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Abstract: The Iberian Peninsula hosts a high diversity of oak species, being a hot-spot for the
conservation of European White Oaks (Quercus) due to their environmental heterogeneity and its
critical role as a phylogeographic refugium. Identifying and ranking the drivers that shape the
distribution of White Oaks in Iberia requires that environmental variables operating at distinct scales
are considered. These include climate, but also ecosystem functioning attributes (EFAs) related to
energy–matter exchanges that characterize land cover types under various environmental settings,
at finer scales. Here, we used satellite-based EFAs and climate variables in species distribution models
(SDMs) to assess how variables related to ecosystem functioning improve our understanding of current
distributions and the identification of suitable areas for White Oak species in Iberia. We developed
consensus ensemble SDMs targeting a set of thirteen oaks, including both narrow endemic and
widespread taxa. Models combining EFAs and climate variables obtained a higher performance and
predictive ability (true-skill statistic (TSS): 0.88, sensitivity: 99.6, specificity: 96.3), in comparison to
the climate-only models (TSS: 0.86, sens.: 96.1, spec.: 90.3) and EFA-only models (TSS: 0.73, sens.:
91.2, spec.: 82.1). Overall, narrow endemic species obtained higher predictive performance using
combined models (TSS: 0.96, sens.: 99.6, spec.: 96.3) in comparison to widespread oaks (TSS: 0.80,
sens.: 92.6, spec.: 87.7). The Iberian White Oaks show a high dependence on precipitation and the
inter-quartile range of Normalized Difference Water Index (NDWI) (i.e., seasonal water availability)
which appears to be the most important EFA variable. Spatial projections of climate–EFA combined
models contribute to identify the major diversity hotspots for White Oaks in Iberia, holding higher
values of cumulative habitat suitability and species richness. We discuss the implications of these
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findings for guiding the long-term conservation of Iberian White Oaks and provide spatially explicit
geospatial information about each oak species (or set of species) relevant for developing biogeographic
conservation frameworks.

Keywords: climate change; satellite remote sensing; species distribution models; Quercus; oak forests;
biodiversity conservation; Iberian Peninsula

1. Introduction

The genus Quercus L. is one of the most abundant and economically important group of woody
plants in the Northern Hemisphere [1], and oak forests are the keystone species in many Mediterranean
and Temperate forests and woodlands, providing fundamental regulation, provision, support and
cultural ecosystem services for people and nature [2–6]. The Iberian Peninsula (IP) harbours half
of the European diversity of oak species, when excluding intraspecific variation [7–10]. The IP is a
major glacial refugia [11] and a major hotspot for the White Oaks group (Sect. Quercus) [12] partly
due to its paleoclimatic history and the presence of two major biogeographic regions (Eurosiberian
and Mediterranean). The ecotone between these two biogeographic regions is widely occupied by
marcescent forests dominated by White Oaks either deciduous or marcescent spanning across the
sub-Mediterranean belt [13–16]. Climate change seriously threatens these transition zones, as summer
periods become increasingly arid and warm in the coming decades [6,17]. Additionally, land use/cover
changes, forest management practices that favour fast growing tree species (e.g., Eucalyptus spp.),
and invasive species along with wildfires and other disturbances [18,19] also pose serious threats to
these already marginal and fragile ecosystems in the IP.

Traditionally, seven White Oak species are considered to be native to the IP, when excluding
infraspecific variation [7]. However, the known low interspecific barriers to gene flow give this genus
a complex evolutionary and speciation pattern, which includes the formation of new species as a
result of hybridization (i.e., nothotaxa) [20,21]. Previous studies refer to cryptic taxa that are notable
in the IP [9,22–26], including narrow distributed and endemic (NDE) species or relict taxa [27–29].
This confers to the Iberian White Oak forests with high phylogeographic value in addition to the value
for human well-being and especially relevance for mitigating climate-driven risks [2,3].

Given their eco-evolutionary importance, White Oak species and related ecosystems require
suitable geospatial analysis tools to assess their conservation status and demographic trends [30].
In this regard, species distribution models (hereafter SDMs, i.e., habitat suitability models or
ecological niche models) are among the most widely used tools to assess the impact of global
change on biodiversity, and to inform policy makers [31]. In a nutshell, SDMs allow to understand
species–environment relations by modelling between the occurrence or abundance of species and
environmental predictors (e.g., temperature, rainfall, soil type, vegetation cover) that determine it.
This is done through empirical/correlative and mainly static approaches, based on statistical or machine
learning algorithms which use as input species field observations, and/or museum-type records.
The obtained species–environment responses are thought to best reflect the realized ecological niche
of the study species [32]. Trained models are used to obtain spatiotemporal projections of species
distributions based on current, past or future conditions to gain insights on the environmental drivers
that shape the potential (or actual) occurrence of study species at multiple spatial scales.

Complementarily to innovative SDM approaches, recent advances in satellite remote sensing
(SRS), with the ever increasing availability of data with enhanced spatial and spectral features,
allow us to continuously depict Earth system dynamics in its multiple facets relevant for species and
biodiversity monitoring [33]. These are capable of capturing the intra-annual dynamics of ecosystem
functioning such as the average annual conditions, intra-annual seasonal variation, phenology or
extreme values for several relevant dimensions. In particular, satellite-based ecosystem functioning
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attributes (EFAs) [34,35] defined as spatiotemporal integrative descriptors of ecosystem functioning and
dynamics computed from time series of satellite products (e.g., spectral indices for vegetation or water)
are providing new opportunities to push the boundaries of SDMs. EFAs inform on several relevant
features of ecosystem functioning such as primary productivity, evapotranspiration, land surface
temperature, and albedo, thereby encompassing several dimensions including carbon gains, water and
energy balance [36–38]. EFAs are considered essential biodiversity variables (EBVs) describing the
‘Ecosystem Function’ class [39]. Therefore, the EFA framework provides key variables to model
the ecosystem processes that maintain suitable environmental and habitat conditions for keystone
species [40,41]. This will allow us to anticipate species’ range shifts under global change [30]. Overall,
EFAs offer an alternative and cost-effective approach to improve predictions on the distribution of
species and support biodiversity monitoring once these are capable of capturing the intra-annual
dynamics of ecosystem functioning.

Although the use of SDMs has played a major role in oak forest conservation [42,43], they have been
mainly applied to iconic oak species, like cork oak (Q. suber L.) [44,45], or to broadly distributed species
(e.g., Q. robur) or species groups [46,47], sometimes at smaller and regional scales [48,49]. We lack
to date studies encompassing narrow distributed and endemic (NDE), relict species, especially in
a phylogeographic hotspot such as the IP. This knowledge gap mainly derives from issues related
to the taxonomic uncertainty and delimitation of species, which in turn hampers data quality and
quantity. These data are typically based on inflated nomenclatural inaccuracy and outdated, due to
misleading identification that results from ancient herbaria reviews. Still, it is the biggest bulk of
information available in worldwide databases (e.g., https://www.gbif.org/), but its limitations hinder the
process of accurately predicting species distributions across geographic space, hampering conservation
efforts [50–52]. Furthermore, previous modelling techniques mostly rely on climatic envelopes that
perform better at broad global scales, and they tend to overlook ecosystem functioning features at a
fine spatial scale. To overcome this situation, SRS-based ecosystem functioning attributes integrate the
effects of vegetation structure, edaphic conditions and climate at the fine local/meso scale. This makes
these variables suitable to improve predictions regarding species optimal environmental conditions,
to forecast the effects of environmental change, to monitor biodiversity hotspots, or to model habitat
quality from local/regional to global scales [37,40,41].

This study aimed to assess whether the combination of EFA and climate variables improves the
performance of SDMs using seven narrow distributed or endemic Iberian White Oaks: Quercus canariensis,
Q. ×cerrioides, Q. estremadurensis, Q. lusitanica, Q. marianica, Q. orocantabricaand Q. subpyrenaica along with
six widespread species Q. broteroi, Q. faginea, Q. pyrenaica, Q. petraea, Q. pubescens and Q. robur. For this
aim, we developed a set of combined models (integrating EFA and climate variables) and partial models
(either EFA or climate variables). We compared their performance through several metrics and identified
the most suitable areas to preserve threatened species. With this goal in mind, we specifically:

(i) Compared the performance of SRS-EFAs as predictors in SDMs, separately and combined with
climate data, to determine the current potential distribution of the thirteen target species;

(ii) Identified the most suitable potential areas for the conservation of vulnerable NDE oak species by
comparing the spatial projections of habitat suitability derived from SDMs based on different sets
of predictors;

(iii) Depict the fittest biogeographic areas for oak conservation based on a species-richness map
obtained through stacking individual SDM’s.

2. Materials and Methods

2.1. Study Area

The Iberian Peninsula (IP) is located in southwestern Europe (bounded by longitudes -9.55◦ W to
3.35◦ E and latitudes 35.87◦ N to 43.80◦ N) and has a total area of 583 832 km2 (Figure 1). The region
holds a highly diverse geological history [53] and a climate that ranges from a dry Mediterranean in the
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southeast to a wet Temperate Atlantic in the north [13]. As result of its biogeographic idiosyncrasies and
diverse edaphoclimatic conditions, the IP is a major hotspot of European plant diversity, hosting 54% of
all European species (22.7% of endemicity), including 21 genera [54] and 13 recognized phylogeographic
refugia [55].

Figure 1. Study area—Iberian Peninsula with major river basins and mountain chains where most
phylogeographic refugia are located.

2.2. Occurrence Data and Focal Taxa

Oak species geographic information was obtained through extensive fieldwork in western IP
(since 2005), classic literature and herbaria review. To tackle taxonomic geographic uncertainty,
we gathered the information through the thorough examination of 17 reference herbaria, in more
than 6000 vouchers. This info was scrutinized and homogenized with online collections and digital
databases (Supplementary Information S1). Geographical records for the target taxa were subsumed
and aggregated to a 1 x 1 km grid (Datum WGS1984/UTM30N), using both accurately georeferenced
points and UTM grid centroids (Supplementary Information S2). We used ESRI ArcGIS 10.3 for spatial
data processing and R version 3.3.1 (R Core Team, 2019) for data management and analysis.

We selected a set of thirteen Iberian White Oaks (Sect. Quercus) [12], which included six roburoid
taxa (former Sect. Robur Endlicher [56]) and seven Gall Oaks (subsection Galliferae Gurke) [24,57,58]).
This taxonomic set comprises traditional and updated taxonomic approaches, including infraspecific
variation and the existence of stabilized nothotaxa (Supplementary Information S3).

2.3. Predictor Variables

2.3.1. Satellite-Based Ecosystem Functioning Attributes (EFAs)

Satellite remote sensing data from the Moderate Resolution Imaging Spectrometer (MODIS)
on-board the Terra satellite platform were used to extract EFA variables. The MOD09A1 product,
delivering global surface reflectance imagery with 8 days of temporal resolution, 500 m of spatial
resolution and with an archive spanning from the year 2000 to the present day, was employed to
calculate two spectral indices: (i) the enhanced vegetation index (EVI) [59] as a proxy of vegetation
greenness, biomass and leaf area index—with values ranging from −1 to 1, with healthy vegetation
generally holding values between 0.20 and 0.80; and (ii) the Normalized Difference Water Index
(NDWI) [60] as a proxy for the amount of vegetation and soil water content—with values varying
between −1 and +1, with higher values corresponding to high vegetation/soil water content.
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To describe the intra-annual properties of each spectral index and aiming to obtain EFAs linked to
carbon and water cycles [28,29], we calculated the median (as a descriptor of central tendency and
quantity), the inter-quartile range (IQR; as a measure of intra-annual seasonal variation or seasonality)
and the sine and cosine transformations of the day of maximum annual value, respectively, related to
spring and winter peaks (DMaxSpring or DMaxWinter as a descriptor of phenology). These statistical
measures were calculated for each complete year. To capture the multi-year normal conditions of
each EFA variable, thus reducing the effect of stochastic annual climatic fluctuations, we computed
the overall median. Calculations were performed in Google’s Earth Engine (GEE) cloud-based
platform [61]. All 8-day image composites available in the GEE archive spanning from 2001 to
2019 (i.e., all complete years) were used, totalling 873 available images/dates (check Supplementary
Information S4). Data were exported from GEE at 1 km of final spatial resolution, totalling eight
variables: median, IQR, sine and cosine transformations, and DMax for both EVI and NDWI.

2.3.2. Climatic Data

Bioclimatic variables (derived from monthly temperature and rainfall data to generate more
ecologically meaningful variables) were used to portray the temperature and precipitation regimes of the
study area. These climatic data were obtained for historical conditions (1970–2000) from the WorldClim
dataset version-2.1 (released in January 2020; https://www.worldclim.org/data/worldclim21.html)
at a spatial resolution of 30 arc-sec (~1 km). Based on a preliminary assessment (supported by
the correlation and variable importance assessment from preliminary models; not shown) [62,63],
three temperature-related and two precipitation variables were used, namely: BIO01—Annual Mean
Temperature, BIO03—Isothermality, BIO06—Minimum Temperature of Coldest Month, BIO12—Annual
Precipitation and, BIO18—Precipitation of Warmest Quarter.

2.4. Model Development, Evaluation and Multi-Algorithm Ensembling

Species distribution models (SDMs) were developed in R statistical software [64] using the biomod2
package [65,66]. This package implements a multi-model ensemble forecasting approach which
combines several existing statistical and machine-learning-based algorithms thus enabling to assess
and prevent a range of methodological uncertainties in each individual modelling algorithm, as well as the
examination of species–environment relationships. Models were fitted using nine modelling techniques:
generalized linear model (GLM); generalized boosted model (GBMs); generalized additive model (GAM);
classification tree analysis (CTA); artificial neural networks (ANN); flexible discriminant analysis (FDA);
multivariate adaptive regression splines (MARS); random forests (RF); and MAXENT.Phillips2 (Maximum
Entropy Model), currently available in biomod2. Given the subpar performance of the surface range
envelop method (also called BIOCLIM; see e.g., [67]) and the similarity of MAXENT.Phillips (also a
maximum entropy-based model available in the biomod2 package) these two algorithms were not
considered. Default parameters were employed (with the exception of the smoothing degree term in
GAM which was set to k = 4 to prevent over-fitting issues [68] and the number of boosting trees in GBM,
n.trees = 2000). Previously to modelling, all candidate variables were inspected for multicollinearity
issues using Spearman’s non-parametric pair-wise correlation. By setting a threshold of |ρ| < 0.8,
we retained a total of ten variables (out of 13) including: all bioclimatic variables (BIO 01, 03, 06,
12 and 18) and EVI annual median, EVI IQR, EVI DMax-Spring, NDWI median and NDWI IQR.
Given that only presence data were available for the selected species, we established a total of five
sets of randomly generated pseudo-absences, each set with ten times the number of presence records
allowing to diversify environmental conditions in the data used for model training. Since no previous
information was available about the species prevalence (p) nor a robust way to accurately estimate it
and after checking the comparative results by [69], model weights were adjusted to set p = 0.5 (biomod2
default) thus giving a similar weight to presences and generated pseudo-absences [69]. A spatial
thinning procedure implemented in the spThin R package [70] was applied prior to modelling which

https://www.worldclim.org/data/worldclim21.html
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imposes a minimum spatial separation between input records (through subsampling) with a distance
equal to 3 km, thus decreasing autocorrelation and sampling bias effects.

Holdout cross-validation was employed to evaluate the models, with 80% of the input records
used for model fitting (train data set) and 20% for model evaluation at each round (test data set). A total
of ten rounds were performed for the model evaluation. For assessing the model performance, the area
under the receiver-operating curve (ROC), the true-skill statistic (TSS), Cohen’s Kappa (KAPPA) and
the sensitivity and the specificity values were calculated [65]. Given that 450 models were generated
per species, the less performant models were filtered out before the final ensemble forecasting. Hence,
we selected the top 10% percentile best models for the six best performing techniques, considering
the TSS rank (n = 30). Based on these top performing models, an ensemble using the average
was implemented, thus reducing inter-model uncertainty. To ‘binarize’ projections (to dichotomous
suitable/unsuitable habitat) the threshold value maximizing the TSS statistic was used. A linear
mixed-effects model was devised through the R package lme4 [71] to check if there was an effect
of the set of predictive variables (either the combined set including the climate and EFA variables,
climate-only or EFA-only; i.e., fixed factor) on the predictive performance scores (i.e., response variable)
while controlling for the species and evaluation metric (i.e., random factors). An ANOVA analysis
was then performed to assess if the effect of the set of predictive variables was statistically significant.
Finally, given the different number of variables between models setups (partial vs. combined), we also
calculated the Akaike information criterion (with finite sample size correction; AICc) for GLM’s
allowing to rank models [72,73] while accounting for a different number of variables in each set
(i.e., partial climate or satellite EFA’s models vs. combined ones).

3. Results and Discussion

Models Performance and Environmental Predictors

3.1. Model Performance and Added Value of EFAs as Predictors

Overall, the models combining EFAs and climate variables obtained a higher performance and
predictive ability (average values for TSS: 0.88, ROC: 0.98, KAPPA: 0.72, sensitivity: 99.6, specificity:
96.3), in comparison to climate-only models (TSS: 0.86, ROC: 0.97, KAPPA: 0.68, sensitivity: 96.1,
specificity: 90.3) and EFA-only models (TSS: 0.73, ROC: 0.93, KAPPA: 0.54, sensitivity: 91.2, specificity:
82.1). In addition, narrow endemic species obtained higher predictive performances using combined
models (average TSS: 0.96, ROC: 0.99, KAPPA: 0.80, sensitivity: 99.6, specificity: 96.3) in comparison
to the widespread oaks (TSS: 0.80, ROC: 0.96, KAPPA: 0.66, sensitivity: 92.6, specificity: 87.7).
These results show that the modelling performance for the different sets of variables and taxonomic
groups increase in performance when combining Climate and EFA variables for all metrics but especially
for Kappa and TSS, whereas ROC is less sensitive to improvements, followed by climate-only and a
consistent lower performance for the EFA-only set (Figure 2). This is particularly true for the NDE
species-group, with the slightest differences between climate and EFA and climate-only in TSS and
ROC for the remaining White Oaks. When comparing performance metrics, it is also important to
consider their scale of variation; while Cohen’s Kappa and TSS vary between −1 and 1 (with better
models nearing one), ROC varies between 0 and 1 (also with better models nearing one) and hence
the later lower ability to discriminate across good performing models holding a lower variance and
saturating at the upper-end part of the spectrum. The increase in the performance by the combined
set of climate and EFA is also reflected in terms of sensitivity (true positive rate), but especially in
terms of specificity (true negative rate) (Figure 3). As before, these gains are reflected especially in the
NDE group, and particularly for species such as Q. ×cerrioides, Q. canariensis, Q. orocantabrica and Q.
estremadurensis (Table 1 and Appendix A - Figure A1).



ISPRS Int. J. Geo-Inf. 2020, 9, 735 7 of 25

Figure 2. Combined boxplot/violin plot of model performance values for the species group
(KAPPA—Cohen Kappa, ROC—area under the receiver operating curve, and TSS—true skill statistic)
for each set of predictor variables: “CLIM_EFA” (climate and ecosystem functioning attributes (EFAs)
combined), “CLIM_only” (climate variables only) and “EFA_only” (satellite EFA variables only).
Boxes display (from bottom to top) the 25%, 50% (median) and 75% quartiles of the distribution.
Whiskers present the minimum and maximum values.

Results from the post hoc ANOVA test based on linear mixed-effects modelling (with a species
and evaluation metric as random factors) showed a significant effect of the set of predictive variables on
performance scores (p < 0.001). Estimated coefficients show that (despite variability) the “climate-only”
and the “EFA-only” sets both have on average less performant models in relation to the combined
climate–EFA set, since both coefficients are negative and, respectively, equal to: −0.018 ± 0.015 and
−0.124 ± 0.014 (estimate ± std. error). These estimates also show that performance gains are higher in
relation to the “EFA-only” set but less in relation to the “climate-only” (see Supplementary Information
S5 for more details). The AICc-based model ranking (which measures model fitting performance while
accounting for the number of variables in the models; Supplementary Information S6) also showed
that for nine (out of thirteen) species, including Q. broteroi, Q. canariensis, Q. ×cerrioides, Q. lusitanica,
Q. marianica, Q. orocantabrica, Q. pubescens, Q. pyrenaica and Q. subpyrenaica, better model performances
are attained for the climate–EFA combined models. For Q. faginea, Q. petraea and Q. robur the EFA-only
models obtained better performances according to the AICc-based ranking, while for Q. estremadurensis
the climate-only model was the best one. This evidences that the higher number of variables in
combined models (i.e., higher complexity) does not affect the overall ranking.
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Figure 3. (a) Combined boxplot/violin plot with the comparison of sensitivity (or true positive rate) and
specificity (or true negative rate) for all species between groups of variables. Boxes display (from bottom
to top) the 25%, 50% (median) and 75% quartiles of the distribution; (b) the comparison of specificity
values between different groups of species. Whiskers present the minimum and maximum values
without outliers (shown as points). Sets of predictive variables (x axis) are: “CLIM_EFA” (climate and
EFA combined), “CLIM_only” (climate variables only) and “EFA_only” (satellite EFA variables only).
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Table 1. Evaluation scores per studied species for the ensemble of 30 top-models combining both climate
and satellite-based EFA variables (TSS: true skill statistic; ROC: area under the receiver operating curve;
KAPPA: Cohen’s Kappa; sensitivity (also called true positive rate or recall); specificity (also defined
as the true negative rate)). The number of species records presented are computed after removing
duplicates and applying the spatial thinning algorithm for imposing a minimum separation distance of
3 km between points (spThin). * narrow distributed; ** endemic.

Species Names TSS ROC KAPPA Sensitivity Specificity Number of Species Records

Quercus
×cerrioides ** 1.00 1.00 0.97 100.0 99.9 18

Quercus
canariensis * 0.98 1.00 0.78 100.0 97.5 96

Quercus
orocantabrica ** 0.97 1.00 0.89 100.0 97.2 33

Quercus
estremadurensis * 0.96 0.99 0.66 100.0 95.8 46

Quercus
lusitanica * 0.93 0.99 0.72 97.6 95.0 212

Quercus
marianica ** 0.92 0.99 0.75 100.0 92.4 70

Quercus
pubescens 0.88 0.98 0.73 97.5 90.9 473

Quercus
subpyrenaica ** 0.88 0.98 0.76 96.8 90.6 375

Quercus broteroi 0.86 0.98 0.70 93.5 92.4 306
Quercus robur 0.83 0.97 0.64 96.2 86.8 901
Quercus petraea 0.81 0.97 0.68 94.0 87.1 753
Quercus faginea 0.71 0.93 0.56 83.7 86.6 301
Quercus
pyrenaica 0.66 0.91 0.56 86.7 79.4 3282

The consistent better performance of combined climate and EFA models, despite the relatively
small increment for some species (Figures 2, 3 and A1), suggests that these two types of variables,
when combined, improve the predictive models. Results improved especially for NDE species which
have narrower biogeographic ranges and ecological niche breadths. In contrast, models based solely
on EFA variables show the lowest performances, even when compared with climate-only models.
This may be explained by the coarse scale of the models developed (i.e., with low spatial resolution and
a large areal extent) for which regional variations of climate patterns hold substantial more predictive
power than finer/local ecosystem functioning patterns depicted by satellite EFA variables. This may be
due to the particularly high affinity of most White Oak species to climate gradients, which constrain
or control several important physiological aspects of these species’ environmental tolerances at a
regional scale [74]. The scale of the influence of variables capturing primary to secondary (or regional
to local) patterns structuring species habitat given each one’s spatial autocorrelation patterns, has been
previously identified for SDMs [75]. This may also mean that when used at a narrower extent and
higher spatial resolution (i.e., finer scale), EFA variables may prove more relevant by their ability to
describe small scale variation, heterogeneity and environmental gradients in species habitat patterns,
and thus present distinct predictive abilities given species attributes and modelling scale [37].

At a regional/coarser scale, EFAs are mainly driven by climate patterns while in contrast
these are more linked to land-cover and land-use patterns at a finer/local scale and thus capturing
human influence on ecosystems [36–38]. As such, EFAs offer an integrative, quicker and more
up-to-date view of ecosystem responses to environmental factors and changes, in comparison
to attributes of structure (e.g., patch size, fragmentation) or composition (e.g., percent cover of
certain habitats) [36–38,76] and thus linking species responses to pressures on ecosystem functioning
and its state [38]. This holds advantages for implementing species-monitoring programs [41,77,78]
and at the same time, satellite-based EFAs also have the virtue of inserting more ‘realism’ into the
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spatial predictions of models. For example, implementing EFA variables in models may aid by
removing unsuitable areas occupied by artificial or shrubby vegetation (both with a lower mean
and seasonal variation in annual EVI or productivity) that may appear as suitable in climate-only
models (which solely portray the potential distribution) while in combined models they likely do not.
By including integrative, finer-scale attributes of ecosystem functioning linked to each species habitat
and suitable environmental conditions, models may better approximate the realized distribution of
species which may present several advantages for conservation, management and restoration efforts.
Nonetheless, it is important not to blur the distinction between modelling a species distribution or its
environmental suitability from actually detecting it through satellite imagery using spectral signatures
or indices [79].

A frequent limitation linked to SDMs is that species occurrences (one of SDM’s key inputs)
are usually available at coarse resolutions [80] while their conservation and management are often
required at a much finer spatial resolution [81,82]. Moreover, many predictive variables are also not
measurable or available at the required spatiotemporal resolution and consequently, surrogates and
interpolated data (e.g., from weather stations) have to be used instead [83,84]. Structural predictors
from thematic maps (e.g., land-cover) also bear limitations by often not representing key landscape
features nor the ecosystem processes relevant for characterizing a certain species status and change.
Moreover, both occurrence data and predictive variables can have inappropriate or distinct spatial,
thematic and/or temporal resolutions which impacts model quality and performance [85].

3.2. Combined Models for Individual Species

Overall, combined models (i.e., with both satellite-based EFA and climate variables) showed
higher performance scores for all NDE taxa than other White Oaks (TSS > 0.88; Figure 2), especially
for Quercus ×cerrioides, Q. canariensis, Q. orocantabrica, and Q. estremadurensis (Table 1). The lowest
TSS values corresponded to Q. faginea and Q. pyrenaica (0.71 and 0.66, respectively). ROC values
were always above 0.9, suggesting an overall excellent performance of the NDE models. Cohen’s
Kappa values (typically more sensitive to true negative rates) varied between 0.56 and 0.97,
also showing a strong performance of combined (climate and EFA) models with variations across
species. In addition, sensitivity and specificity scores were always above 80% (with a slight exception
for the widespread Q. pyrenaica), confirming the good and well-balanced performance of the models
(Table 1; Supplementary Information S7).

Generally, we observe a bigger relevance of precipitation-related variables and a fluctuation of the
importance of a second group of predictors, either related with temperature, or with EFA variables.
When considering all species, climatic variables are generally the most important ones, especially the
precipitation of the warmest quarter (BIO18), followed by annual precipitation (BIO12), annual mean
temperature (BIO01) and winter cold (BIO06) (Figure 4 and Appendix A - Figure A2). The same pattern
is noticeable for the widely distributed White Oaks, but temperature-related variables (BIO01 and
BIO06) become the second and third most important variables for the NDE group, followed by BIO12,
with NDWI_MED, occupying the fifth position for these group of species (Appendix A - Figure A2).
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Figure 4. Variable importance (average ± standard deviation across all models) for each oak
species considering the two groups of predictors, climatic (precipitation and temperature) and
satellite-based EFAs. BIO_1—annual mean temperature; BIO_4—temperature seasonality; BIO_6—min
temperature of coldest month; BIO_12—annual precipitation; BIO_18—precipitation of warmest
quarter; EVI_IQR—seasonality (EVI intra-annual variation); EVI_MED—productivity (EVI median);
EVI_DMS—phenology (EVI day of maximum—spring). Precipitation-related variables (“Prec”,
shown in yellow), temperature (“Temp” in green) and remotely-sensed EFA’s (“RSens”, in blue).

When taking into account individual species (Figure 4), summer precipitation (BIO18) is
predominantly the most important variable for most of the Iberian White Oaks, only superseded by
winter cold (BIO6) for Q. lusitanica, annual mean temperature (BIO01) for Q. orocantabrica, Q. petraea and
Q. pyrenaica, and annual precipitation (BIO12) for Q. robur. EFA-related variables occupy the third and
fourth positions for several NDE oaks, like Q. canariensis, Q. ×cerrioides, Q. marianica, Q. estremadurensis
and Q. orocantabrica, especially EVI_MED and NDWI_MED. Q. faginea seems to be the species with the
most balanced equilibrium between variables (Figure 4).

Regarding EFAs, its contribution was found to be more important as predictors in models of NDE
species than other White Oak species as before, regarding model performances. More specifically,
the inter-quartile range of the NDWI (a descriptor of seasonality in water balance/content) was the
most relevant variable across all of the studied species, followed by the median of NDWI and EVI
(descriptors of water balance/content and primary productivity, respectively) (Figure 4).

These results reflect the high dependence of precipitation for these group of oaks, especially in
the dry season (BIO18) for most of the Gall Oaks, or those geographically distributed throughout
the sub-Mediterranean and southern areas of the IP. The winter cold (BIO06) importance explains
the distribution of Q. lusitanica in the Atlantic shore of the IP, showing this species’ intolerance for
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winter cold, while the annual precipitation (BIO12) marks the distribution of Q. robur as it cannot
withstand low precipitation levels and summer drought. The third and fourth position occupied by
EFA predictors for some NDE species, represent the importance of the vegetation state/quality, for the
maintenance of some of these oaks, especially for the relicts Q. canariensis and Q. estremadurensis and the
endemics Q. ×cerrioides and Q. marianica. These taxa are dependent on shady and moist environments,
normally in deep canyons of Atlantic areas. Herein, EVI-related EFA’s were found suitable to depict
primary production and water availability patterns of these areas with higher levels of humidity linked
to the maintenance of these species [86–89].

The visual inspection of suitability maps for the seven NDE taxa shows the best areas for the
preservation and recovery of the selected species. Here, we can compare the combined model
(with satellite EFA and climate variables), with the spatial overlap of partial models (RS and climate)
(Figures 5 and 6). Overall, the contribution of EFA predictors brings higher accuracy for the spatial
delimitation of these species’ recovery areas, by reflecting the vegetation state through primary
productivity and moisture conditions (better captured by NDWI-related EFA variables), and by adding
it to the climatic suitability for each species.

Figure 5. (Left) Combined models (remote sensing EFA—and climate) and (right) partial models
(remote sensing EFA in green or climate in blue and their spatial overlap in orange) for narrow
distributed White Oaks Q. canariensis, Q. estremadurensis and Q. lusitanica.
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Figure 6. (Left) Combined models (remote sensing (RS) EFA and climate) and partial models
(remote sensing EFA in green or climate in blue and their spatial overlap in orange colour) (right) for
narrow endemic oaks (Q. marianica, Q. orocantabrica, Q. subpyrenaica, Q. ×cerrioides).

When analysing the narrowly-distributed oaks (Figure 5), Q. canariensis evidences suitable
environmental conditions in its “typical” locations, from the Iberian southwest (Monchique and
Algeciras) and Catalonian sub-populations, with the maintenance of residual areas in Morena System
and suitable areas and Littoral shore of Centre Portugal (around Lisbon) (Figure 1). A similar pattern
is followed by Q. estremadurensis, with a wider suitable area, through central Portugal up to Montes de
Toledo (Spain) and an incursion in the Portuguese Douro thermophilic areas. Q. lusitanica preserves
most of its known distribution [7,9], with the overlap of partial models being considerably smaller
than the combined models (Figure 5).

When looking at endemic oaks (Figure 6), Q. marianica shows a larger suitable area with a
higher ecological plasticity in comparison to its parental species Q. canariensis, extending throughout
Morena mountain chain and the western Portuguese coast. By tracking the remaining parental
species (Q. broteroi) it enhances the role of hybridization by adapting to new ecological conditions
as a strategy for survival in growing drier habitat types and conditions, where at least one of the
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parentals lost fitness (Q. canariensis) [90,91]. Q. orocantabrica shows a wider area out of its currently
known range, across the Cantabrian mountains and three disjoint subpopulations in Rioja, Cuenca and
the Central system (Figure 1), with the EFA predictors contributing to diagnose orophile conditions
in the suitable environmental space. These novel spatial inferences may in turn help managers
and stakeholders to devise much-needed restauration, recovery or re-introduction efforts [92–95].
Likewise, Q. marianica, the nothotaxa Q. subpyrenaica, show a wider and more continuous distribution
in comparison to the parental Q. pubescescens (see Appendix A - Figure A4), however, in reverse, a more
reticulated distribution in the overlap of the partial models. This shows a higher ecological plasticity by
matching the other parental species (Q. faginea) and tracking the sub-Mediterranean belt of northeast
IP, while Q. pubescens presents a more continuous temperate distribution in the partial models and
a reticulated distribution in the combined ones, being a more restrict taxon in terms of distribution.
The endemic nothotaxa Q. ×cerrioides has a reduced suitable area in the littoral Catalonian mountains,
as it results from contact with the residual Q. canariensis forests.

The remaining Iberian White Oaks, with wider distributions, frequently present smaller overlap
areas between partial models than the combined ones, highlighting more detailed areas where to recover
this species group when taking into account the EFA predictors (Appendix A - Figures A3 and A4).
The Quercus broteroi combined model shows a continuous area in western Iberia and throughout the
Morena System and Montes de Toledo, with the overlap of partial models evidencing the best areas for
this species recovery. By opposite, Q. faginea combined models show a wider area in the Douro Basin
and throughout the Cantabrian mountains, Iberian and Betic Systems, and eastern IP, while the overlap
shows a more conservative area for its recovery (Figure 1). Likewise, Q. pyrenaica presents a similar
pattern, while including the central system and northwest Iberian mountain areas, with disjoint relict
subpopulations in southern Iberia. Q. petraea and Q. robur present complementary projected areas that
reflect their ecological requirements, both with a larger overlap between combined models and the
overlap of partial models. Q. pubescens shows similar patterns of the nothotaxa Q. subpyrenaica, with the
first having a temperate distribution while the second enters into sub-Mediterranean areas [14,96].
Both species evidence notorious differences between the combined models when in comparison to the
overlap of the partial ones, with larger areas in the first ones.

3.3. Spatial Projections and Patterns of Species Richness

Model projections for all Iberian White Oak species (Figure 7) reveal areas with cumulative
suitability up to seven oak taxa, highlighting the Iberian southwest mountains, the Lusitanian Basin,
Montes de Toledo and to sub-littoral Catalonian mountains (Figure 1) as highly relevant. These areas
can be considered the largest hotspots and the most important “lost” areas for the Iberian White
Oaks conservation, being suitable for the highest diversity of oak taxa. Oaks in general show strong
niche conservatism [74], particularly the Subgenus Quercus [12], that comprises temperate lineages of
oaks [97], which were heavily constrained in the IP by its biogeography, prevailing only in areas with
similar climates. This way water availability and the Atlantic influence plays a major role, especially
when in a seasonal climate like the Mediterranean one [13]. Thus, our study provides a lacking approach
to assess these woody temperate plants species richness which can provide useful data for promoting
their persistence [98], while unveiling the importance of multiple drivers of ecosystem functioning
and their interaction with the climate in a biogeographic transitional area between Temperate and
Mediterranean Europe.
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Figure 7. Spatial patterns of predicted species richness for the Iberian White Oaks.

Such results allow to better understand the co-distribution and the spatial patterns of potential
species richness of these taxa and therefore to know and prioritize areas with higher biogeographic
conservation value. The central and western IP show the best areas for the Gall Oaks, where Q. canariensis,
Q. broteroi, Q. lusitanica and Q. marianica have suitable environmental conditions to co-occur,
together with Q. estremadurensis, which is a relict species, and also the presence of the widespread
Q. pyrenaica, that in these thermophilic areas is also rare but potentially distributed. This area is only
matched by the littoral Catalonian range, where Q. canariensis co-occurs with the roburoid Q. pubescens,
Q. petraea and Q. robur, with an intricated legacy of introgression [28]. This pattern is also present in
the pre-Pyrenees area, where Q. subpyrenaica marks the transition from the submediterraenan to the
temperate belt alongside the contact of Q. pubescens and Q. faginea. The northern and western mountain
ranges, including the Iberian, Cantabrian and Gallaecian Systems are also quite important for the
preservation of the European southernmost suitable areas for Q. robur, Q. petraea and the endemic
Q. orocantabrica. Moreover, this area has a major relevance for the evolutionary history of these group
of oaks in terms of the European forests [11] and their inherent relevance for forest conservation when
confronted with projected climatic shifts.

4. Conclusions

We highlighted the importance of incorporating satellite-derived ecosystem functioning attributes
for mapping the potential distribution and habitat suitability of oak species, especially to those with
a narrow distribution and relict-like character (NDE), in a biodiversity hotspot such as the Iberian
Peninsula. Our results show that EFAs are able to improve predictions of the distribution of both
narrow- and wide-ranged oak species at the regional scale, and confirm its robustness as predictors
of habitat features that complement the climate influence by describing relevant complementary
dimensions of the carbon cycle and water balance at the ecosystem level. Thus, satellite-based
predictors such as EFAs can nowadays be computed from imagery available at high frequencies and
several spatial resolutions, which allow to match the scale of the relevant processes in each study,
and to anticipate species’ responses to different disturbances. By doing this, our combined modelling
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framework illustrates the great potential of EFAs to contribute for monitoring and conservation through
the essential biodiversity variables framework (EBV class ‘ecosystem function’).

By incorporating and combining these variables with climatic data, our work addresses the
best areas for the conservation of each taxa, for which vegetation state and ecosystem functioning
attributes are generally overseen in climate-only studies. The good performance of the models helped
to predict the best areas for the preservation of the studied species, while variable importance measures
aided to explain the main factors behind species’ distributions in the geographic space. Therefore,
this work also serves as base for forecasting the impact of climate change in the Iberian oak forests,
in the face of future scenarios. Furthermore, our methodology proved to be suitable to be applied to
analogous situations and throughout the Mediterranean Basin and targeting oak forests worldwide.
This is of paramount importance in a group characterized by a complex and reticulate evolutionary
history. Globally, our results show that species distribution models are a suitable tool to accurately
predict oak species distribution which holds great potential to accurately depict the ‘best’ areas for the
conservation of the studied taxa. Our study highlights the Iberian Southwest, the Lusitanian Basin and
the Catalonian littoral mountains, as the most important biogeographic areas, with greater overall
habitat suitability for a larger number of species, functioning as hotspots and relict-like areas for the
broad-scale conservation of the Iberian White Oaks.
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Appendix A

Figure A1—Increased performance of the models (Gains) in NDE (left) and other oaks
(right); Figure A2—Variables contributions; all species (above); NDE and other oaks (bellow);
Figure A3—Combined models (remote sensing—RS and climate) (Left) and partial models (RS or
climate and overlap) for Q. broteroi, Q. faginea and Q. pyrenaica; Figure A4—Combined models (remote
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sensing—RS and climate) (Left) and partial models (RS or climate and overlap) for Q.petraea, Q. pubescens
and Q. robur.

Figure A1. Increased performance of the models (Gains) in NDE (left) and other oaks (right).
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Figure A2. Variables contributions; all species (above); NDE and other oaks (bellow).
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Figure A3. Combined models (remote sensing—RS and climate) (Left) and partial models (RS or
climate and overlap) (Right) for Q. broteroi, Q. faginea and Q. pyrenaica.
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Figure A4. Combined models (remote sensing—RS and climate) (Left) and partial models (RS or
climate and overlap) (Right) for Q.petraea, Q. pubescens and Q. robur.
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