
Lazy Search Trees

Bryce Sandlund
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, ON, Canada

Email: bcsandlund@gmail.com

Sebastian Wild
Department of Computer Science

University of Liverpool
Liverpool, UK

Email: wild@liverpool.ac.uk

Abstract—We introduce the lazy search tree data structure.
The lazy search tree is a comparison-based data structure
on the pointer machine that supports order-based operations
such as rank, select, membership, predecessor, successor, min-
imum, and maximum while providing dynamic operations
insert, delete, change-key, split, and merge. We analyze the
performance of our data structure based on a partition of
current elements into a set of gaps {∆i} based on rank. A
query falls into a particular gap and splits the gap into two
new gaps at a rank r associated with the query operation.
If we define B = ∑i ∣∆i∣ log2(n/∣∆i∣), our performance
over a sequence of n insertions and q distinct queries is
O(B + min(n log logn,n log q)). We show B is a lower
bound.

Effectively, we reduce the insertion time of binary
search trees from Θ(logn) to O(min(log(n/∣∆i∣) +

log log ∣∆i∣, log q)), where ∆i is the gap in which the
inserted element falls. Over a sequence of n insertions and
q queries, a time bound of O(n log q + q logn) holds;
better bounds are possible when queries are non-uniformly
distributed. As an extreme case of non-uniformity, if all queries
are for the minimum element, the lazy search tree performs as a
priority queue with O(log logn) time insert and decrease-key
operations. The same data structure supports queries for any
rank, interpolating between binary search trees and efficient
priority queues.

Lazy search trees can be implemented to operate mostly
on arrays, requiring only O(min(q,n)) pointers, suggesting
smaller memory footprint, better constant factors, and better
cache performance compared to many existing efficient priority
queues or binary search trees. Via direct reduction, our data
structure also supports the efficient access theorems of the
splay tree, providing a powerful data structure for non-uniform
element access, both when the number of accesses is small
and large.

I. Introduction

We consider data structures supporting order-based opera-
tions such as rank, select, membership, predecessor, successor,
minimum, and maximum while providing dynamic operations
insert, delete, change-key, split, and merge. The classic
solution is the binary search tree (BST), perhaps the most
fundamental data structure in computer science. The original
unbalanced structure dates back to (at least) the early 1960’s;
a plethora of balanced binary search tree data structures

The full version of this extended abstract is available on arXiv.

have since been proposed, notable examples including AVL
trees [1], red-black trees [2], and splay trees [3]. A balanced
binary search tree is a staple data structure included in nearly
all major programming language’s standard libraries and
nearly every undergraduate computer science curriculum.
The data structure is the dynamic equivalent of binary search
in an array, allowing searches to be performed on a changing
set of keys at nearly the same cost. Extending to multiple
dimensions, the binary search tree is the base data structure
on which range trees, segment trees, interval trees, kd-trees,
and priority search trees are all built [4].
The theory community has long focused on developing

binary search trees with efficient query times. Although
Ω(logn) is the worst-case time complexity of a query, on
non-uniform access sequences binary search trees can perform
better than logarithmic time per query by, for example, storing
recently accessed elements closer to the root. The splay tree
was devised as a particularly powerful data structure for
this purpose [3], achieving desirable access theorems such
as static optimality, working set, scanning theorem, static
finger, and dynamic finger [3], [5], [6]. The most famous
performance statement about the splay tree, however, is the
unproven dynamic optimality conjecture, which claims that
the performance of the splay tree is within a constant factor
of any binary search tree on any sufficiently long access
sequence, subsuming all other access theorems. Proving this
conjecture is widely considered one of the most important
open problems in theoretical computer science, receiving vast
attention by data structure researchers [7], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17]. Despite ultimately remaining
unsolved for nearly four decades, this topic continues to
receive extensive treatment [10], [11], [15], [17], [18].

Although widely considered for the task in literature, the
binary search tree is not the most efficient data structure
for the standard dictionary abstract data type: in practice,
dictionaries are almost always implemented by hash tables,
which support O(1) time insert, delete, and look-up in
expectation [19], [20]. The advantage of binary search trees,
over hash tables, is that they support order-based operations.
We call dictionaries of this type sorted dictionaries, to
differentiate them from the simpler data structures supporting
only membership queries.



If we limit the order-based operations required of our
sorted dictionary to queries for the minimum or maximum
element (or both), a number of alternative solutions to the
binary search tree have been developed, known as priority
queues. The first of which was the binary heap, invented
in 1964 for the heapsort algorithm [21]. The binary heap
achieves asymptotic complexity equivalent to a binary search
tree, though due to the storage of data in an array and
fast average-case complexity, it is typically the most efficient
priority queue in practice. Later, the invention of the binomial
heap showed that the merging of two arbitrary priority
queues could be supported efficiently [22], [23], thus proving
that the smaller operation set of a priority queue allows
more efficient runtimes. The extent to which priority queues
can outperform binary search trees was fully realized with
the invention of Fibonacci heaps, which showed insertion,
merge, and an additional decrease-key operation can all
be supported in O(1) amortized time [24]. Since then, a
number of priority queues with running times close to or
matching Fibonacci heaps have been developed [25], [26],
[27], [28], [29], [30], [31]. We refer to such priority queues
with o(logn) insertion and decrease-key costs as efficient
priority queues, to distinguish them from their predecessors
and typically simpler counterparts with O(logn) insertion
and/or decrease-key cost.
The history of efficient priority queues contrasts that of

binary search trees. Efficient priority queues have been
developed for the case when the number of queries is
significantly less than the number of insertions or updates. On
the other hand, research on binary search trees has focused
on long sequences of element access. Indeed, the dynamic
optimality conjecture starts with the assumption that n
elements are already present in the binary search tree, placing
any performance improvements by considering insertion cost
entirely outside of the model. However, the theory of efficient
priority queues shows that on some operation sequences, the
efficiency gains due to considering insertion cost can be as
much as a Θ(logn) factor, showing an as-of-yet untapped
area of potential optimization for data structures supporting
the operations of a binary search tree. Further, aside from the
theoretically-appealing possibility of the unification of the
theories of efficient priority queues and binary search trees,
the practicality of improved insertion performance is arguably
greater than that of improved access times. For the purpose
of maintaining keys in a database, for example, an insert-
efficient data structure can provide superior runtimes when
the number of insertions dominates the number of queries, a
scenario that is certainly the case for some applications [32],
[33] and is, perhaps, more likely in general. Yet in spite of
these observations, almost no research has been conducted
that seriously explores this frontier [34].
We attempt to bridge this gap. We seek a general theory

of comparison-based sorted dictionaries that encompasses
efficient priority queues and binary search trees, providing

the operational flexibility of the latter with the efficiency
of the former, when possible. We do not restrict ourselves
to any particular BST or heap model; while these models
with their stronger lower bounds are theoretically informative,
for the algorithm designer these lower bounds in artificially
constrained models are merely indications of what not to try.
If we believe in the long-term goal of improving algorithms
and data structures in practice – an objective we think will
be shared by the theoretical computer science community at
large – we must also seek the comparison with lower bounds
in a more permissive model of computation.
We present lazy search trees. The lazy search tree is the

first data structure to support the general operations of a
binary search tree while providing superior insertion time
when permitted by query distribution. We show that the
theory of efficient priority queues can be generalized to
support queries for any rank, via a connection with the
multiple selection problem. Instead of sorting elements upon
insertion, as does a binary search tree, the lazy search delays
sorting to be completed incrementally while queries are
answered. A binary search tree and an efficient priority
queue are special cases of our data structure that result when
queries are frequent and uniformly distributed or only for the
minimum or maximum element, respectively. While previous
work has considered binary search trees in a “lazy" setting
(known as “deferred data structures”) [35], [36] and multiple
selection in a dynamic setting [37], [38], no existing attempts
fully distinguish between insertion and query operations,
severely limiting the generality of their approaches. The
model we consider gives all existing results as corollaries,
unifying several research directions and providing more
efficient runtimes in many cases, all with the use of a single
data structure.

A. Model and Results

We consider comparison-based data structures on the
pointer machine. While we suggest the use of arrays in
the implementation of our data structure in practice, constant
time array access is not needed for our results. Limiting
operations to a pointer machine has been seen as an important
property in the study of efficient priority queues, particularly
in the invention of strict Fibonacci heaps [27] compared
to an earlier data structure with the same worst-case time
complexities [30].
We consider data structures supporting the following

operations on a dynamic multiset S with (current) size n = ∣S∣.
We call such data structures sorted dictionaries:

● Construction(S) ∶= Construct a sorted dictionary on
the set S.

● Insert(e) ∶= Add element e = (k, v) to S, using key
k for comparisons; (this increments n).

● RankBasedQuery(r) ∶= Perform a rank-based query
pertaining to rank r on S.

2



● Delete(ptr) ∶= Delete the element pointed to by ptr
from S; (this decrements n).

● ChangeKey(ptr, k′) ∶= Change the key of the element
pointed to by ptr to k′.

● Split(r) ∶= Split S at rank r, returning two sorted
dictionaries T1 and T2 of r and n − r elements,
respectively, such that for all x ∈ T1, y ∈ T2, x ≤ y.

● Merge(T1,T2) ∶= Merge sorted dictionaries T1 and T2

and return the result, given that for all x ∈ T1, y ∈ T2,
x ≤ y.

We formalize what queries are possible within the stated
operation RankBasedQuery(r) in the full version of the
paper. For now, we informally define a rank-based query
as any query computable in O(logn) time on a (possibly
augmented) binary search tree and in O(n) time on an
unsorted array. Operations rank, select, contains, successor,
predecessor, minimum, and maximum fit our definition. To
each operation, we associate a rank r: for membership and
rank queries, r is the rank of the queried element (in the
case of duplicate elements, an implementation can break
ties arbitrarily), and for select, successor, and predecessor
queries, r is the rank of the element returned; minimum and
maximum queries are special cases of select with r = 1 and
r = n, respectively.
The idea of lazy search trees is to maintain a partition

of current elements in the data structure into what we will
call gaps. We maintain a set of m gaps {∆i}, 1 ≤ i ≤ m,
where a gap ∆i contains a bag of elements. Gaps satisfy a
total order, so that for any elements x ∈ ∆i and y ∈ ∆i+1,
x ≤ y. Internally, we will maintain structure within a gap,
but the interface of the data structure and the complexity of
the operations is based on the distribution of elements into
gaps, assuming nothing about the order of elements within a
gap. Intuitively, binary search trees fit into our framework by
restricting ∣∆i∣ = 1, so each element is in a gap of its own, and
we will see that priority queues correspond to a single gap ∆1

which contains all elements. Multiple selection corresponds
to gaps where each selected rank marks a separation between
adjacent gaps.
To insert an element e = (k, v), where k is its key and

v its value, we find a gap ∆i in which it belongs without
violating the total order of gaps (if x ≤ k for all x ∈ ∆i

and k ≤ y for all y ∈ ∆i+1, we may place e in either ∆i or
∆i+1; implementations can make either choice). Deletions
remove an element from a gap; if the gap is now empty
we can remove the gap. When we perform a query, we first
narrow the search down to the gap ∆i in which the query
rank r falls (formally, ∑i−1

j=1 ∣∆j ∣ < r ≤ ∑
i
j=1 ∣∆j ∣). We then

answer the query using the elements of ∆i and restructure
the gaps in the process. We split gap ∆i into two gaps ∆′

i

and ∆′
i+1 such that the total order on gaps is satisfied and

the rank r element is either the largest in gap ∆′
i or the

smallest in gap ∆′
i+1; specifically, either ∣∆′

i∣+∑
i−1
j=1 ∣∆j ∣ = r

or ∣∆′
i∣+∑

i−1
j=1 ∣∆j ∣ = r−1. (Again, implementations can take

either choice. We will assume a maximum query to take the
latter choice and all other queries the former. More on the
choice of r for a given query is discussed in the full version
of the paper. Our analysis will assume two new gaps replace
a former gap as a result of each query. Duplicate queries
or queries that fall in a gap of size one follow similarly, in
O(logn) time.) We allow duplicate insertions.

Our performance theorem is the following.

Theorem 1 (Lazy search tree runtimes). Let n be the total
number of elements currently in the data structure and let
{∆i} be defined as above (thus ∑mi=1 ∣∆i∣ = n). Let q denote
the total number of queries. Lazy search trees support the
operations of a sorted dictionary on a dynamic set S in the
following runtimes:

● Construction(S) in O(∣S∣) worst-case time.
● Insert(e) inO(min(log(n/∣∆i∣)+log log ∣∆i∣, log q))
worst-case time1, where e = (k, v) is such that k ∈ ∆i.

● RankBasedQuery(r) in O(x log c + logn) amortized
time, where the larger resulting gap from the split is of
size cx and the other gap is of size x.

● Delete(ptr) in O(logn) worst-case time.
● ChangeKey(ptr, k′) in O(min(log q, log log ∣∆i∣))

worst-case time, where the element pointed to by ptr,
e = (k, v), has k ∈ ∆i and k′ moves e closer to its closest
query rank2 in ∆i; otherwise, ChangeKey(ptr, k′)
takes O(logn) worst-case time.

● Split(r) in time according to RankBasedQuery(r).
● Merge(T1,T2) in O(logn) worst-case time.

Define B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣). Then over a series of

insertions and queries with no duplicate queries, the total
complexity is O(B +min(n log logn,n log q)).

We can also bound the number of pointers needed in the
data structure.

Theorem 2 (Pointers). An array-based lazy search tree
implementation requires O(min(q, n)) pointers.

By reducing multiple selection to the sorted dictionary
problem, we can show the following lower bound.

Theorem 3 (Lower bound). Suppose we process a sequence
of operations resulting in gaps {∆i}. Again define B =

∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣). Then this sequence of operations

requires B − O(n) comparisons and Ω(B + n) time in the
worst case.

Theorem 3 indicates that lazy search trees are at most
an additive O(min(n log logn,n log q)) term from opti-
mality over a series of insertions and distinct queries.

1 To simplify formulas, we distinguish between log2(x), the binary
logarithm for any x > 0, and log(x), which we define as max(log2(x),1).

2 The closest query rank of e is the closest boundary of ∆i that was
created in response to a query.

3



This gives a lower bound on the per-operation complexity
of RankBasedQuery(r) of Ω(x log c); the bound can be
extended to Ω(x log c + logn) if we amortize the total
work required of splitting gaps to each individual query
operation. A lower bound of Ω(min(log(n/∣∆i∣), logm))
can be established on insertion complexity via information
theory. We describe all lower bounds in Section IV.
We give specific examples of how lazy search trees can

be used and how to analyze its complexity according to
Theorem 1 in the following subsection.

B. Example Scenarios
Below, we give examples of how the performance of

Theorem 1 is realized in different operation sequences. While
tailor-made data structures for many of these applications are
available, lazy search trees provide a single data structure that
seamlessly adapts to the actual usage pattern while achieving
optimal or near-optimal performance for all scenarios in a
uniform way.

Few Queries: The bound B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣)

satisfies B = O(n log q + q logn). In the worst case,
queries are uniformly distributed, and the lower bound
B = Θ(n log q + q logn). Over a sequence of insertions
and queries without duplicate queries, our performance is
optimal O(n log q + q logn). If q = nε for constant ε > 0,
lazy search trees improve upon binary search trees by a
factor 1/ε. If q = O(logc n) for some c, lazy search trees
serve the operation sequence in O(cn log logn) time and if
q = O(1), lazy search trees serve the operation sequence
in linear time. Although it is not very difficult to modify a
previous “deferred data structure" to answer a sequence of
n insertions and q queries in O(n log q + q logn) time (see
Section II-A), to the best of our knowledge, such a result
has not appeared in the literature.

Clustered Queries: Suppose the operation sequence
consists of q/k “range queries”, each requesting k consecu-
tive keys, with interspersed insertions following a uniform
distribution. Here, B = O(n log(q/k) + q logn), where q is
the total number of keys requested. If the queried ranges
are uniformly distributed, B = Θ(n log(q/k) + q logn),
with better results possible if the range queries are non-
uniform. Our performance on this operation sequence is
O(B +min(n log logn,n log q)), tight with the lower bound
if k = Θ(1) or q/k = Ω(logn). Similarly to Scenario
1, we pay O(n log(q/k)) in total for the first query of
each batch; however, each successive query in a batch
costs only O(logn) time as the smaller resulting gap of
the query contains only a single element. We will see in
Section IV that we must indeed pay Ω(logn) amortized
time per query in the worst case; again our advantage is to
reduce insertion costs. Note that if an element is inserted
within the elements of a previously queried batch, these
insertions take O(logn) time. However, assuming a uniform
distribution of element insertion throughout, this occurs on

only an O(q/n) fraction of insertions in expectation, at total
cost O(n⋅q/n⋅logn) = O(q logn). Other insertions only need
an overall O(n log(q/k) +min(n log logn,n log q)) time.

Selectable Priority Queue: If every query is for a
minimum element, each query takes O(logn) time and
separates the minimum element into its own gap and
all other elements into another single gap. Removal of
the minimum destroys the gap containing the minimum
element, leaving the data structure with a single gap ∆1. All
inserted elements fall into this single gap, implying insertions
take O(log logn) time. Further, the ChangeKey(ptr, k′)
operation supports decrease-key in O(log logn) time, since
all queries (and thus the closest query) are for rank 1. Queries
for other ranks are also supported, though if queried, these
ranks are introduced into the analysis, creating more gaps
and potentially slowing future insertion and decrease-key
operations, though speeding up future selections. The cost of
a selection is O(x log c+logn) amortized time, where x is the
distance from the rank selected to the nearest gap boundary
(which was created at the rank of a previous selection) and
c = ∣∆i∣/x − 1, where the selection falls in gap ∆i. If no
selections have previously occurred, x is the smaller of the
rank or n minus the rank selected and c = n/x − 1.

Interestingly, finding the kth smallest element in a binary
min-heap can be done in O(k) time [39], yet we claim our
runtime optimal! The reason is that neither runtime dominates
in an amortized sense over the course of n insertions. Our
lower bound indicates that Ω(B+n) time must be taken over
the course of multiple selections on n elements in the worst
case. In Frederickson’s algorithm, the speed is achievable
because a binary heap is more structured than an unprocessed
set of n elements and only a single selection is performed;
the ability to perform further selection on the resulting pieces
is not supported. On close examination, lazy search trees
can be made to answer the selection query alone without
creating additional gaps in O(x + logn) amortized time or
only O(x) time given a pointer to the gap in which the query
falls (such modification requires fulfilling Rule (B) and the
credit invariant (see the full version of the paper)).

Double-Ended Priority Queue: If every query is for
the minimum or maximum element, again each query takes
O(logn) time and will separate either the minimum or
maximum element into its own gap and all other elements
into another single gap. The new gap is destroyed when the
minimum or maximum is extracted. As there is only one
gap ∆1 when insertions occur, insertions take O(log logn)
time. In this case, our data structure natively supports an
O(log logn) time decrease-key operation for keys of rank
n/2 or less and an O(log logn) time increase-key operation
for keys of rank greater than n/2. Further flexibility of the
change-key operation is discussed in the full version of the
paper.

Online Dynamic Multiple Selection: Suppose the data
structure is first constructed on n elements. After construction,

4



a set of ranks {ri} are selected, specified online and in
any order. Lazy search trees will support this selection in
O(B) time, where B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣) is the lower

bound for the multiple selection problem [40]. We can
further support additional insertions, deletions and queries.
Data structures for online dynamic multiple selection were
previously known [37], [38], but the way we handle dynamism
is more efficient, allowing for all the use cases mentioned
here. We discuss this in Section II.

Split By Rank: Lazy search trees can function as a
data structure for repeated splitting by rank, supporting
construction on an initial set of n elements in O(n) time,
insertion into a piece of size n in O(log logn) time, and
all splitting within a constant factor of the information-
theoretic lower bound. Here, the idea is that we would like
to support the operations insert and split at rank r, returning
two pieces of a data structure of the same form. In a sense,
this is a generalization of priority queues, where instead
of extracting the minimum, we may extract the k smallest
elements, retaining the ability to perform further extractions
on either of the two pieces returned. As in scenario 3, the
cost of splitting is O(x log c+ logn), where x is the number
of elements in the smaller resulting piece of the split, and
we define c so that the number of elements in the larger
resulting piece of the split is cx. Again, O(x log c+ logn) is
optimal. Note that we could also use an O(log logn) time
change-key operation for this application, though this time
complexity only applies when elements are moved closer to
the nearest split rank. If repeatedly extracting the k smallest
elements is desired, this corresponds to an O(log logn) time
decrease-key operation.

Incremental Quicksort: A version of our data structure
can perform splits internally via selecting random pivots
(details in the full version of the paper) with expected time
complexity matching the bounds given in Theorem 1. The
data structure can then be used to extract the q smallest
elements in sorted order, online in q, via an incremental
quicksort. Here, B = Θ(q logn) and our overall time
complexity is O(n+q logn), which is optimal up to constant
factors. Previous algorithms for incremental sorting are
known [41], [42], [43], [44]; however, our algorithm is
extremely flexible, progressively sorting any part of the array
in optimal time O(B + n) while also supporting insertion,
deletion, and efficient change-key. The heap operations insert
and decrease-key are performed in O(log logn) time instead
of O(logn), compared to existing heaps based on incremental
sorting [42]; see also [45], [46]. Our data structure also
uses only O(min(q, n)) pointers, providing many of the
same advantages of sorting-based heaps. A more-complicated
priority queue based on similar ideas to ours achieves
Fibonacci heap amortized complexity with only a single
extra word of space [47].

We discuss the advantages and disadvantages of our model

and data structure in the following subsections.

C. Advantages
The advantages of lazy search trees are as follows:

(1) Superior runtimes to binary search trees can be achieved
when queries are infrequent or non-uniformly dis-
tributed.

(2) A larger operation set, with the notable exception of
efficient general merging, is made possible when used
as a priority queue, supporting operations within an
additive O(n log logn) term of optimality, in our model.

(3) Lazy search trees can be implemented to use only
O(min(q, n)) pointers, operating mostly on arrays.
This suggests smaller memory footprint, better constant
factors, and better cache performance compared to many
existing efficient priority queues or binary search trees.
Our data structure is not built on the heap-ordered tree
blueprint followed by many existing efficient priority
queues [24], [25], [26], [27], [28], [29], [30], [31].
Instead, we develop a simple scheme based on unordered
lists that may of independent interest.

(4) While not a corollary of the model we consider, lazy
search trees can be made to satisfy all performance
theorems with regards to access time satisfied by splay
trees. In this way, lazy search trees often make sense
as an alternative to the splay tree. Locality of access
can decrease both access and insertion times. This is
discussed in the full version of this paper.

D. Disadvantages
The weaknesses of lazy search trees are as follows:

(1) Our gap-based model requires inserted elements be
placed in a gap immediately instead of delaying all
insertion work until deemed truly necessary by query
operations. In particular, a more powerful model would
ensure that the number of comparisons performed on an
inserted element depends only on the queries executed
after that element is inserted. There are operation
sequences where this can make a Θ(logn) factor
difference in overall time complexity, but it is not
clear whether this property is important on operation
sequences arising in applications.

(2) We currently do not know whether the additive
O(min(n log q, n log logn)) term in the complexity
described in Theorem 1 over a sequence of insertions
and queries is necessary. Fibonacci heaps and its variants
show better performance is achievable in the priority
queue setting. In the full version of the paper, we show
the O(log logn) terms for insertion and change-key can
be improved to a small constant if the (new) rank of
the element is drawn uniformly at random from valid
ranks in ∆i. As a priority queue, this corresponds with
operation sequences in which binary heaps [21] provide
constant time insertion.

5



(3) The worst-case complexity of a single
RankBasedQuery(r) can be O(n). By delaying
sorting, our lower bound indicates that we may need
to spend Θ(n) time to answer a query that splits a
gap of size ∣∆i∣ = Θ(n) into pieces of size x and cx
for c = Θ(1). Further, aside from an initial O(logn)
time search, the rest of the time spent during query
is on writes, so that over the course of the operation
sequence the number of writes is Θ(B + n). In this
sense, our algorithm functions more similarly to a lazy
quicksort than a red-black tree [2], which requires only
Θ(n) writes regardless of operation sequence.

E. Paper Organization & Comparison with Full Version
We organize the remainder of this extended abstract as

follows. In the following section, Section II, we discuss
related work. Section III gives a high-level overview of the
technical challenge. In Section IV, we discuss lower bounds
in our gap-based model. In Section V, we describe lazy
search trees and how they perform insertions and queries.
We give concluding remarks in Section VI.

Due to space constraints, several sections have been
shortened and all proofs have been omitted. We also omit
several sections, including: (1) a formal definition of rank-
based queries, (2) the analysis of lazy search trees, (3)
binary search tree bulk-update operations split and merge, (4)
improved insertion and decrease-key algorithms under a weak
average-case assumption, (5) a version of lazy search trees
replacing exact median-finding with randomized pivoting,
and (6) a version of lazy search trees based on splay trees
and a proof that lazy search trees can support efficient access
theorems. An eponymous full version of this extended abstract
is available on arxiv.org.

II. Related Work
Lazy search trees unify several distinct research fields. The

two largest, as previously discussed, are the design of efficient
priority queues and balanced binary search trees. We achieved
our result by developing an efficient priority queue and lazy
binary search tree simultaneously. There are no directly
comparable results to our work, but research in deferred
data structures and online dynamic multiple selection comes
closest. We further discuss differences between dynamic
optimality and our work.

A. Deferred Data Structures
To our knowledge, the idea of deferred data structures was

first proposed by Karp, Motwani, and Raghavan in 1988 [35].
Similar ideas have existed in slightly different forms for
different problems [48], [49], [50], [51], [52], [53], [54],
[55]. The term “deferred data structure” has been used more
generally for delaying processing of data until queries make
it necessary, but we focus on works for one-dimensional data
here, as it pertains directly to the problem we consider.

Karp, Motwani and Raghavan [35] study the problem of
answering membership queries on a static, unordered set
of n elements in the comparison model. One solution is to
construct a binary search tree of the data in O(n logn) time
and then answer each query in O(logn) time. This is not
optimal if the number of queries is small. Alternatively, we
could answer each query in O(n) time, but this is clearly
not optimal if the number of queries is large. Karp et al.
determine the lower bound of Ω((n + q) log(min(n, q))) =
Ω(n log q + q logn) time to answer q queries on a static set
of n elements in the worst case and develop a data structure
that achieves this complexity.
This work was extended in 1990 to a dynamic model.

Ching, Melhorn, and Smid show that q′ membership queries,
insertions, and deletions on an initial set of n0 unordered
elements can be answered in O(q′ log(n0 + q

′) + (n0 +

q′) log q′) = O(q′ logn0 + n0 log q′) time [36]. When mem-
bership, insertion, and deletion are considered as the same
type of operation, this bound is optimal.

It is not very difficult (although not explicitly done in [36])
to modify the result of Ching et al. to obtain a data structure
supporting n insertions and q′′ membership or deletion
operations in O(q′′ logn + n log q′′) time, the runtime we
achieve for uniform queries. We will see in Section III that the
technical difficulty of our result is to achieve the fine-grained
complexity based on the query-rank distribution. For more
work in one-dimensional deferred data structures, see [48],
[49], [50], [51], [52], [54].

B. Online Dynamic Multiple Selection
The optimality of Karp et al. [35] and Ching et al. [36]

is in a model where the ranks requested of each query are
not taken into account. In the multiple selection problem,
solutions have been developed that consider this information
in the analysis. Suppose we wish to select the elements
of ranks r1 < r2 < ⋯ < rq amongst a set of n unordered
elements. Define r0 = 0, rq+1 = n, and ∆i as the set of
elements of rank greater than ri−1 and at most ri. Then ∣∆i∣ =

ri − ri−1 and as in Theorem 1, B = ∑
m
i=1 ∣∆i∣ log2(n/∣∆i∣).

The information-theoretic lower bound for multiple selection
is B−O(n) comparisons [56]. Solutions have been developed
that achieve O(B + n) time complexity [56] or B + o(B) +
O(n) comparison complexity [40].
The differences between the multiple selection problem

and deferred data structuring for one-dimensional data are
minor. Typically, deferred data structures are designed for
online queries, whereas initial work in multiple selection
considered the setting when all query ranks are given at the
same time as the unsorted data. Solutions to the multiple
selection problem where the ranks r1, . . . , rq are given online
and in any order have also been studied, however [57]. Barbay
et al. [37], [38] further extend this model to a dynamic
setting: They consider online dynamic multiple selection
where every insertion is preceded by a search for the inserted

6



element. Deletions are ultimately performed in O(logn)
time. Their data structure uses B + o(B) +O(n + q′ logn)
comparisons, where q′ is the number of search, insert,
and delete operations. The crucial difference between our
solution and that of Barbay et al. [37], [38] is how we
handle insertions. Their analysis assumes every insertion
is preceded by a search and therefore insertion must take
Ω(logn) time. Thus, for their result to be meaningful (i.e.,
allow o(n logn) performance), the algorithm must start with
an initial set of n0 = n ± o(n) elements. While Barbay et
al. focus on online dynamic multiple selection algorithms
with near-optimal comparison complexity, the focus of lazy
search trees is on generality. We achieve similar complexity
as a data structure for online multiple selection while also
achieving near-optimal performance as a priority queue. We
discuss the technical challenges in achieving this generality
in Section III.

C. Dynamic Optimality
As mentioned, the dynamic optimality conjecture has

received vast attention in the past four decades [7], [8],
[9], [10], [11], [12], [13], [14], [15]. The original statement
conjectures that the performance of the splay tree is within a
constant factor of the performance of any binary search tree
on any sufficiently long access sequence [3]. To formalize this
statement, in particular the notion of “any binary search tree”,
the BST model of computation has been introduced, forcing
the data structure to take the form of a binary tree with
access from the root and tree rotations for updates. Dynamic
optimality is enticing because it conjectures splay trees [3]
and a related “greedy BST” [8] to be within a constant factor
of optimality on any sufficiently long access sequence. This
per-instance optimality [58] is more powerful than the sense
of optimality used in less restricted models, where it is often
unattainable. Any sorting algorithm, for example, must take
Ω(n logn) time in the worst case, but on any particular input
permutation, an algorithm designed to first check for that
specific permutation can sort it in O(n) time: simply apply
the inverse permutation and check if the resulting order is
monotonic.

The bounds we give in Section IV are w. r. t. the worst case
over operation sequences based on distribution of gaps {∆i},
but hold for any comparison-based data structure. Hence, lazy
search trees achieve a weaker notion of optimality compared
to dynamic optimality, but do so against a vastly larger class
of algorithms.

III. Technical Overview
This research started with the goal of generalizing a data

structure that supports n insertions and q ≤ n rank-based
queries in O(n log q) time. Via a reduction from multiple
selection, Ω(n log q) comparisons are necessary in the worst
case. However, by applying the fine-grained analysis based
on rank distribution previously employed in the multiple

selection literature [56], a new theory which generalizes
efficient priority queues and binary search trees is made
possible.

As will be discussed in Section IV, to achieve optimality on
sequences of insertion and distinct queries with regards to the
fine-grained multiple selection lower bound, insertion into gap
∆i should take O(log(n/∣∆i∣)) time. A query which splits a
gap ∆i into two gaps of sizes x and cx (c ≥ 1), respectively,
should take O(x log c + logn) time. These complexities are
the main goals for the design of the data structure.

The high-level idea will be to maintain elements in a gap
∆i in an auxiliary data structure (the interval data structure
of Section V). All such auxiliary data structures are then
stored in a biased search tree so that access to the ith gap ∆i

is supported in O(log(n/∣∆i∣)) time. This matches desired
insertion complexity and is within the O(logn) term of
query complexity. The main technical difficulty is to support
efficient insertion and repeated splitting of the auxiliary data
structure.
Our high-level organization is similar to the selectable

sloppy heap of Dumitrescu [59]. The difference is that while
the selectable sloppy heap keeps fixed quantile groups in a
balanced search tree and utilizes essentially a linked-list as
the auxiliary data structure, in our case the sets of elements
stored are dependent on previous query ranks, the search tree
is biased, and we require a more sophisticated auxiliary data
structure.
Indeed, in the priority queue case, the biased search tree

has a single element ∆1, and all operations take place within
the auxiliary data structure. Thus, we ideally would like to
support O(1) insertion and O(x log c) split into parts of size
x and cx (c ≥ 1) in the auxiliary data structure. If the number
of elements in the auxiliary data structure is ∣∆i∣, we can
imagine finding the minimum or maximum as a split with
x = 1 and c = ∣∆i∣ − 1, taking O(log ∣∆i∣) time. However,
the ability to split at any rank in optimal time complexity
is not an operation typically considered for priority queues.
Most efficient priority queues store elements in heap-ordered
trees, providing efficient access to the minimum element
but otherwise imposing intentionally little structure so that
insertion, decrease-key, and merging can all be performed
efficiently.

Our solution is to group elements within the auxiliary data
structure in the following way. We separate elements into
groups (“intervals”) of unsorted elements, but the elements
between each group satisfy a total order. Our groups are of
exponentially increasing size as distance to the gap boundary
increases. Within a gap ∆i, we maintain O(log ∣∆i∣) such
groups. Binary search then allows insertion and key change in
O(log log ∣∆i∣) time. While not O(1), the structure created
by separating elements in this way allows us to split the
data structure in about O(x) time, where x is the distance
from the split point to the closest query rank. Unfortunately,
several complications remain.

7



Consider if we enforce the exponentially-increasing group
sizes in the natural way in data structure design. That is, we
select constants c1 ≤ c2 such that as we get farther from the
gap boundary, the next group is at least a factor c1 > 1 larger
than the previous but at most a factor c2. We can maintain this
invariant while supporting insertion and deletion, but splitting
is problematic. After splitting, we must continue to use both
pieces as a data structure of the same form. However, in the
larger piece, the x elements removed require restructuring
not only the new closest group to the gap boundary but could
require a cascading change on all groups. Since the elements
of each group are unstructured, this cascading change could
take Ω(∣∆i∣) time.

Thus, we must use a more flexible notion of “exponentially
increasing" that does not require significant restructuring after
a split. This is complicated by guaranteeing fast insertion
and fast splits in the future. In particular, after a split, if the
larger piece is again split close to where the previous split
occurred, we must support this operation quickly, despite
avoiding the previous cascading change that would guarantee
this performance. Further, to provide fast insertion, we must
keep the number of groups at O(log ∣∆i∣), but after a split,
the best way to guarantee fast future splits is to create more
groups.

We will show that it is possible to resolve all these issues
and support desired operations efficiently by applying amor-
tized analysis with a careful choice of structure invariants.
While we do not achieve O(1) insertion and decrease-key
cost, our data structure is competitive as an efficient priority
queue while having to solve the more complicated issues
around efficient repeated arbitrary splitting.

IV. Lower and Upper Bounds

The balanced binary search tree is the most well-known so-
lution to the sorted dictionary problem. It achieves O(logn)
time for a rank-based query and O(logn) time for all
dynamic operations. Via a reduction from sorting, for a
sequence of n arbitrary operations, Ω(n logn) comparisons
and thus Ω(n logn) time is necessary in the worst case.

However, this time complexity can be improved by strength-
ening our model. The performance theorems of the splay
tree [3] show that although Ω(q logn) time is necessary on a
sequence of q arbitrary queries on n elements, many access
sequences can be answered in o(q logn) time. Our model
treats sequences of element insertions similarly to the splay
tree’s treatment of sequences of element access. Although
Ω(n logn) time is necessary on a sequence of n insert or
query operations, on many operation sequences, o(n logn)
time complexity is possible, as the theory of efficient priority
queues demonstrates.

Our complexities are based on the distribution of elements
into the set of gaps {∆i}. We can derive a lower bound on
a sequence of operations resulting in a set of gaps {∆i} via

reducing multiple selection to the sorted dictionary problem.
We prove Theorem 3 below.

Proof of Theorem 3: We reduce multiple selection to
the sorted dictionary problem. The input of multiple selection
is a set of n elements and ranks r1 < r2 < ⋯ < rq. We are
required to report the elements of the desired ranks. We
reduce this to the sorted dictionary problem by inserting all
n elements in any order and then querying for the desired
ranks r1, . . . , rq , again in any order.
Define r0 = 0, rq+1 = n, and ∆i as the set of elements

of rank greater than ri−1 and at most ri. (This definition
coincides with the gaps resulting in our data structure
when query rank r falls in the new gap ∆′

i, described in
Section I-A.) Then ∣∆i∣ = ri − ri−1 and as in Theorem 1,
B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). Note that here, m = q + 1. The

information-theoretic lower bound for multiple selection is
B −O(n) comparisons [56]. Since any data structure must
spend at least O(n) time to read the input, this also gives
a lower bound of Ω(B + n) time. This implies the sorted
dictionary problem resulting in a set of gaps {∆i} must use
at least B −O(n) comparisons and take Ω(B + n) time.
To achieve the performance stated in Theorem 3 on any

operation sequence, we will first consider how the bound
Ω(B + n) changes with insertions and queries. This will
dictate the allotted (amortized) time we can spend per
operation to achieve an optimal complexity over the entire
operation sequence. Recall our convention from Footnote 1
(page 3) that log(x) = max(log2(x),1) and log2 is the
binary logarithm.

Lemma 4 (Influence of insert on lower bound). Suppose
we insert an element into gap ∆i. Then the bound Ω(B + n)
increases by Ω(log(n/∣∆i∣)).

Lemma 5 (Influence of query on lower bound). Suppose a
query splits a gap∆i into two gaps of sizex and cx, respectively,
with c ≥ 1. Then the bound Ω(B + n) increases by Ω(x log c).
The proofs are simple calculations and given in the full

version.
We can improve the query lower bound by considering

the effect on B over a sequence of gap-splitting operations.
Consider the overall bound B = ∑

m
i=1 ∣∆i∣ log2(n/∣∆i∣). It

can be seen that B = Ω(m logn). Therefore, we can afford
amortized O(logn) time whenever a new gap is created,
even if it is a split say with x = 1, c = 1.

V. Data Structure
We are now ready to discuss the details of lazy search

trees. The high-level idea was discussed in Section III. The
data structure as developed is relatively simple, though its
analysis requires a somewhat tricky amortized time analysis
(see the full version of this extended abstract).

We split the data structure into two levels. At the top
level, we build a data structure on the set of gaps {∆i}. In
the second level, actual elements are organized into a set

8



I1,1 I1,2 I1,3 I1,4 I1,5 I1,6 I2,1 I2,2 I2,3 I2,4 I2,5 I2,6 I2,7 I2,8 I3,1 I3,2 I3,3 I3,4

∆1 ∆2 ∆3Gaps:

Intervals:

Figure 1. The two-level decomposition into gaps {∆i} and intervals {Ii,j}.

of intervals within a gap. Given a gap ∆i, intervals within
∆i are labeled Ii,1,Ii,2, . . . ,Ii,`i , with `i the number of
intervals in gap ∆i. The organization of elements of a gap
into intervals is similar to the organization of elements into
a gap. Intervals partition a gap by rank, so that for elements
x ∈ Ii,j , y ∈ Ii,j+1, x ≤ y. Elements within an interval are
unordered. By convention, we will consider both gaps and
intervals to be ordered from left to right in increasing rank.
A graphical sketch of the high-level decomposition is given
in Figure 1.

A. The Gap Data Structure
We will use the following data structure for the top level.

Lemma 6 (Gap Data Structure). There is a data structure
for the gaps {∆i} that supports the following operations in the
given worst-case time complexities. Note that ∑mi=1 ∣∆i∣ = n.
1) Given an element e = (k, v), determine the index i such

that k ∈ ∆i, in O(log(n/∣∆i∣)) time.
2) Given a ∆i, increase or decrease the size of ∆i by 1,

adjusting n accordingly, in O(log(n/∣∆i∣)) time.
3) Remove ∆i from the set, in O(logn) time.
4) Add a new ∆i to the set, in O(logn) time.

It is also possible to store aggregate functions within the data
structure (on subtrees).

Proof: We can use, for example, a globally-biased 2, b
tree [60]. We assign gap ∆i the weight wi = ∣∆i∣; the sum of
weights,W , is thus equal to n. Access to gap ∆i, operation 1,
is handled in O(log(n/∣∆i∣)) worst-case time [60, Thm. 1].
By [60, Thm. 11], operation 2 is handled via weight change
in O(log(n/∣∆i∣)) worst-case time. Again by [60, Thm. 11],
operations 3 and 4 are handled in O(logn) worst-case time
or better.
The top level data structure allows us to access a gap

in the desired time complexity for insertion. However, we
must also support efficient queries. In particular, we need
to be able to split a gap ∆i into two gaps of size x and
cx (c ≥ 1) in amortized time O(x log c). We must build
additional structure amongst the elements in a gap to support
such an operation efficiently. At the cost of this organization,
in the worst case we pay an additional O(log log ∣∆i∣) time
on insertion and key-changing operations.

B. The Interval Data Structure
We now discuss the data structure for the intervals. Given

a gap ∆i, intervals Ii,1,Ii,2, . . . ,Ii,`i are contained within
it and maintained in a data structure as follows. We maintain

with each interval the two splitting keys (kl, kr) that separate
this interval from its predecessor and successor (using −∞
and +∞ for the outermost ones), respectively; the interval
only contains elements e = (k, v) with kl ≤ k ≤ kr. We
store intervals in sorted order in an array, sorted with respect
to (kl, kr). We can then find an interval containing a given
key k, i.e., with kl ≤ k ≤ kr, using binary search in O(log `i)
time. As we will see below, the number of intervals in one
gap is always O(logn), and only changes during a query, so
we can afford to update this array on query in linear time.

We conceptually split the intervals into two groups:
intervals on the left side and intervals on the right side.
An interval is defined to be in one of the two groups by the
following convention.
(A) Left and right intervals: An interval Ii,j in gap ∆i is

on the left side if the closest query rank (edge of gap
∆i if queries have occurred on both sides of ∆i) is to
the left. Symmetrically, an interval Ii,j is on the right
side if the closest query rank is on the right. An interval
with an equal number of elements in ∆i on its left and
right sides can be defined to be on the left or right side
arbitrarily.

We balance the sizes of the intervals within a gap according
to the following rule:
(B) Merging intervals: Let Ii,j be an interval on the left

side, not rightmost of left side intervals. We merge
Ii,j into adjacent interval to the right, Ii,j+1, if the
number of elements left of Ii,j in ∆i equals or exceeds
∣Ii,j ∣ + ∣Ii,j+1∣. We do the same, reflected, for intervals
on the right side.

The above rule was carefully chosen to satisfy several
components of our analysis. As mentioned, we must be
able to answer a query for a rank r near the edges of ∆i

efficiently. This implies we need small intervals near the edges
of gap ∆i, since the elements of each interval are unordered.
However, we must also ensure the number of intervals within
a gap does not become too large, since we must determine
into which interval an inserted element falls at a time cost
outside of the increase in B as dictated in Lemma 4. We end
up using the structure dictated by Rule (B) directly in our
analysis of query complexity; see the full version for details.

Note that Rule (B) causes the loss of information. Before a
merge, intervals Ii,j and Ii,j+1 are such that for any x ∈ Ii,j
and y ∈ Ii,j+1, x ≤ y. After the merge, this information is lost.
Surprisingly, this does not seem to impact our analysis. Once
we pay the initial O(log log ∣∆i∣) cost to insert an element

9



via binary search, the merging of intervals happens seldom
enough that no additional cost need be incurred.

It is easy to show that Rule (B) ensures the following.

Lemma 7 (Few intervals). Within a gap ∆i, there are at most
4 log(∣∆i∣) intervals.

For ease of implementation, we will invoke Rule (B) only
when a query occurs in gap ∆i. In the following subsection,
we will see that insertion does not increase the number of
intervals in a gap, therefore Lemma 7 will still hold at all
times even though Rule (B) might temporarily be violated
after insertions. We can invoke Rule (B) in O(log ∣∆i∣) time
during a query; since ∣∆i∣ ≤ n and we can afford O(logn)
time per query.

C. Representation of Intervals
It remains to describe how a single interval is represented

internally. Our analysis will require that merging two intervals
can be done in O(1) time and further that deletion from
an interval can be performed in O(1) time (O(logn) time
actually suffices for O(logn) time delete overall, but on many
operation sequences the faster interval deletion will yield
better runtimes). Therefore, the container in which elements
reside in intervals should support such behavior. An ordinary
linked list certainly suffices; however, we can limit the number
of pointers used in our data structure by representing intervals
as a linked list of arrays. Whenever an interval is constructed,
it can be constructed as a single (expandable) array. As
intervals merge, we perform the operation in O(1) time
by merging the two linked lists of arrays. Deletions can be
performed lazily, shrinking the array when a constant fraction
of the entries have been deleted.

In the full version of this extended abstract, we show that
this construction suffices for Theorem 2.

D. Insertion
Insertion of an element e = (k, v) can be succinctly

described as follows. We first determine the gap ∆i such
that k ∈ ∆i, according to the data structure of Lemma 6. We
then binary search the O(log ∣∆i∣) intervals (by maintaining
“router” keys separating the intervals) within ∆i to find the
interval Ii,j such that k ∈ Ii,j . We increase the size of ∆i

by one in the gap data structure.

E. Query
To answer a query with associated rank r, we proceed as

follows. We again determine the gap ∆i such that r ∈ ∆i,
possibly using aggregate functions stored in the data structure
of Lemma 6. While we could now choose to rebalance the
intervals of ∆i via Rule (B), our analysis will not require
application of Rule (B) until the end of the query procedure.
We recurse into the interval Ii,j such that r ∈ Ii,j , again
possibly using aggregate functions on the intervals of ∆i.
We proceed to process Ii,j by answering the query on

Ii,j and replacing interval Ii,j with smaller intervals. First,

we partition Ii,j into sets L and R, such that all elements
in L are less than or equal to all elements in R and there
are r elements in the entire data structure which are either
in L or in an interval or gap left of L. This can typically be
done in O(∣Ii,j ∣) time using the result of the query itself;
otherwise, linear-time selection suffices [61].

We further partition L into two sets of equal size Ll and
Lr, again using linear-time selection, such that all elements
in Ll are smaller than or equal to elements in Lr; if ∣L∣ is
odd, we give the extra element to Ll (unsurprisingly, this
is not important). We then apply the same procedure one
more time to Lr, again splitting into equal-sized intervals.
Recursing further is not necessary. We do the same, reflected,
for set R; after a total of 5 partitioning steps the interval
splitting terminates. An example is shown in Figure 2.

∣Ii,j ∣ = 19

interval Ii,j
query
rank
r = 6

3 2 1 3 3 7

⇒

L R

Figure 2. An interval Ii,j is split and replaced with a set of intervals.

After splitting the interval Ii,j as described above, we
answer the query itself and update the gap and interval data
structures as follows. We create two new gaps ∆′

i and ∆′
i+1

out of the intervals of gap ∆i including those created from
sets L and R. Intervals that fall left of the query rank r are
placed in gap ∆′

i, and intervals that fall right of the query
rank r are placed in gap ∆′

i+1. We update the data structure
of Lemma 6 with the addition of gaps ∆′

i and ∆′
i+1 and

removal of gap ∆i. Finally, we apply Rule (B) to gaps ∆′
i

and ∆′
i+1.

The remaining operations and the analysis of lazy search trees
are presented in detail in the full version of this extended
abstract.

VI. Conclusion and Open Problems

We have discussed a data structure that improves the
insertion time of binary search trees, when possible. Our data
structure generalizes the theories of efficient priority queues
and binary search trees, providing powerful operations from
both classes of data structures. As either a binary search tree
or a priority queue, lazy search trees are competitive. From
a theoretical perspective, our work opens the door to a new
theory of insert-efficient order-based data structures.

10



This theory is not complete. Our runtime can be as much as
an additive O(n log logn) term from optimality in the model
we study, providing O(log logn) time insert and decrease-key
operations as a priority queue when O(1) has been shown
to be possible [24]. Further room for improvement is seen
in our model itself, where delaying insertion work further
can yield improved runtimes on some operation sequences.

Acknowledgements
The authors of this paper would like to thank Ian Munro,

Kevin Wu, Lingyi Zhang, Yakov Nekrich, and Meng He for
useful discussions on the topics of this paper. We would
also like to thank the anonymous reviewers for their helpful
suggestions.

References
[1] G. Adelson-Velsky and E. Landis, “An algorithm for the orga-

nization of information,” Proceedings of the USSR Academy
of Sciences, vol. 146, pp. 263–266, 1962.

[2] R. Bayer and E. M. McCreight, “Organization and maintenance
of large ordered indexes,” Acta Informatica, vol. 1, no. 3, pp.
173–189, 1972.

[3] D. D. Sleator and R. E. Tarjan, “Self-adjusting binary seach
trees,” Journal of the ACM, vol. 32, no. 3, pp. 652–686, 1985.

[4] M. de Berg, O. Cheong, M. J. van Kreveld, and M. H. Over-
mars, Computational geometry: algorithms and applications,
3rd Edition. Springer, 2008.

[5] R. Cole, B. Mishra, J. Schmidt, and A. Siegel, “On the dynamic
finger conjecture for splay trees. part I: Splay sorting logn-
block sequences,” SIAM Journal on Computing, vol. 30, no. 1,
pp. 1–43, 2000.

[6] R. Cole, “On the dynamic finger conjecture for splay trees.
part II: The proof,” SIAM Journal on Computing, vol. 30,
no. 1, pp. 44–85, 2000.

[7] B. Allen and I. Munro, “Self-organizing binary search trees,”
Journal of the ACM, vol. 25, no. 4, pp. 526–535, 1978.

[8] E. D. Demaine, D. Harmon, J. Iacono, D. Kane, and M. Pa-
trascu, “The geometry of binary search trees,” in Symposium
on Discrete Algorithms (SODA). SIAM, 2009, pp. 496–505.

[9] E. D. Demaine, D. Harmon, J. Iacono, and M. Patrascu,
“Dynamic optimality–almost.” Siam Journal of Computing,
vol. 37, no. 1, pp. 240–251, 2007.

[10] J. Iacono and S. Langerman, “Weighted dynamic finger in
binary search trees,” in Symposium on Discrete Algorithms
(SODA). SIAM, 2016.

[11] P. Bose, J. Cardinal, J. Iacono, G. Koumoutsos, and S. Langer-
man, “Competitive online search trees on trees,” in Symposium
on Discrete Algorithms (SODA). Society for Industrial and
Applied Mathematics, Jan. 2020, pp. 1878–1891.

[12] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic
trees,” Journal of Computer and System Sciences, vol. 26,
no. 3, pp. 362–391, 1983.

[13] R. E. Wilber, “Lower bounds for accessing binary search trees
with rotations,” Siam Journal of Computing, vol. 18, no. 1,
pp. 56–69, 1989.

[14] L. Kozma and T. Saranurak, “Smooth heaps and a dual view
of self-adjusting data structures,” SIAM Journal on Computing,
pp. STOC18–45–STOC18–93, Nov. 2019.

[15] P. Chalermsook, M. Goswami, L. Kozma, K. Mehlhorn, and
T. Saranurak, “Pattern-avoiding access in binary search trees,”
in Symposium on Foundations of Computer Science (FOCS).
IEEE, 2015, pp. 410–423.

[16] J. Iacono, “Alternatives to splay trees with o(logn) worst-case
access time,” in Symposium on Discrete Algorithms (SODA).
SIAM, 2001, pp. 516–522.

[17] M. Bădoiu, R. Cole, E. D. Demaine, and J. Iacono, “A unified
access bound on comparison-based dynamic dictionaries,”
Theoretical Computer Science, vol. 382, no. 2, pp. 86–96,
Aug. 2007.

[18] C. Levy and R. E. Tarjan, “A new path from splay to dynamic
optimality,” in Symposium on Discrete Algorithms (SODA).
SIAM, 2019, pp. 1311–1330.

[19] M. L. Fredman, J. Komlós, and E. Szemerédi, “Storing a
sparse table with o(1) worst case access time,” Journal of the
ACM, vol. 31, no. 3, pp. 538–544, Jun. 1984.

[20] R. Pagh and F. F. Rodler, “Cuckoo hashing,” Journal of
Algorithms, vol. 51, no. 2, pp. 122–144, 2004.

[21] J. W. J. Williams, “Algorithm 232 - heapsort,” Communica-
tions of the ACM, vol. 7, no. 6, pp. 347–348, 1964.

[22] J. Vuillemin, “A data structure for manipulating priority
queues,” Communications of the ACM, vol. 21, no. 4, pp.
309–315, 1978.

[23] M. R. Brown, “Implementation and analysis of binomial queue
algorithms,” SIAM Journal on Computing, vol. 7, no. 3, pp.
298–319, 1978.

[24] M. Fredman and R. E. Tarjan, “Fibonacci heaps and their
uses in improved network optimization algorithms,” Journal
of the Association for Computing Machinery, vol. 34, no. 3,
pp. 596–615, 1987.

[25] M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E.
Tarjan, “The pairing heap: A new form of self-adjusting heap,”
Algorithmica, vol. 1, no. 1, pp. 111–129, 1986.

[26] T. M. Chan, “Quake heaps: A simple alternative to Fibonacci
heaps,” in Space-Efficient Data Structures, Streams, and
Algorithms. Springer, 2009, pp. 27–32.

[27] G. S. Brodal, G. Lagogiannis, and R. E. Tarjan, “Strict
Fibonacci heaps,” in Symposium on Theory of Computing
(STOC). ACM, 2012.

[28] A. Elmasry, “Pairing heaps with O(log logn) decrease cost,”
in Symposium on Discrete Algorithms (SODA). SIAM, 2009.

11



[29] B. Haeupler, S. Sen, and R. E. Tarjan, “Rank-pairing heaps,”
SIAM Journal on Computing, vol. 40, no. 6, pp. 1463–1485,
2011.

[30] G. Brodal, “Worst-case efficient priority queues,” in Sympo-
sium on Discrete Algorithms (SODA). SIAM, 1996.

[31] T. D. Hansen, H. Kaplan, R. E. Tarjan, and U. Zwick, “Hollow
heaps,” ACM Transactions on Algorithms, vol. 13, no. 3, pp.
1–27, 2017.

[32] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-
structured merge-tree (LSM-tree),” Acta Informatica, vol. 33,
no. 4, pp. 351–385, 1996.

[33] G. S. Brodal and R. Fagerberg, “Lower bounds for external
memory dictionaries,” in Symposium on Discrete Algorithms
(SODA). SIAM, 2003, pp. 546–554.

[34] P. Bose, J. Howat, and P. Morin, “A history of distribution-
sensitive data structures,” in Space-Efficient Data Structures,
Streams, and Algorithms. Springer, 2009, pp. 133–149.

[35] R. M. Karp, R. Motwani, and P. Raghavan, “Deferred data
structuring,” SIAM Journal on Computing, vol. 17, no. 5, pp.
883–902, 1988.

[36] Y.-T. Ching, K. Mehlhorn, and M. H. Smid, “Dynamic deferred
data structuring,” Information Processing Letters, vol. 35, no. 1,
pp. 37 – 40, 1990.

[37] J. Barbay, A. Gupta, S. Rao Satti, and J. Sorenson, “Dynamic
online multiselection in internal and external memory,” in
WALCOM: Algorithms and Computation. Springer, 2015, pp.
199–209.

[38] J. Barbay, A. Gupta, S. R. Satti, and J. Sorenson, “Near-
optimal online multiselection in internal and external memory,”
Journal of Discrete Algorithms, vol. 36, pp. 3–17, 2016,
wALCOM 2015.

[39] G. N. Frederickson, “An optimal algorithm for selection in a
min-heap,” Information and Computation, vol. 104, no. 2, pp.
197–214, 1993.

[40] K. Kaligosi, K. Mehlhorn, J. I. Munro, and P. Sanders,
“Towards optimal multiple selection,” in International Col-
loquium on Automata, Languages and Programming (ICALP).
Springer, 2005, pp. 103–114.

[41] R. Parades and G. Navarro, “Optimal incremental sorting,”
in Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, Jan. 2006.

[42] G. Navarro and R. Paredes, “On sorting, heaps, and minimum
spanning trees,” Algorithmica, vol. 57, no. 4, pp. 585–620,
Mar. 2010.

[43] E. Regla and R. Paredes, “Worst-case optimal incremental
sorting,” in Conference of the Chilean Computer Science
Society (SCCC). IEEE, Nov. 2015.

[44] A. A. Aydin and K. M. Anderson, “Incremental sorting for
large dynamic data sets,” in International Conference on Big
Data Computing Service and Applications. IEEE, 2015.

[45] S. Edelkamp, A. Elmasry, and J. Katajainen, “The weak-heap
data structure: Variants and applications,” Journal of Discrete
Algorithms, vol. 16, pp. 187–205, Oct. 2012.

[46] G. S. Brodal, “A survey on priority queues,” in Space-Efficient
Data Structures, Streams, and Algorithms. Springer, 2013,
pp. 150–163.

[47] C. W. Mortensen and S. Pettie, “The complexity of implicit and
space efficient priority queues,” in Workshop on Algorithms
and Data Structures (WADS). Springer, 2005, pp. 49–60.

[48] M. Smid, “Dynamic data structures on multiple storage media,”
Ph.D. dissertation, University of Amsterdam, 1989.

[49] A. Borodin, L. J. Guibas, N. A. Lynch, and A. C. Yao, “Effi-
cient searching using partial ordering,” Information Processing
Letters, vol. 12, no. 2, pp. 71–75, 1981.

[50] G. Brodal, B. Gfeller, A. G. Jørgensen, and P. Sanders,
“Towards optimal range medians,” Theoretical Computer
Science, vol. 412, no. 24, pp. 2588–2601, 2011.

[51] J. Barbay, “Optimal prefix free codes with partial sorting,”
Algorithms, vol. 13, no. 1, p. 12, Dec. 2019.

[52] J. Barbay, C. Ochoa, and S. R. Satti, “Synergistic solutions on
multisets,” in Annual Symposium on Combinatorial Pattern
Matching (CPM), ser. LIPIcs, vol. 78. Schloss Dagstuhl,
2017.

[53] S. Ar, G. Montag, and A. Tal, “Deferred, self-organizing BSP
trees,” Computer Graphics Forum, vol. 21, no. 3, pp. 269–278,
Sep. 2002.

[54] B. Gum and R. Lipton, “Cheaper by the dozen: Batched
algorithms,” in International Conference on Data Mining
(ICDM). SIAM, 2001.

[55] A. Aggarwal and P. Raghavan, “Deferred data structure for
the nearest neighbor problem,” Information Processing Letters,
vol. 40, no. 3, pp. 119–122, Nov. 1991.

[56] D. Dobkin and J. I. Munro, “Optimal time minimal space se-
lection algorithms,” Journal of the Association for Computing
Machinery, vol. 28, no. 3, pp. 454–461, 1981.

[57] J. Barbay, A. Gupta, S. Jo, S. Rao Satti, and J. Sorenson, “The-
ory and implementation of online multiselection algorithms,”
in European Symposium on Algorithms (ESA). Springer,
2013, pp. 109–120.

[58] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation
algorithms for middleware,” Journal of Computer and System
Sciences, vol. 66, no. 4, pp. 614–656, Jun. 2003.

[59] A. Dumitrescu, “A selectable sloppy heap,” Algorithms, vol. 12,
no. 3, p. 58, 2019.

[60] S. W. Bent, D. D. Selator, and R. E. Tarjan, “Biased search
trees,” SIAM Journal on Computing, vol. 14, no. 3, pp. 545–
568, 1985.

[61] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest, and R. E. Tarjan,
“Time bounds for selection,” Journal of Computer and System
Sciences, vol. 7, no. 4, pp. 448–461, 1973.

12


	I Introduction
	I-A Model and Results
	I-B Example Scenarios
	I-C Advantages
	I-D Disadvantages
	I-E Paper Organization & Comparison with Full Version

	II Related Work
	II-A Deferred Data Structures
	II-B Online Dynamic Multiple Selection
	II-C Dynamic Optimality

	III Technical Overview
	IV Lower and Upper Bounds
	V Data Structure
	V-A The Gap Data Structure
	V-B The Interval Data Structure
	V-C Representation of Intervals
	V-D Insertion
	V-E Query

	VI Conclusion and Open Problems
	References

