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At a Glance

What is the current scientific knowledge on this subject?

Inflammation is implicated in respiratory failure and death in severe COVID-19. The 

relationships between viral organotropism and organ-specific inflammatory responses 

have not been characterised, so it is unknown if inflammation is a direct response to 

the presence of SARS-CoV-2 or if virus-independent immunopathologic processes 

contribute.

What does this study add to the field?

A disconnect between viral presence and inflammation implicates immunopathology 

as a primary mechanism of severe COVID-19. Specific immunopathologic features 

include mononuclear cell pulmonary artery vasculitis, pulmonary parenchymal 

expansion of monocytes/macrophages and stereotyped abnormal macrophage and 

plasma cell responses in the reticuloendothelial system, findings which validate 

ongoing investigations of immuno-modulatory and anti-inflammatory drugs in severe 

COVID-19.
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ABSTRACT

Rationale

In life-threatening COVID-19, corticosteroids reduce mortality, suggesting that 

immune responses have a causal role in death. Whether this deleterious inflammation 

is primarily a direct reaction to the presence of SARS-CoV-2 or an independent 

immunopathologic process is unknown.

Objectives

To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses, 

and the relationships between viral presence, inflammation, and organ injury.

Methods

Tissue was acquired from eleven detailed post-mortem examinations. SARS-CoV-2 

organotropism was mapped by multiplex PCR and sequencing, with cellular resolution 

achieved by in situ viral spike protein detection. Histological evidence of inflammation 

was quantified from 37 anatomical sites, and the pulmonary immune response 

characterized by multiplex immunofluorescence.

Measurements and Main Results

Multiple aberrant immune responses in fatal COVID-19 were found, principally 

involving the lung and reticuloendothelial system, and these were not clearly 

topologically associated with the virus. Inflammation and organ dysfunction did not 
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map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein, both 

between and within tissues. An arteritis was identified in the lung, which was further 

characterised as a monocyte/myeloid-rich vasculitis, and occurred along with an influx 

of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, 

stereotyped abnormal reticulo-endothelial responses, including excessive reactive 

plasmacytosis and iron-laden macrophages, were present and dissociated from viral 

presence in lymphoid tissues.

Conclusions

Tissue-specific immunopathology occurs in COVID-19, implicating a significant 

component of immune-mediated, virus-independent immunopathology as a primary 

mechanism in severe disease. Our data highlight novel immunopathological 

mechanisms, and validate ongoing and future efforts to therapeutically target aberrant 

macrophage and plasma cell responses as well as promoting pathogen tolerance in 

COVID-19.

Word count: 259
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INTRODUCTION

Inflammation, organ injury and death due to viral infection can occur as a result of 

direct viral cytotoxicity, collateral damage from an appropriate pathogen-driven 

immune response, or an aberrant response precipitated by the pathogen, causing 

immunopathology (1). Resilience to infectious disease is frequently thought of as best 

achieved through resistance (controlling pathogen load to prevent organ injury) but 

the emerging concept of tolerance (preventing organ injury and inflammation despite 

the presence of pathogen) is equally valid (2). In this context tolerance could involve 

restricting the production of injurious inflammatory effectors or moderating pro- and 

anti-inflammatory signalling downstream of pathogen sensing, to reduce 

immunopathology (3, 4).

Hyper-inflammation is a recognised component of coronavirus disease 2019 (COVID-

19), and associates with organ dysfunction, disease severity and death (5-7). Fatal 

COVID-19 most often occurs with critical impairment of oxygenation and treatment 

with corticosteroids has been robustly demonstrated to reduce mortality in these 

circumstances (8-13). This suggests that pulmonary inflammation has a causal role in 

death, but it remains unknown whether this inflammation is a direct response to the 

presence of SARS-CoV-2 or an independent immunopathologic process. Human 

immunology studies focusing on peripheral blood (7, 14) and bronchoalveolar lavage 

fluid (15) are revealing fundamental changes during COVID-19, but these approaches 

risk underestimating the immune changes within actual pulmonary tissue and so 
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immunophenotyping at a whole lung level in severe COVID-19 is essential. While 

COVID-19 is principally thought of as a pulmonary disease, increasing evidence shows 

that SARS-CoV-2 also has extra-pulmonary tissue tropism (16) and dysfunction of 

multiple organs occurs in COVID-19 (17). The relationship between presence of virus, 

evidence of organ injury and the associated immune response at a tissue and cellular 

level remains poorly defined.

In order to better understand the pathogen-host interaction and the immunological 

consequences of COVID-19, we present a multi-parameter tissue survey of fatal 

COVID-19. We sought to characterise and determine the relationships between viral 

organotropism and organ-specific immune responses. Some of the results of these 

studies were previously reported in the form of a preprint (18).

METHODS

Detailed methods are available in the Supplementary Methods in the online data 

supplement.

Post-mortem examinations

Post-mortem examinations were conducted in a biosafety level three (BSL3) post-

mortem facility on patients with pre-mortem PCR-confirmed SARS-CoV-2 infection 

and evidence of lower respiratory tract disease at a median of 19·3 hours after death 

(interquartile range 4·6–20·2). 37 tissue sites were systematically sampled, following a 

standardised protocol, for histology and RNA analyses including 23 from the 
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respiratory tract (Figure E1). Samples were fixed in formalin or treated with TRIzol, snap 

frozen and stored at -80C. Ethical approval was granted by the East of Scotland 

Research Ethics Service (16/ES/0084). Full clinical and radiologic details of our patient 

cohort are shown in Table 1, Figure E2 and Tables E1-2.

Tissue histology and immunofluorescence

Formalin-fixed paraffin-embedded (FFPE) tissue blocks were processed and 

haematoxylin & eosin stained following a standardised process in the hospital 

diagnostic pathology laboratory (19). Slides were reviewed by a group of specialist 

histopathologists who scored inflammation semi-quantitatively (none=0, mild=1, 

moderate=2, severe=3). For immunophenotyping, multiplexed immunofluorescence 

on de-paraffinised rehydrated FFPE slides was performed using combinations of 

primary antibodies against CD34, CD68, MRP8, CD4, CD8 and CD20, labelled with TSA-

conjugated fluorophores, with antibody removal between steps. Images were captured 

using a Vectra Polaris slide scanner (Akoya Biociences). Control tissue for 

immunophenotyping was obtained from lung cancer resection specimens. Uninflamed 

lung tissue distinct from the site of carcinoma was utilised for immunofluorescence.

Viral RNA and protein detection

Total RNA was extracted at BSL3 from homogenised TRIzol treated tissue. Samples 

were DNAse treated and cDNA synthesised before amplification of SARS-CoV-2 by the 

ARTIC Network protocol using the multiplexed primer scheme version three. Purified 
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PCR products were processed, sequenced and analysed as per the appendix. Post-

mortem interval was not associated with the number of tissue samples that were SARS-

CoV-2 PCR positive post-mortem (Figure E3). De-paraffinised, rehydrated FFPE slides 

were examined for presence of SARS-CoV-2 spike (S) protein, with this performed on 

randomly selected SARS-CoV-2 PCR positive tissue from four patients, with or without 

additional cell markers (CD68 (mononuclear phagocytes), AE1/3 (epithelium) and 

CD105 (endothelium)), to detect viral presence.

RESULTS

Mapping SARS-CoV-2 distribution to tissue inflammation

To create a detailed tissue atlas of fatal COVID-19 we sampled 37 distinct anatomical 

tissue sites at autopsy to identify viral RNA distribution and host immune responses 

(Figure E1). We detected SARS-CoV-2 RNA across all sampled organs and tissue sites, 

most frequently in the respiratory tract but also from the gastrointestinal tract, heart 

and muscle, and less often from the liver, kidney and other organs (Figure 1 A,B). 

Despite all sampled organs having the potential to contain SARS-CoV-2 RNA, we 

observed substantial inter-patient variation in the tissue sites involved (Figure 1B). The 

time from illness onset to death did not correlate with the number of PCR-positive 

organs (Figure 1B; Figure E3). Results from multiplex PCR were confirmed to map to 

the SARS-CoV-2 genome by sequencing (Figure 1 C,D) significantly increasing 

confidence in these data compared with a PCR-only approach. Viral subgenomic 
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messenger RNA (most commonly from the nucleocapsid gene) was also detected from 

PCR-positive sites, indicating active viral RNA synthesis had occurred (Figure E4).

As analysis of SARS-CoV-2 RNA confirmed presence in numerous organs, detailed 

tissue analysis was undertaken on every patient to determine the associated 

pathological consequences and immune responses. In contrast to the distribution of 

viral RNA, this analysis indicated that the lung and reticulo-endothelial system were 

the exclusive sites of an extensive inflammatory response (Figure 1A). Extra-pulmonary 

sites with virus present, and evidence of viral transcription, did not have substantial 

local inflammation.

To better resolve this organ-specific pathogen-host interaction at a spatial and cellular 

level, the presence of SARS-CoV-2 S protein was evaluated on randomly selected 

SARS-CoV-2 PCR-positive tissues. Consistent with the latest reports on tissue 

expression of SARS-CoV-2 entry factors (20), S protein was found predominantly within 

epithelia of the aero-respiratory tract, gastrointestinal tract, liver and kidney, with 

limited presence within macrophages (CD68+ cells) and endothelial cells (CD105+ cells) 

of lung tissue (Figure 1 E-F). The S protein was only rarely detected in some of the 

SARS-CoV-2 PCR negative tissues tested, and not in post-mortem tissues from patients 

who did not have SARS-CoV-2 infection (data not shown). While SARS-CoV-2 S protein 

expression within lung alveolar epithelial cells was patchy in nature, consistent with 

possible aspiration or inhalation of virus from the upper respiratory tract (21), 

expression at non-pulmonary sites frequently revealed several well demarcated areas 
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of confluent SARS-CoV-2 S protein expression within adjacent cells, surrounded by 

cells with no detectable protein (Figure 1 E). These ‘foci of infection’, with numerous 

affected cells adjacent to unaffected cells, are suggestive of cell-to-cell spread as 

reported in other coronavirus and respiratory viruses (22, 23).

Overall, we observed minimal evidence of acute inflammation in other organs (Figure 

1 A). Background changes of chronic disease were common, reflecting pre-existing co-

morbidities. Expected organ injury commensurate with severity of systemic illness was 

also present (e.g. renal acute tubular necrosis in mechanically ventilated patients, Table 

E3). Detectable viral RNA in the kidney (n=4 detectable), liver (n=4) and 

gastrointestinal tract (n=7) was not associated with inflammation scores or with 

biochemical evidence of acute kidney injury, peak ALT measurement or enteric 

symptoms, respectively (Figure E5). No acute tissue abnormalities were identified in 

the gastrointestinal tract or endocrine organs and no cases of myocarditis were 

identified despite frequent detection of viral RNA within these tissues (Table E3). 

Importantly, the presence of viral protein within the kidney (n=4 assessed), intestine 

(n=3) and liver (n=2) were not associated with a localised inflammatory response 

adjacent to the infected cells (Figure 1 E-F; Figure E6). 

Pulmonary inflammation and relationship to SARS-CoV-2

Pulmonary tissue was highly abnormal, with diffuse alveolar damage (DAD, the 

pathological hallmark of Acute Respiratory Distress Syndrome; ARDS), thrombosis and 

bronchopneumonia frequent but variable findings (Figure 2A). Unexpectedly, the 

Page 14 of 64

 AJRCCM Articles in Press. Published November 20, 2020 as 10.1164/rccm.202008-3265OC 
 Copyright © 2020 by the American Thoracic Society 



geographical distribution of SARS-CoV-2 RNA presence within the lung was not 

linearly associated with pulmonary inflammatory changes within our cohort as DAD 

and bronchopneumonia were both observed in sections of lung with and without 

detectable virus. In one patient (Patient I) virus could be detected in the absence of 

significant pulmonary inflammation. These findings strongly suggest that virus-

independent immunopathology, rather than direct viral cytotoxicity, is one of the 

primary mechanisms underlying severe COVID-19.

Consistent with recent reports, pulmonary thrombi were present in multiple patients 

(8/11; small vessel only n=1, large vessel only n=2, large and small vessel n=5) (Figure 

2A). A patchy but striking mononuclear cell vasculitis predominantly affecting intima 

of small/medium sized pulmonary arteries was also observed in 4/11 cases (Figure 2B). 

This pulmonary artery immune infiltrate was further characterised in two patients 

(A&C) by multiplex immunofluorescence (Figure 2 C,D). Unexpectedly, MRP8+ 

mononuclear cells were the predominant infiltrating population accompanied by a 

mixed population of CD4+ and CD8+ T cells and macrophages (Figure 2 C,D). 

Inspection of 40 inflamed vessels from the same patients did not identify SARS-CoV-

2 S protein within the surface endothelium (data not shown). No vasculitis was evident 

in any of the other organs studied.

Increased CD8+ T cells and reduced resident lung macrophages have recently been 

reported using single cell transcriptomics on bronchoalveolar lavage fluid (BALF) cells 

(15). However, this approach risks underestimating pathophysiological and immune 
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changes within the non-luminal pulmonary compartment. To understand the immune 

response at a whole lung level multiplex immunophenotyping was undertaken on 

pulmonary tissue (Figure 3 A-G; Figure E7). Our analysis revealed that the greatest 

increase in immune cells were predominantly within parenchymal regions rather than 

vascular/perivascular areas (Figure 3F-G). This showed that the largest relative 

increases were within the mononuclear phagocyte compartment (CD68+/MRP8- 

macrophages, then CD68+/MRP8+ monocytic cells) followed by CD8+ then CD4+ T 

cells. Smaller increases in CD20+ cells and MRP8+/CD68- cells were also observed.

Reticulo-endothelial system responses in fatal COVID-19

All cases showed a severe and stereotyped pattern of immunological changes 

regardless of viral RNA presence within the lymph node or spleen (Figure 3 H-J). Within 

the bone marrow, erythroid dysplasia, plasma cell excess with morphological atypia 

and iron storage abnormalities were identified (Figure 3H,I, Figure E8, Table E4). A 

marked increase in the number of plasma cells (5% or more) was seen in 5/8 bone 

marrow aspirates but these plasma cells had a normal phenotype on bone marrow 

trephines, being negative for CD56 and cyclin D1, and were polytypic with light chain 

immunohistochemistry (Figure E8). Iron laden macrophages were seen in all but one 

case examined (7/8) and associated with abundant iron storage on Perl’s stain. 

Although infrequent (1-2/1,000 cells), haemophagocytosis of erythroid and/or myeloid 

precursors was present in bone marrow in three cases. In mediastinal lymph nodes, 

marked reactive plasmacytosis of CD38+/MUM1+ and weakly CD138+ cells were seen 
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in the paracortex and medulla, again exhibiting a degree of nuclear pleomorphism. In 

the spleen, white pulp atrophy was common (4/7) similar to post-mortem observations 

in fatal SARS (24, 25). Splenic red pulp was congested and, in all cases, contained an 

increased number of plasma cells with similar features to those observed in 

mediastinal nodes.

DISCUSSION

The data presented in this manuscript have several implications for our understanding 

of severe COVID-19. Firstly, we show that fatal COVID-19 is associated with variable 

but widespread distribution of viral RNA and protein but with an unexpected 

discordant inflammatory response to local viral presence, both between and within 

tissues. If organ injury is primarily collateral damage to an appropriate local 

inflammatory response against SARS-CoV-2, it would be expected to have a temporal 

and spatial association with the presence of the virus. We have observed the opposite. 

In some cases inflammation was present in sections of lung without detectable virus 

(and in patients who had not received invasive mechanical ventilation). This could 

relate to non-resolving inflammation after viral clearance, or inflammation in areas of 

lung where viral replication had never occurred; considering the sensitivity of PCR for 

viral detection, we contend the latter is possible. Conversely, even at the time of death, 

up to 42 days after illness onset, viral products (both RNA and protein) and evidence 

of viral RNA synthesis (subgenomic mRNA) could be detected in numerous tissues but 

dissociated from host inflammatory responses. Furthermore, the time from illness 
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onset to death did not correlate with the number of PCR-positive organs. The presence 

of viral RNA within the kidney, intestine and liver was not associated with evidence of 

organ injury or inflammation. By spatially resolving viral presence we confirmed that 

in extra-pulmonary tissues, cells containing the SARS-CoV-2 S protein did not have an 

adjacent localised cellular immune response. These findings are consistent with strains 

of avian coronavirus which can replicate in the gut without causing macroscopic or 

histological changes (26). While lung tissue was frequently highly abnormal, to our 

surprise the geographical distribution of SARS-CoV-2 RNA presence within the lung 

was not linearly associated with either the presence or nature of the lung inflammatory 

response. Within our cohort, we report both DAD and bronchopneumonia in sections 

of lung with and without detectable virus, as well as viral presence but without 

inflammation. Together, these observations on the immunopathology in relation to 

SARS-CoV-2 reveal an aberrant immune response, principally involving the lung and 

reticuloendothelial system, that is not clearly topologically associated with viral 

presence. This is clinically relevant: the evidence we present of virus-independent 

immunopathology being a primary mechanism underlying fatal COVID-19 supports 

the prioritisation of tolerance as a therapeutic strategy. This is consistent with the 

beneficial effect of corticosteroids in severe disease (13) and importantly provides a 

potential biological mechanistic basis for their efficacy, validating ongoing 

investigations of immuno-modulatory and anti-inflammatory drugs (27).
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Secondly, we expand upon the observation of increased CD8+ T cells and reduced 

resident lung macrophages in BALF(15), by describing a marked relative increase in 

immune cells of the mononuclear phagocyte lineage, and to a lesser extent CD4+ and 

CD8+ T cells, within the non-luminal pulmonary compartment. Macrophage 

abnormalities were also seen within bone marrow, with iron laden macrophages 

observed in all but one patient, despite the absence of typical causes of secondary iron 

overload (transfusion, haemolysis), and is consistent with the observation that 

circulating ferritin correlates with adverse outcomes(28). In human immunodeficiency 

virus and hepatitis C virus infection, iron overload is associated with poor prognosis, 

with evidence that viral infection itself may enhance macrophage iron loading, further 

suggesting that iron overload is an aberrant macrophage response deleterious to the 

host in COVID-19(29). 

Third, consistent with emerging literature, small and large pulmonary vessel thrombi 

were common in our series (30-32). Thrombi in pulmonary vessels have also been 

reported in fatal cases of SARS (24, 33), influenza A virus infection (34, 35), and ARDS 

more generally, but the frequency in COVID-19 appears nearly a log order higher 

compared to influenza and may be due to distinct endothelial injury pathways(30) but 

the drivers of this are unknown. Here we describe an immune cell pulmonary arteritis 

in nearly half of our cases, a novel pathological process in severe COVID-19 that may 

contribute to endothelial cell dysfunction and vascular thrombosis, and could 

represent a therapeutic target. Phenotyping of this pulmonary vasculitis revealed that 
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the primary immune cells are not infiltrating T cells, in contrast to reports in fatal 

influenza (30), but MRP8+ mononuclear cells infiltrating into vessel walls. This COVID-

19 vasculitis was not associated with local endothelial viral S protein expression 

although S protein was identified within a small number of CD105+ endothelial cells in 

other vessels within the lung. This observation validates the drive to understand the 

immune microenvironment at a whole lung level and is particularly interesting 

considering the identification of pro-inflammatory monocyte-derived macrophages in 

bronchoalveolar lavage fluid (15) and the recent report of C5aR1+ macrophages 

associated with obliterating arteritis in a COVID-19 autopsy sample, implicating 

mononuclear phagocyte activation and expansion as important pathologic processes 

in COVID-19 (36). Indeed, therapeutic targeting of the C5a axis has been proposed 

(37). The observation is also consistent with the finding that the myeloid growth factor 

GM-CSF and the monocyte/macrophage chemoattractant MCP-1 are elevated in 

blood and associated with COVID-19 severity(38, 39). Going forward, it will be 

important to clarify whether these macrophage abnormalities, within inflamed 

pulmonary vessels, lung parenchyma and reticulo-endothelial tissues, have an anti-

viral or tissue repair role, or whether being activated as part of the wider immune 

response to virus they are themselves promoting vascular and tissue injury. The 

implications for opposing strategies to either boost or inhibit macrophage function 

are obvious, and necessitate urgent further investigation.
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Fourth, plasma cell abnormalities in the reticuloendothelial system and lung provided 

further evidence of an aberrant host response in fatal COVID-19. While plasma cell 

expansion is expected to ensure production of antibody in the context of acute 

infections, the levels seen in our study were extremely marked. Plasma cells exhibited 

morphologic atypia but displayed a reactive, polytypic phenotype. To some extent this 

correlates with peripheral blood findings in patients with COVID-19 where CD4+ and 

CD8+ T-cell depletion is characteristic but B-cell numbers are maintained, with higher 

B-cell numbers reported in severe cases(40, 41). The plasma cells in our study were 

generally MUM1+ and CD38+ but CD138 (syndecan) low/negative raising the 

possibility that these are short-lived plasma cells or are at a transitional or arrested 

stage of development(42). In addition to macrophage behaviour and iron 

accumulation, this identifies plasma cells as a priority for future investigation of 

therapeutic targets.

This report has several limitations. We did not recruit non-COVID-19 patients into our 

cohort as this work was conducted as an urgent investigation into COVID-19, rather 

than to describe how COVID-19 differs from any other specific pulmonary/systemic 

disease or infection. Indeed, any immuno-pathological changes in COVID-19 that are 

shared with other causes of severe pulmonary injury/inflammation may still be avenues 

for therapeutic intervention. Reports of histological findings in fatal influenza provide 

some comparison as discussed above in the context of thrombosis, but we are unaware 

of a similar depth of pulmonary parenchymal immunophenotyping being reported. 
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The bone marrow B-cell and macrophage iron storage abnormalities reported here 

have not been observed in fatal influenza and may therefore be unique to COVID-19 

(43, 44). The patient cohort is heterogeneous, in particular with respect to age, receipt 

of invasive mechanical ventilation (based on clinical escalation decisions) and receipt 

of experimental therapeutics (corticosteroids and azithromycin). Whilst we were 

unable to perform viral culture due to biosafety requirements we have partly mitigated 

this by identifying and sequence reads unique to viral subgenomic mRNA as an 

indicator of viral RNA synthesis. Viral RNA detection was performed by non-

quantitative multiplex PCR but we recognise quantification of viral load using 

quantitative RT-PCR would yield potentially useful data. Finally, the histopathologists 

assessing tissue inflammation were not blinded to the diagnosis of COVID-19.

Taken together, these data provide comprehensive clinical, viral and immunological 

profiling of severe COVID-19. This highlights, for the first time, the discrepancy 

between the presence of SARS-CoV-2 and tissue inflammation. We conclude that 

death in COVID-19 occurs with a significant component of immune-mediated, rather 

than pathogen-mediated, organ inflammation and injury. This is consistent with the 

recent discovery that immunosuppression with corticosteroids prevents death in 

severe COVID-19, supporting virus-independent immunopathology being one of the 

primary mechanisms underlying fatal COVID-19. This suggests that better 

understanding of non-injurious, organ specific viral tolerance mechanisms and 
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targeting of the dysregulated immune response merits further investigation in COVID-

19.
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FIGURE LEGENDS

Figure 1. Mapping SARS-CoV-2 organotropism and cellular distribution in fatal 

COVID-19 in relation to tissue inflammation.

(A) Distribution of SARS-CoV-2 RNA for all patients was determined by multiplex PCR 

(colour intensity denotes frequency of detectable RNA, dotted line on legend denotes 

maximal frequency within the patient cohort) (n=11). Extent of organ-specific 

inflammation was assessed semi-quantitatively (0-3; no inflammation (0) to severe 

inflammatory changes (3)) with aggregate scores visualised (n=11). (B) Distribution of 

individual patient viral RNA presence within organs plotted against time interval 

between illness onset and death compared with organ specific inflammation scores 

for each patient. (C-D) Multiplex PCR positive samples were confirmed by sequencing, 

with (C) the proportion of the SARS-CoV-2 genome mapped calculated and (D) a 

representative sequence coverage map of the respiratory tract of one patient shown. 

(E-F) Tissue and cellular distribution of SARS-CoV-2 S protein was evaluated by 

immunohistochemistry and multiplex immunofluorescence on randomly selected 

SARS-CoV-2 PCR-positive FFPE tissue (n=4 patients). (E) Representative images 

demonstrate the tissue distribution of S protein within nasal mucosal, bronchial 

epithelium, small bowel enterocytes, distal biliary epithelium within the liver and distal 

renal tubular epithelium; scale bar = 50 micrometers. (F) Within the lung, cellular 

localization of S protein is demonstrated within the alveolar epithelium (AE1/3) and 

rarely in macrophages (CD68) and endothelium (CD105) within the lung parenchyma. 
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Figure 2. Delineating pulmonary injury and vascular involvement in fatal COVID-

19.

(A) Detailed spatial evaluation of lung injury and key pathological abnormalities were 

determined within each lobe of lung for each patient (A-K) and compared with the 

presence or absence of SARS-CoV-2 viral RNA by multiplex PCR (*denotes invasive 

mechanical ventilation, n=11). LUL-left upper lobe, LLL-left lower lobe, RUL-right upper 

lobe, RML-right middle lobe, RLL-right lower lobe. Representative images of 

organising and exudative diffuse alveolar damage, pulmonary thrombus, 

bronchopneumonia, uninflamed lung, and variable inflammation within the same lung. 

(B) In four individuals frequent pulmonary vasculature immune infiltration was seen, 

with (C) multiplex immunofluorescence defining these immune cell populations (CD4, 

CD8 (T cells); CD20 (B cells); CD68 (macrophages); MRP8 (neutrophils and myeloid 

lineage cells)) demonstrating MRP8 immunopositive mononuclear cells to be the 

predominant cell type (representative image, white stars denotes vessel lumen and 

white dashed line denotes elastic lamina) scale bar = 200 micrometers. (D) Analysis of 

50 arteries/arterioles from two selected patients quantifying cell types involved in 

vasculitis.

Figure 3. Pulmonary tissue and reticulo-endothelial immune responses to fatal 

COVID-19.

Regions of interest were defined by histological examination of H&E stained lung 

tissue to identify areas of diffuse alveolar damage (DAD) in tissue from five patients 
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(A: representative image). Corresponding multiplex immunofluorescence defined 

vascular endothelium (CD34) relative to immune cell populations: CD4, CD8 (T cells); 

CD20 (B cells); CD68 (macrophages); MRP8 (neutrophils and myeloid lineage cells) (B) 

with and (C) without autofluorescence scale bar = 200 micrometers. Separate cell 

populations are highlighted in panels D-E. Immune cell populations were quantified, 

with (F) relative abundance of cell types compared between COVID-19 (n=5) and 

normal, uninflamed lung from patients undergoing lung cancer resection (n=4) and 

(G) spatially stratified into vascular/perivascular and parenchymal regions. (H) Key 

pathological abnormalities within bone marrow included erythroid dysplasia, iron-

laden macrophages and haemophagocytosis; plasma cells were confirmed by 

immunohistochemical staining and quantified in bone marrow aspirates. (I) 

Representative image of bone marrow aspirate analysis demonstrating erythroid 

dysplasia (white arrows) and frequent plasma cells (red arrows). (J) Mismatch between 

stereotyped plasma cell abnormalities in spleen and mediastinal lymph node (LN) (red) 

and detection of SARS-CoV-2 by multiplex PCR (green: PCR-positive; grey: PCR-

negative).

Page 37 of 64

 AJRCCM Articles in Press. Published November 20, 2020 as 10.1164/rccm.202008-3265OC 
 Copyright © 2020 by the American Thoracic Society 



TABLE

n=11
Age, y 76.8 11.7
Sex, M/F 10/1
Illness duration, d 23.6  10.0

Clinical & radiological features
Hypoxic respiratory failure 11 (100)
Bacterial pneumonia

Microbiologically-confirmed 4 (36.4)
Suspected 6 (54.5)

Thoracic radiology
Pulmonary GGO 11 (100)
Pulmonary embolism 3 (27.3)

Supportive care
Supplemental oxygen 11 (100)
Invasive mechanical ventilation 4 (36.4)

Duration, d* 18.3  7.8
Vasopressors 4 (36.4)
Renal replacement therapy 3 (27.3)

Abbreviations: GGO = ground glass opacification; CRP = C-reactive protein.
*time from intubation to death.
Data are presented as mean  SD or absolute number (% of total).
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Figure 1.
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Figure 3. 
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Supplementary Methods

Post-mortem examinations

Patients with pre-mortem PCR-confirmed SARS-CoV-2 infection and evidence of lower respiratory tract 
disease, who were considered to be approaching the end of life, were referred to the research team by 
their responsible clinician. After death, authorization for a hospital post-mortem and collection of 
tissues and data for research was requested from the decedent’s nearest relative. Royal College of 
Pathologists guidance on COVID-19 autopsies were followed (1). All staff wore personal protective 
equipment including FFP3 respirators and all post-mortem examinations were conducted within a high-
risk facility. Representative samples were collected systematically, following a standardized sampling 
and fixation protocol, from the vitreous, blood, posterior nasal mucosa, posterior base of tongue, tonsil, 
thyroid, trachea (upper and lower), bronchi (right and left main), sub-carinal/peri-hilar mediastinal 
lymph nodes, lung (all five lobes), heart (right and left ventricle), liver, kidney, spleen, pancreas, adrenal, 
stomach, jejunum, ileum, colon (ascending and descending) and muscle (quadriceps, diaphragm and 
intercostal) (Supplementary Fig. 1). Bone marrow aspirate (1ml) and trephine were taken from the 
anterior aspect of the right ribs. Brain tissue was not sampled due to local health and safety 
arrangements.

Histopathological analysis

Sample processing followed a standardised pipeline in the hospital diagnostic pathology laboratory (2). 
Following haematoxylin and eosin staining of tissue, additional special stains and 
immunohistochemistry were performed as required for clinical diagnostics. Bone marrow trephine 
samples were decalcified in EDTA prior to processing. Bone marrow aspirates were collected in EDTA 
then smear and squash preparations were prepared, fixed and stained with Wright-Giemsa and Perl’s. 
Bone marrow cellularity was assessed at 10x power and morphological assessment was performed at 
50x. A minimum of 1000 nucleated cells were counted to assess hematopoietic activity, proportions of 
cell lineages, morphology and iron storage. Organ histology was reviewed by a group of expert organ-
specific histopathologists (WAW, DAD, COCB, WAQ, AO, MS, DNP, DKW). Formal reports were written 
for each case and subsequently semi-quantitatively scored based on the degree of acute organ injury 
and inflammation (for each: none=0, mild=1, moderate=2, severe=3) and absence or presence (a or b 
respectively) of pre-existing chronic change. Acute lung injury scoring incorporated features of diffuse 
alveolar damage and bronchopneumonia. Other organs were scored for features of acute necro-
inflammatory injury while spleen and lymph node scores were based on the extent of aberrant 
morphological features.

Multiplex immunofluorescence

FFPE slides were de-paraffinized and rehydrated. Endogenous peroxidase was blocked with 3% H2O2 
for 30 mins. Antigen retrieval was performed in a decloaking chamber (BioCare) at 110ºC for 30 mins in 
EDTA (0.175mM pH 8) followed by cooling and rinsing with water then PBS. Slides were then incubated 
with the primary antibody at indicated concentrations (Supplementary Table 5) for 30 mins at room 
temperature (or overnight at 4ºC for CD68), followed by Opal polymer HRP-conjugated secondary 
antibody for 30 mins, then with the chosen Opal (Akoya) fluorophore (1:100) for 10 mins. Each step was 
followed by washes with PBS. Microwave treatment in EDTA (0.175mM), for 15 mins once boiling, was 
used for antibody removal between steps and this was repeated as required for multiplex staining. Slides 
were then incubated in DAPI for 5 mins at room temperature, rinsed with PBS and water, then mounted 
with ProLongTM Diamond (Invitrogen). Images were captured using a Vectra Polaris slide scanner (Akoya 
Biociences). A whole slide scan at x20 resolution was used to select regions of interest for multi-spectral 
scanning, with an average of 40 fields (931x698m) per section (40x resolution using objective 0.75NA 
at 2x2 binning). Single colour staining done in parallel with the experiment was used to build a specific 
spectral library (Supplementary Fig. 5) allowing optimum spectral un-mixing of the fluorophores and 
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phenotyping analysis. Images were analysed using inForm 2.9.5 with (i) trainable tissue segmentation 
on autofluorescence, DAPI and CD34, with medium pattern, extra fine segmentation resolution and 
trimming edges by 4 pixels and (ii) adaptable cell segmentation with DAPI as a nuclear marker (minimum 
size 30 m, splitting sensitivity of 0.77) and CD8, CD4 and MRP8 as assisting membrane stains (nuclear 
splitting sensitivity of 1.58), and phenotyping in layers (CD4+, CD8+, CD20+, MRP8+/CD68+). Complex 
phenotypes (CD68+/-, MRP8+/-) were analysed using PhenopTR (akoyabio.github.io/phenoptr/) in R 
(package version 0.2.7). Statistical analysis was performed in Minitab 19 Statistical Software (2019, State 
College, Pennsylvania).

Primary antibody concentrations were optimized using 3,3'-diaminobenzidine chromogen-based 
staining, followed by single colour immunofluorescence with one fluorophore to assess the relative 
intensities of the markers. All markers were then allocated a fluorophore according to intensity to 
achieve a balanced intensity over all the fluorophores. The antibodies and concentrations used are 
shown in Table S6. Assessment of inflammatory cell infiltration into vessel walls was performed in 50 
arterial profiles from two patients with approximately 900 cells phenotyped. Archived uninflamed lung 
tissue was obtained from background lung tissue taken at the time of lung cancer resection through 
NHS Lothian BioResource SR419.

RNA extraction and SARS-CoV-2 PCR

TRIzol treated tissue samples were placed into 2 ml tissue homogenizing CKMix tubes (Precellys®) 
containing 1 ml of TRIzol reagent (Invitrogen). Samples were homogenized using a Bead Mill 24 
Homogenizer (Thermofisher) at 4 m/s for 1 min. Samples were stored at -80C until further processing. 
RNA extraction was performed according to the manufacturer’s instructions (Invitrogen) using 
GlycoBlue™ co-precipitant (Thermofisher) to maximize yields. Directly following extraction, samples 
were DNase treated using TURBO™ DNase (Thermofisher) as per manufacturer’s instructions. RNA 
concentration and quality were assessed using a Nanodrop One spectrophotometer (Thermofisher). 
RNA reverse transcription and PCR steps were carried out essentially as described in the protocol 
published by the ARTIC Network (2). Reverse transcription used SuperScript IV reverse transcriptase 
(Invitrogen) to generate single strand cDNA using a random primer mix (NEB, a mixture of random 
hexamers and anchored dT primer). The ARTIC primer set multiplex (v3), made up of 98 primer pairs, 
was used to create tiled PCR amplicons across the SARS-CoV-2 viral cDNA. Reaction conditions were: 
denaturation at 98C for 30 sec followed by 40 cycles of 15 sec denaturation at 98C; 5 min annealing 
and extension at 65C; final hold at 4C. Agarose gel analysis (1.5% gel, 1x TBE, 1x SYBR Safe DNA stain, 
run for 30 min at 110 V) was performed for verification of PCR products (ARTIC primers approximately 
400bp) for every sample and each multiplex pool. Samples that were positive for SARS-CoV-2 were 
referred for sequencing. 

SARS-CoV-2 genome sequencing and bioinformatic analysis

The PCR products from pool 1 and pool 2 ARTIC multiplex reactions for each sample were pooled and 
purified using AMPure XP beads (Beckman Coulter). Quantification of the amplicon pools before 
normalization was performed using a Qubit 4 fluorometer (Thermofisher). 50 ng of purified PCR product 
was end-prepared with Ultra II End repair/dA-tailing Module (NEB) and incubated at 20C for 5 mins 
then 65C for 5 mins. Nanopore native barcodes (EXP-NBD104/114) were ligated to end-prepared DNA 
using Ultra II Ligation Module (NEB) and incubated at 20C for 20 mins then 65C for 10 mins. Up to 24 
barcoded samples were pooled and purified with AMPure XP beads (Beckman Coulter). Sequencing 
adapters were ligated to the barcoded library using the Quick Ligation Module (NEB) and incubated at 
room temperature for 20 mins. The sequencing library was purified once more with AMPure XP beads, 
eluted and loaded on a FLO-MIN106D flow cell for sequencing using Oxford Nanopore MinION or 
GridION based platforms. Minimap2 was used to align fastq sequences to the SARS-CoV-2 isolate 
Wuhan-Hu-1 reference genome (NC_045512.2) using the -ax map-ont parameters. Samtools was used 
to sort and index alignment files, and Picard was used to mark duplicates. A custom script written in 
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perl, was used to determine viral genome coverage which was then visualised in RStudio. Genome 
coverage for every PCR-positive sample is shown in Fig. S4.

Detection of SARS-CoV-2 S protein by immunohistochemistry

2.5µm thick FFPE sections were cut and dewaxed in bond dewax solution for 30 secs at 72°C then 
rehydrated in absolute alcohol then bond wash buffer. Antigen retrieval was performed with ER1 buffer 
(pH 6) at 100°C for 20 mins followed by rinsing in wash buffer then peroxidase blocking for 7 mins 
(BOND Polymer Refine Detection, Leica). Sections were incubated with anti-SARS S protein antibody 
(Abcam, clone number 3A2, catalogue number ab272420) diluted 1:500 in antibody diluent (Agilent) for 
30 mins then rinsed with wash buffer. Post primary, polymer, DAB chromogen, then haematoxylin 
counterstain incubation steps were performed (BOND Polymer Refine Detection, Leica) and sections 
were dehydrated in alcohol then cleared in xylene prior to mounting. Whole slide images of brightfield 
and fluorescence slides were digitized using a Zeiss Axio Scan.Z1 scanner (Zeiss Microscopy) through a 
Plan-Apochromat 20x/0.8 M27 objective. Exposure times were set using a positive control tissue for a 
set of fluorescent probe panels and were kept constant across all slides stained using the named panel. 
Negative technical (no primary antibody) and biological (SARS-CoV-2 PCR-negative tissue) controls 
were included and tested. Isotype control showed complete negativity (Figure E9). A number of different 
SARS-CoV-2 spike glycoprotein antibodies were validated in house. Biological negative and positive 
control tissues, utilised for the antibody validation, were archival pre-Covid-19 autopsy lung tissue and 
current Covid19 PCR positive tissue, respectively. Moreover, a VERO cell line infected with SARS-CoV-2 
virus (and uninfected control) were utilised to further validate the antibodies. For multiplexed 
immunofluorescence, primary antibodies used are listed in Table S6. Multiplexed scanned (whole slide 
imaging) images were imported into QuPath v0.2.0 (4). Individual cells were detected by the cell 
detection tool in QuPath using the hoechst channel. Single measurement classifiers were utilized to 
sub-classify AE1/3+, CD105+ and CD68+ cells by the intensity of FITC, Cy3 and AF750 channels, 
respectively. In addition, S protein measurement classifier was set to distinguish its positivity in the Cy5 
channel which was corroborated with IHC and subsequent negative controls. These single measurement 
classifiers were then combined into a composite classifier which measured the number of cells co-
expressing AE1/3 and S protein, CD105 and S protein, and CD68 and S protein.
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Supplementary Figures

Figure E1. Schematic diagram of organs and tissues sampled at post-mortem.
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Radiographic investigations and reports from all cases were reviewed by a multi-disciplinary team 
comprising thoracic radiologists, respiratory clinicians and specialist thoracic pathologists. Imaging was 
scored by a thoracic radiologist based on the presence (1=mild, 2=moderate, 3=severe) or absence (0) 
of relevant features. When cross-sectional imaging had not been performed during or shortly before 
the acute episode, any previous imaging was reviewed to identify pre-existing features such as 
emphysema, bronchiectasis, fibrosis or coronary artery calcification. Plain chest radiographs were 
available for all patients, demonstrating bilateral, peripheral, patchy consolidation or ground glass 
opacification of varying severity. Computed tomography pulmonary angiography (CTPA) was 
performed in five cases. In mechanically ventilated (MV) patients, features consistent with ARDS were 
apparent in addition to new cystic changes (cases A and B) and prominent basal bronchi with varicosities 
and traction (traction bronchiectasis), likely secondary to extensive consolidation but potentially due to 
the development of early fibrotic change (cases A, B, D). Pleural effusions, a less common radiologic 
feature of Covid-19 (5), were identified in 5/11 cases. Features of underlying respiratory or cardiac 
disease (emphysema, bronchiectasis, coronary artery calcification) were present in current and previous 
imaging of patients managed in the ward setting.
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Figure E3. No relationship between proportion of multiplex PCR-positive samples and time to 
post-mortem or time from illness onset to death. 
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(a) The percentage of tissue samples obtained at post-mortem that tested positive by multiplex PCR 
post-mortem vs. the post-mortem interval, defined as the time from death to starting post-mortem 
examination, and (b) the number of PCR-positive organs vs. time from illness onset to death. Pearson 
correlation coefficient is shown
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Figure E4. SARS-CoV-2 subgenomic messenger RNA. 
Viral subgenomic mRNAs from each viral open reading frame were identified from sequencing reads of 
multiplex PCR products. The graphs show the presence/absence of subgenomic mRNA, indicative of 
active viral RNA synthesis, for specified anatomical sites. N refers to number of patients with PCR 
products available. 
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Figure E5. Viral RNA detection in liver tissue and peak ALT.
Presence or absence of SARS-CoV-2 in liver tissue vs. peak ALT. Bar represents median peak ALT 
measurement. Groups compared by Mann-Whitney test.

ca b

Figure E6. Absence of inflammatory cell infiltrate in areas of ileum, liver and kidney that were 
positive for SARS-CoV-2 S protein.
Corresponding H&E images of the same area within the tissue sections of (a) small intestine, (b) liver 
and (c) kidney displayed in Fig. 1. Images do not entirely overlap as multiple sections were taken 
between H&E and immunohistochemistry. 
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Figure E7. Spectral library used for multiplex immunofluorescence images and data analyses in 
Figure 3.
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a b c

d e

Figure E8. Reticulo-endothelial responses in fatal Covid-19.
Bone marrow trephine (a) confirmed the increased plasma cell number with immunohistochemical 
staining for (b) CD38 and (c) MUM1, with no evidence of a light chain restriction (d, lambda; e, kappa)

a b

c d

Figure E9. Control samples used to validate S protein detection by immunohistochemistry.
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(a) Isotype control antibody and (b) anti-S protein antibody staining of nasopharyngeal tissue confirmed 
negativity for the isotype control. (c) and (d) show negative anti-S protein antibody staining of negative 
biological controls (lung tissue). Scale bar = 50 micrometers
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Supplementary Tables

Table E1. Clinical details of included patients.

Symptoms* Supportive care

Pa
ti

en
t

A
ge

, S
ex

Past medical 
history

Re
sp

ira
to

ry

En
te

ric

Sy
st

em
ic

Fe
ve

r 
(

38
C

)

Ill
ne

ss
 d

ur
at

io
n 

(d
)†

O
2 

IM
V‡

Va
so

pr
es

so
rs

RR
T

Complications§ Bacterial infection

Antimicrobials
Anticoagulants
Corticosteroids

Trial agents

A 66, M
CVD,
hypothyroidism,
psoriasis

+ + + + 25 +
+

19d
+ +

ARDS (P:F 89mmHg), AKI,
impaired RV function

Confirmed VAP
(BAL: S. aureus & E. coli)

Antimicrobials
Heparin SC (prophylaxis)
Corticosteroids

B 67, M

Non-Hodgkin’s 
lymphoma, in 
remission 
(rituximab)

+ – + + 37 +
+

12d
+ +

ARDS (P:F 205 mmHg), AKI,
PE, impaired RV function

No
Antimicrobials
LMWH SC (therapeutic)

C 72, M
COPD, PE,
small cell lung 
cancer (6 years)

+ – + + 22 + – – – Pneumonitis
Confirmed HAP (sputum: 
coliforms & H. influenzae)

Antimicrobials
DOAC (previous PE)
Corticosteroids

D 68, M HTN + + + + 25 +
+

13d
+ –

ARDS (P:F 74mmHg)
impaired RV function

Confirmed co-infection on 
admission (sputum: S. aureus 
& S. pneumoniae)

Antimicrobials
LMWH SC (prophylaxis)

E 64, M
Sick sinus 
syndrome, CVD

+ – + + 42 +
+

29d
+ +

ARDS (P:F 82mmHg), AKI,
vasopressor refractory shock

Confirmed VAP
(BAL: K. oxytoca)

Antimicrobials
Heparin SC (prophylaxis)
Corticosteroids

F 78, M

COPD, MGUS,
post-mortem 
diagnosis B-cell 
lymphoma.

– – + + 11 + – – – Pneumonitis, AKI
Suspected co-infection on 
admission

Antimicrobials

G 84, F
PBC, COPD,
recent PE

+ – + + 29 + – – – Pneumonitis, PE Suspected HAP
Antimicrobials
LMWH SC (therapeutic)
Corticosteroids

H 84, M
Dementia, AF,
diverticulitis

+ – – – 16 + – – – Pneumonitis, PE Suspected HAP
Antimicrobials
LMWH SC (therapeutic)

I 70, M
Type 2 DM, HTN,
IHD, CVD,
dementia

+ – + + 9 + – – – Pneumonitis Suspected HAP
Antimicrobials
LMWH SC (prophylaxis)
Azithromycin (trial)
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J 97, M
IHD, COPD,
HTN, AF, CKD,
AS

+ + – + 21 + – – – Pneumonitis, AKI Suspected HAP
Antimicrobials
LMWH SC (prophylaxis)
Corticosteroids

K 95, M
CKD, HF, MGUS, 
AS

+ – + + 23 + – – – Pneumonitis, AKI Suspected HAP
Antimicrobials
LMWH SC (prophylaxis)

Patients had a mean age of 77 years (range 64–97), 10/11 were male, and the mean duration of symptoms prior to death was 24 days (range 9–42). All had 
pulmonary ground glass opacification on thoracic radiology indicative of viral pneumonitis. Four patients received mechanical ventilation (MV), for a mean of 
18 days, and had a median P:F ratio of 86 mmHg prior to death, compatible with severe ARDS (6). Biochemical AKI (defined as increase in serum creatinine of 
26.5mol/L) or requirement for renal replacement therapy was present in 6/11 patients. Microbiologically confirmed (4/11) or clinically suspected (6/11) bacterial 
co- or secondary infection was common. HAP and VAP were diagnosed based on timing of onset relative to hospitalisation (HAP, >48h after admission) or 
intubation (VAP).

*Respiratory: respiratory symptoms (cough, sputum, sore throat, runny nose, ear pain, wheeze, chest pain); Enteric: gastrointestinal symptoms (abdominal pain, 
vomiting, diarrhoea); Systemic: systemic symptoms (myalgia, joint pain, fatigue). Symptom clusters defined by reference (7).
†Illness duration refers to time from symptom onset to death.

‡Duration for MV refers to time from intubation to death.

§P:F ratio calculated from results closest to time of death.

AF: atrial fibrillation; AKI: acute kidney injury; ARDS: acute respiratory distress syndrome; AS: aortic stenosis; BAL: bronchoalveolar lavage; COPD: chronic 
obstructive pulmonary disease; CKD: chronic kidney disease; CVD: cerebrovascular disease; DOAC: direct oral anticoagulant; DM: diabetes mellitus; HAP: hospital-
acquired pneumonia; HF: heart failure; HTN: hypertension; IHD: ischemic heart disease; IMV: invasive mechanical ventilation; LMWH: low molecular weight 
heparin; MGUS: monoclonal gammopathy of uncertain significance; O2: supplemental oxygen; PBC: primary biliary cirrhosis; PE: pulmonary embolism; RRT: renal 
replacement therapy; RV: right ventricle; SC: subcutaneous; VAP: ventilator-associated pneumonia.
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Table E2. Laboratory results closest to time of death.
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t
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, x
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9 /
L
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09 /
L
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x1
09 /

L
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si
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ph

ils
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x1
09 /

L
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at

el
et

s,
 

x1
09 /

L

Fi
br

in
og

en
,

g/
L

PT
, s

ec
s

A
PT

T,
 s

ec
s

U
re

a,
 m

m
ol

/L

Cr
ea

ti
ni

ne
, 

m
ol

/L

A
LT

, u
ni

ts
/L

Bi
lir

ub
in

, 
un

its
/L

CR
P,

 m
g/

L

M
ax

im
um

 C
RP

, 
m

g/
L

A 79 15.4 12.7 0.5 0.3 0 216 3.5 13 30 9.5 102 30 17 134 272

B 89 11.7 10.4 0.3 0.68 0.29 204 7.6 14 36 7.3 81 734 24 243 243

C 144 7.5 6.84 0.39 0.2 0.01 89 6.7 21 36 10.3 82 33 11 126 270

D 95 28.4 25.45 1.58 1.12 0.21 643 5.8 17 27 9.6 57 51 10 258 318

E 71 12.4 8.92 1.62 1.4 0.33 348 6.2 12 27 8.9 159 31 14 356 371

F 106 6.4 5.78 0.45 0.17 0.01 180 5 16 41 12.1 146 41 8 242 242

G 69 9.4 7.5 0.64 1.26 0.01 370 NA NA NA 5.4 45 12 8 186 287

H 105 6.6 5.74 0.54 0.27 0.01 272 7 15 28 13.6 69 20 14 161 366

I 131 3.8 2.66 0.78 0.4 0.01 156 NA NA NA 5.1 67 41 19 91 91

J 113 14.6 13.39 0.69 0.48 0.01 272 NA NA NA 43.1 214 177 14 33 123

K 88 13.3 9.63 2.91 0.77 0.02 212 4.9 13 29 40.2 343 19 6 332 332

Reference 
range

115-
160

4.0-11.0 2.0-7.5 1.4-4.0 0.2-0.8 0.04-0.4 150-400 1.5-4
10.5-
13.5

26-36 2.5-6.6 50-98 10-50 3-21 <5 <5
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Table E3. Summary of kidney, liver, heart and muscle histological findings.

N
(n=11)

Kidney
Acute
Acute tubular injury 

Mild 4
Severe 1

Platelet/fibrin thrombus 2
Vasa recta leucocytosis with immature cells

Frequent 2
Rare 3

Reactive podocyte changes 1
Chronic
Arteriosclerosis 11

Severe 9
Interstitial fibrosis 9

Liver
Acute
Portal venopathy 2
Mild iron overload 2
Possible haemophagocytosis 1
Diffuse perivenular necrosis 1
Perivenular congestion & mild leucocytosis 1
Chronic
Steatosis 2
Fibrosis 2
Steatohepatitis 1
Primary biliary cirrhosis 1

Heart*
Acute
Interstitial lymphocytes 2
Infarction 1
Platelet thrombi in vessels 1
Subendocardial thrombus 1
Haemorrhage 1
Chronic
Fibrosis 7
Calcification 1
Nodular amyloid deposits 1

Muscle*†

Acute
Sparse inflammatory cell infiltrate 6
Contraction band necrosis (single cells) 3
Chronic
Atrophy 3
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*n=10 for heart and muscle
†intercostal, diaphragm & quadriceps combined
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Table E4. Bone marrow abnormalities.

Erythroid dysplasia†

(% erythroid precursors)
Plasma cells

(% all nucleated cells‡)
Iron laden 

macrophages
Haemophagocytosis

–*
0-

10% 10-50% >50% 0-5%* 5-10% >10% Atypia§ –* + ++ Present
A ✓ ✓ ✓ (ll)

B ✓ ✓ ✓ ✓
C ✓ ✓ ✓ ✓
D ✓ ✓ ✓ ✓
E ✓ ✓ ✓ ✓
G ✓ ✓ ✓ ✓ ✓
H ✓ ✓ ✓ ✓ ✓
I ✓ ✓ ✓

– absent, + present, ++ increased

No assessable bone marrow aspirate material was available for patients F and J.

*indicates expected normal findings
†morphological abnormalities observed included nuclear blebs, multinucleated (bi- and tri-nucleated) 
early and late (primarily late) erythroblasts, defective haemoglobinization and megaloblastoid features
‡quantified from aspirate samples, where plasma cells were confirmed by immunohistochemical staining
§,morphologic abnormalities observed included bi- and tri-nucleated forms, immature forms, Russell 
bodies and Mott-like cells
llpossible haemophagocytosis observed in liver

Table E5. Primary antibodies used in immunofluorescence.

Antibody Source Concentration Cellular target Purpose

CD34 (Opal 570)* Agilent, M716501-2 1:50 Endothelial cells

MRP8 (Opal 690)* Abcam, Ab219370 1:16000 Myeloid lineages

CD68 (Opal 520)* DAKO, M0876 1:75 Macrophages

CD20 (Opal 540)* Agilent, M075501-2 1:500 B-cells

CD8 (Opal 690)* Leica, NCL-L-CD8-4B11 1:75 T-cells

CD4 (Opal 620)* Abcam, Ab133616 1:400 T-cells

Multiplex lung 
immune-

phenotyping

CD105 Abcam, Ab114052 1:15000 Endothelial cells

CD68 Abcam, Ab213363 1:8000 Macrophages

AE1/3 Agilent, M351501-2 1:100 Epithelial cells

In situ analysis of 
viral spatial 
distribution

*associated Opal fluorophores are shown in brackets, all from Akoya Biosciences
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