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Abstract: Chronology of Permian strata in SW England is fragmentary and largely based on 14 

radiometric dating of associated volcanic units.  Magnetostratigraphy from the ~2 km of 15 

sediments in the Exeter and Aylesbeare Mudstone groups was undertaken to define a detailed 16 

chronology, using the end of the Kiaman superchron, and the overlying reverse and normal 17 

polarity in the Middle and Upper Permian as age constraints. The palaeomagnetic directions are 18 

consistent with other European Permian palaeopoles; with data passing fold and reversal tests. 19 

The end of the Kiaman superchron (in the Wordian) occurs in the uppermost part of the Exeter 20 

Group. The overlying Aylesbeare Mudstone Group is early Capitanian  to latest Wuchiapingian 21 

in age. The Changhsingian and most of the Lower Triassic is absent. Magnetostratigraphic 22 

comparison with the Southern Permian Basin shows that the Exeter and Aylesbeare Mudstone 23 

groups are closely comparable in age to the Havel and Elbe Subgroups of the Rotleigend II 24 

succession. The Altmark unconformities in these successions appear similar in age as the 25 

sequence boundaries in SW England, indicating both may be climate controlled. Clasts in the 26 

Exeter Group, from unroofing of the Dartmoor granite, first occurred at a minimum of ~8 Ma 27 

after formation of the granite.  28 
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 33 

Permian-Triassic successions in southern and SW England were generated following the 34 

Variscan orogeny and occur in a number of interconnected, sag and fault-bounded basins, the 35 

largest being the Wessex Basin, and various sub-basins that form the Channel Approaches Basin. 36 

Some contain  upto 8 km of post-Variscan red-bed fill (Harvey et al. 1994; Hamblin et al. 1992; 37 

Butler 1998; McKie & Williams 2009; Fig. 1). The Wessex Basin formed on Rheno-Hercynian 38 

basement (Variscan), between the Northern Variscan Front and the Lizard-Rhenish Suture. The 39 

sub-basins of the Western Approaches Basin formed on Saxo-Thuringian (Variscan) and Rheno-40 

Hercynian basement (McCann et al. 2006; Strachan et al. 2014). As such, these basins may share 41 

similar tectonic and stratigraphic histories with similarly situated basins in France and Germany 42 

such the Saar-Nahe and Saale basins in Germany (Roscher & Schneider 2006; McCann et al. 43 

2006.). However, the tectono-stratigraphic understanding of the UK basins are poorly integrated 44 

into the framework of Permian European basin evolution. These intramontane basins often lack 45 

the distinctive late Permian carbonate-evaporite, Zechstein successions, common in basins (e.g. 46 

Southern Permian Basin) north of the Variscan front, and lack the early Permian faunas of the 47 

southern Variscan basins (Roscher & Schneider 2006; McCann et al. 2006).  48 

 49 

The onshore Permian-Triassic successions in the western parts of the Wessex Basin and the 50 

Credition Trough outcrop as the Exeter, Aylesbeare Mudstone and Sherwood Sandstone groups 51 

(Figs. 1 & 2). The coastal outcrops form part of the Jurassic Coast World Heritage Site (Barton et 52 

al. 2011). The work of the British Geological Survey, related to the re-mapping of the Exeter 53 

area (Edwards et al. 1997), generated a better regional understanding of the Exeter Group (Grp) 54 

that was dated to the Permian. The oldest successions outcrop in the Crediton Trough (and 55 

Torbay area) may extend into the latest Carboniferous (Edwards et al. 1997; Leveridge et al. 56 

2003). The units below the base of the Whipton Formation (Fm) in the Exeter and Crediton 57 

Trough area contain a variety of basaltic and lamprophyric lavas and intrusions whose Ar-Ar and 58 

K-Ar ages (291-282 Ma) are older than the more tightly constrained Rb-Sr, U-Pb and Ar-Ar ages 59 

(at 280 Ma) of the formation of the Dartmoor Granite (Scrivener 2006). These volcanic and 60 

igneous units are coeval with widespread volcanic activity throughout Europe during the latest 61 

Carboniferous to early Permian (Timmerman 2004). The isostatic uplift and regional denudation 62 

coeval with and following the granite emplacement, was probably responsible for a major 63 

unconformity (Edwards et al. 1997) separating the Whipton Fm from the older units (Fig. 2).  64 

 65 
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Miospores from the Whipton Fm around Exeter, and younger units equivalent to the Alphington 66 

and Heavitree Breccia formations demonstrate similarities to assemblages from the Russian 67 

Kazanian and Tatarian regional stages (Warrington & Scrivener 1990; Edwards et al. 1999). 68 

Consequently, the barren overlying Aylesbeare Mudstone Grp has been placed into the Lower 69 

Triassic in some subsequent studies (Newell 2001; Benton et al. 2002). Since the Aylesbeare 70 

Mudstone Grp is widespread in the Wessex Basin and the western approaches (Hamblin et al. 71 

1992; Butler 1998; Evans 1990; Barton et al. 2011), a Lower Triassic mudstone-dominated 72 

lacustrine unit creates a major palaeogeographic problem. That is, southerly-derived clasts in the 73 

Lower Triassic units, in central and Northern Britain, could not have been sourced through the 74 

Wessex Basin, from the Armorican supply areas to the south, as has been widely concluded for 75 

over 100 years (Ussher 1876; Thomas 1909; Wills 1970; McKie & Williams 2009; Morton et al. 76 

2013). 77 

 78 

To resolve this problem, and constrain in detail the age of the Permian successions we use 79 

magnetostratigraphy as a dating tool. The Kiaman (reverse polarity) superchron (KRPS) extends 80 

from the mid Carboniferous to the mid Permian, but had ended by the early Wordian (mid 81 

Guadalupian), after which reverse and normal polarity intervals (here called the Illawarra 82 

superchron) occur during the remainder of the mid and late Permian, extending into the Triassic 83 

(Steiner 2006; Hounslow submitted). We demonstrate the stratigraphic position of the end of the 84 

KRPS, and the polarity pattern through the upper part of these successions, below the Budleigh 85 

Salterton Pebble Beds Fm. This new data allows a much better understanding of age in these 86 

units, and their relationship to the much better studied successions in the Southern Permian 87 

Basin. 88 

Geology and Lithostratigraphy  89 

Excellent exposures of the Exeter Grp occur in a series of cliff and foreshore exposures between 90 

Torbay and Exmouth. The successions are predominantly the deposits of a number of alluvial 91 

fans, with aeolian dune sandstones dominating in the Dawlish Sandstone Fm, and also in some 92 

units in the Torbay Breccia Fm (Fig. 2). The coastal successions in Torbay are separated from 93 

those north of Oddicombe (Fig. 1), by the Torquay-Babbacombe promontory which was a 94 

palaeogeographic feature in the Permian (Laming, 1966). Mapping work (by DJCL) indicates the 95 

Torbay Breccia Fm (Leveridge et al. 2003), can be divided into a number of separate breccias 96 

units with differing clast content (Laming & Buller, in prep). The Watcombe Fm which is an on-97 
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lapping mudstone-rich breccia unit, which is unconformably overlain by the Oddicombe Breccia 98 

Fm north of the Torquay-Babbacombe promontory, and the equivalent Paignton breccias in 99 

Torbay. On the coastal outcrops the Watcombe Fm has a 9-20o dip-discordance with the 100 

overlying Oddicombe Breccia (9o at Whitsand Bay and 20o Oddicombe Cove; Figs. 1, 3; Laming  101 

1982). The lower parts of the Torbay Breccia Fm (Roundham Head breccias, with clasts derived 102 

from SW) are generally poor in volcanic clasts (Laming 1982) like the oldest unit (the Cadbury 103 

Breccia Fm; Edwards et al. 1999) in the Crediton Trough, and by inference may have similar 104 

ages, prior to the major early Permian volcanism.  105 

 106 

The various breccia units below the Dawlish Sandstone Fm are largely distinguished on their 107 

clast contents, which contain a variety of lithologies (limestone, sandstone, vein quartz, quartzite 108 

and slate) from various Variscan basement units, together with a variety of volcanic rock 109 

fragments associated with the granite and its former or earlier extrusives (Laming 1982; Selwood 110 

et al. 1984; Edwards & Scrivener 1999). The Watcombe and Whipton formations consist of fine-111 

grained sandy or muddy breccia with clasts of slate and sandstone with occasional porphyry. 112 

They contain irregularly interbedded sandstone and mudstone units (Ussher 1913), which 113 

dominate the Whipton Fm around Exeter (Edwards & Scrivener 1999). The Oddicombe Breccia 114 

Fm (Fig. 2) is rich in locally derived limestone fragments, which typically displays fining-up 115 

sequences (into poorly sorted sandstones or fine-breccias; Benton et al. 2002) several metres 116 

thick, well displayed at Maidencombe Cove and Bundle Head (Fig. 4). The Alphington Breccia 117 

Fm is likewise rich in locally derived shale and sandstone fragments, and hornfelised shale from 118 

the underlying Variscan basement (Edwards et al. 1997). The Teignmouth and Heavitree 119 

formations are distinctive for the common presence of clasts of pink and white perthitic feldspar 120 

(murchisonite), which Dangerfield & Hawkes (1969) interpreted as feldspar megacrysts from the 121 

roof zone of the Dartmoor granite; the supply of which, probably indicates synchronous 122 

unroofing into adjacent alluvial fan successions. The Alphington and Oddicombe Breccia 123 

formations lack the murchisonite clasts (Selwood et al. 1984; Edwards & Scrivener 1999).  124 

 125 

All the breccia units tend to be poorly sorted, and may locally contain a high proportion of mud 126 

or sand. The fining-up successions in the Teignmouth Breccia Fm, tend to be smaller scale (< 1 127 

m), and typically display poor lateral organisation. Breccias in the upper-parts of this formation 128 

have interbedded aeolian sandstone units, well displayed in the Coryton Cove area (8 on Fig. 1; 129 

Fig. 4); which is a transitional part of this formation into the overlying Dawlish Sandstone Fm. 130 
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The estimated thicknesses of the Oddicombe and Teignmouth Breccia formations vary widely 131 

between different authors, because of faulting, variable bedding dips and probably significant 132 

palaeotopography on the Variscan basement. The thicknesses of Selwood et al. (1984) are 133 

minimum thickness estimates, whereas Laming (1969; 1982) and this work suggest greater 134 

thicknesses at the upper limits indicated in Fig. 2. 135 

 136 

The aeolian dunes systems that dominate deposition in the Dawlish Sandstone Fm (Newell 137 

2001), also display interbedded alluvial sandstone and breccia units. Around Exeter and further 138 

north in the Crediton Trough, this formation onlaps onto older units, to rest on Variscan 139 

basement. The Exe Breccia Fm is divisible into a lower porphyry-bearing unit (the Kenton Mbr), 140 

typical of most of the outcrop on the west of the Exe Estuary, and an overlying quartzite- and 141 

mudstone-bearing breccia (the Langstone Mbr). This upper member is well exposed at Langstone 142 

Rock (6 on Fig. 1) which in the upper part is dominated by poorly sorted sandstones and sandy 143 

siltstones (Gallois 2014; Fig. 4). The thickness of the Exe Breccia is uncertain, due to faulting 144 

along the Exe Estuary; 85 m was suggested by Selwood et al. (1984), but upto ~50 m is more 145 

likely (Laming & Roche 2013) . The uppermost part of the Langstone Mbr at Lympstone and 146 

Sowden Lane (3 on Fig. 1) displays both well-developed shallow fluvial channels and aeolian 147 

sandstone units, and is gradational into the mudstones and siltstones forming the base of the 148 

Aylesbeare Mudstone Grp (Gallois 2014; Fig. 4). Around Exeter and in the Crediton Trough the 149 

Aylesbeare Mudstone Grp is unconformable on the Dawlish Sandstone Fm, onlapping onto older 150 

units (Edwards et al. 1997; Edwards & Scrivener 1999).  151 

Aylesbeare Mudstone Group 152 

The Exmouth Mudstone and Sandstone Fm is a lacustrine, red-brown mudstone-dominated unit 153 

with interbedded fine to medium-grained fluvial and lacustrine sandstone units (thicker beds 154 

labelled as Beds A to J by Selwood et al. 1984). These are most prominent towards the upper 155 

part of the formation, where the term Straight Point Sandstone Member is introduced for these 156 

persistent sandstone beds (i.e. beds I and J of Selwood et al. 1984) which are mapped between 157 

the coast and Aylesbeare, north of which the Aylesbeare Mudstone Grp is not sub-divided 158 

(Edwards & Scrivener 1999). The upper few metres of the Straight Point Sandstone Mbr at 159 

outcrop has patchily developed immature nodular and sheet-like groundwater calcretes, locally 160 

with rhizoconcretions (Fig. 3B). The base of the overlying Littleham Mudstone Fm is taken at the 161 

base of the porphyry and murchisonite bearing breccia unit (Ormerod-Wareing, 1875), which 162 
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locally erosively overlies this calcrete-bearing sandstone (Fig. 3C), and grades into overlying 163 

interbedded sandstone, siltstone and mudstone beds in the basal parts of the Littleham Mudstone 164 

Fm west of the Littleham Cove fault (Fig. 5).  165 

 166 

The Littleham Mudstone Fm is well-exposed in the cliffs between Littleham Cove and Budleigh 167 

Salterton, but is locally disrupted by faulting in the lower part and slumping in the cliff. The 168 

complete succession in the cliffs was determined by using a montage of photographs taken from 169 

offshore, which allow the full succession to be divided by a number of prominent green 170 

mudstone,  thin sandstone and siltstone beds (Fig. 5). The succession in the cliffs can be divided 171 

into three units, a lower unit (Division A) east of the Littleham Cove fault with a few green 172 

mudstone beds, a middle unit (Division B) with relatively common sandstone and siltstone beds, 173 

and an upper unit (Division C) with more frequent green mudstone beds and some impersistant 174 

sandstones. The true thickness of the Littleham Mudstone Fm, in these outcrops, cannot be 175 

determined because of the uncertain displacement on the Littleham Cove fault. However, the 176 

measured cumulative thickness east and west of the fault (216 m), is similar to the ~205 m and 177 

230 m measured in the Blackhill and Withycombe Rayleigh boreholes respectively (Bateson & 178 

Johnson 1992; Fig. 1), so the cliff outcrops probably represent most of the Littleham Mudstone 179 

Fm. In the Venn Ottery borehole (Fig. 1) the Littleham Mudstone Fm contains pods and veins of 180 

gypsum, and thin interbedded aeolian sandstones (Bateson & Johnson 1992; Edwards & 181 

Scrivener 1999; N.S Jones pers comm to RAE). A substantial unconformity separates the 182 

Littleham Mudstone Fm from the overlying Budleigh Salterton Pebble Beds Fm, shown by the 183 

dramatic lithology change, the sharp and irregular boundary (Fig. 3A) with some authors 184 

suggesting a small bedding dip difference (Irving, 1888). Gallois (2014) has suggested this 185 

contact is conformable. 186 

Regional relationships 187 

Broadly the Permian units in the study area can be divided into 5 genetic sequences (Pm1 to 188 

Pm5), bounded by hiatus or unconformity (Fig. 2). The upper three of these are all characterised 189 

by basal breccias units (low stand deposits), with conformable transitions into with finer-grained 190 

upper parts. The relationships of the successions in Torbay, to those in the Crediton Trough, area 191 

is less certain. It is probable that the earliest parts of the Torbay Breccia Fm is timing-related to 192 

the Cadbury Breccia Fm in the Crediton Trough (sequence Pm1), since both units are very poor 193 

in igneous clasts (Edwards et al. 1997). These five sequences may relate to the four sequences 194 
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seen in the Plymouth Bay Basin (Harvey et al. 1994). Their oldest megasequence A, likely 195 

relates to Pm1, and megasequence B to Pm2, since it is capped by an inferred volcanic unit. 196 

Megasequence C likely relates to Pm3, and is marked by a change in orientation of the Plymouth 197 

Bay Basin depocentres. Divergent bedding dips between units under and overlying the 198 

Watcombe Fm (Pm2), suggest that the most important extensional event (Leveridge et al. 2003; 199 

Laming 1982) is at the Pm2-Pm3 boundary, consistent with the basin orientation change. 200 

Megasequence D is probably equivalent to Pm4 and Pm5, since the Pm4-Pm5 boundary is subtle 201 

to detect in the field. 202 

 203 

The continuity of these units to the east in the central parts of the Wessex Basin is uncertain. 204 

Henson (1972) suggested, based on geophysics, that the breccia units thin to the east, so 205 

eastwards the breccias may pass into the mudstone dominated units, equated with the Aylesbeare 206 

Mudstone Grp in the central parts of the Wessex Basin, which are up to ~1.5 km thick (Butler 207 

1998; Hamblin et al. 1992). However, Henson’s data failed to detect the faults, along the Exe 208 

Estuary, so the interpretation may be flawed.  In the Western Approaches basins 1 km or more of 209 

anhydritic mudstones and sandstones underlie the equivalent of the Sherwood Sandstone Grp 210 

(Evans 1990). These locally rest on a Permian volcanic sequence, presumably of a similar age to 211 

the early Permian Exeter Volcanic Rocks (Chapman 1989).  212 

Palaeomagnetic sampling 213 

Almost the entire succession of the Aylesbeare Mudstone Grp is exposed in the sea-cliffs 214 

between Budleigh Salterton and Exmouth. Only the mid and upper parts of the Exe Breccia could 215 

be sampled at Lympstone (3 on Fig.1) and Langstone Rock (6 on Fig. 1; see Supplementary data 216 

for details). Outcrops in the lower parts of the Exe Breccia Fm (Kenton Mbr), where all too 217 

coarse-grained for palaeomagnetic sampling. Most of the Dawlish Sandstone and Teignmouth 218 

Breccia are well exposed between Langstone Rock and Teignmouth, adjacent to the main 219 

London-Penzance railway-line (Ussher 1913; Selwood et al. 1984), but large parts are 220 

inaccessible due to rail-safety restrictions. The Dawlish Sandstone Fm was sampled in quarries 221 

near Exeter (4 and 5 on Fig. 1; Fig. 4). The uppermost part of the Teignmouth Breccia was 222 

available for sampling in the Coryton Cove and Dawlish Station sections (7 and 8 on Figs. 1,4). 223 

Reconnaissance sampling of the Oddicombe and Watcombe Breccias was undertaken. For the 224 

most part, these units are fully exposed in sea-cliffs and foreshore exposes between Teignmouth 225 
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and Oddicombe (Fig. 4). The Knowle Sandstone Fm was sampled at west Sandford (Edwards et 226 

al. 1997). 227 

 228 

Samples from these units were collected using mostly hand samples,  oriented with a compass. In 229 

total some 153 samples were collected from 13 sites (see Supplementary data), largely focussed 230 

on reddened lithologies. Cubic specimens were cut from the hand samples using a circular saw. 231 

Some samples from sandstone units in the Dawlish Sandstone and Exe and Teignmouth Breccias 232 

were poorly consolidated, and were impregnated with a 2:1 mix of sodium silicate and water 233 

(Kostadinova et al. 2004) to consolidate them prior specimen preparation.  234 

Laboratory Methodology 235 

Measurements of Natural Remanent Magnetisation (NRM) were made using a CCL 3-axis 236 

cryogenic magnetometer (noise level ~0.002 mA/m), using multiple specimen positions, from 237 

which the magnetisation variance was determined. Generally 1 to 3 specimens from each sample 238 

were treated to stepwise thermal demagnetisation, using a Magnetic Measurements Ltd thermal 239 

demagnetiser, in 50-40°C steps up to 700°C.  Low frequency magnetic susceptibility (Klf) was 240 

monitored after heating stages, measured using a Bartington MS2B sensor. Specimens from the 241 

Bishops Court Quarry gave poor quality results and sister specimens were partly treated to a 242 

combination of thermal and alternating field (AF) demagnetisation, the latter conducted using a 243 

Molspin tumbling AF demagnetiser. In total 166 and 78 paleomagnetic specimens were 244 

demagnetised from the Aylesbeare Mudstone and Exeter groups respectively. The bedding dips 245 

in the Aylesbeare Mudstone Grp are 5-10o in an easterly direction, so a fold test was not possible. 246 

However, in the Exeter Grp dips are more variable and up to 40o, so a tilt-test was possible 247 

 248 

Characteristic remanent magnetisation (ChRM) directions were isolated using principal 249 

component-based statistical procedures as implemented in LINEFIND, which uses the 250 

measurement variance along with rigorous statistical procedures for identifying linear and planar 251 

structure in the demagnetisation data (Kent et al. 1983). Both linear trajectory fits and great 252 

circle (remagnetisation circle) data were used in defining the paleomagnetic behaviour, guided by 253 

objective and qualitative selection of the excess standard deviation parameter ( ρ ), which 254 

governs how closely the model variance, used for analysis, matches the data measurement 255 

variance (Kent et al. 1983). The PMAGTOOL software (available at 256 
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https:\\www.lancs.ac.uk\staff\hounslow\default.htm) was used for the analysis of mean directions 257 

and virtual geomagnetic poles. 258 

 259 

Progressive isothermal remanent magnetisation (IRM) up to 4 T was applied to a representative 260 

sub-set of specimens, to investigate the magnetic mineralogy. Thermal demagnetisation of a three 261 

component IRM was used to investigate the unblocking and alteration temperature behaviour 262 

(Lowrie 1990). A small set of specimens were measured for magnetic hysteresis (maximum field 263 

0.9 T) and thermomagnetic curves (maximum field 300 mT, in air on VFTB). Selected thin 264 

sections were investigated to assess the petrography of the Fe-oxides. The anisotropy of magnetic 265 

susceptibility (AMS), of selected specimens, was measured using an Agico KLY3S Kappameter, 266 

to assess the preservation of the detrital sedimentary fabric (Løvlie & Torsvik 1984; Tarling & 267 

Hrouda 1993), and to assess if any fabric has been imparted by tectonism. 268 

Magnetic Mineralogy  269 

Changes in the NRM intensity and Klf  of specimens are broadly related to: 270 

a) The amount of silt and clay, with those samples having larger amounts of silt and clay, 271 

generally having larger NRM intensity and Klf. For example, aeolian sandstones such as 272 

those in the Dawlish Sandstone Fm, have significantly lower NRM intensity and Klf (Fig. 5, 273 

see supplementary data). In the Aylesbeare Mudstone Grp red mudstones possess average 274 

NRM intensity and Klf of 5.0 mA/m and 20.0 x10-6 SI respectively, compared to means of 1.8 275 

mA/m and 7.2 x10-6 SI in the red sandstone beds. 276 

b) Reddened and non-reddened samples of the same lithology often possesses dramatically 277 

different NRM intensity and Klf; with the non-reddened samples typically having lower 278 

values. For example grey, green and white sandstones in the Aylesbeare Mudstone Grp have 279 

mean NRM intensity and Klf  of 0.9 mA/m and 4.4 x10-6 SI respectively.  280 

c) The average NRM intensity and Klf shows progressively large values into the Oddicombe 281 

Breccia and Watcombe  formations (see supplementary data). This may relate to a 282 

progressive increase in volcanic-derived detritus (hence haematite content) in the older units 283 

which is mirrored in the Cs content (Merefield et al. 1981). 284 

 285 

Specimens analysed do not saturate in IRM fields up to 4 T (Fig. 6A,C), indicating that canted 286 

antiferrimagnetic minerals (haematite or goethite) are important magnetic minerals. Durrance et 287 

al. (1978) also detected haematite as the main Fe-oxide in the Littleham Mudstone Fm, with the 288 
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addition of significant amounts of superparamagnetic haematite. Thermomagnetic curves were 289 

nearly reversible and exhibited Curie temperatures of 657-669°C, and thermal demagnetisation of 290 

the IRM, shows that specimens, display blocking temperatures up to 650-700oC (Fig. 6). Bcr 291 

ranged between 320 and 710 mT, all suggesting haematite. Although the IRM does not approach 292 

saturation by 4 T (Fig. 6B), there is no clear evidence for goethite, since we have high SIRM/k 293 

values, and no well-defined Neel temperature for goethite. IRM acquisition below 100 mT is 294 

mostly <15% of the 1T IRM, except for aeolian sandstone units in the Dawlish Sandstone Fm, 295 

and grey or red mottled green/grey lithologies (Fig. 6A,C,E).  Hence, these later types of 296 

lithologies have a greater contribution from a low coercivity mineral, probably magnetite. In 297 

specimens DS16, (from Dawlish Sandstone Fm aeolian sandstones) and L3 (grey sandstone, 298 

Littleham Mudstones Fm) the low coercivity remanence demagnetises by 450oC- 550oC, which 299 

could suggest an oxidized, or Ti-rich magnetite (Fig. 6F). The >300 mT coercivity component in 300 

specimen DS16 has a blocking temperature of ~550oC, probably due to a pigment-dominated 301 

haematite remanence (Turner 1979) in this sample. 302 

 303 

Petrography indicates, like other red-beds, that the haematite is present as two phases, firstly sub-304 

micron haematite (pigmentary haematite), which coats pore perimeters and is often internal to 305 

some rock clasts, secondly as larger specular haematite particles, most obvious as detrital opaque 306 

grains (Turner 1979; Fig. 3E). The pore-lining pigmentary haematite is multiphase in origin, 307 

since it both coats feldspar overgrowths, and to a lesser extent, coats the grains prior to the 308 

overgrowths (observed in Dawlish Sandstone Fm only). Compaction related pressure solution at 309 

some grain contacts, shows greater amounts of pigment coating the pores, and lesser amounts 310 

between the grain contacts, demonstrating both pre and post-compaction pigmentary haematite 311 

formation, with probably the bulk of the pigment produced post compaction. Some of the 312 

pigmentary haematite may have formed pre-deposition, since it is widely dispersed within a 313 

variety of siltstone and phyllite clasts.  314 

 315 

The specular haematite is dominated by detrital opaques, which are either present as haematite 316 

dominated particles, or compound particles in-part composed of other silicate minerals. The 317 

compound particles are occasional haematised clastic rock fragments (intraformational?) but 318 

most are of uncertain origin (Fig. 3E). These two types of specularite grains vary in abundance 319 

from about 1% to trace amounts. Larger amounts tend to occur in samples that are finer-grained 320 

or less well sorted, and lesser amounts typically in the well-sorted aeolian sandstones.  321 
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Magnetic Fabric 322 

The anisotropy of magnetic susceptibility (AMS) overall shows a primary depositional magnetic 323 

fabric, characterised by vertical-to-bedding Kmin directions (Figs. 7 a-d) and largely oblate (T >0) 324 

fabrics (Figs. 7 e - h). The mudstones have the stronger AMS (greater P values) and are always 325 

oblate. The sandstones within the Aylesbeare Mudstone Grp and the various breccia units show 326 

more variable AMS fabrics ranging into the prolate fields (T <0), especially so for some 327 

sandstones from the breccia units (Fig. 7e,h). This may relate to the more poorly sorted, probably 328 

more chaotically deposited grains in the breccia units (possibly related to mudflow deposition, cf. 329 

Park et al. 2013).  Kmax axis trends (Figs. 7I to l) for specimens from the breccia units (Fig. 7l) 330 

show both N-S trends and ENE-WSW trends similar to the clast imbrication directions (typically 331 

between easterly and northerly directions) of Laming (1982) and Selwood et al. (1984). This 332 

demonstrates the Kmax directions parallel the fluvial transport directions. The N-S Kmax axes 333 

trends are common near the Babbacombe-Torquay promontory and in the Teignmouth Breccia 334 

Fm. Similar easterly and northeasterly Kmax axes trends are present in the Exmouth Sandstones 335 

and Mudstones, whereas those in the Littleham Mudstone Fm are more variable.  336 

 337 

The specimens from aeolian sandstones (from the Dawlish Sandstone Fm and upper part of the 338 

Teignmouth Breccia Fm) show a larger proportion of prolate fabrics (T <0) with many more Kmin 339 

axes deviating from vertical (Figs. 7c, g). This is partly due to the lower susceptibility of these 340 

samples, so that the strength of the AMS is closer to the sensitivity limits of the KLY3S.  341 

However, it is also a reflection of the rolling grain transport on the leeward slip-faces of the 342 

aeolian dunes (Ellwood & Howard 1981), producing a grain long-axis orientation transverse to 343 

the average wind direction (Schwarzacher 1951), which was to the NW to NNW (Laming 1982; 344 

Newell 2001). This is clearly shown in the specimens from the Bishops Court Quarry in which 345 

the Kmax axes are transverse to the aeolian foresets (Edwards & Scrivener 1999). 346 

Mineralogical origin of magnetic properties 347 

In summary, the magnetisation in these units is dominantly carried by haematite, with a likely 348 

large range of grain size from superparamagnetic (pigmentary) haematite to larger (specularite) 349 

particles of remanence carrying haematite. A strong control on the concentration of haematite is 350 

related to the clay and silt content, and perhaps also the concentration of volcanic rock detritus. 351 

The pigmentary haematite appears to have a multiphase origin, ranging from possible pre-352 

deposition to late diagenetic, a typical feature of European Permian red beds (Turner et al. 1995; 353 
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1999). Largely detrital, specular haematite, varies in amounts relating to the degree of sediment 354 

sorting and the sediment supply. In the breccia units the maximum susceptibility axes reflect 355 

palaeocurrent-parallel trends, shown by clast imbrication directions. In aeolian transported 356 

sediments, the transverse trends in Kmax axes reflect lee-face transport on dune slip faces. In the 357 

lacustrine mudstones the Kmax directions may represent wave-produced (or perhaps wind-358 

related?) grain orientations in the lake playa systems hence, the AMS shows a primary 359 

depositional fabric, probably carried mostly by haematite. 360 

Palaeomagnetic Results 361 

The majority of the 250 specimens demagnetised show little change in Klf during 362 

demagnetisation, although the mudstones (particularly from the Littleham Mudstone Fm), tend to 363 

show alteration at >600oC, with lower temperature alteration in some specimens (Fig. 6). In some 364 

specimens, this alteration obscures the recovery of the remanence at higher demagnetisation 365 

temperatures. 366 

 367 

Demagnetisation isolates two remanence components. Firstly, a positive, often northerly, steeply 368 

inclined component (Component A), between room temperature and often up to 350oC, but 369 

sometimes up to 500-600°C (Fig. 8). This component is more northerly in specimens from the 370 

Aylesbeare Mudstone Grp (Fisher mean, 005o, +59o, k= 7.7, Ns=135), but more southerly in 371 

specimens from the Exeter Grp (Fisher mean, 010o, +82o, k=6.7, Ns=44; see supplementary data). 372 

This component is more prevalent in the Aylesbeare Mudstone Grp (79% of specimens) 373 

compared to the Exeter Grp (56% of specimens), in which it is most prevalent in specimens from 374 

the Dawlish Sandstone Fm. It does not correspond in direction particularly well to the expected 375 

modern dipole field (i.e. inclination of 68o) and probably represents a composite component 376 

comprising mostly a Brunhes (viscous?) magnetisation plus the characteristic remanence. In 10% 377 

of samples from the Aylesbeare Mudstone Grp, this was the only component present. In the 378 

Exeter Grp 15% of specimens are dominated by this component, the bulk of these being from the 379 

Dawlish Sandstone Fm. 380 

 381 

A second component is recognised between about 400 and 650-700 °C that is a northerly, 382 

positively inclined or southerly, negatively inclined direction (Fig. 8), interpreted as the 383 

characteristic remanence (ChRM). In the Littleham Mudstone Fm the unblocking temperature 384 

range of this component is mostly above 500oC- 600oC, whereas in specimens from the Exeter 385 
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Grp, the unblocking of the ChRM often starts at temperatures of ~400oC. Some 52% of 386 

specimens (49% in Aylesbeare Mudstone Grp and 57% in Exeter Grp) had suitable linear 387 

trajectory ChRM line fits (here termed ‘S-type’ data; Fig. 8). This S-type demagnetisation 388 

behaviour was visually classified into three quality classes, S1, S2 and S3 (Figs. 8, 9). The mean 389 

α95 linear fits and ρ for these classes indicate the generally larger model variance required to 390 

accommodate the less quality line-fits (see supplementary data). Average confidence cone angles 391 

for these line-fit classes vary from 3.2 to 13.9o. The mean directions for the ChRM line-fits pass 392 

the reversal test (McFadden & McElhinney 1990), for all except the Littleham Mudstone Fm 393 

(Table 1; Fig. 9a).  394 

 395 

Some 28% of specimens displayed great circle trends, of varying arc length, towards interpreted 396 

Permo-Triassic reverse and normal polarity directions (here referred to as T-type 397 

demagnetization behaviour; Fig. 8). This T-type behaviour was visually classified into three 398 

quality classes, T1, T2 and T3, based on the visual length and scatter of the demagnetisation 399 

points about the great circle, with T1 being the best quality. The mean α95 for the poles to the 400 

fitted planes, for these three data classes range from 9 to 20o (see supplementary data). These 401 

great circle fits included the origin in 67% of these cases. 402 

 403 

Data from the Dawlish Sandstone Fm yield the least well-defined results, particularly those from 404 

Bishops Court Quarry, which are dominated by component A overprints. These samples also 405 

display mainly low blocking temperatures (i.e. the NRM is largely demagnetised by ~500oC). 406 

Some specimens from this locality could be AF demagnetised indicating that either these 407 

sandstones originally had no haematite, or more likely a substantial proportion of haematite had 408 

been removed, possibly by Quaternary ground water flow (e.g. Johnson et al. 1997). Notably, 409 

those samples that did not retain a ChRM, generally lacked specular haematite particles in thin 410 

section, whereas samples of aeolian sandstone which possessed a ChRM often possessed 411 

specularite in small amounts. Hence, the poor palaeomagnetic behaviour in the Bishops Court 412 

Quarry samples is due to a paucity of specularite, and the dominance of pigment-dominated 413 

magnetisations, not unlike other Permian aeolian sandstones such as the Penrith Sandstone 414 

(Turner et al. 1995).  415 
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Mean directions and paleopoles 416 

As well as the conventional means using the ChRM directions, mean directions were also 417 

determined using ‘specimen-based’ means, by combining the great circle paths with the specimen 418 

line-fit ChRM (Table 1), to produce combined means using the method of McFadden & 419 

McElhinney (1988). This method determines a mean direction, by including the ‘fixed-point’ 420 

ChRM directions, and those points on the projected great circles, which maximise the resultant 421 

length (i.e. in effect those calculated points on the great circle which are closest to the combined 422 

mean direction). These means are broadly similar to the line-fit ChRM means, except that for the 423 

Dawlish Sandstone and Exe Breccia, which have steeper inclination and greater dispersion 424 

(Table 1). The great-circle combined means pass the reversal test for the Littleham Mudstone 425 

Fm, Exmouth Mudstone and Sandstone Fm, and Dawlish Sandstone plus Exe Breccia formations 426 

(Table 1). Using the line-fit ChRM directions alone, the combined mean directions for the 427 

Aylesbeare Mudstone and Exeter groups pass the reversal test (Table 1). 428 

 429 

Fold tests used the S-class ChRM directions for the Exeter Grp from the coastal sections. These 430 

pass the fold test indicating the pre-tilting nature of the magnetisations (Fig. 9b). The fold test of 431 

McFadden (1990) produced an f-statistic (F [6,82] ) of 1.90. Likewise these data pass the DC 432 

fold test of Enkin (2003), with best unfolding at 93.5%, with a 95% confidence interval ±25.2%. 433 

A progressive unfolding test (Watson & Enkin 1993) indicated best unfolding at 78%, with 95% 434 

confidence intervals on the unfolding% of 34% to 114% (Fig. 9b).  435 

 436 

The virtual geomagnetic pole (VGP) data is consistent with other Permian data from stable-437 

Europe, confirming the Permian age of these magnetisations. The mean direction for the Exeter 438 

Grp produces a virtual geomagnetic pole (VGP) similar to stable-Europe sediments from the 439 

youngest part of the KRPS (see Supplementary Data), although the mean is slightly to the east of 440 

the European apparent polar wander path of Torsvik & Cocks (2005). The Exeter Volcanic 441 

Rocks VGP of Zijderveld (1967) is similar to that from the Aylesbeare Mudstone Grp (Table 1), 442 

whereas the VGP pole for the Exeter Grp sediments from this study, is displaced slightly more to 443 

the east (see Supplementary Data).  444 

Magnetostratigraphic Interpretation 445 

The line-fit ChRM directions from the Aylesbeare Mudstone Grp (and Exe Breccia Fm) were 446 

converted to virtual geomagnetic pole (VGP) latitude using the line-fit ChRM mean in Table 1 447 
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(Figs. 10a,b (iii)). For those specimens that had no line-fit, the point on their great circle nearest 448 

this mean, were used for calculating the VGP latitude (Fig. 10). All specimens were also 449 

assigned a polarity quality (Fig. 10a,b (ii)) based on the quality of demagnetisation behaviour 450 

and, if from T-class specimens, the length and end point position of the great circle trend (similar 451 

to the procedures used by Ogg & Steiner 1991; Hounslow & McIntosh 2003). One specimen of 452 

good-quality polarity (i.e. S-Type) was sufficient to define the horizon polarity, whereas with 453 

specimens of poorer quality at least two are required (Figs. 4, 10). Some 12% of specimens failed 454 

to yield data which could be used to determine horizon polarity (10% in Aylesbeare Mudstone 455 

Grp, 15% in Exeter Grp) and eight horizons failed to yield any specimens which could reliably 456 

be used to determine magnetic polarity (Figs. 4, 5). Most of these are from sandstones, with most 457 

of these in the Dawlish Sandstone Fm at Bishops Court Quarry (Fig. 4).  458 

 459 

All the samples collected from below the Exe Breccia Fm are of reverse polarity, with those 460 

sections situated stratigraphically above the Langstone Rock outcrop having both reverse and 461 

normal polarity (Figs. 4, 5). The single sample from the Knowle Sandstone Fm (Fig. 2; Table 1) 462 

likewise confirms the reverse polarity results from the age-equivalent Exeter Volcanic Rocks 463 

found by Creer (1957), Zijderveld (1967) and Cornwall (1967). Significantly, two sites in the 464 

Torbay Breccia Fm sampled in the reconnaissance study of Cornwall (1967) produced reverse 465 

polarity, suggesting that reverse polarity probably dominates to the base of the Exeter Grp. 466 

 467 

Major magnetozone reverse and normal couplets have been numbered (Fig. 10) from the base of 468 

the first normal polarity samples in the Exe Breccia Fm, using the prefix EA (for Exeter-469 

Aylesbeare). The magnetic polarities of six magnetozones are defined with multiple specimens 470 

from a single sampling horizon (EA3n.1r, EA3n.2r, EA5n.1r), and EA3r.1n is defined with a 471 

single specimen of S-class behaviour (Fig. 10). 472 

Discussion 473 

The major geomagnetic polarity marker in the Permian is the end of the Kiaman reverse polarity 474 

Superchron, which has been comprehensively studied since the 1950’s in Russian successions 475 

(Molostovsky 1983; Burov et al. 1998). Studies on marine fossil-bearing rocks which 476 

demonstrate the end of the Kiaman superchron are discontinuous studies in the SW USA 477 

(Steiner, 2006), and Japan (Kirschvink et al. 2015), along with studies on successions in China 478 

(Steiner et al. 1989; Embleton et al. 1996). The overlying reverse and normal polarity Illawarra 479 
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Superchron, has been extensively investigated in marine successions in the Salt Range in 480 

Pakistan, China and Iran (Haag & Heller 1991; Gallet et al. 2000; Jin et al. 2000; Steiner 2006), 481 

along with flood-basalts in China (Ali et al. 2002; Zheng et al. 2010). Studies on non-marine 482 

rocks from the Illawarra Superchron have been extensive in Russia, on outcrop and borehole 483 

material (Molostovsky 1983; Burov et al. 1998) and core material from the Southern Permian 484 

Basin (Menning et al. 1988; Nawrocki 1997; Turner et al. 1999; Lawton et al. 2003; Szurlies 485 

2013). These studies together allow the magnetic polarity stratigraphy (Fig. 11) to be defined 486 

through the Roadian to Changhsingian (Steiner 2006; Hounslow submitted). The base of the 487 

Illawarra superchron is in the lower to mid Wordian based on magnetostratigraphic data from the 488 

Grayburg Fm in Texas and New-Mexico (Steiner 2006) and limestones from Japan (Kirschvink 489 

et al. 2015).  490 

 491 

Magnetostratigraphic studies in the southern Permian Basin well Mirow 1/1a/74 (Menning et al. 492 

1988; Langereis et al. 2010), and wells in Poland (Nawrocki 1997) show a long-duration reverse 493 

polarity interval (equivalent to MP3r –UP1r interval) with under and overlying mixed polarity- 494 

intervals (Fig. 11). The normal magnetozones in the Lower Drawa Fm and Havel Subgroup are 495 

probably equivalent with the MP1n to MP3n interval in the GPTS of Hounslow (submitted). 496 

Equivalent normal magnetozones in the Notec and Hannover formations are more fully 497 

represented by studies from the Lower Leman Sandstone from the Johnston and Jupiter field in 498 

the southern North Sea (Turner et al. 1999; Lawton & Roberson 2003). These correlations are 499 

constrained by the overlying Zechstein, and indicate that the Zechstein successions are entirely 500 

Changhsingian in age, rather than as old as early Wuchiapingian, as suggested by the conodonts 501 

Merrillina divergens and Mesogondolella britannica (Korte et al. 2005; Legler et al. 2005; 502 

Słowakiewicz et al. 2009), and the synthesis of Szurlies (2013). Like the magnetostratigraphic 503 

interpretation here, Sr-isotope data indicates a short duration for the Zechstein of ~ 2Ma, with a 504 

likely age range of 255-251.5 Ma, placing it firmly in the Changhsingian (Denison & Peryt 505 

2009). Various attempts at dating the Kupferschiefer at the base of the Zechstein (Z1 cycle) have 506 

failed to yield consistent results, with Re-Os ages giving wide 95% confidence intervals  (Pašava 507 

et al. 2010). 508 

 509 

Four pieces of information have allowed dating of the Exeter Grp succession to the Permian.  510 

1) Volcanic units interbedded with the Knowle Sandstone of the Exeter area, and similar units 511 

equivalent to the Thorverton Sandstone and Bow Breccia in the Crediton Trough, have Ar-Ar 512 
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ages of 291- 282 Ma (Edwards & Scrivener 1999). Volcanic clasts in the breccia units give 513 

Ar-Ar dates of 280 Ma. This suggests the volcanism and associated interbedded sediments 514 

are late Sakmarian through to late Artinskian in age, using the timescale of Henderson et al. 515 

(2012).  516 

2) The Dartmoor Granite has Rb-Sr, U-Pb and Ar-Ar ages of 280 ±1 Ma (Scrivener 2006), 517 

placing its formation in the latest Artinskian (timescale of Henderson et al. 2012). Clasts of 518 

the granite begin to occur in the unroofing succession in the Teignmouth and Heavitree 519 

Breccias (Dangerfield & Hawkes 1969; Edwards et al. 1997), indicating that these units were 520 

deposited some millions of years after the granite formation, in order to allow the granite to 521 

be unroofed.  522 

3) Miospore assemblages containing Lueckisporites virkkiae, occur from the Whipton Fm, 523 

around Exeter, but also in younger units in the Crediton Trough, equivalent to the Alphington 524 

and Heavitree Breccias (Edwards et al. 1997). Assemblages containing this miospore are 525 

widespread in European Zechstein deposits and similar ‘Thuringian’ and Russian Tatarian 526 

assemblages (Visscher 1973; Utting 1996). In the northern hemisphere, Lueckisporites 527 

virkkiae has its first appearance in the early Roadian (lower Kazanian in Russia; Utting 528 

1996) to latest Kungurian (Shu 1999; Mangerud 1994) with youngest ranges into the latest 529 

Changhsingian. 530 

4) The foot-print trace-fossil Cheilichnus bucklandi, found in the Dawlish Sandstone near 531 

Exeter (Edwards et al. 1997) suggests equivalence to the Germanic ‘Rotliegend’ (McKeever 532 

& Haubold 1996). However, this genus is restricted to aeolian dune units and is probably 533 

only vaguely indicative of the Permian (Lucas & Hunt 2006). 534 

 535 

Constraints on the youngest possible age of the Aylesbeare Mudstone Grp are 536 

magnetostratigraphy and vertebrate fossils from the overlying Otter Sandstone Formation 537 

(Hounslow & McIntosh 2003; Benton 1997), which indicate the Sherwood Sandstone Grp is as 538 

old as early Anisian (Middle Triassic), and probably ranges down into the Olenekian of the 539 

Lower Triassic (Hounslow & McIntosh 2003; Hounslow & Muttoni 2010). Based on regional 540 

climate comparisons between the Budleigh Salterton Pebble Beds and the ‘Conglomérate 541 

principal’ of the Vosges region in NE France, Durand (2006) suggests a probable Smithian age 542 

(early Olenekian) for the Budleigh Salterton Pebble Beds Fm, consistent with the 543 

magnetostratigraphy. 544 

 545 
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This work indicates that the oldest normal magnetozone detected is in the mid-parts of the Exe 546 

Breccia (i.e. EA1n), with a substantial thickness (perhaps up to ~1 to 1.5 km) of reverse polarity 547 

in the underlying parts of the Exeter Grp. Although we cannot locate the base the EA1n (hence 548 

equivalent MP1n) precisely due to lack of suitable outcrop, this normal magnetozone is the 549 

earliest evidence (equivalent to early MP2n, or normal polarity part of MP1) of the Illawarra 550 

Superchron (Fig. 11). There may be up ~55 m unsampled in the interval between our outcrops at 551 

this boundary. The end of the KRPS provides an important age tie point (267.1±0.8 Ma; 552 

Hounslow submitted) to the early-mid Wordian in the Middle Permian (Guadalupian). The oldest 553 

occurrence of the Lueckisporites virkkiae assemblage is found in the Whipton Fm, which 554 

suggests that this formation could be as old as early Roadian or latest Kungurian (~272 Ma; 555 

Henderson et al. 2012). This would give a minimum of ~8 Ma after formation of the Dartmoor 556 

Granite for exhumation of the granite and for the first granite detritus to appear in the 557 

Teignmouth- Heavitree breccias. 558 

 559 

The overlying normal polarity magnetozone EA3n, is therefore likely to be equivalent to the 560 

MP3n normal magnetozone in the upper and mid parts of the Capitanian (Fig. 11). The EA3r 561 

magnetozone is equivalent to the MP3r to UP1r interval (in the lower part of the Wuchiapingian), 562 

with the overlying normal magnetozones (i.e. EA4n to EA5n) equivalent to those in the upper 563 

parts of the Wuchiapingian to basal Changhsingian (Fig. 11). Reverse magnetozone EA2r, in the 564 

top of the Exe Breccia is probably the equivalent of MP2r in the basal Capitanian. Sub 565 

magnetozone EA3r.1n in the Littleham Mudstone Fm is probably equivalent to UP1n in the 566 

Wuchiapingian.   567 

Alternative Lower Triassic age models? 568 

The alternative Lower Triassic age of the Aylesbeare Mudstone Grp suggested by Warrington & 569 

Scrivener (1990) and Edwards et al. (1997), is untenable using the magnetostratigraphy.  To test 570 

their hypothesis, the most likely early Triassic correlation model suggests that EA3n is the age 571 

equivalent of the first Triassic magnetozone, LT1n (Fig. 11), with the overlying EA3r to EA5n 572 

interval extending into the earliest Olenekian, an interval of some 1.4 Ma (Hounslow & Muttoni 573 

2010). However, this seems unlikely for the following reasons: 574 

 575 

1) The local clast lithologies (e.g. murchisonite) seen in the breccia at the base of the Littleham 576 

Mudstone Fm, are similar to those in the Exeter Grp, and very different to those found in the 577 
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Budleigh Salterton Pebble Beds and other Lower Triassic units further north in the UK, 578 

which contain Armorican-derived clasts and grains (Cocks 1993; Morton et al. 2013).  579 

2) It would require a minimum hiatus of ~ 13-15 Ma between the Exe Breccia and the 580 

Aylesbeare Mudstone Grp, which seems unlikely considering the apparently conformable 581 

nature of the boundary between these formations.  582 

3) If the hypothesis of Warrington & Scrivener (1990) was correct a prediction would be 583 

numerous normal polarity intervals (from the Illawarra superchron) below the Aylesbeare 584 

Mudstone Grp, but we have only found these in the Exe Breccia Fm with no evidence of 585 

normal polarity in the underlying c.1 km of the Exeter Grp.  586 

4) The Lower Triassic model would suggest a ~1.4 Ma duration for the EA3n to EA5n interval 587 

requiring very large accumulation rates, comparable to the deepest grabens in the Southern 588 

Permian Basin, north of the Variscan front, which there contain substantial thicknesses of 589 

Zechstein.  590 

Wider regional implications 591 

A consequence of these data, is that it is now possible to assess the relationship of these SW 592 

England successions to the much better studied Rotleigend-II group in the Southern Permian 593 

Basin (Fig. 11). The magnetostratigraphy suggests a similarity in age of the Altmark 594 

unconformities with the Devon Permian sequence boundaries. The magnetic polarity stratigraphy 595 

from the Mirow, Czaplinek and Piła wells suggests that the Altmark III unconformity is roughly 596 

equivalent to the base of the Littleham Mudstone Fm (base of Pm5), Altmark II, with the base of 597 

Pm4 (Figs. 2, 11). Less certain is the correlation of the base of unit B in the Littleham Mudstone 598 

Fm, with Altmark IV. The base of Pm3 probably relates to the Altmark I unconformity, which 599 

separates the Muritz Subgroup from the Havel Subgroup, across the Saalian unconformity, since 600 

underlying successions both contain volcanic units.  601 

 602 

The calcrete and rhizoconcretion bearing sandstone, in the uppermost part of the Straight Point 603 

Sandstone Mbr, is unusual in that no other well developed palaeosols are seen in the remainder 604 

of these Permian successions. It is not until the mid Triassic (Anisian) Otter Sandstone Fm, that 605 

calcretes begin to be widely developed in SW England. The Capitanian-Wuchiapingian boundary 606 

was an interval with dramatic, but poorly understood shifts in the global carbon cycle (Nishikane 607 

et al. 2014). A tentative reason for this palaeosol development is the rapid warming associated 608 

with increased CO2 in the atmosphere (and associated increased evaporation rates to create 609 
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calcretes; Alonso-Zarza 2003), that developed after the extinction at the Capitanian-610 

Wuchiapingian boundary. The peak is associated with a negative δ13C excursion (Chen et al. 611 

2011; Nishikane et al. 2014) in the early Wuchiapingian, which corresponds closely to the early 612 

parts of MP3r (Zheng et al. 2010; Fig. 11). 613 

 614 

The dramatic switch between breccia-dominated facies of the Exeter Grp to the mudstone-615 

dominated facies of the Aylesbeare Mudstone Grp, occurs within the early Capitanian (Fig. 11). 616 

We tentatively relate this switch in regimes to the Kamura cooling event (seen as a large positive 617 

δ13C excursion during the Capitanian), which began in the early Capitanian (Isozaki et al. 2011). 618 

This has been associated with lows in atmospheric CO2, and cooler oceanic surface waters in 619 

both the Panthalassa and Paleo-Tethys Oceans (Isozaki et al. 2011; Nishikane et al. 2014). This 620 

cooling event may have allowed more moisture bearing weather systems to penetrate further 621 

northwards into the heart of Pangaea, from the Paleo-Tethys, so allowing greater delivery of mud 622 

into the playa systems of the Aylesbeare Mudstone Grp.  623 

 624 

The Southern Permian Basin, Parchim and Mirow formations shows a number of similarities to 625 

the Devon successions. The Parchim Fm dominantly comprises thick conglomeratic braidplain-626 

type deposits, extending to sandflat and locally playa mudstone deposits in the basin centre 627 

(McCann 1998; Rieke et al. 2003). Tectonic control of facies was important during the Parchim 628 

Fm. Like the Exeter Group in sequence Pm3 the Parchim Fm has an earlier wetter phase and a 629 

later dryer phase (Rieke et al. 2003). This is overlain by the Mirow Fm which is characterized by 630 

the progradation of sand-prone fluvial facies with frequent claystones, over a much wider extent 631 

in the Southern Permian Basin than the Parchim Fm. The rarity of conglomerates (except at basin 632 

margins), with instead claystones (containing fossils indicative of freshwater conditions) and 633 

sand-prone facies dominating, is very different to the Parchim Fm (McCann 1998). Hence, the 634 

start of the Mirow Fm sees a switch to climatically wetter conditions (Rieke et al. 2003), like 635 

seen in the Aylesbeare Mudstone Grp. The coincidence in timing and the switch to wetter 636 

environmental conditions, seen in the Devon successions and German basins, suggests these 637 

major facies changes are climatically controlled. 638 

Conclusions 639 

The palaeomagnetic signal in the Exeter and Aylesbeare Mudstone groups is carried by 640 

haematite, whose mean directions pass the reversal test. The remanence in the Exeter Grp passes 641 
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a fold test. On the basis of the AMS, the fabric carried by haematite is detrital in origin. Reverse 642 

polarity dominates in the lower part of the Exeter Grp, with the start of the Illawarra superchron, 643 

in the early Wordian, identified in the Exe Breccia Fm. Five normal-reverse couplets are found in 644 

the overlying sediments starting in the upper part of the Exe Breccia Fm (Langstone Mbr) and 645 

into the Aylesbeare Mudstone Grp. This magnetostratigraphic data allow the Exmouth Mudstone 646 

and Sandstone Fm to be dated to the Capitainian to the earliest Wuchiapingian, and the overlying 647 

Littleham Mudstone Fm dated to the earliest Wuchiapingian, through to the an age near the 648 

Wuchiapingian-Changhsingian boundary. The Permian successions in SW England successions 649 

are now the most precisely dated Permian succession in the UK, and should provide a foundation 650 

for the better understanding of other UK Permian basins. The similarity in the timing between 651 

sequences here, and those of the Rotliegend-II Group in the Southern Permian Basin, indicates 652 

that palaeoclimatic change is a fundamental metric in their subdivision. The question of the 653 

position of the Permo-Triassic boundary in SW England has now been effectively resolved, and 654 

ironically, now corresponds to the position taken by Victorian geologists such as Irving (1888).  655 
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Figure Captions 943 

Fig. 1. Sketch map of the Permian-Triassic in SE Devon. Inset shows the study location within 944 

UK, grey=Lower Palaeozoic basement highs, dotted=Permian basins. SPB=Southern Permian 945 

Basin. Numbers correspond to the sampling locations indicated in the Supplementary Data. From 946 

Selwood et al. (1984) and Edwards et al. (1997). Sampling locations on coast indicated by } and 947 

in-land as ■. 948 

 949 

Fig. 2. The stratigraphy of the Permian- Triassic in the Exeter, and SE Devon coastal area. Based 950 

on this work and Laming (1982), Selwood et al. (1984), Edwards & Scrivener (1999), Leveridge 951 

et al. (2003). Thicknesses of the coastal units is based on Selwood et al. (1984), Laming (1982) 952 

and this work. The chronology is based on Edwards et al. (1997), Edwards & Scrivenor (1999) 953 

and this work. The Torbay Breccia Formation occurs west of the Stickepath fault zone (SFZ, 954 

dashed in grey), and is divisible into an upper unit (the Paignton breccias, PB) probably 955 

equivalent to the Oddicombe  Breccia Fm , and a lower unit composed of several separate 956 

breccias units. PTM=Petit Tor Member. Arrows indicate overstepping units. 957 

 958 

Fig. 3. a) The erosional boundary between the Littleham Mudstone Fm (below) and the Budleigh 959 

Salterton Pebble Beds Fm (photo courtesy of Richard Porter), b) Immature calcrete and 960 

calcretised rootlets, top part of Straight Point Sandstone Member. c) Erosional boundary of 961 

breccia (arrowed) at base of the Littleham Mudstone Fm  Littleham Cove (photo courtesy of Ian 962 

West) Scale arrow height=1.5 m. d) Unconformable boundary (marked in white) between the 963 

Watcombe Fm and the Oddicombe Breccia Fm, Whitsands Bay, hammer for scale. E) Detrital 964 

opaques (black) and pigmentary haematite grain coating (in red), fluvial sandstone, Dawlish 965 

Sandstone Fm, Dawlish Station section. The right hand side opaque (a haematised rock fragment) 966 

shows compactional deformation from surrounding framework grains. F) Detrital opaque 967 

showing indentation due to compaction into the surrounding quartz grains. Pigmentary haematite 968 

rims not present at opaque-quartz boundary. Fluvial sandstone in Dawlish Sandstone Fm. Pore 969 

spaces in blue. Scale bar is 100 µm. 970 

 971 

Fig. 4. Section logs and summary palaeomagnetic data (horizon polarity, demagnetisation 972 

behaviour and specimen polarity) from sections in the Exeter Group. See Fig. 1 for location 973 

details. Symbols for specimen polarity and behaviour are larger for better quality behaviour (see 974 
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text for details). Ticks adjacent to logs are sampling levels. Sample numbers indicated, for data 975 

shown on other figures or in the supplementary data. 976 

 977 

Fig. 5. Section logs and summary horizon magnetic polarity data for the stratigraphic section 978 

between Lympstone (site 3 on Fig. 1) to the top of the Littleham Mudstone Fm at Budleigh 979 

Salterton (Fig. 1). Bed numbers on the log for the Exmouth Mudstones and Sandstones Fm are 980 

those of Selwood et al. (1984); the divisions in the Littleham Mudstone Fm are from this work 981 

(detailed in the supplementary data). Ticks adjacent to logs are sampling levels. Sample numbers 982 

indicated, for data shown on other figures or in the supplementary data. 983 

 984 

Fig. 6. Isothermal remanent magnetisation curves (A, C, E) and thermal demagnetisation of 985 

orthogonal IRM (B, D, F) for representative specimens. Specimen numbers are those shown on 986 

Figs. 4 and 5. sst=sandstone; TBF= Teignmouth Breccia Fm, EBF= Exe Breccia Fm. 987 

 988 

Fig. 7. Anisotropy of magnetic susceptibility data for the Littleham Mudstone Fm (a, e, i), The 989 

Exmouth Mudstone and Sandstone Fm (b, f, j), aeolian sandstones in the Dawlish Sandstone and 990 

Teignmouth Breccia formations (c, g, k), and the various breccia units (d, h, l). a),b),c),d), 991 

Steroegraphic projections of the specimen Kmax and Kmin directions. E), f), g), h) the AMS 992 

ellipsoid shape (T= [2(Lint-Lmin)/(Lmax-Lmin)]-1; where L=Ln(Ki)) and strength (P = Kmax/Kmin; 993 

Tarling & Hrouda, 1993), i),j),k), l), rose diagrams showing the directions of the Kmax axes, 994 

indicating the preferred grain long-axis directions in the bedding plane. Ns=number of 995 

specimens. 996 

 997 

Fig. 8. Representative demagnetisation data from: (a,b) the Littleham Mudstone Fm, (c,d)  998 

Exmouth Mudstone and Sandstone Fm, (e) Exe Breccia Fm, (f) Dawlish Sandstone Fm, (g) 999 

Teignmouth Breccia and (h) Watcombe Fm. a) Specimen L35, normal polarity (behaviour S1, 1000 

ChRM 500-660oC), b) EM30-4, reverse polarity (behaviour T1, component A, 0-500oC), c) E20, 1001 

normal polarity (behaviour S2, ChRM 600oC to origin), d) EL63, reverse polarity (behaviour T1, 1002 

Component A, 0-300oC), e) EB8-1A, normal polarity (behaviour S2, ChRM 300-500oC & 540oC 1003 

to origin), f) DS21-1, reverse polarity (behaviour T1, steps 500oC and above noisy due to thermal 1004 

alteration), g) DS4-2, reverse polarity (behaviour S2, ChRM 500-650oC), g) WB1-4, reverse 1005 

polarity (behaviour S1, ChRM 100-620oC, 680oC step shows thermal alteration). See Figs. 4, 5 1006 

for specimen locations.  1007 
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 1008 

Fig. 9. a) Stereographic projection of all ChRM directions, with mean of these directions 1009 

indicated for the units from the Aylesbeare Mudstone Group. B) The progressive unfolding fold 1010 

test of Watson & Enkin (1993), using the data from the Exeter Group; showing the change in 1011 

Fisher k with unfolding (left) and a pseudo-sampling bootstrap (right) to estimate the 95% 1012 

confidence interval on the unfolding %. 1013 

 1014 

Fig. 10. i) Detailed magnetostratigraphic data for the stratigraphic section between the 1015 

Lympstone sections (3 on Fig. 1) and Littleham Cove. A) Demagnetisation behaviour showing 1016 

categorisation into good (S1) and poor (S3) ChRM line-fits; great circle fit quality range from 1017 

good (T1) to poor (T3), and specimens with no Triassic magnetisation are indicated in the P/X 1018 

column (see text for details). B) Interpreted specimen polarity quality, with those in the greyed 1019 

column not assigned a polarity. Poorest quality in column headed ‘??’. C) VGP latitude, with 1020 

filled symbols for those specimens possessing an S-class ChRM, and unfilled symbols for 1021 

specimens with T-class, great-circle behaviour. II) Detailed magnetostratigraphic data for the 1022 

stratigraphic section between Littleham Cove and Budleigh Salterton (1 on Fig. 1). White= 1023 

reversed polarity, black =normal polarity, grey= uncertain, gap=X. Half bar-width indicates a 1024 

single useful specimen from this horizon.  1025 

 1026 

Fig. 11. Summary magnetostratigraphic data for European Permian sections, compared to the 1027 

composite geomagnetic magnetic polarity timescale (GPTS) of Hounslow (submitted). Southern 1028 

North Sea data for the Leman Sandstone Fm from Turner et al. (1999) and Lawton & Robertson 1029 

(2003). Czaplinek, Piła and Jaworzna IG-1 well data based on Nawrocki (1997) and 1030 

Słowakiewicz et al. (2009). Mirow well from Menning et al. (1988) and Langereis et al. (2010), 1031 

Schlierbachswald-4 and Everdingen 1 wells from Szurlies et al. (2003), Szurlies (2013). Related 1032 

Russian stage stratigraphy from Hounslow (submitted). Conodont zones (CZ) labelled with 1033 

Guadalupian (G) and Lopingian (L) zonal codes from Jin et al. (2000) and Shen et al. (2010). 1034 

Early Wuchiapingian carbon isotope excursions (CIE) and Kamura event duration from Chen et 1035 

al. (2011), Isozaki et al. (2011). 1036 

 1037 

 1038 
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Type/ Location/ Unit Dec Inc K αααα95 Nl/Np Reversal 

Test 

GO/GC Plat Plong Dp/Dm 

Littleham Mudstone Fm      
Line fits$ 12.4 29.2 26.0 5.4 28/0 R- 11.9/10.4* 53.6 156.3 3.3/6.0 
GC means+ 10.3 29.2 24.1 4.1 28/25 Rc 11.2/11.2 54.0 159.6 2.5/4.5 

Exmouth Mudstone and Sandstone Fm      
Line fits$ 14.0 27.1 22.2 4.3 52/0 Rc 11.3/13.3* 52.0 154.2 2.6/4.7 
GC means+ 14.2 29.0 18.2 3.8 52/27 Rb 2.4/10.0* 53.1 153.5 2.3/4.2 

Dawlish Sandstone and Exe Breccia fms      
Line fits$ 5.0 26.6 40.4 7.3 11/0 Rc 7.5/20.0 53.2 168.5 4.3/7.9 
GC means+ 359.4 32.7 8.1 11.3 11/12 Rc 9.6/11.9* 56.9 185.7 7.2/12.8 

Teignmouth Breccia Fm      
GC mean+ 174.8 -25.1 25.1 8.5 10/3 - - 52.4 184.8 4.9/9.1 

Oddicombe Breccia Fm      
Shaldon and Maidencombe$ 191.4 -24.4 116 3.4 16/0 - - 51.1 158.6 2.0/3.6 

Watcombe Fm, basal Oddicombe Breccia      

Watcombe$ 173.4 -20.0 28.0 10.7 8/0 - - 49.5 186.5 5.9/11.2 

           

Knowle Sandstone$ 195 -17 6842 3 2/0 -  - - - 

Exeter Volc. Fm1 198 -25 23 6.5 23/0 -  49.5 148.5 -3.8/7.0 

Exeter Volc. Fm2 189 -19 29 10 9/0 -  48 163 -5.4/10.4 

Exeter Grp sediments2 188 -14 24 26 3/0 -  - -  

           

Aylesbeare Mudstone Grp 13.5 27.8 23.6 3.3 80/0 Rb 6.7/7.4* 52.5 154.9 2.0/3.6 

Exeter Grp sediments 3.3 24.8 35.4 3.6 45/0 Rb 5.5/10.0* 52.4 171.2 2.1/3.9 

Table 1. Directional means (with tectonic correction), reversal tests and VGP poles. +=great circle combined mean using method of McFadden & 

McElhinney (1988). $=conventional Fisher mean. Nl=number of specimens using with fitted lines, and Np =number of specimens with great 

circle planes used in the determining the mean direction. α95, Fisher 95% cone of confidence. k, Fisher precision parameter. GO is the angular 

separation between the inverted reverse and normal directions, and Gc is the critical value for the reversal test. In the reversal test the Go/Gc 

values flagged with * indicate common K values, others not flagged have statistically different K-values for reverse and normal populations, in 

which case a simulation reversal test was performed. Plat and Plong are the latitude and longitude of the mean virtual geomagnetic pole1. From 

Zijderveld (1967); 2 from Cornwall (1967) 
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