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Abstract

The operation of nuclear reactors requires detailed knowledge of important safety parameters,
such as the spatial power distribution, control rod worth, margin to departure from nucleate boiling
(DNB), fuel pin burnup etc. To obtain a detailed analysis of all of the safety parameters requires a
full core pin-by-pin coupled neutronics and thermal-hydraulics simulations which are too
computationally expensive even for modern high-performance computer clusters. Therefore, the
industrial standard approach in design and safety calculations are coupled neutronics and thermal-
hydraulics codes for the steady state and transient simulations. In these codes, the neutronics
calculations are typically performed at a nodal level using the diffusion approximation and
assembly-homogenised sets of cross-sections while the thermal hydraulics relies on a channel
model with fuel assembly sized channels. However, for determining safety limits, which are based
on local pin-based parameters, the knowledge of the power and temperature distribution on a nodal
level is not sufficient. Therefore, novel new approaches are required to resolve this multiscale and
multiphysics problem to resolve the power distribution within the zones of interest. Pin-wise
calculations, in this case, are performed by applying a transport solver using the heterogeneous fuel
assembly geometry on an unstructured mesh with boundary conditions extracted from the 3D full
core nodal diffusion solution. This combined nodal-transport approach will provide the detailed
power distribution on the pin-level and perform coupled multiphysics simulations within reasonable
simulation time limits, which is important for industry.

To follow this strategy, a transport solver is required which can be used for the flux
reconstruction on the pin level. Current coupling collision probability (CCCP) method seems to be a
good choice for the development of such a solver.

In this study, the developed transport solver utilising CCCP method with orthogonal flux
expansion is tested and verified on the set of the benchmark problems. The results of simulations
are compared with the results of Monte Carlo and deterministic code. The expansion of the flux by
orthogonal polynomials allows us to avoid discretisation of the calculation regions while keeping
the accuracy of the calculations to an acceptable level. The results of the calculations demonstrate
good agreement with the results of Monte Carlo calculations. The comparison of the new method
with the flat flux (today’s industry standard approach) approximation demonstrates either an
improved quality of the result for identical cell discretisation or reduced computational time to
achieve the identical solution.
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Nomenclature

The acronyms in the overall text have an associated meaning given in the following table.

Acronym Full Description
DYN3D Dynamical 3 Dimensional
CASL Consortium for Advanced Simulation of Light water Reactors
DRD Digital Reactor Design
NURESAFE Nuclear Reactor Safety Simulation Platform
CCCP Current Coupling Collision Probability
CCCPO Current Coupling Collision Probability with Orthogonal Flux

Expansion
PWR Pressurised Water Reactor
MOX Mixed Oxide
KAIST Korea Advanced institute of Science and Technology
MIT Massachusetts Institute of Technology
EPSRC Engineering and Physical Sciences Research Council
LWR Light Water Reactor

The symbols in the overall text have an associated meaning given in the following table.

Symbol Description
� Index of the energy group
�, �' Indices of the spatial regions
�,�' Indices of the spatial modes
� Index of the cell’s side
� Index of the segment
� Index of the azimuthal sector
� Index of the polar sector
�� Total number of the regions in the cell
�� Total number of the spatial modes
�� Total number of the cell’s sides
�� Total number of the cell’s segments
�� Total number of the azimuthal sectors
�� Total number of the polar sectors
�� Total number of energy groups
�� Total cross section in the region �

��,�,�'→� Scattering cross section from group �' to group � in the region �
���,�,� Production cross section in the group �, region �
�� Value of the fission spectrum for the group �
���� Effective multiplication factor
�� Volume of the �-th region
��,� Neutron flux in region �, spatial mode �
��,�,� Neutron flux in group �, region �, spatial mode �
��,� Neutron source in the region �, spatial mode �
��,�,� Neutron source in the region �, spatial mode �, group �
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��,�,�
��� External source in the region �, group �, spatial mode �

��',�'→�,� Probability for the neutron born within region �' , spatial mode �' to have its first
collision in the region �, spatial mode �

��,�,�,�→�,� Probability for neutron entering the cell via side �, segment �, azimuthal sector �
and polar sector � to have its first collision within region �, spatial mode �

��,�→�,�,�,� Probability for neutron born in the region � , spatial mode � to leave cell without
collision via side �, segment �, azimuthal sector� and polar sector �

��',�',�',�→�,�,�,�Probability for the neutron entering cell via side �' , segment �' , azimuthal sector
�' and polar sector � to leave the cell via side � , segment � , azimuthal sector �
and polar sector �

��,�,�,�
�� Input neutron current on the cell’s side �, segment �, azimuthal sector� and polar

sector �
��,�,�,�
��� Output neutron current on the cell’s side � , segment � , azimuthal sector � and

polar sector �
� Flux column-vector
� Source column-vector
��‴ Input current column-vector
���� Output current column-vector
� Region-to-region collision probability matrix
� Surface-to-region collision probability matrix
� Region-to-surface escape probability matrix
� Surface-to-surface transmission probability matrix
� Connectivity matrix
� Convergence criteria for the currents
�� Convergence criteria for the eigenvalues
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1. Introduction

Safe and reliable operation of the nuclear power plants requires detailed knowledge of the

important safety related parameters such as spatial distribution of the temperatures, water densities

and neutron fluxes within the reactor core. 3D nodal diffusion codes (such as PANTHER [1],

DYN3D [2]) are the main tool for the safety evaluation of the nuclear power plants. Due to their

efficiency and comparable good accuracy, these codes are widely used both in academia and

industry. Modern nodal codes can solve 3D coupled thermal hydraulic and neutronics tasks quickly

and efficiently. In order to achieve this, the reactor core is discretised into the set of the nodes

usually square or hexagonal prisms. Within each node neutronics cross sections are supposed to be

uniform and neutron fluxes can be represented using analytical or polynomial function expansions

preserving transverse leakages. The thermal hydraulics relies on a channel model with the fuel

assembly sized channels. The outcome of the nodal codes is node averaged physical parameters

such as temperatures of fuel, cladding, moderator, water density, neutron fluxes, etc. However, for

determining safety limits, which are based on local pin-based parameters, the knowledge of the

power and temperature distribution on a nodal level is not sufficient. Therefore, in practice,

additional conservative coefficients are applied to ensure that the safety related parameters are kept

within safety limits. The conservative approach leads to reduced operational productivity of the

nuclear power plant which can cause significant loss of revenue and therefore an increase in energy

prices. Therefore, it is of high interest to evaluate safety related parameters avoiding excessive

conservatism. In order to reduce these safety margins and provide a higher understanding of the

underlying physics inside the reactor several projects, such as CASL [3], DRD [4], NURESAFE [5]

were commissioned in different countries through over the world in the recent years.

The ideal scenario would be 3D full core pin-by-pin coupled multiphysics simulation of the

nuclear power plant. Unfortunately, the computational demands for such a task is very high. Even

modern supercomputers require thousands of the core-hours to simulate a few seconds of transient

behaviour [6]. Therefore, at the current stage such high fidelity tools are very promising and

scientifically highly interesting cannot be applied to routine day-to-day industrial application.

In order to bring high fidelity simulation tools into industrial applications, another approach is

proposed. This approach implies that the multiscale and multiphysics approach can be used

selectively to resolve the power distribution within the zones of interests (for example, hottest

assembly). Pin-wise calculations, in this case, are performed by applying a transport solver using

the heterogeneous fuel assembly geometry on an unstructured mesh with boundary conditions

extracted from the 3D full core nodal diffusion solution [7]–[9]. This combined nodal-transport
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approach potentially allows for the detailed power distribution on the pin-level to be obtained and

performs coupled multiphysics simulations within reasonable simulation time while avoiding the

use of the supercomputers which is important for industrial use.

An important part of such a multi-physical tool will be neutron transport solver capable of

solving the multigroup transport equation fast and accurately on the assembly level. It is obvious

that the accuracy of the flux reconstruction within assembly will be strongly dependent on the

boundary conditions used for such reconstruction. Therefore, additional requirements to such a

solver would be possibility for flexible treatment of the boundary conditions (for example, cell

dependent albedos). The Current Coupling Collision Probability (CCCP) method [10]–[12] fulfils

both mentioned requirements. In this method, the computational domain is subdivided on a set of

heterogeneous regions. The heterogeneous space regions are coupled into the full system by

interface currents with a discretised angular dependence. Within heterogeneous regions the neutron

transport equation is solved by collision probabilities method. CCCP allows for the resolution of the

neutron transport problem on the unstructured mesh fast and efficiently (CCCP-based code

HELIOS [13] is used for the cross sections generations) and due to the nature of the methodology,

boundary conditions treatment can be very flexible.

Previously, CCCP solver with orthogonal expansion of flux was developed and tested for the

single cell one group fixed source problems [14]. In the current study, the solver was extended for

the case of the unstructured 2D assemblies, multiple groups and eigenvalue problems.

This paper is organised as follows. Section 2 describes the methodology used in the

multigroup transport solver. Section 3 introduces the description of the benchmark problems used

for verification of the developed solver. Section 4 presents results of the developed solver

calculations and comparison with the reference Monte Carlo solutions. Finally, Section 5 presents

our conclusions.

2. Methodology

In the previous studies [11], [15], the modification of the CCCP method was proposed for

regular hexagonal geometry. In contrast to the conventional CCCP method where flat flux

approximation is used to represent the neutron flux and sources within computational regions, the

proposed modification takes into account spatial dependency of the fluxes (sources) by utilising

Current Coupling Collision Probability with Orthogonal flux expansion (CCCPO). This approach

allows for fewer computational regions while maintaining the accuracy to a high level and removes

the requirement for users to manually subdivide the regions into subzones [16]. The methodology
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was extended for the case of the irregular meshes and tested for the case of the single cells [14]. In

the current study, the neutron transport solver was extended for the case of the 2D unstructured

meshes, fixed source and eigenvalue problems.

2.1. Formulation of the CCCPO method for the set of the cells

Before proceeding to the presentation of the methodology, we would like to clarify the

meaning of some terms that will be used further in this study. We assume, that the computational

domain can be subdivided on the set of the “cells”. Under the term “cell” we mean the region

surrounded by N-sided polygon with (or without) inscribed concentric circles as it is shown in

Figure 1.

Figure 1. Different types of the cells in the assembly

The main idea utilising by CCCP (and CCCPO) methodology is discretisation of the

computational domain on a set of heterogeneous regions. The heterogeneous space regions are

coupled into the full system by interface currents with a discretised angular dependence. The

neutron transport equation is solved by collision probabilities method within heterogeneous regions.

The solution of the neutron transport equation starts from the evaluation of the first flight collision

probabilities: surface-to-surface transmission probability, region-to-surface and surface-to-region

collision probabilities, region-to-region collision probability. In order to take into account

nonuniformity of the angle distribution of the neutron current, the directional semi sphere is

subdivided on the polar and azimuthal sub angles (sectors) in the same way as it has been done in

HELIOS code [10]. The spatial nonuniformity of the neutron currents on the sides of the cell are

considered by subdivision of the sides on the segments. Therefore, region-to-surface, surface-to-
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region and surface-to-surface probabilities are defined for the cell side, side’s segment, polar sector

and azimuthal sector. In contrast to the CCCP method, in the CCCPO method, region-to-surface,

surface-to-region and region-to-region collision probabilities depend, in addition, on the spatial

modes of the flux. Collision probabilities are integrated using ray-tracing method for each type of

the cell within assembly. The methodology of integration is described in details in the literature [9],

[10], [17].

After evaluation of the collision probabilities, the fluxes within calculation regions are

evaluated using the neutron balance equations which can be written in the following way (the

energy group index � is omitted):
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Where �� is the volume of the �-th region; � is the total cross-section; ��,� is the neutron

flux in region �, spatial mode �; ��',�'→�,� is the probability for the neutron born within region �',

spatial mode �' to have its first collision in the region �, spatial mode �; ��,� is the neutron source

in the region �, spatial mode �; ��,�,�,�→�,� is the probability for neutron entering the cell via side

� , segment � , azimuthal sector � and polar sector � to have its first collision within region � ,

spatial mode � ; ��,�,�,�
�� is the input neutron current on the cell’s side � , segment � , azimuthal

sector� and polar sector �.

The response output current is defined by the neutron sources within the regions of the cell

and input neutron current on the cell’s borders.
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Where ��,�,�,�
��� is the output neutron current on the cell’s side �, segment �, azimuthal sector

� and polar sector �; ��,�→�,�,�,� is the probability for neutron born in the region �, spatial mode �

to leave cell without collision via side � , segment � , azimuthal sector � and polar sector � ;
��',�',�',�→�,�,�,� is the probability for the neutron entering cell via side �', segment �', azimuthal

sector �' and polar sector � to leave the cell via side �, segment �, azimuthal sector � and polar

sector �.

Finally, assuming specular boundary conditions on the sides of the cell, the relation between

input and output currents can be written:
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��,�,�,�
�� = ��,�,�,�

���
(3)

In the current study, two types of the problems are considered – fixed source problem and

eigenvalue problem. Depending on the type of the problem (fixed source or eigenvalue) the sources

in the equations (1) and (2) are calculated in a slightly different way. In the case of the eigenvalue

problem, the source for the energy group �, region � and spatial mode � is evaluated according to

the following expression:
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Where �� is the value of the fission spectrum for the group � ; ���� is the effective

multiplication factor;�� is the total number of the energy groups; ���,�,� is the production cross

section in the group �, region �; ��,�,�'→� is the scattering cross section from group �' to group �

in the region �. In the case of the non-multiplying medium fixed source problem, the neutron source

within computational regions is evaluated according to the following equation:
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Where��,�,�
��� is the external source in the region �, group �, spatial mode �.

The equations (1) and (2) presented above can be written in the matrix form (for a single cell

and energy group �):
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The length ��� of the column-vectors �� ���� and �� ��� is defined by the number of the

computational regions and number of spatial modes within the regions. For example, in the case of

3 computational regions and 1 spatial mode (flat flux approximation)��� will be equal to 3 (3x1);

in the case of the 3 spatial modes within each computational region, ��� will be equal to 9 (3x3)



9

and so on. The length ����� of the column-vectors ���� and ����� are defined by the number of

sides, segments and angular sectors. For example, in the case of the uniform subdivision of the sides

of the regular polygon,����� =��������, where�� is the number of the segments,�� is

the number of sides,�� is the number of the azimuthal angles and�� is the number of the polar

angles.

The equations (6) and (7) can be written in a shorter notation:

� = ��+���‴ (8)

���� = ��+���‴ (9)

��‴ = ���� (10)

The equations (8) – (11) are written for the single cell with the reflective boundary condition.

In order to complete the formulation, we note that the currents leaving one cell enter another.

Therefore, for the set of the cells coupled by the currents, the following relation can be written for

the input and output currents:

����� =����‴ (11)

Where ���‴ and ����� are “global” input and output neutron current vectors defined for all

the cells in the system;� is the connectivity matrix. This matrix reflects the connectivity between

input and output currents of the cells in the system and includes boundary conditions on the outer

surface.

2.2. Within group iterations

The system of the linear algebraic equations defined by the equations (8) - (11) is solved

using conventional inner-outer iteration scheme. The iteration scheme used in the current study is

very similar to the iteration scheme used in the HELIOS code [13]. The inner iterations are

performed to evaluate the currents within a given group using equations (9) and (11). It is assumed

that the neutron source and input currents are known. They are passed into the inner iteration

subroutine either as initial guess (for the very first iteration) or as sources and input currents

calculated on the previous iteration. All the cells in the system are numbered and connectivity

matrix is created as preliminary step. The iteration process starts from the first cell and goes until

the last cell. The updated output currents are evaluated using equation (9). The updated output

currents overwrite existing values as soon as they have been obtained. This approach is typical for

Gauss-Seidel scheme of iterations [18]. In the current version of the solver there is no relaxation

techniques applied (i.e. relaxation parameter� is equal to 1). However, in the future versions of the
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program they can be implemented to speed up the convergence of the currents. The iterations

continue until the convergence criteria given by equation (12) is met or the maximal number of

inner iterations (set in the input file) is reached.

�� − ��−1 < � (12)

Where �� and ��−1 are the currents of the � -th and (� − 1) -th iterations respectively; � is the

convergence criteria which is set in the input file. When the inner iterations are performed for each

energy group, fluxes within the computational regions are evaluated using (9). It should be noted

that the matrices �,V, � and � grows and become sparse as number of the segments, polar and

azimuthal sectors increase. Therefore, to reduce the memory requirements these matrices are stored

as sparse matrices (i.e. only non-zero elements and arrays with the appropriate indices are stored in

memory). The same technique is applied for the connectivity matrix�.

2.3. Eigenvalue iterations

The flowchart of the eigenvalue calculation is shown in Figure 2.

Figure 2. Flowchart of the eigenvalue iterations
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The very first eigenvalue iteration starts from the initial guess of the current, sources and

effective multiplication factor. The within groups sources are calculated using equation (4) for each

calculation region. The iterations of currents are performed for each energy group. When they are

finished, the convergence criteria for the eigenvalue is checked. In the current version of the

transport solver, the effective multiplication factor is calculated for each region containing fissile

material as:

����,�
� =

��,�
(�)

��,�
(�−1) (13)

Where ����.�
� is the multiplication factor for the region i of n-th iteration; ��,�

(�−1) is the

fission source for the region i of (n-1)-th iteration and ��,�
(�) is the fission source for the region i of

n-th iteration. As can be observed from the equation (13), the effective multiplication factor is

defined for each region containing fissile material. Therefore, the eigenvalue of the system is

defined as:

���� =
1
2(����,��� + ����,���) (14)

Where ����,��� and ����,��� are maximal and minimal values of the multiplication factors

in the system. As iteration process converges, the difference between maximal and minimal

multiplication factors tends to zero. The convergence criteria for the eigenvalue iterations is defined

by the following relations:

| ����,��� − ����,���| < �� and |����
(�) − ����

(�−1)| < �� (15)

Where ����
(�) is the effective multiplication factor of the system of �-th iteration; ����

(�−1) is

the effective multiplication factor of (� − 1)-th iteration; �� is the eigenvalue convergence criteria

which is by default set to 0.5∙10-6 but can be changed in input file. This scheme allows for the

avoidance of situations when the difference between previous and current iteration is smaller than

�� but convergence has not been yet achieved.

3. Description of the Benchmark Problems

The developed transport solver was tested on the number of benchmark problems. The input

data for some of them were taken from the well-known benchmarks and some of the problems were

specially designed for the verification of the neutron transport solver. In the current chapter the

description of the benchmark problems used in this study is presented.
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3.1. One group fixed source mini assemblies

This benchmark was proposed by authors. This is one group fixed source benchmark which is

used for the evaluation of possibility of the developed neutron transport solver accurately calculate

spatial distribution of the neutron flux within the fuel assembly. Two types of hypothetical mini

assemblies were considered in the current study: regular square assembly with absorber and regular

hexagonal assembly with the gap (with absorber cell). The material maps for both assemblies are

presented in Figure 3 and Figure 4.

Figure 3. Material map for the fixed source square assembly problem

Figure 4. Material map for the fixed source hexagonal assembly problem
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The arrangement of the materials within assemblies is quite artificial and does not completely

reflect arrangement of the materials in the real fuel assemblies. However, for the test purposes, this

arrangement, in our view, is a good choice since it represents:

1. Highly heterogeneous system

2. Different geometries of the cells

3. Unstructured mesh (see gap cells in the hexagonal assembly)

4. It is expected that the high gradient of the neutron flux will take place in the central fuel cell

surrounded by the absorber cells. It can be challenging to reproduce the shape of the flux

correctly.

Different type of the cells in the hexagonal and square assemblies are shown in Figure 5.

Figure 5. Geometries of the square (top) and hexagonal (bottom) cells

Spatial dimensions of the square and hexagonal cells are presented in Table 1.

Table 1. Spatial sizes of the cells
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Radii/pitch Square cell Hexagonal cell

R1f, cm 0.3860 0.3860

R2f, cm 0.4582 0.4582

R1g, cm 0.4800 0.5450

R2g, cm 0.5626 0.6323

R1a, cm 0.3860 0.3860

R2a, cm 0.4582 0.4582

hsq, cm 1.260

hhex, cm 1.275

The pitch of the hexagonal assembly is equal to 8.22 cm while assembly pitch of the square

assembly is 8.82 cm. Both square and hexagonal fixed source problems are one group problems and

none of the materials had fission cross sections. The cross sections used for the simulations are

summarised in Table 2.

Table 2. Cross sections of the materials

XS type Fuel Cladding Absorber Moderator

��, cm-1 0.63 0.276 10.0 1.5

��, cm-1 0.33 0.272 0.3 1.425

The neutron source with the density 1.0 cm-1 is distributed uniformly within the moderator

material.

3.2. C5G7 hexagonal MOX assembly

The hexagonal extension of the 2D C5G7 benchmark [19] was chosen to test the capability of

the solver to simulate eigenvalue multigroup problems for the realistic geometries and material

compositions. In the current study single MOX assembly was chosen for test purposes. The

geometrical configuration and material map of the assembly are presented in Figure 6.
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Figure 6. Material map of the hexagonal C5G7 MOX assembly

The assembly consists of 9 rows filled with the same materials as for the conventional C5G7

MOX assembly. The side of the cell in the lattice is equal to 0.78 cm and assembly pitch ~20.61 cm.

Further details of the benchmark (such as neutron cross sections, radii of the pins, etc.) can be found

in the literature [19]. The system was simulated with reflective boundary conditions.

3.3. KAIST 1A MOX Assembly

The developed neutron transport solver is intended to be used for the simulation of the real

reactor assemblies. The multigroup cross sections for the neutron transport solver can be prepared

using lattice codes (such as HELIOS, SCALE or continuous energy Monte Carlo codes). KAIST

1A benchmark [20] was chosen to test the possibility of the developed neutron transport solver to

model such a problem.

The KAIST 1A benchmark is a small MOX-loaded core, basically a simplified small core

PWR problem. The reactor core consists of 52 assemblies with the thermal power 900 MWth. The

core consists of the both uranium oxide and MOX fuel assemblies. In the current study, MOX

assembly without burnable absorbers and control rods was chosen for analysis. The material map of

the MOX fuel assembly is presented in Figure 7.
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Figure 7. Material map of the KAIST1A MOX assembly (quarter symmetry)

The cold zero state with the temperature of all the materials equal to 300 K and without boric

acid in the moderator was chosen for the simulations in the current study. The details of the material

compositions of the fuel assembly used in calculations are presented in Table 3.

Table 3. Material’s compositions used in the simulation of the KAIST 1A MOX assembly

Material Material composition

MOX 4.3%: Pu-tot = 4.3 w/o
U235: 0.225 w/o

Pu-tot: Pu238/239/240/241/242/Am241 =
1.83/57.93/22.50/11.06/5.60/1.08 w/o

density: 10.4 g/cm3

MOX 7.0%: Pu-tot = 7.0 w/o

MOX 8.7%: Pu-tot = 8.7 w/o

Water H2O
density: 1.0 g/cm3 (corresponds to the
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temperature 300K according to [20])

Helium He
(320psig/700 °K)

Cladding Zircaloy (Zr-97.91%, Sn-1.59%, Fe-0.5%)
density : 6.44 g/cm3

4. Results and Discussions

In the current chapter, the results of the simulations are presented. The results of the

simulations of the developed transport solver were compared with the reference Monte Carlo

simulations. The reference solution for each benchmark problem were obtained using OpenMC

code [21]. OpenMC is the open source Monte Carlo code developed at MIT. It is general purpose

Monte Carlo code with the capability to simulate both eigenvalue and fixed source problems. For

this study OpenMC code was used to simulate the problem with the given multigroup cross section

sets.

4.1. Choice of the coupling parameters

The results of the simulations obtained using CCCP method depends on the spatial

discretisation used for coupling of the currents on the cell’s interfaces. In the current version of the

solver, each side of the cell is discretised on the set of the segments; azimuthal and polar angles are

subdivided on the set of the sectors. In order to choose an appropriate segment-angle discretisation

of the test problems presented in the current study, a short sensitivity study was performed. The

geometries of the test problem for the sensitivity study are shown in Figure 8.

Figure 8. Material maps of the hexagonal (left) and square (right) supercells used for the sensitivity study
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The cross sections of the materials are presented in Table 4.

Table 4. Cross sections of the materials used for the sensitivity study

Cross sections Material

Fuel Absorber Cladding Moderator

��,cm-1 0.4082348 1 0.2662970 0.5919169

��,cm-1 0.3371570 0.2997832 0.2644762 0.5896743

���,cm-1 0.1060497 0 0 0

The geometry was chosen to model highly heterogeneous structure with a strong neutron

absorber placed in the centres of the supercells with reflective boundary conditions used for both

supercells. Such an arrangement of the materials creates very high gradient of the flux which is

challenging for the transport solver and requires the detailed discretisation of the space and angle

variables to correctly reproduce the neutron currents on the cell’s edges.

The results of the calculations are presented in Figure 9 and Figure 10.
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Figure 9. Dependency of the effective multiplication factor on number of azimuthal sectors (top), maximal size of the segment
(middle) and number of polar sectors (bottom) for the square supercell
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Figure 10. Dependency of the effective multiplication factor on number of azimuthal sectors (top), maximal size of segment (middle)
and number of polar sectors (bottom) for the hexagonal supercell
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As can be seen from the results of the asymptotic analysis, the effective multiplication factors

tends to an asymptotic value as number of azimuthal angles �� , number of polar sectors ��

increase and maximal size of the segment ���� decreases. Asymptotic behaviour for the hexagonal

supercell is achieved for the approximately�� = 71 azimuthal sectors, ���� = 0.0613 cm size

of the segment and �� = 7 polar sectors; For the square assembly asymptotic behaviour is

achieved for the�� = 58, ���� = 0.116 and�� = 4. In order to check the correctness of the

chosen parameters, the comparison of the effective multiplication factors for the hexagonal and

square MOX assemblies (see Chapter 3.2 and Chapter 3.3) with optimal (defined above) and fine

(�� = 160 , ���� = 0.04 , �� = 10 ) coupling parameters were performed. The observed

difference between eigenvalues was less than 20 pcm both for hexagonal (����� = 1.20881 and

�������� = 1.20898 ) and square (����� = 1.18669 and �������� = 1.18686 ) assemblies.

Therefore, the optimal sets of the coupling parameters were chosen for the calculations of the

further hexagonal and square benchmark problems. Finally, we would like to note that this analysis

is not a comprehensive asymptotic study since a substantial amount of the parameters (such as

number of groups, lattice pitch, moderator density, etc.) were not considered here. Involvement of

the other parameters in analysis would require additional broad investigations which are out of

scope of the current study.

4.2. Results of the one group fixed source simulations

A one group fixed source problem was calculated both for the hexagonal and square

geometries. The relative statistical difference of the reference OpenMC solution did not exceed

0.2% for the fluxes with 99.7% confidence interval (±3� ) for both geometries. Hexagonal and

square test problems were calculated for 0th, 1st and 2nd orders of the polynomials used for the

spatial flux expansion. The relative absolute errors of the transport solver in comparison to the

reference OpenMC solution for hexagonal and square assemblies are presented in Figure 11 –

Figure 16. As it was expected, the maximal error for the flat flux approximation (P0) is observed in

the central cell surrounded by the strong absorbers. The errors for the flat flux approximation are

quite high both for hexagonal and square assemblies. The influence of the order of polynomials

used for the flux expansion has a high impact on the results. Even the first order of the polynomials

applied in the hexagonal assembly allow for the reduction of the maximal error from 18.2% to 1.4%

and from 13.7% to 2.9% in the central regions. The same order of the improvements is observed for

the square assemblies. Further increasing of the polynomials order brings the errors to the level

below 1%. For the averaged fluxes the situation is similar both for hexagonal and square assemblies.
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Figure 11. Errors in the fuel (left) and average (right) fluxes for the hexagonal fixed source problem (0-th order of flux expansion)

Figure 12. Errors in the fuel (left) and average (right) fluxes for the hexagonal fixed source problem (1-st order of flux expansion)

Figure 13. Errors in the fuel (left) and average (right) fluxes for the hexagonal fixed source problem (2-nd order of flux expansion)
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Figure 14. Errors in the fuel (left) and average (right) fluxes for the square fixed source problem (0-th order of flux expansion)

Figure 15. Errors in the fuel (left) and average (right) fluxes for the square fixed source problem (1-st order of flux expansion)

Figure 16. Errors in the fuel (left) and average (right) fluxes for the square fixed source problem (2-nd order of flux expansion)
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4.3. Results of the hexagonal C5G7 MOX assembly simulations

The results of the simulations of the square C5G7 MOX assembly are summarised in Table 5

and Figure 17.

Table 5. Effective multiplication factors, maximal and root mean square (RMS) errors for the single C5G7 MOX assembly

Order of flux
expansion

keff Δkeff, pcm Absolute
maximal
error, %

RMS error, %

P0 1.20898 249 5.05 2.01

P1 1.20742 93 0.39 0.17

P2 1.20705 56 0.20 0.07
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Figure 17. Absolute relative errors for P0 (top) and P2 (bottom) orders of flux expansion

Overall good agreement with the reference Monte Carlo results is observed. The difference in

effective multiplication factor, maximal and root mean square errors decrease monotonically with

increasing of the order of the polynomials used for the flux expansion. Maximal error decreases

from approximately 5% to 0.2% while root mean square error decreases from 2.01% for P0

approximation to 0.07% for the second order of the polynomials. The discrepancies in the fission

rates and eigenvalue have, in our view, two main contributors of the errors. First, it seems to be that

even the second order of the polynomials is still not enough to reproduce the shape of the flux

completely. Therefore, we expect that the higher orders of the polynomials can lead to better results.

Second source of the errors is still not completely converged Monte Carlo solution (see non-

symmetry of the observed errors in Figure 17). Therefore, for a comprehensive comparison, the

statistical error of the Monte Carlo simulations should be further reduced.

4.4. Results of the KAIST 1A MOX assembly simulations

The modelling of the KAIST 1A MOX fuel assembly consisted of two stages. On the first

stage, two sets of the multigroup cross sections were prepared using the OpenMC code running in

continuous energy mode with ENDFB-VII.1 library. The neutron cross sections were collapsed into
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the 2-groups and 8 groups. The group boundaries are presented in Table 6 and corresponds to the

CASMO-2 and CASMO-8 energy group structures as they are available in the OpenMC code [22].

Table 6. Group energy structures

Group number (2 groups) Group number (8 groups) Lower energy bound, eV

1

1 8.21∙105

2 5.53∙103

3 4.0

4 0.625

2

5 0.28

6 0.14

7 0.058

8 0.0

Generated cross sections sets were used for the few-groups simulations using CCCPO neutron

transport solver. Multiplication factors and fission reaction rates were calculated both in 8 groups

and in 2 groups using different orders of the flux expansion. The same cross sections were used for

the multigroup simulations using OpenMC code. The eigenvalue obtained using continuous energy

Monte Carlo simulation and discrepancies with the CCCPO solver and multigroup Monte Carlo

calculations are presented in Table 7.

Table 7. Discrepancies between eigenvalues calculated using continuous energy Monte Carlo and multigroup methods

Number of
groups

OpenMC CE,
eigenvalue

Discrepancies with the OpenMC CE, pcm

OpenMC MG CCCPO�0 CCCPO �1 CCCPO �2

2
1.31445

-159 -28 -49 -80

8 -367 -274 -302 -304

The results presented in Table 7 demonstrate that the discrepancies in the infinite

multiplication factors calculated using developed transport less than 100 pcm for the 2 groups and
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around 300 pcm for the 8 groups. Surprisingly, increasing of the group number used for simulation

does not lead to the improving of the effective multiplication factor. It contradicts the results

obtained in the previous chapters where increase of the polynomial order led to the better results.

Another interesting observation is that the increasing of the polynomial order increases the

discrepancies in the eigenvalues. Therefore, the results should be discussed in more details.

In order to clarify the situation, the fission reaction rates calculated using neutron transport

solver, continuous energy OpenMC and multi group OpenMC were compared. Results of the

comparison are presented in Table 8 and Figure 18 – Figure 20.

Table 8. Discrepancies in fission reaction rates between continuous energy OpenMC and multi group simulations

Number
of

groups

Absolute maximal error, % RMS, %

�0 �1 �2
OpenMC
MG �0 �1 �2

OpenMC
MG

2 4.8 4.3 4.5 4.3 1.9 1.8 1.7 1.7

8 1.9 1.9 2.0 2.1 0.7 0.7 0.9 0.9
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Figure 18. Discrepancies in fission rates between continuous energy OpenMC and neutron transport solver (2 groups) with zero (left)
and second (right) orders of flux expansions
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Figure 19. Discrepancies in fission reaction rates between continuous energy OpenMC and neutron transport solver (8 groups) with
zero (top) and second (bottom) orders of flux expansions
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As it is observed from Table 8, both maximal and root mean square errors are higher for the

case of the two groups despite the fact that the effective multiplication factors calculated using 2

groups are closer to the reference continuous energy eigenvalue. This contradiction can be

explained, in our view, by the error cancellation observed for the two group structure. In the

opposite case, the errors in the fission reaction rates would also be closer to the continuous energy

OpenMC results than the results calculated using 8 groups.

Application of the higher order of the polynomials for the flux expansion does not improve

the results in comparison to the flat flux approximation (compared to the continuous energy Monte

Carlo simulations). The errors stay almost on the same level or even become slightly higher. It

contradicts results obtained in the previous chapters where application of the higher order of the

flux expansion improved the results. In order to clarify the situation, the distribution of the

discrepancies in fission rates between multi group and continuous energy OpenMC simulations was

created (see Figure 20).
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Figure 20. Discrepancies in fission reaction rates between continuous energy OpenMC and multi group OpenMC with 2 groups (top)
and 8 groups (bottom)
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As it is observed from Figure 18, the error distribution (as well as maximal and root mean

square error, see Table 8) is very similar to the error distribution observed for the second order of

flux expansion in Figure 19 (2 groups) and Figure 20 (8 groups). The situation becomes clearer

when the fission reaction rates obtained using neutron transport solver and multi group Monte Carlo

are compared (see Figure 21).
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Figure 21. Discrepancies in fission reaction rates between multi group OpenMC and neutron transport solver (2 groups)
with zero (top) and second (bottom) orders of flux expansions
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As it can be seen from Figure 21 the discrepancies in the fission reaction rates between multi

group OpenMC and neutron transport solver decrease significantly when the second order of the

fluxes are applied. Maximal difference decreases from approximately 1.9% to 0.5% while root

mean square difference decreases from 0.8% to 0.2%. These results coincide very well with the

results observed in the previous chapters.

Summarising the results of the KAIST 1A MOX Assembly benchmark, we can conclude that

the main source of the observed error in the fission reaction rates and eigenvalues is not the quality

of the neutron transport solver but the homogenisation and collapsing technique used for the few

group cross section generation. The results obtained by the neutron transport solver are very close

to the results obtained by the multi group Monte Carlo method. The bias between the eigenvalues

and reaction rates computed using multi-group method and continuous energy method can be

reduced if the further higher order approximations are applied. It can be (but not limited to)

application of the higher order of the neutron scattering, cross-sections dependent on angle, higher

number of energy groups.

5. Visualisation

Further verification of the developed neutron transport solver was performed with the help of

visualisation techniques. The neutron flux within a 3 by 3 supercell with the strong absorber in the

center (see Figure 22) was calculated using OpenMC code and the neutron transport solver.
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Figure 22. Material map of the supercell used for the visualisation

In order to obtain the neutron flux calculated by the Monte Carlo method, a very fine tally

mesh (900x900) was used. The same mesh was used for the deterministic simulations. However, in

contrast to the Monte Carlo methodology, the neutron flux within each mesh point was

reconstructed using the orthogonal polynomials and values of the spatial moments of the neutron

flux. The neutron flux was calculated for the thermal and fast groups. The results of the

visualisation are presented in Figure 23 and Figure 24.
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Figure 23. Visualisation of the fast flux within the supercell calculated by Monte Carlo (upper left), P0 CCPO (upper right),
P1 CCCPO (lower left) and P2 CCCPO (lower right)

Figure 24. Visualisation of the thermal flux within the supercell calculated by Monte Carlo (upper left), P0 CCPO (upper
right), P1 CCCPO (lower left) and P2 CCCPO (lower right)

Results of the calculations were visualised using ParaView application [23]. The shape of the

flux behaves as expected for the problem under consideration. In the fast group the peak neutron

flux occurs in the fuel regions with the cavity in the center of the supercell where neutrons are

absorbed due to the presence of the absorber. The situation is different for the thermal energy group

where neutron flux is higher in the moderator regions due to the moderation of the neutrons with the
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small cavities in the fuel regions and deep cavity in the central part once more due to the strong

absorption of the neutrons.

The results of the visualisation clearly demonstrate improvements in the flux shape as the

order of the polynomials, used for the flux expansion increases. The shape of the flux changes from

the flat planes for the 0-th order of the polynomials to the second order surfaces for the 2-nd order

expansion of the flux. The first order of the flux expansion is somewhere between 0-th and 2-nd

orders with the inclined planes in the fuel cells and flat planes in the central part. Despite the visible

improvements in the flux shape for the second order of the polynomials, the shape of the flux is still

quite far from the smooth reference shape of the flux. It demonstrates, in our view, that 2-nd order

of the flux is still not enough for precise approximation of the flux shape. Therefore, higher levels

of the polynomials are required to reproduce the flux shape more accurately.

6. Analysis of the transport solver’s performance

The expansion of the flux by orthogonal polynomials improves the accuracy of the neutron

transport simulations significantly in comparison with the conventional flat flux approximation.

However, it should be noted that the computational time increases when a higher order of the

polynomials are applied for the flux expansion. In order to estimate the real benefits of the higher

order flux expansion, a comparison of the simulation time with the flat flux approximation should

be performed. Therefore, in the current chapter, a preliminary analysis of the performance of the

developed neutron transport solver for different orders of flux expansion is undertaken. The fixed

source test problem (square assembly) defined in chapter 3.2, was used for this analysis. As has

already been mentioned, a higher of calculation regions will lead to a more accurate result, when

using the flat flux approximation. However, by increasing the number of calculation regions this

leads to longer simulation times. To understand the additional simulation times required when

increasing the accuracy, the next study investigates the impact on the simulation time when using a

variety of orders of the flux expansion and numbers of the simulation regions. The outermost

(moderator) regions of the fuel and absorber cells in the square assembly were subdivided into the

set of the concentric subregions as it is shown in Figure 25 to provide the additional regions for the

study.
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Figure 25. Subdivision of the moderator region on subregions (dotted lines)

The results of the numerical experiments are summarised in Table 9. In the first column of

Table 9 the number of the subregions in the moderator are given. In the second and third columns

ratios of the computation times between �1 and �0 (
��0
��1

) as well as between �2 and �0 (
��0
��2

) are

given.

Table 9. Results of the simulation time’s comparison

Number of subregions ��0
��1

��0
��2

1 0.61 0.32

2 0.70 0.37

3 0.82 0.44
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4 0.97 0.52

5 1.21 0.65

6 1.49 0.80

7 1.88 1.00

8 2.21 1.18

9 2.40 1.28

10 2.90 1.55

11 3.45 1.84

12 4.22 2.25

It is observed from Table 9 that the computational time for the flat flux approximation

without subdivision of the moderator zone is more computationally expensive in comparison with

both P0- and P2-approximations. However, by increasing the number of subregions this leads to

higher simulation times of the flat flux approximation. As a result, the P1 approximation becomes

more efficient than the flat flux approximation with five sub regions, and the P2 approximation

becomes comparable with the flat flux approximations with seven subregions. Finally, it should be

noted that the accuracy of the simulations is not presented here since it is not enough to subdivide

the outermost region only to obtain accurate results for the flat source approximation. It is common

practice to add straight lines connecting, for example, vertices of the cell into the subdivision

scheme as it is shown in Figure 26.

Figure 26. Example of the cell’s subdivision on 12 (left) and 24 (right) flat source regions

The typical scheme of the square cell’s subdivision involves at least 12 subregions for the cell

consisting of moderator, cladding and fuel regions. This type of subdivision was not tested due to

the limitations of the current version of the solver. Nevertheless, we expect that the performance of
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the flat-flux approximation with the discretised regions will be comparable with the results for 12

subregions presented in Table 9.

7. Conclusions

In this study, the developed neutron transport solver utilising current coupling collision

probability method with orthogonal flux expansion was tested and verified on the set of different

benchmark problems. Application of the orthogonal polynomials for the representation of the

sources/fluxes within calculation regions allows to overcome one of the drawbacks of the traditional

collision probability method – poor representation of the spatial neutron source/flux distribution.

The results of the deterministic simulations were compared with the reference Monte Carlo results.

It was observed that the expansion of the flux by orthogonal polynomials allows us to avoid

discretisation of the calculation regions while keeping the accuracy of the calculations on an

acceptable level. Higher order of the fluxes reduces the error in the fission rates and neutron fluxes

significantly. The results of the calculations demonstrate good agreement with the results of the

Monte Carlo calculations. The comparison of the new method with the flat flux approximation

demonstrates either an improved quality of the result for identical cell discretisation or reduced

computational time to achieve an identical solution. The overall performance of the developed

transport solver is acceptable from engineering point of view. Thus, in our view, it can be applied

for the multiscale/multidimensional simulations. As a further step, the developed neutron transport

solver will be integrated (coupled) with the nodal DYN3D code for further

multiphysics/multidimensional study.
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