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ABSTRACT  

  

In coeliac disease (CeD), immune-mediated small intestinal damage is precipitated by gluten, 

leading to variable symptoms and complications, occasionally including aggressive T-cell 

lymphoma. Diagnosis, based primarily on histopathological examination of duodenal biopsies, is 

confounded by poor concordance between pathologists and minimal histological abnormality if 

insufficient gluten is consumed. CeD pathogenesis involves both CD4+ T-cell-mediated gluten 

recognition and CD8+ and γδ T-cell mediated inflammation, with a previous study demonstrating 

a permanent change in γδ T-cell populations in CeD. We leveraged this understanding and 

explored the diagnostic utility of bulk T-cell receptor (TCR) sequencing in assessing duodenal 

biopsies in CeD.  

Genomic DNA extracted from duodenal biopsies underwent sequencing for TCR-δ (TRD) (CeD, 

n =11; non-CeD, n=11) and TCR-γ (TRG)) (CeD, n =33; non-CeD, n=21). We developed a novel 

machine learning-based analysis of the TCR repertoire, clustering samples by diagnosis. Leave-

one-out cross-validation (LOOCV) was performed to validate the classification algorithm. 

Using TRD repertoire,100% (22/22) duodenal biopsies were correctly classified, with a LOOCV 

accuracy of 91%. Using TCR-γ (TRG) repertoire, 94.4% (51/54) duodenal biopsies were correctly 

classified, with LOOCV of 87%. Duodenal biopsy TRG repertoire analysis permitted accurate 

classification of biopsies from patients with CeD following a strict gluten-free diet for at least 6 

months, who would be misclassified by current tests. This result reflects permanent changes to 

the duodenal γδ TCR repertoire in CeD, even in the absence of gluten consumption. Our method 

could complement or replace histopathological diagnosis in CeD and might have particular 

clinical utility in the diagnostic testing of patients unable to tolerate dietary gluten, and for 

assessing duodenal biopsies with equivocal features.  

This approach is generalisable to any TCR/ BCR locus and any sequencing platform, with 

potential to predict diagnosis or prognosis in conditions mediated or modulated by the adaptive 

immune response.  
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INTRODUCTION 

  

Coeliac disease (CeD) is a gluten-sensitive enteropathy that develops in genetically susceptible 

individuals who are exposed to cereal gluten proteins, found in in wheat, rye, and barley. Much 

of the genetic susceptibility is contributed by possession of the MHC class II molecules HLA-

DQ2 and HLA-DQ8. Proteins encoded by these genes bind gluten peptides, particularly those 

peptides post-translationally modified by tissue transglutaminase (tTG). Recognition of MHC-

bound gluten peptide antigens by CD4+ T-lymphocytes induces inflammation, which damages 

the small intestine, leading to malabsorption, which, in turn, causes many of the symptoms of 

CeD[1]. The key histopathological changes identifiable in CeD duodenum are mainly 

consequences of the T-cell response and include villous atrophy, crypt hyperplasia and increased 

numbers of mucosal lymphocytes, which are a mixture of γδ and CD8+ αβ T-cells[1-3]. While 

most of the inflammation disappears on a gluten-free diet (GFD), numbers of intraepithelial γδ T-

cells remain elevated [2–8]. A recent study elegantly demonstrated that not only do the γδ T-cell 

numbers increase permanently, once tolerance to gluten is lost, but that there is also an irreversible 

alteration of the functional subtypes of γδ T-cells present in the duodenum. They demonstrated 

depletion of naturally occurring, innate-like Vγ4+/Vδ1+ intraepithelial lymphocytes (IELs) with 

specificity for the butyrophilin-like (BTNL) molecules BTNL3/BTNL8, expressed in duodenum. 

In tandem, they observed expansion of gluten-sensitive, interferon-γ-producing Vδ1+ IELs 

bearing T-cell receptors (TCR) with a shared non-germline-encoded motif that failed to recognize 

BTNL3/BTNL8 and were phenotypically more akin to adaptive T-cells [4].  

 

CeD treatment is a strict gluten-free diet to avoid complications of malabsorption (vitamin/ 

mineral deficiency, weight loss, anaemia, infertility, osteoporosis), linked immune phenomena 

(dermatitis herpetiformis, microscopic colitis), and, rarely, enteropathy-associated T-cell 

lymphoma. Clinical presentations of CeD are variable, and include non-specific gastrointestinal 

symptoms (abdominal pain, bloating, diarrhoea), fatigue and cognitive difficulty [1,9,10]. The 



   
 
estimated prevalence of coeliac disease (CeD) in the UK and US population is 1% [10,11] and 

rising [12,13]. Screening studies suggest up to 90% of cases remain undiagnosed [11]. An 

increasing proportion of the population follows a self-imposed gluten-free diet (GFD) without a 

CeD diagnosis [14]. 

  

 

Adult CeD testing strategies comprise serology for anti-tissue transglutaminase (tTG) and anti-

endomysial antibody (EMA), and histopathological examination of duodenal endoscopic 

biopsies, the latter remaining the diagnostic “gold standard” [10,11]. Biopsy examination by a 

pathologist is unavoidably subjective, with poor interobserver concordance [15], variable 

concordance with serology [16], and a high rate of “equivocal” biopsies [2]. Both serology and 

endoscopic biopsy require patients to eat appreciable amounts of gluten for 6 weeks prior to 

testing to avoid false negative or equivocal results [17], meaning that many gluten-sensitive 

patients choose not to seek testing, due to the unpleasant symptoms that follow gluten ingestion. 

There is an unmet need for a more robust and objective test to diagnose CeD in patients, 

irrespective of gluten intake, particularly for patients with severe gluten-induced symptoms. 

 

TCRs determine the antigen(s) a T-cell can bind and respond to and are heterodimers of TCR-αβ 

and TCR-γδ type. A randomly selected and recombined variable (V) and joining (J) segment 

encode the antigen binding region of TCR α- and γ-chains (encoded by the TRA and TRG genes, 

respectively), while TCR β- and δ-chains (encoded by the TRB and TRD genes, respectively) are 

encoded by V, J and diversity (D) regions [18]. In addition to this somatic recombination, template 

independent nucleotide insertion and deletion occur, meaning that the small set of TCR genes can 

theoretically create 1015 to 1020 unique TCR clonotypes. The most variable part of the TCR, 

encoded by the V(D)J junction, known as the complementarity determining region 3 (CDR3) is 

critical in determining antigen specificity [19] and can be used as a genetic ‘barcode’ to detect, 



   
 
track and analyse T-cells. The TCR repertoire (TCRR) refers to the range of different TCRs 

expressed and is shaped by previously encountered antigens [20,21]. 

  

 

Clinically, TCRs are only assessed when PCR and fragment analysis of TCR sequences is used 

to assess clonal status in suspected T-cell lymphoma [22]. Bulk sequencing of TCRRs is also an 

important research tool [18], capturing the V(D)J regions in large numbers of T cells. Although 

this produces large datasets, there are few machine learning algorithms for diagnosing 

immunological conditions from TCRRs [21], with none in clinical use. Furthermore, many studies 

use only a fraction of the total information in a TCRR dataset, which comprises multiple closely 

related, but distinct, TCR sequences. Previous studies of the TCRR of CeD patients have focused 

on identifying one or a few previously identified TCR sequences, identifying shared motifs 

between different individuals [23], quantifying sequence diversity in a sample using Shannon 

diversity or on assessing the magnitude of clonal expansions [4,23, 24, 25–33]. Very few studies 

have undertaken comparison of patient groups by means of holistic analysis of TCRR sequence 

data [34,35], due to a lack of bioinformatic tools for doing so. Here, we undertake bioinformatic 

analysis of the entire TCRR, derived from a duodenal biopsy, in order to classify patients 

according to their gluten sensitivity status. We show that our approach is successful regardless of 

whether or not the patient’s diet contained gluten prior to biopsy. 

 

MATERIALS AND METHODS 

 

Ethical approval, patient samples, and DNA extraction 

Fully anonymised, formalin-fixed, paraffin-embedded (FFPE) duodenal biopsy samples surplus 

to diagnostic requirements were obtained from the Oxford Radcliffe Biobank via the Oxford 

Centre for Histopathology Research, or from the Human Tissue Research Biobank, Cambridge 

University Hospitals NHS Foundation Trust, with full ethical approval (IRAS:162057). Specific 



   
 
informed consent from individual patients was not required for entry into this study, as all samples 

used were (a) surplus to diagnostic requirements and (b) fully anonymised to the research team. 

Patient details and criteria for inclusion are included in Table 1 and supplementary material,  

Table S1. We obtained duodenal biopsies from patients with active CeD (at least Marsh 3b 

(n=43): Marsh 2 (n=1)[36]) and from non-CeD individuals (n=32) with no clinical or histological 

suspicion of CeD (undergoing upper gastrointestinal endoscopy for clinical indications of reflux, 

dyspepsia and gastritis). We also obtained duodenal biopsies from CeD patients, with a previous 

biopsy showing at least Marsh 3b features, who had been on a strict GFD for at least 6 months 

with normal duodenal biopsy histopathology (n=4). DNA was extracted from 10 FFPE scrolls cut 

at 5 µm per case using the QIAamp DNA FFPE tissue kit (Qiagen, Manchester, UK), as per the 

manufacturer’s instructions. 

  

 

TCR repertoire sequencing 

Bulk amplification of T-cell receptor repertoires was undertaken with the Biomed-2 kit 

(Invivoscribe, Martinsried, Bavaria, Germany) for TCRδ (TRD), using 150 ng DNA input. An 

equal amount of all purified amplicons was pooled into a library of 4 nM, denatured, diluted, 

loaded on to a MiSeq (Illumina, San Diego, CA, USA), and subjected to MiSeq run (Illumina; v3, 

2 × 300 cycles). For TCRγ (TRG), the LymphoTrack kit (Invivoscribe) was used following the 

manufacturer’s instructions, with 200 ng of duodenal biopsy DNA as a template. Primers in the 

LymphoTrack (Invivoscribe) assays are designed with Illumina adapters. Subsequently, each 

amplicon was purified by AMPure XP beads (Beckman Coulter, Brea, CA, USA) followed by 

quantification using a 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA). Samples were pooled 

in an equimolar fashion and sequenced on an Ion PGM (Thermo Fisher Scientific, Loughborough, 

UK).  

 

Bioinformatic analysis 



   
 
FastX [37] was used to remove low quality sequences. Low quality sequences were defined as 

individual sequences with more than 10% of nucleotides achieving a quality score below the 3rd 

quartile (lower 25%). Quartiles were determined using the average nucleotide score for the 

sequencing output on a per patient basis. Reads were then aligned to the IMGT reference database 

(

  

www.imgt.org) using IMGT/HighV-Quest (www.imgt.org/IMGTindex/IMGTHighV-

QUEST.php[38]), in order to determine V, D and J usage, to identify the CDR3 region, and to 

determine whether or not a sequence was functional (supplementary material, Table S2). 

Nucleotide sequences were translated to amino acids, which are used in all subsequent analysis, 

and all sequences predicted to be non-functional were removed at this stage.  

 

Classification algorithm  

A novel cluster-based classification algorithm for distinguishing between the TCRR of case and 

control samples was developed and is described in the Results section (Figure 1). The algorithm, 

implemented in R scripts, is available from Zenodo (http://doi.org/10.5281/zenodo.3964131). 

 

Assessment of classification performance 

During clustering, we partition the tree into two clusters by choosing a merge (node) and defining 

the cluster created at that merge as a single cluster, then assigning all other samples (leaves) into 

another single cluster. The two clusters are then labelled either CeD or non-CeD according to the 

true classification of the majority of samples in each cluster. Sensitivity is then calculated as the 

percentage of CeD samples correctly labelled, specificity as the percentage of non-CeD samples 

correctly labelled, and (training) accuracy as the percentage of all samples correctly labelled. The 

optimal partition was chosen as the one with highest accuracy, and in the case of ties, partitions 

were then ranked based on sensitivity and finally distance between clusters (further details for 

clustering methodology and parameter optimisation are presented in Supplementary materials and 

methods). 

http://www.imgt.org/
http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.php
http://www.imgt.org/IMGTindex/IMGTHighV-QUEST.php


   
 
 

  

Leave-one-out cross validation 

In order to provide a validation of our methodology and illustrate how the algorithm could be used 

for diagnosis, algorithm parameters were optimised using n-1 samples with one sample removed. 

The removed sample was then re-introduced to determine whether it was assigned to the correct 

group, on the basis of diagnosis. This process was repeated iteratively until each sample had been 

removed to estimate the testing accuracy of the algorithm (further details are presented in 

Supplementary materials and methods, together with more detailed explanation of statistical 

methodology used in all analyses).   

 

Heatmap and hierarchical clustering analysis based on V and J segment usage 

V and J segment usage is visualised by heatmap using the pheatmap R package [39]. V and J 

segment frequency across patients is represented as standard deviations from the mean. 

Hierarchical clustering was performed on columns using the complete linkage method with 

Euclidean distance. 

 

RESULTS 

A novel machine learning algorithm for sample classification 

We developed an algorithm capable of diagnosing CeD, regardless of gluten consumption, on the 

basis of TCRR in duodenal biopsies (Figure 1). Our approach was based on the hypothesis that 

there are multiple related γδ TCRs with similar specificities, capable of binding gluten and 

possibly self-antigens, due to the phenomenon of epitope spreading [40], encoded by closely 

related TRG or TRD sequences [4,23], both within a single patient’s TCRR and between patient 

TCRRs with CeD. In brief, TCR sequences are translated into amino acids and the hypervariable 

part of the TCR sequence, complementarity determining region 3 (CDR3) is broken into 

overlapping kmers (sequences of length k). We produce a set of kmers that is positionally 



   
 
annotated, by which third of the CDR3 sequence they derive from (start/ middle/ end), and a set 

that lacks this annotation. We compile a very large (high dimensionality) matrix containing the 

frequency of each kmer in each patient sample. We reduce the dimensionality of the matrix by 

principal component analysis (PCA) and cluster the samples using all 1,023 possible combinations 

of principal components (PCs) 1–10. We then determine which of these PC combinations has the 

highest sample classification accuracy. Of these PC combinations with high sample classification 

accuracy, we then select the PC combination that gives the greatest separation between diagnostic 

groups. We tested our approach on both the positionally annotated and non-positionally annotated 

sets of kmers, testing parameters, as described above, and determined whether or not positionally 

annotating the kmers improved samples’ classification. Thus, in this machine learning approach, 

the modifiable parameters are (a) kmer length, (b) whether or not kmers are positionally annotated 

and (c) the exact PC combination used for sample classification. 

  

 

TCR delta repertoire analysis of FFPE duodenal biopsy DNA can determine gluten 

sensitivity status 

We applied our algorithm to TRD CDR3 sequences, from DNA extracted from CeD patient 

duodenal biopsies (n=11) and non-CeD controls (n=11) (supplementary material, Table S1). 

Diagnostic accuracy was optimised (Figure 2) by selecting (a) kmer length and (b) kmer type 

(positionally annotated versus not, as defined in Figure 1) and (c) PCs. Non-positionally 

annotated 4mers gave optimal sample separation by diagnosis, with high accuracy across a broad 

range of PC combinations, with 14.96% PC combinations (153/1023) giving 100% training 

accuracy (Figures 2C,D and supplementary material, Table S3). With positional annotation, 

kmer length of 7 was optimal, with 7.53% combinations (77/1,023) giving 100% training accuracy 

(Figures 2A,B and supplementary material, Table S4). Of 153/1023 PC combinations giving 

100% accuracy with non-positionally annotated 4mers, the PC combination of 1, 5, 6 and 10 gave 

greatest separation between diagnostic groups, with greatest vertical distance between cluster plot 



   
 
branches (Figure 2C). From figures 2B,D, it can be appreciated that a wide range of kmer lengths 

and PC combinations also gave good sample classification, indicating the robustness of our 

approach. To validate our optimised classification algorithm using non-positional 4mers, we 

implemented a leave-one-out cross validation (LOOCV) approach (supplementary material, 

Figure S3). 10/11 CeD and 10/11 non-CeD patients clustered correctly, giving a testing accuracy, 

sensitivity, and specificity of 91%. We excluded the possibility that HLA type or other properties 

of the TRD data might be confounding our classification methodology (supplementary material, 

Figures S1,S2 and Tables S4 and S5–S8, Figure 2A,C).  

  

 

TCR gamma repertoire analysis of FFPE duodenal biopsy DNA can determine gluten 

sensitivity status 

Our algorithm also performed well in classifying patients’ CeD status using TRG repertoires 

derived from DNA extracted from FFPE duodenal biopsies. In a second, larger patient cohort 

(n=54), TRG CDR3 sequences were broken into positional 5mers and the PC combination of 4, 6 

and 7 was best able to separate the patient cohorts, with 32/33 (97.0% training sensitivity) CeD 

and 19/21 (90.5% training specificity) non-CeD samples correctly classified, giving a training 

accuracy of 51/54 (94.4%) (Figures 3A,B and supplementary material, Table S9). Figure 

3B,D show that a wide range of kmer lengths and PC combinations also gave good sample 

classification, indicating the broad applicability of our approach to this analysis (supplementary 

material, Table S9). For TRG, in contrast to TRD, positionally annotated kmers outperformed 

non-positionally annotated kmers (Figures 3C,D and supplementary material, Table S10). 

Neither full-length CDR3 (Figures 3E,F and supplementary material, Table S11) nor V/D/J 

segment usage were able to accurately separate CeD from non-CeD samples (Figure 3G and 

supplementary material, Figure 4D,E). We also excluded the possibility that HLA type or other 

properties of the TRG data might be confounding our classification methodology 

(supplementary material, Figures S4, S5, and Tables S12–S15, Figure 3A,C).  



   
 
 

  

Implementing a LOOCV approach to validate our preliminary findings for TRG, using positional 

5mers, 29/33 CeD and 18/21 non-CeD samples were correctly classified, giving a testing accuracy 

of 87%, a sensitivity of 88% and a specificity of 86% (supplementary material, Figure S6). 

 

Gluten intake is not required for correct classification of patient gluten sensitivity status  

Finally, we assessed whether our method could classify patients diagnosed with CeD who were 

adhering to a GFD. Duodenal biopsies were obtained from an additional 4 patients, each 

comprising one sample at initial CeD diagnosis, when the patient was on a gluten containing diet, 

(with changes of at least Marsh-Oberhuber [36] grade 3b (Figure 4)) and a second sample 

following at least 6 months on a strict GFD that displayed normal histology (Figure 4). We 

introduced the additional patient samples that were taken at initial CeD diagnosis into the 54 TRG 

cohort one at a time, using our previously optimised parameters, and all samples clustered with 

the CeD samples. Remarkably, all 4 GFD samples, when introduced individually into the cohort, 

also clustered with the CeD samples (Figure 4). These data indicate that our algorithm is capable 

of identifying patients with CeD even in the absence of gluten ingestion. 

 

DISCUSSION 

Our novel machine learning approach distinguished samples from patients with and without CeD, 

when applied to TCRR (TRD and TRG) from duodenal DNA from two independent cohorts, 

despite using relatively degraded FFPE-derived DNA template, most likely leading to loss of a 

proportion of the TCR sequences in each sample. The sequencing approaches we selected 

(LymphotrackTM/ Biomed-2, Invivoscribe, with Illumina sequencing) are amenable to FFPE-

derived DNA and are used clinically in lymphoma/ leukaemia diagnostics. Thus, our approach to 

CeD diagnosis could easily be incorporated into current pathology department workflows. 

Following a larger validation study of diagnostic accuracy [41], this algorithm could have the 



   
 
potential for use in the diagnosis of CeD in cases where current diagnostic techniques do not 

perform well and pathologists struggle to agree on histological findings. Such as those with an 

isolated increase in intraepithelial lymphocytes without villous atrophy, those with seronegative 

villous atrophy and those CeD patients on GFD with normal histology, who are likely to be 

misclassified by current serological and histopathological testing[2,15–17,42]. Although only a 

small number of patients on gluten free diets were analysed here, our approach shows promise in 

eradicating the requirement for patients to ingest gluten for 2–6 weeks prior to testing [43,44], 

increasing test acceptability to patients. 

  

 

The current definition of CeD is hampered by imperfect, and sometimes discordant, tests for the 

condition.  Our algorithm has the exciting potential to provide a better definition of CeD based on 

similarities between patients’ TCRRs. Further refinement of diagnostic classification might be 

achieved by the clustering of patient samples on the basis of a combination of sequence data from 

several TCR and/ or B-cell receptor (BCR) loci, an approach beyond the scope of the present 

study.  

 

While the exact features mediating sample clustering are difficult to define with a machine 

learning method such as ours, the advantage of our method is that it provides a holistic analysis 

of DNA-based TCRR sequences that considers similar, but non-identical, CDR3 sequences, as 

being more closely related to each other than any two CDR3 sequences chosen at random. This 

contrasts with methodologies that simply determine clonal status or search for specific clones or 

motifs within TCRR, which do not take account of the presence of closely related CDR3 

sequences[4,23,25–33]. Furthermore, methodologies that search for one or a small number of 

specific TCR clones risk generating false negative results, if a critical, but low frequency 

sequence, is missed, leading to poor sensitivity.  

 



   
 
While kmers have been used to analyse analogous BCR sequences, in two previous studies 

[34,35], neither study employed kmers for holistic CDR3 analysis or as the basis of sample 

classification. The accurate clustering achieved by our method suggests that there is a greater 

degree of similarity in the kmer usage, and thus in the CDR3 sequences from which these kmers 

derive, between patients with CeD than between non-CeD controls. This observation is in keeping 

with an immune response to a stereotyped set of antigens in the CeD patients. Further work is 

required to explore the exact kmer patterns underpinning this similarity and identification of these 

sequences has the potential to provide insight into the underlying immunological mechanisms of 

CeD. For example, holistic kmer-based TCR analysis could be used as a method to identify 

consensus sequences within the TCRR of a cohort of CeD patients, with the numbers of separate 

groups of immunoreceptor consensus sequences giving an indication of the likely numbers of 

different epitopes being recognised in the condition. 

  

 

Biological understanding and computational methods for γδ T-cells are not yet well enough 

developed to predict likely epitopes/ antigens bound from the TCR CDR3 sequences alone. 

Indeed, relatively little is known about γδ T-cells’ antigen binding mechanisms, unlikely αβ T-

cells, which are known to recognise short peptide antigens bound to MHC molecules, with the 

TCR generally contacting both the peptide and the MHC protein.  The ability of short kmer 

sequences, derived from the CDR3 sequences of γδ T-cells, to separate CeD from normal biopsies 

indicates that CDR3 sequences are likely to be very important in γδ T-cell-antigen binding or 

other γδ T-cell interactions in CeD. This observation fits well with a recent study of CeD 

duodenum, demonstrating depletion of resident duodenal Vγ4+/Vδ1+ intraepithelial lymphocytes 

(IELs), with semi-invariant TCRs, and their replacement with gluten-sensitive, interferon-γ-

producing Vδ1+ IELs bearing T-cell receptors (TCR) with CDR3 motifs that are shared both 

within and between CeD patients’ TRD repertoires. Canonical sets of kmers from these shared 



   
 
CDR3 motifs are likely to be a key feature in the CeD patient TCRR, detected by our classification 

algorithm [4]. 

  

 

It likely that a major reason for the success of our algorithm is the fact that it compares non-CeD 

and CeD duodenum, rather than simply looking for predefined features of CeD duodenum. It is 

thus able to detect a signal based both on the loss of the semi-invariant Vγ4+/Vδ1+ TCRs of the 

innate-like γδ T-cell population and on the development of the antigen driven Vδ1+ γδ T-cell 

population. The loss of these semi-invariant Vγ4+/Vδ1+ TCRs may contribute to the fact that we 

see an unexpected increase in TCR diversity in CeD, rather than the decrease one might expect if 

there is an evolving clonal response to gluten. The relatively poorly characterised, innate-like 

Vγ4+/Vδ1+ IELs are thought to maintain homeostasis in the local small intestinal 

microenvironment, either by eliminating virus-infected or malignant cells in response to innate 

signals, or by promoting tissue healing via the production of growth factors[4]. Their presence 

appears to be key in maintaining a gluten tolerant IEL population. Therefore, detecting loss of 

Vγ4+/Vδ1+ IELs may be as important as detecting the novel gluten-sensitive Vδ1+ IELs, in our 

ability to classify samples as CeD or non-CeD on the basis of TCRR.  

 

Commensurate with our observation that duodenal biopsies from CeD patients on GFD are 

correctly classified on the basis of TRG TCRR, exclusion of dietary gluten in the study by Mayassi 

et al. was insufficient to reconstitute the physiological Vγ4+/Vδ1+ IEL population [4]. Our ability 

to classify duodenal biopsies from CeD patients on GFD correctly is also in keeping with reports 

of persistent elevation of intraepithelial γδ T-cells [2–6] in CeD patients, even on GFD. These 

data show that CeD-associated γδ T-cells do not recirculate away from the small intestine in the 

absence of dietary gluten. The observed persistence of CeD-associated γδ T-cells in the 

duodenum, without gluten ingestion, indicates that TRG and TRD may be the most appropriate 

TCR loci to analyse to determine gluten sensitivity (CeD) status, tests which are otherwise 



   
 
confounded by insufficient gluten intake. This biological phenomenon appears to underpin the 

success of our potential novel diagnostic approach to the condition.  

  

 

In summary, we have developed a machine-learning algorithm that, following further testing on 

a larger cohort, could be used for CeD diagnosis, regardless of dietary gluten status, which uses 

TCR sequencing methodology amenable to current histopathological and molecular diagnostic 

workflows. Our novel, machine learning-based bioinformatic approach is generalisable to 

sequences from all 4 TCR and all 3 BCR loci, which are obtained using any sequencing platform. 

Thus, this approach might similarly be applied to the prediction of diagnosis or prognosis in other 

conditions mediated by the adaptive immune response. These might include other autoimmune or 

immune-mediated inflammatory conditions, allergic reactions, and possibly immune responses to 

both infections, such as SARS-CoV-2, and cancers.  
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Table 1. Patient demographics and clinical parameters 
TRD (DNA) 

 Coeliac (n=11) Normal (n=11) P value 
Age, mean (± SD) 29.2 (20.8) 53.8 (13.3) 0.002 
Sex (M : F) 4 : 7 3 : 8 1.00 
HLA-DQ2 and/ or HLA-DQ8 11 (100%) 3 (27%) 0.001 
Anti-TTG (>laboratory ULN) 11 (100%) 0 (0%) <0.0001 
Anti-EMA (>laboratory ULN 11 (100%) 0 (0%) <0.0001 
Marsh Grade (3;2;1;0) 10;1;0;0 0;0;1;10 <0.0001* 

    
TRG (DNA) 

 Coeliac (n=33) Normal (n=21) P value 
Age, mean (± SD) 16.0 (9.2) 54.8 (17.9) <0.0001 
Sex (M : F) 8 : 25 12 : 9 0.021 
HLA-DQ2 and/ or HLA-DQ8 32 (100%)^ 11 (52%) <0.0001 
Anti-TTG (>laboratory ULN) 33 (100%) 0 (0%) 0.140 
Anti-EMA (>laboratory ULN 28 (85%) 0 (0%) <0.0001 
Marsh Grade (3;2;1;0) 33;0;0;0 0;0;0;21 <0.0001* 
       

Gluten-free diet longitudinal patients (n=4)   

 Baseline 6 months GFD P value 
Age, mean (± SD) 39.5 (13.6) Same patients - 
Sex (M : F) 0 : 4 Same patients - 
Anti-TTG (>laboratory ULN) 4 (100%) 0 (0%) - 
Anti-EMA (>laboratory ULN 3 (75%) 0 (0%) - 
Marsh Grade (3;2;1;0) 4;0;0;0 0;0;0;4 - 
Age and Marsh Grade analysed with Student's t-test.   
Sex, HLA status, Anti-TTG and Anti-EMA analysed with Fisher's exact test. 
* Calculated from average of Marsh grades   
^ HLA typing inconclusive for patient C31   
ULN = upper limit of normal    

 

  



   
 
Figure legends  

  

Figure 1. Flow chart of our novel bioinformatic approach 

(A) We translate the nucleic acid sequence to amino acid sequences, remove any non-functional 

sequences and identify the most variable of the three hypervariable regions in each TCR, the 

CDR3 region, using the IMGT database[38]. To take account of similar, but not clonotypically 

identical TCR sequences, we break the entire CDR3 sequence of each TCR into short overlapping 

segments, designated kmers. We reasoned that the same kmer occurring at substantially different 

positions within the CDR3 is likely to differ in its effect on antigen binding and so tested 

positionally annotated kmers (start/ middle/ end) in the functional CDR3s. For example, CALGE 

(start) is regarded as distinct from CALGE (end). (B) We calculate the frequency of each full 

length CDR3, unique kmer, and positional kmer identified in step A. (C) Steps A and B are 

repeated for each patient, so that sample classification results using each of these three different 

input types can be compared. (D) Frequencies are normalised for each sample and combined for 

all samples into a single frequency matrix. (E) The frequency matrices are particularly high 

dimensional, due to the very large number of possible positional kmers (4.8 x 105 to 1.5 x 1012 for 

4-9 amino acid kmers, respectively). Therefore, principal component analysis (PCA) is used to 

reduce this dimensionality, while retaining major sources of variation, simplifying downstream 

computational steps. (F) To classify samples, we apply hierarchical clustering to the 

dimensionality reduced data set, which iteratively groups together samples. Samples for which 

the true underlying disease status is known are used to select optimal parameter sets, consisting 

of the value of k and principal components (PCs), as well as input type (full length CDR3, non-

positional kmers, and positional kmers), by means of a machine learning approach (i.e., to train 

the model). The optimal parameters generate clusters that correspond best with disease state (see 

Supplementary materials and methods).  

 



   
 
Figure 2. Application of our algorithm to TRD sequence data obtained from formalin fixed 

paraffin embedded duodenal biopsies of coeliac disease patients (n=11) and non-coeliac 

disease controls (n=11) 

  

Diagnostic classification accuracy was optimised using all possible input types (positional kmers, 

non-positional kmers and full length CDR3 sequences) and PC combinations. (A and B) With 

positional annotation, a kmer length of 7 achieved greatest accuracy, with 77/1023 PC 

combinations giving 100% accuracy (supplementary material, Table S4). Of the 77 PC 

combinations giving 100% accuracy, PCs 3, 4, 5, 6 and 8 gave the greatest separation between 

diagnostic groups, with the greatest vertical distance between branches on the cluster plot (known 

technically as the Mutual Reachability Distance). HLA type (DQ2 and/ or DQ8 or other) does not 

explain the classification, with non-CeD samples from DQ2 or DQ8 positive subjects clustering 

on the basis of disease (see also Figures 2C,E). (C and D) Without positional annotation, a kmer 

length of 4 was optimal and 153/1023 PC combinations gave 100% accuracy (supplementary 

material, Table S3). Of the 153 PC combinations giving 100% accuracy, PCs 1, 5, 6 and 10 gave 

the greatest separation between diagnostic groups, with the greatest vertical distance between 

branches on the cluster plot. The high classification accuracy across a broad range of parameters 

indicates the robustness of this approach. (E and F) Using full length CDR3 sequences, no PC 

combinations gave 100% accuracy, although 1021 PC combinations permitted 21/22 (95.5%) 

samples to be classified correctly (supplementary material, Table S5). (G) Hierarchical 

clustering on the basis of combinations of V-J segments usage in the sequence data could not 

classify patient samples by diagnosis. For patient details and inclusion criteria for TRD 

sequencing cohort, please see Table 1 and supplementary material, Table S1. Sequence data 

parameters are summarised in supplementary material, Table S2. Further validation of these 

results is included in supplementary material, Figures S1–S3 and Tables S6–S8. 

 



   
 
Figure 3. Application of our algorithm to TRG sequence data obtained from formalin fixed 

paraffin embedded duodenal biopsies of coeliac disease patients (n=33) and non-coeliac 

disease controls (n=21) 

  

Diagnostic classification accuracy was optimised using all possible input types (positional kmers, 

non-positional kmers and full length CD3 sequences) and PC combinations. (A and B) With 

positional annotation, a kmer length of 5 achieved greatest accuracy, with 1 PC combination (PCs 

4, 6 and 7) classifying samples with 94.4% accuracy (supplementary material, Table S9). (C 

and D) Without positional annotation, a kmer length of 4 was optimal and 4 PC combinations 

giving 92.6% accuracy (supplementary material, Table S10). HLA type (DQ2 and/ or DQ8 or 

neither) did not explain the classification, with non-CeD samples from DQ2 or DQ8 positive 

subjects clustering on the basis of disease (see also Figure 3A). (E and F) Using full length CDR3 

sequences, 24 PC combinations gave 90.7% accuracy (supplementary material, Table S11). (G) 

To exclude the possibility that other properties of the data might be confounding our classification 

methodology, we undertook analysis of V and J segment usage, shown as a heat map and showed 

that hierarchical clustering on the basis of combinations of V–J segments usage in the sequence 

data could not cluster patient samples by diagnosis. For patient details and inclusion criteria for 

TRG sequencing cohort, please see Table 1 and supplementary material, Table S1. Further 

validation of these results is included in supplementary material, Figures S4–S6 and Tables 

S12–S15. 

 

Figure 4. Applicability of TRG analysis to patient samples on a gluten-free diet 

Four additional formalin fixed paraffin embedded duodenal biopsy samples from patients on a 

gluten containing diet (i.e., at the time of initial diagnosis of coeliac disease), were obtained. 

Histology (haematoxylin and eosin stain) of each sample is shown, all with severe features of 

coeliac disease (at least Marsh grade 3a). TRG sequence data obtained from biopsy samples 

shown were added one by one into the cohort and analysed by means of our algorithm. Each 



   
 
patient sample correctly clustered with the coeliac samples. An additional duodenal biopsy sample 

was taken from each patient following at least 6 months on a GFD. Histology (haematoxylin and 

eosin stain) of each sample is shown and all would be classified as histologically normal. TRG 

sequence data obtained from biopsy samples were added one by one into the cohort and analysed 

by means of our algorithm. Again, each patient sample correctly clustered with the coeliac 

samples. 
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