1 UR,2 v R(oms) ™!
N T T ( v Roas (B4
: A\ VRt T VR o
Oy 0Py 1
B R — R E.41
v, v T +”12%yl (vR,zR2,M8 — vRy R1,M8) (E.4])
09 1 WT 2,1
" T ( for? 0 ”) i
Vv W
! W o1 T WT Tt
o 1
o [—wrywres,0 E.4
ov; w%,x,l + w%,y,l[ Wb W O] (E.4n)

Additionally, for the direct path [ = 1, the derivative function of parameters of the direct

path over the location information is calculated as

o

ov

o1
ov

1 T
S ([0, 0,1] - wHW) (E5)
A\ s + Vs M
1
[—yms, TMms, 0] (E.5Db)

7 P
Tys T Yms
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For the IS-aided paths [ € Ar, when the rotation matrix of IS is

Rus || cos(pus) sin(ps) o .
R(ois)™ = | Rais | = | —sin(us)cos(mg) cos(us)cos(vs) —sin(vs)
Rs1s —sin(ugs) sin(vis)  cos(pus) sin(rs)  cos(vis)
R1 s 1 00
R(ogs) ' =| Rops =] 0 1 0
Rsps | |0 O 1

Ry s
R(org) ! So T
Ris = (& s)” Ro s
VIS R
Rs s
0 0 0
= | _sinGus)sin(zs)  —coslus) sin(vis)  —cos(vs) (E.62)
—sin(us) cos(vg)  cos(ps) cos(vg)  — sin(vg)
R —sin cos 0
R(og)! |- DS || _Teinbas) _coslus) 0
Ris == s~ | Bews | = | 7cosus)cos(s) —sin(us) cos(s) 0
Rs1s —cos(urg) sin(vg)  —sin(uig) sin(vg) 0

(E.6b)

As aforementioned in the section 5.2, we consider general case for IS, thus, the derivative

functions of rotated Ix elements over the rotation angles (vg, ps) is calculated as X}jp =
1% . N 0 S . . .
O)l(/iép = RISpr and XEP = % = RISpr. The derivative functions of channel parameters

over location information can be calculated as

29, 0 o0 1 VR zp VR pR(OMS)
00, _ 3; _ a0y _ R,z,p R,p (2M ) N R&MS (E?a)
o 0xg, ov VR p T vk Y.p v
0 0 0 1
% = (b{f = —% = 55— (vRapR2Ms — VR ypR1MS) (E.7b)
Iy aXLp v URap T VRyp
20 1 VR, Vi ,R(OMS) AL,
b _ ZpVR,p ( . ) Xip _ Rg,MsXITp (E.7¢)
duis - Vel ’
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