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Abstract 

 

Friction induced vibration widely exists in mechanical systems. One typical example 

is the automobile brake noise that originates from the vibration of a brake system 

induced by the frictional contact between the rotating rotor and stationary pads. 

However, a thorough understanding of friction induced vibration in various 

mechanical systems has not been achieved yet and it remains a challenging research 

topic due to the immense complexity of this problem. Therefore the aim of the present 

thesis is to study the friction induced vibration in theoretical mechanical models in 

order to provide deeper understanding about the causes, the dynamic behaviours and 

the suppression of the friction-induced-vibration problem. 

1.  The dynamics of a mass-slider with in-plane and transverse springs and dampers in 

frictional contact with a spinning flexible disc in three different situations of 

spinning speed, i.e. constant deceleration, constant acceleration and constant speed, 

is studied. The in-plane motion of the slider causes time-varying normal force and 

bending moment on the disc, which can be seen as moving loads to excite the 

transverse vibration of the elastic disc. The transverse vibration of the disc will, in 

turn, influence the in-plane motion of the slider by affecting the magnitude of 

friction force through the varying normal force. Therefore the transverse vibration 

and the in-plane vibration of the slider are coupled. The numerical algorithm for 

the transient dynamic analysis of the system involving three different states of 

motion and non-smooth transitions among the states is proposed. Numerical 

simulation results show that distinct dynamic behaviours can be observed in the 

three situations of disc speed and two kinds of particular characteristics of 

differences are revealed. The significant effects of decelerating and accelerating 

disc rotation on the friction induced vibration of the system underlie the necessity 
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to take into account time-varying sliding velocity in the research of friction induced 

vibration. 

2. The effects of tangential high-frequency harmonic excitation on the friction induced 

vibration in multi-degree-of-freedom systems that are coupled in the tangential and 

normal directions are theoretically investigated, in which a minimal two-degree-

of-freedom system and a more complicated slider-on-disc system are considered. 

It is observed the tangential harmonic excitation with appropriate amplitude and 

frequency suppresses the friction induced vibration in the systems. The analytical 

method to determine the ranges of  the amplitude and frequency of the harmonic 

excitation with which the friction-excited  systems are stabilized is established. To 

verify the analytical results, a great amount of computational effort is also made to 

simulate the time responses of systems in various combinations of values of the 

amplitude and frequency, by which the parameter ranges where the friction induced 

vibration is suppressed can also be obtained. This research can provide theoretical 

guidance for the suppression of friction induced vibration in real mechanical 

systems by application of a tangential harmonic excitation. 

3.  The friction induced vibration of a five-degree-of-freedom mass-on-oscillating-belt 

model considering multiple types of nonlinearities is studied. The first type of 

nonlinearity in the system is the nonlinear contact stiffness, the second is the non-

smooth behaviour including stick, slip and separation, and the third is the 

geometrical nonlinearity brought about by the moving-load feature of the mass 

slider on the rigid belt. Both the linear stability of the system and the nonlinear 

steady-state responses are investigated and rich dynamic behaviours of the system 

are revealed. The results of numerical study indicate the necessity of the transient 

dynamic analysis in the study of friction-induced-vibration problems as the linear 

stability analysis fails to detect the occurrence of self-excited vibration when two 

stable solutions coexist in the system. Additionally, the significant effects of each 

type of nonlinearity on the linear stability and nonlinear steady-state responses of 

the system are discovered, which underlie the necessity to take multiple types of 

nonlinearities into account in the research of friction induced vibration. The similar 

study is also conducted on a continuous slider-on-disc model. 
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4. A new pin-on-disc system with an L-mechanism to adjust the normal force is 

proposed and the friction induced stick-slip vibration of the system is theoretically 

studied. The Coulomb law of friction is utilized to model the friction force between 

the pin and disc. It is observed that the system is bi-stable at low disc speed and 

high normal preload, i.e., there is coexistence of a stable pure sliding solution and 

a stable stick-slip limit cycle for the pin, and the variable normal force can lead to 

the bifurcation and even chaotic behaviours of the responses in the system. Then 

the effect of non-uniform friction interface in which a sector of disc has a different 

set of friction property on the stick-slip vibration of the system is studied. It is 

found that with appropriate friction coefficients on the sector and an appropriate 

span angle of the sector, the range of disc speed and normal preload at which the 

stick-slip limit cycle exists will be greatly diminished. Therefore a potential 

approach to suppress the friction induced stick-slip vibration is provided. 
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Chapter 1 

Introduction 

1.1 Background and motivations 

Dry friction, which results from the relative motion of solids, plays a crucial, 

controlling role in a rich variety of mechanical systems as well as in everyday life. In 

many cases, friction acts as damping which develops between contact surfaces such as 

joints or connections to dissipate energy and weaken vibration. However, friction force 

can also cause self-excited vibration and lead to radiation of sound in various 

engineering applications and daily life. Examples of the vibration and sound which are 

generated by dry friction include string instrument music, rattling joints of robots, 

squealing windscreen wipers, stick-slip vibration of drill-strings, squeal noise of train 

wheels on sharp curved tracks, squeaking chalks on boards, some insect sounds, 

automobile brake noises, etc. [1,2]. Among them, automobile brake noise has been a 

major issue facing car manufacturers today, which may cause discomfort to passengers 

and be perceived as a quality problem, thereby increasing the warranty costs and 

impacting the brand reputations [3,4].  

Due to the universality and importance of this problem, friction induced vibration has 

attracted great research interest and a considerable volume of literature has been 

produced of this subject on both theoretical studies and experimental studies. In terms 

of theoretical studies, theoretical mechanical models involving friction induced 

vibration that include low-degree-of-freedom lumped models, continuous models and 

finite element models were established for investigation. In terms of experimental 

studies, test rigs were specially designed to study the friction induced vibration in 
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specific mechanical systems. These studies enormously enhanced the understanding 

of this subject. Physical mechanisms for initiating friction induced vibration were 

uncovered, such as the stick-slip vibration, the sprag-slip instability, the mode-

coupling instability, the frictional follower force, etc. Methods to predict the 

propensity of friction induced self-excited vibration and approaches to suppress the 

friction induced vibration were proposed. And the complex dynamic behaviours of the 

friction induced vibration such as bifurcations and chaotic behaviours of the dynamic 

responses were revealed. 

However, the problem of friction induced vibration is not fully resolved yet and more 

research, especially from the theoretical perspective, needs to be done. The 

deficiencies in existing studies constitute the motivation for the research in this thesis. 

For example, a comprehensive study of the effects of multiple types of nonlinearities 

on friction induced vibration is yet to be done. Compared to the experimental study, 

the theoretical study is more advantageous in uncovering the basic mechanisms, 

predicting the dynamic behaviours unavailable in experiments and investigating the 

effects of parameters on the friction induced dynamics. 

1.2 Aim and objectives 

The aim of the present thesis is to study the friction induced vibration in theoretical 

mechanical models in order to provide deeper understanding about the causes, the 

dynamic behaviours and the suppression of the friction induced vibration in 

mechanical systems. 

To achieve this aim, four objectives are established, which are, 

(1) To build a theoretical mechanical model which consist of a mass-slider constrained 

by in-plane and transverse springs and dampers with an elastic disc clamped at the 

inner boundary and free in outer boundary in frictional contact, and to study the 

dynamics of the system in three different situations of spinning speed of disc, i.e. 

constant deceleration, constant acceleration and constant speed. The system 

responses under the decelerating and accelerating sliding motion are compared 

with the results under constant sliding speed to help reveal the effects of 

deceleration and acceleration on the friction induced dynamics of the system. 
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(2) To investigate the effects of tangential harmonic excitation on the friction induced 

vibration in two multi-degree-of-freedom (MDoF) systems that are coupled in the 

tangential and normal directions, i.e., a two-degree-of-freedom lumped model and 

a more complicated slider-on-disc model. The analytical method to determine the 

effective ranges of the amplitude and frequency of the harmonic excitation for the 

suppression of the friction induced vibration of the systems is established, and the 

analytical results are verified by the results obtained from a large number of 

simulations of the time responses of systems in various combinations of values of 

the amplitude and frequency.  

(3) To study the friction induced vibration of a five-degree-of-freedom mass-on-

oscillating-belt model considering multiple types of nonlinearities. The significant 

effects of each type of nonlinearity on the linear stability and nonlinear steady-state 

responses of the system are investigated. This study is also extended to a 

continuous slider-on-disc model. 

(4) To propose a new pin-on-disc system with an L-mechanism to create a state-

dependent normal force and couple with the friction induced stick-slip tangential 

vibration of the system. Especially the friction induced dynamics with a non-

uniform friction interface on the disc is investigated.  

1.3 Original contributions 

The original contributions in this thesis can be summarised in five aspects as follows: 

(1) A numerical algorithm for the transient dynamic analysis of friction induced 

vibration involving three different states of motion (slip and stick in contact, and 

separation; and considering the impact when re-contact happens) is proposed. 

(2) The friction induced dynamics of a slider-on-disc system at time-varying spinning 

disc speeds, is investigated. The distinct dynamic behaviours of the system under 

time-varying disc speeds from those under constant disc speeds indicate the 

necessity to consider the time-variant sliding velocity when studying the friction 

induced vibration in mechanical systems. 

(3) The ranges of amplitude and frequency of the intentionally introduced tangential 

high-frequency harmonic excitation to suppress the friction induced vibration in 
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two theoretical mechanical models are determined both analytically and 

numerically. This research can provide theoretical guidance for the suppression of 

friction induced vibration in real mechanical systems by application of a tangential 

harmonic excitation. 

(4) A comprehensive analysis of the effects of multiple types of nonlinearities on the 

friction induced vibration is conducted. It is discovered that each type of 

nonlinearity has significant effects on the linear stability and nonlinear steady-state 

responses of the mechanical models proposed, therefore it is essential to take 

multiple types of nonlinearities into account in the research of friction induced 

vibration. 

(5) A new pin-on-disc model with an L-mechanism to adjust the normal force is 

proposed and the friction induced dynamics of the system with non-uniform 

friction interface, where a sector of disc surface is assigned with a different set of 

friction property from that on the rest of the disc surface, is studied. It is found that 

with appropriate friction coefficients on the sector and an appropriate span angle 

of the sector, the range of disc speeds and normal preloads at which the stick-slip 

limit cycle exists will be greatly diminished. Therefore a promising approach to 

suppress the friction induced stick-slip vibration is provided.  

1.4 Outline of the thesis 

This thesis consists of eight chapters and the content of each chapter is briefly stated 

as follows: 

Chapter 1 introduces the background and motivations, the aim and objectives, the 

original contributions and the outline of this thesis. 

Chapter 2 provides a comprehensive literature review concerning friction induced 

vibration in five aspects: the main physical mechanisms for initiating friction induced 

vibration, the friction force models, the dynamic behaviours of friction induced 

vibration in a variety of mechanical models, the dynamics of the spinning disc in 

contact with stationary parts and the experimental investigations on the friction 

induced vibration in mechanical systems.  
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Chapter 3 presents the fundamental knowledge and analysis tools that are utilized in 

the present thesis. Firstly three principal mechanisms for generating friction induced 

vibration, that are the negative friction-velocity slope, the stick-slip oscillation and the 

mode-coupling instability, are presented in low-degree-of freedom lumped models. 

Secondly, two main kinds of theoretical methods of friction induced vibration, i.e. the 

complex eigenvalue analysis (CEA) and the transient dynamic analysis (TDA), are 

introduced. Finally the basic theory about the vibration of elastic thin plates is stated. 

Chapter 4 studies friction induced vibration of a mass-slider with in-plane and 

transverse springs and dampers in sliding contact with a spinning elastic disc in three 

different situations of spinning speeds, i.e. constant deceleration, constant acceleration 

and constant speed. The non-smooth dynamic responses of the system including three 

different states of motion, i.e., slip, stick and separation, are calculated. And the 

dynamic responses in the three different situations of disc speed are compared to reveal 

the effects of time-variant disc speed on the friction induced dynamics of the system.  

Chapter 5 investigates the effects of tangential high-frequency harmonic excitation 

on the friction induced vibration in multi-degree-of-freedom (MDoF) systems that are 

coupled in the tangential and normal directions. It is observed the friction induced 

vibration of the systems can be suppressed by the tangential harmonic excitation when 

the amplitude and frequency of the excitation are in certain ranges. The ranges of 

amplitude and frequency of the tangential harmonic excitation to suppress the friction 

induced vibration in the systems are then determined both analytically and numerically. 

Chapter 6 studies the friction induced vibration of a five-degree-of-freedom mass-on-

oscillating-belt model considering multiple types of nonlinearities. The first type of 

nonlinearity is the nonlinear contact stiffness, the second is the non-smooth behaviour 

including stick, slip and separation, and the third is the geometrical nonlinearity caused 

by the moving-load feature of the mass on the rigid belt. Both the linear stability of the 

system and the nonlinear steady-state responses are studied. The effects of each type 

of nonlinearity on the system dynamics are revealed. The similar study is also 

conducted on a continuous slider-on-disc model. 

Chapter 7 studies the friction induced stick-slip vibration of a new pin-on-disc system 

with an L-mechanism to adjust the normal force. And the friction induced dynamics 

with a non-uniform friction interface on the disc is investigated. 
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Chapter 8 presents important findings and conclusions in this PhD project and points 

out some future directions of research. 
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Chapter 2  

Literature review 

There have been a large number of published studies on the friction induced vibration, 

which greatly enhances understanding of the problem. In this chapter, the literature of 

this subject is reviewed in five aspects. Firstly several main physical mechanisms for 

initiating friction induced vibration are reviewed; then a review of various friction 

force models is conducted; thirdly the works on investigation of the dynamic 

behaviours of friction induced vibration in a diverse variety of mechanical models are 

presented; The fourth part focuses on the literature concerning the dynamics of the 

spinning disc in contact with stationary parts. Finally in the fifth part the experimental 

investigations on the friction induced vibration in mechanical systems are reviewed.  

2.1 Mechanisms for generation of friction induced vibration 

From previous studies, the mechanisms for the occurrence of friction induced vibration 

generally fall into four categories [5]: (1) stick–slip oscillation, which usually happens 

when the value of static friction coefficient is greater than the kinetic friction 

coefficient; (2) sprag-slip instability for which the origin of instability is geometrical 

rather than tribological; (3) negative gradient in friction coefficient–velocity 

relationship; and (4) mode-coupling instability or mode-locking, which is generally 

acknowledged as the main mechanism for self-excited vibration in automobile brakes.  

2.1.1 Stick-slip oscillation 

Stick-slip oscillation features two distinct states of motion, sticking (when the two 

objects in contact are at rest relatively and the static friction force between them does 
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not exceed the maximum static friction capacity) and slipping (when the two objects 

are in relative motion).  The stick-slip vibration serves to be the cause of vibration 

instability in a number of mechanical systems [6-14] or in geodynamics [15-17]. In 

[18], Feeny et al. gave a substantial historical review on the friction influenced 

dynamics and stick-slip phenomena in mechanical, civil and transportation systems. 

Since the dynamic states of a system experience non-smooth transitions, such a system 

belongs to the class of non-smooth systems, which can exhibit chaotic behaviour [19]. 

Popp et al. [2, 19, 20] investigated stick-slip dynamics of discrete and continuous 

models and observed the rich bifurcation and chaotic behaviour could appear for the 

models with the governing equations which could be expressed as three- or higher-

dimension first-order ordinary differential equations. The observations of the 

bifurcation and chaotic behaviour associated with stick-slip were also made by other 

researchers [21-23]. The works investigated the characteristics of stick-slip motion 

which are influenced by the system parameter values and friction property [24-27]. 

Kinkaid et al. [28] studied the dynamics of a 4-DoF (degree-of-freedom) system with 

a two-dimension friction force and found the change of direction of the friction force 

could excite unstable vibration even with the Coulomb’s friction law, thereby 

introducing a new mechanism for brake squeal. Behrendt et al. [29] conducted a finite 

element analysis on the stick-slip motion of an elastic brake pad sliding over a rigid 

surface under constant load and constant velocity. 

In [30], a systematic procedure to find both stable and unstable periodic stick-slip 

vibrations of autonomous dynamic systems with dry friction was derived, in which the 

discontinuous friction forces were approximated by a smooth function. Hetzler [31] 

studied the effect of damping due to non-smooth Coulomb friction on a simple 

oscillator on the belt exhibiting self-excitation due to negative damping in the case of 

negative friction force-relative velocity slope. Tonazzi et al. [32] performed an 

experimental and numerical analysis of frictional contact scenarios from macro stick-

slip to continuous sliding. Papangelo [33] investigated the subcritical bifurcation of a 

slider-on-belt system which experienced friction induced vibration in the case of a 

weakening-strengthening friction law, and the results showed that there was a range of 

parameters where two stable solutions coexist, i.e., a stable sliding equilibrium and a 

stable stick-slip limit cycle. The approximate analytical expressions for the amplitude 

and frequency of friction induced stick-slip oscillations were derived in [34]. The 
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stick-slip vibration in the situation of decelerating sliding was investigated in [35, 36], 

the results showed that decelerating sliding can induce stick-slip whereas no stick-slip 

appears during steady sliding. 

The literature showed that the stick-slip oscillation is widespread in engineering and 

other fields, and it can produce complex dynamic behaviours. 

2.1.2 Sprag-slip instability 

The sprag-slip is not tribological but geometrical instability. The concept of sprag-slip 

was firstly proposed by Spurr [37], in which the variations of normal and tangential 

forces due to the deformations of contacting structures were considered to cause the 

vibration instability. Jarvis and Mills [38] employed a cantilevered beam on disc to 

examine sprag-slip instability in braking systems. Earles et al. [39] showed the 

necessary condition for instability in terms of the contact orientation in a simple pin-

on-disc model. Sinou et al. [40] studied the instability in a nonlinear sprag-slip model 

with a constant coefficient of friction by a central manifold theory and the effects of 

parameters on the sprag-slip instability were examined. 

 Another notable line of research focused on the existence and uniqueness of the 

solutions of the frictional systems. Painlevé [41] investigated the existence and 

uniqueness properties of the solutions of rigid bodies subjected to the Coulomb-type 

sliding friction by using a rigid beam model. It was noticed that there was a possibility 

of multiple solutions and non-existence of (static) solutions due to the nonlinearity 

arising from the friction model. The phenomenon is called the Painlevé paradox. Leine 

et al. [42] studied the periodic motion and bifurcations of a frictional impact oscillator 

which consisted of an object with normal and tangential degrees of freedom in contact 

with a rigid surface. It was shown that this type of systems could exhibit the Painlevé 

paradox, i.e. non-uniqueness and non-existence of solutions, for physically realistic 

values of the friction coefficient. Hoffmann et al. [43, 44] examined the dynamics of 

sprag-slip instability and found that there were parameter combinations for which the 

system did not possess a static solution corresponding to a steady sliding state, which 

could be a sufficient condition for occurrence of sprag-slip oscillation. Kang and 

Krousgrill [45] developed simple friction-coupled models with spragging forces by 

using a mass on a traveling belt in both one- and two-dimension spaces and determined 
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the condition for non-existence of steady-sliding response through analytical and 

numerical procedures.  

Although the interest on the sprag-slip mechanism has lessened since the mode-

coupling mechanism gained acceptance as a dominant factor in the initiation of brake 

squeal, it is still studied today as a mechanism for the dynamic instability in many 

applications. 

2.1.3 Negative gradient in friction coefficient–relative velocity relationship 

The idea that the negative slope in friction coefficient–relative velocity relationship 

accounted for the instability of a brake system was previously proposed by Mills [46], 

Fosberry and Holubecki [47], Sinclair and Manville [48]. The decreasing feature of 

friction force with the increase of relative velocity was considered to bring in a 

negative damping to the system and lead to dynamic instability. The negative damping 

effect due to the negative friction-velocity slope was investigated by many researchers 

[49-51]. Ouyang et al. [52] demonstrated the effect of the negative friction-velocity 

slope on the parametric resonances of a flexible annular disc excited by a rotating 

mass-spring-damper system together with a frictional follower force. In [33], the 

negative slope of friction force at the static equilibrium determined the linear stability 

boundary for the system. 

There was not much literature on this kind of mechanism as it can only explain a 

limited number of fiction-induced-vibration problems [3, 53]. 

2.1.4 Mode-coupling instability 

The mode-coupling instability originates from the modal behaviour of the structures 

in contact. The complex eigenvalue analysis shows that some modes become unstable 

when coupling with other modes of the friction system. This phenomenon was 

considered to be mainly responsible for brake squeal and has been widely studied [54-

62]. 

North firstly observed the mode-coupling phenomenon when studying brake squeal 

that could also happen for a constant friction coefficient [54]. Hoffmann et al. [55] 

used a minimal two degree-of-freedom model to clarify the physical mechanisms 

underlying the mode-coupling instability of friction induced oscillations from an 
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intuitive perspective. It was shown that the friction force acts like a cross-coupling 

force linking motion normal to the contact surface to motion parallel to it and that a 

necessary condition for the onset of instability is that the friction induced cross-

coupling force balances the corresponding structural cross-coupling force of the 

system. In a later work [56], Hoffmann and Gaul clarified the influence of structural 

damping on this type of instability mechanism. It was shown that linear viscous 

structural damping changes the eigenvalue characteristics of mode-coupling friction 

induced instability. Kang et al. [57] presented the mathematical formulation for 

determining the dynamic in terms of the self-excited transverse vibration of a thin 

annular plate, in which the mode-coupling instability of the disc doublet modes was 

investigated.  

Huang et al. [63] showed that the compatibility of mode shapes needed for mode 

coupling is one of the factors dictating the onset of squeal in drum brake system. 

Elmaian et al. [4] presented a wide diversity of responses on a same dynamic system 

by changing the parameter values and showed the squeal was mainly due to the mode-

coupling phenomenon. Hultén [64] proposed a new kind of mode-coupling mechanism 

that the coupling of the system was not due to the inclined spring but the friction forces 

in two orthogonal directions. Chen et al. [61] investigated the eigenvalues of several 

car brakes through experimental and numerical analysis and predicted that the 

coupling of the in-plane and out-of-plane modes of the brake was the main reason for 

squeals above 3 kHz.  

2.1.5 Additional Mechanisms 

Apart from the four principal mechanisms above, there are other mechanisms proposed 

to explain the occurrence of friction induced vibration in specific systems. Chan et al. 

[65] analysed the destabilizing effect of the friction force as a follower force. 

Hochlenert et al. [66] established an accurate formulation of the kinematics of the 

frictional contact in two and three dimensions and worked out the essential properties 

of the contact kinematics leading to self-excited vibration. Ouyang and Mottershead 

[67] investigated the instability of the transverse vibration of a disc excited by two co-

rotating sliders on either side of the disc and found that the moving normal forces and 

friction couple produced by the sliders bring about dynamic instability. Chen et al. [68] 

analysed the instability of a friction system caused by the time delay between the 
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normal force and the friction force. Graf and Ostermeyer [69] utilized a dynamic 

friction law with an internal variable in the classical mass-on-belt model and found the 

stability of the system was dependent on the relation between the eigenfrequency of 

the oscillator and the time constants in the dynamic friction law, where the unstable 

vibration could even happen in the case of a positive friction-velocity relationship.  

2.2 Friction force models for dynamic analysis 

Friction forces of complicated nature can be found in all practical mechanical systems 

which have contacting surfaces with relative motion. To obtain accurate dynamic 

responses of the systems with friction force, rigorous evaluation of friction forces is 

required. There has been a great amount of literature devoted to developing friction 

force models that can be used to capture the frictional behaviour, such as stick-slip 

effect, Stribeck effect and pre-sliding displacement, etc. Generally, the friction force 

models can be classified into two groups, namely the ‘static’ and ‘dynamic’ friction 

models. The former group usually describes the steady-state behaviour of friction force, 

while the latter can capture more friction characteristics due to the inclusion of extra 

state variables. 

2.2.1 ‘Static’ friction models 

One of the first models of friction was put forward by Amontons [70] and Coulomb 

[71], who stated that the friction force is proportional to the normal force and 

independent of the magnitude of relative velocity. Besides, the static coefficient of 

friction is assumed to be equivalent to the kinetic coefficient of friction, therefore the 

Coulomb friction law involves a single parameter, that is, the kinetic coefficient of 

friction. The mathematical expression of Coulomb friction law can be written as, 

{
𝐅T = 𝜇k‖𝐅N‖sgn(𝐯rel) ‖𝐯rel‖ ≠ 0
‖𝐅T‖ ≤ 𝜇k‖𝐅N‖ ‖𝐯rel‖ = 0

                                  (2.1) 

where sgn(𝐯rel) = 𝐯rel/‖𝐯rel‖, 𝐅T, 𝐅N and 𝐯rel represent the friction force, the normal 

force and the relative velocity between the contacting surfaces, respectively. The 

friction force during sticking when ‖𝐯rel‖ = 0  serves to sustain the relative static state 

and thus can be obtained from the equations of motion of systems, while the magnitude 

of static friction force cannot exceed the maximum static friction capacity 𝜇k‖𝐅N‖. 

Further studies on frictional behaviour suggested the maximum static friction force 
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should be larger than the kinetic friction force, which led to consideration of two 

different friction coefficients, namely the coefficient of static friction 𝜇s  and the 

coefficient of kinetic friction 𝜇k  (𝜇s > 𝜇k  ). As a modification of the Coulomb’s 

friction law, a viscous friction component was introduced to describe the linear 

relationship between the friction force related to the lubricant viscosity and the relative 

velocity. The friction force during relative sliding can be written as, 

𝐅T = 𝜇k‖𝐅N‖sgn(𝐯rel) + 𝐹v𝐯rel                                      (2.2) 

where 𝐹v is the viscous friction coefficient related to the viscosity of the lubricant. 

Stribeck [72] found experimentally that the friction force decreases with the increase 

in the relative velocity at low velocities, which led to the expression of friction force 

during relative sliding as a continuous and decreasing function of the relative velocity.  

A popular expression of the friction force during the relative sliding which considered 

the Stribeck effect was written as [73],  

𝐅T = (𝜇k + (𝜇s − 𝜇k)e
−(

‖𝐯rel‖

𝑣s
)
𝛿

) ‖𝐅N‖sgn(𝐯rel)                         (2.3) 

where 𝑣s denotes the Stribeck velocity, 𝛿 is a factor relying on the geometry of the 

contacting surfaces. The examples of variations of the friction force with the relative 

velocity in the above four different friction models for the one-dimensional (1D) case 

are illustrated in Figure 2.1.  
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Figure 2.1 Friction force versus relative velocity for 1D case: (a) Coulomb friction 

model, (b) Coulomb model with larger static friction force, (c) Coulomb friction with 

viscous friction, (d) Model with Stribeck effect. 

In the aforementioned static friction models, the friction force at zero relative velocity 

is multivalued and needs to be determined from the equations of motion of systems. 

Thus it is essential to accurately capture the transition between the stick mode and the 
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slip mode, which brings about numerical difficulty for the dynamic analysis of the 

frictional systems. To improve the computational efficiency, several researches 

proposed friction models which replaced the discontinuity at zero velocity by finite 

slopes. Two approaches were widely used, which employ a linear function [74] or a 

hyperbolic tangent function [30, 75] to describe the friction force-relative velocity 

relationship around zero velocity. The mathematical expressions of the two smoothing 

approaches for the Coulomb’s friction model can be written as, 

𝐅T = {
𝜇k‖𝐅N‖sgn(𝐯rel) ‖𝐯rel‖ > 𝑣tol
𝜇k‖𝐅N‖𝐯rel/𝑣tol ‖𝐯rel‖ ≤ 𝑣tol

                                  (2.4) 

for linear function, where 𝑣tol is the tolerance velocity, and 

𝐅T = 𝜇k‖𝐅N‖tanh(𝜎‖𝐯rel‖)sgn(𝐯rel)                                  (2.5) 

for hyperbolic tangent function, where 𝜎 is the smoothness factor. The examples of 

these two friction models for 1D case are shown in Figure 2.2. 
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Figure 2.2  Smooth functions to approximate the Coulomb friction model for 1D 

case. 

In addition, several acceleration-based friction models have been proposed, in which 

friction force is dependent on another variable besides the relative velocity, i.e. the 

relative acceleration between the contacting surfaces. Stefański et al. [76] put forward 

a friction model which showed non-reversible friction characteristic. The function of 

this model is described as, 

𝐅T = 𝜇k‖𝐅N‖(1 +
𝜇s−𝜇k

𝜇k
exp(−‖𝐯rel‖)sign(𝐯rel ∙ �̇�rel)) sgn(𝐯rel)           (2.6) 

where sign(∗)  is the sign function. Wojewoda et al. [77] proposed a static friction 

model of hysteretic type with a stochastic component. This model is divided into three 
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different states, sticking and sliding in acceleration and deceleration. Its mathematical 

expression is written as, 

𝐅T = {

𝐹stsgn(𝐯rel) if 𝐹st ≤ 𝐹d+  ∩  sign(𝐯rel ∙ �̇�rel) ≥ 0

𝐹d+sgn(𝐯rel) if 𝐹st > 𝐹d+  ∩  sign(𝐯rel ∙ �̇�rel) ≥ 0

𝐹d−sgn(𝐯rel) if sign(𝐯rel ∙ �̇�rel) < 0

                  (2.7) 

with  

𝐹st =
1

2
𝑘S

‖𝐯rel‖
2

‖�̇�rel‖
− 𝐹0                                                 (2.8) 

𝐹d+ = 𝐹C + (𝐹S + ∆𝐹S
1

1+
‖𝐯rel‖

𝑣S

− 𝐹C) (𝑔(𝐯rel, �̇�rel) + 𝑓R(𝐱, 𝐯rel))               (2.9) 

𝐹d− = 𝐹C − (𝐹S − 𝐹C)(𝑔(𝐯rel, �̇�rel) + 𝑓R(𝐱, 𝐯rel))                     (2.10) 

where 𝐹C = 𝜇k‖𝐅N‖, 𝐹S = 𝜇s‖𝐅N‖, 𝑘S is the contact stiffness, 𝐹0 is the initial value 

for sticking force, 𝑓R(𝐱, 𝐯rel) is a stochastic function and 𝑔(𝐯rel, �̇�rel) represents a 

function to model the Stribeck curve. An example of the friction characteristics of this 

model is displayed in Figure 2.3. 
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Figure 2.3 Hysteretic behaviour of friction force. 

Besides, Karnopp [78] developed a model where the velocity is considered zero for a 

prescribed small range. Leine et al. [79] proposed the switch model as a modification 

of Karnopp model. Ambrósio [80] proposed a modified Coulomb’s friction law. 

Awrejcewicz et al. [81] presented a model which is dependent on both the tangential 

force and the relative velocity.  
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2.2.2 ‘Dynamic’ friction models 

The ‘dynamic’ friction models are capable of capturing some friction phenomena such 

as pre-sliding displacement or friction lag which are not reflected in the ‘static’ friction 

models by introducing extra state variables.  

The Dahl friction model [82, 83] introduced the pre-sliding displacement through a 

new state variable 𝐳  and its formulation is expressed as a first-order differential 

equation, 

d𝐳

d𝑡
= (1 −

𝜎0𝐳∙sgn(𝐯rel)

𝜇k‖𝐅N‖
) 𝐯rel                                        (2.11) 

The friction force 𝐅T = 𝜎0𝐳, where 𝜎0 represents the stiffness coefficient of the bonds 

between the two contacting surfaces. In the steady state, the Dahl friction model is 

actually the Coulomb’s friction model.  

Haessig and Friedland [84] proposed a model which considers that the friction force 

results from the deformation of the asperities. Each contact is modelled as a bond of a 

rigid bristle and a flexible bristle which behaves as a linear spring. The total friction 

force is the resultant of all the spring forces due to relative motion, i.e., 

𝐅T = ∑ 𝜎𝑖(𝐱𝑖 − 𝐛𝑖)
𝑛
𝑖=1                                               (2.12) 

where n is the number of bristles bonded, 𝜎𝑖 denotes the stiffness of the ith flexible 

bristle,  𝐱𝑖 is the position of the flexible bristle, 𝐛𝑖 represents the position of the rigid 

bristle. This model is inefficient for numerical simulation, therefore it is not usually 

used. 

Canudas de Wit et al. [85, 86] developed the LuGre model in which the friction force 

is also considered as the result of deformation of bristles while the average bristle 

deflection is utilized. An internal state variable 𝐳 is introduced to quantify the average 

bristle deflection, and the friction force is expressed as, 

{

d𝐳

d𝑡
= (1 −

𝜎0𝐳∙sgn(𝐯rel)

𝑔(𝐯rel)
) 𝐯rel

𝐅T = 𝜎0𝐳 + 𝜎1
d𝐳

d𝑡
+ 𝜎2𝐯rel

                                     (2.13) 

where 𝜎0, 𝜎1 are the stiffness and damping of the bristles, respectively, 𝑓(𝐯rel) is a 

function that describes the viscous effect, 𝑔(𝐯rel) is a function that considers the 
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Stribeck effect. The LuGre model can be regarded as a derivation from the Dahl model. 

In [87], Piatkowski presented a method of determination of parameters for LuGre and 

Dahl friction models. 

The reset integrator model [88] is also an evolution of the Dahl model. In this model, 

the friction force originates from the elastic and plastic deformation of the surface 

asperities. Similarly, an extra state variable 𝐳 is used to determine the deformation of 

bristles in contact as,   

d𝐳

d𝑡
= {

𝟎 if ‖𝐳‖ ≥ 𝑧0 ∩ 𝐳 ∙ 𝐯rel > 0
𝐯rel otherwise

                             (2.14) 

The friction force is defined as, 

𝐅T = {
𝜎0𝑧0sgn(𝒛) if ‖𝐳‖ ≥ 𝑧0

𝜎0(1 + 𝑎)𝐳 + 𝜎1
d𝐳

d𝑡
if ‖𝐳‖ < 𝑧0

                           (2.15)       

As shown above, the reset integrator model consists of two state equations, one for 

slipping and another for sticking. The transition between the two states occurs when 

the deformation reaches its maximum value 𝑧0, which makes this model discontinuous.          

Besides, Dupont et al. [89] developed the elasto-plastic model, which divided the 

body’s displacement into the elastic displacement that represents the bristle deflection 

and the plastic displacement that represents the macroscopic sliding displacement. 

Swevers et al. [90] proposed the Leuven model which was an improvement over the 

LuGre model. Gonthier et al. [91] introduced a two-dimensional friction model based 

on the LuGre model. Liang et al. [92] extended the model proposed by Haessig and 

Friedland [83] to the three-dimensional space.  

2.3 Investigation of friction induced vibration in mechanical models 

Friction induced vibration in mechanical systems can exhibit rich dynamic behaviours, 

which have been revealed in a number of publications. To study this problem, various 

mechanical models have been established, which can usually be classified into three 

categories, namely the lumped models, the continuous models and the finite element 

models. 



18 

 

2.3.1 Lumped models 

Popp and Stelter [20] analysed the stick-slip oscillation of a 1-DoF slider-on-belt 

system with external harmonic excitation and a 2-DoF slider-on-belt system. The 

results showed the bifurcation behaviours of the dynamic responses in the two systems, 

depending on the ratio between the excitation frequency and the natural frequency of 

the oscillator and the ratio between two damping coefficients, respectively. Elmaian et 

al. [4] investigated the friction induced vibration of a three degree-of-freedom model 

and found that three distinct dynamic states, i.e, stick, slip and separation can appear 

in the vibration of this model and the time ratios of the three states in the whole process 

vary with the system parameters, which can be linked to the appearance of different 

categories of noises, i.e., no noise, creak, squeal and squeak. Li and Feng [93] 

examined the dynamics of a single-degree-of-freedom oscillator sliding over a rigid 

surface with the LuGre friction model and found the chaotic motions can appear which 

is not expected in a single-degree-of-freedom system because the LuGre friction model 

contains one internal variable. Pikunov and Stefanski [94] analysed the friction 

induced dynamics of a 1-DoF mass-on-belt model with cubic nonlinearity and a 

modified LuGre friction model. By means of a method of estimation for non-smooth 

systems, Lyapunov exponent spectrum of the friction oscillator was calculated to be 

used for observations of the nature of the oscillator’s response.  

In Ref. [95], a three-degree-of-freedom model of a pin-on-disc system was presented 

and the effects of parameters including the normal force, the rotational speed and the 

pin stiffness on the system responses were revealed. In Ref. [96], the combined 

problem of friction and impact of a single-degree-freedom oscillator colliding with an 

obstacle and excited by a moving belt was studied. Li et al. [97] analysed the mode-

coupling phenomenon of a 2-DoF model with nonlinear contact stiffness and the 

effects of separation and reattachment on the vibration amplitudes of dynamic 

responses were studied. Zhang et al. [98] compared the results of system instability 

obtained from three different methods, i.e., the complex eigenvalue analysis (CEA), 

the net work analysis and the nonlinear instability analysis, in a 4-DoF friction 

oscillator and found both the net work analysis and CEA under-predict the instability 

due to their inability to detect the subcritical Hopf bifurcation. Some work on friction 

induced dynamics using low-degree-of freedom lumped models was also done in Refs. 

[2, 19, 28, 33, 55, 56, 62, 99-102]. 
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Kruse et al. [103] explored the effect of joints on the stability and bifurcation behaviour 

of a system subject to friction induced flutter. It was shown that subcritical bifurcations, 

bifurcations from infinity and detached limit cycles can arise when the joint with 

nonlinear dynamic behaviour is integrated in the system, which indicate the severe 

limitations of linear stability analysis based on the eigenvalue calculation of the 

linearized model. Pilipchuck et al. [104] examined the non-stationary effects in friction 

induced vibration of a two-degree-of-freedom brake model. It was observed that the 

system responses experienced qualitative transitions due to the linearly deceasing 

velocity of the belt. In particular, there was a significant widening of frequency 

spectrum of the dynamics in the final phase of the process. Brunetti et al. [105] studied 

the dynamics of a periodic modular lumped model in which each module consists of a 

mass in contact with the moving belt and a mass linked with the adjacent modules. It 

was shown that although the eigenvalues allow to indicate the stability of the system, 

they fail to indicate the frequency of the steady-state responses including the contact 

nonlinearities, i.e., stick-slip transition in the tangential direction and contact-no 

contact in the normal direction. A new energy index quantifying the capability of each 

mode to exchange energy with the external environment was then introduced as a more 

reliable indicator of the unstable frequency in the friction induced dynamic responses. 

In Ref. [106], the stick-slip induced brake creep-groan phenomenon was investigated 

by using a lumped torsional model and experiment. 

 Li et al. [107] investigated the dynamics of an archetypal self-excited smooth and 

discontinuous oscillator driven by dry friction from the moving belt. The complicated 

dynamic behaviours of double tangency bifurcation, the bifurcation of sliding 

homoclinic orbit to a saddle, subcritical Hopf bifurcation and grazing bifurcation for 

this system can be demonstrated with the variations of parameters such as the friction 

coefficients and the belt velocity. In Ref. [58], a novel two-degree-of-freedom model 

involving a wobbling disc which can be easily associated with a disc brake was 

proposed and its stability behaviour was analysed. Wei et al. [108] established a 3-

DoF dynamic model of a brake system consisting of two-layer pads and a rigid disc 

and the bifurcation and chaotic behaviour of system responses dependent on the 

variation of brake pressure and the parameters of double-layer pads were observed. In 

Ref. [109], the vibration of a slider on the rough surface was examined by using a 2-

DoF theoretical model and experiment. The Poisson’s impact law and Coulomb’s 
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friction law were employed on the contact surfaces to incorporate the roughness effects 

in the numerical simulation and the numerical solutions were found to agree with the 

experiments. In Ref. [110], the impact of contact stiffness heterogeneities on friction 

induced vibration was studied. 

Thomsen et al. [34] considered the classical “mass-on-moving-belt” model with a 

discontinuous friction law and derived the approximate analytical expressions for the 

conditions, the amplitudes and the base frequencies of friction induced stick-slip and 

pure-slip oscillations. Hetzler et al. [111] presented an analytical investigation on 

stability and local bifurcation behaviour due to exponentially decreasing friction 

characteristic in a “mass-on-belt” oscillator. The analytical work on the stability 

analysis and limit cycles of the 1-DoF friction oscillator can also be seen from Refs. 

[112-114]. In Ref. [115], the Lyapunov exponents of the non-smooth 1-DoF mass-on-

belt model with external excitation were derived, which was highly useful in 

identifying the chaotic behaviour in the system. Besides, the smooth functions were 

used to approximate the discontinuous friction law in some work. Van de Vrande et al. 

[30] investigated the friction induced vibration of 1 and 2-DoF mass-on-belt models 

and a 1-DoF drill string model by using smooth functions to approximate the 

discontinuous friction forces and the results showed the smoothing procedure 

accurately describes the behaviour of discontinuous systems. Divenyi et al. [116] 

adopted a smoothing procedure to model the non-smooth dry friction between the 

formation and drill bit to study the drill string vibration in a two-degree-of-freedom 

model.  

Some literature focuses on the uncertainty analysis of friction induced vibration in 

lumped models. Nobari et al. [117] studied the uncertainty quantification of the 

complex eigenvalue of a 4-DoF lumped model in presence of uncertain input 

parameters and the expressions for calculating the mean value, variance and pseudo-

variance of the complex eigenvalues were derived via perturbation method. Nechak 

and Sinou [118] presented a hybrid surrogate model for the prediction of friction 

induced instability in a 4-DoF friction system with random and interval uncertain 

parameters. In Ref. [119], two methods based on the generalized polynomial chaos 

coupled with the Lyapunov indirect method were proposed to deal with the stability of 

a 2-DoF nonlinear friction system with uncertain friction coefficients.  
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2.3.2 Continuous models 

In the research of friction induced vibration, continuous structures which possess an 

infinite number of degrees-of-freedom have also been widely used for investigation. 

Hoffmann et al. [43] used the dynamic model of an inclined flexible beam on the 

moving belt to examine the sprag-slip instability and found that there were parameter 

combinations for which a static solution corresponding to a steady sliding state did not 

exist, which thus provided a sufficient condition for self-excited vibration in the 

system. In Ref. [120], the dynamics of brake system was studied by modelling the 

brake disc as a flexible beam and the brake pads as elastic foundations. The results 

showed the mode coupling resulting from the deformation of the pad was the major 

factor in the generation of dynamic instability and brake squeal. Meziane et al. [121] 

proposed an experimental and numerical study of friction induced vibration of a 

system composed of two beams in contact. Transient dynamic and complex eigenvalue 

analysis with a Lagrange multiplier for imposing contact constraints were performed, 

the results of which correlated with experimental results with good precision with 

frequency content and vibrations in time. Won and Chung [122] presented a numerical 

analysis for the vibration of a transversely moving beam in contact with a frictional 

wall. The stick and slip states which occurred in the vibration were investigated and 

the effects of the axial load and the moving speed on the dynamic response were also 

examined.  

Hochlenert et al. [66] examined the friction induced vibration of the moving continua 

including a travelling Euler-Bernoulli beam and a rotating annular Kirchhoff plate in 

frictional point contact with idealized brake pads and the influence of the design 

parameters on the occurrence of self-excited vibration in the system was shown. 

Ibrahim and Somnay [123] analysed the nonlinear dynamic behaviour of an elastic 

beam sliding on two frictional supports under sinusoidal and random excitations. 

Tonazzi et al. [124] conducted a numerical analysis of the dynamics of two finite 

elastic media in sliding contact with Coulomb friction law. The results showed that 

either the stick-slip phenomenon or mode coupling instability can happen to the system, 

and it was revealed how the system parameters affect the frictional behaviour 

switching from stick-slip oscillation to harmonic vibration due to mode coupling 

instability. Jung and Feeny [125] investigated the dynamic of a one-dimensional elastic 
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medium subjected to the distributed friction force and periodic boundary conditions. 

It was found the dynamic instability occurred in the form of unstable travelling waves, 

which were dependent on the friction coefficient and the Poisson ratio. Loyer et al. 

[126] studied the dynamic behaviour of an elastic layer with frictional contact in which 

the mode coupling phenomenon was responsible for the dynamic instability. Both the 

linear stability analysis and the time simulation of the nonlinear response were carried 

out and the model reduction was performed to save the computation time of temporal 

solution.   

Disc is an integral component in many mechanical systems, such as the car brake 

system, the clutches, the computer drives, etc. In some literature, the disc was modelled 

by an elastic circular plate for the research of friction induced vibration in the relevant 

mechanical systems. Chan et al. [65] examined the parametric resonance of a 

stationary elastic disc excited by a rotating mass-spring-damper system with a 

frictional follower force. Ouyang et al. [127] investigated the in-plane vibration of a 

slider which is driven around the surface of a flexible disc and the transverse vibration 

of the disc. Shen [128] demonstrated that axisymmetric plate damping was capable of 

suppressing unbounded response of a stationary, elastic, circular plate excited by a 

rotating slider. In Ref. [129], the authors studied the coupling of in-plane and out-of-

plane vibrations of a rotating annular Kirchhoff plate in the presence of a distributed 

frictional loading on its surface. As friction induced vibration of discs is a key focus 

in the research of the present thesis, more existing literature on the dynamics of disc 

under frictional contacts will be reviewed in Section 2.4. 

2.3.3 Finite element models 

Mechanical systems in practice, e.g., an automobile brake system, are usually 

composed of components with irregular geometry and complicated boundary 

condition, which makes it difficult to precisely model them by using lumped models 

or continuous models. With the advancement of computation capacity and introduction 

of model reduction techniques, finite element models have been used by many 

researchers for the study of friction induced vibration in complex mechanical systems.  

Cao et al. [130] presented a numerical method to calculate the unstable frequencies of 

a car disc brake in which the stationary components of the brake were modelled using 

finite elements and the disc as a thin plate. The predicted unstable frequencies obtained 
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from the complex eigenvalues showed good agreement with the experimentally 

established brake squeal frequencies. Dai and Lim [131] developed an enhanced 

dynamic finite element model with friction coupling in which a pair of spectral-based 

assurance criteria for modelling and validating the structural coupling and boundary 

condition of the rotor-pad assembly was successfully applied. Kang et al. [132-134] 

used the finite element models of the pad-disc system for investigation of the dynamic 

instability in disc brakes in a series of works. In Ref. [132], the finite element model 

of a rotating hat-disc in contact with two stationary pads was constructed to conduct 

the squeal analysis and two types of mechanisms for the occurrence of squeal, i.e., 

mode coupling and negative friction slope, were found. In Ref. [133], a new modelling 

methodology for the moving load model with the rotating finite element of an 

asymmetric automotive brake disc in friction contact with stationary pads was 

proposed. The numerical results showed the system eigenvalues were variable for the 

disc rotation angle and therefore the appearance of dynamic instability and squeal 

events was time-dependent when the disc is asymmetric, which was in stark contrast 

with the results of axisymmetric disc. In Ref. [134], the squeal propensity of the in-

plane modes and the constrained-layer type damping shims for disc brake system was 

investigated by using the finite element method. It was highlighted that the in-plane 

torsion modes of the disc were essential in squeal generation in presence of effective 

damping shim and negative friction slope.  

Blaschke [135] examined the squeal propensity by a finite element model in which the 

contact force between the brake pad and the brake disc was directly calculated from 

the state of the system rather than being obtained from the imaginary springs. Wei at 

al. [136] used Abaqus to investigate the effects of key parameters including the 

rotational speed, the braking pressure and the friction coefficient on the dynamic 

instability of a brake model. The comparison between the experimental results and the 

results of complex eigenvalue analysis (CEA) demonstrated that the CEA may 

overestimate or underestimate the unstable frequencies. Some work on the friction 

induced vibration using finite element models were also done in Refs. [137-141]. 

Besides the linear stability analysis on the finite element models, some literature 

focused on the nonlinear time-domain analysis. Sinou [142] developed a nonlinear 

finite element model of a disc brake system and studied the transient and stationary 

nonlinear self-excited vibration. The results showed that nonlinear transient and 
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stationary self-excited vibration can be very complex and include more unstable modes 

than those predicted by a linearized stability analysis around a nonlinear equilibrium 

point. Soobbarayen et al. [143] presented a numerical analysis of the influence of the 

loading conditions on the vibration and acoustic responses of a finite element model. 

The numerical results showed that a sufficiently fast ramp loading can destabilize a 

stable configuration predicted by the stability analysis. Moreover, the ramp loading 

can result in higher amplitudes of time response than that for the static load and activate 

new harmonic components due to nonlinearity. 

In order to solve the problem of expensive computational cost in the large finite 

element models of frictional systems, the model reduction techniques were proposed 

or employed in some studies [144-149]. In Ref. [144], a novel nonlinear method which 

works for nonlinear systems subject to flutter instability called the Constrained 

Harmonic Balance Method (CHBM) was proposed and applied effectively to the 

analysis of disc brake squeal. In Ref. [145], the performances of two popular model 

reduction methods were investigated in the case of a disc/pads system. Besset and 

Sinou [146] put forward a new efficient reduction method based on complex interface 

modes for predicting the stability analysis of a damped nonlinear brake system subject 

to friction induced vibration. Li et al. [149] proposed a model reduction strategy based 

on mode synthesis for complicated frictional system, which was then applied to the 

analysis of friction induced vibration of a real pad-on-disc structure and validated by 

the experimental results.  

2.4 Dynamics of spinning disc in contact with stationary parts  

Discs rotating relative to stationary parts can be found in a wide variety of industrial 

applications, such as car disc brakes, disc drives, circular saws, clutches, etc. During 

the normal operations of these mechanical devices, the contact of the disc with the 

stationary parts may excite unstable vibrations in the system, which seriously affect 

the performance of the devices. In the last several decades, there has been lots of 

research on this problem. 

The early works on the instability of rotating elastic disc under stationary loading 

system were done by Iwan [150, 151]. In Ref. [150], the dynamic instabilities of a 

stationary elastic disc under a mass-spring-damper loading system rotating at constant 
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speed were studied. In Ref. [151], the dynamic instabilities of a rotating elastic disc 

under a stationary mass-spring-damper loading system were investigated. The 

centrifugal stresses due to rotation of disc was considered. Hutton et al. [152] analysed 

the response of a rotating disc clamped at the inside and free at the perimeter subject 

to the excitation produced by stationary point loads and restrained by stationary point 

springs for the analysis and design of guided circular saws. Ono et al. [153] built the 

theoretical formulation and conducted the eigenvalue analysis for a system of a 

spinning flexible disc and a pair of head and suspension systems that contact the disc 

on its two sides for the stability analysis of disc drive system. Chen and Bogy [154] 

examined the modal interactions in a spinning disc-stationary load system by use if a 

numerical finite element method and by an eigenfunction expansion method. Young 

and Lin [155] studied the stability of a spinning annular plate transversely in contact 

with a stationary oscillating unit which consists of two parallel combinations of springs 

and dampers attached above and under a mass. The numerical results demonstrated 

that taking account of the stiffness between the disc and the mass may cause extra 

flutter-type instability between the predominantly disc modes and the predominantly 

mass mode. Ouyang [156] presented the numerical analysis of the vibration in a refined 

dynamic model of atomising discs where the disc was modelled as a thin Kirchhoff 

plate with centrifugal and gyroscopic effects. And Ouyang [157] presented a tutorial 

for moving load problems among which the vibration of a circular plate excited by a 

moving oscillator was described. 

 The role of friction force between the rotating disc and the stationary parts on the 

dynamics of system has also been studied. In Ref. [158], the critical rotational speeds 

of an annular laminated disc and instability due to the existence of a stationary 

frictional follower load were examined. Pei et al. [159] studied the stability and steady-

state response of a rotating flexible disc under stationary sliders in consideration of the 

initial transverse runout of the disc. It was found that amplitude of the steady-state 

response can be suppressed by the increase of disc damping, slider damping and 

friction force at the disc-slider interface. Ouyang et al. [52, 67, 127] investigated the 

vibration of a stationary elastic disc under the circumferentially moving mass loading 

system, in which the friction fore between the disc and the slider was taken into 

account. In Ref. [67], the friction force acted as a rotating bending moment and a 

follower force. In Refs. [52, 127], the friction force influenced the circumferential 
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motion of the slider which then affected the dynamics of the disc, and the effect of a 

negative friction-velocity relationship was examined in Ref. [52]. Kang [57] studied 

the dynamic instability of a thin annular plate due to circumferential friction between 

the plate and two fixed sector contact interfaces under steady-sliding conditions. It was 

observed that the angle of the sectors was a key parameter for the modal stability of 

the plate. Zhang et al. [160] used a flexible pin-on-disc system to simulate how the 

squeal noise can be generated in frictional contact and the features of time-varying 

squeal because of periodic friction coefficient were studied. 

In Ref. [161], the dynamic response of a rotating disc subject to distributed nonlinear 

contact stresses from two fixed and rigid pads was examined. It was shown that high-

frequency vibrations in the form of standing or travelling waves were produced, which 

resulted from the mode-coupling mechanism. And the stick zone of the contact area 

when the self-excited vibration was produced, i.e., the points in the state of sticking on 

the disc surface, was determined by a smooth friction-velocity curve. In Ref. [162], 

the dynamics of an asymmetric disc subjected to sector-shaped frictional contact on 

both sides of the disc was investigated. The results showed that breaking the 

axisymmetry changed the stability boundary of the system. Li et al. [163] investigated 

the transverse vibration of an elastic disc excited by a preloaded mass-damper-spring 

slider which experienced in-plane stick-slip oscillation and incorporated the separation 

and reattachment phenomena considering the possibility of loss of contact due to 

growing transverse disc vibration. The results highlighted the important role of 

separation on friction induced vibration. Sui and Ding [164] investigated the instability 

of a pad-on-disc in moving interactions and a stochastic analysis was carried out. In 

Ref. [165], a nonlinear stability analysis of a realistic disc brake model was described 

and it was exemplified that the effect of parameters on the linear and on the nonlinear 

stability boundary can be oppositional. 

2.5 Experimental investigations on the friction induced vibration 

Among the literature on the study of friction induced vibration, part of them focused 

on the investigations by physical experiments. Butlin and Woodhouse [166] presented 

a comparison between theoretical predictions and experimental results from a pin-on-

disc test rig exploring friction induced vibration. A large number of measured squeal 

initiations were used to reveal the complex-valued frequency-dependent parameters 
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for a theoretical model of linearized dynamic friction. The results highlighted the 

importance of an accurate description of dynamic friction at the sliding interface in 

predicting the squeal events.  In Ref. [167], the experimental estimates of parametric 

uncertainties with a first-order perturbation analysis provided a foundation for 

exploring the effect of uncertainty on predictions of squeal. In Ref. [168], an 

experimental investigation on a pin-on-disc rig was performed to validate the results 

on the prediction of instability of the system by a theoretical model composed of two 

linear sub-systems coupled by a frictional point contact.  

Neis et al. [169] investigated the friction property of brake materials by means of a 

rotating stick-slip tester. Experimental results were compared with the computational 

model implemented in Simulink. In Ref. [170], the acoustic emission technique was 

used to record and study the elastic waves which appear during transition from static 

to kinetic friction in a stick-slip experiment carried out using a sheet of soft steel and 

a clamp of quenched steel. Giannini et al. [171] built an experimental setup where two 

pads carried by clamped beams were brought to be in contact with a disc and measured 

the dynamic behaviour and squeal behaviour of the system. The experimental results 

provided guidelines to build a representative model of the setup and a better 

understanding of the physics of the squeal mechanism. In Ref. [172], an experimental 

analysis was performed on a simplified brake apparatus where the squeal events were 

correlated with the modal behaviour of the system as a function of main parameters. 

A clear distinction between the squeal events involving the dynamics of the pad and 

the squeal events involving the dynamic of the calliper was performed. In Ref. [173], 

the experimental methods were presented to characterize the nonlinearities in brake 

system and a novel simulation approach that allows the calculation of limit cycles 

considering nonlinearities was then introduced.  

Chen and Zhou [174] studied an initiation process of friction induced vibration based 

on three-dimensional vibration accelerations and tangential force in a friction system 

under reciprocating sliding conditions. Two modes of vibration were found where 

Mode one is present as soon as the reciprocating sliding starts and Mode two does not 

occur until the coefficient of friction reaches a large value. In Ref. [175], an 

experimental setup of a drill-string system was built and the limit cycle of friction-

induced torsional vibration was observed. Nishiwaki et al. [176] examined the out-of-

plane deformation of a rotating disc using the double-pulsed technique in order to 
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visualise the vibration pattern of the disc and pad when squeal vibration occurs. Their 

results showed that squeal vibration was generated when both the rotating disc and 

pads vibrated in bending mode. Oberst and Lai [177] carried out an experimental work 

using a noise dynamometer to determine the influence of geometry of brake pads on 

vibration of the system. The experimental results were evaluated with a noise index 

and it was indicated that pads with a single slot perform better than pads with no slots 

or double vertical slots.  

Abu Baker and Ouyang [178] presented the wear prediction of the friction material in 

brake pads subject to brake applications. The wear progress predicted in the finite 

element simulation was verified using measured static contact pressure distribution 

from contact tests and measured surface topography of the friction material. In Ref. 

[179], the experimental study on the reduction of noise from the disc brake system 

using constrained layer damping was carried out. It was recommended to use modal 

analysis and frequency response function measurements in the selection of the 

damping material for the reduction of brake noise so as to avoid excessive time 

consumption with extensive dynamometer tests in the “trial and error” procedure. In 

Ref. [180], an experimental study was conducted to investigate the effect of surface 

sandblasting on squeal generation. The experimental results indicated that the surface 

roughness has important influence on the friction wear process and the evolution of 

the friction induced noise and the suppression of friction induced noise can be achieved 

by increasing the surface roughness appropriately. 

Some researchers conducted studies on the friction induced vibration and noise of the 

train brake. Quan et al. [181] carried out experiments to evaluate the effects of friction 

block shape and installation angles on the brake noise of high-speed trains on a 

customized small-scale brake dynamometer. Wang et al. [182] studied the effect of 

grooved disc surface on the tribological and noise behaviours of train brakes by 

experimental observations on a specifically designed dynamometer. Kanki et al. [183] 

proposed to attach an oil damper to the train brake system to suppress the brake squeal 

and the capability of the proposed damper in squeal suppression was demonstrated by 

test results. Sinou et al. [184] presented an experimental and numerical analysis of the 

squeal vibration on industrial railway brakes. 
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2.6 Conclusion 

Abundant studies involving the friction induced vibration in mechanical systems from 

various aspects are presented in the literature review, which enhances understanding 

of this problem enormously and on the other hand, reflects the complexity of this 

problem that is related to multiple factors. The literature of this subject constitutes the 

important foundation and inspirations for the research in the present thesis. 
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Chapter 3  

Basic theories and analytical methods of friction 

induced vibration 

In this chapter, the fundamental knowledge and analysis tools that are utilized in the 

present thesis are presented. In Section 3.1 the principal mechanisms for generation of 

friction induced vibration including the negative friction-velocity slope, the stick-slip 

oscillation and the mode-coupling instability are clarified in low-degree-of freedom 

lumped models. In Section 3.2, two main kinds of theoretical methods for the analysis 

of friction-induced-vibration problems, i.e. the complex eigenvalue analysis (CEA) 

and the transient dynamic analysis (TDA), are introduced. Finally in Section 3.3 the 

basic theory about the vibration of elastic thin plates are stated. 

3.1 Principal mechanisms of friction induced vibration 

3.1.1 Negative friction-velocity slope 

Because friction force decreases with the increase in the relative velocity at low 

velocities in a number of experimental observations, the expression of friction force 

during relative sliding as a continuous and decreasing function of the relative velocity 

was proposed. The negative slope of the function of friction force introduced a 

negative damping into the system, which can thus lead to the dynamic instability of 

the system. In the following this mechanism is elaborated in a single-degree-of-

freedom dynamic model. 
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A mass-damper-spring oscillator on a moving belt is displayed in Fig. 3.1, where the 

vibration of the oscillator is influenced by the friction force between the mass and the 

belt. As shown in the figure, the equation of motion of the mass can be written as, 

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝐹f                                          (3.1) 

where 𝑣r = 𝑣 − �̇� . Suppose that friction force in relative sliding is a linearly 

decreasing function of the relative velocity, i.e.,  

𝐹f  = sgn(𝑣r)(𝐹0 + 𝛼0𝑣r)                                     (3.2) 

where 𝛼 represents the negative slope, the equations of motion of the mass around the 

equilibrium point (�̈� = �̇� = 0) can be rewritten as, 

𝑚�̈� + (𝑐 + 𝛼0)�̇� + 𝑘𝑥 = 𝐹0 + 𝛼𝑣                                (3.3) 

It is observed from Eq. (3.3) that the dynamic instability occurs when 𝑐 + 𝛼0 < 0, i.e. 

𝛼0 < −𝑐. This example explains how the negative friction-velocity slope results in the 

generation of self-excited vibration. 

    

 

 

 

Figure 3.1 A single-degree-of-freedom friction oscillator. 

3.1.2 Stick-slip oscillation 

Stick-slip oscillation is formed when two distinct states of motion, sticking (if the two 

objects in contact are at rest relatively and the static friction force between them does 

not exceed the maximum static friction capacity) and slipping (if the two objects are 

in relative motion) take place successively. In the following this mechanism is 

elaborated also by using the classical mass-on-moving-belt model. 

3.1.2.1 Periodic stick-slip oscillation 
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The stick-slip motion of a single-degree-of-freedom mass-on-belt model as shown in 

Fig. 3.2 is examined.  It is easy to obtain the equation of motion of the system, i.e., 

𝑚�̈� + 𝑘𝑥 = 𝐹f                                                (3.4) 

where 𝐹f represents the friction force between the mass slider and the belt, and the 

Coulomb’s law of friction is assumed on the interface. The friction force adopts 

different formulations in the two distinct states of motion, i.e. sticking and slipping. In 

the state of slipping, the friction force can be written as, 

𝐹f = sgn(𝑣r)𝜇k𝑁                                              (3.5) 

where 𝜇k is the coefficient of kinetic friction, and the condition for the mass to stay in 

the state of slipping is, 

𝑣r =  𝑣 − �̇� ≠ 0                                                (3.6) 

In the state of sticking, the friction force is used to sustain the relative static state and 

thus it follows, 

    𝐹f = 𝑘𝑥                                                       (3.7) 

and the motion of the mass in the state of sticking follows, 

�̈� = 0, �̇� = 𝑣, 𝑥 = 𝑣(𝑡 − 𝑡s)                                     (3.8) 

where 𝑡s is the time when the sticking starts. The condition for the mass to stay in the 

state of sticking is, 

|𝐹f| ≤ 𝜇s𝑁                                                    (3.9) 

where 𝜇s is the coefficient of static friction. 

 

 

 

 

Figure 3.2 A single-degree-of-freedom mass-on-moving-belt model. 
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The dynamic behaviour of the system based on the above equations is then obtained. 

Suppose that the values of parameters are: 𝑚 = 1, 𝑘 = 1, 𝑁 = 10, 𝜇k = 0.23, 𝜇s =

0.4, 𝑣 = 1, the phase-plane plots of the mass with various initial conditions are shown 

in Fig. 3.3. It is clearly seen that there exists a stable limit cycle (highlighted by the 

thick curve in the figure) for the motion of the mass, which indicates that the steady-

state motion of the mass is a periodic stick-slip oscillation as long as the initial 

condition is far enough from the equilibrium point. 

 

Figure 3.3 The phase-plane plots of the single-degree-of-freedom friction oscillator 

with various initial conditions. 

3.1.2.2 Bifurcations of stick-slip oscillation                                         

The bifurcation behaviour of stick-slip oscillation is exhibited in this section. Firstly 

the motion of a single-degree-of-freedom mass-on-belt model under a harmonic 

external excitation, which was studied in Ref. [20], is considered, as shown in Fig. 3.4.  

 

 

 

 

Figure 3.4 A single-degree-of-freedom mass-on-moving-belt model with harmonic 

external excitation. 

The equation of motion of the system reads, 

𝑚�̈� + 𝑘(𝑥 − 𝑢0cos𝜔𝑡) = 𝐹f                                        (3.10)    
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With the Coulomb’s law of friction used, the formulation of the friction force in the 

state of slipping is the same as that in the above section while the friction force in the 

state of sticking is influenced by the external excitation, which can be written as, 

𝐹f = 𝑘(𝑥 − 𝑢0cos𝜔𝑡)                                         (3.11)    

Suppose 𝑢0 = 0.5 and other parameters are identical to those in the above section, the 

phase-plane plots and frequency spectrums with different excitation frequencies are 

shown in Fig. 3.5. It is observed that the dynamic responses with distinct features result 

from different excitation frequencies. For 𝜔 = 0.85  and 𝜔 = 1.2 , the dynamic 

responses are periodic, although with different periods, while for 𝜔 = 0.5 , non-

periodic oscillation is present. Next the bifurcation behaviour of the system response 

with the excitation frequency as the controlling parameter is shown in Fig. 3.6. It is 

observed that the system response experiences transitions from periodic to non-

periodic oscillations with variation of the excitation frequency. 

Besides, the system response is examined under the friction law with Stribeck effect, 

whose expression in the state of slipping can be written as, 

𝐹f = sgn(𝑣r)(𝜇k + (𝜇s − 𝜇k)𝑒
−|𝑣r|)𝑁                             (3.12)    

while the friction force is still capped by 𝜇s𝑁 . Suppose 𝜇k = 0.23 , 𝜇s = 0.4, the 

bifurcation behaviour of the system response is shown in Fig. 3.7.    

                                          

Figure 3.5 The phase-plane plots and frequency spectrums with different excitation 

frequencies: (a) and (d) 𝜔 = 0.85; (b) and (e) 𝜔 = 1.2; (c) and (f) 𝜔 = 0.5. 
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Figure 3.6 The bifurcation behaviour of the system response dependent on the 

excitation frequency under the Coulomb’s law. 

  

Figure 3.7 The bifurcation behaviour of the system response dependent on the 

excitation frequency under the friction law with Stribeck effect. 

Secondly the motion of a two-degree-of-freedom mass-on-belt model [20] is 

considered, as shown in Fig. 3.8. The equations of motion of the system are, 

𝑚1�̈�1 + (𝑐1 + 𝑐2)�̇�1 − 𝑐2�̇�2 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2 = 𝐹f1                (3.13)    

𝑚2�̈�2 + 𝑐2(�̇�2 − �̇�1) + 𝑘2(𝑥2 − 𝑥1) = 𝐹f2                           (3.14)  

 

 

 

 

Figure 3.8 A two-degree-of-freedom mass-on-moving-belt model. 
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Similarly the friction forces in the state of slipping for both masses can be written as, 

𝐹f𝑖 = sgn(𝑣r𝑖)𝜇(𝑣r𝑖)𝑁, i=1, 2                                  (3.15) 

where 𝑣r𝑖 = 𝑣 − �̇�𝑖, i=1, 2. The friction force in the state of sticking of 𝑚1 or 𝑚2 is 

derived from Eq. (3.13) setting �̈�1 = 0 and �̇�1 = 𝑣 or from Eq. (3.14) setting �̈�2 = 0 

and �̇�2 = 𝑣, respectively. Therefore while 𝑚1 is in the state of sticking,  

𝐹f1 = (𝑐1 + 𝑐2)𝑣 − 𝑐2�̇�2 + (𝑘1 + 𝑘2)𝑥1 − 𝑘2𝑥2                     (3.16) 

while 𝑚2 is in the state of sticking, 

𝐹f2 = 𝑐2(𝑣 − �̇�1) + 𝑘2(𝑥2 − 𝑥1)                                (3.17) 

And the motion of 𝑚1 while 𝑚1 is in the state of sticking follows, 

�̈�1 = 0, �̇�1 = 𝑣, 𝑥1 = 𝑣(𝑡 − 𝑡1)                                 (3.18) 

where 𝑡1 is the time when 𝑚1 starts to stick. The condition for 𝑚1 to stay in the state 

of sticking is, 

|𝐹f1| ≤ 𝜇s𝑁                                               (3.19) 

Similarly, the motion of 𝑚2 while 𝑚2 is in the state of sticking follows, 

�̈�2 = 0, �̇�2 = 𝑣, 𝑥2 = 𝑣(𝑡 − 𝑡2)                                (3.20) 

where 𝑡2 is the time when 𝑚2 starts to stick. The condition for 𝑚2 to stay in the state 

of sticking is, 

|𝐹f2| ≤ 𝜇s𝑁                                               (3.21) 

Suppose the values of basic system parameters are: 𝑚1 = 2.5,  𝑚2 = 1, 𝑘1 = 2,  𝑘2 =

1, 𝑁 = 20, 𝑐1/𝑐2 = 1, 𝑣 = 1 and the friction law with Stribeck effect expressed as Eq. 

(3.12) is adopted with  𝜇k = 0.1 , 𝜇s = 0.4 , the phase-plane plots and frequency 

spectrums with different damping ratios D (𝐷 = 𝑐2 2√𝑚2𝑘2⁄ ) are shown in Fig. 3.9. 

It is observed that the dynamic responses of the system are periodic for 𝐷 = 0.3 and 

𝐷 = 0.2, and aperiodic for 𝐷 = 0.1. Fig. 3.10 shows the bifurcation behaviour of the 

system responses, which is quite different from that of the single-degree-of-freedom 

model under harmonic external excitation. It is indicated from Fig. 3.10 that the non-

periodic oscillation happens only when the damping ratio 𝐷 is quite small in the two-

degree-of-freedom mass-on-moving-belt model. 
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Figure 3.9 The phase-plane plots and frequency spectrums with damping ratios D: (a) 

and (d) 𝐷 = 0.3; (b) and (e) 𝐷 = 0.2; (c) and (f) 𝐷 = 0.1. 

 

Figure 3.10 The bifurcation behaviour of the system responses of the two-degree-of-

freedom model dependent on the damping ratio. 

3.1.3 Mode-coupling instability 

The mode-coupling instability has been considered to be mainly responsible for brake 

squeal. The complex eigenvalue analysis shows that some modes become unstable 

when coupling with other mode(s) of the system. Next this mechanism is clarified in 

a simple two-degree-of-freedom model. 

As shown in Fig. 3.11, a two-degree-of-freedom model [55, 56] is considered. In this 

model, a point mass 𝑚  is connected to the base by a damper 𝑐1  in the horizontal 

direction and a damper 𝑐2 in the vertical direction, and two linear springs 𝑘1 and 𝑘2 at 

the angles of inclination to the horizontal direction 𝛼1 and 𝛼2 respectively.  The mass 

is pressed by a preload 𝐹  to bring it into frictional contact with a belt moving at 

constant velocity 𝑣. A spring 𝑘3 is used to model the contact stiffness between the 

mass and the belt. The equations of motion of the 2-DoF system can be obtained as, 

[
𝑚 0
0 𝑚

] [
�̈�
�̈�
] + [

𝑐1 0
0 𝑐2

] [
�̇�
�̇�
] + [

𝑘11 𝑘12
𝑘21 𝑘22

] [
𝑥
𝑦] = [

𝐹f
−𝐹

]                  (3.22) 

where, 
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  𝑘11 = 𝑘1cos
2𝛼1 + 𝑘2cos

2𝛼2,
𝑘12 = 𝑘21 = −𝑘1sin𝛼1cos𝛼1 + 𝑘2sin𝛼2cos𝛼2

 𝑘22 = 𝑘1sin
2𝛼1 + 𝑘2sin

2𝛼2 + 𝑘3

}                      (3.23) 

The normal force between the mass and the belt is expressed as, 

𝑁 = −𝑘3𝑦                                                (3.24) 

Since the friction force is assumed to be proportional to the normal force 𝐹f = 𝜇𝑁, the 

equations of motion of the system can be rewritten as,  

[
𝑚 0
0 𝑚

] [
�̈�
�̈�
] + [

𝑐1 0
0 𝑐2

] [
�̇�
�̇�
] + [

𝑘11 𝑘12 + 𝜇𝑘3
𝑘21 𝑘22

] [
𝑥
𝑦] = [

0
−𝐹

]           (3.25)    

        

 

 

 

 

Figure 3.11 A two-degree-of-freedom friction model. 

The stiffness matrix of the system is now non-symmetric, which can bring about 

dynamic instability. Denoting �̅� = 𝑥 − 𝑥e , �̅� = 𝑦 − 𝑦e , where ( 𝑥e , 𝑦e ) is the 

equilibrium point of the system, the dynamic equations with respect to �̅� and �̅� are, 

[
𝑚 0
0 𝑚

] [
�̈̅�
�̈̅�
] + [

𝑐1 0
0 𝑐2

] [
�̇̅�
�̇̅�
] + [

𝑘11 𝑘12 + 𝜇𝑘3
𝑘21 𝑘22

] [
�̅�
�̅�
] = [

0
0
]               (3.26)  

Assuming the solution of the homogeneous differential equations as Eq. (3.26) is, 

     [
�̅�
�̅�
] = [

𝑥0
𝑦0
] e𝑠𝑡                                           (3.27) 

and substituting Eq. (3.27) into Eq. (3.26), a generalized eigenvalue problem is 

resulted, 

(𝑠2 [
𝑚 0
0 𝑚

] + 𝑠 [
𝑐1 0
0 𝑐2

] + [
𝑘11 𝑘12 + 𝜇𝑘3
𝑘21 𝑘22

]) [
𝑥0
𝑦0
] = [

0
0
]              (3.28) 

By setting 
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|𝑠2 [
𝑚 0
0 𝑚

] + 𝑠 [
𝑐1 0
0 𝑐2

] + [
𝑘11 𝑘12 + 𝜇𝑘3
𝑘21 𝑘22

]| = 0                 (3.29) 

the eigenvalue 𝑠 can be solved. If one of the solution of 𝑠 has positive real part, the 

equilibrium point of the system becomes unstable and self-excited vibration will 

happen. 

Suppose the values of parameter are: 𝑚 = 1, 𝑘1 = 1, 𝑘2 = 1, 𝑘3 = 2, 𝛼1 =
𝜋

4
, 𝛼2 =

𝜋

6
, 

the eigenvalues of the undamped system ( 𝑐1 = 𝑐2 = 0) as a function of 𝜇 are shown 

in Fig. 3.12, where the left figure shows the imaginary parts and the right figure shows 

the real parts. It is seen that when 𝜇 > 4.2, the two imaginary parts coalesce and one 

real part becomes positive. The time histories of �̅� and �̅� at two different values of 𝜇 

(one is a little smaller than 4.2, the other is a little larger than 4.2) are shown in Fig. 

3.13. From Fig. 3.12 and 3.13 the significant role of friction on the stability of the 

system is observed. When 𝜇 is smaller than the critical value 4.2, the real parts of 

eigenvalues are zero and the vibration does not grow meaning the equilibrium point of 

the system is stable; when 𝜇 is larger than the critical value, the real part of one of the 

eigenvalues becomes positive and the vibration grows unbounded meaning the 

equilibrium point is unstable and self-excited vibration will arise in the system. 

 

Figure 3.12 The eigenvalues of the system as a function of 𝜇. 

Figure 3.13 The time histories of the dynamic responses: (a) 𝜇 = 4.1; (b) 𝜇 = 4.3. 
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Next the system with structural damping in terms of the mode-coupling instability is 

investigated. Two cases of damping, which are proportional damping (𝑐1 = 𝑐2) and 

non-proportional damping (𝑐1 ≠ 𝑐2), are considered. In Fig. 3.14, the eigenvalues of 

the system with proportional damping for 𝑐1 = 0, 0.2, 0.5 are plotted. It is observed 

that the imaginary parts of eigenvalues for different damping coefficients merge at 

nearly identical value of 𝜇, i.e., at about 𝜇 = 4.2, while the positive real part occurs at 

greater value of 𝜇 for larger damping coefficient. Defining the value of the friction 

coefficient at which one of the real parts become positive as the critical friction 

coefficient 𝜇c, Fig. 3.15 displays 𝜇c as a function of 𝑐1. It is seen that the critical 

friction coefficient increases with the increase of damping, indicating that the 

structural damping stabilizes the system, which is consistent with the normal function 

of structural damping. In Fig. 3.16, the eigenvalues of the system with non-

proportional damping 𝑐2 = 2𝑐1 for 𝑐1 = 0, 0.2, 0.5 are plotted. It is seen that for the 

system with non-proportional damping, the imaginary parts of eigenvalues approach 

with the increase of 𝜇, but no merging of imaginary parts occurs any more. The critical 

friction coefficient 𝜇c as a function of 𝑐1 in this case is displayed in Fig, 3.17. It is 

observed that the critical friction coefficient firstly decreases and then increases with 

the increase of damping. Therefore the small structural damping may lead to 

destabilization,  and the structural damping plays the role of stabilizing the system only 

after the damping exceed a certain value. This behaviour is called “viscous instability” 

or “damping instability”. 

 

Figure 3.14 The eigenvalues of the system with proportional damping as a function 

of 𝜇. 
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Figure 3.15 The critical friction coefficient 𝜇c as a function of damping coefficient 𝑐1 

for the system with proportional damping. 

 

Figure 3.16 The eigenvalues of the system with non-proportional damping as a 

function of 𝜇. 

 

Figure 3.17 The critical friction coefficient 𝜇c as a function of damping coefficient 𝑐1 

for the system with non-proportional damping. 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c
1

4

4.5

5

5.5

6

6.5

7

7.5

8

c

0 2 4 6 8 10
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Im
(s

)

c
1
=0

c
1
=0.2

c
1
=0.5

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

R
e(

s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c
1

3

4

5

6

7

8

9

10

11

c



42 

 

3.2 Analytical methods of friction induced vibration 

There are two main categories of methods for the analysis of friction-induced-vibration 

problems, i.e., the complex eigenvalue analysis (CEA) and the transient dynamic 

analysis (TDA). The linear complex eigenvalue approach is often employed for the 

stability analysis of the steady sliding state. It can be used for the initial estimations of 

unstable modes which possibly lead to limit cycle vibration. The transient dynamic 

analysis is used to observe the dynamic behaviour of the system during the whole 

dynamic process, which enables acquiring the system behaviours in the steady state, 

incorporating nonstationary features such as time-dependent loading, and detecting the 

instability that may be omitted by CEA in some situations, e.g., when subcritical Hopf 

bifurcation exists.  

3.2.1 Complex eigenvalue analysis 

The equations of motion of an n-degree-of-freedom system with friction induced 

vibration can be generally expressed as, 

𝐌�̈� + 𝐂�̇� + 𝐊𝐱 = 𝐅con(𝐱) + 𝐅ext                                (3.30) 

where 𝐱 = [𝑥1 𝑥2 ⋯ 𝑥𝑛]T . 𝐌, 𝐂, 𝐊 are the mass matrix, damping matrix and 

stiffness matrix of the system, respectively. 𝐅con contains the contact forces at the 

friction interface, i.e., the normal contact force and the tangential friction force. The 

contact forces can be linear or nonlinear functions with respect to the displacements. 

𝐅ext  is the external force applied on the system, e.g. the brake pressure. Next the 

procedure of the stability analysis of the system is presented. 

Firstly the equilibrium point 𝐱0 corresponding to a steady sliding state is obtained, 

 𝐊𝐱0 = 𝐅con(𝐱0) + 𝐅ext                                         (3.31) 

Substituting 𝐱 = �̅� + 𝐱0 into Eq. (3.30) results in, 

𝐌�̈̅� + 𝐂�̇̅� + 𝐊(�̅� + 𝐱0) = 𝐅con(�̅� + 𝐱0) + 𝐅ext                        (3.32) 

By expanding the 𝐅con into the Taylor series and keeping only the first-order term, as 

well as the use of Eq. (3.31), the linearized system can be expressed as, 

𝐌�̈̅� + 𝐂�̇̅� + (𝐊 − 𝐊L)�̅� = 𝟎                                       (3.33) 
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where 𝐊L is the Jacobian matrix of 𝐅con, and the entry of 𝐊L is, 

𝐊L(𝑖, 𝑗) =
𝜕𝐹𝑖(𝐱)

𝜕𝑥𝑗
|𝐱0                                              (3.34) 

where 𝐹𝑖(𝐱) is the ith element of 𝐅con. And matrix 𝐊L is generally asymmetric, which 

may result in the dynamic instability.  

According to the theory of second-order linear homogeneous ordinary differential 

equations, the solution of Eq. (3.33) can be written as, 

�̅� = 𝛗e𝜆𝑡                                                      (3.35) 

By substituting Eq. (3.35) into Eq. (3.33), a quadratic eigenvalue equation is obtained, 

(𝜆2𝐌+ 𝜆𝐂 + 𝐊 − 𝐊L)𝛗 = 𝟎                                     (3.36) 

Generally there are n pairs of conjugate complex numbers as the eigenvalues that are 

solved from Eq. (3.36), i.e., 

𝜆𝑖 = 𝜎𝑖 ± 𝜔𝑖i, 𝑖 = 1,2, … , 𝑛                                     (3.37) 

where i = √−1 is the imaginary unit, 𝜎𝑖 and 𝜔𝑖 are the real part and imaginary part of 

the ith pair of eigenvalues, respectively. 𝜎𝑖  and 𝜔𝑖  indicate the growth rate and 

frequency of the ith mode in the response of the linearized system, therefore the 

stability of the equilibrium point of the frictional system which corresponds to steady 

sliding state can be evaluated by the signs of 𝜎𝑖, 

(1) if all 𝜎𝑖 are negative, the equilibrium point which corresponds to a steady sliding 

state is asymptotically stable, therefore unstable vibration will not happen in the 

system. 

(2) if one 𝜎𝑖 = 0 and other real parts are negative, the stability of the equilibrium point 

cannot be determined by the complex eigenvalue analysis, and a further transient 

analysis is required. 

(3) if at least one of 𝜎𝑖  is positive, the equilibrium point is unstable, therefore the 

vibration will grow from the equilibrium point and the system will show self-excited 

vibration. However, the vibration amplitudes are dependent on the nonlinearities in the 

system. 
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3.2.2 Transient dynamic analysis 

3.2.2.1 Runge-Kutta method for ordinary differential equations 

The equations of motion governing the dynamics of systems are usually ordinary 

differential equations (ODE) whose analytical solutions are difficult to obtain. 

Numerical methods can be employed to calculate the dynamic responses with good 

accuracy and efficiency. The numerical methods often used in dynamic simulations 

include Runge-Kutta method, Newmark-𝛽  method, central difference method, etc 

[185]. 

The fourth-order Runge-Kutta method is a popular numerical method in non-stiff 

dynamic problems because it is convenient to use and has high accuracy and stability. 

The standard procedure of the fourth-order Runge-Kutta method is for the first-order 

ODE and the integration for the second-order ODE requires the conversion of the 

second-order ODE to the first-order ODE. In Ref. [186], however, the formula for the 

direct integration of the second-order ODE was given that is exhibited below. 

The second-order differential equations can be generally written as, 

�̈� = 𝐟(𝑡, 𝐲, �̇�)                                                   (3.38) 

with the initial condition 𝐲(𝑡0) = 𝐲0 and �̇�(𝑡0) = �̇�0. If a time step h is assumed, the 

state variables 𝐲(𝑡) and �̇�(𝑡) at 𝑡 = 𝑡0 + ℎ are obtained by the following formulations, 

𝐲(𝑡0 + ℎ) =  𝐲(𝑡0) +
1

6
(𝐯1 + 2𝐯2 + 2𝐯3 + 𝐯4)                        (3.39) 

�̇�(𝑡0 + ℎ) =  �̇�(𝑡0) +
1

6
(𝐰1 + 2𝐰2 + 2𝐰3 +𝐰4)                      (3.40) 

where, 

𝐯1 = ℎ�̇�0, 𝐰1 = ℎ𝐟(𝑡0, 𝐲0, �̇�0), 

𝐯2 = ℎ (�̇�0 +
1

2
𝐰1), 𝐰2 = ℎ𝐟(𝑡0 +

1

2
ℎ, 𝐲0 +

1

2
𝐯1, �̇�0 +

1

2
𝐰1), 

𝐯3 = ℎ (�̇�0 +
1

2
𝐰2), 𝐰3 = ℎ𝐟(𝑡0 +

1

2
ℎ, 𝐲0 +

1

2
𝐯2, �̇�0 +

1

2
𝐰2), 

𝐯3 = ℎ (�̇�0 +
1

2
𝐰3), 𝐰4 = ℎ𝐟(𝑡0 + ℎ, 𝐲0 + 𝐯3, �̇�0 +𝐰3) 
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After obtaining 𝐲(𝑡0 + ℎ) and �̇�(𝑡0 + ℎ), the values of 𝐲(𝑡) and �̇�(𝑡) at 𝑡 = 𝑡0 + 2ℎ 

can be derived from Eqs. (3.39) and (3.40), and so on. 

3.2.2.2 Numerical techniques for non-smooth dynamic system 

As is introduced in the literature review, the dry friction characteristic normally 

consists of two qualitatively different parts resulting in a non-smooth behaviour, i.e., 

stick-slip oscillation. Besides, the unilateral contact between two objects with relative 

motion in a frictional system allows the loss of contact. Therefore friction induced 

dynamics in many cases belongs to the class of non-smooth mechanics. Different states 

of motion (slip, stick and separation) take place successively during the vibration, 

which are governed by different sets of ordinary differential equations.  

To obtain the whole time histories of the dynamic responses of the system, the fourth-

order Runge–Kutta method suitable for the second-order ordinary differential 

equations is employed to obtain the responses in every single state while conditions 

for state transitions are monitored at each time step. Within the time step in which a 

state transition happens, the bisection method is used to capture the exact transition 

time instant. After the transition point, the state changes and the original set of 

equations of motion is replaced by another one. The general procedure for the 

numerical simulation of the non-smooth friction induced vibration is shown by the 

flowchart as follows. 
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Figure 3.18 The flowchart of the computation procedure for the time histories of the 

non-smooth friction induced vibration. 

Integrate in the state of slip by the fourth-order 
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responses at the end of the time step and iterate. 

Evaluate if the sign of 𝑣r changes or  𝐹N < 0 at the end point of the time step. 

No 

The sign of 𝑣r changes 𝐹N < 0 

Yes 

Use the bisection method to 

capture the precise transition 

point. 

Yes 
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Obtain the values of 

state variables after 

impact. 

The magnitude of 

friction force at the 

transition point 

exceeds 𝜇s𝐹N 
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method to 
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point. 

Find which one of 
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Integrate in the state of 

separation to obtain the 

dynamic responses at the end 

of the time step and iterate. 

Start from the state of slip 

 

Yes 

Evaluate if the magnitude of friction force 

at the transition point exceeds 𝜇s𝐹N or  

𝐹N < 0 at the end point of the time step. 

No 

Evaluate if the magnitude of 

friction force at the transition 

point exceeds the maximum 

static friction capacity 𝜇s𝐹N. 

Integrate in the state of stick to 

obtain the dynamic responses at the 

end of the time step and iterate. 
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3.3 Basic theories of the vibration of elastic thin plates 

3.3.1 Free vibration of elastic thin plates 

According to the classical plate theory [187], the equation of motion for the free 

transverse vibration of an elastic thin annular plate can be written as, 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗∇4𝑤 = 0                                     (3.41) 

where 𝑤 = 𝑤(𝑟, 𝜃, 𝑡) is the transverse displacement of the plate, 𝜌 is the density of 

material, ℎ is the thickness of the plate, 𝐷∗ =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, 𝐸 and 𝜈 

are the Young’s modulus and Poisson’s ratio of the material, respectively. And the 

partial differential ∇4𝑤 is, 

∇4𝑤 = ∇2(∇2𝑤), ∇2=
𝜕2

𝜕𝑟2
+
1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜃2
                           (3.42) 

The transverse displacement can be expressed as a linear superposition of mode shape 

functions, i.e., 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑊𝑚𝑛(𝑟, 𝜃)𝑇𝑚𝑛(𝑡)
∞
𝑛=0

∞
𝑚=0                          (3.43) 

where 𝑊𝑚𝑛(𝑟, 𝜃) represents the mode shape function, 𝑇𝑚𝑛(𝑡) represents the modal 

coordinates. With substitution of Eq. (3.43) into Eq. (3.41), the following differential 

equations with respect to 𝑊𝑚𝑛(𝑟, 𝜃) and 𝑇𝑚𝑛(𝑡) are resulted,  

∇4𝑊𝑚𝑛(𝑟, 𝜃) − 𝛽𝑚𝑛
4 𝑊𝑚𝑛(𝑟, 𝜃) = 0                                 (3.44) 

d2𝑇𝑚𝑛(𝑡)

d𝑡2
+ 𝜔𝑚𝑛

2 𝑇𝑚𝑛(𝑡) = 0                                       (3.45) 

where 𝛽𝑚𝑛
4 =

𝜌ℎ𝜔𝑚𝑛
2

𝐷
. The general solutions of Eq. (3.44) and Eq. (3.45) are, 

𝑊𝑚𝑛(𝑟, 𝜃) = [𝐶𝑚𝑛
1 𝐽𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛

2 𝑌𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛
3 𝐼𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛

4 𝐾𝑛(𝛽𝑚𝑛𝑟)] ∙                                     

      [𝐴𝑚𝑛sin(𝑛𝜃) + 𝐵𝑚𝑛cos(𝑛𝜃)]                                    (3.46) 

𝑇𝑚𝑛(𝑡) = 𝑋𝑚𝑛sin(𝜔𝑚𝑛𝑡 + 𝜙𝑚𝑛)                                 (3.47) 

where 𝐽𝑛, 𝑌𝑛, 𝐼𝑛, 𝐾𝑛 are Bessel functions. By substituting Eqs. (3.46) and (3.47) into 

Eq. (3.43), the transverse displacement of the annular plate in the case of free vibration 

can be obtained as, 
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𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ [𝐶𝑚𝑛
1 𝐽𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛

2 𝑌𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛
3 𝐼𝑛(𝛽𝑚𝑛𝑟) +

∞
𝑛=0

∞
𝑚=0

          𝐶𝑚𝑛
4 𝐾𝑛(𝛽𝑚𝑛𝑟)] ∙ [𝐴𝑚𝑛sin(𝑛𝜃) + 𝐵𝑚𝑛cos(𝑛𝜃)]𝑋𝑚𝑛sin(𝜔𝑚𝑛𝑡 + 𝜙𝑚𝑛)     (3.48) 

3.3.2 Natural frequencies and mode shapes of an annular plate with clamped 

inner boundary and free outer boundary 

For a clamped boundary, both the deflection and slope are zero. For a free boundary, 

both the bending moment and resultant shear force are zero. Therefore the boundary 

conditions for the annular plate with clamped inner boundary (r=a) and free outer 

boundary (r=b) can be written as, 

𝑊𝑚𝑛(𝑎, 𝜃) = 0, 
𝜕𝑊𝑚𝑛(𝑟,𝜃)

𝜕𝑟
|𝑟=𝑎 = 0, 𝑀𝑟|𝑟=𝑏 = 0, (𝑄𝑟 +

1

𝑟

𝜕𝑀𝑟𝜃

𝜕𝜃
) |𝑟=𝑏 = 0   (3.49) 

where, 

𝑀𝑟 = −𝐷
∗ (

𝜕2𝑊𝑚𝑛

𝜕𝑟2
+
𝜈

𝑟

𝜕𝑊𝑚𝑛

𝜕𝑟
+

𝜈

𝑟2
𝜕2𝑊𝑚𝑛

𝜕𝜃2
)                                (3.50) 

𝑀𝑟𝜃 = −(1 − 𝜈)𝐷
∗ 𝜕

𝜕𝑟
(
1

𝑟2
𝜕𝑊𝑚𝑛

𝜕𝜃
)                                     (3.51) 

𝑄𝑟 = −𝐷∗
𝜕

𝜕𝑟
(
𝜕2𝑊𝑚𝑛

𝜕𝑟2
+
𝜈

𝑟

𝜕𝑊𝑚𝑛

𝜕𝑟
+

𝜈

𝑟2
𝜕2𝑊𝑚𝑛

𝜕𝜃2
)                             (3.52) 

By substituting Eq. (3.46) into Eqs. (3.49)-(3.52), it is derived that, 

[

𝐻11 𝐻12
𝐻21 𝐻22

𝐻13 𝐻14
𝐻23 𝐻24

𝐻31 𝐻32
𝐻41 𝐻42

𝐻33 𝐻34
𝐻43 𝐻44

]

[
 
 
 
 
𝐶𝑚𝑛
1

𝐶𝑚𝑛
2

𝐶𝑚𝑛
3

𝐶𝑚𝑛
4 ]
 
 
 
 

=0                                  (3.53) 

where, 

𝐻11 = 𝐽𝑛(𝛽𝑚𝑛𝑎), 𝐻12=𝑌𝑛(𝛽𝑚𝑛𝑎), 𝐻13 = 𝐼𝑛(𝛽𝑚𝑛𝑎), 𝐻14=𝐾𝑛(𝛽𝑚𝑛𝑎) 

𝐻21 =
𝑛

𝑎
𝐽𝑛(𝛽𝑚𝑛𝑎) − 𝜆𝐽𝑛+1(𝛽𝑚𝑛𝑎), 𝐻22 =

𝑛

𝑎
𝑌𝑛(𝛽𝑚𝑛𝑎) − 𝛽𝑚𝑛𝑌𝑛+1(𝛽𝑚𝑛𝑎) 

𝐻23 =
𝑛

𝑎
𝐼𝑛(𝛽𝑚𝑛𝑎) + 𝛽𝑚𝑛𝐼𝑛+1(𝛽𝑚𝑛𝑎), 𝐻24 =

𝑛

𝑎
𝐾𝑛(𝛽𝑚𝑛𝑎) − 𝛽𝑚𝑛𝐾𝑛+1(𝛽𝑚𝑛𝑎) 

𝐻31 = [
𝑛(𝑛 − 1)(1 − 𝜈)

𝑏2
− 𝛽𝑚𝑛

2 ] 𝐽𝑛(𝛽𝑚𝑛𝑏) + 𝛽𝑚𝑛𝐽𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻32 = [
𝑛(𝑛 − 1)(1 − 𝜈)

𝑏2
− 𝛽𝑚𝑛

2 ] 𝑌𝑛(𝛽𝑚𝑛𝑏) + 𝛽𝑚𝑛𝑌𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻33 = [
𝑛(𝑛 − 1)(1 − 𝜈)

𝑏2
+ 𝛽𝑚𝑛

2 ] 𝐼𝑛(𝛽𝑚𝑛𝑏) + 𝛽𝑚𝑛𝐼𝑛+1(𝛽𝑚𝑛𝑏) 
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𝐻34 = [
𝑛(𝑛 − 1)(1 − 𝜈)

𝑏2
+ 𝛽𝑚𝑛

2 ]𝐾𝑛(𝛽𝑚𝑛𝑏) + 𝛽𝑚𝑛𝐾𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻41 = [
−𝑛𝛽𝑚𝑛

2 𝑏2 + (1 − 𝑛)(1 − 𝜈)𝑛2

𝑏3
] 𝐽𝑛(𝛽𝑚𝑛𝑏) + [

𝛽𝑚𝑛
3 𝑏3 + 𝛽𝑚𝑛𝑏(1 − 𝜈)𝑛

2

𝑏3
] 𝐽𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻42 = [
−𝑛𝛽𝑚𝑛

2 𝑏2 + (1 − 𝑛)(1 − 𝜈)𝑛2

𝑏3
] 𝑌𝑛(𝛽𝑚𝑛𝑏) + [

𝛽𝑚𝑛
3 𝑏3 + 𝛽𝑚𝑛𝑏(1 − 𝜈)𝑛

2

𝑏3
] 𝑌𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻43 = [
𝑛𝛽𝑚𝑛

2 𝑏2 + (1 − 𝑛)(1 − 𝜈)𝑛2

𝑏3
] 𝐼𝑛(𝛽𝑚𝑛𝑏) + [

𝛽𝑚𝑛
3 𝑏3 − 𝛽𝑚𝑛𝑏(1 − 𝜈)𝑛

2

𝑏3
] 𝐼𝑛+1(𝛽𝑚𝑛𝑏) 

𝐻44 = [
𝑛𝛽𝑚𝑛

2 𝑏2 + (1 − 𝑛)(1 − 𝜈)𝑛2

𝑏3
] 𝐾𝑛(𝛽𝑚𝑛𝑏) + [

−𝛽𝑚𝑛
3 𝑏3 + 𝛽𝑚𝑛𝑏(1 − 𝜈)𝑛

2

𝑏3
] 𝐾𝑛+1(𝛽𝑚𝑛𝑏) 

𝛽𝑚𝑛 and the vector [𝐶𝑚𝑛
1 𝐶𝑚𝑛

2 𝐶𝑚𝑛
3 𝐶𝑚𝑛

4 ]T can be determined from Eq. (3.53), 

therefore the mode shape function 𝑊𝑚𝑛(𝑟, 𝜃) is derived. And the natural frequency 

can be obtained as, 

𝜔𝑚𝑛 = 𝛽𝑚𝑛
2 (

𝐷∗

𝜌ℎ
)

1

2
                                             (3.54) 

Similarly, the natural frequencies and mode shapes of the annular plate in other 

boundary conditions can be obtained, which are not presented here as only the 

boundary condition of clamped inner boundary and free outer boundary is used in this 

thesis. 

3.3.3 Forced vibration of elastic thin plates 

Suppose the transverse external force 𝑓(𝑟, 𝜃, 𝑡) is applied on the plate, the equations 

of motion for the transverse vibration of the plate can be written as, 

𝜌ℎ
𝜕2𝑤

𝜕𝑡2
+ 𝐷∗∇4𝑤 = 𝑓(𝑟, 𝜃, 𝑡)                                      (3.55) 

The solution of Eq. (3.55) can also be expressed as a linear superposition of mode 

shape functions in the form below, 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑅𝑚𝑛(𝑟)[cos(𝑛𝜃)𝑄𝑚𝑛(𝑡) + sin(𝑛𝜃)𝑆𝑚𝑛(𝑡)]
∞
𝑛=0

∞
𝑚=0     (3.56) 

where,  

𝑅𝑚𝑛(𝑟) = [𝐶𝑚𝑛
1 𝐽𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛

2 𝑌𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛
3 𝐼𝑛(𝛽𝑚𝑛𝑟) + 𝐶𝑚𝑛

4 𝐾𝑛(𝛽𝑚𝑛𝑟)] (3.57) 

that can be solved by the method described in the above section. 𝑄𝑚𝑛(𝑡), 𝑆𝑚𝑛(𝑡) are 

the modal coordinates. The orthogonal conditions of modal functions are, 
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∫ ∫ 𝜌ℎ𝑅𝑚𝑛(𝑟)𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

cos(𝑛𝜃)cos(𝑙𝜃)𝑟d𝑟d𝜃 = ∫ ∫ 𝜌ℎ𝑅𝑚𝑛(𝑟)𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

sin(𝑛𝜃)sin(𝑙𝜃)𝑟d𝑟 = 𝑀𝑘𝑙𝛿𝑚𝑘𝛿𝑛𝑙   

∫ ∫ 𝐷𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

cos(𝑙𝜃)∇4[𝑅𝑚𝑛(𝑟)cos(𝑛𝜃)]𝑟d𝑟d𝜃 = ∫ ∫ 𝐷𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

sin(𝑙𝜃)∇4[𝑅𝑚𝑛(𝑟)sin(𝑛𝜃)]𝑟d𝑟d𝜃 = 𝜔𝑘𝑙
2 𝑀𝑘𝑙𝛿𝑚𝑘𝛿𝑛𝑙 

∫ ∫ 𝜌ℎ𝑅𝑚𝑛(𝑟)𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

sin(𝑛𝜃)cos(𝑙𝜃)𝑟d𝑟d𝜃 = ∫ ∫ 𝜌ℎ𝑅𝑚𝑛(𝑟)𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎

cos(𝑛𝜃)sin(𝑙𝜃)𝑟d𝑟d𝜃 = 0 

∫ ∫ 𝐷𝑅𝑘𝑙(𝑟)
2π

0

𝑏

𝑎
cos(𝑙𝜃)∇4[𝑅𝑚𝑛(𝑟)sin(𝑛𝜃)]𝑟d𝑟d𝜃 = ∫ ∫ 𝐷𝑅𝑘𝑙(𝑟)

2π

0

𝑏

𝑎
sin(𝑙𝜃)∇4[𝑅𝑚𝑛(𝑟)cos(𝑛𝜃)]𝑟d𝑟d𝜃 = 0    (3.58) 

where, 

𝑀𝑘𝑙 = {
𝜌ℎπ ∫ 𝑅𝑘𝑙

2𝑏

𝑎
(𝑟)𝑟d𝑟 𝑙 = 1,2, … ,∞

2𝜌ℎπ ∫ 𝑅𝑘𝑙
2𝑏

𝑎
(𝑟)𝑟d𝑟 𝑙 = 0

                          (3.59) 

By substituting Eq. (3.56) into Eq. (3.55), then multiplying both sides of the equation 

by 𝑅𝑘𝑙(𝑟)cos(𝑙𝜃) or 𝑅𝑘𝑙(𝑟)sin(𝑙𝜃) and integrating them over the whole plate surface, 

and by using the orthogonal conditions of modal functions, the ordinary differential 

equations with respect to the modal coordinates can be obtained, 

𝑀𝑘𝑙�̈�𝑘𝑙 + 𝜔𝑘𝑙
2 𝑀𝑘𝑙𝑄𝑘𝑙 = ∫ ∫ 𝑅𝑘𝑙(𝑟)cos(𝑙𝜃)𝑓(𝑟, 𝜃, 𝑡)

2π

0

𝑏

𝑎
𝑟d𝑟d𝜃            (3.60) 

𝑀𝑘𝑙�̈�𝑘𝑙 + 𝜔𝑘𝑙
2 𝑀𝑘𝑙𝑆𝑘𝑙 = ∫ ∫ 𝑅𝑘𝑙(𝑟)sin(𝑙𝜃)𝑓(𝑟, 𝜃, 𝑡)

2π

0

𝑏

𝑎
𝑟d𝑟d𝜃            (3.61) 

From Eqs. (3.60) and (3.61), the modal coordinates are determined, which are then 

substituted into Eq. (3.56) and the transverse displacement of the annular plate in the 

case of forced vibration can be thus derived. 
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Chapter 4  

Friction induced vibration of a slider on an elastic disc 

spinning at time-varying speeds 

In this chapter, the friction induced vibration of a mass slider with in-plane and 

transverse springs and dampers in sliding contact with a spinning elastic disc in three 

different situations of spinning speed, i.e. constant deceleration, constant acceleration 

and constant speed, is investigated. The stick–slip motion in the circumferential 

direction and separation–re-contact behaviour in the transverse direction are 

considered, which make the system responses non-smooth. It is observed that the 

decelerating rotation of the disc can make the in- plane stick–slip motion of the slider 

more complicated in comparison with constant disc rotation and thereby exerting 

significant influence on the transverse vibration of the disc, while the accelerating 

rotation of the disc contributes to the occurrence of separation during the vibration and 

thus influencing the vibration behaviour of the system. Numerical simulation results 

show that distinct dynamic behaviours can be observed in the three situations of 

spinning speed of disc and two kinds of particular characteristics of differences are 

revealed.  

4.1 Introduction 

As introduced in the literature review, dry friction induced vibration has been studied 

extensively and several significant mechanisms were proposed to explain the 

occurrence of friction induced self-excited vibration: the negative friction slope, the 

stick-slip motion, the sprag-slip motion and the mode-coupling instability. Yuan [50] 

revealed the negative damping effect due to the negative friction-velocity slope. Popp 
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and Stelter [20] investigated the discrete and continuous models exhibiting stick-slip 

motion and rich bifurcation and chaotic behaviours were revealed. Two kinds of 

friction laws: the Coulomb friction with stiction and the friction model with Stribeck 

effect were applied. Sinou et al. [40] studied the instability in a nonlinear sprag-slip 

model with constant coefficient of friction by a central manifold theory. The mode-

coupling instability occurred as some modes of the system became unstable when 

coupling with other modes as a result of friction induced cross-coupling force. 

Hoffmann et al. [55] used a 2-DoF model to clarify the physical mechanisms 

underlying the mode-coupling instability of self-excited friction induced vibration. 

The effect of viscous damping on the mode-coupling instability in friction induced 

vibration was investigated in [56]. Besides, other mechanisms were proposed to 

explain the occurrence of friction induced vibration in specific systems. Chen et al. 

[68] analysed the instability of a friction system caused by the time delay between the 

normal force and the friction force. Kinkaid et al. [28] studied the dynamics of a 4-

DoF system with a two-dimension friction force and found the change of direction of 

the friction force could excite unstable vibration. 

Some researchers treated the friction induced vibration in mechanical system as a 

moving load problem. Chan et al. [65] examined the parametric resonance of a 

stationary elastic disc excited by a rotating mass-spring-damper system with a 

frictional follower force. Hochlenert et al. [66] analysed the stability behaviour of a 

minimal disc brake model consisting of the rotating Kirchhoff plate and idealized 

brake pads. Ouyang et al. [52, 67, 127] investigated the vibration of a stationary elastic 

disc under the circumferentially moving mass loading system. Li et al. [163] 

investigated the transverse vibration of an elastic disc excited by a preloaded mass-

damper-spring slider which experienced in-plane stick-slip oscillation and 

incorporated the separation and reattachment phenomena considering the possibility 

of loss of contact due to growing transverse disc vibration. Kang [57] studied the 

dynamic instability of a thin annular plate due to circumferential friction between the 

plate and two fixed sector contact interfaces under steady-sliding conditions. 

The models used to study the friction-induced-vibration (FIV) problems in the existing 

literature usually employ a constant sliding velocity, e.g., constant belt velocity in the 

slider-on-belt model or constant spinning speed of the disc. There has been little 

research that has considered the decelerating or accelerating sliding, which should not 
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be neglected as an important influential factor in friction induced vibration. In [35], a 

mathematical model was presented to prove that stick-slip oscillation could be induced 

by deceleration. Pilipchuk et al. [104] examined the friction induced dynamics of a 

two-DoF ‘belt–spring–block’ model and showed that due to the decelerating belt, the 

system response experiences transitions which could be regarded as simple indicators 

of onset of squeal. However, the work on the friction induced dynamics under 

decelerating/accelerating sliding motion is still quite limited. To investigate the 

influences of decelerating/accelerating sliding on the dynamic behaviour of frictional 

systems and study the problems such as brake noise in a more realistic model because 

the braking process is practically a decelerating process for the brake disc, the friction 

induced vibration of a mass slider on a spinning elastic disc at time-varying speeds is 

examined in this chapter. 

The rest of the chapter is arranged as follows. In Section 4.2 the system configuration 

of the slider-on-disc model is introduced and the equations of motion for the system in 

three different states: stick, slip and separation are derived. The conditions for the 

transitions among these states are determined. Subsequently the numerical simulation 

and analysis are conducted to investigate the distinct dynamic behaviours of the system 

in the three different situations of spinning speed of disc in Section 4.3 and to help 

reveal the effects of deceleration and acceleration on the friction induced dynamics of 

the system, the system responses under the decelerating and accelerating sliding 

motion are compared with the results under constant sliding speed. The significant 

differences that the deceleration and acceleration make to the vibration behaviour of 

the frictional system from that in the constant disc speed underlie the necessity to 

consider the time-variant spinning speed in the research of friction induced vibration 

and noise. Finally in Section 4.4 the conclusions on the effects of the decelerating and 

accelerating sliding motion on the dynamics of the frictional system are drawn. 

4.2 Model description and theoretical analysis 

The dynamics of a slider-on-disc system subject to friction force is studied in this paper. 

The disc is modelled as a Kirchhoff plate clamped at inner boundary and free at outer 

boundary. A slider, which is assumed to be a point mass, is connected to the rigid base 

with transverse and in-plane (circumferential) springs and dashpots and in point 

contact with the spinning disc. Without loss of generality, the circumferential 
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coordinate of the fixed base is set as 𝜃 = 0. The slider is assumed to be fixed radially 

at 𝑟0 from the disc centre and pre-compressed on the disc by 𝑁0 in the normal direction. 

The system configuration is illustrated in Fig. 4.1. Three different situations of 

spinning speed of disc, i.e. constant deceleration, constant acceleration and constant 

speed, are considered, which can be expressed as, 

 

 

 

 

 

 

 

 

 

Figure 4.1 The system configuration of a slider on an elastic disc. 

𝛺(𝑡) = 𝛺0 (1 −
𝑡

𝑡max
), decelerating                            (4.1) 

 𝛺(𝑡) = 𝛺1 + 𝑎d𝑡, accelerating                              (4.2) 

𝛺(𝑡) = 𝛺 c, constant speed                                  (4.3) 

for the three situations, respectively, as shown in Fig. 4.2. In Eq. (4.1), 𝛺0 is the initial 

spinning speed of the disc, 𝑡max is the time duration of the deceleration process. In Eq. 

(4.2), 𝛺1 is the initial spinning speed of the disc, 𝑎d is the acceleration of the disc 

speed and always positive. In Eq. (4.3), 𝛺 c is a constant value which is independent 

of time. 

 

 

 

 

 
 

𝜃 

Ω 

a 

b 

x 

y 

z 

r 

h 

𝑘𝜑 

𝑐𝜑 m 

𝑐𝑧 𝑘𝑧 

𝜑 

𝑁0 

𝑟0 



55 

 

 

 

 

 

 

Figure 4.2 The three situations of spinning speed of the disc. 

4.2.1 Circumferential stick-slip vibration of the slider 

When the circumferential relative velocity between the slider and the disc is not equal 

to zero, the slider slips on the disc. In the slip phase, the slider is subject to the kinetic 

friction force, thus the equation of circumferential motion of the slider can be written 

as, 

𝐼�̈� + 𝑟0
2𝑐𝜑�̇� + 𝑟0

2𝑘𝜑𝜑 = 𝑟0sgn(𝛺 − �̇�)𝜇𝑁                         (4.4) 

where 𝜑 is the circumferential angular displacement of the slider, 𝐼 = 𝑚𝑟0
2, 𝑐𝜑 and 𝑘𝜑 

are its moment of inertia, in-plane damping coefficient and in-plane spring stiffness, 

respectively. 𝑚 is the slider’s mass, 𝑁 represents the normal force between the disc 

and the slider. 𝜇 is the kinetic friction coefficient, and here it is taken as a function of 

the relative velocity as follows, 

𝜇 = 𝜇1 + (𝜇0 − 𝜇1)e
−𝛼|𝑟0(𝛺−�̇�)|                                 (4.5) 

where 𝜇0, 𝜇1, 𝛼 are the parameters determining the maximum value, the asymptotic 

value and the initial slope of the friction coefficient with respect to the relative velocity. 

When the circumferential velocity of slider reaches the instantaneous disc speed and 

the magnitude of the friction force acting on the slider does not exceed the static 

friction force, the slider sticks to the disc. In the sticking phase, the circumferential 

angular velocity and acceleration of the slider remain identical to the disc’s rotary 

speed and acceleration, i.e., 

�̇� = 𝛺, �̈� = �̇�                                               (4.6) 

Substituting Eqs. (4.1)-(4.3) into Eq. (4.6), it is easy to derive that, 

�̇� = 𝛺0 (1 −
𝑡

𝑡max
) , �̈� = −

𝛺0

𝑡max
                                   (4.7) 

accelerating 

constant speed 

decelerating 

O 

𝛺0 

𝛺1 

𝛺c 

𝑡max 𝑡 
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�̇� = 𝛺1 + 𝑎d𝑡, �̈� = 𝑎d                                       (4.8) 

�̇� = 𝛺 c, �̈� = 0                                             (4.9) 

in the sticking phase for the situations of decelerating disc, accelerating disc and 

constant disc speed, respectively. The instantaneous circumferential position of the 

slider in the sticking phase is thus given by, 

𝜑(𝑡) = 𝜑(𝑡s) + ∫ 𝛺0 (1 −
𝑡

𝑡max
)

𝑡

𝑡s

d𝑡 = 𝜑(𝑡s) + 𝛺0(𝑡 − 𝑡s) −
𝛺0

2𝑡max
(𝑡2 − 𝑡s

2)   (4.10) 

         𝜑(𝑡) = 𝜑(𝑡s) + ∫ (𝛺1 + 𝑎d𝑡)
𝑡

𝑡s
d𝑡 = 𝜑(𝑡s) + 𝛺1(𝑡 − 𝑡s) +

1

2
𝑎d(𝑡

2 − 𝑡s
2)  (4.11) 

𝜑(𝑡) = 𝜑(𝑡s) + ∫ 𝛺 c

𝑡

𝑡s
d𝑡 = 𝜑(𝑡s) + 𝛺 c(𝑡 − 𝑡s)                      (4.12) 

for the situations of decelerating disc, accelerating disc and constant disc speed, 

respectively, where 𝑡s is the time instant when a sticking phase starts. And the friction 

force in the sticking phase is a reaction force, which can be obtained as, 

𝑓stick =
1

𝑟0
(𝐼�̈� + 𝑟0

2𝑐𝜑�̇� + 𝑟0
2𝑘𝜑𝜑)                            (4.13) 

Thus the condition for the slider to remain sticking to the disc is, 

|
1

𝑟0
(𝐼�̈� + 𝑟0

2𝑐𝜑�̇� + 𝑟0
2𝑘𝜑𝜑)| ≤ 𝜇s𝑁                           (4.14) 

where 𝜇s is the static friction coefficient between the slider and the disc. When the 

magnitude of the friction force reaches the maximum static friction capacity, the slider 

starts to slip on the disc again. 

4.2.2 Transverse vibration of the disc 

The slider is located at the polar coordinate (𝑟0, 𝜑(𝑡)) at an arbitrary time 𝑡. When the 

slider is in contact with the disc, the normal displacement 𝑧(𝑡) of the slider equals to 

the local transverse displacement of the disc at (𝑟0, 𝜑(𝑡)) in the space-fixed coordinate 

system, i.e., 

𝑧(𝑡) = 𝑤(𝑟0, 𝜑(𝑡), 𝑡)                                       (4.15) 

and thus, 

�̇� =
𝜕𝑤

𝜕𝑡
+ �̇�

𝜕𝑤

𝜕𝜃
                                              (4.16) 
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�̈� =
𝜕2𝑤

𝜕𝑡2
+ 2�̇�

𝜕2𝑤

𝜕𝜃𝜕𝑡
+ �̇�2

𝜕2𝑤

𝜕𝜃2
+ �̈�

𝜕𝑤

𝜕𝜃
                           (4.17) 

By the force balance in the normal direction of the slider, the normal force between 

the slider and the disc is obtained as, 

𝑁 = 𝑁0 +𝑚�̈� + 𝑐𝑧�̇� + 𝑘𝑧𝑧                                   (4.18) 

Meanwhile, the friction force between the slider and disc presents a bending moment 

in the circumferential direction of the disc [57, 67], which is, 

𝑀𝜃 = ℎ𝑓/2                                               (4.19) 

where ℎ is the thickness of the disc. During the slip phase, the friction force reads, 

𝑓 = sgn(𝛺 − �̇�)𝜇𝑁 = sgn(𝛺 − �̇�)𝜇(𝑁0 +𝑚�̈� + 𝑐𝑧�̇� + 𝑘𝑧𝑧)           (4.20) 

While in the stick phase, the friction force, given in Eq. (4.13), can be written as, 

𝑓 =
1

𝑟0
[−𝐼

𝛺0

𝑡max
+ 𝑟0

2𝑐𝜑𝛺0 (1 −
𝑡

𝑡max
) + 𝑟0

2𝑘𝜑𝜑]                     (4.21) 

𝑓 =
1

𝑟0
[𝐼𝑎d + 𝑟0

2𝑐𝜑(𝛺1 + 𝑎d𝑡) + 𝑟0
2𝑘𝜑𝜑]                        (4.22) 

𝑓 =
1

𝑟0
(𝑟0

2𝑐𝜑𝛺 c + 𝑟0
2𝑘𝜑𝜑)                                   (4.23) 

for the situations of decelerating, accelerating and constant speed, respectively, where 

𝜑 can be obtained from Eqs. (4.10)-(4.12) respectively. The transverse displacement 

of the disc in the space-fixed coordinate system can be approximated by a linear 

superposition of a set of orthogonal basis functions as [188], 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑅𝑘𝑙(𝑟)[cos(𝑙𝜃) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜃) ⋅ 𝐷𝑘𝑙(𝑡)]
∞
𝑙=0

∞

𝑘=0
        (4.24) 

where k and l denote the number of nodal circles and nodal diameters respectively, 

𝐶𝑘𝑙(𝑡), 𝐷𝑘𝑙(𝑡) are modal coordinates, 𝑅𝑘𝑙(𝑟) is a combination of Bessel functions 

satisfying the inner and outer boundary conditions of the nonrotating disc and 

orthogonality conditions. And the equations of motion with respect to the modal 

coordinates can be obtained from Lagrange’s equations, 

d

d𝑡
[
𝜕𝐿

𝜕�̇�𝑘𝑙
] −

𝜕𝐿

𝜕𝐶𝑘𝑙
= 𝑃𝑘𝑙, 𝑘 = 0,1,2, . . . , ∞, 𝑙 = 0,1,2, . . . , ∞                  (4.25) 

d

d𝑡
[
𝜕𝐿

𝜕�̇�𝑘𝑙
] −

𝜕𝐿

𝜕𝐷𝑘𝑙
= 𝑄𝑘𝑙, 𝑘 = 0,1,2, . . . , ∞, 𝑙 = 1,2, . . . , ∞                   (4.26) 

in which, 
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𝐿 = 𝑇 − 𝑈                                                 (4.27) 

𝑇 =
1

2
𝜌ℎ∬ (

𝜕𝑤(𝑟,𝜃,𝑡)

𝜕𝑡
+ 𝛺

𝜕𝑤(𝑟,𝜃,𝑡)

𝜕𝜃
)
2

𝑆
𝑟d𝑟d𝜃                           (4.28) 

𝑈 =
1

2
𝐷∗∬ (𝛻2𝑤)

𝑆

2
− 2(1 − 𝜈) [

𝜕2𝑤

𝜕𝑟2
(
1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2
𝜕2𝑤

𝜕𝜃2
) − (

1

𝑟

𝜕2𝑤

𝜕𝑟𝜕𝜃
−

1

𝑟2
𝜕𝑤

𝜕𝜃
)
2

] 𝑟d𝑟d𝜃       

(4.29) 

𝑃𝑘𝑙 = −𝑁 ⋅
𝜕𝑤(𝑟0,𝜑,𝑡)

𝜕𝐶𝑘𝑙
+𝑀𝜃

𝜕𝛾

𝜕𝐶𝑘𝑙
                                     (4.30) 

𝑄𝑘𝑙 = −𝑁 ⋅
𝜕𝑤(𝑟0,𝜑,𝑡)

𝜕𝐷𝑘𝑙
+𝑀𝜃

𝜕𝛾

𝜕𝐷𝑘𝑙
                                    (4.31) 

𝛾 =
𝜕𝑤(𝑟0,𝜑,𝑡)

𝑟0𝜕𝜃
                                               (4.32) 

In the above equations, T and U represent the kinetic energy and strain energy of the 

disc respectively,  𝑃𝑘𝑙  and 𝑄𝑘𝑙  represent the generalized forces obtained from the 

virtual work of the normal force and bending moment acting on the disc. S is the area 

of the disc surface, 𝜌 is the density of material, 𝐷∗ =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, 

𝐸  and 𝜈  are the Young’s modulus and the Poisson’s ratio of the disc material, 

respectively.  

4.2.3 Coupled in-plane and out-of-plane vibration 

Substituting Eqs. (4.15)-(4.20) and (4.24) into Eqs. (4.25)-(4.32), the equations of the 

transverse motion of the disc with respect to the modal coordinates during the slip 

phase are given, 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 = [−𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑) −

ℎ

2𝑟0
𝑠𝑔𝑛(𝛺 − �̇�)𝜇𝑙𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑)] ⋅

(𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠 + [2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[−𝑚�̈�𝑠sin(𝑠𝜑) −𝑚�̇�2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠 + [𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�
2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

(4.33) 

𝑀𝑘𝑙�̈�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 = [−𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑) +

ℎ

2𝑟0
𝑠𝑔𝑛(𝛺 − �̇�)𝜇𝑙𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑)] ⋅

(𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠 + [2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[−𝑚�̈�𝑠sin(𝑠𝜑) −𝑚�̇�2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠 + [𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�
2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

 (4.34) 
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where 𝛺 is given by Eqs (4.1)-(4.3) for the situations of decelerating disc, accelerating 

disc and constant disc speed respectively, 𝜔𝑘𝑙 is the natural frequency of the mode 

with k nodal circles and l nodal diameters of the corresponding nonrotating plate, and 

𝑀𝑘𝑙 = {
𝜌ℎπ∫ 𝑅𝑘𝑙

2𝑏

𝑎
(𝑟)𝑟d𝑟, 𝑙 = 1,2, . . .

2𝜌ℎπ∫ 𝑅𝑘𝑙
2𝑏

𝑎
(𝑟)𝑟d𝑟, 𝑙 = 0

                            (4.35) 

During the slip phase, the equation of motion of 𝜑 reads, 

𝐼�̈� + 𝑟0
2𝑐𝜑�̇� + 𝑟0

2𝑘𝜑𝜑 = 𝑟0𝑠𝑔𝑛(𝛺 − �̇�)𝜇 (𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠 + [−𝑚�̈�𝑠sin(𝑠𝜑) − 𝑚�̇�
2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠

+[𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

 (4.36) 

In the stick phase, the equations of the transverse motion of the disc can be derived by 

substituting Eqs. (4.15)-(4.19) and (4.24) into Eqs. (4.25)-(4.32) as, 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 = −

ℎ

2𝑟0
𝑙𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑)𝑓 − 𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑) ⋅

(𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠 + [2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[−𝑚�̈�𝑠sin(𝑠𝜑) −𝑚�̇�2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠 + [𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�
2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

 (4.37) 

𝑀𝑘𝑙�̈�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 =

ℎ

2𝑟0
𝑙𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑)𝑓 − 𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑) ⋅

(𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠 + [2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[−𝑚�̈�𝑠sin(𝑠𝜑) −𝑚�̇�2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠 + [𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�
2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

 (4.38) 

where 𝑓  is given by Eqs. (4.21)-(4.23) for the situations of decelerating disc, 

accelerating disc and constant disc speed respectively, 𝜑, �̇�, �̈� during the stick phase 

for the three different situations are given in Eqs. (4.7)-(4.12). The condition for 

remaining in the stick state, which is given in Eq. (4.14), is thus obtained as, 

     |
1

𝑟0
(𝐼�̈� + 𝑟0

2𝑐𝜑�̇� + 𝑟0
2𝑘𝜑𝜑)| ≤ 𝜇𝑠 (𝑁0 +∑∑𝑅𝑟𝑠(𝑟0){𝑚cos(𝑠𝜑)�̈�𝑟𝑠 +𝑚sin(𝑠𝜑)�̈�𝑟𝑠 + [−2𝑚�̇�𝑠sin(𝑠𝜑) + 𝑐𝑧cos(𝑠𝜑)]�̇�𝑟𝑠

∞

𝑠=0

∞

𝑟=0

+[2𝑚�̇�𝑠cos(𝑠𝜑) + 𝑐𝑧sin(𝑠𝜑)]�̇�𝑟𝑠 + [−𝑚�̈�𝑠sin(𝑠𝜑) − 𝑚�̇�
2𝑠2cos(𝑠𝜑) − 𝑐𝑧�̇�𝑠sin(𝑠𝜑) + 𝑘𝑧cos(𝑠𝜑)]𝐶𝑟𝑠

+[𝑚�̈�𝑠cos(𝑠𝜑) −𝑚�̇�2𝑠2sin(𝑠𝜑) + 𝑐𝑧�̇�𝑠cos(𝑠𝜑) + 𝑘𝑧sin(𝑠𝜑)]𝐷𝑟𝑠})

 

 (4.39)                            
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4.2.4 Separation and re-contact 

With the increase of the amplitude of the transverse motion, the slider may separate 

from the disc. Separation happens when the normal force between the disc and the 

slider drops to  𝑁 = 0 . And in the separation phase, both the slider and the disc 

experience free vibration, therefore the equations of motion of the disc and the slider 

read, 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 = 0                     (4.40) 

𝑀𝑘𝑙�̈�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 = 0                     (4.41) 

for the transverse displacement of the disc, and 

𝐼�̈� + 𝑟0
2𝑐𝜑�̇� + 𝑟0

2𝑘𝜑𝜑 = 0                                      (4.42) 

𝑚�̈� + 𝑐�̇� + 𝑘𝑧 + 𝑁0 = 0                                       (4.43) 

for the circumferential and normal motions of the slider. The state of separation is 

maintained when the following condition is satisfied, 

𝑧(𝑡) > 𝑤(𝑟0, 𝜑(𝑡), 𝑡)                                          (4.44) 

After separation, the above condition is monitored for re-contact. Re-contact occurs 

when the slider’s normal motion become equal to the transverse displacement of the 

disc at the polar coordinate of the slider. And when this happens, a very short-lived 

impact force is considered to act between the slider and the disc within time duration 

of (𝑡𝑟
−, 𝑡𝑟

+). The method for determining the values of the dynamic state variables 

immediately after re-contact, which was given in Ref. [189], is adopted in this paper. 

For simplification, an assumption for the re-contact is that the impact is perfectly 

plastic and the slider sticks onto the disc after the impact. Suppose the impulse at 𝑡𝑟 

is 𝑝, thus the distributed load on the disc due to the impact is  −𝑝𝛿(𝑟 − 𝑟0)𝛿(𝜃 −

𝜑(𝑡))𝛿(𝑡 − 𝑡𝑟), which causes the equations of motion of the disc to become, 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 = −𝑝𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡))𝛿(𝑡 − 𝑡𝑟)  

(4.45) 

𝑀𝑘𝑙�̈�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 = −𝑝𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡))𝛿(𝑡 − 𝑡𝑟)  

(4.46) 
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The velocity jump for the disc due to the impact can be thus obtained as, 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑝𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙
                            (4.47) 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑝𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙
                            (4.48) 

Similarly, the velocity jump of the slider is, 

�̇�(𝑡𝑟
+) − �̇�(𝑡𝑟

−) =
𝑝

𝑚
                                         (4.49) 

Combining Eq. (4.49) and Eqs. (4.47) and (4.48) gives, 

  �̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑚𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))[�̇�(𝑡𝑟

+)−�̇�(𝑡𝑟
−)]

𝑀𝑘𝑙
                  (4.50) 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑚𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))[�̇�(𝑡𝑟

+)−�̇�(𝑡𝑟
−)]

𝑀𝑘𝑙
                  (4.51) 

For perfectly plastic impact, the slider has the same velocity as that of the disc at 

time 𝑡𝑟
+, therefore, 

�̇�(𝑡𝑟
+) = (

𝜕𝑤

𝜕𝑡
+ �̇�

𝜕𝑤

𝜕𝜑
)
𝑡=𝑡𝑟

+
=∑ ∑ 𝑅𝑟𝑠(𝑟0)

∞
𝑠=0

∞

𝑟=0
[cos(𝑠𝜑(𝑡𝑟

+))�̇�𝑟𝑠(𝑡𝑟
+) + sin(𝑠𝜑(𝑡𝑟

+))�̇�𝑟𝑠(𝑡𝑟
+)

−�̇�(𝑡𝑟
+)𝑠sin(𝑠𝜑(𝑡𝑟

+))𝐶𝑟𝑠(𝑡𝑟
+) + �̇�(𝑡𝑟

+)𝑠cos(𝑠𝜑(𝑡𝑟
+))𝐷𝑟𝑠(𝑡𝑟

+)]
  

(4.52) 

Because the transverse displacement and the in-plane motion of the slider are 

unchanged by the normal impact, the following equations hold, 

𝐶𝑘𝑙(𝑡𝑟
+) = 𝐶𝑘𝑙(𝑡𝑟

−) = 𝐶𝑘𝑙(𝑡𝑟), 𝐷𝑘𝑙(𝑡𝑟
+) = 𝐷𝑘𝑙(𝑡𝑟

−) = 𝐷𝑘𝑙(𝑡𝑟),

𝜑(𝑡𝑟
+) = 𝜑(𝑡𝑟

−) = 𝜑(𝑡𝑟), �̇�(𝑡𝑟
+) = �̇�(𝑡𝑟

−) = �̇�(𝑡𝑟)
           (4.53) 

By substituting Eq. (4.52) into Eqs. (4.50) and (4.51) and utilizing Eq. (4.53), the 

normal velocity of the slider and the modal velocities of the disc after the impact can 

be derived as, 

�̇�(𝑡𝑟
+) =

∑ ∑ 𝑅𝑟𝑠(𝑟0)
∞
𝑠=0

∞

𝑟=0
[cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+

𝑚𝑅𝑟𝑠(𝑟0)

𝑀𝑟𝑠
�̇�(𝑡𝑟

−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

  

(4.54) 

�̇�𝑘𝑙(𝑡𝑟
+) = �̇�𝑘𝑙(𝑡𝑟

−) − 

𝑚𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙

{
 
 

 
 
∑ ∑ 𝑅𝑟𝑠(𝑟0)

∞
𝑠=0

∞
𝑟=0 [cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+

𝑚𝑅𝑟𝑠(𝑟0)
𝑀𝑟𝑠

�̇�(𝑡𝑟
−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

− �̇�(𝑡𝑟
−)

}
 
 

 
 

                                         

(4.55) 
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�̇�𝑘𝑙(𝑡𝑟
+) = �̇�𝑘𝑙(𝑡𝑟

−) − 

𝑚𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙

{
 
 

 
 
∑ ∑ 𝑅𝑟𝑠(𝑟0)

∞
𝑠=0

∞
𝑟=0

[cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+
𝑚𝑅𝑟𝑠(𝑟0)
𝑀𝑟𝑠

�̇�(𝑡𝑟
−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

− �̇�(𝑡𝑟
−)

}
 
 

 
 

     

(4.56) 

4.3 Numerical simulation and analysis 

Because there are three distinct dynamic phases with different governing equations of 

motion throughout the process of vibration, the dynamic system in question is non-

smooth, which brings about a difficulty in numerical calculation. To obtain the whole 

time histories of the dynamic responses of the system, the numerical algorithm 

introduced in Section 3.2.2.2 is employed. In the following, the dynamic behaviours 

of the frictional system in the three situations of spinning speed of disc are investigated 

and relevant interesting phenomena are analysed. 

The basic system parameters whose values are constant in the numerical examples are 

listed in Table 4.1. It should be noted that numbers k and l in the expression of the 

transverse displacement of the disc can be chosen to include as many modes as needed 

to represent the dynamics of the system with acceptable accuracy. To avoid excessive 

computations, the modal series in Eq. (4.24) are truncated at suitable values of indices 

k and l. The first seven natural frequencies of the disc are 1492, 1517, 1517, 1824, 

1824, 2774 and 2774 rad/s, which are 237, 241, 241, 290, 290, 442 and 442 in Hz. It 

is found that the first seven disc modes (one single mode with zero nodal circle and 

zero nodal diameter and three pairs of doublet modes with zero nodal circle and one, 

two or three nodal diameters) are good enough in terms of the convergence of the 

results. 

Table 4.1 The values of constant system parameters  

𝑎 𝑏 𝑟0 𝜌 𝐸 ℎ 𝜈 

0.044m 0.12m 0.1m 7200kg/m3 150GPa 0.002m 0.211 

𝑚 𝑘𝑧 𝑟0
2𝑘𝜑 𝑁0 𝜇0 𝜇1 𝜇s 

0.1kg 3·104N/m 2000N·m/rad 500N 0.6 0.35 0.8 
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4.3.1 Stable sliding equilibrium under the constant speed and the effects of time-

variant speed 

In this sub-section, the dynamic responses in the three different situations of disc speed 

are obtained and compared to reveal the effects of time-variant disc speed on the 

friction induced dynamics of the system.  

In the situation of constant disc speed, it is viable to find an equilibrium point in the 

slip state for the system by solving the algebraic nonlinear equations obtained by 

setting all the terms involving velocity and acceleration in Eqs. (4.33), (4.34) and (4.36) 

to be zero. The algebraic nonlinear equations to determine the equilibrium point are 

solved numerically using fsolve in MATLAB. Then the Lyapunov stability at this 

equilibrium point is investigated. That is, if the solutions of Eqs. (4.33), (4.34) and 

(4.36) with a small initial perturbation from the equilibrium point converge to the 

equilibrium point with time approaching infinity, the sliding equilibrium under study 

is considered to be asymptotically stable; while if the solutions move away from the 

equilibrium point with time increasing, the sliding equilibrium under study is unstable. 

Based on the system parameters listed in Table 4.1, the regions of stability with respect 

to four parameters 𝑐𝑧, 𝑐𝜑, 𝛼 and 𝛺 c which are found to have significant effects on the 

stability are obtained. Fig. 4.3 illustrates some combinations of 𝑐𝑧  and 𝑟0
2𝑐𝜑 which 

correspond to stable sliding equilibriums with different values of 𝛼 under two different 

constant spinning speed 𝛺 c = 1 and 10rad/s.  

 
Figure 4.3 Combinations of 𝑐𝑧 and 𝑟0

2𝑐𝜑 corresponding to stable sliding equilibrium 

with different values of 𝛼 under two spinning speed: (a) 𝛺 c = 1rad/s, (b) 𝛺 c =

10rad/s. (‘stable’ refers to the region above the respective curve). 
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Considering a parameter combination in the ‘stable’ area (𝑐𝑧 = 11 N ⋅ s/m, 𝑟0
2𝑐𝜑 =

1 N ⋅ m ⋅ s/rad , 𝛼 =10, 𝛺 c = 10 rad/s ), it can be seen from Fig. 4.4 that the 

amplitudes of dynamic responses of the system decay fast with time until the sliding 

equilibrium is reached. For comparison, the vibration in the situation of decelerating 

disc (𝛺 0 = 10 rad/s , 𝑡max = 20 s  ) with the same parameter values and initial 

condition as those in the situation of constant disc speed is investigated and the results 

are depicted in Fig. 4.5.  An interesting phenomenon arises that the vibration decays 

in the early stage, similarly to that in the situation of constant speed, but then grows in 

the final stage and the stick-slip motion is induced. The reason for this phenomenon is 

the negative slope of the friction force-relative velocity relationship, which is usually 

considered a contributor to system instability. With the decrease of disc speed, the 

magnitude of the relative velocity |𝛺 − �̇�| can become sufficiently low (please note 

that �̇�  becomes approximately zero before the vibration grows in the end of the 

process), leading to a large negative slope of the friction force-relative velocity 

dependence, which, acting like a negative damping, can cancel out the positive viscous 

damping and then cause the vibration of the system to grow towards the end of the 

decelerative process. 

 
Figure 4.4 The system dynamic responses under the constant disc speed: (a) the 

spinning speed of disc, (b) the circumferential velocity of the slider, (c) the 

transverse displacement of a specific point on the disc at 𝑟 = 𝑟0 and 𝜃 = 0. (𝑐𝑧 =

11 N ⋅ s/m, 𝑟0
2𝑐𝜑 = 1 N ⋅ m ⋅ s/rad, 𝛼=10, 𝛺 c = 10rad/s). 
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Figure 4.5 The system dynamic responses under the decelerating disc: (a) the 

spinning speed of disc, (b) the circumferential velocity of the slider, (c) the 

transverse displacement of a specific point on the disc at 𝑟 = 𝑟0 and 𝜃 = 0. (𝑐𝑧 =

11 N ⋅ s/m, 𝑟0
2𝑐𝜑 = 1 N ⋅ m ⋅ s/rad, 𝛼=10, 𝛺 0 = 10rad/s, 𝑡max = 20s). 

A similar phenomenon occurs in the situation of accelerating disc but the mechanism 

is different. Another parameter combination leading to a stable sliding equilibrium 

under constant disc speed ( 𝑐𝑧 = 1 N ⋅ s/m , 𝑟0
2𝑐𝜑 = 2 N ⋅ m ⋅ s/rad , 𝛼 = 0, 𝛺 c =

1 rad/s) is used. The time histories of responses starting from a small perturbation 

from the sliding equilibrium under constant disc speed are shown in Fig. 4.6. Similarly, 

the vibration decays fast until the sliding equilibrium is reached. Meanwhile, the 

system responses under accelerating disc (𝛺 1 = 1 rad/s, 𝑎d = 3 rad/s2) with the 

same parameter values and initial condition as those under constant disc speed are 

obtained and plotted in Fig. 4.7. As shown in this figure, the vibration decays firstly 

but grows at a time point later due to the increase of disc speed. This phenomenon can 

be explained by the effect of moving load which causes speed-dependent instability 

[67, 163]. The two examples above reflect the time-varying features of the friction-

induced vibration of the system due to the time-variant disc speed. 

 
Figure 4.6 The system dynamic responses under the constant disc speed: (a) the 

spinning speed of disc, (b) the circumferential velocity of the slider, (c) the 

transverse displacement of disc at (𝑟0, 0). (𝑐𝑧 = 1N ⋅ s/m, 𝑟0
2𝑐𝜑 = 2 N ⋅ m ⋅ s/rad, 

𝛼=0, 𝛺 c = 1rad/s). 
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Figure 4.7 The system dynamic responses under the accelerating disc: (a) the 

spinning speed of disc, (b) the circumferential velocity of the slider, (c) the 

transverse displacement of disc at (𝑟0, 0). (𝑐𝑧 = 1N ⋅ s/m, 𝑟0
2𝑐𝜑 = 2 N ⋅ m ⋅ s/rad, 

𝛼=0, 𝛺 1 = 1rad/s, 𝑎d = 3rad/s2). 

4.3.2 Non-stationary dynamic behaviour under the time-variant disc speed 

Next, the parameter combinations corresponding to unstable sliding equilibrium in the 

situation of constant disc speed are considered and the dynamic responses in the three 

situations of disc speed are compared. The initial conditions are set to be a small 

perturbation from the equilibrium point of the system in all the numerical examples 

below. The parameter values used in the first example are: 𝑐𝑧 = 0.1N ⋅ s/m, 𝑟0
2𝑐𝜑 =

0.1 N ⋅ m ⋅ s/rad , 𝛼=1 and 𝛺 c = 2πrad/s  in the situation of constant speed. The 

results about the in-plane angular motion of the slider and the transverse vibration of 

the disc under the constant disc speed are illustrated in Figs. 4.8 and 4.9, respectively.  

 

Figure 4.8 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the constant  disc speed: (a) the time history of the circumferential angular velocity, 

(b) the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 0.1N ⋅

s/m, 𝑟0
2𝑐𝜑 = 0.1 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 c = 2πrad/s). 
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Figure 4.9 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the constant disc speed: (a) the time history, 

(b) the frequency spectrum plot. 

In these figures, the time-frequency plots are obtained from the short-time Fourier 

transform, from which it can be observed that the frequency compositions of the 

responses remain unchanged throughout the whole process, indicating that the 

dynamic responses are stationary. Besides, both the frequency spectra of the in-plane 

angular motion of the slider and the transverse vibration of the disc consist of several 

incommensurate frequencies and two common incommensurate frequencies 𝑓1 = 181 

Hz and 𝑓2 = 290.5 Hz can be identified, which suggests that both  dynamic responses 

are quasi-periodic. The vibration of the system in the situation of decelerating disc is 

then investigated and the results concerning the in-plane angular motion of the slider 

and the transverse vibration of the disc are illustrated in Figs. 4.10 and 4.11.  

 

Figure 4.10 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the decelerating disc: (a) the time history of the circumferential angular velocity, (b) 

the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 0.1N ⋅

s/m, 𝑟0
2𝑐𝜑 = 0.1 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 0 = 2πrad/s, 𝑡max = 35s). 
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Figure 4.11 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the decelerating disc: (a) the time history, 

(b) the frequency spectrum plot. 

The time-frequency plots show the time-variant characteristic of frequency spectra of 

the responses, especially the in-plane motion of the slider, in the situation of 

decelerating disc. In the early stage of vibration, the frequency spectra of responses 

are similar to those in the situation of constant speed, but lower-frequency components 

arise in the dynamic responses towards the end of the process, and the frequency 

spectrum of the in-plane motion of the slider gets very fuzzy and dense in the final 

stage of the process. The variation of the frequencies of the response during the process 

can also be observed from the time histories during two different time spans in the 

early and late stages, as depicted in Fig. 4.12.   

 

Figure 4.12 The short-term time histories during two different time spans under the 

decelerating disc: (a and b) the circumferential angular velocity of the slider, (c and 

d) the friction force. 
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The second example uses the parameter values: 𝑐𝑧 = 2N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅

s/rad, 𝛼=1 and 𝛺 c = 2πrad/s in the situation of constant speed. Figs. 4.13 and 4.14 

illustrate the time histories and time-frequency plots of the in-plane motion of the 

slider and transverse vibration of the disc. The frequency compositions of the 

responses remain unchanged and both the frequency spectra of the in-plane angular 

displacement of the slider and the transverse displacement of the disc consist of the 

fundamental frequency 𝑓0  (206  Hz ) and its superharmonics ( 𝑛𝑓0, 𝑛 = 2,3, . .. ), 

indicating that the in-plane motion of the slider and the transverse motion of the disc 

are periodic at the same frequency. Correspondingly, the results of the dynamic 

responses in the situation of decelerating disc are illustrated in Figs. 4.15 and 4.16. As 

shown in Fig. 4.15b, at least six segments with distinct frequency compositions, which 

are in time intervals  0 < 𝑡 < 15s , 15 < 𝑡 < 20s , 20 < 𝑡 < 28s , 28 < 𝑡 < 30s , 

30 < 𝑡 < 31s, 31 < 𝑡 < 35s, can be identified based on visual inspection. The phase 

portraits of the circumferential motion of the slider and trajectories of the friction force 

during certain time spans in the six segments are shown in Fig. 4.17. As is seen, stick-

slip vibration with different periods in the six time intervals can be identified for the 

in-plane motion of the slider.  

The third example considers a higher disc speed,  where the parameter values in the 

situation of constant speed are: 𝑐𝑧 = 2N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1 and 

𝛺 c = 6πrad/s. The in-plane motions of the slider and the transverse motions of the 

disc under the constant disc speed and under the decelerating disc are shown in Figs. 

4.18-21. Similarly, the frequency spectra of responses in the situation of decelerating 

disc are more time-variant than those in the situation of constant disc speed, especially  

lower-frequency components arise in the dynamic responses and the frequency spectra 

get fuzzy and dense towards the end of the process. 
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Figure 4.13 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the constant  disc speed: (a) the time history of the circumferential angular velocity, 

(b) the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 2N ⋅

s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 c = 2πrad/s). 

 

Figure 4.14 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the constant disc speed: (a) the time history, 

(b) the frequency spectrum plot. 

 

Figure 4.15 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the decelerating disc: (a) the time history of the circumferential angular velocity, (b) 

the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 2N ⋅ s/m, 

𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 0 = 2πrad/s, 𝑡max = 35s). 
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Figure 4.16 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the decelerating disc: (a) the time history, 

(b) the frequency spectrum plot. 

 
Figure 4.17 The phase portraits of the circumferential motion of the slider and 

trajectories of friction force time spans within six different time segments under the 

decelerating disc: (a,b) 8 < 𝑡 < 8.1s, (c,d) 18 < 𝑡 < 18.1s, (e,f) 25 < 𝑡 < 20.1s, 

(g,h) 29 < 𝑡 < 29.1s, (i,j) 30.5 < 𝑡 < 30.6s, (k,l) 33 < 𝑡 < 35s. 

 

Figure 4.18 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the constant  disc speed: (a) the time history of the circumferential angular velocity, 

(b) the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 2N ⋅

s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 c = 6πrad/s). 
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Figure 4.19 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the constant disc speed: (a) the time history, 

(b) the frequency spectrum plot. 

 

Figure 4.20 The time history of the circumferential angular velocity of the slider and 

time-frequency plot of the circumferential angular displacement of the slider under 

the decelerating disc: (a) the time history of the circumferential angular velocity, (b) 

the time-frequency plot of the circumferential angular displacement.(𝑐𝑧 = 2N ⋅ s/m, 

𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 0 = 6πrad/s, 𝑡max = 35s). 

 

Figure 4.21 The time history and time-frequency plot of the transverse displacement 

of the disc at 𝑟 = 𝑟0 and 𝜃 = 1rad under the decelerating disc: (a) the time history, 

(b) the frequency spectrum plot. 



73 

 

The effect of accelerating disc on the system dynamics is also investigated. The 

variations of normal force are plotted in Fig. 4.22, from which it is seen that separation 

happens with the increase of disc speed in the process, while there is no separation 

occurring for the corresponding system in the situation of constant disc speed. The 

dynamic responses under the accelerating disc are illustrated in Figs. 4.23 and 4.24. It 

is noticed that separation happening in the process leads to shift of frequency spectra 

of the system responses. 

 

Figure 4.22 The variation of normal force with time in the situation of accelerating 

disc in the two cases: (a) 𝑐𝑧 = 0.1N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.1 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 1 =

2πrad/s, 𝑎d = 0.2rad/s2, (b) 𝑐𝑧 = 2N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 1 =

2πrad/s, 𝑎d = 0.2rad/s2. 

 

Figure 4.23 The time histories and time-frequency plots of the dynamic responses 

under the accelerating disc: (a) (b) the in-plane motion of the slider, (c) (d) the 

transverse motion of the disc. (𝑐𝑧 = 0.1N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.1 N ⋅ m ⋅ s/rad, 𝛼=1, 

𝛺 1 = 2πrad/s, 𝑎d = 0.2rad/s
2). 
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Figure 4.24 The time histories and time-frequency plots of the dynamic responses 

under the accelerating disc: (a) (b) the in-plane motion of the slider, (c) (d) the 

transverse motion of the disc. (𝑐𝑧 = 2N ⋅ s/m, 𝑟0
2𝑐𝜑 = 0.5 N ⋅ m ⋅ s/rad, 𝛼=1, 𝛺 1 =

2πrad/s, 𝑎d = 0.2rad/s2). 

4.3.3 Impact during vibration 

As the amplitude of transverse vibration of the disc increases, the slider may separate 

from the disc and then recontact with disc. The role of the impact happening at the 

instants of recontact on the system dynamics is examined. The dynamic responses of 

the system under the constant disc speed in two conditions: with impact and without 

impact are obtained to exemplify the effect of the impact on the vibration. When the 

impact is ignored, the transverse velocity of the disc is not changed during the 

recontact. Fig. 4.25 shows the time histories of the transverse displacement at (𝑟0, 0) 

of the disc with a certain parameter combinations. It is seen that the transverse 

vibration with impact considered is much weaker compared with that without impact, 

which can be explained by the fact that the impact is assumed to be fully plastic in this 

paper and thus dissipates energy in the vibration.  
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Figure 4.25 The time histories of the transverse displacement in the situation of 

constant disc speed under two conditions: (a) with impact, (b) without impact. (𝑐𝑧 =

0, 𝑟0
2𝑐𝜑 = 0, 𝛼=1, 𝛺 c = 50rad/s). 

4.4 Conclusions 

In this chapter, the dynamics of a slider-on-disc system subject to friction force in three 

different situations of spinning speed, i.e. constant deceleration, constant acceleration 

and constant speed, is investigated. Due to the non-smooth nature of the friction force 

between the slider and the disc, the slider experiences stick-slip vibration in the 

circumferential direction of the disc. Meanwhile, the in-plane motion of the slider 

causes time-varying normal force and bending moment on the disc, which can be seen 

as moving loads to excite the transverse vibration of the elastic disc. The transverse 

vibration of the disc will, in turn, influence the in-plane motion of the slider by 

affecting the magnitude of friction force through the varying normal force. Therefore 

the transverse vibration and the in-plane vibration of the slider are coupled. It is 

observed the decelerating and accelerating disc rotation results in distinct dynamic 

behaviours of the frictional system from that under the constant disc speed. The 

following conclusions can be reached,  

1. In the situation of constant speed, a sliding equilibrium of the system can be found. 

The parameter combinations corresponding to the stable or unstable equilibrium 

points in the sense of Lyapunov stability are identified. 

2. For the system with the parameter combinations corresponding to the stable sliding 

equilibrium in the situation of constant speed, the vibration starting from an initial 

condition near the equilibrium point decays with time and ceases eventually. While 
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in the situation of time-varying disc speed, stability may change with time due to 

the variation of disc speed with time, resulting in an interesting phenomenon that 

the system vibration decays with time in the early stage but grows in the later stage.  

This kind of time-varying characteristic of friction induced vibration results from 

the negative-slope friction force-relative velocity relationship in the situation of 

decelerating disc and the speed-dependent instability caused by the moving load in 

the situation of accelerating disc. 

3. The time-variant disc speed increases the non-stationary characteristics of the 

system dynamics as opposed to the constant disc speed, especially the in-plane 

motion of the slider, which means there are more shifts of frequency spectra of the 

dynamic responses throughout the process in the situation of time-variant disc speed 

than that in the situation of constant speed. 

4. When impact is considered, the transverse vibration of the disc becomes lower than 

without. 
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Chapter 5  

Suppression of friction induced vibration in MDoF 

systems using tangential harmonic excitation 

This chapter investigates the effects of tangential harmonic excitation on the friction 

induced vibration in multi-degree-of-freedom (MDoF) systems that are coupled in the 

tangential and normal directions. A minimal two-degree-of-freedom system and a 

more complicated slider-on-disc system are considered. It is observed the friction 

induced vibration of the systems can be suppressed with the tangential harmonic 

excitation when the amplitude and frequency of the excitation are in certain ranges. 

The analytical method to determine the ranges where the systems are stabilized by the 

tangential excitation is established. To verify the analytical results, a great amount of 

computational effort is also made to simulate the time responses of systems in various 

combinations of values of the amplitude and frequency, by which the parameter ranges 

where the friction induced vibration is suppressed can also be obtained.  

5.1 Introduction 

Friction induced self-excited vibration are usually undesirable and should be avoided. 

The published studies revealed numerous factors leading to friction induced dynamic 

instability, e.g. stick-slip oscillation [19,20], sprag-slip instability [43-45], mode-

coupling instability [55-57], moving-load follower force and friction couple [65-67], 

etc. 

Understanding the factors leading to friction induced dynamic instability may help to 

select appropriate parameter values corresponding to stable systems in a design. 
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Additionally, some structural modification approaches were developed to suppress 

friction induced vibration and noise, such as installing damping shims on the brake 

pads [179], modifying brake disc surface topography [190, 191], applying yawing 

angular misalignment [192], etc. All these methods mentioned above change the 

dynamic properties of the systems permanently. On the other hand, Cunefare and Graf 

[193] proposed using an actuator to produce a fluctuating friction force with high 

frequency between the pad and the disc to eliminate brake squeal. Feeny and Moon 

[194] applied a high-frequency excitation to quench stick-slip chaos. Zhao et al. [195] 

integrated the piezoceramic actuators into a disc brake system to provide harmonic 

high-frequency vibrations to eliminate the stick-slip limit cycle vibration of the system. 

This approach of applying an external periodic excitation offers a more flexible way 

to suppress the unwanted friction induce vibration in mechanical systems. However, 

there has been little theoretical study on this topic. It was observed in [196] that 

sufficiently strong high-frequency excitation in the tangential direction can smoothen 

the discontinuity in dry friction and produce behaviour like viscous damping. Thomsen 

[197] conduced a theoretical analysis of the effects of high-frequency external 

excitation on the stick-slip vibration of a single-DoF mass-on-belt system. 

Nevertheless, real mechanical systems such as a disc brake system usually involve 

multiple degrees of freedom, in which mechanisms responsible for friction induced 

vibration such as mode-coupling instability may appear. In order to provide more 

practical theoretical guidance for suppression of friction induced vibration in real 

mechanical systems, this chapter investigates the effects of the tangential high-

frequency harmonic excitation on the friction induced dynamics of a two-degree-of-

freedom mass-on-belt system and a slider-on-disc system. 

The rest of the chapter is arranged as follows. In Section 5.2, the equations of motion 

are formulated and the analytical formulas for the parameter ranges where the systems 

are stabilized by the tangential excitation are derived for the two-DoF mass-on-belt 

system. In Section 5.3, the corresponding formulation and derivation for the slider-on-

disc system are presented. Subsequently a detailed numerical study is conducted in 

Section 5.4 and the results obtained from the analytical formulas are examined in 

relation to the time responses calculated by the Runge-Kutta algorithm. Finally in 

Section 5.5 the conclusions are drawn.  
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5.2 A minimal 2-DoF frictional system 

The model of the 2-DoF frictional system is shown in Fig. 5.1, which was previously 

investigated in [55] in terms of mode-coupling instability. In this model, a point mass 

𝑚 is connected to the base by two sets of spring-damper systems (𝑘1, 𝑐1 and 𝑘2, 𝑐2) at 

the angles of inclination to the horizontal direction 𝛼1 and 𝛼2, respectively.  The mass 

is pressed by a preload 𝐹  to bring it into frictional contact with a belt moving at 

constant velocity 𝑣. A spring 𝑘3 is used to model the contact stiffness between the 

mass and the belt. A tangential harmonic force 𝐹b(𝑡) = 𝐴bsin𝜔𝑡 is now applied to the 

mass and its effects on the dynamic instability of the system is examined. 

The equations of motion of the 2-DoF system can be derived as, 

[
𝑚 0
0 𝑚

] [
�̈�
�̈�
] + [

𝑐11 𝑐12
𝑐21 𝑐22

] [
�̇�
�̇�
] + [

𝑘11 𝑘12
𝑘21 𝑘22

] [
𝑥
𝑦] = [

𝐹f + 𝐴bsin𝜔𝑡
−𝐹

]          (5.1) 

where, 

𝑐11 = 𝑐1cos
2𝛼1 + 𝑐2cos

2𝛼2, 𝑘11 = 𝑘1cos
2𝛼1 + 𝑘2cos

2𝛼2,
𝑐12 = 𝑐21 = −𝑐1sin𝛼1cos𝛼1 + 𝑐2sin𝛼2cos𝛼2, 𝑘12 = 𝑘21 = −𝑘1sin𝛼1cos𝛼1 + 𝑘2sin𝛼2cos𝛼2

𝑐22 = 𝑐1sin
2𝛼1 + 𝑐2sin

2𝛼2, 𝑘22 = 𝑘1sin
2𝛼1 + 𝑘2sin

2𝛼2 + 𝑘3

}            

(5.2) 

 

 

 

 

 

 

Figure 5.1 Two-degree-of-freedom frictional system. 

And 𝐹f represents the friction force between the mass and the belt, 𝐹f = 𝜇(𝑣r)𝑁, in 

which 𝜇(𝑣r) and 𝑁 denote the coefficient of friction and the normal force, respectively. 

Here a Coulomb’s law of friction is utilized, i.e., 

𝜇(𝑣r) = sign(𝑣r)𝜇k                                          (5.3) 
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where 𝑣r = 𝑣 − �̇�. Eq. (5.3) is valid during relative sliding when 𝑣r ≠ 0. In the stick 

phase when 𝑣r = 0, friction force 𝐹f is obtained from the equations of motion, Eq. 

(5.1). Additionally, the normal force is expressed as, 

𝑁 = −𝑘3𝑦                                                 (5.4) 

By defining the following quantities and operator, 

𝜔1 = √
𝑘1

𝑚
, 𝜏 = 𝜔1𝑡, 𝜂2 =

𝑘2

𝑘1
, 𝜂3 =

𝑘3

𝑘1
, 𝜁 =

𝑐1

2𝑚𝜔1
, 𝛿 =

𝑐2

𝑐1
, 𝐵b =

𝐴b

𝑘1
, 𝑅 =

𝜔

𝜔1
, (∗)′ =

d(∗)

d𝜏
  (5.5) 

Eq. (5.1) can be rewritten as, 

𝑥′′ + 2𝜁(cos2𝛼1 + 𝛿cos
2𝛼2)𝑥

′ + 2𝜁(−sin𝛼1cos𝛼1 + 𝛿sin𝛼2cos𝛼2)𝑦
′ + (cos2𝛼1 +

           𝜂2cos
2𝛼2)𝑥 + (−sin𝛼1cos𝛼1 + 𝜂2sin𝛼2cos𝛼2)𝑦 = −𝜇(𝑣𝑟)𝜂3𝑦 + 𝐵bsin(𝑅𝜏)  (5.6a)             

𝑦′′ + 2𝜁(−sin𝛼1cos𝛼1 + 𝛿sin𝛼2cos𝛼2)𝑥
′ + 2𝜁(sin2𝛼1 + 𝛿sin

2𝛼2)𝑦
′ +

                  (−sin𝛼1cos𝛼1 + 𝜂2sin𝛼2cos𝛼2)𝑥 + (sin
2𝛼1 + 𝜂2sin

2𝛼2 + 𝜂3)𝑦 = −
𝐹

𝑘1
   (5.6b)                    

Suppose the solutions consist of a slowly varying component and a small-amplitude 

fast varying component, i.e., 

𝑥(𝜏)= 𝑥(𝜏) +
1

𝑅
𝑥(𝑅𝜏)                                           (5.7a) 

𝑦(𝜏)= 𝑦(𝜏) +
1

𝑅
𝑦(𝑅𝜏)                                           (5.7b) 

Substituting Eq. (5.7) into Eq. (5.6) results in, 

𝑥
′′
+ 𝑅

d2𝑥

d(𝑅𝜏)2
+ 2𝜁𝑎1 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎2 (𝑦

′
+

d𝑦

d(𝑅𝜏)
) + 𝑎4 (𝑥 +

1

𝑅
𝑥) +

                                (𝑎5 + 𝜇(𝑣𝑟)𝜂3) (𝑦 + 
1

𝑅
𝑦) − 𝐵bsin(𝑅𝜏) = 0                           (5.8a) 

(𝑦
′′
+ 𝑅

d2𝑦

d(𝑅𝜏)2
) + 2𝜁𝑎2 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎3 (𝑦

′
+

d𝑦

d(𝑅𝜏)
) + 𝑎5 (𝑥 +

1

𝑅
𝑥) +

                                                   𝑎6 (𝑦 +
1

𝑅
𝑦) +  

𝐹

𝑘1
= 0                                            (5.8b) 

where, 

𝑎1 = cos
2𝛼1 + 𝛿cos

2𝛼2, 𝑎2 = −sin𝛼1cos𝛼1 + 𝛿sin𝛼2cos𝛼2, 𝑎3 = sin
2𝛼1 + 𝛿sin

2𝛼2, 

𝑎4 = cos
2𝛼1 + 𝜂2cos

2𝛼2, 𝑎5 = −sin𝛼1cos𝛼1 + 𝜂2sin𝛼2cos𝛼2, 𝑎6 = sin2𝛼1 + 𝜂2sin
2𝛼2 + 𝜂3 

(5.9) 

Assuming 𝐵b = 𝐶b𝑅 and grouping the terms on the left-hand sides of Eq. (5.8) into 

the coefficients of 𝑅, 1, 
1

𝑅
 lead to, 
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[
d2𝑥

d(𝑅𝜏)2
− 𝐶hsin(𝑅𝜏)] 𝑅 + [𝑥

′′
+ 2𝜁𝑎1 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎2 (𝑦

′
+

d𝑦

d(𝑅𝜏)
) + 𝑎4𝑥 +  𝑎5𝑦 +  𝜇(𝑣𝑟)𝜂3𝑦] +

                                                                 [𝑎4𝑥 + 𝑎5𝑦 + 𝜇(𝑣𝑟)𝜂3𝑦]
1

𝑅
= 0                                          (5.10a) 

d2𝑦

d(𝑅𝜏)2
𝑅 + [𝑦

′′
+ 2𝜁𝑎2 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎3 (𝑦

′
+

d𝑦

d(𝑅𝜏)
)+𝑎5𝑥 + 𝑎6𝑦 +

𝐹

𝑘1
] + [𝑎5𝑥 + 𝑎6𝑦]

1

𝑅
= 0        

(5.10b) 

When 𝑅 ≫ 1, the following equations are resulted, 

d2𝑥

d(𝑅𝜏)2
= 𝐶bsin(𝑅𝜏) + 𝑂(

1

𝑅
 )                                     (5.11a) 

𝑥
′′
+ 2𝜁𝑎1 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎2 (𝑦

′
+

d𝑦

d(𝑅𝜏)
) + 𝑎4𝑥 +  𝑎5𝑦 + 𝜇(𝑣𝑟)𝜂3𝑦 = 𝑂(

1

𝑅
 )  (5.11b) 

d2𝑦

d(𝑅𝜏)2
= 𝑂(

1

𝑅
 )                                                (5.11c) 

𝑦
′′
+ 2𝜁𝑎2 (𝑥

′
+

d𝑥

d(𝑅𝜏)
) + 2𝜁𝑎3 (𝑦

′
+

d𝑦

d(𝑅𝜏)
)+𝑎5𝑥 + 𝑎6𝑦 +

𝐹

𝑘1
= 𝑂(

1

𝑅
 )      (5.11d) 

It can be derived from Eqs. (5.11a) and (5.11c) that  

𝑥(𝑅𝜏) = −𝐶bsin(𝑅𝜏) + 𝐶1𝑅𝜏 + 𝑂(
1

𝑅
 )                            (5.12a)  

𝑦(𝑅𝜏) = 𝐶2𝑅𝜏 + 𝑂(
1

𝑅
 )                                       (5.12b) 

where 𝐶1 and 𝐶2 are constants, and 𝐶1 and 𝐶2 should be zero as it is unlikely for 𝑥 and 

𝑦 to grow infinitely with time. By substituting Eqs. (5.12a) and (5.12b) into Eqs. 

(5.11b) and (5.11d) and applying a fast-time-average operator 
1

2𝜋
∫ (∗)d(𝑅𝜏)
2𝜋

0
 to Eqs. 

(5.11b) and (5.11d) as well as omitting the small quantity 𝑂(
1

𝑅
), the new differential 

equations with respect to the slowly varying components 𝑥(𝜏) and 𝑦(𝜏) are, 

𝑥
′′
+ 2𝜁𝑎1𝑥

′
+ 2𝜁𝑎2𝑦

′
+ 𝑎4𝑥 + 𝑎5𝑦 + [

1

2𝜋
∫ 𝜇(𝑣 − 𝜔1𝑥

′
+ 𝜔1𝐶bcos𝑅𝜏)d(𝑅𝜏)

2𝜋

0
] 𝜂3𝑦 = 0 (5.13a) 

𝑦
′′
+ 2𝜁𝑎2𝑥

′
+ 2𝜁𝑎3𝑦

′
+𝑎5𝑥 + 𝑎6𝑦 +

𝐹

𝑘1
= 0                      (5.13b) 

Because the amplitudes of the fast varying components are in the order of 
1

𝑅
, the 

behaviour of the overall system responses can be observed via the behaviour of the 

slowly varying components 𝑥(𝜏) and 𝑦(𝜏). By utilizing the friction law of Eq. (5.3), 

it is obtained that, 
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1

2𝜋
∫ 𝜇 (𝑣 − 𝜔1𝑥

′
+𝜔1𝐶bcos(𝑅𝜏)) d(𝑅𝜏)

2𝜋

0
=

                               {
sign(𝑣 − 𝜔1𝑥

′
)𝜇𝑘 |𝑣 − 𝜔1𝑥

′
| ≥ 𝜔1𝐶b

[−1 +
2

𝜋
arccos (−

𝑣−𝜔1𝑥
′

𝜔1𝐶b
)] 𝜇𝑘 |𝑣 − 𝜔1𝑥

′
| < 𝜔1𝐶b

            (5.14) 

Converting Eq. (5.13) into the first-order differential equations and linearizing the 

differential equations at the equilibrium point, a Jacobian matrix with respect to 𝑥(𝜏) 

and 𝑦(𝜏) can be obtained as, 

𝐽 = [

0 1 0 0
−𝑎4   −2𝜁𝑎1 − 𝑎5 − 𝜇k𝜂3 0
0 0 0 1
−𝑎5 −2𝜁𝑎2 −𝑎6  −2𝜁𝑎3

],     when 𝑣 ≥ 𝜔1𝐶b     (5.15a) 

or, 

𝐽 =

[
 
 
 
 
0 1 0 0

−𝑎4   −2𝜁𝑎1 +
2𝜇k𝜔1

𝜋√𝜔1
2𝐶b

2−𝑣2
𝜂3𝑦𝑒 −𝑎5 − [−1 +

2

𝜋
arccos (−

𝑣

𝜔1𝐶b
)] 𝜇k𝜂3 0

0 0 0 1
−𝑎5 −2𝜁𝑎2 −𝑎6  −2𝜁𝑎3]

 
 
 
 

,        

                                                           when 𝑣 < 𝜔1𝐶b                                        (5.15b) 

in which 𝑦
𝑒
 is the normal displacement of the equilibrium point obtained from the 

differential equation Eq. (5.13). The stability of the system at the equilibrium point can 

be then revealed by the real parts of the eigenvalues of the Jacobian matrix. The range 

of the amplitude and frequency of the excitation where the system is stabilized is thus 

derived. 

5.3 Slider-on-disc system 

The configuration of the slider-on-disc system is illustrated in Fig. 5.2. It is a simplified 

model of a car brake system. The disc is modelled as a Kirchhoff plate clamped at 

inner boundary and free at outer boundary. The lumped-mass slider is constrained by 

fixtures consisting of a tangential spring 𝑘1, an inclined spring 𝑘3 at 45 degree to the 

tangential direction and dashpots 𝑐1 and 𝑐2 in the tangential and normal directions. 

Without loss of generality, the circumferential coordinate of the fixtures is set as 𝜃 =

0. The contact stiffness is represented by a linear spring 𝑘2. The slider is assumed to 

be fixed radially at 𝑟0 from the disc centre and pressed by a preload 𝐹 that forces the 
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mass into frictional contact with the disc, which is rotating at the speed 𝛺. Likewise, a 

harmonic force 𝐹d(𝑡) = 𝐴sin𝜔𝑡 in the tangential direction is applied to the slider to 

suppress the friction-induced vibration of the system. 

In this system, the vibration of the slider in the normal and tangential directions and 

the transverse vibration of the disc are considered. The equations of motion of the 

slider can be written as, 

𝑚𝑟0�̈� + 𝑐1𝑟0�̇� + 𝑘1𝑟0𝜑 +
1

2
𝑘3𝑟0𝜑 −

1

2
𝑘3𝑢 = 𝐹f + 𝐴sin𝜔𝑡             (5.16) 

𝑚�̈� + 𝑐2�̇� + 𝑘2(𝑢 − 𝑤(𝑟0, 𝜑, 𝑡)) −
1

2
𝑘3𝑟0𝜑 +

1

2
𝑘3𝑢 = −𝐹              (5.17) 

 

 

 

 

 

 

 

Figure 5.2 The slider-on-disc system. 

where 𝜑 and 𝑢 represent the angular displacement in the tangential direction and the 

translational displacement in the normal direction of the slider, respectively. 

𝑤(𝑟0, 𝜑, 𝑡)  denotes the transverse displacement of the disc at the polar coordinate 

(𝑟0, 𝜑) in the space-fixed coordinate system, which is the location of the contact point 

at an arbitrary time 𝑡. 𝐹f represents the friction force between the slider and the disc, 

𝐹f = 𝜇(𝑣r)𝑁, where 𝜇(𝑣r) and 𝑁  denote the coefficient of friction and the normal 

force, respectively. In many cases the friction force decreases with the increase in the 

relative velocity at low velocities, therefore the friction law with a negative friction-

velocity slope [198] is considered here, i.e., 

𝜇(𝑣r) = sign(𝑣r)[𝜇k + (𝜇s − 𝜇k)e
−𝛼|𝑣r|]                          (5.18) 
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where 𝑣r = 𝑟0(𝛺 − �̇�), 𝜇s  and 𝜇k  are the coefficients of static and kinetic friction 

respectively. 𝛼 determines the initial negative slope, and the friction law actually turns 

into the Coulomb law when 𝛼 = 0. And the normal force is expressed as, 

𝑁 = 𝑘2(𝑤(𝑟0, 𝜑, 𝑡) − 𝑢)                                        (5.19) 

The transverse displacement of the disc can be approximated by a linear superposition 

of a set of orthogonal basis functions as, 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑅𝑘𝑙(𝑟)[cos(𝑙𝜃) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜃) ⋅ 𝐷𝑘𝑙(𝑡)]
∞
𝑙=0

∞
𝑘=0         (5.20) 

where k and l denote the numbers of nodal circles and nodal diameters respectively, 

𝐶𝑘𝑙(𝑡), 𝐷𝑘𝑙(𝑡) are modal coordinates, 𝑅𝑘𝑙(𝑟) is a combination of Bessel functions 

satisfying the inner and outer boundary conditions of the nonrotating disc and 

orthogonality conditions. The equations of motion with respect to the modal 

coordinates can be obtained from Lagrange’s equations, 

d

d𝑡
[
𝜕𝐿

𝜕�̇�𝑘𝑙
] −

𝜕𝐿

𝜕𝐶𝑘𝑙
= 𝑃𝑘𝑙, 𝑘 = 0,1,2, . . . , ∞, 𝑙 = 0,1,2, . . . , ∞                  (5.21) 

d

d𝑡
[
𝜕𝐿

𝜕�̇�𝑘𝑙
] −

𝜕𝐿

𝜕𝐷𝑘𝑙
= 𝑄𝑘𝑙, 𝑘 = 0,1,2, . . . , ∞, 𝑙 = 1,2, . . . , ∞                   (5.22) 

in which, 

𝐿 = 𝑇 − 𝑈                                                    (5.23) 

𝑇 =
1

2
𝜌ℎ∬ (

𝜕𝑤(𝑟,𝜃,𝑡)

𝜕𝑡
+ 𝛺

𝜕𝑤(𝑟,𝜃,𝑡)

𝜕𝜃
)
2

𝑆
𝑟d𝑟d𝜃                          (5.24) 

𝑈 =
1

2
𝐷∗∬ (𝛻2𝑤)

𝑆

2
− 2(1 − 𝜈) [

𝜕2𝑤

𝜕𝑟2
(
1

𝑟

𝜕𝑤

𝜕𝑟
+

1

𝑟2
𝜕2𝑤

𝜕𝜃2
) − (

1

𝑟

𝜕2𝑤

𝜕𝑟𝜕𝜃
−

1

𝑟2
𝜕𝑤

𝜕𝜃
)
2

] 𝑟d𝑟d𝜃      

(5.25) 

𝑃𝑘𝑙 = −𝑁 ⋅
𝜕𝑤(𝑟0,𝜑,𝑡)

𝜕𝐶𝑘𝑙
+𝑀𝜃

𝜕𝛾

𝜕𝐶𝑘𝑙
                                    (5.26) 

𝑄𝑘𝑙 = −𝑁 ⋅
𝜕𝑤(𝑟0,𝜑,𝑡)

𝜕𝐷𝑘𝑙
+𝑀𝜃

𝜕𝛾

𝜕𝐷𝑘𝑙
                                    (5.27) 

𝛾 =
𝜕𝑤(𝑟0,𝜑,𝑡)

𝑟0𝜕𝜃
                                                  (5.28) 

In the above equations, T and U denote the kinetic energy and strain energy of the disc 

respectively, 𝑃𝑘𝑙  and 𝑄𝑘𝑙  represent the generalized forces obtained from the virtual 

work of the normal contact force and bending moment acting on the disc. S is the area 

of the disc surface, 𝜌 is the density of material, 𝐷∗ =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, 



85 

 

𝐸  and 𝜈  are the Young’s modulus and the Poisson’s ratio of the disc material, 

respectively. The bending moment 𝑀θ can be expressed as, 

𝑀θ = ℎ𝐹f/2                                                  (5.29) 

By substituting Eqs. (5.19), (5.20) and (5.29) into Eqs. (5.21)- (5.28), the equations of 

transverse vibration of the disc with respect to the modal coordinates can be derived,  

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 = [−𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑) −

ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑)] ⋅

                                 [𝑘2(∑ ∑ 𝑅𝑘𝑙(𝑟0)(cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙(𝑡))
∞
𝑙=0

∞
𝑘=0 − 𝑢)]            (5.30a) 

𝑀𝑘𝑙�̈�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 = [−𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑) +

ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0) cos(𝑙𝜑)]  ⋅

                                  [𝑘2(∑ ∑ 𝑅𝑘𝑙(𝑟0)(cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙(𝑡))
∞
𝑙=0

∞
𝑘=0 − 𝑢)]           (5.30b) 

in which 𝜔𝑘𝑙 is the natural frequency of the mode with k nodal circles and l nodal 

diameters of the corresponding nonrotating plate, and  

𝑀𝑘𝑙 = {
𝜌ℎπ∫ 𝑅𝑘𝑙

2𝑏

𝑎
(𝑟)𝑟d𝑟, 𝑙 = 1,2, . . .

2𝜌ℎπ∫ 𝑅𝑘𝑙
2𝑏

𝑎
(𝑟)𝑟d𝑟, 𝑙 = 0

                          (5.31) 

The equations of motion for the whole system are therefore the coupled equations 

consisting of Eqs. (5.16), (5.17) and (5.30). Similar to the 2-DoF frictional system, the 

analytical formulas to determine the range of the amplitude and frequency of the 

excitation where the system can be stabilized are derived.  

By defining the following quantities and operator, 

𝜏 = 𝜔cr𝑡, 𝜔1 = √𝑘1/𝑚, 𝜔2 = √𝑘2/𝑚, 𝜔3 = √𝑘3/𝑚, 𝛽𝑖 =
𝜔𝑖

𝜔𝑐𝑟
(𝑖 = 1,2,3), 𝛽𝑘𝑙 =

𝜔𝑘𝑙

𝜔cr
,  �̅� =

𝛺

𝜔cr
, 𝛾𝑘𝑙 =

𝑚

𝑀𝑘𝑙
,  𝜁𝑖 =

𝑐𝑖

2√𝑚𝑘𝑖
, 𝐵d =

𝐴

𝑚𝜔cr
2 , 𝑅 =

𝜔

𝜔cr
, (∗)′ =

d(∗)

d𝜏
                                   

(5.32) 

The coupled differential equations Eqs. (5.16), (5.17) and (5.30) governing the motion 

of the slider-on-disc system can be rewritten as, 

𝑟0 (𝜑
′′ + 2𝜁1𝛽1𝜑

′ + 𝛽1
2𝜑 +

1

2
𝛽3
2𝜑) −

1

2
𝛽3
2𝑢 = 𝜇(𝑣r)𝛽2

2(𝑤 − 𝑢) + 𝐵dsin(𝑅𝜏)        (5.33) 

𝑢′′+2𝜁2𝛽2𝑢
′ + 𝛽2

2(𝑢 − 𝑤) −
1

2
𝛽3
2𝑟0𝜑 +

1

2
𝛽3
2𝑢 =  

−𝐹

𝑚𝜔cr
2                          (5.34) 

𝐶𝑘𝑙
′′ + 2𝑙�̅�𝐷𝑘𝑙

′ + (𝛽𝑘𝑙
2 − 𝑙2�̅�2)𝐶𝑘𝑙 = 𝛾𝑘𝑙𝛽2

2 [−𝑅𝑘𝑙(𝑟0) cos(𝑙𝜑) −
ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0) sin(𝑙𝜑)] ∙

                                          (∑ ∑ 𝑅𝑘𝑙(𝑟0)[cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙 + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙]
∞
𝑙=0

∞

𝑘=0
− 𝑢)                    (5.35) 
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𝐷𝑘𝑙
′′ − 2𝑙�̅�𝐶𝑘𝑙

′ + (𝛽𝑘𝑙
2 − 𝑙2�̅�2)𝐷𝑘𝑙 = 𝛾𝑘𝑙𝛽2

2 [−𝑅𝑘𝑙(𝑟0) sin(𝑙𝜑) +
ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0) cos(𝑙𝜑)] ∙

                                          (∑ ∑ 𝑅𝑘𝑙(𝑟0)[cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙 + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙]
∞
𝑙=0

∞

𝑘=0
− 𝑢)                    (5.36) 

Suppose the solutions consist of a slowly varying component and a small-amplitude 

fast varying component, i.e., 

𝜑(𝜏)= 𝜑(𝜏) +
1

𝑅
𝜑(𝑅𝜏)                                          (5.37) 

𝑢(𝜏)= 𝑢(𝜏) +
1

𝑅
𝑢(𝑅𝜏)                                           (5.38) 

𝐶𝑘𝑙(𝜏)= 𝐶𝑘𝑙(𝜏) +
1

𝑅
𝐶𝑘𝑙(𝑅𝜏)                                      (5.39) 

𝐷𝑘𝑙(𝜏)= 𝐷𝑘𝑙(𝜏) +
1

𝑅
𝐷𝑘𝑙(𝑅𝜏)                                      (5.40) 

Substituting Eqs. (5.37)-(5.40) into Eqs. (5.33)-(5.36) results in, 

𝑟0 [(𝜑
′′
+ 𝑅

d2𝜑

d(𝑅𝜏)2
) + 2𝜁1𝛽1 (𝜑

′
+

d𝜑

d(𝑅𝜏)
) + (𝛽1

2 +
1

2
𝛽3
2) (𝜑 +

1

𝑅
𝜑)] −

1

2
𝛽3
2 (𝑢 +

1

𝑅
𝑢) = 𝜇𝛽2

2 [𝑤 − (𝑢 +
1

𝑅
𝑢)] + 𝐵dsin𝑅𝜏                                                            

(5.41) 

(𝑢
′′
+ 𝑅

d2𝑢

d(𝑅𝜏)2
)+2𝜁2𝛽2 (𝑢

′
+

d𝑢

d(𝑅𝜏)
) + 𝛽2

2 (𝑢 +
1

𝑅
𝑢 − 𝑤)−

1

2
𝛽3
2𝑟0 (𝜑 +

1

𝑅
𝜑) +

1

2
𝛽3
2 (𝑢 +

1

𝑅
𝑢) =  

−𝐹

𝑚𝜔cr
2          (5.42) 

(𝐶𝑘𝑙
′′
+ 𝑅

d2𝐶𝑘𝑙

d(𝑅𝜏)2
) + 2𝑙�̅� (𝐷𝑘𝑙

′
+

d𝐷𝑘𝑙

d(𝑅𝜏)
) + (𝛽𝑘𝑙

2 − 𝑙2�̅�2) (𝐶𝑘𝑙 +
1

𝑅
𝐶𝑘𝑙) =  𝛾𝑘𝑙𝛽2

2 [−𝑅𝑘𝑙(𝑟0)cos𝑙 (𝜑 +
1

𝑅
𝜑) −

ℎ

2𝑟0
𝜇𝑙𝑅𝑘𝑙(𝑟0)sin𝑙 (𝜑 + 

1

𝑅
𝜑)] ∙ (∑ ∑ 𝑅𝑘𝑙(𝑟0) [cos𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ (𝐶𝑘𝑙 +

1

𝑅
𝐶𝑘𝑙) + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ (𝐷𝑘𝑙 +

1

𝑅
𝐷𝑘𝑙)]

∞
𝑙=0

∞
𝑘=0 −

                                                                                                                (𝑢 +
1

𝑅
𝑢))                                                                         (5.43) 

(𝐷𝑘𝑙
′′
+ 𝑅

d2𝐷𝑘𝑙

d(𝑅𝜏)2
) − 2𝑙�̅� (𝐶𝑘𝑙

′
+

d𝐶𝑘𝑙

d(𝑅𝜏)
) + (𝛽𝑘𝑙

2 − 𝑙2�̅�2) (𝐷𝑘𝑙 +
1

𝑅
𝐷𝑘𝑙) =  𝛾𝑘𝑙𝛽2

2 [−𝑅𝑘𝑙(𝑟0)sin𝑙 (𝜑 +
1

𝑅
𝜑) +

ℎ

2𝑟0
𝜇𝑙𝑅𝑘𝑙(𝑟0)cos𝑙 (𝜑 + 

1

𝑅
𝜑)] ∙ (∑ ∑ 𝑅𝑘𝑙(𝑟0) [cos𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ (𝐶𝑘𝑙 +

1

𝑅
𝐶𝑘𝑙) + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ (𝐷𝑘𝑙 +

1

𝑅
𝐷𝑘𝑙)]

∞
𝑙=0

∞
𝑘=0 −

                                                                                                                (𝑢 +
1

𝑅
𝑢))                                                                          (5.44) 

By assuming 𝐵d = 𝐶d𝑅  and grouping the terms of Eqs. (5.41)-(5.44) into the 

coefficients of 𝑅, 1, 
1

𝑅
 , the following equations can be obtained when 𝑅 ≫ 1,  

𝑟0
d2𝜑

d(𝑅𝜏)2
− 𝐶dsin(𝑅𝜏) = 𝑂 (

1

𝑅
),   

d2𝑢

d(𝑅𝜏)2
= 𝑂 (

1

𝑅
),   

d2𝐶𝑘𝑙

d(𝑅𝜏)2
= 𝑂 (

1

𝑅
),   

d2𝐷𝑘𝑙

d(𝑅𝜏)2
= 𝑂 (

1

𝑅
)  (5.45) 

𝑟0 [𝜑
′′
+ 2𝜁1𝛽1 (𝜑

′
+

d𝜑

d(𝑅𝜏)
) + (𝛽1

2 +
𝛽3
2

2
)𝜑] −

𝛽3
2

2
𝑢 −  𝜇(𝑣r)𝛽2

2 [∑ ∑ 𝑅𝑘𝑙(𝑟0) (cos𝑙 (𝜑 +
1

𝑅
𝜑) ⋅ 𝐶𝑘𝑙 + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅∞

𝑙=0
∞
𝑘=0

                                                                                                      𝐷𝑘𝑙) − 𝑢] = 𝑂 (
1

𝑅
)                                                                     (5.46) 

𝑢
′′
+2𝜁2𝛽2 (𝑢

′
+

d𝑢

d(𝑅𝜏)
) + 𝛽2

2 [𝑢 − ∑ ∑ 𝑅𝑘𝑙(𝑟0) (cos𝑙 (𝜑 +
1

𝑅
𝜑) ⋅ 𝐶𝑘𝑙 + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ 𝐷𝑘𝑙)

∞
𝑙=0

∞
𝑘=0 ] −

1

2
𝛽3
2𝑟0𝜑 +

1

2
𝛽3
2𝑢 +

                                                                                                           
𝐹

𝑚𝜔cr
2 = 𝑂 (

1

𝑅
)                                                                          (5.47)                                                                                                                                                                               
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𝐶𝑘𝑙
′′
+ 2𝑙�̅� (𝐷𝑘𝑙

′
+

d𝐷𝑘𝑙

d(𝑅𝜏)
) + (𝛽𝑘𝑙

2 − 𝑙2�̅�2) 𝐶𝑘𝑙 − 𝛾𝑘𝑙𝛽2
2 [−𝑅𝑘𝑙(𝑟0)cos𝑙 (𝜑 +

1

𝑅
𝜑) −

ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0)sin𝑙 (𝜑 +

1

𝑅
𝜑)] ∙

                                                    [∑ ∑ 𝑅𝑘𝑙(𝑟0) (cos𝑙 (𝜑 +
1

𝑅
𝜑) ⋅ 𝐶𝑘𝑙 + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ 𝐷𝑘𝑙) − 𝑢

∞
𝑙=0

∞
𝑘=0 ] = 𝑂 (

1

𝑅
)                   (5.48) 

𝐷𝑘𝑙
′′
− 2𝑙�̅� (𝐶𝑘𝑙

′
+

d𝐶𝑘𝑙

d(𝑅𝜏)
) + (𝛽𝑘𝑙

2 − 𝑙2�̅�2) 𝐷𝑘𝑙 − 𝛾𝑘𝑙𝛽2
2 [−𝑅𝑘𝑙(𝑟0)sin𝑙 (𝜑 +

1

𝑅
𝜑) +

ℎ

2𝑟0
𝜇(𝑣r)𝑙𝑅𝑘𝑙(𝑟0)cos𝑙 (𝜑 +

1

𝑅
𝜑)] ∙

                                                    [∑ ∑ 𝑅𝑘𝑙(𝑟0) (cos𝑙 (𝜑 +
1

𝑅
𝜑) ⋅ 𝐶𝑘𝑙 + sin𝑙 (𝜑 +

1

𝑅
𝜑) ⋅ 𝐷𝑘𝑙) − 𝑢

∞
𝑙=0

∞
𝑘=0 ] = 𝑂 (

1

𝑅
)                   (5.49) 

It can be derived from (5.45) that,  

𝜑(𝑅𝜏) = −
𝐶d

𝑟0
sin(𝑅𝜏) + 𝐶1𝑅𝜏 + 𝑂(

1

𝑅
 )                                (5.50a) 

𝑢(𝑅𝜏) = 𝐶2𝑅𝜏 + 𝑂(
1

𝑅
 )                                        (5.50b) 

𝐶𝑘𝑙(𝑅𝜏) = 𝐶3𝑅𝜏 + 𝑂(
1

𝑅
 )                                       (5.50c) 

𝐷𝑘𝑙(𝑅𝜏) = 𝐶4𝑅𝜏+ 𝑂(
1

𝑅
 )                                       (5.50d) 

where 𝐶1, 𝐶2, 𝐶3 and 𝐶4 are constants, and they should be zero as it is unlikely for the 

fast varying components to grow infinitely with time. By substituting Eqs. (5.50a)-

(5.50d) into Eqs. (5.46)-(5.49) and applying a fast-time-average operator 

1

2𝜋
∫ (∗)d(𝑅𝜏)
2𝜋

0
 to Eqs. (5.46)-(5.49) as well as omitting the small quantity 𝑂(

1

𝑅
), the 

new differential equations with respect to the slowly varying components are,    

𝑟0 [𝜑
′′
+ 2𝜁1𝛽1𝜑

′
+ (𝛽1

2 +
1

2
𝛽3
2)𝜑] −

1

2
𝛽3
2𝑢 − 𝛽2

2𝑓(𝜑
′
) ∙ [∑ ∑ (cos𝑙𝜑 ⋅ 𝐶𝑘𝑙 + sin𝑙𝜑 ⋅ 𝐷𝑘𝑙) − 𝑢

∞
𝑙=0

∞
𝑘=0 ] = 0  (5.51) 

𝑢
′′
+2𝜁2𝛽2𝑢

′
+ 𝛽2

2[𝑢 − ∑ ∑ 𝑅𝑘𝑙(𝑟0)(cos𝑙𝜑 ⋅ 𝐶𝑘𝑙 + sin𝑙𝜑 ⋅ 𝐷𝑘𝑙)
∞
𝑙=0

∞
𝑘=0 ] −

1

2
𝛽3
2𝑟0𝜑 +

1

2
𝛽3
2𝑢 +

𝐹

𝑚𝜔cr
2 = 0     (5.52) 

𝐶𝑘𝑙
′′
+ 2𝑙�̅�𝐷𝑘𝑙

′
+ (𝛽𝑘𝑙

2 − 𝑙2�̅�2) 𝐶𝑘𝑙 − 𝛾𝑘𝑙𝛽2
2 [−𝑅𝑘𝑙(𝑟0)cos𝑙𝜑 −

ℎ

2𝑟0
𝑙𝑅𝑘𝑙(𝑟0)𝑓(𝜑

′
)sin𝑙𝜑] ∙

                                                                  [∑ ∑ 𝑅𝑘𝑙(𝑟0)(cos𝑙𝜑 ⋅ 𝐶𝑘𝑙 + sin𝑙𝜑 ⋅  𝐷𝑘𝑙) − 𝑢
∞
𝑙=0

∞
𝑘=0 ] = 0                                 (5.53)                                                                                                                                        

𝐷𝑘𝑙
′′
− 2𝑙�̅�𝐶𝑘𝑙

′
+ (𝛽𝑘𝑙

2 − 𝑙2�̅�2) 𝐷𝑘𝑙 − 𝛾𝑘𝑙𝛽2
2 [−𝑅𝑘𝑙(𝑟0)sin𝑙𝜑 +

ℎ

2𝑟0
𝑙𝑅𝑘𝑙(𝑟0)𝑓(𝜑

′
)cos𝑙𝜑] ∙

                                                                   [∑ ∑ 𝑅𝑘𝑙(𝑟0)(cos𝑙𝜑 ⋅ 𝐶𝑘𝑙 + sin𝑙𝜑 ⋅ 𝐷𝑘𝑙) − 𝑢
∞
𝑙=0

∞
𝑘=0 ] = 0                                 (5.54) 

where 𝑓(𝜑
′
) =

1

2𝜋
∫ 𝜇(𝛺 − 𝜔cr𝜑

′
+
𝜔cr𝐶d

𝑟0
cos(𝑅𝜏))d(𝑅𝜏)

2𝜋

0
. It is difficult to derive 

the analytical solution of the integral here, therefore the Gaussian quadrature [199] is 

utilized to obtain the function values of 𝑓(𝜑
′
). Furthermore, the derivative of 𝑓(𝜑

′
) 

at 𝜑
′
= 0 can be obtained by the finite difference method [185]. Subsequently Eqs. 

(5.51)-(5.54) can be linearized at the equilibrium point and the Jacobian matrix is 

extracted from the linearized system, whose eigenvalues indicate the stability of the 
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system at the equilibrium point, i.e., if the self-excited vibration will happen, when the 

harmonic excitation is applied.  

5.4 Numerical study 

In this section, a detailed numerical study is conducted to demonstrate the effect of 

tangential harmonic excitation in suppressing the friction induced vibration of the 2-

DoF system and the slider-on-disc system. For the determination of the parameter 

range that will suppress the friction induced vibration of the systems, the results 

obtained both from the analytical method and from the time domain integration by the 

Runge-Kutta algorithm are presented. To avoid the numerical difficulty brought about 

by the discontinuity at the zero relative velocity of the discontinuous type of friction 

laws, the smooth functions [30, 75] that can accurately describe the behaviour of the 

discontinuous systems are used to approximate the discontinuous friction forces in the 

calculation of the time responses. In this paper, the smooth functions used are 𝜇(𝑣r) =

𝜇k tanh (𝜎𝑣r)  in the 2-DoF frictional system and 𝜇(𝑣r) = [𝜇k + (𝜇s −

𝜇k)e
−𝛼|𝑣r|] tanh (𝜎𝑣r) in the slider-on-disc system, respectively. 𝜎 is the smoothness 

factor and its value is set as 50 in all the time responses simulations of both systems. 

5.4.1 Numerical study of the 2-DoF frictional system 

In the numerical examples for the 2-DoF friction system, the basic system parameters 

assigned with constant values are: 𝑚 = 1, 𝛼1 = 30
° , 𝛼2 = 45° , 𝑘1 = 1, 𝑘2 = 0.5, 

𝑘3 = 0.5, 𝑐1 = 0.001, 𝑐2 = 0.001, 𝐹 = 2. Firstly the dynamics of the original system, 

i.e. when the tangential harmonic excitation is not applied, is examined. The 

eigenvalues of the Jacobian matrix of the original system as a function of 𝜇𝑘 are shown 

in Fig. 5.3, which reflects the local stability of the system at the equilibrium point. If 

there exists an eigenvalue with a positive real part, the equilibrium point is unstable 

and the system exhibits growing self-excited vibration. It is clearly shown that the 

mode-coupling instability appears at the onset of a positive real part and the merging 

of imaginary parts in the original frictional system. And the equilibrium point of the 

system becomes destabilized when 𝜇k is larger than its critical value 0.37. Fig. 5.4 

displays the time histories of the tangential and normal displacements of the original 

system at 𝜇k = 0.4 and 𝜇k = 0.7, where it can be seen that the amplitudes of the 

dynamic responses, especially the normal displacement of the mass,  grow with time 
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until the mass separates with the disc (when 𝑦 > 0). Then the mass will re-contact with 

and separate from the belt repetitively, as has been observed in [97]. The time histories 

after separation are not shown here as the present work is devoted to suppressing the 

friction induced vibration of the system by means of tangential harmonic excitation.  

 
Figure 5.3 Eigenvalues of Jacobian matrix of the original system as a function of 𝜇k. 

 

Figure 5.4 The time histories of tangential and normal displacements of the original 

system when 𝜇k is larger than its critical value: (a) (b) 𝜇k = 0.4; (c) (d) 𝜇k = 0.7. 

Then the dynamic responses of the system under the above two values of 𝜇k in the 

presence of the harmonic excitation with appropriate amplitude and frequency are 

shown in Fig. 5.5, from which it is observed that although the amplitudes of the 

dynamic responses are increased in the initial stage under the influence of the external 

excitation, they are greatly attenuated in the steady-state phase, especially for the 

normal displacements of the mass. These two cases demonstrate the effectiveness of 

the tangential harmonic excitation in suppressing the friction induced self-excited 

vibration of the system.  
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Figure 5.5 The dynamic responses of the system after application of the harmonic 

excitation with amplitude 𝐴b = 35 and frequency ratio 𝑅 =
𝜔

𝜔1
= 20: (a) (b) 𝜇k =

0.4; (c) (d) 𝜇k = 0.7. (The belt velocity is 0.3). 

Next the range of the amplitude and frequency of the harmonic excitation to stabilize 

the frictional system is derived. The results obtained from the analytical method and 

from the extensive time response simulations are compared, as shown in Fig. 5.6. In 

this figure, the region above each curve incorporates the parameter combinations to 

stabilize the system under the specific coefficient of friction (greater than the critical 

value). It is seen that there is fairly good agreement between the stability boundaries 

obtained from the analytical method and from the time response simulations when the 

frequency ratio ( 𝑅 = 𝜔/𝜔1) is sufficiently large. Besides, it should be noted here the 

mode-coupling instability of the original system is not dependent on belt velocity 𝑣, 

which, however, has an effect on the stability boundary for the harmonic excitation. 

Fig. 5.7 shows the range of the amplitude and frequency of the harmonic excitation to 

stabilize the system under three different values of belt velocity, from which it is 

observed that a larger-amplitude excitation is needed to suppress the unstable vibration 

of the frictional system in the situation of higher belt velocity. 
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Figure 5.6 The range of the amplitude and frequency of the harmonic excitation to 

stabilize the system obtained from both the analytical method and the extensive time 

response simulations. (𝑣 = 0.3, the parameter range to stabilize the system is above 

the corresponding curve). 

 

Figure 5.7 The range of the amplitude and frequency of the harmonic excitation to 

stabilize the system under three different values of belt velocity (𝜇k = 0.7, the 

parameter range to stabilize the system is above the corresponding curve). 

5.4.2 Numerical study of the slider-on-disc system 

The basic system parameters whose values are constant in the numerical examples are 

listed in Table 5.1. It should be noted that numbers k and l in the expression of the 

transverse displacement of the disc can be chosen to include as many modes as needed 

to represent the dynamics of the system with acceptable accuracy. To avoid excessive 

computations, the modal series in Eq. (5.20) are truncated at suitable values of k and l. 

The first seven natural frequencies of the disc are 1492, 1517, 1517, 1824, 1824, 2774 

and 2774 rad/s and the critical speed of the disc is 𝜔cr =
1824

2
= 912 rad/s. It is found 

that the first seven disc modes (one single mode with zero nodal circle and zero nodal 
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diameter and three pairs of doublet modes with zero nodal circle and one, two or three 

nodal diameters) are adequate in terms of the convergence of the results. 

Table 5.1 The values of constant parameters of the slider-on-disc system 

𝑎 𝑏 𝑟0 𝜌 𝐸 ℎ 𝜈 

0.044 m 0.12 m 0.1 m 7200 kg/m3 150 GPa 0.002 m 0.211 

𝑚 𝑘1 𝑘2 𝑘3 𝑐1 𝑐2  

1 kg 105N/m 5 ∙ 104N

/m 

6 ∙ 104N/m 5 N ⋅ s/m 5 N ⋅ s/m  

Firstly, the dynamic characteristics of the original system (when the tangential 

harmonic excitation is not applied) is analysed. The dynamic instability in the original 

system can be contributed by three factors, i.e. the negative slope in the friction force-

relative velocity relationship, the mode coupling instability of the normal and 

tangential motion of the slider and the effect of moving load which causes speed-

dependent instability, all of which the frictional systems may encounter in practice [3, 

200]. The local stability of the system at the sliding equilibrium can be used to evaluate 

if the self-excited vibration will be generated, which is studied in the following 

procedures.   

First of all, the sliding equilibrium of this system is found by solving the algebraic 

nonlinear equations derived from setting all the terms involving velocity and 

acceleration in the coupled equations Eqs. (5.16), (5.17) and (5.30) to be zero. In the 

second step, the nonlinear coupled equations governing the motion of the system are 

linearized at the sliding equilibrium and the Jacobian matrix is extracted from the 

linearized system. In the last step, the eigenvalues of the Jacobian matrix are calculated 

to reveal the local stability of the system at the sliding equilibrium for various values 

of parameters. Fig. 5.8 plots the regions of instability (RI) dependent on the normal 

preload versus the disc speed under three different values of the coefficients of friction. 

In Fig. 5.8(a) when 𝛼 = 0, the coefficients of friction are set as constant at  𝜇(𝑣r) =

𝜇𝑠 = 1 ,  the dynamic instability stems from only the moving load which causes 

instability as disc speed 𝛺 > 10.5 rad/s. In Fig. 5.8(b), the coefficients of friction are 

not large enough to bring about the mode-coupling instability, but the large negative 

slope of the friction-velocity relationship in the vicinity of zero relative velocity and 

the moving load lead to the dynamic instability in low and high disc speeds, 
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respectively. In Fig. 5.8(c), the mode-coupling instability exists, therefore the dynamic 

instability occurs in the system independent of the normal preload and disc speed.  
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Figure 5.8 Region of instability of normal preload vs disc speed in three cases of 

friction coefficients: (a) 𝜇s = 1, 𝛼 = 0, (b) 𝜇s = 1.5, 𝜇k = 1.2, 𝛼 = 1, (c) 𝜇s =

2.25, 𝜇k = 2, 𝛼 = 1. 

The time histories of the dynamic responses of the system with two sets of parameters 

whose values are in the region of instability are displayed in Fig. 5.9, where the friction 

induced self-excited vibration is clearly exhibited in the two cases. It should be noted 

that since the interest here is only to identify the occurrence of friction induced 

vibration in the original system, the behaviour of separation and re-contact between 

the slider and the disc is not considered, which thus allows the dynamic responses to 

grow boundlessly. Then the dynamic responses of the system for the two cases after 

application of the tangential harmonic excitation with appropriate amplitude and 

frequency are shown in Fig. 5.10, which obviously indicates that the friction induced 

vibration in the original system is suppressed by the high-frequency tangential 

harmonic excitation. 



94 

 

 

Figure 5.9 The dynamic responses when 𝐹 = 100N and 𝛺 = 5rad/s including the 

angular displacement of the slider in the tangential direction, the normal 

displacement of the slider and the transverse displacement of the disc at the point 

(𝑟0, 0): (a)-(c) 𝜇s = 1.5, 𝜇k = 1.2, 𝛼 = 1; (d)-(f) 𝜇s = 2.25, 𝜇k = 2, 𝛼 = 1. 

Figure 5.10 The dynamic responses of system after application of the harmonic 

excitation for the two cases in Fig. 5.9: (a)-(c) for the first case with the excitation 

amplitude 𝐴 = 2·104 N and frequency ratio 𝑅 =
𝜔

𝜔cr
= 22; (d)-(f) for the second case 

with the excitation amplitude 𝐴 = 5·104 N and frequency ratio 𝑅 =
𝜔

𝜔cr
= 22. 

Next the ranges of the amplitude and frequency of the harmonic excitation to suppress 

the friction induced vibration of the system are derived, when the values of system 

parameters are identical to those in Fig. 5.9. Both the results obtained from the 

analytical method and from time responses simulations are shown for the first case in 

Fig. 5.11(a) and second case in Fig. 5.11(b), where good agreements between the 
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results from the two approaches are observed for both cases when the frequency ratio 

is sufficiently large. It can thus be concluded that the analytical method is a reliable 

approach, while the time responses simulations can also be performed for verification 

in the practical applications. Besides, the regions of instability of the original system 

shown in Fig. 5.8 can be greatly diminished by application of the tangential harmonic 

excitation with appropriate amplitude and frequency, as depicted in Fig. 5.12.  
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Figure 5.11 Range of amplitude and frequency of the harmonic excitation to suppress 

the friction induced vibration of the system: (a) the first case (b) the second case. 

(The range to suppress the friction induced vibration is above the corresponding 

curve). 
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Figure 5.12 Region of instability in three cases of friction coefficients in application 

of the harmonic excitation with the amplitude 𝐴 = 5·104 N and frequency ratio 𝑅 =

20 : (a) 𝜇s = 1, 𝛼 = 0, (b) 𝜇s = 1.5, 𝜇k = 1.2, 𝛼 = 1, (c) 𝜇s = 2.25, 𝜇k = 2, 𝛼 = 1. 

It should be noted here the application of high-frequency tangential excitation with 

considerable amplitude will cause the reversal of relative velocity and thus the reversal 
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of friction force, i.e., the friction force will be in both directions rather than in a single 

direction during the process. The reversal of friction force may affect the braking 

capacity when applying the high-frequency tangential excitation to suppress the noise 

in brake systems, which is worth careful attention. As for brake squeal, since it tends 

to occur at very low disc speeds when a car nearly comes to a stop, the friction force 

reversal should not be an issue. 

5.5 Conclusions 

In this chapter, the friction induced vibration of a two-degree-of-freedom mass-on-belt 

system and a complicated slider-on-disc system, as well as the application of the 

harmonic excitation in the direction tangential to the friction interface for suppressing 

the friction induced vibration in the systems, are studied. In the multi-degree-of-

freedom frictional systems, there is one or several friction-related factors, e.g., the 

mode-coupling instability, the negative slope in the friction force-relative velocity 

relationship, the moving load, contributing to the occurrence of self-excited vibration. 

The results show the tangential harmonic excitation with appropriate amplitude and 

frequency is very effective in suppressing the friction induced self-excited vibration of 

the systems. The ranges of the amplitude and frequency of the harmonic excitation that 

stabilize the friction systems are obtained by both an analytical method and extensive 

time response simulations. The results by the two approaches are in good agreement 

when the ratio between the excitation frequency and the reference frequency 

(associated with a natural frequency of the system and in the same order as it) is 

sufficiently large. This research provides theoretical guidance for applying the 

tangential harmonic excitation to suppress the friction induced vibration in real 

mechanical systems such as the disc brake system. In practice, piezoactuators are 

usually used to drive the brake pad into high-frequency tangential vibration to suppress 

squeal, which use voltage as input. Therefore, some experimental tests must be carried 

out to establish the correlation between the amplitudes of the external excitation in the 

numerical simulations and the amplitudes of the input voltage for the piezoactuators 

in the practical application.  
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Chapter 6 

Friction induced vibration considering multiple types 

of nonlinearities 

The friction induced vibration of a novel 5-DoF (degree-of-freedom) mass-on-

oscillating-belt model considering multiple types of nonlinearities is studied in this 

chapter. The first type of nonlinearity in the system is the nonlinear contact stiffness, 

the second is the non-smooth states of motion including stick, slip and separation, and 

the third is the geometrical nonlinearity brought about by the moving-load feature of 

the mass slider on the rigid belt. Both the linear stability of the system and the nonlinear 

steady-state responses are investigated. The numerical results indicate the necessity of 

the transient dynamic analysis in the study of friction-induced-vibration problems as 

the linear stability analysis fails to detect the occurrence of self-excited vibration when 

two stable solutions coexist in the system. The bifurcation behaviour of the steady-

state responses of the system versus some parameters is determined. The significant 

effects of each type of nonlinearity on the linear stability and nonlinear steady-state 

responses of the system are discovered. Moreover, a similar study is conducted on a 

continuous slider-on-disc model. 

6.1 Introduction 

There are two main categories of methods for the analysis of friction-induced-vibration 

problems, i.e., the complex eigenvalue analysis (CEA) and the transient dynamic 

analysis (TDA). The linear complex eigenvalue approach is often employed for the 

stability analysis of the steady sliding state. If at least one of the eigenvalues of the 

linearized system has positive real part, the steady sliding state becomes unstable and 
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the system will show self-excited vibration. Hoffmann et al. [55] used a 2-DoF model 

to clarify the mechanism of mode-coupling instability of friction induced vibration. It 

was observed that as the friction coefficient increases, the imaginary parts of 

eigenvalues coalesce and one real part becomes positive, which indicates the 

occurrence of self-excited vibration in the system. Ouyang and Mottershead [201] 

introduced the velocity-dependent friction with the Stribeck effect into the moving 

load model for the vibration of a car disc brake. The dynamic instability of the system 

was identified by solving a nonlinear complex eigenvalue problem. Kang [202] 

analytically investigated the mode-coupling instability of a stationary disc and two 

stationary brake pads with circumferential friction under steady-sliding condition. Liu 

et al. [203] investigated the effects of key parameters on the dynamic instability of a 

finite element brake model by employing the CEA method. Because the CEA allows 

all unstable eigenvalues to be found in one run and is thus computationally efficient, 

it becomes a standard analysis tool to predict brake squeal propensity in industry [204-

206].  

The transient dynamic analysis of friction induced vibration has been performed by 

numerous researchers. Li et al. [97] examined the dynamics of a 2-DoF model with 

nonlinear contact stiffness and the effects of separation and reattachment on the 

vibration amplitudes of dynamic responses were studied. Sinou [142] studied the 

transient and stationary self-excited vibration in a nonlinear finite element model of a 

disc brake. Soobbarayen et al. [143] presented a numerical analysis of the influence of 

the loading conditions on the vibration and acoustic responses of a finite element 

model. The numerical results showed that a sufficiently fast ramp loading can 

destabilize a stable configuration predicted by the stability analysis. Papangelo et al. 

[33] investigated the subcritical bifurcation of a slider-on-belt system in the case of a 

weakening-strengthening friction law, and the results showed that there was a range of 

the belt velocity where two stable solutions coexisted, i.e., a stable sliding equilibrium 

and a stable stick-slip limit cycle. Zhang et al. [98] examined the dynamics of a 4-DoF 

friction oscillator and found the CEA under-predicts the instability of the system due 

to its inability to detect the subcritical Hopf bifurcation. From the studies above, the 

drawbacks of the CEA method for the analysis of nonlinear friction induced vibration 

can be observed. Firstly, the CEA may miss the dynamic instabilities in some 

situations, e.g., when subcritical Hopf bifurcation exists. Secondly, the real part and 
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imaginary part of an unstable eigenvalue does not necessarily describe the amplitude 

and frequency of the steady-state response of the system.  

The nonlinearities in friction-induced-vibration problems can originate from multiple 

sources, e.g., nonlinear contact stiffness [97,98,142,173,207], non-smooth behaviours 

including stick/slip and contact/separation [4,163,208-210]. Although quite a few 

published papers on friction induced vibration took the nonlinearities into account, a 

comprehensive study of the effects of multiple types of nonlinearities on the friction 

induced self-excited vibration is still lacking.  In this chapter, the dynamics of a 5-DoF 

friction-excited slider-on-moving-belt model is firstly studied, in which three 

representative types of nonlinearities in the friction-induced-vibration problems are 

present. The first type of nonlinearity is the nonlinear contact stiffness, the second is 

the non-smooth states of motion including stick, slip and separation, and the third is 

the geometrical nonlinearity brought about by the moving-load feature of the slider on 

the belt. Both the linear stability of the system and the steady-state responses are 

investigated by means of the CEA and the TDA, respectively. Subsequently a similar 

study on a continuous slider-on-disc model is also done. 

The rest of the chapter is arranged as follows. In Section 6.2 the system configuration 

of the slider-on-belt model is introduced and the equations of motion for the system in 

three different states: slip, stick and separation are derived. The conditions for the 

transitions among these states are determined. In Section 6.3 the procedures of the 

linear stability analysis of the discrete system and the numerical simulation scheme of 

the transient dynamic analysis are stated.  In Section 6.4 the numerical study of the 

linear stability and nonlinear steady-state responses of the discrete system is conducted, 

where the effects of each type of nonlinearity are examined. In Section 6.5 the effects 

of multiple nonlinearities on the dynamics of slider-on-disc model are investigated. 

Finally in Section 6.6 the important conclusions are reached. 

6.2 The mechanical model and dynamic equations 

The model of the 5-DoF frictional system is shown in Fig. 6.1, which consists of two 

parts, i.e., the mass slider and the belt. The point mass slider, with mass M, is 

constrained by a spring 𝑘1 and a damper 𝑐1 in the horizontal direction and a damper 

𝑐2 in the vertical direction. Besides, a spring 𝑘3 at 45 degree relative to the horizontal 
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direction, which couples the vibration in the two directions, is connected to the slider. 

The belt, with mass m and rotational inertia about the mass centre J, is moving at a 

constant speed 𝑣 around two wheels what are constrained by a set of spring-damper 

system (𝑘4, 𝑐4) in the horizontal direction and two sets of spring-damper systems (𝑘5, 

𝑐5 and 𝑘6, 𝑐6) in the vertical direction.  The vertical spring-damper systems, which are 

located at the centres of the two wheels at distances 𝑙1 and 𝑙2 from the mass centre of 

the belt, respectively, also constrain the rotational motion of the belt. A preload 𝐹 is 

applied to press the slider to be in frictional contact with the moving belt, and 

Coulomb’s law of friction is utilized to model the friction force on the interface. The 

contact between the slider and the belt is assumed to be unilateral, and a combination 

of a linear spring 𝑘2 and a nonlinear spring 𝑘nl with cubic stiffness is used to model 

the contact stiffness. In this model, the horizontal and vertical motion of the slider, as 

well as the horizontal, vertical and rotational motion of the belt, are investigated. 

Without loss of generality, the slider is assumed to be right above the mass centre of 

the belt at zero displacements. 

The equations of motion of the 5-DoF system can be written as, 

{
 
 
 

 
 
 𝑀�̈�1 + 𝑐1�̇�1 + 𝑘1𝑥1 +

1

2
𝑘3𝑥1 −

1

2
𝑘3𝑦1 = 𝐹T

𝑀�̈�1 + 𝑐2�̇�1 −
1

2
𝑘3𝑥1 +

1

2
𝑘3𝑦1 + 𝐹 = 𝐹N

𝑚�̈�2 + 𝑐4�̇�2 + 𝑘4𝑥2 = −𝐹T

𝑚�̈�2 + 𝑐5(�̇�2 + 𝑙1�̇�) + 𝑘5(𝑦2 + 𝑙1𝜑) + 𝑐6(�̇�2 − 𝑙2�̇�) + 𝑘6(𝑦2 − 𝑙2𝜑) = −𝐹N

𝐽�̈� + 𝑐5(�̇�2 + 𝑙1�̇�)𝑙1 + 𝑘5(𝑦2 + 𝑙1𝜑)𝑙1 − 𝑐6(�̇�2 − 𝑙2�̇�)𝑙2 − 𝑘6(𝑦2 − 𝑙2𝜑)𝑙2 = 𝐹N(𝑥1 − 𝑥2)

   

(6.1) 

where 𝐹T and 𝐹N represent the tangential friction force and the normal force between 

the slider and the belt, respectively. As the system may experience non-smooth states 

of motion including slip, stick and separation, 𝐹T and 𝐹N will take different forms in 

distinct states of motion. 
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Figure 6.1 The model of the 5-DoF frictional system. 

When the slider is in contact with the belt, in the states of slip and stick, the normal 

force is the resultant force of the linear spring 𝑘2 and the nonlinear spring 𝑘nl, i.e.,  

𝐹N = 𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)+𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3           (6.2) 

The friction force takes different forms in the states of slip and stick. In the state of 

slip, the friction force is expressed as,  

𝐹T = sgn(𝑣r)𝜇k𝐹N                                             (6.3) 

where 𝑣r = 𝑣 + �̇�2 − �̇�1 and 𝜇k is the coefficient of kinetic friction. The condition for 

the system to stay in the state of slip is, 

{
𝑣r ≠ 0

𝐹N > 0
                                                       (6.4) 

In the state of stick, the friction force serves to sustain the relative static state, i.e., 𝑣r =

0, and thus can be obtained from the equations of motion of the system, Eq. (6.1).  As 

the absolute belt velocity here is 𝑣 + �̇�2, which is not known a priori, the tangential 

velocity of the slider �̇�1 during sticking is not known a priori either. In the following, 

a method to derive the state variables and the friction force during sticking is presented.  

Firstly, it is obtained from 𝑣r = 0 that, 

{

�̇�2 = �̇�1 − 𝑣
�̈�2 = �̈�1

𝑥2(𝑡) = 𝑥1(𝑡) − 𝑥1(𝑡s) − 𝑣 × (𝑡 − 𝑡s) + 𝑥2(𝑡s)
                        (6.5) 
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where 𝑡s is the time at the onset of stick. Then, by adding the third equation in Eq. (6.1) 

into the first equation in Eq. (6.1), it is obtained that, 

𝑀�̈�1 +𝑚�̈�2 + 𝑐1�̇�1 + 𝑐4�̇�2 + (𝑘1 +
1

2
𝑘3) 𝑥1 −

1

2
𝑘3𝑦1 + 𝑘4𝑥2 = 0         (6.6) 

By substituting Eq. (6.5) into Eq. (6.6), the terms involving 𝑥2, �̇�2, �̈�2 in Eq. (6.6) can 

be eliminated, i.e., 

(𝑀 +𝑚)�̈�1 + (𝑐1 + 𝑐4)�̇�1 + (𝑘1 +
1

2
𝑘3 + 𝑘4) 𝑥1 −

1

2
𝑘3𝑦1 = 𝑐4𝑣 + 𝑘4[𝑥1(𝑡s) + 𝑣 × (𝑡 − 𝑡s) − 𝑥2(𝑡s)] 

(6.7) 

Similarly, the expression of 𝑥2 in Eq. (6.5) are substituted into other equations in Eq. 

(6.1) to eliminate the terms involving 𝑥2. Therefore, the original 5-DoF equations of 

motion involving 𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜑 and their velocities and accelerations are converted 

into a 4-DoF equations of motion involving 𝑥1 , 𝑦1 , 𝑦2 , 𝜑 and their velocities and 

accelerations, in the state of stick. By integrating the 4-DoF equations of motion, the 

values of 𝑥1, 𝑦1, 𝑦2, 𝜑 (also including velocities and accelerations) during sticking are 

obtained, and the values of 𝑥2  (also including velocity and acceleration) during 

sticking can also be acquired from Eq. (6.5).  Besides, the value of friction force during 

sticking can be derived from the first or the third equation in Eq. (6.1). The condition 

for the system to stay in the state of stick is, 

{
|𝐹T| ≤ 𝜇s𝐹N

𝐹N > 0
                                               (6.8) 

where 𝜇s is the coefficient of static friction.  

While in the state of separation, the slider and the belt are not in contact, therefore 

𝐹N = 0, 𝐹T = 0. The condition for the system to stay in the state of separation is, 

𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1 < 0                                      (6.9) 

With the formulations of 𝐹T and 𝐹N in each of the three states obtained, the equations 

of motion for each of the states are determined. After separation, the condition Eq. (6.9) 

is monitored for re-contact. Re-contact happens when the slider’s vertical motion 

become equal to the vertical motion of the belt at the contact point. And a very short-

lived impact force is considered to act between the slider and the belt within a tiny 

time duration of (𝑡𝑟
−, 𝑡𝑟

+). The method for determining the values of the dynamic state 

variables immediately after re-contact, which was given in Ref. [189], is employed in 
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this paper. For simplification, an assumption for the re-contact is that the impact is 

perfectly plastic. Suppose the impulse at 𝑡𝑟  is  𝑝  and based on the theorem of 

momentum, the velocity jump for the slider and the belt due to the impact can be thus 

obtained as, 

�̇�1(𝑡𝑟
+) − �̇�1(𝑡𝑟

−) =
𝑝

𝑀
                                         (6.10) 

�̇�2(𝑡𝑟
+) − �̇�2(𝑡𝑟

−) = −
𝑝

𝑚
                                       (6.11) 

�̇�(𝑡𝑟
+) − �̇�(𝑡𝑟

−) =
𝑝∙(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))

𝐽
                                (6.12) 

For perfectly plastic impact, the slider has the same vertical velocity as that of the belt 

at the contact point at time 𝑡𝑟
+, therefore  

�̇�1(𝑡𝑟
+) = �̇�2(𝑡𝑟

+) − (𝑥1(𝑡𝑟) − 𝑥2(𝑡𝑟))�̇�(𝑡𝑟
+)                        (6.13) 

By substituting Eqs. (6.10)-(6.12) into Eq. (6.13), the values of the impulse 𝑝 and the 

state variables immediately after re-contact can be obtained, which are,  

𝑝 =
�̇�2(𝑡𝑟

−)−�̇�1(𝑡𝑟
−)−(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))�̇�(𝑡𝑟

−)

1

𝑀
+
1

𝑚
+
(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))

2

𝐽

                               (6.14) 

�̇�1(𝑡𝑟
+) = �̇�1(𝑡𝑟

−) +
�̇�2(𝑡𝑟

−)−�̇�1(𝑡𝑟
−)−(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))�̇�(𝑡𝑟

−)

𝑀[
1

𝑀
+
1

𝑚
+
(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))

2

𝐽
]

                     (6.15) 

�̇�2(𝑡𝑟
+) = �̇�2(𝑡𝑟

−) −
�̇�2(𝑡𝑟

−)−�̇�1(𝑡𝑟
−)−(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))�̇�(𝑡𝑟

−)

𝑚[
1

𝑀
+
1

𝑚
+
(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))

2

𝐽
]

                     (6.16) 

�̇�(𝑡𝑟
+) = �̇�(𝑡𝑟

−) +
(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))[�̇�2(𝑡𝑟

−)−�̇�1(𝑡𝑟
−)−(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))�̇�(𝑡𝑟

−)]

𝐽[
1

𝑀
+
1

𝑚
+
(𝑥1(𝑡𝑟)−𝑥2(𝑡𝑟))

2

𝐽
]

          (6.17) 

6.3 Linear stability analysis and transient dynamic analysis 

6.3.1 Linear stability analysis of the 5-DoF model 

In this section, the procedure to carry out the linear stability analysis is introduced. 

Firstly the equilibrium points of the system are determined by solving the nonlinear 

static equations. Then, the equations of motion of the system are linearized around the 

equilibrium points and a linearized system is derived. Finally, the eigenvalues of 
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linearized system are calculated to determine the stability of the steady sliding state 

for various values of key parameters.  

6.3.1.1 Equilibrium points 

By setting all the terms involving velocity and acceleration in the equations of motion 

for the state of slip to zero, the nonlinear algebraic equations whose solutions are the 

equilibrium points are obtained as 

[
 
 
 
 
 𝑘1 +

1

2
𝑘3 −

1

2
𝑘3 0 0 0

−
1

2
𝑘3

1

2
𝑘3 0 0 0

0 0 𝑘4 0 0
0 0 0 𝑘5 + 𝑘6 𝑘5𝑙1 − 𝑘6𝑙2
0 0 0 𝑘5𝑙1 − 𝑘6𝑙2 𝑘5𝑙1

2 + 𝑘6𝑙2
2]
 
 
 
 
 

[
 
 
 
 
𝑥1
𝑦1
𝑥2
𝑦2
𝜑 ]
 
 
 
 

+

[
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5]
 
 
 
 

=

[
 
 
 
 
0
−𝐹
0
0
0 ]
 
 
 
 

    (6.18) 

where 

𝑎1 = −𝜇k[𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)+𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3] 

𝑎2 = −𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)−𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3 

𝑎3 = 𝜇k[𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)+𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3] 

𝑎4 = 𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)+𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3 

𝑎5 = −(𝑥1 − 𝑥2)[𝑘2(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)+𝑘nl(𝑦2 − (𝑥1 − 𝑥2)𝜑 − 𝑦1)
3] 

By solving Eq. (6.18), the equilibrium points can be determined. 

6.3.1.2 Complex eigenvalue analysis 

By linearizing the nonlinear equations of motion around the equilibrium points, a 

linearized system results:  

𝐌�̈̅� + 𝐂�̇̅� + 𝐊�̅� = 𝟎                                           (6.19) 

where �̅� = 𝐱 − 𝐱e , 𝐱 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, 𝜑 ]
T , 𝐱e = [𝑥1e, 𝑦1e, 𝑥2e, 𝑦2e, 𝜑e ]

T  is an 

equilibrium point. The mass matrix, damping matrix and stiffness matrix of the 

linearized system are, 

𝐌 = diag(𝑀,𝑀,𝑚,𝑚, 𝐽) 
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𝐂 =

[
 
 
 
 
 
 
𝑐1 0 0 0 0

0 𝑐2 0 0 0

0 0 𝑐4 0 0

0 0 0 𝑐5 + 𝑐6 𝑐5𝑙1 − 𝑐6𝑙2

0 0 0 𝑐5𝑙1 − 𝑐6𝑙2 𝑐5𝑙1
2 + 𝑐6𝑙2

2]
 
 
 
 
 
 

 

𝐊 = 

[
 
 
 
 
 
 
 𝑘1 +

1

2
𝑘3 + 𝛬𝜇k𝜑e −

1

2
𝑘3 + 𝛬𝜇k −𝛬𝜇k𝜑e −𝛬𝜇k 𝛬𝜇k(𝑥1 − 𝑥2)

−
1

2
𝑘3 + 𝛬𝜑e

1

2
𝑘3 + 𝛬 −𝛬𝜑e −𝛬 𝛬(𝑥1 − 𝑥2)

−𝛬𝜇k𝜑e −𝛬𝜇k 𝑘4 + 𝛬𝜇k𝜑e 𝛬𝜇k −𝛬𝜇k(𝑥1 − 𝑥2)

−𝛬𝜑e −𝛬 𝛬𝜑e 𝛬 + 𝑘5 + 𝑘6 −𝛬(𝑥1 − 𝑥2)+𝑘5𝑙1 − 𝑘6𝑙2

−𝛱 𝛬(𝑥1 − 𝑥2) 𝛱 −𝛬(𝑥1 − 𝑥2)+𝑘5𝑙1 − 𝑘6𝑙2 𝛬(𝑥1 − 𝑥2)
2 + 𝑘5𝑙1

2 + 𝑘6𝑙2
2]
 
 
 
 
 
 
 

 

and, 

𝛬 = 𝑘2 + 3𝑘nl[𝑦2e − (𝑥1e − 𝑥2e)𝜑e − 𝑦1e]
2 

𝛱 = 𝑘2[𝑦2e − 𝑦1e − 2𝜑e (𝑥1e − 𝑥2e)] + 𝑘nl{−3𝜑e(𝑥1e − 𝑥2e) ∙[𝑦2e − (𝑥1e − 𝑥2e)𝜑e − 𝑦1e]
2 + 

[𝑦2e − (𝑥1e − 𝑥2e)𝜑e − 𝑦1e]
3} 

Then, the eigenvalues of the linearized system above are calculated. If the real parts of 

all the eigenvalues are negative, the equilibrium point corresponding to the steady 

sliding state is stable. If at least one of the eigenvalues has a positive real part, the 

equilibrium point is unstable, which leads to self-excited vibration in the nonlinear 

system. 

6.3.2 Transient dynamic analysis  

Because 𝐹T and 𝐹N take different mathematical forms in distinct states of motion, the 

dynamic system in question is non-smooth. To obtain the whole time histories of the 

dynamic responses of the system, the numerical algorithm for the transient dynamic 

analysis introduced in Section 3.2.2.2 is utilized. 

6.4 Numerical study of the 5-DoF model 

6.4.1 Stability analysis 

According to the procedure given in Section 6.3.1, the stability of the system at the 

equilibrium point is analysed in this section, where the effects of different types of 
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nonlinearities are examined. Some basic parameters are assigned constant values if not 

specified otherwise, which are listed in Table 6.1.  

Table 6.1 The values of constant system parameters of the 5-DoF frictional model 

𝑀 𝑚 𝐽 𝑐1 𝑐2 𝑐4 𝑐5 𝑐6 𝑣 

1kg 1kg 0.1kg·m2 0.1N·m·s 0.1N·m·s 0.1N·m·s 0.1N·m·s 0.1N·m·s 1m/s 

𝑘1 𝑘2 𝑘3 𝑘4 𝑘5 𝑘6 𝑙1 𝑙2  

104N

/m 

5·103N

/m 

6·103N

/m 

104N/m 104N/m 104N/m 0.2m 0.2m  

The results show that the mode-coupling instability arises in the system with the 

variations of parameter values, namely, the imaginary parts of two eigenvalues 

coalesce and one of the real parts becomes positive. In Fig. 6.2 and Fig. 6.3, the 

complex eigenvalues of a pair of modes as a function of the friction coefficient 𝜇k with 

different nonlinear contact stiffness 𝑘nl is exhibited. For each value of  𝑘nl, the mode-

coupling instability occurs in the system with the increase of 𝜇k. The value of the 

friction coefficient at which the instability occurs can be called the critical friction 

coefficient. The comparison between the results of different 𝑘nl indicates that a larger 

nonlinear contact stiffness leads to a smaller critical friction coefficient for the 

instability. Besides, the comparison between Fig. 6.2 and Fig. 6.3 suggests that the 

preload also influence the critical friction coefficient. The relationship between the 

critical friction coefficient and the preload is depicted in Fig.6.4, from which it is seen 

that the critical friction coefficient for the instability decreases with the increase of the 

preload.  

 

Figure 6.2 Stability analysis of the 5-DoF frictional model with different nonlinear 

contact stiffness 𝑘nl when the preload 𝐹 = 100N: (a) frequencies and (b) growth 

rates. 
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Figure 6.3 Stability analysis of the 5-DoF frictional model with different nonlinear 

contact stiffness 𝑘nl when the preload 𝐹 = 1000N: (a) frequencies and (b) growth 

rates. 

  

Figure 6.4 The critical friction coefficient 𝜇k for the instability of the 5-DoF 

frictional model as a function of the preload 𝐹. 

Next the effects of the geometrical nonlinearity (GN) in the system on the stability are 

investigated. The geometrical nonlinearity in the system is produced by the 

combination of the relative motion between the slider and the belt with the rotational 

motion of the belt. In Fig. 6.5, the critical friction coefficient for the instability as a 

function of the preload when the rotational motion of the belt is not considered, i.e., 

without the geometrical nonlinearity, is compared with that of the original 5-DoF 

system, i.e., with the geometrical nonlinearity. It is clearly observed that the critical 

friction coefficient for the instability with the geometrical nonlinearity is quite smaller 

than without. In another word, the geometrical nonlinearity promotes the occurrence 

of the instability. Besides, another effect of the geometrical nonlinearity on the stability 

is found. Fig. 6.6 shows the complex eigenvalues analysis results of the system in the 

two situations, i.e., with and without geometrical nonlinearity, when 𝐹 = 1000N, 𝑙1 =

0.1m, 𝑙2 = 0.3m. It is seen that the system with the geometrical nonlinearity exhibits 
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more complex behaviour of instability than without. For the system without the 

geometrical nonlinearity, there is only one instability when 𝜇k is larger than its critical 

value. For the system with the geometrical nonlinearity, however, two instabilities 

arise (the real parts of two pairs of conjugate eigenvalues become positive) when 𝜇k is 

within a certain range and one of the instabilities disappears for large value of 𝜇k. This 

example indicates that the geometrical nonlinearity increases the complexity of the 

instability in the system. 

Lastly, the nonlinearity with respect to the non-smooth states of motion has no effect 

on the stability of the system at the equilibrium point because the system is in the state 

of slip near the equilibrium point. 

 

Figure 6.5 The effect of the geometrical nonlinearity (GN) on the critical friction 

coefficient 𝜇k for the instability of the 5-DoF frictional model. 

 

Figure 6.6 The effect of the geometrical nonlinearity on the instability of the 5-DoF 

frictional model: (a)(b) with the geometrical nonlinearity and (c)(d) without the 

geometrical nonlinearity. (𝐹 = 1000N, 𝑙1 = 0.1m, 𝑙2 = 0.3m). 
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6.4.2 Nonlinear steady-state responses 

In this section, the nonlinear steady-state responses of the system are investigated by 

means of the transient dynamic analysis. The values of the basic system parameters 

are the same as those in Table 6.1. The effects of different types of nonlinearities on 

the steady-state responses of the system are examined.  

6.4.2.1 The characteristics of the steady-state responses of the system 

Firstly, the time responses of the system under three different values of 

𝜇k (0.3, 1.4, 2.5) with 𝜇s = 3, 𝑘nl = 10
4N/m and 𝐹 = 200N are obtained in Fig. 6.7. 

For each 𝜇k, the solutions of the nonlinear algebraic equations in Eq. (6.18) consists 

of a solution of real numbers and a pair of solutions of conjugate complex numbers. 

The solution of real numbers is the equilibrium point of the system, which is, 

𝐱e = [−0.0042m,−0.0304m,−0.0036m,−0.0061m,−0.0001rad]
T, for 𝜇k = 0.3, 

𝐱e = [−0.0053m,−0.0263m,−0.0147m,−0.0053m, 0.0026rad]
T, for 𝜇k = 1.4, 

𝐱e = [0.0124m,−0.0233m,−0.0232m,−0.0046m, 0.0041rad]
T,  for 𝜇k = 2.5. 

It is worth noting that a mode-coupling instability happens in the system with the 

increase of 𝜇k. The eigenvalues of the coupled modes for the three values of 𝜇k are 

[−0.05 ± 100i, −0.04 ± 89.4i] , [−0.05 ± 98.7i, −0.048 ± 93.7i]  and [11.98 ±

102.6i, −12.08 ± 102.6i] respectively, therefore 𝜇k = 0.3 and 1.4 lead to a stable 

equilibrium point and 𝜇k = 2.5 leads to an unstable equilibrium point. In Fig. 6.7, the 

exhibited time responses for each value of 𝜇k are acquired from two different initial 

conditions, i.e., one near the equilibrium point and the other far from the equilibrium 

point. When 𝜇k = 0.3, the dynamic responses from both initial conditions approach 

the equilibrium point, indicating there is only one stable solution for the system 

responses, i.e., the equilibrium point. When 𝜇k = 2.5, the dynamic responses from 

both initial conditions approach the same limit cycle, indicating there is only one stable 

solution for the system responses, i.e., the limit cycle vibration. When 𝜇k = 1.4 , 

however, the two initial conditions lead to different steady-state responses. The 

dynamic responses from the initial condition near the equilibrium point approach the 

equilibrium point while the dynamic responses from the initial condition far from the 

equilibrium approach the limit cycle vibration, which indicates the coexistence of two 

stable solutions in the system. This example shows that the linear stability analysis at 
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the equilibrium point in the friction-excited system fails to detect the occurrence of 

self-excited vibration when the system is bi-stable, which can only be found out by a 

transient dynamic analysis.  

 

Figure 6.7 The time responses of the 5-DoF frictional model under three different 

values of 𝜇k   (0.3, 1.4, 2.5) with 𝜇s = 3, 𝑘nl = 10
4N/m and 𝐹 = 200N from two 

initial conditions: (a)(c)(e) near the equilibrium point and (b)(d)(f) far from the 

equilibrium point. 

In Fig. 6.8, the steady-state limit cycle vibration when 𝜇k = 1.4  and  𝜇k = 2.5  is 

further compared in terms of the contact forces, the phase plots and the frequency 

spectra. It is deduced from Fig. 6.8(a)(c)(e) that the steady-state dynamic responses of 

the system when 𝜇k = 1.4 are periodic with the frequency of around 1.58Hz, while 

Fig. 6.8(b)(d)(f) demonstrate that the steady-state dynamic responses when 𝜇k = 2.5 

are non-periodic. Therefore the system responses bifurcate with the variation of 𝜇k and 

the bifurcation behaviour of the system with the given parameter values is displayed 

in Fig. 6.9, which shows the values of 𝑥1 at the transition points from slip to stick. It 

shows that the system has periodic steady-state responses when 0.9 ≤ 𝜇k < 1.8 and 

non-periodic responses when 0.4 ≤ 𝜇k < 0.9 or 1.8 ≤ 𝜇k < 3.  Besides, an index is 

defined to measure the intensity of steady-state vibration of the system, which is, 

𝐿s = ∑
∫ [(𝑋𝑖−𝑋𝑖e)

2]d𝑡𝑇

𝑇

5
𝑖=1                                        (6.20) 



111 

 

where 𝑋𝑖 (𝑖 = 1,2,3,4,5)  represents the dynamic response 𝑥1 , 𝑦1 , 𝑥2 , 𝑦2 , 𝜑 

respectively, 𝑋𝑖e is the value of the equilibrium point and  𝑇 represents a time period 

in the steady state. Index 𝐿s as a function of 𝜇k is shown in Fig. 6.10, from which it is 

observed that the system has a single stable equilibrium point when 𝜇k < 0.4 and a 

single stable limit cycle when 𝜇k > 1.5, while two stable steady-state solutions coexist 

when 𝜇k ∈ [0.4, 1.5].  

 

Figure 6.8 The steady-state limit cycle vibration of the 5-DoF frictional model in 

terms of the contact forces, the phase plots and the frequency spectra: (a)(c)(e) 𝜇k =

1.4 and (b)(d)(f) 𝜇k = 2.5. 

  

Figure 6.9 The bifurcation behaviour of the steady-state limit cycle vibration of the 

5-DoF friction model dependent on 𝜇k. 
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Figure 6.10 Index 𝐿s as a function of 𝜇k of the 5-DoF frictional model. 

6.4.2.2 The effects of nonlinearities on the steady-state responses of the system 

First of all, the effects of the nonlinear contact stiffness on the steady-state responses 

are investigated. With different values of 𝑘nl and the same values of other parameters 

as those in Section 6.4.2.1, the bifurcation behaviours of the steady-state limit cycle 

vibration of the system, which reveal the periodicity of the steady-state responses with 

the variation of 𝜇k, are shown in Fig. 6.11. By comparing the results in Fig. 6.11 with 

those in Fig. 6.9, it is observed that the bifurcation behaviours of the steady-state 

responses when 𝑘nl = 0 and 𝑘nl = 10
4N/m are alike, while the bifurcation behaviour 

of the steady-state responses when 𝑘nl = 10
7N/m  is quite different. Fig. 6.11(a) 

shows that the system in the case of 𝑘nl = 0 also has periodic steady-state responses 

when 0.9 ≤ 𝜇k < 1.8, except 𝜇k = 1.3. Besides, the system when 𝑘nl = 0 has stable 

periodic limit cycle vibration at 𝜇k = 0.05, which is different from the result of the 

system with 𝑘nl = 10
4N/m. Fig. 6.11(b) demonstrates that the system has periodic 

steady-state responses when 0.75 ≤ 𝜇k ≤ 2.9 or 𝜇k = 0.1, and the values of 𝑥1 at the 

transition points from slip to stick are approximately identical when 𝜇k  lies in the 

above range, as shown in the figure, indicating that the system responses in the above 

range of 𝜇k are close. In Fig. 6.12, index 𝐿s as the function of 𝜇k with three values of 

𝑘nl, i.e., 𝑘nl = 0, 104N/m and 107N/m, is depicted. The range of 𝜇k in which two 

stable steady-state solutions (the equilibrium point and the limit cycle) coexist in the 

system is identified, which is [0.4, 1.5] for both 𝑘nl = 0 and  𝑘nl = 104N/m, and 

(0, 0.6] for 𝑘nl = 10
7N/m. Besides, the values of 𝐿s as the function of 𝜇k roughly 

reflect the intensity of steady-state vibration of the system at different values of 𝜇k. 

For 𝑘nl = 0 and 𝑘nl = 104N/m, the steady-state vibration generally gets stronger for 

larger values of 𝜇k. For 𝑘nl = 10
7N/m, however, the steady-state vibration is weaker 

when 0.75 ≤ 𝜇k ≤ 2.9, namely, when the system has periodic oscillations, than that 
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when the system has non-periodic oscillations. Based on the above observations, it is 

concluded that the nonlinearity from the contact stiffness has a significant effect on 

the steady-state responses of the system.  

 

Fig. 6.11 The bifurcation behaviours of the steady-state limit cycle vibration  of the 

5-DoF frictional model with different values of 𝑘nl: (a) 𝑘nl = 0 and (b) 𝑘nl =

107N/m. 

 

Figure 6.12 Index 𝐿s  as the function of 𝜇k for the 5-DoF frictional model with 

different values of 𝑘nl. 

Secondly, the effects of the geometrical nonlinearity in the system on the steady-state 

responses are investigated. To reveal the effects of the geometrical nonlinearity, the 

steady-state responses of the system without the geometrical nonlinearity are 

calculated and compared with the results of the original system with the geometrical 

nonlinearity. In Fig. 6.13, the bifurcation behaviours of the steady-state limit cycle 

vibration of the system without the geometrical nonlinearity are plotted. It is seen that 

the system experiences nearly unchanged periodic oscillations when 𝜇k varies within 

[0.38, 2.95] in the case of 𝑘nl = 0 and 𝑘nl = 104N/m, and the representative phase-

plane plots of the periodic oscillations are depicted in Fig. 6.13(d) and (e). In the case 

of 𝑘nl = 107N/m,  the system has non-periodic steady-state responses when 𝜇k  is 

very small and similar periodic responses as 𝜇k  varies within [0.05, 2.95] . The 
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representative phase-plane plot of the periodic responses is depicted in Fig. 6.13(f), 

which is different from those in the case of 𝑘nl = 0 and 𝑘nl = 104N/m. Index 𝐿s as a 

function of 𝜇k for the system without the geometrical nonlinearity is presented in Fig. 

6.14, which shows a much more steady pattern of the values of 𝐿s with the variation 

of 𝜇k than the counterpart of the system with the geometrical nonlinearity. Besides, 

the steady-state responses with different values of preload 𝐹  when 𝜇k = 2.5  and 

𝑘nl = 107N/m  in the two situations, i.e., with and without the geometrical 

nonlinearity, are calculated, and the bifurcation behaviours and index 𝐿s are shown in 

Fig. 6.15. By the comparison between the results in the two situations, it is clearly seen 

that the system responses with the geometrical nonlinearity experience more 

fluctuations than those without the geometrical nonlinearity as preload 𝐹 varies, in 

terms of the periodicity and intensity of the steady-state vibration. Based on the above 

observations, it is concluded that the geometrical nonlinearity has a significant effect 

on the steady-state responses of the system, and the system responses in the presence 

of geometrical nonlinearity are more changeable with the variations of parameters (e.g., 

𝜇k and 𝐹) than those without geometrical nonlinearity. 

 

Figure 6.13 The bifurcation behaviours of the steady-state limit cycle vibration (a-c) 

and phase-plane plots when 𝜇k = 2 (d-f) for the 5-DoF frictional model without the 

geometrical nonlinearity: (a)(d) 𝑘nl = 0, (b)(e) 𝑘nl = 104N/m and (c)(f) 

𝑘nl = 107N/m. 
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Figure 6.14 Index 𝐿s as a function of 𝜇k for the 5-DoF frictional model without the 

geometrical nonlinearity. 

  
Figure 6.15 The bifurcation behaviour and index 𝐿s of the steady-state responses of 

the 5-DoF frictional model as the function of the preload 𝐹 when 𝜇k = 2.5 and 

𝑘nl = 107N/m in the two situations: (a)(c) with the geometrical nonlinearity and 

(b)(d) without the geometrical nonlinearity. 

Thirdly, the effects of the non-smooth states of motion on the steady-state responses 

of the system are investigated.  Many previous studies [98,103,160,211] only took the 

state of relative sliding into account when investigating the dynamics of frictional 

systems, while the states of stick and separation will actually happen in the vibration 

of frictional systems because of the discontinuous friction force and the unilateral 

contact. To reveal the effects of the non-smooth states of motion including stick/slip 

and contact/separation on the steady-state responses of the system, the dynamic 

responses when the non-smooth states of motion are not considered, i.e., there exists 

the single state of  relative sliding in the vibration, are calculated and compared with 

the results of the original system. In Fig. 6.16, the dynamic responses of the system in 
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the two situations, i.e., including and excluding the non-smooth behaviours, are 

depicted for comparison, where 𝜇k = 2.5, 𝜇s = 3, 𝑘nl = 10
7N/m, 𝐹 = 800N and the 

values of other basic parameters are the same as those in Table 6.1 except 𝑘4 = 𝑘5 =

𝑘6 = 5·106N/m in this example. From this figure it is observed that the amplitudes of 

dynamic responses when excluding the non-smooth behaviours are much larger than 

those when including the non-smooth behaviours in the vibration. It should be noted 

here the contact between the slider and the belt is assumed to be bilateral (i.e., 

maintained) when the non-smooth behaviours are excluded, therefore normal force 𝐹N 

is allowed to become negative.  

With the values of other parameters unchanged and 𝜇k as the control parameter, the 

bifurcation behaviour and index 𝐿s of the steady-state responses in the two situations 

are plotted in Fig. 6.17. In the bifurcation diagram for the situation when the non-

smooth behaviours are excluded, the values of 𝑥1  when �̇�1 = 0  at each 𝜇k  are 

displayed, which indicate that the steady-state dynamic responses are periodic for all 

𝜇k ≥ 1.4. The bifurcation diagram for the situation when the non-smooth behaviours 

are included, however, shows that the that the steady-state dynamic responses are non-

periodic for most values of 𝜇k. Another difference between the results in these two 

situation is that the limit cycle vibration appears from very small 𝜇k (0.15) when the 

non-smooth behaviours are included, while in the situation of excluding non-smooth 

behaviours, the limit cycle vibration arises from  𝜇k = 1.4, which is only slightly 

smaller than the critical friction coefficient for the instability of the equilibrium point 

that is 1.735 in this example, as indicated in Fig. 6.17(c). Besides, the values of index 

𝐿s in these two situations in Fig. 6.17(c) demonstrate that the steady-state vibration 

when excluding non-smooth behaviours is much stronger than that when the non-

smooth behaviours are included. Based on the above observations, it is concluded that 

the nonlinearity of the non-smooth states of motion in the system also has a significant 

effect on the steady-state responses of the system. Therefore it is indispensable to 

incorporate all non-smooth states of motion including stick, slip and separation in 

order to accurately acquire the dynamic responses of the frictional systems. 



117 

 

 

Figure 6.16 Comparisons of the system responses including and excluding the non-

smooth behaviours of the 5-DoF frictional model: (a) 𝑥1, (b) 𝑦1 and (c) 𝐹N. 

 

Figure 6.17 The bifurcation behaviour and index 𝐿s of the steady-state responses of 

the 5-DoF frictional model as the function of 𝜇k: (a) the bifurcation behaviour when 

including non-smooth behaviours, (b) the bifurcation behaviour when excluding non-

smooth behaviours and (c) index 𝐿s in the two situations. 

The unstable eigenfrequencies obtained from the CEA are usually regarded as the 

frequencies of the self-excited vibration in the brake system in industry, which may 

not be accurate as the nonlinearities in the brake system can cause the frequencies of 

the self-excited vibration to be quite different from the unstable eigenfrequencies in 

the linearized system. To clarify their differences, the frequencies of the steady-state 

responses are compared with the unstable eigenfrequencies in the linearized system in 

a numerical example, where the values of other parameters are the same as those in 

Fig. 6.17. The colour in Fig. 6.18 indicates the response amplitude and the dark marked 

lines exhibit the unstable eigenfrequencies in the linearized system with the variation 

of 𝜇k. It is observed from Fig. 6.18(a) that the frequencies of the steady-state responses 

in this nonlinear frictional system deviate markedly from the unstable 

eigenfrequencies in the linearized system. To reveal the effects of each type of 

nonlinearity, the comparisons are also made when a single type of nonlinearity exists 
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in the system and displayed in Fig. 6.18(b)(c)(d), which show that the frequencies of 

the steady-state responses are close to the unstable eigenfrequencies in the situation of 

the single geometrical nonlinearity, while in the situations of the single nonlinearity of 

contact stiffness and the single nonlinearity of non-smooth states of motion, there exist 

larger differences between the frequencies of the steady-state responses and the 

unstable eigenfrequencies . 

 
Figure 6.18 The frequencies of the steady-state responses of the system and unstable 

eigenfrequency of the linearized system of the 5-DoF frictional model: (a) with all 

three types of nonlinearities, (b) with the single nonlinearity of contact stiffness, (c) 

with the single geometrical nonlinearity and (d) with the single nonlinearity of non-

smooth states of motion. 

6.5 The effects of multiple nonlinearities on the dynamics of slider-on-

disc model 

The dynamics of a slider-on-disc model as shown in Fig. 6.19 with multiple types of 

nonlinearities is investigated. The disc is modelled as a Kirchhoff plate clamped at 

inner boundary and free at outer boundary. A slider, which is assumed to be a point 

mass, is connected to the fixture by a tangential spring 𝑘1, an inclined spring 𝑘3 at 45 

degree to the tangential direction and dashpots 𝑐1 and 𝑐2 in the tangential and normal 

directions. Without loss of generality, the circumferential coordinate of the fixtures is 

set as 𝜃 = 0. The contact stiffness between the slider and disc is represented by the 

combination of a linear spring 𝑘2 and a nonlinear spring 𝑘nl. The slider is assumed to 

be fixed radially at 𝑟0 from the disc centre and pressed by a preload 𝐹 into frictional 
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contact with the disc which is rotating at the speed 𝛺. The Coulomb’s law of friction 

with the coefficient of static friction 𝜇s and the coefficient of kinetic friction 𝜇k is also 

employed here to describe the friction force on the interface. There are also three 

different types of nonlinearities in this model. The first type of nonlinearity is the 

nonlinear contact stiffness, the second is the non-smooth states of motion including 

stick, slip and separation, and the third is the geometrical nonlinearity brought about 

by the moving-load feature of the slider on the flexible disc.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19 The slider-on-disc model with nonlinearities. 

In this model, the vibration of the slider in the normal and tangential directions and the 

transverse vibration of the disc are considered. The equations of motion of the slider 

can be written as, 

𝑚𝑟0�̈� + 𝑐1𝑟0�̇� + 𝑘1𝑟0𝜑 +
1

2
𝑘3𝑟0𝜑 −

1

2
𝑘3𝑢 = 𝐹T                     (6.21) 

𝑚�̈� + 𝑐2�̇� −
1

2
𝑘3𝑟0𝜑 +

1

2
𝑘3𝑢 = 𝐹N − 𝐹                          (6.22) 

The transverse displacement of the disc can be expressed as, 

𝑤(𝑟, 𝜃, 𝑡) = ∑ ∑ 𝑅𝑘𝑙(𝑟)[cos(𝑙𝜃) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜃) ⋅ 𝐷𝑘𝑙(𝑡)]
∞
𝑙=0

∞
𝑘=0         (6.23) 

where k and l denote the numbers of nodal circles and nodal diameters respectively, 

𝐶𝑘𝑙(𝑡), 𝐷𝑘𝑙(𝑡) are modal coordinates, 𝑅𝑘𝑙(𝑟) is a combination of Bessel functions 

𝑥 

𝑏 

ℎ 

𝑟 
𝜃 

𝑎 𝑦 

𝑧 

𝑘1 

𝑐1 𝑘2 𝑘nl 

𝛺 

𝑘3 

𝑐2 𝐹 

𝑚 



120 

 

satisfying the inner and outer boundary conditions of the nonrotating disc and 

orthogonality conditions. The equation of transverse motion of the disc under the 

action of the slider is obtained as, 

𝜌ℎ (
𝜕2𝑤

𝜕𝑡2
+ 2𝛺

𝜕2𝑤

𝜕𝜃𝜕𝑡
+ 𝛺2

𝜕2𝑤

𝜕𝜃2
) + 𝑑∗𝛻4�̇�+𝐷∗𝛻4𝑤 =

1

𝑟
{−𝐹N𝛿(𝑟 − 𝑟0)𝛿(𝜃 − 𝜑) +

                                                   
𝜕

𝑟𝜕𝜃
[
ℎ

2
𝐹T𝛿(𝜃 − 𝜑)] 𝛿(𝑟 − 𝑟0)}                                 (6.24) 

where 𝜌 is the density of material, 𝐷∗ =
𝐸ℎ3

12(1−𝜈2)
 is the bending rigidity, 𝐸 and 𝜈 are 

the Young’s modulus and the Poisson’s ratio of the disc material, respectively, 𝑑∗ is 

the damping coefficient of the disc. By substituting Eq. (6.23) into Eq. (6.24), then 

multiplying both sides of the equation by 𝑅𝑘𝑙(𝑟)cos(𝑙𝜃)  or 𝑅𝑘𝑙(𝑟)sin(𝑙𝜃)  and 

integrating them over the whole plate surface, and by using the orthogonal conditions 

of modal functions as described in Section 3.3.3, the equations of transverse vibration 

of the disc with respect to the modal coordinates can be derived. Similar to that in the 

5-DoF frictional system, the friction force 𝐹T and the normal force 𝐹N in the slider-on-

disc system take different forms in the three distinct states of motion, i.e., slip, stick 

and separation.  

When the slider is in contact with the disc, in the states of slip and stick, the normal 

force is the resultant force of the linear spring 𝑘2 and the nonlinear spring 𝑘nl, i.e.,  

𝐹N = 𝑘2(𝑤(𝑟0, 𝜑, 𝑡) − 𝑢)+𝑘nl(𝑤(𝑟0, 𝜑, 𝑡) − 𝑢)
3                     (6.25) 

The friction force takes different forms in the states of slip and stick. In the state of 

slip, the friction force is an applied force and can be expressed as,  

𝐹T = sgn(𝛺 − �̇�)𝜇k𝐹N                                      (6.26) 

The condition for the system to stay in the state of slip is, 

{
�̇� ≠ 𝛺

𝐹N > 0
                                                  (6.27) 

In the state of stick, the friction force is a reaction force and can be obtained from the 

equilibrium equation which is derived by setting �̈� = 0, �̇� = 𝛺 in Eq. (6.21), i.e., 

𝐹T = 𝑐1𝑟0𝛺 + 𝑘1𝑟0𝜑 +
1

2
𝑘3𝑟0𝜑 −

1

2
𝑘3𝑢                        (6.28) 

The condition for the system to stay in the state of stick is, 
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{
|𝐹T| ≤ 𝜇s𝐹N

𝐹N > 0
                                             (6.29) 

While in the state of separation, the slider and the disc are not in contact, therefore 

𝐹N = 0, 𝐹T = 0. The condition for the system to stay in the state of separation is, 

𝑤(𝑟0, 𝜑, 𝑡) − 𝑢 < 0                                       (6.30) 

With the formulations of 𝐹T and 𝐹N in each of the three states obtained, the equations 

of motion for each of the states are determined. It is also assumed that the perfectly 

plastic impact acts between the slider and the disc at the time of re-contact after 

separation, which causes the velocity jump for the slider and the disc at the time of re-

contact. The method given in Ref. [189] is also used here to derive the velocities of 

the slider and the disc immediately after the re-contact. Suppose the impulse between 

the slider and the disc at the time of re-contact is 𝑝 and based on the theorem of 

momentum, the velocity jump for the slider and the disc due to the impact can be 

obtained as, 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑝𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙
                          (6.31) 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑝𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙
                          (6.32) 

�̇�(𝑡𝑟
+) − �̇�(𝑡𝑟

−) =
𝑝

𝑚
                                          (6.33) 

in which 𝑡𝑟
+ , 𝑡𝑟

−  denote the instant after and before the re-contact, respectively. 

Combining Eq. (6.33) and Eqs. (6.31) and (6.32) gives, 

  �̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑚𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))[�̇�(𝑡𝑟

+)−�̇�(𝑡𝑟
−)]

𝑀𝑘𝑙
                (6.34) 

�̇�𝑘𝑙(𝑡𝑟
+) − �̇�𝑘𝑙(𝑡𝑟

−) = −
𝑚𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))[�̇�(𝑡𝑟

+)−�̇�(𝑡𝑟
−)]

𝑀𝑘𝑙
                (6.35) 

For perfectly plastic impact, the slider has the same velocity as that of the disc at the 

instant 𝑡𝑟
+, therefore, 

�̇�(𝑡𝑟
+) = (

𝜕𝑤

𝜕𝑡
+ �̇�

𝜕𝑤

𝜕𝜑
)
𝑡=𝑡𝑟

+
                                                (6.36) 

The transverse displacement of the disc and the tangential motion of the slider are 

unchanged by the normal impact, namely, the following equations are satisfied, 

𝐶𝑘𝑙(𝑡𝑟
+) = 𝐶𝑘𝑙(𝑡𝑟

−) = 𝐶𝑘𝑙(𝑡𝑟), 𝐷𝑘𝑙(𝑡𝑟
+) = 𝐷𝑘𝑙(𝑡𝑟

−) = 𝐷𝑘𝑙(𝑡𝑟),

𝜑(𝑡𝑟
+) = 𝜑(𝑡𝑟

−) = 𝜑(𝑡𝑟), �̇�(𝑡𝑟
+) = �̇�(𝑡𝑟

−) = �̇�(𝑡𝑟)
             (6.37) 
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By substituting Eq. (6.36) into Eqs. (6.34) and (6.35) and utilizing Eq. (6.37), the 

normal velocity of the slider and the modal velocities of the disc after the impact can 

be derived as, 

�̇�𝑘𝑙(𝑡𝑟
+) = �̇�𝑘𝑙(𝑡𝑟

−) − 

𝑚𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙

{
 
 

 
 
∑ ∑ 𝑅𝑟𝑠(𝑟0)

∞
𝑠=0

∞
𝑟=0

[cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+
𝑚𝑅𝑟𝑠(𝑟0)
𝑀𝑟𝑠

�̇�(𝑡𝑟
−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

− �̇�(𝑡𝑟
−)

}
 
 

 
 

                                         

(6.38) 

�̇�𝑘𝑙(𝑡𝑟
+) = �̇�𝑘𝑙(𝑡𝑟

−) − 

𝑚𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑(𝑡𝑟))

𝑀𝑘𝑙

{
 
 

 
 
∑ ∑ 𝑅𝑟𝑠(𝑟0)

∞
𝑠=0

∞
𝑟=0

[cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+
𝑚𝑅𝑟𝑠(𝑟0)
𝑀𝑟𝑠

�̇�(𝑡𝑟
−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

− �̇�(𝑡𝑟
−)

}
 
 

 
 

     

(6.39) 

�̇�(𝑡𝑟
+) =

∑ ∑ 𝑅𝑟𝑠(𝑟0)
∞
𝑠=0

∞

𝑟=0
[cos(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟

−)+sin(𝑠𝜑(𝑡𝑟))�̇�𝑟𝑠(𝑡𝑟
−)+

𝑚𝑅𝑟𝑠(𝑟0)

𝑀𝑟𝑠
�̇�(𝑡𝑟

−)−�̇�(𝑡𝑟)𝑠sin(𝑠𝜑(𝑡𝑟))𝐶𝑟𝑠(𝑡𝑟)+�̇�(𝑡𝑟)𝑠cos(𝑠𝜑(𝑡𝑟))𝐷𝑟𝑠(𝑡𝑟)]

1+∑ ∑
𝑚𝑅𝑟𝑠

2 (𝑟0)

𝑀𝑟𝑠

∞

𝑠=0

∞

𝑟=0

   

 (6.40) 

6.5.1 Linear stability analysis of the slider-on-disc model 

In the state of slip, the equations of motion of the slider and disc are as follows, 

𝑚𝑟0�̈� + 𝑐1𝑟0�̇� + 𝑘1𝑟0𝜑 +
1

2
𝑘3𝑟0𝜑 −

1

2
𝑘3𝑢 = sgn(𝛺 − �̇�)𝜇k𝐹N        (6.41a) 

𝑚�̈� + 𝑐2�̇� −
1

2
𝑘3𝑟0𝜑 +

1

2
𝑘3𝑢 = 𝐹N − 𝐹                       (6.41b) 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝜉𝜔𝑘𝑙𝑀𝑘𝑙�̇�𝑘𝑙 + 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐶𝑘𝑙 =

                                    [−𝑅𝑘𝑙(𝑟0)cos(𝑙𝜑) −  
ℎ

2𝑟0
𝜇k𝑙𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑)] 𝐹N                (6.41c) 

𝑀𝑘𝑙�̈�𝑘𝑙 + 2𝜉𝜔𝑘𝑙𝑀𝑘𝑙�̇�𝑘𝑙 − 2𝑙𝑀𝑘𝑙𝛺�̇�𝑘𝑙 + (𝜔𝑘𝑙
2 𝑀𝑘𝑙 − 𝑙

2𝑀𝑘𝑙𝛺
2)𝐷𝑘𝑙 =

                                      [−𝑅𝑘𝑙(𝑟0)sin(𝑙𝜑) + 
ℎ

2𝑟0
𝜇k𝑅𝑘𝑙(𝑟0) cos(𝑙𝜑)] 𝐹N               (6.41d) 

where, 

           𝐹N = 𝑘2(∑ ∑ [𝑅𝑘𝑙(𝑟0)(cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙(𝑡))]
∞
𝑙=0

∞
𝑘=0 − 𝑢) +    

                 𝑘nl(∑ ∑ [𝑅𝑘𝑙(𝑟0)(cos(𝑙𝜑) ⋅ 𝐶𝑘𝑙(𝑡) + sin(𝑙𝜑) ⋅ 𝐷𝑘𝑙(𝑡))]
∞
𝑙=0

∞
𝑘=0 − 𝑢)

3
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By setting all the terms involving velocity and acceleration in Eq. (6.41) to be zero, 

the algebraic nonlinear equations to determine the equilibrium point of the system are 

obtained and ca be solved numerically using fsolve in MATLAB.  Then the nonlinear  

Eq. (6.41) is linearized around the equilibrium point and a linearized system is derived. 

By calculating the eigenvalues of linearized system, the stability of the system at the 

equilibrium point is identified. 

The values of basic system parameters are listed in Table 6.2. To avoid excessive 

computations, only the first seven disc modes are included in the transverse vibration 

of the disc, which are found to be adequate in terms of the convergence of the results.  

The first seven natural frequencies of the disc are 1492, 1517, 1517, 1824, 1824, 2774 

and 2774 rad/s. 

Table 6.2  The values of basic system parameters of the slider-on-disc model 

𝑎 𝑏 𝑟0 𝜌 𝐸 ℎ 𝜈 𝛺 

0.044 m 0.12 m 0.1 m 7200 kg/m3 150 GPa 0.002 m 0.211 10rad/s 

𝑚 𝑘1 𝑘2 𝑘3 𝑐1 𝑐2 𝜉  

1 kg 105N/m 5 ∙ 104N

/m 

6 ∙ 104N/m 0.1 N ⋅ s/

m 

0.1 N ⋅ s/

m 

10−4  

Firstly, the effects of nonlinear contact stiffness 𝑘nl on the linear stability of the system 

are investigated. Figs. 6.20 and 6.21 depict respectively the real parts (growth rates) 

and imaginary parts (frequencies) of the complex eigenvalues of the linearized system 

as a function of 𝜇k with different values of 𝑘nl when 𝐹 = 104N. It is observed from 

Fig. 6.20 that four modes (mode 1, mode 4, mode 5 and mode 7) become unstable with 

the increase of 𝜇k, namely, the real parts of eigenvalues become positive. The value of 

the friction coefficient at which the real part of an eigenvalue turns positive can be 

called the critical friction coefficient for the instability of the corresponding mode. The 

results in Fig. 6.20 show that a larger nonlinear contact stiffness 𝑘nl leads to a smaller 

critical friction coefficient for the instability of mode 1 and mode 4, while the critical 

friction coefficients for the instability of mode 5 and mode 7 are nearly unchanged 

with the variation of 𝑘nl . Besides, the results in Fig. 6.21 demonstrate that the 

nonlinear contact stiffness has notable effect on the frequencies of some modes (mode 

1, 2, 5, 7, 9) but little effect on the frequencies of other modes (mode 3, 4, 6, 8). 
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Figure 6.20 The real parts of the complex eigenvalues of the linearized system of the 

slider-on-disc model as a function of 𝜇k with different values of 𝑘nl. 

 

Figure 6. 21 The imaginary parts of the complex eigenvalues of the linearized system 

of the slider-on-disc model as a function of 𝜇k with different values of 𝑘nl. 

Secondly the effects of the geometrical nonlinearity (GN) on the linear stability of the 

system are investigated. The geometrical nonlinearity in the system originate from the 

coupling of tangential motion of the slider and transverse motion of the disc, i.e., the 

coupling of 𝜑(𝑡) and modal coordinates 𝐶𝑘𝑙(𝑡), 𝐷𝑘𝑙(𝑡). To reveal its effect on the 

stability of the system, the linear stability analysis for the system when the disc is 

assumed to be rigid, i.e., without the geometrical nonlinearity, is conducted. For the 

system without the geometrical nonlinearity, only the tangential and normal motion of 

the slider are considered and the mode-coupling instability will happen, as exhibited 

in Fig. 6.22. It is seen from the figure that the critical friction coefficient for the 
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instability when 𝑘nl = 10
6N/m is less than that when 𝑘nl = 0, but the critical friction 

coefficient for the instability when 𝑘nl = 10
8N/m is greater than that when 𝑘nl = 0.  

The comparisons between Fig. 6.20 and Fig. 6.22 (b) indicate the discrepancies 

between the critical friction coefficients for the instability with and without the 

geometrical nonlinearity. For the system with the geometrical nonlinearity, the critical 

friction coefficient at which one of the modes becomes unstable is obviously smaller 

than the critical friction coefficient for the system without the geometrical nonlinearity. 

In Fig. 6.23, the critical friction coefficients for the system with and without the 

geometrical nonlinearity as functions of the preload are given. When 𝑘nl = 0, the 

critical friction coefficient for the system without the geometrical nonlinearity is 

constant with the variation of preload and quite greater than that for the system with 

the geometrical nonlinearity; when 𝑘nl = 10
6N/m , the critical friction coefficient 

with the geometrical nonlinearity is also smaller than without, but the two quantities 

get close to each other as the preload increases between 1000N and 15000N; when 

𝑘nl = 108N/m, the critical friction coefficient for the system without the geometrical 

nonlinearity firstly decreases and then increases with the increase of preload, and is 

much larger than that for the system with the geometrical nonlinearity except when 

𝐹 = 1000N  and 2000N . From these results, it is reasonable to conclude that the 

geometrical nonlinearity promotes the occurrence of dynamic instability. Besides, the 

results shown in Fig. 6.23 demonstrate that the nonlinear contact stiffness has more 

significant effect on the critical friction coefficient for the system without the 

geometrical  nonlinearity than on the critical friction coefficient for the system with 

the geometrical  nonlinearity. 

 
Figure 6.22 Stability analysis of the slider-on-disc model without the geometrical 

nonlinearity as a function of 𝜇k with different values of 𝑘nl: (a) frequencies and (b) 

growth rates. 
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Figure 6.23 The critical friction coefficients for the slider-on-disc model with and 

without the geometrical nonlinearity (GN) as functions of the preload. 

Thirdly, the nonlinearity with respect to the non-smooth states of motion has no effect 

on the linear stability of the system because the system is in the state of slip in the 

vicinity of the equilibrium point. 

6.5.2 Nonlinear steady-state responses of the slider-on-disc model 

The nonlinear steady-state responses of the slider-on-disc system are investigated by 

means of the transient dynamic analysis and the effects of different types of 

nonlinearities on the steady-state responses of the system are examined.  The values 

of the basic system parameters are identical with those in Table 6.2.  

Firstly, the time responses of the system under two values of 𝜇k (0.3, 2.2) with 𝜇s =

3, 𝑘nl = 106N/m and 𝐹 = 1000N are obtained and plotted in Fig. 6.24 and Fig. 6.25, 

respectively. For either value of 𝜇k , the system responses from two different initial 

conditions, i.e., one near the equilibrium point and the other far from the equilibrium 

point, are exhibited. When 𝜇k = 0.3, the two initial conditions lead to different steady-

state responses. The dynamic responses from the initial condition near the equilibrium 

point approach the equilibrium point while the dynamic responses from the initial 

condition far from the equilibrium approach a non-periodic oscillation, which indicates 

the coexistence of two stable solutions in the system. When 𝜇k = 2.2, however, the 

dynamic responses from both initial conditions approach the same quasi-periodic 

oscillation, indicating there is only one stable quasi-periodic solution for the steady-

state responses of the system. 
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Figure 6.24 The time histories of the tangential motion of the slider and the 

transverse displacement of a specific point (𝑟 = 𝑟0, 𝜃 = 1) on the disc under 𝜇k =

0.3 with 𝜇s = 3, 𝑘nl = 106N/m and 𝐹 = 1000N from two initial conditions: (a)(b) 

near the equilibrium point and (c)(d) far from the equilibrium point. 

 

Figure 6.25 The time histories of the tangential motion of the slider and the 

transverse displacement of a specific point (𝑟 = 𝑟0, 𝜃 = 1) on the disc under 𝜇k =

2.2 with 𝜇s = 3, 𝑘nl = 106N/m and 𝐹 = 1000N from two initial conditions: (a)(b) 

near the equilibrium point and (c)(d) far from the equilibrium point. 

Similarly, an index is defined to measure the intensity of steady-state vibration of the 

slider in the system, which is, 

𝐿s =
∫ [(𝜑−𝜑e)

2+(𝑢−𝑢e)
2]d𝑡𝑇

𝑇
                                         (6.42) 

where 𝜑e, 𝑢e  are the values of 𝜑 and 𝑢 at the equilibrium point,  𝑇 represents a time 

period in the steady state. In Fig. 6.26, the values of 𝐿s as 𝜇k varies between 0.1 and 

2.95 are exhibited. It is observed from the figure that the system has a single stable 

equilibrium point when 0.4 < 𝜇k ≤ 0.9 and a single stable oscillation (with finite 

amplitude) when 𝜇k > 0.9 for the steady-state responses, while two stable solutions 
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(the equilibrium point and the oscillation with finite amplitude) coexist when 

0.1 ≤ 𝜇k ≤ 0.4. Fig. 6.27 depicts the periodicity of the steady-state responses when  

0.05 ≤ 𝜇k ≤ 2.95 by showing the values of 𝜑 at the transition points from slip to stick.  

The figure indicates that the system has periodic steady-state responses when 

0.1 ≤ 𝜇k ≤ 0.2, and non-periodic steady-state responses for other values of 𝜇k except 

0.4 < 𝜇k ≤ 0.9 at which the system is stationary at the equilibrium point in the steady 

state.  

 

Figure 6.26  Index 𝐿s as a function of 𝜇k of the slider-on-disc model. 

 
Figure 6.27 The bifurcation behaviour of the steady-state response of the slider-on-

disc model dependent on 𝜇k. 

Next the effects of each type of nonlinearity on the steady-state response of the slider-

on-disc system are revealed.  Firstly, the effects of the nonlinear contact stiffness are 

examined. In Fig. 6.28, the bifurcation behaviours of the steady-state response 

dependent on 𝜇k when 𝑘nl = 0 and 𝑘nl = 10
8N/m are exhibited. By comparing the 

results in Fig. 6.28 with those in Fig. 6.27, it is observed that the bifurcation behaviours 

of the system response under the three different values of 𝑘nl are generally similar. 

One difference exists that while some small values of 𝜇k  corresponds to periodic 

oscillation under 𝑘nl = 0 and 𝑘nl = 10
6N/m, there is no value of 𝜇k corresponding to 

periodic response under 𝑘nl = 108N/m. Overall, the bifurcation behaviours under the 
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three different values of 𝑘nl demonstrate that the nonlinear contacts stiffness has little 

effect on the periodicity of steady-state response of the system. Subsequently the 

values of 𝐿s as the function of 𝜇k with the three different values of 𝑘nl are shown in 

Fig. 6.29. It is seen that the values of 𝐿s under 𝑘nl = 0 and 𝑘nl = 10
6N/m are nearly 

identical at every value of 𝜇k  except 𝜇k = 0.2, while the values of 𝐿s  under 𝑘nl =

108N/m  are greater than those under 𝑘nl = 0  and 𝑘nl = 106N/m  for 𝜇k ≥ 1.2 , 

which indicates stronger steady-state vibration when 𝑘nl = 108N/m than those when 

𝑘nl = 0 and 𝑘nl = 106N/m. Besides, it is shown in Fig. 6.29 that at 0.4 < 𝜇k < 1 

under 𝑘nl = 0 and 𝑘nl = 106N/m and at 0.3 < 𝜇k < 0.6 under 𝑘nl = 108N/m, there 

is no vibration in the steady state, i.e., a single stable equilibrium point exists in the 

system. 

 

Figure 6.28 The bifurcation behaviours of the steady-state response of the slider-on-

disc model dependent on 𝜇k with different values of 𝑘nl: (a) 𝑘nl = 0 and (b) 𝑘nl =

108N/m. 

 

Figure 6.29 Index 𝐿s as the function of 𝜇k of the slider-on-disc model with different 

values of 𝑘nl. 

Secondly, the effects of the geometrical nonlinearity on the steady-state response of 

the slider-on-disc system are investigated. To reveal the effects of the geometrical 
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nonlinearity are obtained and compared with the results of the original system with the 

geometrical nonlinearity. In Fig. 6.30, the bifurcation behaviours of the steady-state 

response when 0.05 ≤ 𝜇k ≤ 2.95 for the system without the geometrical nonlinearity 

are plotted. It is observed from the figure that there are small values of 𝜇k 

(0.1 ≤ 𝜇k  < 0.2)  corresponding to periodic oscillation under 𝑘nl = 0  and 𝑘nl =

106N/m, while no value of 𝜇k corresponds to periodic response under 𝑘nl = 108N/m. 

The comparison between the bifurcation behaviours with and without the geometrical 

nonlinearity indicates that the geometrical nonlinearity has little effect on the 

periodicity of steady-state response of the system. In Fig. 6.31, the values of index 𝐿s 

as the function of 𝜇k for the system without the geometrical nonlinearity are presented. 

The comparison between Fig. 6.31 and Fig. 6.29 highlight two significant differences 

between the values of 𝐿s with and without the geometrical nonlinearity. Firstly, the 

values of 𝐿s for the system with the geometrical nonlinearity are greater than those for 

the system without the geometrical nonlinearity at 𝜇k > 1 under each of the three 

values of 𝑘nl, which indicates stronger steady-state response for the system with the 

geometrical nonlinearity than that for the system without the geometrical nonlinearity. 

Secondly, the values of 𝐿s  at 𝜇k ≥ 0.8  under 𝑘nl = 108N/m  are smaller than or 

nearly equal to those under 𝑘nl = 0 and 𝑘nl = 106N/m at for the system without the 

geometrical nonlinearity, which is quite different from the scenario of the system with 

the geometrical nonlinearity. These two differences embody the significant effect of 

the geometrical nonlinearity on the values of 𝐿s , i.e., the intensity of steady-state 

response of the slider. However, one similarity between the results of 𝐿s with and 

without the geometrical nonlinearity is also observed, that is, the similar trend of 𝐿s 

with the variation of 𝜇k under each value of 𝑘nl. 

 
Figure 6.30 The bifurcation behaviours of the steady-state response for the slider-on-

disc model without the geometrical nonlinearity: (a)𝑘nl = 0, (b) 𝑘nl = 106N/m and 

(c) 𝑘nl = 108N/m. 
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Figure 6.31 Index 𝐿s as the function of 𝜇k for the slider-on-disc model without the 

geometrical nonlinearity. 

Thirdly, the effects of the non-smooth states of motion on the steady-state response of 

the slider-on-disc are studied. To reveal the effects of the non-smooth states of motion 

including stick/slip and contact/separation on the steady-state responses of the system, 

the dynamic responses of the system with the following three different kinds of 

assumptions about the states of motion are calculated and compared with those of the 

original system. The first kind of assumption is that there exists the single state of 

unidirectional relative sliding in the vibration; the second is that there exist two distinct 

states of motion that are unidirectional relative sliding and separation in the vibration; 

the third is that there exist three possible states of motion in the vibration which are 

sliding, reverse-sliding and separation. In other word, the states of stick and separation 

are neglected in the first kind of assumption, while in the second and third kind of 

assumptions, the state of stick is neglected. It is found by computations that the 

amplitudes of dynamic responses will grow to infinity for 𝜇k greater than a certain 

value when the first kind of assumption is implemented, therefore it is not feasible to 

acquire the bifurcation behaviour and intensity of the steady-state response. 

Nevertheless, the range of 𝜇k at which the self-excited vibration exists in the steady 

state can be obtained. The numerical results demonstrate that the self-excited vibration 

exists in the steady state at 𝜇k ≥ 0.6 for each value of 𝑘nl (0, 106N/m, 108N/m), 

while at 𝜇k < 0.6 the system is stationary at the equilibrium point in the steady state. 

This scenario is different from that of the original system in which the self-excited 

vibration also exists in the steady state at small values of 𝜇k, e.g. 𝜇k ≤ 0.4. 

The steady-state responses of the system with other two kinds of assumptions are next 

obtained. The bifurcation behaviours of the steady-state response for the system with 
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the second kind of  assumption about the states of motion are displayed in Fig. 6.32, 

which shows the values of 𝜑 when �̇� = 0. The self-excited vibration exists in the 

steady state at 𝜇k ≥ 0.6 for each value of 𝑘nl (0, 106N/m, 108N/m).  It is found that 

for each of the three values of 𝑘nl, the system has non-periodic steady-state response 

at any values of  𝜇k (𝜇k ≥ 0.6).  The values of index 𝐿s as the function of 𝜇k for the 

system with the second kind of  assumption about the states of motion are given in Fig. 

6.33. Roughly speaking, the values of 𝐿s grows with the increase of 𝜇k, indicating 

stronger steady-state vibration at larger 𝜇k. And the comparison between the results in 

Fig. 6.33 and the results in Fig. 6.29 manifests that the values of 𝐿s for the system with 

the second kind of  assumption about the states of motion are much larger than those 

of the original system, namely, there exists stronger steady-state vibration for the 

system with the second kind of  assumption than that of the original system. 

 
Figure 6.32 The bifurcation behaviours of the steady-state response for the slider-on-

disc model with the second kind of  assumption about the states of motion: (a)𝑘nl =

0, (b) 𝑘nl = 106N/m and (c) 𝑘nl = 108N/m. 

 

Figure 6.33 Index 𝐿s as the function of 𝜇k for the slider-on-disc model with the 

second kind of  assumption about the states of motion. 
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The bifurcation behaviours of the steady-state response for the system with the third 

kind of  assumption about the states of motion are displayed in Fig. 6.34. The self-

excited vibration exists in the steady state at 𝜇k ≥ 0.6  for each value of 𝑘nl  (0, 

106N/m, 108N/m). It is found that the system has periodic steady-state response at 

some values of 𝜇k under each value of 𝑘nl, e.g. at 1.1 < 𝜇k < 1.5 under 𝑘nl = 0 and 

𝑘nl = 106N/m, at 0.6 ≤ 𝜇k < 1 under 𝑘nl = 10
8N/m. The steady-state responses at 

other values of  𝜇k are non-periodic. The values of index 𝐿s as the function of 𝜇k for 

the system with the third kind of  assumption about the states of motion are given in 

Fig. 6.35. The comparison of the results in Fig. 6.35 with the results in Fig. 6.29 also 

manifests much greater values of 𝐿s with this kind of assumption than those of the 

original system. 

 
Figure 6.34 The bifurcation behaviours of the steady-state response for the slider-on-

disc model with the third kind of assumption about the states of motion: (a)𝑘nl = 0, 

(b) 𝑘nl = 10
6N/m and (c) 𝑘nl = 10

8N/m. 

 

Figure 6.35 Index 𝐿s as the function of 𝜇k for the slider-on-disc mode with the third 

kind of  assumption about the states of motion. 
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Overall,  it can be concluded from the above observations that the nonlinearity of the 

non-smooth states of motion has significant effects on the steady-state responses of the 

slider-on-disc system, especially on the intensity of vibration which is reflected by the 

values of index 𝐿s. 

6.6. Conclusions 

In this chapter, the dynamics of a novel 5-DoF mass-on-belt frictional model with three 

different types of nonlinearities is investigated. The first type of nonlinearity is the 

nonlinear contact stiffness, the second is the non-smooth states of motion including 

stick, slip and separation, and the third is the geometrical nonlinearity caused by the 

moving-load feature of the mass on the rigid belt. Both the linear stability of the system 

and the nonlinear steady-state responses are studied. The effects of each type of 

nonlinearity on the system dynamics are revealed. Besides, a similar study is carried 

out on a continuous slider-on-disc model. Based on the observations from the 

numerical study, the following conclusions are reached, 

1. The mode-coupling instability arises in the 5-DoF frictional system with the increase 

of the coefficient of kinetic friction 𝜇k . The critical friction coefficient for the 

instability decreases with the increase of the preload. 

2. The nonlinearity of contact stiffness and the geometrical nonlinearity have 

significant effects on the linear stability of the 5-DoF frictional system. The increase 

of nonlinear contact stiffness leads to the decrease of critical friction coefficient for 

the instability. The presence of geometrical nonlinearity contributes to the decrease 

of critical friction coefficient for the instability and increases the complexity of the 

instability in the system. 

3. There is coexistence of two stable solutions, i.e., the equilibrium point and the limit 

cycle vibration, in both the 5-DoF frictional system and the slider-on-disc system     

in a certain range of 𝜇k, and the linear stability analysis fails to detect the occurrence 

of self-excited vibration when the system is bi-stable, which can only be found out 

by the transient dynamic analysis. Besides, the bifurcation behaviours of the steady-

state responses of the systems with the variation of 𝜇k are found. 

4. Each of the three different types of nonlinearities has significant effects on the 

steady-state responses of the 5-DoF frictional system in terms of both the 
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periodicity and the intensity of vibration, which are demonstrated in the numerical 

study. 

5. Frequencies of the steady-state responses in the 5-DoF frictional system deviate 

markedly from the unstable eigenfrequencies of the linearized system and each type 

of nonlinearity has different effects on the deviation of vibration frequencies from 

the unstable eigenfrequencies.  

6. Multiple modes become unstable with the increase of 𝜇k in the slider-on-disc system. 

The nonlinearity of contact stiffness has distinct effects on the instabilities of 

different modes. For some modes, the increase of nonlinear contact stiffness leads 

to the decrease of critical friction coefficient for the instability, while the critical 

friction coefficients for some modes are nearly unchanged with the variation of 

nonlinear contact stiffness. The geometrical nonlinearity promotes the occurrence 

of  dynamic instability in the slider-on-disc system. 

7. The nonlinear contact stiffness and the geometrical nonlinearity have significant 

effect on the intensity of steady-state response but little effect on the periodicity of 

steady-state response in the slider-on-disc system, while the nonlinearity of the non-

smooth states of motion has significant effect on both the intensity and the 

periodicity of steady-state response in the slider-on-disc system. 

 

 

 

 

 

 

 

 

 

 

 

 



136 

 

 

 

 

Chapter 7    

Friction induced vibration of a pin-on-disc system 

considering non-uniform friction interface 

In this chapter, a new pin-on-disc system with an L-mechanism is proposed and the 

friction induced dynamics of the system is studied. The Coulomb’s law of friction with 

static friction coefficient 𝜇s and kinetic friction coefficient 𝜇k is utilized to model the 

friction force between the pin and disc. The stick-slip motion of the pin in the 

circumferential direction of the spinning disc is analysed, while the normal force 

between them is adjusted by the vibration of an L-shaped component which is induced 

by the pin’s motion. It is found that the variable normal force contributes to the 

occurrence of bifurcation behaviours of system responses. Besides, it is observed that 

the system is bi-stable at low disc speed and high normal preload when 𝜇s > 𝜇k, i.e., 

there is coexistence of a stable pure sliding solution and a stable stick-slip limit cycle 

for the pin. The non-uniform friction interface in which a sector of the disc surface 

possesses a different set of friction property from that on the rest of the disc surface is 

then introduced and the corresponding friction induced dynamics of the system is 

investigated. It is found that with appropriate friction coefficients on the sector and an 

appropriate span angle of the sector, the range of disc speed and normal preload at 

which the stick-slip vibration exists will be greatly diminished in comparison with the 

original uniform friction interface.  
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7.1 Introduction 

Stick-slip phenomenon occurring in engineering or in daily life is a typical kind of 

vibration caused by friction, in which the dynamical systems experience non-smooth 

transitions between the two states (slip and stick) at zero relative velocity during 

operation.  The vibration instability in numerous mechanical systems results from the 

friction induced stick-slip vibration, e.g., the sound of string music instruments [212], 

the squeaking joints of robots [213], the stick-slip oscillation of drill-strings [12], the 

noise of windscreen wipers [7] and the low-frequency automobile brake noise called 

creep groan [10], etc.  As introduced in the literature review, there have been a number 

of published studies on the stick-slip vibration. For example, Popp et al. [20] 

investigated stick-slip vibration of discrete and continuous models and observed the 

rich bifurcation and chaotic behaviour for the models with the governing equations 

which can be expressed as three- or higher-dimension first-order ordinary differential 

equations; Hetzler [31] studied the effect of non-smooth Coulomb friction on a simple 

oscillator on a belt exhibiting self-excited vibration due to negative damping in the 

case of negative friction force-relative velocity slope; Papangelo [33] investigated the 

subcritical bifurcation of a slider-on-belt system which experienced friction induced 

vibration in the case of a weakening-strengthening friction law, and the results showed 

there was a range of parameter values where two stable solutions coexisted, i.e., a 

stable sliding equilibrium and a stable stick-slip limit cycle. Although only two distinct 

states are involved in stick-slip oscillations, very complicated dynamic behaviours can 

still arise and the dynamic responses vary among the mechanical systems with stick-

slip vibration. 

The stick-slip vibration can adversely affect the performance of machines. For 

example, the stick-slip vibration in automobile brake systems causes low-frequency 

brake noise such as creep groan which may cause discomfort to passengers and impact 

the reputations of automobile brands. To help suppress the adverse stick-slip vibration 

in mechanical systems, some researchers conducted theoretical or/and experimental 

studies. In Ref. [214], an approach for the robust suppression of stick-

slip oscillations in oil drill-strings was presented. In Ref. [215], the approach of normal 

load modulation was put forward to stabilize the frictional system against stick-slip 

oscillations. Jang  et al. [216] examined creep groan propensity of different friction 

https://www.sciencedirect.com/topics/engineering/stick-slip
https://www.sciencedirect.com/topics/engineering/stick-slip
https://www.sciencedirect.com/topics/physics-and-astronomy/oscillations
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materials. Fuadi et al. [217] studied the fundamental mechanism of creep groan 

generation of an experimental caliper-slider model. Both works showed that the creep 

groan could be successfully avoided by using friction materials with small difference 

between coefficients of static and kinetic friction. Zhao et al. [195] integrated 

piezoceramic actuators into a disc brake system to provide harmonic high-frequency 

vibrations to reduce the difference between coefficients of static and kinetic friction 

so as to eliminate the stick-slip limit cycle vibration of the system. 

However, there is no universal solution for the suppression of stick-slip vibration in 

mechanical systems yet. To gain more insights into this problem, a new pin-on-disc 

system with an L-mechanism to adjust the normal force is proposed and the friction 

induced stick-slip vibration of the system is investigated. Especially, the friction 

induced dynamics with a non-uniform friction interface on the disc, i.e., a sector of the 

disc surface possesses a different set of friction property from that on the rest of the 

disc surface, is studied.  

7.2 Model description and dynamic equations 

A new pin-on-disc arrangement with an L-mechanism to adjust the normal force 

during vibration is proposed, as shown in Fig. 7.1. Such a mechanism was also 

employed in a mass-on-moving-belt model in Ref. [104]. The pin, fixed on a vertical 

plate protruding from the leading end of a hollow cylinder which can rotate around the 

central axis, is pressed against the spinning disc by a preload 𝑁0. The resultant friction 

force leads to the rotation of the cylinder and attached structures, which is constrained 

by linear spring 𝑘1 at the end of a horizontal arm protruding from the cylinder. Linear 

spring 𝑘3 , which connects a vertical arm protruding from the trailing end of the 

cylinder with one side of an L-shaped component, brings it into rotation around the 

pivot as the cylinder rotates. The other side of the L-shaped component is connected 

to the back of the plate on which the pin is fixed by linear spring 𝑘2, therefore the 

normal force between the pin and disc is changed with the rotation of the L-shaped 

component. 

The dynamic equations of the system are next derived. The angular displacements of 

the cylinder and the L-shaped component, which are denoted by 𝜑 and 𝜃 respectively, 

are considered. The kinetic energy of the system can be written as, 
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𝑇 =
1

2
𝐽c�̇�

2 +
1

2
𝐽L�̇�

2                                             (7.1) 

where 𝐽c , 𝐽L  are the rotational inertia of the cylinder and the L-shape structure, 

respectively. The potential energy of the system is the sum of the elastic potential 

energy of springs 𝑘1, 𝑘2 and 𝑘3, i.e., 

𝑈 =
1

2
𝑘1Δ𝑙1

2 +
1

2
𝑘2Δ𝑙2

2 +
1

2
𝑘3Δ𝑙3

2                                     (7.2) 

where ∆𝑙𝑖 (𝑖 = 1,2,3) represent the amount of deformation of spring 𝑘𝑖. 

 

 

 

 

 

 

 

 

 

Figure 7.1 A new pin-on-disc setup. 

Denoting the distance between the fixed point of spring 𝑘1 on the horizontal arm and 

the central axis as 𝑎0, the distance between the fixed point of spring 𝑘2 at the back of 

the vertical plate and the central axis as 𝑏0, both the distances between the fixed points 

of spring 𝑘2  and 𝑘3  on the L-shape structure and the pivot as 𝑐0 , the amount of 

deformation of springs can be expressed as, 

Δ𝑙1 = √(𝑙1 − 𝑎0sin𝜑)2 + 𝑎0
2(1 − cos𝜑)2 − 𝑙1                         (7.3) 

Δ𝑙2 = √[𝑐0(1 − cos𝜃) + 𝑏0sin𝜑]2 + 𝑏0
2(1 − cos𝜑)2+(𝑙2 + 𝑐0sin𝜃)2 − 𝑙2   (7.4) 

Δ𝑙3 = √(𝑙3 + 𝑐0sin𝜃 + 𝑏0sin𝜑)2 + 𝑏0
2(1 − cos𝜑)2 + 𝑐0

2(1 − cos𝜃)2 − 𝑙3   (7.5) 

where 𝑙𝑖 (𝑖 = 1,2,3)  is the free length of spring 𝑘𝑖 . By expanding the above 

expressions into the Taylor series with respect to 𝜑 and 𝜃 and neglecting the third and 
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higher order terms, which can be done as the magnitudes of 𝜑 and 𝜃 are assumed to 

be small, it is derived that, 

Δ𝑙1 = −𝑎0𝜑                                                   (7.6) 

Δ𝑙2 = 𝑐0𝜃 +
𝑏0
2

2𝑙2
𝜑2                                             (7.7) 

Δ𝑙3 = 𝑐0𝜃 + 𝑏0𝜑                                               (7.8) 

The virtual work of external forces include the work done by the friction force and by 

the rotational damping forces, i.e., 

𝛿𝑊 = −𝑐1�̇�𝛿𝜑 − 𝑐2�̇�𝛿𝜃 + 𝑓𝑏0𝛿𝜑 = (−𝑐1�̇� + 𝑓𝑏0)𝛿𝜑 − 𝑐2�̇�𝛿𝜃           (7.9) 

where 𝑐1, 𝑐2 are the damping coefficients, 𝑓 is the friction force between the pin and 

disc.  By substituting Eqs. (7.1)-(7.2), (7.6)-(7.9) into the Lagrange’s equations, 

d

d𝑡

𝜕(𝑇−𝑈)

𝜕�̇�
−
𝜕(𝑇−𝑈)

𝜕𝜑
= 𝑄1                                        (7.10) 

d

d𝑡

𝜕(𝑇−𝑈)

𝜕�̇�
−
𝜕(𝑇−𝑈)

𝜕𝜃
= 𝑄2                                        (7.11) 

where the generalized forces  𝑄1 = −𝑐1�̇� + 𝑓𝑏0, 𝑄2 = −𝑐2�̇�, the equations of motion 

of the system can be obtained as, 

𝐽c�̈� + 𝑐1�̇� + (𝑘1𝑎0
2 + 𝑘3𝑏0

2)𝜑 + 𝑘2
𝑏0
2𝜑

𝑙2
(𝑐0𝜃 +

𝑏0
2𝜑2

2𝑙2
) + 𝑘3𝑏0𝑐0𝜃 = 𝑓𝑏0      (7.12) 

𝐽L�̈� + 𝑐2�̇� + 𝑘3𝑐0(𝑐0𝜃 + 𝑏0𝜑) + 𝑘2𝑐0 (𝑐0𝜃 +
𝑏0
2𝜑2

2𝑙2
) = 0               (7.13) 

As the Coulomb’s friction law is utilized, the friction force during relative sliding can 

be expressed as, 

𝑓 = sgn(𝛺 − �̇�)𝜇k𝑁                                        (7.14) 

where 𝜇k is the coefficient of kinetic friction. The friction force during sticking is 

obtained by the dynamic equation Eq. (7.12), i.e., 

𝑓 =
1

𝑏0
[𝑐1𝛺 + (𝑘1𝑎0

2 + 𝑘3𝑏0
2)𝜑 + 𝑘2

𝑏0
2𝜑

𝑙2
(𝑐0𝜃 +

𝑏0
2𝜑2

2𝑙2
) + 𝑘3𝑏0𝑐0𝜃]      (7.15) 

And the condition for the system to stay in the state of stick is, 

 |𝑓| ≤ 𝜇s𝑁                                                 (7.16) 
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in which 𝜇s is the coefficient of static friction. The normal force 𝑁 is the sum of the 

preload 𝑁0 and the component of the force of the spring 𝑘2 in the normal direction, 

i.e., 

 𝑁 = 𝑁0 + 𝑘2∆𝑙2
−𝑙2−𝑐0sin𝜃

𝑙2+∆𝑙2
≈ 𝑁0 − 𝑘2∆𝑙2                 (7.17) 

7.3 Numerical study of system dynamics under the uniform friction 

interface 

The stick-slip vibration of the system in the situation of uniform friction interface is 

firstly investigated. The values of basic system parameters used in the numerical 

simulation are listed in Table 7.1. 

Table 7.1 The values of basic system parameters 

𝐽c 𝐽L 𝑘1 𝑘2 𝑘3 𝑐1 𝑐2 

12·10−4kg·m2 5·10−4kg·m2 1500N/m 1000N/m 1000N/m 0.001N·m·s 0.001N·m·s 

𝑎0 𝑏0 𝑐0 𝑙1 𝑙2 𝑙3  

0.1m 0.1m 0.1m 0.1m 0.1m 0.1m  

It is assumed that the coefficients of friction between the pin and the disc surface are 

uniform with 𝜇s=0.4 and 𝜇k=0.23. In Fig. 7.2 and 7.3, the dynamic responses of the 

system when the disc speed 𝛺 = 2rad/s and the preload 𝑁0 = 30N in two different 

sets of initial conditions are shown. It is seen that the system responses may go into a 

limit cycle which corresponds to periodic stick-slip oscillation for the pin, or an 

equilibrium point which corresponds to steady sliding for the pin, depending on the 

initial conditions. This indicates the coexistence of two stable solutions in the system 

for the above combination of 𝛺  and 𝑁0 . Moreover, the dynamic responses of the 

system when 𝛺 = 8rad/s, 𝑁0 = 30N and 𝛺 = 2rad/s, 𝑁0 = 8N in different initial 

conditions are exhibited in Fig. 7.4 and 7.5, respectively. It is seen that different initial 

conditions approach the same solution, i.e., the equilibrium point, indicating there is 

one stable solution which is the equilibrium point in the system for these two parameter 

combinations. From the above observations, it is concluded that the parameter domain 

of (𝛺, 𝑁0) can be divided into two different regions, where one region contains the 

parameter combinations at which only one stable solution (the steady sliding 

equilibrium) exists in the system, and the other contains the parameter combinations 



142 

 

at which two stable solutions coexist in the system, including the steady sliding 

equilibrium and the stick-slip limit cycle. 

 
Figure 7.2 Time histories and phase plots of dynamic responses under 𝛺 = 2rad/s, 

𝑁0 = 30N with 𝜑(0) = 𝜃(0) = �̇�(0) = 0, �̇�(0) = 2rad/s. 

 

Figure 7.3 Time histories and phase plots of dynamic responses under 𝛺 = 2rad/s, 

𝑁0 = 30N with 𝜑(0) = 0.037rad, 𝜃(0) = −0.019rad, �̇�(0) = 0.1rad/s, �̇�(0) = 0 

 
Figure 7.4 Time histories and phase plots of dynamic responses under 𝛺 = 8rad/s 

and 𝑁0 = 30N with: (a) (b) 𝜑(0) = 𝜃(0) = �̇�(0) = 0, �̇�(0) = 8rad/s; (c) (d) 

𝜑(0) = 0.037rad, 𝜃(0) = −0.019rad, �̇�(0) = 0.1rad/s, �̇�(0) = 0. 
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Figure 7.5 Time histories and phase plots of dynamic responses under 𝛺 = 2rad/s 

and 𝑁0 = 8N with: (a) (b) 𝜑(0) = 𝜃(0) = �̇�(0) = 0, �̇�(0) = 2rad/s; (c) (d) 

𝜑(0) = 0.0098rad, 𝜃(0) = −0.0049rad, �̇�(0) = 0.1rad/s, �̇�(0) = 0. 

Next the ranges of parameters where the two stable solutions coexist or only one stable 

equilibrium exists are determined by extensive numerical simulation. The result is 

displayed in Fig. 7.6, in which region A represents the parameter combinations where 

only one stable solution exists, i.e., the steady sliding equilibrium, while  region B 

represents the parameter combinations where two stable solutions including a stick-

slip limit cycle coexist.   

 

Figure 7.6 Ranges of parameters where two stable solutions coexist and only one 

stable equilibrium exists. 

From the above analysis, the stick-slip vibration will occur when the parameter 

combinations lie within region B. Next the bifurcation behaviours of the stick-slip 

vibration with the variations of parameters are investigated. The bifurcations of the 

values of 𝜑 at the transition points from stick to slip with the variations of 𝛺 and 𝑁0 

are displayed in Figs. 7.7 and 7.8, respectively. It is observed from the figures that the 
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system has non-periodic stick-slip response when the disc speed is low or the preload 

is large, which is due to the variable normal force during vibration. 

 

Figure 7.7 The bifurcation behaviour of the stick-slip response of the system 

dependent on the disc speed when 𝑁0 = 30N. 

 

Figure 7.8 The bifurcation behaviour of the stick-slip response of the system 

dependent on the preload when 𝛺 = 2rad/s. 

Besides, the bifurcation behaviours of the stick-slip response of the system when 𝑐1 =

𝑐2 = 0 and 𝑐1 = 𝑐2 = 0.01N·m·s are shown in Figs. 7.9 and 7.10, respectively. The 

results demonstrate that the bifurcation behaviour of the system response exists in the 

situation of small or no structural damping. When the structural damping is sufficiently 

large, however, the system response does not bifurcate.  

 

Figure 7.9 The bifurcation behaviour of the stick-slip response of the undamped 

system dependent on: (a) the disc speed and (b) the preload. 
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Figure 7.10 The bifurcation behaviour of the stick-slip response of the system with 

𝑐1 = 𝑐2 = 0.01N·m·s dependent on: (a) the disc speed and (b) the preload. 

7.4 Numerical study of system dynamics under the non-uniform 

friction interface 

In this section, the system dynamics under the non-uniform friction interface, i.e., a 

sector (the span angle is denoted by 𝛽) of the disc surface possesses a different set of 

friction property from that in the rest of the disc as shown in Fig. 7.11(b), is studied.  

 

 

 

 

 

 

Figure 7.11 The configurations of disc surfaces: (a) uniform friction interface (b) 

non-uniform friction interface. 

Suppose the friction property 1 is the same as that in Section 7.3 and the friction 

property 2 is represented by 𝜇s=0.3 and 𝜇k=0.2.  The dynamic responses of the system 

under the non-uniform friction interface with 𝛽 = 15° when 𝛺 = 4rad/s, 𝑁0 = 30N  

are calculated and shown in Fig. 7.12 (a)-(c). And extensive simulations from different 

initial conditions are carried out, all of which approach the same steady-state response 

as that depicted in the figure. Therefore, there is only one stable solution of the steady-

state response in which no stick-slip vibration appears. It is seen from Fig. 7.12 (d)-(f) 

this single stable solution consists of dynamic response in two stages. When the pin is 

𝛽 

(a) (b) 

Friction property 1 Friction property 1 

Friction property 2 



146 

 

on the small sector with the friction property 2, the dynamic response decays;  When 

the pin is on the rest of the disc surface with the friction property 1, the dynamic 

response also decays to approach the steady sliding equilibrium. Moreover, one of the 

two stable solutions of the system under the uniform friction interface with the friction 

property 1 for the above combination of (Ω,𝑁0), i.e., the stick-slip limit cycle vibration, 

is exhibited, which, as seen in the figure, has much larger amplitudes than those under 

the non-uniform friction interface. It is thus demonstrated that for this combination of 

(Ω,𝑁0) , only a single stable solution corresponding to no existence of stick-slip 

vibration exists under the above non-uniform friction interface, while two stable 

solutions including a stick-slip limit cycle coexist under the uniform friction interface 

with the friction property 1. 

Next the ranges of parameters (Ω,𝑁0) concerning whether stick-slip vibration happens 

or not in the system in this non-uniform configuration are depicted in Fig. 7.13.  In this 

figure, the area in green represents the parameter combinations at which the stick-slip 

vibration exists, and the dynamic responses at one parameter combination in this area 

are shown in Fig. 7.14, where two solutions, one with stick-slip vibration and one with 

pure slip, are possible depending on the initial conditions. The remaining area in the 

domain represents the parameter combinations at which the stick-slip vibration does 

not occur from any set of initial condition, and the dynamic responses at parameter 

combinations in this area are exemplified as that in Fig. 7.12. The solid blue curve and 

the dashed red curve in Fig. 7.13 are the boundaries between the parameter range 

where the stick-slip vibration exists and the parameter range where no stick-slip 

appears in the situation of uniform friction interface with the friction property 1 and 

the friction property 2, respectively.  It is seen that the parameter range corresponding 

to the existence of stick-slip vibration under the non-uniform friction interface is 

diminished significantly than that under the uniform friction interface with the friction 

property 1, and even smaller than that under the uniform friction interface with the 

friction property 2. 
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Figure 7.12 The dynamic responses under the non-uniform friction interface with 

𝛽 = 15° and comparisons with the responses under the uniform friction interface 

when 𝛺 = 4rad/s, 𝑁0 = 30N (a-c) and the zoom-in plot of dynamic responses under 

the non-uniform friction interface during 𝑡 = [6, 9.3]s (d-f). 

 

Figure 7.13 Ranges of parameters (Ω, 𝑁0) as to whether the stick-slip vibration 

happens or not in the system. 

 
Figure 7.14 The two solutions of dynamic response under the non-uniform friction 

interface when Ω = 1rad/s, 𝑁0 = 30N: (a) with stick-slip vibration and (b) with 

pure slip. 
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The effect of the span angle of the sector 𝛽 on the system dynamics is then investigated. 

In Fig. 7.15, the ranges of (Ω,𝑁0) as to whether the stick-slip vibration happens or not 

in the system for different values of 𝛽 are illustrated, where the three curves with 

different colours and markers are the boundaries between the parameter range where 

the stick-slip vibration exists and the parameter range where no stick-slip appears in 

the situation of non-uniform friction interface with 𝛽 = 5°, 15°, 90°, respectively. It is 

observed from the figure that under the non-uniform interface with 𝛽 = 5° , the 

parameter range where the stick-slip vibration exists is not significantly reduced 

compared with that under the uniform interface with the friction property 1, while 

under the non-uniform interface with 𝛽 = 15°  and 𝛽 = 90° , the parameter range 

where the stick-slip vibration exists is greatly diminished than that under the uniform 

friction property 1. 

 

Figure 7.15 Ranges of parameters (Ω, 𝑁0) as to whether the stick-slip vibration 

happens or not under the non-uniform friction interface with different 𝛽. 

Moreover, the system dynamics under the non-uniform friction interface in the case of  

𝑐1 = 𝑐2 = 0.01N·m·s (the values of other system parameter are the same as those in 

Table 7.1) is considered. In Fig. 7.16, the boundaries between the parameter range 

where the stick-slip vibration exists and the parameter range where no stick-slip 

appears under the  non-uniform friction interface with 𝛽 = 5°, 90°, 180° and under the 

uniform friction interface with the friction property 1 and the friction property 2 are 

displayed. It is observed from the figure that the non-uniform friction interface with 

only 𝛽 = 5°  is effective in diminishing the parameter range corresponding to the 

existence of stick-slip vibration considerably in this case. 
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Figure 7.16 Ranges of parameters (Ω, 𝑁0) as to whether the stick-slip vibration 

happens or not under the non-uniform friction interface with different 𝛽 when 𝑐1 =

𝑐2 = 0.01N·m·s. 

It is crucial to choose an appropriate friction property 2 on the sector to achieve the 

aim of diminishing the parameter range corresponding to the existence of stick-slip 

vibration in the system than the original uniform friction property 1. The effective 

friction property 2 is supposed to correspond to smaller parameter range where the 

stick-slip vibration exists than the friction property 1, when under the uniform friction 

interface. By further numerical simulations, the effective coefficients of static and 

kinetic friction of the friction property 2 besides the combination used in the above 

examples are identified and shown to be the combinations inside the marked closed 

curve in Fig. 7.17. Different combinations of friction coefficients in the ‘effective’ 

region can reduce the parameter range corresponding to the existence of stick-slip 

vibration to different extents. An extreme case is when both friction coefficients of the 

friction property 2 are equal to the coefficient of kinetic friction of the friction property 

1, i.e. 𝜇s=𝜇k =0.23, in which there is no stick-slip vibration appearing in the whole 

domain of  (𝛺,𝑁0). 

 
Figure 7.17 Effective coefficients of static and kinetic friction of the friction property 

2 on the sector. 

0 1 2 3 4 5 6

 [rad/s]

0

10

20

30

40

50

60

N
0
 [
N

]

=5

=90

=180

uniform friction property 1

uniform friction property 2

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

k

0

0.1

0.2

0.3

0.4

0.5

0.6

s Effective



150 

 

The examples in this section demonstrate that only a small sector of  disc surface, 

rather than the whole disc surface, needs to be modified in the friction property in order 

to achieve the aim of diminishing the parameter range where the stick-slip vibration 

exists. There is a point worth noting that the modification of disc surface is solely in 

the consideration of reducing the possibility of occurrence of stick-slip vibration in the 

system, while other considerations are needed if applying the non-uniform friction 

interface to real machines, e.g., the braking capacity should be re-evaluated if the 

surface of a brake rotor is modified into the non-uniform friction interface. 

7.5 Conclusions 

A new pin-on-disc system with an L-mechanism is proposed and the friction induced 

dynamics of the system with uniform and non-uniform friction interface is studied in 

this chapter. The Coulomb’s law of friction with static friction coefficient 𝜇s  and 

kinetic friction coefficient 𝜇k is employed to model the friction force. The following 

conclusions can be obtained based on the numerical results, 

1. For the uniform friction interface, the system is bi-stable at low disc speed and high 

normal preload when 𝜇s > 𝜇k, i.e., a stable pure sliding solution and a stable stick-

slip solution coexist.  

2. The variable normal force during vibration contributes to the occurrence of 

bifurcation behaviours of system responses in the case of small or no structural 

damping. 

3.  A sector of disc surface with a different friction property can be used to diminish 

the area of disc speeds and normal loads where the stick-slip limit cycle vibration 

exists in the system, thereby reducing the possibility of occurrence of friction 

induced stick-slip vibration. However, the friction property on the sector and the 

span angle of the sector need to be appropriately chosen. 
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Chapter 8 

Conclusions and outlook 

8.1 Conclusions 

Friction induced vibration is widespread in mechanical systems. Because of the 

universality and significance of this problem,  friction induced vibration attracted great 

research interest and abundant studies have been carried out.  However, this problem 

is not fully resolved yet due to its immense complexity, and more research needs to be 

done. In this PhD project, the friction induced vibration is theoretically studied on 

discrete and continuous mechanical models that aim to enhance the understanding 

about the causes, the dynamic behaviours and the suppression of the friction induced 

vibration in mechanical systems. The research in this project is done in four main 

aspects. Firstly the friction induced vibration of a mass slider on an elastic disc 

spinning at time-varying speeds is investigated; secondly the suppression of friction 

induced vibration in multi-degree-of-freedom systems using tangential harmonic 

excitation is studied; Thirdly the friction induced vibration considering multiple types 

of nonlinearities on a five-degree-of-freedom lumped model and a slider-on-disc 

model is explored. Finally the friction induced stick-slip vibration of a new slider-on-

disc system with an L-mechanism to adjust the normal force, especially with non-

uniform friction interface, is studied. The important conclusions drawn from the 

research work in this project are as follows, 

1.  The time-varying spinning speeds of disc cause distinct dynamic behaviours of the 

system from that under the constant disc speed and two types of differences are found. 

Firstly, for the system with the parameter combinations corresponding to the stable 
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sliding equilibrium in the situation of constant speed, the vibration will decay with 

time and ceases eventually. While in the situation of time-varying disc speed, the 

system vibration decays with time in the early stage but grows in the later stage.  This 

kind of time-varying characteristic of friction induced vibration results from the 

negative-slope friction force-relative velocity relationship in the situation of 

decelerating disc and the speed-dependent instability caused by the moving load in the 

situation of accelerating disc. Secondly, the time-varying disc speed increases the non-

stationary characteristics of the system dynamics as opposed to the constant disc speed, 

especially the in-plane motion of the mass slider, which means there are more shifts of 

frequency spectra of the dynamic responses throughout the process in the situation of 

time-varying disc speed than that in the situation of constant speed.  

2. A theoretical study for the suppression of friction induced vibration by application 

of a tangential harmonic excitation is carried out. It is observed that the friction 

induced vibration of the frictional systems can be suppressed with the tangential 

harmonic excitation when the amplitude and frequency of the excitation are in certain 

ranges. The analytical method to determine the effective ranges of the amplitude and 

frequency of the excitation for the suppression of friction induced vibration is 

established. Besides, as a verification of the analytical results, a great amount of 

computational effort is also made to simulate the time responses of systems with 

various combinations of amplitude and frequency of the excitation to obtain the 

effective parameter ranges. The results by the two approaches are in good agreement 

when the ratio between the excitation frequency and the reference frequency 

(associated with a natural frequency of the systems and in the same order as it) is 

sufficiently large. 

3. There exist multiple types of nonlinearities in the friction-induced-vibration 

problems of mechanical systems.  Two mechanical models, which are a discrete 5-

DoF frictional model and a continuous slider-on-disc model, are considered, with three 

distinct types of nonlinearities in both models. The first type of nonlinearity is the 

nonlinear contact stiffness, the second is the non-smooth states of motion including 

stick, slip and separation, and the third is the geometrical nonlinearity caused by the 

moving-load feature of the mass slider on the rigid belt or the disc. The effects of each 

type of nonlinearity on the linear stability and steady-state responses of the two models 

are revealed.  
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In terms of the 5-DoF frictional model, it is found that the mode-coupling instability 

arises with the increase of the coefficient of kinetic friction 𝜇k. The critical friction 

coefficient for the instability decreases with the increase of nonlinear contact stiffness 

and the presence of geometrical nonlinearity contributes to the decrease of critical 

friction coefficient for the instability in the 5-DoF frictional system, which indicate 

that both the nonlinear contact stiffness and the geometrical nonlinearity are 

destabilizing factor for the frictional system. Besides, each of the three different types 

of nonlinearities has significant effects on the steady-state responses of the frictional 

system in terms of both the periodicity and the intensity of vibration, which are 

demonstrated in the numerical study. Frequencies of the steady-state responses deviate 

markedly from the unstable eigenfrequencies of the linearized system and each type 

of nonlinearity contributes differently to the deviation of vibration frequencies from 

the unstable eigenfrequencies. 

As for the slider-on-disc model, it is found that multiple modes become unstable with 

the increase of 𝜇k . The nonlinearity of contact stiffness has distinct effects on the 

instabilities of different modes. For some modes, the critical friction coefficient for the 

instability decreases with the increase of nonlinear contact stiffness, while the critical 

friction coefficients for some modes are nearly unchanged with the variation of 

nonlinear contact stiffness. The geometrical nonlinearity is generally a contributing 

factor for the dynamic instability in the slider-on-disc system. As for the steady-state 

responses of the system, the nonlinear contact stiffness and the geometrical 

nonlinearity have a significant effect on the intensity of steady-state response but a 

small effect on the periodicity of steady-state response, while the nonlinearity of the 

non-smooth states of motion has a significant effect on both the intensity and the 

periodicity of steady-state response. 

4. In the newly proposed pin-on-disc system with Coulomb’s law of friction, the 

system is bi-stable at low disc speeds and high normal preloads when 𝜇s > 𝜇k, i.e., a 

stable pure sliding solution and a stable stick-slip solution coexist. And the variable 

normal force during vibration contributes to the occurrence of bifurcation behaviours 

of system responses in the case of small or no structural damping. Moreover, the 

system dynamics under the non-uniform friction interface, i.e., a sector of  disc surface 

possesses a different set of friction property from that on the rest of the disc surface, 

is studied. It is found that with appropriate friction coefficients on the sector and an 
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appropriate span angle of the sector, the range of disc speed and normal preload at 

which the stick-slip vibration exists will be greatly diminished in comparison with the 

original uniform friction interface. Therefore a potential approach to suppress the 

friction induced stick-slip vibration is provided. 

8.2 Outlook 

The research work in the following aspects can possibly be conducted in the future, 

1. In Chapter 7 the friction induced stick-slip vibration of a new pin-on-disc system, 

especially with a non-uniform friction interface where a sector of disc possesses a 

different set of friction coefficients, is studied. It is theoretically demonstrated that 

with appropriate friction coefficients on the sector, the range of disc speed and normal 

preload at which the stick-slip limit cycle exists will be greatly diminished even if the 

angle of the sector is very small. Therefore a theoretically effective approach to 

suppress the friction induced stick-slip vibration in mechanical systems is put forward. 

Next the effectiveness of this approach in practice can be investigated by laboratory 

experiments. 

2. Because of the discontinuous friction force and unilateral contact, the friction 

induced dynamics is non-smooth. Another issue associated with the analysis of friction 

induced vibration is the dispersions of design parameters which can be related to the 

manufacturing process, operating conditions, wear, etc. Hence it will be very useful to 

incorporate uncertainty in the research of friction induced vibration. However, the 

relationship between the dynamic responses and the input parameters in the problem 

of friction induced vibration is highly nonlinear due to the non-smooth behaviours. 

Therefore, the analysis of dynamic behaviours in frictional systems involving 

uncertain parameters, especially the prediction of the dispersion of steady-state non-

smooth responses, is a research topic of importance and challenge and can be studied 

in the future. 

3. The friction induced vibration in real mechanical systems is a complex engineering 

problem that can be influenced by multiple factors, e.g., the loading condition, the 

surface topography, the material property, etc. Although a series of physical 

experiments have been conducted to study the effects of specific factors by other 

researchers, the theoretical studies that incorporate these influential factors in the 
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friction induced vibration are still in shortage. Because real mechanical systems 

usually consist of complex continuous structures, the theoretical modelling and 

computation becomes more difficult when taking into account more factors, and 

therefore new methods to improve the computational efficiency need to be worked out. 
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