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Abstract In 1833 Gauss defined the linking number of two disjoint curves in 3-space.
For open curves this double integral over the parameterised curves is real-valued
and invariant modulo rigid motions or isometries that preserve distances between
points, and has been recently used in the elucidation of molecular structures. In 1976
Banchoff geometrically interpreted the linking number between two line segments.
An explicit analytic formula based on this interpretation was given in 2000 without
proof in terms of 6 isometry invariants: the distance and angle between the segments
and 4 coordinates specifying their relative positions. We give a detailed proof of this
formula and describe its asymptotic behaviour that wasn’t previously studied.

1 The Gauss integral for the linking number of curves

For any vectors u,v,w ∈ R3, the triple product is (u,v,w) = (u × v) · w.

Definition 1 (Gauss integral for the linking number) For piecewise-smooth curves
γ1, γ2 : [0,1] → R3, the linking number can be defined as the Gauss integral [7]

(1) lk(γ1, γ2) =
1

4π

1∫
0

1∫
0

( Ûγ1(t), Ûγ2(s), γ1(t) − γ2(s))
|γ1(t) − γ2(s)|3

dtds,

where Ûγ1(t), Ûγ2(s) are the vector derivatives of the 1-variable functions γ1(t), γ2(s).

The formula in Definition 1 gives an integer number for any closed disjoint
curves γ1, γ2 due to its interpretation as the degree of the Gauss map Γ(t, s) =
γ1(t) − γ2(s)
|γ1(t) − γ2(s)|

: S1 × S1 → S2, i.e. deg Γ =
area(Γ(S1 × S1))

area(S2)
, where the area of
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the unit sphere is area(S2) = 4π. This integer degree is the linking number of the
2-component link γ1 t γ2 ⊂ R

3 formed by the two closed curves. Invariance modulo
continuous deformation of R3 follows easily for closed curves - indeed, the function
under the Gauss integral in (1), and hence the integral itself, varies continuously
under perturbations of the curves γ1, γ2. This should keep any integer value constant.

For open curves γ1, γ2, the Gauss integral gives a real but not necessarily integer
value, which remains invariant under rigid motions or orientation-preserving isome-
tries, see Theorem 1. In R3 with the Euclidean metric these are rotations, translations
and reflections. The isometry invariance of the real-valued linking number for open
curves has found applications in the study of molecules [1].

Any smooth curve can bewell-approximated by a polygonal line, so the computation
of the linking number reduces to a sum over line segments L1, L2. In 1976 Banchoff
[3] has lk(L1, L2) in terms of the endpoints of each segment, see details of this and
other past work in section Sect. 3.

In 2000 Klenin and Langowski [8] proposed a formula for the linking number
lk(L1, L2) of two straight line segments in terms of 6 isometry invariants of L1, L2,
referring to a previous paper in which it was used without any detailed proof [17].
The paper [8] also does not provide details of the form’s derivation.

The usefulness of an invariant based formula can be seen by considering the
analogywith the simpler concept of the scalar (dot) product of vectors. The algebraic or
coordinate-based formula expresses the scalar product of two vectors u = (x1, y1, z1)
and v = (x2, y2, z2) as u · v = x1x2 + y1y2 + z1z2, which in turn depend on the co-
ordinates of their endpoints. However, the scalar product for high-dimensional vectors
u,v ∈ Rn can also expressed in terms of only 3 parameters u · v = |u| · |v| cos ∠(u,v).
The two lengths |u|, |v| and the angle ∠(u,v) are isometry invariants of the vectors
u,v. This second geometric or invariant-based formula makes it clear that u · v is an
isometry invariant, while it is harder to show u · v = x1x2 + y1y2 + z1z2 is invariant
under rotations. It also provides other geometric insights that are hard to extract from
the coordinate-based formula - for example, u · v oscillates as a cosine wave when
the lengths |u|, |v| are fixed, but the angle ∠(u,v) is varying.

In this paper, we provide a detailed proof of the invariant-based formula for the
linking number in Theorem 2 and new corollaries in Sect. 6 formally investigating
the asymptotic behaviour of the linking number, which wasn’t ptreviously studied.

Our own interest in the asymptotic behaviour is motivated by the definition of
the periodic linking number by Panagiotou [13] as an invariant of networks that are
infinitely periodic in three directions, by calculating the infinite sum of the linking
number between one line segment and all copies of another such segment. In [13]
there is a complex proof that this sum is convergent for 3-periodic structures, which
could be simplified and improved by a new asymptotic analysis of the closed form.
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2 The outline of the invariant-based formula and consequences

We list key properties of lk(γ1, γ2) below which are frequently assumed without proof
in other literature - we have provided a proof for these in the appendices.

Theorem 1 (properties of the linking number) The linking number defined by the
Gauss integral in Definition 1 for curves γ1, γ2 has the following properties:
(1a) the linking number is symmetric: lk(γ1, γ2) = lk(γ2, γ1);
(1b) lk(γ1, γ2) = 0 for any curves γ1, γ2 that belong to the same plane;
(1c) lk(γ1, γ2) is independent of parameterisations of γ1, γ2 with fixed endpoints;
(1d) lk(−γ1, γ2) = −lk(γ1, γ2), where −γ1 has the reversed orientation of γ1;
(1e) the linking number lk(γ1, γ2) is invariant under any scaling v→ λv for λ > 0;
(1f) lk(γ1, γ2) is multiplied by det M under any orthogonal map v 7→ Mv.

Our main Theorem 2 will prove an analytic formula for the linking number of
any line segments L1, L2 in terms of 6 isometry invariants of L1, L2, which are
introduced in Lemma 1. Simpler Corollary 1 expresses lk(L1, L2) for any simple
orthogonal oriented segments L1, L2 defined by their lengths l1, l2 > 0 and initial
endpoints O1,O2, respectively, with the Euclidean distance d(O1,O2) = d > 0, so
that L1,L2,

−−−−→
O1O2 form a positively oriented orthogonal basis whose signed volume

(L1,L2,
−−−−→
O1O2) = l1l2d is the product of the lengths, see the first picture in Fig. 1.

Corollary 1 (linking number for simple orthogonal segments) For any simple
orthogonal oriented line segments L1, L2 ⊂ R

3 with lengths l1, l2 and a distance d as

defined above, the linking number is lk(L1, L2) = −
1

4π
arctan

©­­«
l1l2

d
√

l2
1 + l2

2 + d2

ª®®¬. �
The above expression is a special case of general formula (2) for a1 = a2 = 0

and α =
π

2
. If l1 = l2 = l, the linking number in Corollary 1 becomes lk(L1, L2) =

−
1

4π
arctan

l2

d
√

2l2 + d2
. If l1 = l2 = d, then lk(L1, L2) = −

1
4π

arctan
1
√

3
= −

1
24

.

Corollary 1 implies that the linking number is in the range (− 1
8 ,0) for any

simple orthogonal segments with d > 0, which wasn’t obvious from Definition 1.

If L1, L2 move away from each other, then lim
d→+∞

lk(L1, L2) = −
1

4π
arctan 0 = 0.

Alternatively, if segments with l1 = l2 = l become infinitely short, the limit is
again zero: lim

l→0
lk(L1, L2) = 0 for any fixed d. The limit lim

x→+∞
arctan x =

π

2
implies

that if segments with l1 = l2 = l become infinitely long for a fixed distance d,

lim
l→+∞

lk(L1, L2) = −
1

4π
arctan

l2

d
√

2l2 + d2
= −

1
8
. If we push segments L1, L2 of

fixed (possibly different) lengths l1, l2 towards each other, the same limit similarly

emerges: lim
d→0

lk(L1, L2) = −
1
8
. See more general corollaries in section 6.
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3 Past results about the Gauss integral for the linking number

The survey [15] reviews the history of the Gauss integral, its use in Maxwell’s
description of electromagnetic fields [12], and its interpretation as the degree of a
map from the torus to the sphere. In classical knot theory lk(γ1, γ2) is a topological
invariant of a link consisting of closed curves γ1 t γ2, whose equivalence relation is
ambient isotopy. This relation is too flexible for open curves which can be isotopically
unwound, and hence doesn’t preserve the Gauss integral for open curves γ1, γ2.

Computing the value of the Gauss integral directly from the parametric equation of
two generic curves is only possible by approximation, but this problem is simplified
when we consider simply straight lines. The first form of the linking number between
two straight line segments in terms of their geometry is described by Banchoff [3].
Banchoff considers the projection of segments on to a plane orthogonal to some
vector ξ ∈ S2. The Gauss integral is interpreted as the fraction of the unit sphere
covered by those directions of ξ for which the projection will have a crossing.

This interpretation was the foundation of a closed form developed by Arai [2],
using van Oosterom and Strackee’s closed formula for the solid angle subtended by a
tetrahedron given by the origin of a sphere and three points on its surface.

An alternative calculation for this solid angle is given in [14] as a starting point for
calculating further invariants of open entangled curves. This form does not employ
geometric invariants, but was used in [8] to claim a formula (without a proof) similar
to Theorem 2, which is proved in this paper with more corollaries in section 6.

Fig. 1 Each line segment Li is in the plane {z = (−1)i d
2 }, i = 1, 2. Left: signed distance d > 0,

the endpoint coordinates a1 = 0, b1 = 1 and a2 = 0, b2 = 1, the lengths l1 = l2 = 1. Right: signed
distance d < 0, the endpoint coordinates a1 = −1, b1 = 1 and a2 = −1, b2 = 1, so l1 = l2 = 2. In
both middle pictures α = π

2 is the angle from prxy (L1) to prxy (L2) with x-axis as the bisector.
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4 Six isometry invariants of skewed line segments in 3-space

This section introduces 6 isometry invariants, which uniquely determine positions of
any line segments L1, L2 ⊂ R

3 modulo isometries of R3, see Lemma 1.
It suffices to consider only skewed line segments that do not belong to the same

2-dimensional plane. If L1, L2 are in the same plane Π, for example if they are
parallel, then ÛL1(t) × ÛL2(s) is orthogonal to any vector L1(t) − L2(s) in the plane Π,
hence lk(L1, L2) = 0. We denote by L̄1, L̄2 ⊂ R

3 the infinite oriented lines through
L1, L2 respectively. In a plane with fixed coordinates x, y, all angles are measured
anticlockwise from the positive x-axis.

Definition 2 (invariants of line segments) Let α ∈ [0, π] be the angle between
oriented line segments L1, L2 ⊂ R

3. Assuming that L1, L2 are not parallel, there is a
unique pair of parallel planes Πi , i = 1,2, each containing the infinite line L̄i through
the line segment Li . We choose orthogonal x, y, z coordinates in R3 so that
(2a) the horizontal plane {z = 0} is in the middle between Π1,Π2, see Fig. 1;
(2b) (0,0,0) is the intersection of the projections prxy(L̄1),prxy(L̄2) to {z = 0};

(2c) the x-axis bisects the angle α from prxy(L̄1) to prxy(L̄2), the y-axis is chosen so
that α is anticlockwisely measured from the x-axis to the y-axis in {z = 0};
(2d) the z-axis is chosen so that x, y, z are oriented in the right hand way, then d is the
signed distance from Π1 to Π2 (negative if −−−−→O1O2 is opposite to the z-axis in Fig. 1).
Let ai, bi be the coordinates of the initial and final endpoints of the segments Li in
the infinite line L̄i whose origin is Oi = Πi ∩ (z-axis) = (0,0, (−1)i d2 ), i = 1,2. �

The case of segments L1, L2 lying in the same plane Π ⊂ R3 can be formally
covered by Definition 2 if we allow the signed distance d from Π1 to Π2 to be 0.

Lemma 1 (parameterisation) Any oriented line segments L1, L2 ⊂ R
3 are uniquely

determined modulo a rigid motion by their isometry invariants α ∈ [0, π] and d, a1,
b1, a2, b2 ∈ R from Definition 2. For li = bi − ai , i = 1,2, each line segment Li is

(1) Li(t) =
(
(ai + lit) cos

α

2
, (−1)i(ai + lit) sin

α

2
, (−1)i

d
2

)
, t ∈ [0,1]. �

If t ∈ R in Lemma 1, the corresponding point Li(t) moves along the line L̄i .

Lemma 2 (formulae for invariants) Let L1, L2 ⊂ R
3 be any skewed oriented line

segments given by their initial and final endpoints Ai,Bi ∈ R
3 so that Li =

−−−→
AiBi ,

i = 1,2. Then the isometry invariants of L1, L2 in Lemma 1 are computed as follows:

the lengths li = |
−−−→
AiBi |, the signed distance d =

[L1,L2,
−−−−→
A1 A2]

|L1 × L2 |
, the angle α =

arccos
L1 · L2

l1l2
, a1 =

(
L2
l2

cosα −
L1
l1

)
·

−−−−→
A1 A2

sin2 α
, a2 =

(
L2
l2
−

L1
l1

cosα
)
·

−−−−→
A1 A2

sin2 α
,

bi = ai + li , i = 1,2. �



6 Matt Bright, Olga Anosova, Vitaliy Kurlin

Lemma 3 guarantees that the linking number behaves symmetrically in d, meaning
that we may confine any particular analysis to cases where d > 0 or d < 0.

Lemma 3 (symmetry) Let L1, L2 ⊂ R
3 be parameterised as in Lemma 1. Under the

central symmetry CS : (x, y, z) 7→ (−x,−y,−z) with respect to the origin (0,0,0) ∈ R3,
the line segments keep their invariants α,a1, b1,a2, b2. The signed distance d and the
linking number change their signs: lk(CS(L1),CS(L2)) = −lk(L1, L2). �

5 Invariant-based formula for the linking number of segments

This section proves main Theorem 2, which expresses the linking number of any line
segments in terms of their 6 isometry invariants from Definition 2. In 2000 Klenin
and Langowski claimed a similar formula [8], but gave no proof, which requires
substantial lemmas below. One of their 6 invariants differs from the signed distance d.

Theorem 2 (invariant-based formula) For any line segments L1, L2 ⊂ R
3 with

invariants α ∈ (0, π), a1, b1,a2, b2, d ∈ R from Definition 2, we have lk(L1, L2) =

AT(a1, b2; d, α) + AT(b1,a2; d, α) − AT(a1,a2; d, α) − AT(b1, b2; d, α)
4π

, (2)

where AT(a, b; d, α) = arctan
(

ab sinα + d2 cotα
d
√

a2 + b2 − 2ab cosα + d2

)
. For α = 0 or α = π,

we set AT(a, b; d, α) = sign(d)
π

2
. We also set lk(L1, L2) = 0 when d = 0. �

a2 + b2 − 2ab cosα gives the squared third side of the triangle with the first
two sides a, b and the angle α between them, hence is always non-negative. Also
a2 + b2 − 2ab cosα = 0 only when the triangle degenerates for a = ±b and
cosα = ±1. For α = 0 or α = π when L1, L2 are parallel, lk(L1, L2) = 0 is guaranteed
by AT(a, b; d, α) = sign(d)

π

2
= 0 when d = 0 holds in addition to α = 0 or α = π.

The symmetry of the AT function in a, b, i.e. AT(a, b; d, α) = AT(b,a; d, α) implies
that lk(L1, L2) = lk(L2, L1) by Theorem 2. Since the AT function is odd in d, i.e.
AT(a, b;−d, α) = −AT(b,a; d, α), Lemma 3 is also respected.

Fig. 2 shows how the function AT(a, b; d, α) from Theorem 2 depends on 2 of
4 parameters when others are fixed. For example, if α =

π

2
, then AT(a, b; d, π2 ) =

arctan
(

ab

d
√

a2 + b2 + d2

)
. If also a = b, then the surfaceAT(a,a; d, π2 ) = arctan

(
a2

d
√

2a2 + d2

)
in the first picture of Fig. 2 has the horizontal ridge AT(0,0; d, π2 ) = 0 and
lim
d→0

AT(a,a; d, π2 ) = sign(d)
π

2
for a , 0. If d, α are free, but a = 0, then

AT(0,0; d, α) = arctan
(

d2 cotα
d
√

d2

)
= sign(d) arctan(cotα) = sign(d)( π2 − α). Simi-
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larly, lim
d→∞

AT(0,0; d, α) = sign(d)( π2 −α), see the lines AT = π
2 −α on the boundaries

of the AT surfaces in the middle pictures of Fig. 2.

Fig. 2 The graph of AT(a, b; d, α) = arctan
(

ab sinα + d2 cotα
d
√
a2 + b2 − 2ab cosα + d2

)
, where 2 of 4 param-

eters are fixed. Top left: l = b − a = 0, α =
π

2
. Top right: l = d = −1. Middle left: a = 0, d = 1.

Middle right: a = 0, l = 1. Bottom left: a = 1, α =
π

2
. Bottom right: d = −1, α =

π

2
.

Lemma 4 (lk(L1, L2) is an integral in p,q) In the notations of Definition 2 we have

lk(L1, L2) = −
1

4π

b1/d∫
a1/d

b2/d∫
a2/d

sinα dp dq
(1 + p2 + q2 − 2pq cosα)3/2

for d > 0. �
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Lemma 5 (the linking number as a single integral) In the notations of Definition 2

we have lk(L1, L2) =
I(a2/d) − I(b2/d)

4π
, where the function I(r) is defined as the

single integral I(r) =
b1/d∫
a1/d

sinα(r − p cosα)dp

(1 + p2 sin2 α)
√

1 + p2 + r2 − 2pr cosα
for d > 0. �

Lemma 6 (I(r) via arctan) The integral I(r) in Lemma 5 can be found as∫
sinα(r − p cosα)dp

(1 + p2 sin2 α)
√

1 + p2 + r2 − 2pr cosα
= arctan

pr sinα + cotα√
1 + p2 + r2 − 2pr cosα

+C.�

Proof (Theorem 2) Consider the right hand side of the equation in Lemma 6 as the

3-variable function F(p,r;α) = arctan

(
pr sin2 α + cosα√

1 + p2 + r2 − 2pr cosα

)
. The function

in Lemma 5 is I(r) = F(b1/d,r;α) − F(a1/d,r;α). By Lemma 5 lk(L1, L2) =(
F(b1/d,a2/d;α) − F(a1/d,a2/d;α)

)
−

(
F(b1/d, b2/d;α) − F(a1/d, b2/d;α)

)
4π

.

Rewrite a typical function from the numerator above as follows: F (a/d, b/d;α) =

arctan
(ab/d2) sin2 α + cosα√

1 + (a/d)2 + (b/d)2 − 2(ab/d2) cosα
= arctan

ab sinα + d2 cotα
d
√

a2 + b2 − 2ab cosα + d2
.

If we denote the last expression as AT(a, b; d, α), required formula (2) follows.

In Lemma 4, Lemma 5 and above we have used that the signed distance d is
positive. By Lemma 3 the signed distance d and lk(L1, L2) simultaneously change
their signs under a central symmetry, while all other invariants remain the same. Since
AT(a, b;−d, α) = −AT(a, b; d, α) due to the arcsin function being odd, formula (2)
holds for d < 0. The formula remains valid even for d = 0, when L1, L2 are in the
same plane. The expected value lk(L1, L2) = 0 needs an explicit setting, see the
discussion of the linking number discontinuity around d = 0 in Corollary 4. �

6 The asymptotic behaviour of the linking number of segments

This section discusses how the linking number lk(L1, L2) in Theorem 2 behaves with
respect to the six parameters of line segments L1, L2. Fig. 3 shows how the linking
number between two equal line segments varies with different pairs of parameters.

Corollary 2 (bounds of the linking number) For any line segments L1, L2 ⊂ R
3,

the linking number lk(L1, L2) is between ±
1
2
. �
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Fig. 3 The linking number lk(a, a + l; a, a + l; d, α) from formula (2), where 2 of 4 parameters
are fixed. Top left: l = 1, α =

π

2
. Top right: l = 1, d = −1. Middle left: a = 0, d = 1. Middle

right: a = 0, l = 1. Bottom left: a = 0, α =
π

2
. Bottom right: d = −1, α =

π

2
.

Corollary 3 (sign of the linking number) In the notation of Definition 2,
lim
α→0

lk(L1, L2) = 0 = lim
α→π

lk(L1, L2). Any non-parallel L1, L2 have sign(lk(L1, L2)) =

−sign(d). So lk(L1, L2) = 0 if and only if d = 0 or α = 0 or α = π. �

Corollary 4 (lk for d → 0) If d → 0 and L1, L2 remain disjoint, formula (2) is
continuous and lim

d→0
lk(L1, L2) = 0. If d → 0 and L1, L2 intersect each other in the

limit case d = 0, then lim
d→0

lk(L1, L2) = −
sign(d)

2
, where d → 0 keeps its sign. �

Corollary 5 (lk for d → ±∞) If the distance d → ±∞, then lk(L1, L2) → 0. �

Corollary 6 (lk for ai, bi →∞) If the invariants d, α of line segments L1, L2 ⊂ R
3

remain fixed, but ai → +∞ or bi → −∞ for each i = 1,2, then lk(L1, L2) → 0. �
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Corollary 7 (lk for ai → bi) If one of segments L1, L2 ⊂ R
3 becomes infinitely

short so that its final endpoint tends to the fixed initial endpoint (or vice versa), while
all other invariants of L1, L2 from Definition 2 remain fixed, then lk(L1, L2) → 0. �

7 Example computations of the linking number and a discussion

If curves γ1, γ2 ⊂ R
3 consist of straight line segments, then lk(γ1, γ2) can be computed

as the sum of lk(L1, L2) over all line segments L1 ⊂ γ1 and L2 ⊂ γ2. Fig. 4 shows
polygonal links whose linking numbers were computed by our Python code at
https://github.com/MattB-242/Closed_Lk_Form

Fig. 4 1st: The Hopf link as two square cycles has lk = −1 and ver-
tices with coordinates L1 = (−2, 0, 2), (2, 0, −2), (2, 0, 2), (−2, 0, 2) and L2 =

(−1, −2, 0), (−1, 2, 0), (1, 2, 0), (1, −2, 0) 2nd: The Hopf link as two triangular cycles has
lk = +1, L1 = (−1, 0, −1), (−1, 0, 1), (1, 0, 0) and L2 = (0, 0, 0), (2, 1, 0), (2, −1, 0). 3rd:
Solomon’s link has lk = +2, L1 = (−1, 1, 1), (−1, −1, 1), (3, −1, 1), (3, 1, −1), (1, 1, −1), (1, 1, 1)
and L2 = (−1, −2, 0), (−1, 2, 0), (1, 2, 0), (1, −2, 0). 4th: Whitehead’s link has lk = 0, L1 =
(−3, −2, −1), (0, −2, −1), (0, 2, 1), (0, 0, 1), (0, 0, 0), (3, 0, 0), (3, 1, 0), (−3, 1, 0), (−3, −2, −1)
and L2 = (−1, 0, −3), (−1, 0, 3), (1, 0, 3), (−1, 0, 3).

The asymptotic linking number introduced by Arnold converges for infinitely
long curves [16], while our initial motivation was a computation of geometric and
topology invariants to classify periodic structures such as textiles [4] and crystals [5].

Theorem 2 allows us to compute the periodic linking number between a segment
J and a growing finite lattice Ln whose unit cell consists of n copies of two oppositely
oriented segments orthogonal to J. This periodic linking number is computed for
increasing n in a lattice extending periodically in one, two and three directions,
see Fig. 5. As n increases, the lk function asymptotically approaches an approximate
value of 0.30 for 1- and 3-periodic lattice and 0.29 for the 2-periodic lattice.

The invariant-based formula has allowed us to prove new asymptotic results of the
linking number in Corollaries 2-7 of section 6. Since the periodic linking number is
a real-valued invariant modulo isometries, it can be used to continuously quantify
similarities between periodic crystalline networks [5]. One next possible step is to
use formula (2) to prove asymptotic convergence of the periodic linking number for
arbitrary lattices, so that we can show that the limit of the infinite sum is a general
invariant that can be used to develop descriptors of crystal structures.

https://github.com/MattB-242/Closed_Lk_Form
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The Milnor invariants generalise the linking number to invariants of links with
more than two components. An integral for the three component Milnor invariant [6]
may be possible to compute in a closed form similarly to Theorem 2. The interesting
open problem is to extend the isometry-based approach to finer invariants of knots.

TheGauss integral in (1) was extended to the infinite Kontsevich integral containing
all finite-type or Vassiliev’s invariants of knots [9]. The coefficients of this infinite
series were explicitly described [10] as solutions of exponential equations with
non-commutative variables x, y in a compressed form modulo commutators of
commutators in x, y. The underlying metabelian formula for ln(exey) has found an
easier proof [11] in the form of a generating series in the variables x, y.

In conclusion, we have proved the analytic formula for the linking number based
on 6 isometry invariants that uniquely determine a relative position of two line
segments in R3. Though a similar formula was claimed in [8], no proof was given.
Hence this paper fills an important gap in the literature by completing the proof via 3
non-trivial lemmas in section 5, see detailed computations in the full version of this
paper (arXiv:2011.04631). This research was supported by the £3.5M EPSRC grant
‘Application-driven Topological Data Analysis’ (2018-2023, ref EP/R018472/1).
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Fig. 5 Left: the line segment J = (0, 0, −1)+ t(0, 0, 2) in red and the periodic lattice L(nk ) derived
from n copies of the ’unit cell’ L = {(−1, −1, 0) + t(0, 2, 0), (−1, 1, 0) + s(0, −2, 0)}, t , s ∈ [0, 1],
translated in k linearly independent directions for increasing n ∈ Z. Right: the periodic linking
number lk(J , L(nk )) is converging fast for n→ +∞. Top: k = 1.Middle: k = 2. Bottom: k = 3.
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8 Appendix A: proofs of lemmas about isometry invariants

Appendices A,B,C provide extra details that are not included into the main paper.

Proof (Lemma 1) Any line segments L1, L2 ⊂ R
3 that are not in the same plane

are contained in distinct parallel planes. For i = 1,2, the plane Πi is spanned by Li

and the line parallel to L3−i and passing through an endpoint of Li . Let L ′i be the
orthogonal projection of the line segment Li to the plane Π3−i . The non-parallel lines
through the segments Li and L ′3−i in the plane Πi intersect at a point, say Oi . Then
the line segment O1O2 is orthogonal to both planes Πi , hence to both Li for i = 1,2.

By Theorem 1, to compute lk(L1, L2), one can apply a rigid motion to move the
mid-point of the line segment O1O2 to the origin O = (0,0,0) ∈ R2 and make O1O2
vertical, i.e. lying within the z-axis. The signed distance d can be defined as the
difference between the coordinates of O2 = Π2 ∩ (z-axis) and O1 = Π1 ∩ (z-axis)
along the z-axis. Then Li lies in the horizontal plane Πi = {z = (−1)i d2 }, i = 1,2.

An extra rotation around the z-axis guarantees that the x-axis in the horizontal
plane Π = {z = 0} is the bisector of the angle α ∈ [0, π] from prxy(L̄1) to prxy(L̄2),
where prxy : R3 → Π is the orthogonal projection. Then the infinite lines L̄i through
Li have the parametric form (x, y, z) = (t cos α2 , (−1)it sin α

2 , (−1)i d2 ) with s ∈ R.

The point Oi can be considered as the origin of the oriented infinite line L̄i . Let the
line segment Li have a length li > 0 and its initial point have the coordinate ai ∈ R in
the oriented line L̄i . Then the final endpoint of Li has the coordinate bi = ai + li . To
cover only the segment Li , the parameter t should be replaced by ai + lit, t ∈ [0,1].�

Proof (Lemma 2) The vectors along the segments are Li = vi −ui , hence the lengths
are li = |Li | = |

−−−→
AiBi |, i = 1,2. The angle α ∈ [0, π] between L1,L2 can be found

from the scalar product L1 · L2 = |L1 | · |L2 | cosα as α = arccos
L1 · L2

l1l2
, because

the function arccos x : [−1,1] → [0, π] is bijective.

Since L1,L2 are not proportional, the normalised vector product e3 =
L1 × L2
|L1 × L2 |

is well-defined and orthogonal to both L1,L2. Then e1 =
L1
|L1 |

, e2 =
L2
|L2 |

and e3

have lengths 1 and form a linear basis of R3, where the last vector is orthogonal to
the first two.

Let O be any fixed point of R3, which can be assume to be the origin (0,0,0) in the
coordinates of Lemma 1, though its position relative to −−−→AiBi is not yet determined.
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First we express the points Oi = (0,0, (−1)i d2 ) ∈ L̄i from Fig. 1 in terms of given
vectors −−−→AiBi . If the initial endpoint Ai has a coordinate ai in the line L̄i through Li ,
then −−−→Oi Ai = aiei and

−−−−→
O1O2 =

−−−→
OO2 −

−−−→
OO1 = (

−−−→
OA2 −

−−−−→
O2 A2) − (

−−−→
OA1 −

−−−−→
O1 A1) =

−−−−→
A1 A2 + a1e1 − a2e2.

By Definition 2, −−−−→O1O2 is orthogonal to the line L̄i going through the vector ei =
Li

|Li |

for i = 1,2. Then the product [e1,e2,
−−−−→
O1O2] = (e1 × e2) ·

−−−−→
O1O2 equals |e1 × e2 |d,

where −−−−→O1O2 is in the z-axis, the signed distance d is the z-coordinate of O2 minus
the z-coordinates O1.

The product [e1,e2,
−−−−→
O1O2] = (e1 × e2) · (

−−−−→
A1 A2 + a1e1 − a2e2) = (e1 × e2) ·

−−−−→
A1 A2

doesn’t depend on a1,a2, because e1 × e2 is orthogonal to both e1,e2. Hence the

signed distance is d =
[e1,e2,

−−−−→
A1 A2]

|e1 × e2 |
=
[L1,L2,

−−−−→
A1 A2]

|L1 × L2 |
, which can be positive or

negative, see Fig. 1. It remains to find the coordinate ai of the initial endpoint of Li

relative to the origin Oi ∈ L̄i , i = 1,2. The vector −−−−→O1O2 =
−−−−→
A1 A2 + a1e1 − a2e2 is

orthogonal to both ei if and only if the scalar products vanish: −−−−→O1O2 · ei = 0. Due to
|e1 | = 1 = |e2 | and e1 · e2 = cosα, we get

e1 ·
−−−−→
A1 A2 + a1 − a2(e1 · e2) = 0,

e2 ·
−−−−→
A1 A2 + a1(e1 · e2) − a2 = 0,

©­«
1 − cosα

cosα −1
ª®¬ ©­«

a1

a2

ª®¬ = − ©­«
e1 ·
−−−−→
A1 A2

e2 ·
−−−−→
A1 A2

ª®¬ .
The determinant of the 2 × 2 matrix is cos2 α − 1 = − sin2 α , 0, because L1, L2 are

not parallel. Then ©­«
a1

a2

ª®¬ = 1
sin2 α

©­«
−1 cosα

− cosα 1
ª®¬ ©­«

e1 ·
−−−−→
A1 A2

e2 ·
−−−−→
A1 A2

ª®¬.
a1 =

−e1 ·
−−−−→
A1 A2 + cosα(e2 ·

−−−−→
A1 A2)

sin2 α
=
(e2 cosα − e1) ·

−−−−→
A1 A2

sin2 α
=

(
L2
l2

cosα −
L1
l1

)
·

−−−−→
A1 A2

sin2 α
,

a2 =
cosα(e1 ·

−−−−→
A1 A2) − e1 ·

−−−−→
A1 A2

sin2 α
=
(e2 − e1 cosα) · −−−−→A1 A2

sin2 α
=

(
L2
l2
−

L1
l1

cosα
)
·

−−−−→
A1 A2

sin2 α
.

The coordinates of the final endpoints are obtained as bi = ai + li , i = 1,2. �

Proof (Lemma 3) Under the central symmetry CS, in the notation of Lemma 2 the
vectors L1,L2,

−−−−→
A1 A2 change their signs. Then the formulae for α,a1, b1,a2, b2 gives

the same expression, but the triple product [L1,L2,
−−−−→
A1 A2] and d change their signs.

Since the central symmetry CS is an orthogonal map M with det M =

−1, the new linking number changes its sign as follows: lk(CS(L1),CS(L2)) =
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lk(CS(L2),CS(L1)) = −lk(L1, L2), where we also make use of the invariance of lk
under exchange of the segments from Theorem 1(f). �

9 Appendix B: proofs of lemmas for the lk formula in Theorem 2

Proof (Lemma 4) The following computations assume that a1,a2, l1, l2, α are given
and t, s ∈ [0,1].
L1(t) = ((a1 + l1t) cos α2 ,−(a1 + l1t) sinα,− d

2 ),
L2(s) = ((a2 + l2s) cos α2 , (a2 + l2s) sinα, d2 ),
ÛL1(t) = (l1 cos α2 ,−l1 sin α

2 ,0),
ÛL2(s) = (l2 cos α2 , l2 sin α

2 ,0),
ÛL1(t) × ÛL2(s) = (0,0,2l1l2 sin α

2 cos α2 ) = (0,0, l1l2 sinα),
L1(t) − L2(s) = ((a1 − a2 + l1t − l2s) cosα,−(a1 + a2 + l1t + l2s) sinα,−d),
( ÛL1(t), ÛL2(s), L1(t) − L2(s)) = −dl1l2 sinα,

lk(L1, L2) =
1

4π

1∫
0

1∫
0

( ÛL1(t), ÛL2(s), L1(t) − L2(s))
|L1(t) − L2(s)|3

dtds =

=
1

4π

1∫
0

1∫
0

−dl1l2 sinα dtds
(d2 + (a1 − a2 + l1t − l2s)2 cos2 α

2 + (a1 + a2 + l1t + l2s)2 sin2 α
2 )

3/2

= −
dl1l2 sinα

4π

1∫
0

1∫
0

dtds
(d2 + (a1 − a2 + l1t − l2s)2 cos2 α

2 + (a1 + a2 + l1t + l2s)2 sin2 α
2 )

3/2
.

To simplify the last integral, introduce the variables p =
a1 + l1t

d
and q =

a2 + l2s
d

.

In the new variables p,q the expression under the power
3
2
in the denominator

becomes
d2 + (pd − qd)2 cos2 α

2
+ (pd + qd)2 sin2 α

2
=

= d2
(
1 + (p2 − 2pq + q2) cos2 α

2
+ (p2 − 2pq + q2) cos2 α

2

)
=

= d2
(
1 + p2

(
cos2 α

2
+ sin2 α

2

)
+ q2 − 2pq

(
cos2 α

2
− sin2 α

2

))
= d2(1+p2+q2−2pq cosα).

The old variables are expressed as t =
pd − a1

l1
, ts =

pd − a2
l2

and have the

differentials dt =
d
l1

dp, ds =
d
l2

dq. Since t, s ∈ [0,1], the new variables p,q

have the ranges [ a1
d ,

b1
d ] and [

a2
d ,

b2
d ], respectively. Then the linking number has the

required expression in the lemmama:
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lk(L1, L2) = −
dl1l2 sinα

4π

b1/d∫
a1/d

b2/d∫
a2/d

d2

l1l2

dp dq
d3(1 + p2 + q2 − 2pq cosα)3/2

=

= −
1

4π

b1/d∫
a1/d

b2/d∫
a2/d

sinα dp dq
(1 + p2 + q2 − 2pq cosα)3/2

.

Due to Lemma 3, the above computations assume that the signed distance d > 0. �

Proof (Lemma 5) Complete the square in the expression under power
3
2
in Lemma 4:

1 + p2 + q2 − 2pq cosα = 1 + p2 sin2 α + (q − p cosα)2.

The substitution (q−p cosα) = (1+p2 sin2 α) tan2 ψ for the new variable ψ simplifies

the sum of squares to 1 + tan2 ψ =
1

cos2 ψ
. Since q varies within [ a2

d ,
b2
d ], for any

fixed p ∈ [ a1
d ,

b1
d ], the range [ψ0,ψ1] of ψ satisfies tanψ0 =

a2
d − p cosα√
1 + p2 sin2 α

and

tanψ1 =

b2
d − p cosα√
1 + p2 sin2 α

. Since we treat p,ψ as independent variables, the Jacobian

of the substitution (p,q) 7→ (p,ψ) equals

∂q
∂ψ
=

∂

∂ψ

(
p cosα + tanψ

√
1 + p2 sin2 α

)
=

√
1 + p2 sin2 α

cos2 ψ
.

In the variables p,ψ the expression under the double integral of Lemma 4 becomes

sinα dp dq
(1 + p2 + q2 − 2pq cosα)3/2

=
sinα dp

((1 + p2 sin2 α) + (1 + p2 sin2 α) tan2 ψ)3/2
∂q
∂ψ

dψ

=
sinα dp

(1 + p2 sin2 α)3/2(1 + tan2 ψ)3/2
dψ

√
1 + p2 sin2 α

cos2 ψ
=

sinα dp cosψ dψ
1 + p2 sin2 α

.

lk(L1, L2) = −
1

4π

b1/d∫
a1/d

sinα dp
1 + p2 sin2 α

ψ1∫
ψ0

cosψ dψ =
1

4π

b1/d∫
a1/d

sinα dp
1 + p2 sin2 α

(sinψ0−sinψ1).

Express the sin functions for the bounds ψ0,ψ1 in terms of tan as sinψ0 =

tanψ0√
1 + tan2 ψ0

. Using tanψ0 =

a2
d − p cosα√
1 + p2 sin2 α

obtained above, we get

√
1 + tan2 ψ0 =

√
(1 + p2 sin2 α) + ( a2

d − p cosα)2

1 + p2 sin2 α
=

√
1 + p2 + ( a2

d )
2 − 2 a2

d p cosα
1 + p2 sin2 α

.
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sinψ0 =

a2
d − p cosα√
1 + p2 sin2 α

√
1 + p2 sin2 α

1 + p2 + ( a2
d )

2 − 2 a2
d p cosα

=

a2
d − p cosα√

1 + p2 + ( a2
d )

2 − 2 a2
d p cosα

.

Then sinψ1 has the same expression with a2 replaced by b2. After substituting these
expressions in the previous formula for the linking number, we get lk(L1, L2) =

1
4π

b1/d∫
a1/d

sinα dp
1 + p2 sin2 α

©­­«
a2
d − p cosα√

1 + p2 + ( a2
d )

2 − 2 a2
d p cosα

−

b2
d − p cosα√

1 + p2 + ( b2
d )

2 − 2 b2
d p cosα

ª®®¬
=

S(a2/d) − S(b2/d)
4π

, where I(r) =
b1/d∫
a1/d

sinα(r − p cosα)dp

(1 + p2 sin2 α)
√

1 + p2 + r2 − 2pr cosα
.�

Proof (Lemma 6) The easiest way is to differentiate the function arctanω for ω =
pr sin2 α + cosα

sinα
√

1 + p2 + r2 − 2pr cosα
with respect to the variable p remembering that r, α are

fixed parameters. For notational clarity, we use an auxiliary symbol for the expression

under the square root: R = 1 + p2 + r2 − 2pr cosα. Then ω =
pr sin2 α + cosα

sinα
√

R
and

dω
dp
=

1
R sinα

(
r sin2 α

√
R − (rp sin2 α + cosα)

2p − 2r cosα
2
√

R

)
=

=
1

R
√

R sinα

(
r sin2 α(1 + p2 + r2 − 2pr cosα) − (rp sin2 α + cosα)(p − r cosα)

)
=

=
rp2 sin2 α + r3 sin2 α − 2pr2 cosα sin2 α − rp2 sin2 α + pr2 cosα sin2 α − p cosα + r

R
√

R sinα
=

=
r3 sin2 α − pr2 cosα sin2 α − p cosα + r

R
√

R sinα
=
(r − p cosα)(1 + r2 sin2 α)

R
√

R sinα
.

d
dp

arctanω =
1

1 + ω2 ·
dω
dp
=

(sinα
√

R)2

(sinα
√

R)2 + (pr sin2 α + cosα)2
·

dω
dp
=

=
R sin2 α

R sin2 α + (p2r2 sin4 α + 2pr sin2 α cosα + cos2 α)
·
(r − p cosα)(1 + r2 sin2 α)

R
√

R sinα
=

=
sinα
√

R
·

(r − p cosα)(1 + r2 sin2 α)

sin2 α(1 + p2 + r2 − 2pr cosα) + (p2r2 sin4 α + 2pr sin2 α cosα + cos2 α)
=

=
sinα(r − p cosα)(1 + r2 sin2 α)

(1 + p2 sin2 α + r2 sin2 α + p2r2 sin4 α)
√

R
=

sinα(r − p cosα)(1 + r2 sin2 α)

(1 + p2 sin2 α)(1 + r2 sin2 α)
√

R
=

=
sinα(r − p cosα)
(1 + p2 sin2 α)

√
R
=

sinα(r − p cosα)
(1 + p2 sin2 α)

√
1 + p2 + q2 − 2pq cosα

.
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Since we got the required expression under the integral I(r), Lemma 6 is proved. �

10 Appendix C: proofs of corollaries of main Theorem 2

Proof (Proof of Corollary 1) By definition any simple orthogonal segments L1, L2

have α =
π

2
and initial endpoints a1 = 0 = a2, hence b1 = l1, b2 = l2. Substituting the

values above into (2) gives AT(0, l2; d, π2 ) = 0, AT(l1,0; d, π2 ) = 0, AT(0,0; d, π2 ) = 0.

Then lk(L1, L2) = −
1

4π
AT(l1, l2; d, α) = −

1
4π

arctan
©­­«

l1l2

d
√

l2
1 + l2

2 + d2

ª®®¬. �

Proof (Corollary 2) By Theorem 2 lk(L1, L2) is a sum of 4 arctan functions divided

by 4π. Since each arctan is strictly between ±
π

2
, the linking number is between ±

1
2
.�

Proof (Corollary 3) If α = 0 or α = π, then cotα is undefined, so Theorem 2 sets
AT(a, b; d, α) = sign(d)

π

2
. Then lk(L1, L2) = sign(d)

π

2
(1 + 1 − 1 − 1) = 0.

Theorem 2 also specifies that lk(L1, L2) = 0 for d = 0. If d , 0 and α→ 0 within
[0, π] while all other parameters remain fixed, then d2 cotα→ +∞. Hence each of
the 4 arctan functions in Theorem 2 approaches

π

2
, so lk(L1, L2) → 0. The same

conclusion similarly follows in the case α→ π when d2 cotα→ −∞.
If L1, L2 are not parallel, the angle α between them belongs to (0, π). In d >

0, Lemma 4 says that lk(L1, L2) = −
1

4π

b1/d∫
a1/d

b2/d∫
a2/d

sinα dp dq
(1 + p2 + q2 − 2pq cosα)3/2

. Since

the function under the integral is strictly positive, lk(L1, L2) < 0. By Lemma 3 both
lk(L1, L2) simultaneously change their signs under a central symmetry. Hence the
formula sign(lk(L1, L2)) = −sign(d) holds for all d including d = 0 above. �

Proof (Corollary 4) Recall that lim
x→±∞

arctan x = ±
π

2
. By Corollary 3 assume that

α , 0, α , π, so α ∈ (0, π). Then sinα > 0, a2 + b2 − 2ab cosα > (a − b)2 ≥ 0 and

lim
d→0

AT(a, b; d, α) = lim
d→0

arctan
(

ab sinα + d2 cotα
d
√

a2 + b2 − 2ab cosα + d2

)
=

= sign(a)sign(b)sign(d)
π

2
, so Theorem 2 gives

lim
d→0

lk(L1, L2) =
sign(d)

8
(sign(a1) − sign(b1))(sign(b2) − sign(a2)).

In the limit case d = 0, the line segments L1, L2 ⊂ {z = 0} remain disjoint in the same
plane if and only if both endpoint coordinates ai, bi have the same sign for at least
one of i = 1,2, which is equivalent to sign(ai) − sign(bi) = 0, i.e. lim

d→0
lk(L1, L2) = 0
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from the product above. Hence formula (2) is continuous under d → 0 for any
non-crossing segments. Any segments that intersect in the plane {z = 0} when
d = 0 have endpoint coordinates ai < 0 < bi for both i = 1,2 and have the limit

lim
d→0

lk(L1, L2) =
sign(d)

8
(−1 − 1)(1 − (−1)) = −

sign(d)
2

as required. �

Proof (Corollary 5) If d → ±∞, while all other parameters of L1, L2 remain fixed,

then the function AT(a, b; d, α) = arctan
(

ab sinα + d2 cotα
d
√

a2 + b2 − 2ab cosα + d2

)
from The-

orem Theorem 2 has the limit arctan(sign(d) cotα) = sign(d)
( π

2
− α

)
. Since the

four AT functions in Theorem 2 include the same d, α, their limits cancel, so
lk(L1, L2) → 0. �

Proof (Corollary 6) If ai → +∞, then ai ≤ bi → +∞, i = 1,2. If bi → −∞, then
bi ≥ ai → −∞, i = 1,2. Consider the former case ai → +∞, the latter is similar.

Since d, α are fixed, a2+b2−2ab cosα+d2 ≤ (a+b)2+d2 ≤ 5b2 for large enough b.

Since arctan(x) increases, AT(a, b; d, α) ≥ arctan
(

ab sinα + d2 cotα
db
√

5

)
→ sign(d)

π

2
as b ≥ a → +∞. Since the four AT functions in Theorem 2 have the same limit
when their first two arguments tend to + ± ∞, these 4 limits cancel and we get
lk(L1, L2) → 0. �

Proof (Corollary 7) lk(L1, L2) = 0 for d = 0. It’s enough to consider the case

d , 0. Then AT(a, b; d, α) = arctan
(

ab sinα + d2 cotα
d
√

a2 + b2 − 2ab cosα + d2

)
from Theo-

rem 2 is continuous. Let (say for i = 1) a1 → b1, the case b1 → a1 is sim-
ilar. The continuity of AT implies that AT(a1, b2; d, α) → AT(b1, b2; d, α) and
AT(a1,a2; d, α) → AT(b1,a2; d, α). In the limit all terms in Theorem 2 cancel, hence
lk(L1, L2) → 0. �
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