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Abstract: This paper provides a sensitivity analysis around how characterizing sandy, intertidal1

foreshore evolution in XBeach-X impacts on wave runup and morphological change of a vulnerable,2

composite gravel beach. The study is motivated by a need for confidence in storm impact modelling3

outputs to inform coastal management policy for composite beaches worldwide. Firstly, the model is4

run with the sandy settings applied to capture changes in the intertidal foreshore, with the gravel5

barrier assigned as a non-erodible surface. Model runs were then repeated with the gravel settings6

applied to obtain wave runup and erosion of the barrier crest, updating the intertidal foreshore from7

the previous model outputs every 5, 10 and 15 minutes, and comparing this with a temporally static8

foreshore. Results show that the scenario with no foreshore evolution led to the highest wave runup9

and barrier erosion. The applied foreshore evolution setting update is shown to be a large control on10

the distribution of freeboard values indicative of overwash hazard and barrier erosion by causing an11

increase (with 5 min foreshore updates applied) or a decrease (with no applied foreshore updating)12

in the Iribarren number. Therefore the sandy, intertidal component should not be neglected in gravel13

barrier modelling applications given the risk of over- or under-predicting the wave runup and barrier14

erosion.15
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1. Introduction17

Gravel barrier coasts, found worldwide on high-latitude, previously glaciated coasts (Northern18

Europe, Japan, U.S.A.) can experience erosion and overtopping during high-energy storm events,19

resulting in financial and societal losses and fatalities [1]. These coastlines are becoming increasingly20

vulnerable as wave climates become modified by changing storm tracks [2] and as sea-level rise acts to21

shorten the return period of a given extreme water level and increase the frequency of coastal flooding22

[3]. In the U.K., where gravel beaches and gravel barrier coasts account for 1000 km of coastline, gravel23

has been used to nourish some coastlines to maintain the natural protection they afford [4].24

Barrier beaches are dynamic systems which evolve according to multiple factors over various25

time-scales. In the short and medium term, barriers are affected by the local wave climate and26

episodically when wave runup exceeding the barrier crest allows the mobilisation of sediments onto27

the barrier crest and back barrier (overwash), inundation and in extreme scenarios, barrier breaching28

[5]. These events are likely to pose a hazard to hinterland communities, which will face an amplified29

risk of barrier breaching and overwash from future sea-level rise [3]. Their long term (decadal to30

centennial) evolution and survival is controlled by the rate of relative sea-level rise, sediment size,31
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sediment supply rates, accommodation space and local topography [6,7]. Insights into the long-term32

evolution of barriers provide critical information on the underlying drivers of coastal barrier response.33

Jennings and Shulmeister [8] provide a field-based classification scheme for gravel beaches, with34

the key determinant variables being beach slope, Iribarren number, average grain size and berm height.35

Their study divides gravel beaches into three classifications:36

1. Pure gravel beaches: Steep slopes (tan β) = 0.08 to 0.24, with average sediment size decreasing37

from the storm berm down to the swash zone.38

2. Mixed sand-gravel (MSG): Moderate slopes (tan β) = 0.04 to 0.13, subdivided into beaches with39

a) largely intermixed sand and gravel and b) a higher degree of sorting of sand and gravel in a40

cross-shore direction.41

3. Composite beaches: A steep gravel berm with a low-angle intertidal foreshore and well-sorted42

sand and gravel in the cross-shore direction. Slope values are similar to that of MSG beaches.43

Sandy beaches also act as a natural coastal defence, providing the rationale for the development44

of the XBeach-X model used in this study [9]. Hence event-driven evolution of the low-angle, sandy,45

intertidal foreshore of a composite gravel beach is also an important consideration, particularly as46

sea-level rise acts to amplify beach erosion [e.g. 10]. Changes in beach morphology over the timescales47

of individual storm events are shown to be an important control on wave overwash volume [11], as48

are seasonality and antecedent conditions [12]. These factors also control barrier response in addition49

to the described long-term factors.50

Historically, understanding the controls on the evolution of gravel beaches and barriers during51

storm events lagged behind sandy systems. However, recent developments have included the52

development of numerical models for gravel coasts at mesoscales [13] and the parameterization53

of wave runup from beach slope and wave conditions for a gravel coast [14]. The previously used54

general equation for runup on sandy beaches developed by Stockdon et al. [15] was shown in Poate55

et al. [14] to underpredict R2% (2 % exceedance wave runup) by up to 50 % when applied to gravel56

coasts with energetic conditions. Sallenger Jr [16] categorised the morphologic response of barrier57

islands according to decreasing levels of freeboard:58

1. Swash Regime: where wave runup acts on the foreshore without impacting the dune.59

2. Collision Regime: where R2% exceeds the dune toe. Eroded material is transported off- or60

alongshore but unlike the swash regime does not return to replenish the barrier.61

3. Overwash Regime: where R2% exceeds the berm crest, leading to erosion of the dune and62

deposition inland.63

4. Inundation Regime: where the barrier becomes completely submerged by a high R2% value and64

the flows are no longer overwash.65

Further work by Plomaritis et al. [17] developed this classification into a regional scale assessment66

of storm related overwash and barrier breaching using a numerical model of coastal overwash [18],67

allowing the formulation of overwash volumes without the need for numerical modelling which is68

computationally expensive over larger spatial scales. Recent literature has begun to study mixed69

sand-gravel beaches under different tectonic settings [19], and where gradients in both alongshore and70

cross-shore sediment transport play a role in governing the sediment transport regime [20–22].71

Previous work carried out prior to the development of the XBeach-G extension by McCall et al.72

[13,23] used a composite gravel beach on the south coast of the U.K. as a validation site [24]. Here, the73

modifications made to the model did not (and were not intended to) capture the evolution of the sandy,74

intertidal terrace. When XBeach-G was introduced with specific morphodynamics for applications to75

pure gravel beaches in McCall et al. [23], it was applied to a swash-aligned composite beach similar to76

that of the study area, Newgale. Whilst Masselink et al. [25] state that XBeach-G can compute wave77

transformation and runup for MSG and composite gravel beaches with reasonable accuracy, it lacks a78

solution for suspended sediment transport and hence is limited in its morphodynamic capabilities for79

those types of gravel beaches.80



Version November 7, 2020 submitted to J. Mar. Sci. Eng. 3 of 23

In this paper, we carry out a sensitivity analysis around how the distribution of freeboard values81

and morphologic response of a swash-aligned composite beach varies in response to the method used82

to characterise the foreshore evolution within the storm impact model. Our aim is to provide insights83

into how the model outputs are influenced by the foreshore characterization, approaching this from84

a modelling context rather than a geomorphic investigation of barrier behaviour. The work aims to85

address deficiencies in modelling composite barrier settings, as the model used XBeach-X can use86

multiple sediment fractions but cannot currently apply spatially varied sand and gravel settings to87

different parts of its domain. The inherent differences in the hydrodynamics of the sand and gravel88

components, such as infiltration, and in the morphodynamics, such as the potential of a gravel barrier89

to slump when the angle of repose is exceeded, demands applying the two model settings to their90

respective components. Insights into the feedback between the evolution of the sandy, intertidal terrace91

and gravel barrier components of a composite beach is of importance for shoreline management and to92

inform design standards and strategies on vulnerable composite beaches worldwide, where overwash93

and inundation regimes threaten key infrastructure.94

2. Study Site: Newgale, U.K.95

The beach at Newgale in the northwest corner of St Bride’s Bay, Pembrokeshire, U.K. (Figure 1) can96

be characterized as a composite gravel beach with an approximate slope of tan β = 0.1, falling within97

the range of values identified for these systems. The area is macrotidal with a mean tidal range of98

6.3 m (measured at Milford Haven tide gauge), and is exposed to both locally generated wind waves in99

addition to North Atlantic swell. Wave transformation modelling carried out by Royal Haskoning DHV100

[26] demonstrates that the waves with more extreme significant wave height (Hs) and peak period (Tp)101

values are typically south-westerly in origin, strongly aligned with the local shoreline orientation of102

this area of St Bride’s Bay. The composite gravel beach at Newgale formed from paraglacial, offshore103

sediments, transported onshore during Holocene sea-level transgression. This is characteristic of a104

macrotidal, wave-dominated coast at mid to high latitude, and as is common with swash-aligned105

barriers, there is no long-term addition of sediment from offshore or adjacent sources. The mouth106

of the Brandy Brook is at the northern end of the frontage (Figure 1), and the channel is kept free of107

sediment to allow drainage. Most properties in the village lie off the coastal floodplain to the north,108

where the managed realignment policy intends to protect the village. However a campsite, a public109

house and the road connecting Newgale to the rest of Pembrokeshire are vulnerable to inundation if110

the gravel barrier fails, and the shoreline management policy for this area moves towards no active111

intervention in 50 to 100 years (Table 1).112

Table 1. SMP2 managed realignment (MR) and no active intervention (NAI) policies for each policy
unit in Newgale shown on Figure ??.

Policy Unit 0-20 years 20-50 years 50-100 years Intention

2.11 MR MR NAI
Manage shingle on the road with
the long-term intent of allowing the
gravel barrier to behave naturally

2.12 MR MR MR Manage the cliffs and stream
position to sustain the upper village

The gravel barrier at Newgale suffers from overwashing of sediments on to the road, and its113

behavior and vulnerability has been studied for operational purposes since the early 1990s. Under114

extreme conditions, the gravel barrier can be breached, leading to extensive inundation of the low-lying115

hinterland and prolonged road closure. This occurred most recently in December 2013 and January116

2014 (Figure 1), and analysis from tide gauge records at Milford Haven indicated that the water level117

had a return period in the order of 1:20 to 1:25 years. The current management strategy for the gravel118

barrier is to accept periodic overwash or failure and to maintain 4 m to 5 m beach width at the crest.119

The barrier is then reprofiled to this criterion when overwash during storms leads to sedimentation120
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Figure 1. a) Aerial view of Newgale, its location within the U.K. and the SMP2 policy units for the
village [27,28], b) the gravel barrier and intertidal sandy foreshore at Newgale looking towards the
south-west [29] and c) the aftermath of the January 2014 storm. [30]. The Duke of Edinburgh Inn is
shown on a) and c) to assist orientation.

on the road and hinterland. Under 0.25 m sea-level rise, total failure of the gravel barrier could be121

expected annually [26]. A recent study commissioned by the Pembrokeshire Council (responsible122

for coastal defence and infrastructure) concludes that this management strategy is likely to become123

unsustainable over a period of 10-20 years as the gravel barrier continues to deteriorate. At this point,124

the risk of the gravel barrier breaching, and associated closure and maintenance costs will become125

unacceptably high. The site therefore provides an appropriate case study for numerical modelling126

of the morphologic response of the gravel barrier (and the sandy foreshore on which it resides) to127

storm conditions, since the barrier is shown to be vulnerable to water levels of approximately 1:20 year128

return periods and long period swell waves, shown to cause more wave overtopping for gravel coasts129

than wind waves [31].130

3. Modelling Approach131

3.1. Storm-Impact Model: XBeach-X132

XBeach-X is an open source, process based hydrodynamic model aimed at simulating coastal133

change over timescales in the order of individual storm events up to spatial scales of kilometres. The134

model was introduced by Roelvink et al. [9] in response to the 2004 and 2005 hurricane seasons in the135

U.S.A. Since then, it has been extensively used and validated in a variety of coastal settings, including136

saltmarshes [32,33], sandy, barrier coasts [5,34], sandy coasts defended by hard engineering structures137

[11] and coral reefs [35,36]. Early efforts to apply XBeach to gravel settings were made by Jamal et al.138

[24] and Williams et al. [37] but do not explicitly resolve wave runup from incident waves. Subsequent139

developments for gravel applications were the addition of a depth-averaged non-hydrostatic extension140



Version November 7, 2020 submitted to J. Mar. Sci. Eng. 5 of 23

in XBeach-G (a standalone version for applications to gravel coasts, and ported into the XBeach-X141

release version) allowed for the solution of wave by wave flow due to short waves in shallow water142

depths, a process of greater importance on steeper gravel beaches due to incident waves dominating143

over waves of infragravity frequencies [23]. XBeach-G includes a solution for groundwater exchange144

between the surface and sub-surface, but currently resolves wave propagation, sediment transport145

and overwash in the cross-shore dimension only. It is shown to make good predictions of wave146

transformation and runup. Alongshore sediment transport for a Mediterranean mixed sand-gravel147

beach has been parameterized in XBeach-G by calculating a flux using the Van Rijn [38] equation148

and redistributing the flux in the cross-shore dimension [20]. Currently XBeach-G does not resolve149

alongshore sediment transport, and nor is there the capability to spatially vary the sand/gravel settings150

across the model domain.151

In this study, the focus is on cross-shore processes as regional wave modelling carried out by152

Royal Haskoning DHV shows that the waves are strongly aligned with the shoreline orientation, and153

that gradients in alongshore sediment transport are shown to be negligible [26]. Therefore, resolving154

only cross-shore processes in both sandy and gravel model settings is acceptable for this site. Here,155

XBeach-X is run in the non-hydrostatic mode for both the sand and gravel simulations, resolving the156

propagation and decay of all individual waves and associated processes including wave-induced157

setup, currents, infragravity and short period waves.158

3.2. Wave and Water Level Boundary Conditions159

Figure 2. Location of the cross-shore profile, WaveWatchIII node and Milford Haven tide gauge, and
location of Newgale within the U.K.
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In order to address the research questions for this paper, representative Hs and Tp were generated160

using percentile values from modelled data [e.g 39], instead of using events represented by a given161

probability [e.g. 11,31]. The conditions shown in Figure 3 were calculated by first identifying each high162

water from the Milford Haven tide gauge (see Figure 2) over the entire range of available data (1980 to163

2018). At each of the identified high waters, U.K. Met Office WaveWatchIII data [40] was then used to164

provide the corresponding Hs and Tp values. The 10th, 50th, 75th, 90th and 98th percentiles of Hs and165

Tp at high water were then calculated, along with the average amount of time per year the percentile166

values are exceeded in the WaveWatchIII dataset (Table 2).167
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Figure 3. Hs and Tp values at each high water (Table 2), and the corresponding wave direction. High
water times are obtained from the Milford Haven tide gauge. Hs, Tp and wave direction data is
obtained from the U.K. Met Office WaveWatchIII model [40].

These Hs and Tp percentiles, along with a single shore-normal wave direction form the wave168

forcing for XBeach-X. These conditions are forced using a unimodal JONSWAP spectrum provided by169

XBeach-X, with the default settings for the spectrum’s peak enhancement factor [3.3, the mean factor170

provided in 41] and directional speading coefficient (10) applied. This value is consistent with average171

directional spreading for the area (24◦), derived from the WaveWatchIII model data.172
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Table 2. The 10th, 50th, 75th, 90th and 98th percentiles of Hs and Tp in Figure 3, obtained from the U.K.
Met Office WaveWatchIII model. The first occurence of each value is accompanied by the percentage of
the time the percentile is exceeded based on the 36 years of WaveWatchIII data, in parentheses.

Scenario Hs (m) Tp (s)
1 0.36 (89.9 %) 5.52 (89.6 %)
2 0.94 (48.2 %) 5.52
3 1.50 (23.6 %) 5.52
4 2.18 (9.6 %) 5.52
5 3.56 (1.5 %) 5.52
6 0.36 9.52 (49.9 %)
7 0.94 9.52
8 1.50 9.52
9 2.18 9.52
10 3.56 9.52
11 0.36 11.49 (25.3 %)
12 0.94 11.49
13 1.50 11.49
14 2.18 11.49
15 3.56 11.49
16 0.36 13.33 (10.2 %)
17 0.94 13.33
18 1.50 13.33
19 2.18 13.33
20 3.56 13.33
21 0.36 15.15 (2.3 %)
22 0.94 15.15
23 1.50 15.15
24 2.18 15.15
25 3.56 15.15

Scenarios 1 to 25 in Table 2 are used to force XBeach-X with the Highest Astronomical Tide (HAT,173

Figure 4). The Proudman Oceanographic Laboratory Tidal Prediction Software [POLTIPS3 42] was174

used to find the relevant HAT tidal cycle at Milford Haven, which occured on 29th September 2015 at175

a level of 4.14 metres above Ordnance Datum Newlyn (m ODN) according to National Tidal and Sea176

Level Facility [43].177
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Figure 4. The applied highest astronomical tidal curve, calculated by the POLTIPS3 tidal prediction
software.

3.3. Cross-Shore Profile178

Given that the gravel barrier at Newgale is strongly swash-aligned, and that XBeach-G does179

not resolve alongshore sediment transport, a one-dimensional modelling approach is used. A single180

cross-shore profile, reflecting the shoreline management policy of maintaining 4 m width above181

7 m ODN, is taken from 1 m resolution Light Detection and Ranging (LiDAR, Figure 5), the finest182

resolution that was available [downloaded from the Natural Resources Wales database 44]. These183

surveys are the responsibility of the local authority and, as with the LiDAR survey used here, are not184

routinely scheduled at low spring tides when the maximum area of foreshore is exposed. In order185

to extend the transect offshore to the closure depth (calculated to be -17 m ODN using the equation186

provided by Hallermeier [45]), 1 arcsecond resolution bathymetry is taken from EDINA Digimap’s187

marine database [46] and corrected to the same vertical datum. Interpolation has been used to ensure188

a more realistic transition between the two applied datasets. Deltares provides a toolbox for the model189

[47], which was used to ensure that sufficient grid points per wavelength were interpolated to ensure190

the model remains stable. Here, 60 points per wavelength are used, based on 5.52 s the minimum191

applied Tp value (Table 2).192
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Figure 5. Applied cross-shore profile used in XBeach-X with the intertidal sandy foreshore and gravel
barrier components of the composite gravel beach. The upper panel provides additional detail in the
nearshore, and the dashed line at 7 m ODN represents the elevation above which the barrier width is
artifically maintained.

3.4. Updating the Profile with Foreshore Evolution193

The profile is divided into sandy, intertidal foreshore and gravel barrier components and modelled194

as separate systems with uniform sediment in each component. The toe of the gravel barrier195

(1.92 m ODN) is used as a threshold to partition the sandy, intertidal foreshore and the gravel barrier.196

XBeach-X was first run with the sandy settings enabled on the foreshore only for each percentile197

combination for a single tidal cycle (Table 2). In these model runs, the gravel barrier is assigned as198

non-erodible, so that only the foreshore is allowed to morphologically evolve. Water levels and bed199

profiles (zs and zb in XBeach-X) are saved at 60 s intervals.200

Each percentile combination is then repeated with the model’s gravel settings enabled, this201

time with the sandy foreshore assigned as a non-erodible surface. The use of the useXBeachGsettings202

parameter is activated to apply the XBeach-X gravel settings. Additionally, the following settings were203

set such that the XBeach-X setup is more appropriate for the hydrodynamics and morphodynamics of204

gravel beaches:205

1. The applied gravel grain sizes were set to D50 = 0.064 m and D90 = 0.12 m.206

2. The porosity factor was set to 0.45.207

3. The model’s white-colebrook-grainsize parameter was enabled, instructing the model to derive a208

bed friction coefficient based on the applied D90.209

4. The model’s groundwater exchange mechanism was enabled (gwflow).210

It is assumed that any onshore transport of sand onto the gravel barrier has a negligible impact on its211

morphology given the applied gravel grain sizes and porosity factors (provided above) are unlikely212
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to allow substantial sedimentation of sand on a gravel barrier during a storm. The scenarios used to213

update the sandy foreshore evolution within the gravel model runs are described in Table 3 .214

Table 3. The five applied foreshore evolution scenarios in the XBeach-X gravel simulations.

Scenario Description

S1 There is no updating of the foreshore evolution. The initial, sandy foreshore shown in
Figure 5 remains static throughout the simulation.

S2

The foreshore is updated twice according to the evolved profile at the equivalent point
in time from the XBeach-X outputs with the sandy settings enabled and the gravel
barrier assigned as non-erodible. The first update occurs when the water level exceeds
the barrier toe (1.92 m ODN) on the flood tide. The second and final update occurs
when the water level recedes below the barrier toe on the ebb tide.

S3 As S2, but additional foreshore updates occur every 5 minutes whilst the water level
exceeds the barrier toe.

S4 As S2, but additional foreshore updates occur every 10 minutes whilst the water level
exceeds the barrier toe.

S5 As S2, but additional foreshore updates occur every 15 minutes whilst the water level
exceeds the barrier toe.

When the model reaches a time to morphologically update the foreshore, the water level and215

bed profile for the relevant time are identified in the model outputs of foreshore evolution. The new216

cross-shore transect for the next model run then consists of the updated foreshore (using the model217

outputs from the sandy settings) for points offshore from the barrier toe combined with gravel that218

has slumped onto the foreshore (if applicable), and the updated gravel barrier for the points onshore219

from and including the barrier toe. The amount of sediment available at each gravel grid point is220

also updated according to the sedimentation or erosion of the gravel barrier during the time period,221

allowing the model to mobilize gravel sediment which has been transported offshore. The model then222

resumes using the water level at each grid point and repeats the morphological updating according223

to the given scenario until the water level recedes below the toe of the barrier on the ebb tide. The224

JONSWAP spectrum remains the same across each model run to ensure consistency in the wave field.225

4. Results226

This section explores the results of the XBeach-X modelling of the Hs and Tp percentile227

combinations under each of the foreshore evolution settings described in Section 3.4 (S1 to S5). Results228

using values of Hs and Tp which are less than the 75th percentile are not shown, as the values induced229

no (or negligible) erosion of the barrier. The following proxies are used to show the influence of230

the foreshore evolution setting on wave runup and morphological response of the gravel barrier231

(visualized in Figure 6):232

1. Freeboard: Calculated as the difference in elevation between the barrier crest and R2% at 0.5 s233

intervals when the water level exceeds the toe of the barrier (1.92 m ODN). R2% is calculated234

using the runup gauge output function in XBeach-X. Freeboard values are set to zero when R2%235

exceeds the barrier crest. The calculation of freeboard accounts for any lowering of the barrier236

crest throughout the simulation, whereas using R2% alone would neglect this.237

2. Relative wave runup ( R2%
Hs

), where R2% is one-minute averaged.238

3. Elevation change of the managed barrier crest (∆Z≥7): Calculated by integrating cumulative239

elevation change across the cross-shore area equal to or above 7 m ODN (the height at which the240

management policy dictates that 4 to 5 m barrier width should be maintained) at one minute241

intervals. The morphologic response enters the overwash regime as R2% begins to rival the242

barrier crest.243

4. Elevation change of the barrier crest (∆Zcrest): One-minute averaged change of the maximum244

height of the barrier.245
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5. Elevation change of the barrier toe (∆Ztoe): Calculated by integrating cumulative elevation246

change across the cross-shore area between the barrier toe and 5 m offshore of the barrier toe at247

one minute intervals248

6. Back-barrier sedimentation (∆Zback−barrier): Calculated by integrating cumulative elevation249

change across the area between the base of the back-barrier and the landwards boundary of the250

model at one minute intervals.251

7. Iribarren Number [ξ, 48] to determine the type of breaking wave: Calculated using Equation 2:252

L0 =
g

2π
Tp

2 (1)

ξ =
tan β√
Hs/L0

(2)

where L0 is the deep water wavelength, g = 9.81 m s−2 and tan β is the beach slope (area between253

the barrier crest (x = 0 m) and the grid cell which experiences the deepest scour (x = −19.2 m).254

Values > 3.3 represent surging/collapsing waves and values < 3.3 represent plunging waves.255

The spilling wave regime, characterized by ξ values of < 0.5 are not shown to occur due to the256

steep nature of the beach.257
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Figure 6. A schematic of proxies used to describe the results of the XBeach-X modelling.



Version November 7, 2020 submitted to J. Mar. Sci. Eng. 12 of 23

4.1. Freeboard and Relative Wave Runup Under Applied Foreshore Evolution Settings258
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Figure 7. Distribution of modelled freeboard values under each Hs-Tp percentile combination and
HAT for S1-S5. The distribution consists of freeboard values calculated when the water level exceeds
the barrier toe (≥ 1.92 m ODN).

Figure 7 demonstrates that S1 (no updating of foreshore) causes the most freeboard values which259

pose an overwash hazard, followed by S2, where the foreshore is only updated when the water level260

reaches the barrier on the flood and ebb tides. S3, which has the most frequent foreshore updating261

has the highest freeboard values (lowest overwash hazard), where the highest probability density of262

freeboard values are found between 2.5 m to 4.5 m. Across the Hs and Tp percentile combinations, there263

is negligible difference in the frequency of hazardous freeboard values between S4 and S5 (10 and 15264

min foreshore updates, respectively), but values under these settings are consistently between S1 - S2265

and S3. For freeboard values close to zero under the most extreme percentile combinations, there is a266

substantial difference between S1-S2, where the freeboard distribution is dominated by values < 1 and267

those values of S3-S5 where the foreshore is being updated whilst the water level exceeds the toe of the268

barrier. Under the Hs,98 and Tp,98 conditions, the probability density of the most hazardous freeboard269
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values under S1 and S2 is a factor of 30 higher compared to S3 and a factor of 5 when compared with270

S4 and S5.271
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Figure 8. Time-averaged (one minute) relative wave runup averaged across all 25 wave percentile
combinations for S1 to 5.

Figure 8 demonstrates the overall sensitivity of R2% to Hs averaged across each Hs and Tp272

percentile combination for S1 to S5. It shows that S3 consistently shows the lowest relative wave runup273

values throughout the high water window. S1 exhibits the highest relative wave runup compared to274

the other sand and gravel settings for 58 % of the observations in the time series, followed by S2 with275

35 %. For S3-S5, where there is updating of the foreshore evolution whilst the water level exceeds the276

toe of the barrier, there are fewer points in time where these settings show the highest relative wave277

runup. The number of observations of each setting exhibiting the highest relative wave runup shows278

an increase from 0 % for S3 to 0.8 % for S4 and 6.2 % for S5, an exponential increase as the frequency at279

which foreshore evolution is updated decreases. Calculating time-integrated relative wave runup for280

each of the applied foreshore settings demonstrates negligible difference between S1 and S2 (< 0.5 %),281

increasing to 7 % between S1 and S3, the extremes of the applied foreshore evolution settings, with no282

and 5 min foreshore evolution updates, respectively.283

4.2. Barrier Change Under Applied Foreshore Evolution Settings284

Figure 9 shows negligible barrier erosion begins to occur under Hs,≥75 and Tp,≥50 with S1 and285

S2 applied. Barrier erosion under S3-S5 with the more frequent foreshore evolution updating only286

occurs under the most extreme Hs condition (98th percentile). There are substantial differences in287

elevation change of both the barrier crest and back-barrier under S1-S2 and S3-S5 (Table 4), consistent288

with the difference in the distribution of freeboard values shown in Figure 7. The foreshore evolution289

setting is also shown to exercise some control on the timing of the onset of barrier erosion. For the290

most extreme applied wave condition (Hs,98 and Tp,98), erosion of the barrier crest is shown to begin291

around 45 min prior to high water under S1. This contrasts with S4 and S5, where erosion of the barrier292

crest commences around 20 min before high water.293
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Figure 9. Cumulative integrated elevation change of the barrier crest (above 7 m ODN) using S1 to S5
for each Hs and Tp combination under the highest astronomical tide.

The impact of the foreshore evolution setting on the cross-shore sediment transport is also reflected294

by differences in the degrees of sedimentation of gravel on the landward side during overwash regime.295

Table 4 shows an order of magnitude difference between S1-S2 and S3-S5 for both mean barrier erosion296

and mean back-barrier sedimentation when averaged across each Hs and Tp scenario. Figure 10297

confirms the trends shown in erosion of the barrier crest. Even under the most extreme modelled wave298

conditions, S3 is not shown to be capable of causing the barrier to overwash given the small magnitude299

of crest erosion. As with the barrier erosion, there is also variability in the onset of sedimentation at300

the base of the back-barrier. For the Hs,98-Tp,98 scenario, there is shown to be approximately a 15 min301

difference between S1-S2 and S4-S5.302

Table 4. Integrated elevation change for the barrier crest and back barrier averaged across each Hs and
Tp percentile combination for each of the applied foreshore evolution settings.

Foreshore Evolution Setting Mean Barrier Erosion (m) Mean Land Sedimentation (m)
S1 -0.79 1.17
S2 -0.71 1.00
S3 0.00 0.00
S4 -0.07 0.06
S5 -0.11 0.08
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Figure 10. Cumulative integrated elevation change of the area from the base of the back barrier to
the model’s landward boundary, using S1 to S5 for each Hs and Tp combination under the highest
astronomical tide.
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Figure 11. Nearshore elevation change (∆Z) across two hours either side of high water under S1-S5.
Positive values represent accretion, and negative values represent erosion. The most extreme wave
percentile combination is applied, Hs,98 and Tp,98 under highest astronomical tide. The dotted vertical
lines denote the area of the crest that exceeds 7 m ODN, the height above which is artificially maintained
to ensure sufficient width. The dotted horizontal line is 0 m. The black square denotes the barrier toe at
the start of the model run.

Concentrating on the most extreme wave condition percentiles, Figure 11 demonstrates substantial303

differences in the morphology of the beach at the barrier toe, the interface of the low-angle sandy304

terrace and high-angle coarse clastic barrier. The figure confirms that on the flood tide prior to high305

water there is onshore transport of sand, leading to sedimentation around the barrier toe. Under S3,306

whilst there is some erosion of the area of the barrier crest maintained by the shoreline management307

policy (Figure 9), there is very little erosion of the barrier at its crest (< 0.01 m). Results show that for308

S3-S5, there is a change to net erosion of the barrier toe area at similar times relative to high-water. The309

three foreshore evolution settings follow a similar trend prior to high water. There is then a switch to310

net erosion of the barrier toe at high water with the formation of a scour pit. The evolution of the scour311



Version November 7, 2020 submitted to J. Mar. Sci. Eng. 17 of 23

pit is shown to vary according to the applied foreshore evolution setting. Figure 11 shows that the312

scour under S3-S5 begins to commence around high water. Scour under S3 develops further offshore313

and extends to a greater depth when compared with the other settings. The maximum depth of the314

scour also occurs closer to the barrier toe when compared to the other foreshore evolution settings.315

After high water and a switch to net erosion on the foreshore, there is evidence of larger deviation316

in the trends of erosion between S3-S5. Erosion of the managed section of the barrier at the crest317

commences at around 30 min prior to high water for S1 and S2. Notably under S3-S5, there is little318

erosion of the crest itself when compared with S1 and S2. As for morphological change in the upper319

barrier, there is accretion between x = −7 m to −3 m. Immediately in the lee of this accretion there320

is a noticeable divergence in ∆Z. Here, there are three variations in the trend of ∆Z, with S1 and S2321

showing the most substantial erosion (with negligible difference between the two settings), followed322

by S4 and S5 (with negligible difference between the two settings). Both of these trends show an323

increasing magnitude of erosion between x = −3 m and the barrier crest at x = 0 m. The exception is324

the third trend which is solely S3, where the magnitude of erosion decreases in the same area of the325

profile.326

4.3. Temporal Change in the Iribarren Number Under Applied Foreshore Evolution Settings327
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Figure 12. Changes in elevation of the barrier crest (∆Zcrest), the Iribarren number (ξ, 5 min moving
average) and changes in integrated elevation change in the barrier toe area (∆Ztoe, 5 min moving
average) through time, under each of the applied foreshore evolution settings. The most extreme
wave percentile combination is applied, Hs,98 and Tp,98 under highest astronomical tide. The dotted
horizontal line at ξ = 3.3 denotes the threshold between plunging and surging/collapsing breaking
wave regimes.

In Figure 12 we look again at the morphological change through time, but here we consider the328

changes in the Iribarren number with integrated elevation change across the barrier toe area (∆Ztoe).329
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Plunging waves are shown to be the sole breaking wave regime under each of the applied foreshore330

settings. There are three observed trends in ξ: A substantial decrease in ξ under S1 and S2 occuring at331

high water, negligible changes under S4 and S5 before and after high water, and an increase under332

S3, with values almost reaching 3.3, the threshold between plunging and surging/collapsing regimes333

of wave breaking. The decrease in ξ under S1, S2, S4 and S5 at high water is shown to coincide with334

increased erosion of the barrier crest. Likewise, at the same time, the increase in ξ under S3 coincides335

with very little or no erosion of the barrier crest. The peak in ξ is shown to occur at or just after high336

water under S4 and S5. However under S3, there is a progressive increase in ξ until around 45 min337

post high water.338

5. Discussion339

The aim of this modelling work was to understand how the characterisation of foreshore evolution340

in XBeach-X (in terms of the frequency at which the sandy, intertidal terrace component of a composite341

beach is updated) impacts on wave runup and cross-shore sediment transport on a coarse-clastic342

barrier to understand the model’s sensitivity to frequent and infrequent intertidal foreshore updating.343

Insights into this will provide greater confidence in outputs from storm impact modelling for similar344

coastal settings worldwide, and advice for users of the XBeach-X model. Until the capability of345

storm impact models such as XBeach-X is developed to specifically resolve the morphodynamics and346

hydrodynamics of composite gravel beaches in a single model application, this knowledge is critical for347

informing model setup and overwashing hazard assessments. Attempting to resolve the evolution of a348

composite beach using solely gravel settings is currently limited by its inability to resolve suspended349

sediment transport. Likewise using the sandy settings will not resolve the greater permeability and350

infiltration experienced by gravel barriers.351

These scenarios cannot be taken as a prediction of a past or future wave overwashing event.352

Rather, they demonstrate the impact of Hs and Tp percentile combinations on wave runup and the353

cross-shore morphologic response of the gravel barrier profile. In this section, the results are discussed354

in the context of other XBeach modelling studies and we explore the mechanisms behind the model355

predicting amplified relative wave runup and barrier erosion under less frequent foreshore evolution356

updates.357

5.1. Impact of Foreshore Evolution on Wave Hazard and Erosion358

The modelling results demonstrate clear and substantial differences between the less frequent359

(S1 and S2) and more frequent foreshore updates (S3, S4 and S5) both in terms of wave runup and in360

cross-shore sediment transport. Under S1, since there is no foreshore evolution updating in this setting361

and the sand component of the transect is assigned as non-erodible, the only mechanism by which362

∆Ztoe can change is through gravel sediments slumping offshore as the barrier exceeds the angle of363

repose. Onshore sediment transport of sand on the flood tide occurs regardless of foreshore evolution364

setting because there is no morphological updating in S2-S5 until the water level exceeds the barrier365

toe (1.92 m ODN). This explains the rapid increase in ∆Ztoe identical between the foreshore evolution366

settings due to the lack of gravel sediment transported offshore due to the water level being lower than367

the elevation of the barrier. The sedimentation at the barrier toe, rather than the evolution of scour,368

due to the characterization of the foreshore evolution under S1 and S2 enables a more rapid decrease369

in ξ and a plunging wave regime persists. This suggests that using a static foreshore in XBeach as per370

S1, with the only mechanism by which it can morphologically evolve being slumped gravel from the371

upper barrier is likely to lead to the model over-predicting barrier erosion and wave runup.372

Updating foreshore evolution every 5 minutes (S3) exercises greater wave attenuation in the373

nearshore, in the lee of the accretion in the profile. This is reflected in both a lower magnitude of374

erosion in the managed crest, and lower relative wave runup. The extent of erosion in the managed375

crest of the barrier corresponds to morphological change at the barrier toe. The scour under S4 and376

S5 remains similar through time, suggesting a foreshore evolution update frequency of < 10 min is377



Version November 7, 2020 submitted to J. Mar. Sci. Eng. 19 of 23

required to capture the deeper scour at the barrier toe. Halving the update frequency from 10 min to378

5 min causes an increase in the maximum scour depth by approximately 0.25 m. The increase in the379

Iribarren number under S3 around high water to values just under 3.3 is not quite sufficient to trigger380

a change in the breaking wave regime. Whilst the increase in ξ stays marginally below the threshold to381

represent a change in the wave breaking regime, it suggests a transition to more reflective conditions382

and explains the lower relative wave runup under S3 and fewer hazardous freeboard values. The383

findings suggest that the method of characterizing foreshore evolution can cause ξ to diverge to both384

higher and lower values, causing large variability in both the resulting distribution of freeboard values385

and in the resulting cross-shore sediment transport.386

Previous modelling using XBeach-G by McCall et al. [13,23] and the modifications made to the387

original model by Jamal et al. [24] neglected foreshore evolution in their applications to composite388

gravel beaches, since their focus was on developing the model for gravel applications. More recent389

applications of XBeach have attempted to resolve mixed sand-gravel beaches with some element of390

success [19,20,49], but given the limitations of XBeach discussed above, applications of the model to391

composite beaches where the evolution of both sand and gravel components are both resolved are392

currently limited in the literature. This study provides the first application of XBeach where sand and393

gravel settings are applied to the sandy, intertidal foreshore and coarse-clastic barrier components394

of a composite gravel beach, respectively. The work provides a method for characterizing foreshore395

evolution within storm impact modelling of coarse clastic barriers.396

5.2. Implications for Modelling Applications on Composite Gravel Beaches397

The uncertainty surrounding the feedback between the low-angle sand and high-angle398

coarse-clastic barrier components of a composite gravel beach is shown to lead to major differences399

in wave runup and cross-shore sediment transport. This variability influences the extent of barrier400

erosion and back-barrier sediment deposition leading to road closures and hinterland inundation. The401

results also highlight the potential for the foreshore evolution settings to govern the time of the onset402

of barrier change, with differences of up to 25 min. This may have implications for warning systems,403

for example road closure times relative to high water. Estimates into the labour and capital required to404

reform the coarse-clastic barrier to its pre-storm profile after an event of a given probability would also405

be affected by the uncertainty in the control of the foreshore evolution on the response of the barrier.406

The same implications exist for the development of fragility curves and barrier breaching assessments.407

This reinforces the need to consider the morphological evolution of both the low-angle and high-angle408

components of a composite beach. Using S1 and S3 to update foreshore evolution in composite gravel409

beach applications will provide the user with insights into upper and lower bounds on wave runup410

and barrier erosion.411

5.3. Limitations412

There is likely to be some limitations in modelling the time-varying elevation and cross-shore413

position changes in the barrier toe, since assigning a surface as non-erodible in XBeach-X still allows it to414

build up through sedimentation; a process unrealistic for onshore transport of sand onto course-grained415

highly porous gravel barrier. Whilst we have tried to mitigate this through setting elevation change416

above the barrier toe to zero, the limitations of XBeach-X mean that as a consequence, the modelling417

approach assumes that any onshore transport of sand does not alter the profile of the gravel barrier.418

Comparing the model outputs to observational data was not possible, since rigorous validation419

of the freeboard values would demand high-frequency measurements of the barrier throughout a420

storm and measurements of overwash hydrodynamics and morphodynamics are often constricted by421

experimental limitations of fieldwork, particularly when carried out by local authorities rather than for422

academic research. This paper is constrained by the lack of data against which to validate the results423

of the storm impact model. However this limitation does not detract from the importance of exploring424

the sensitivity of XBeach-X outputs to the foreshore characterization given that sensitivity analysis has425
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been argued to be a useful tool in investigating model behaviour [50]. The evolution of the sand and426

gravel components of a gravel beach cannot be resolved in a single XBeach-X application, and hence427

the model’s behaviour when resolving the sand and gravel components is worthy of investigation.428

The study does neglect the effect of gradients of alongshore sediment flux given the limitations of the429

gravel settings in XBeach-X. Whilst this is shown by Royal Haskoning DHV [26] to be negligible for430

Newgale given its strongly swash-aligned setting, it would be worthy of investigating in alternate431

coastal settings, where alongshore sediment transport is of greater relative importance.432

6. Conclusions433

This study has used XBeach-X to carry out a sensitivity analysis of how characterizing intertidal434

foreshore evolution within a storm impact model controls predictions of wave runup and erosion435

of a composite beach. Previous applications of the model’s gravel settings in the literature focused436

on mixed-sand gravel beaches, or neglected foreshore evolution within applications to composite437

beaches. Barrier erosion averaged across all the applied Hs and Tp percentile conditions is an order of438

magnitude higher when the foreshore remains static or is only updated when the water level reaches439

the barrier toe on the flood and ebb tides, compared to when the foreshore is updated every 5 or 10440

mins. The probability density of the most hazardous freeboard values are shown to be a factor of441

30 higher when the foreshore is not updated, compared to when the foreshore is updated every 5442

mins. The simulation where the foreshore was not morphologically updated predicted the highest443

relative wave-runup ( R2%
Hs

), the most substantial barrier erosion and the earliest onset of barrier erosion444

compared to the other scenarios. The results suggest the greater the frequency at which the foreshore445

is updated during the gravel barrier modelling, the lower the relative wave runup and the lower the446

frequency of hazardous freeboard values. Therefore by not updating foreshore evolution throughout447

the application of a storm impact model to a gravel barrier is likely to lead to over-prediction of wave448

runup, by not capturing the scour at the toe of the barrier. The sensitivity analysis highlights the449

variability in cross-shore sediment transport and wave runup resulting from how foreshore evolution450

is characterized when modelling a composite gravel beach. Future development of XBeach should451

concentrate on more explicit representation of the physics which control the feedbacks between the452

two components of a composite gravel beach, and the ability to spatially vary its sand and gravel453

settings to different parts of a cross-shore transect, allowing the model to resolve a composite gravel454

beach in a single model application.455
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