
Temporal Vertex Cover with a Sliding Time Window∗

Eleni C. Akrida† George B. Mertzios‡ Paul G. Spirakis§ Viktor Zamaraev¶

Abstract

Modern, inherently dynamic systems are usually characterized by a network structure, i.e. an
underlying graph topology, which is subject to discrete changes over time. Given a static underlying
graph G, a temporal graph can be represented via an assignment of a set of integer time-labels to
every edge of G, indicating the discrete time steps when this edge is active. While most of the
recent theoretical research on temporal graphs has focused on the notion of a temporal path and
other “path-related” temporal notions, only few attempts have been made to investigate “non-path”
temporal graph problems. In this paper, motivated by applications in sensor and in transportation
networks, we introduce and study two natural temporal extensions of the classical problem Vertex
Cover. In our first problem, Temporal Vertex Cover, the aim is to cover every edge at least once
during the lifetime of the temporal graph, where an edge can only be covered by one of its endpoints
at a time step when it is active. In our second, more pragmatic variation Sliding Window Tempo-
ral Vertex Cover, we are also given a natural number ∆, and our aim is to cover every edge at
least once at every ∆ consecutive time steps. In both cases we wish to minimize the total number of
“vertex appearances” that are needed to cover the whole graph. We present a thorough investigation
of the computational complexity and approximability of these two temporal covering problems. In
particular, we provide strong hardness results, complemented by various approximation and exact
algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost
optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions.

Keywords: Temporal networks, temporal vertex cover, APX-hard, approximation algorithm, Ex-
ponential Time Hypothesis.

1 Introduction and Motivation

A great variety of both modern and traditional networks are inherently dynamic, in the sense that
their link availability varies over time. Information and communication networks, social networks, trans-
portation networks, and several physical systems are only a few examples of networks that change over
time [22, 33]. The common characteristic in all these application areas is that the network structure,
i.e. the underlying graph topology, is subject to discrete changes over time. In this paper we adopt a
simple and natural model for time-varying networks which is given with time-labels on the edges of a
graph, while the vertex set remains unchanged. This formalism originates in the foundational work of
Kempe et al. [25].

Definition 1 (temporal graph). A temporal graph is a pair (G,λ), where G = (V,E) is an underlying
(static) graph and λ : E → 2N is a time-labeling function which assigns to every edge of G a set of
discrete-time labels.

For every edge e ∈ E in the underlying graph G of a temporal graph (G,λ), λ(e) denotes the set of
time slots at which e is active in (G,λ). Due to its vast applicability in many areas, this notion of temporal
graphs has been studied from different perspectives under various names such as time-varying [1,17,35],
evolving [5, 11, 16], dynamic [8, 19], and graphs over time [29]; for a recent attempt to integrate existing
models, concepts, and results from the distributed computing perspective see the survey papers [6–8]
and the references therein. Data analytics on temporal networks have also been very recently studied
in the context of summarizing networks that represent sports teams’ activity data to discover recurring

∗This work was partially supported by the NeST initiative of the School of EEE and CS at the University of Liverpool
and by the EPSRC Grants EP/P020372/1 and EP/P02002X/1.
†Department of Computer Science, University of Liverpool, Liverpool, UK. Email: e.akrida@liverpool.ac.uk
‡Department of Computer Science, Durham University, Durham, UK. Email: george.mertzios@durham.ac.uk
§Department of Computer Science, University of Liverpool, Liverpool, UK. Email: p.spirakis@liverpool.ac.uk
¶Department of Computer Science, Durham University, Durham, UK. Email: viktor.zamaraev@durham.ac.uk

1

ar
X

iv
:1

80
2.

07
10

3v
1

 [
cs

.C
C

]
 2

0
Fe

b
20

18

strategies and understand team tactics [27], as well as extracting patterns from interactions between
groups of entities in a social network [26].

Motivated by the fact that, due to causality, information in temporal graphs can “flow” only along
sequences of edges whose time-labels are increasing, most temporal graph parameters and optimization
problems that have been studied so far are based on the notion of temporal paths and other “path-related”
notions, such as temporal analogues of distance, diameter, reachability, exploration, and centrality [2,3,
14,31,32]. In contrast, only few attempts have been made to define “non-path” temporal graph problems.
Motivated by the contact patterns among high-school students, Viard et al. [37, 38], and later Himmel
et al. [21], introduced and studied ∆-cliques, an extension of the concept of cliques to temporal graphs,
in which all vertices interact with each other at least once every ∆ consecutive time steps within a given
time interval.

In this paper we introduce and study two natural temporal extensions of the problem Vertex Cover
in static graphs, which take into account the dynamic nature of the network. In the first and simpler of
these extensions, namely Temporal Vertex Cover (for short, TVC), every edge e has to be “covered”
at least once during the lifetime T of the network (by one of its endpoints), and this must happen at
a time step t when e is active. The goal is then to cover all edges with the minimum total number
of such “vertex appearances”. On the other hand, in many real-world applications where scalability
is important, the lifetime T can be arbitrarily large but the network still needs to remain sufficiently
covered. In such cases, as well as in safety-critical systems (e.g. in military applications), it may not be
satisfactory enough that an edge is covered just once during the whole lifetime of the network. Instead,
every edge must be covered at least once within every small ∆-window of time (for an appropriate
value of ∆), regardless of how large the lifetime is; this gives rise to our second optimization problem,
namely Sliding Window Temporal Vertex Cover (for short, SW-TVC). Formal definitions of our
problems TVC and SW-TVC are given in Section 2.

Our two temporal extensions of Vertex Cover are motivated by applications in sensor networks
and in transportation networks. In particular, several works in the field of sensor networks consid-
ered problems of placing sensors to cover a whole area or multiple critical locations, e.g. for reasons
of surveillance. Such studies usually wish to minimize the number of sensors used or the total energy
required [13,20,28,34,39]. Our temporal vertex cover notions are an abstract way to economically meet
such covering demands as time progresses.

To further motivate the questions raised in this work, consider a network whose links represent
transporting facilities which are not always available, while the availability schedule per link is known
in advance. We wish to check each transporting facility and certify “OK” at least once per facility
during every (reasonably small) window of time. It is natural to assume that the checking is done in the
presence of an inspecting agent at an endpoint of the link (i.e. on a vertex), since such vertices usually
are junctions with local offices. The agent can inspect more than one link at the same day, provided
that these links share this vertex and that they are all alive (i.e. operating) at that day. Notice that the
above is indeed an application drawn from real-life, as regular checks in roads and trucks are paramount
for the correct operation of the transporting sector, according to both the European Commission1 and
the American Public Transportation Association2.

1.1 Our contribution

In this paper we present a thorough investigation of the complexity and approximability of the problems
Temporal Vertex Cover (TVC) and Sliding Window Temporal Vertex Cover (SW-TVC)
on temporal graphs. We first prove in Section 3 that TVC remains NP-complete even on star temporal
graphs, i.e. when the underlying graph G is a star. Furthermore we prove that, for any ε < 1, TVC
on star temporal graphs cannot be optimally solved in O(2εn) time, assuming the Strong Exponential
Time Hypothesis (SETH), as well as that it does not admit a polynomial-time (1−ε) lnn-approximation
algorithm, unless NP has nO(log logn)-time deterministic algorithms. On the positive side, we prove that

1According to the European Commission (see https://ec.europa.eu/transport/road_safety/topics/vehicles/

inspection_en), “roadworthiness checks (such as on-the-spot roadside inspections and periodic checks) not only make
sure your vehicle is working properly, they are also important for environmental reasons and for ensuring fair competition
in the transport sector”.

2According to the American Public Transportation Association (see http://www.apta.com/resources/standards/

Documents/APTA-RT-VIM-RP-019-03.pdf “developing minimum inspection, maintenance, testing and alignment procedures
maintains rail transit trucks in a safe and reliable operating condition”.

2

https://ec.europa.eu/transport/road_safety/topics/vehicles/inspection_en
https://ec.europa.eu/transport/road_safety/topics/vehicles/inspection_en
http://www.apta.com/resources/standards/Documents/APTA-RT-VIM-RP-019-03.pdf
http://www.apta.com/resources/standards/Documents/APTA-RT-VIM-RP-019-03.pdf

TVC on star temporal graphs with n vertices can be (Hn−1− 1
2)-approximated in polynomial time, where

Hn =
∑n
i=1

1
i ≈ lnn is the nth harmonic number. Moreover we prove that TVC on general temporal

graphs admits a polynomial-time randomized approximation algorithm with expected ratio O(lnn).
In Section 4 and in the reminder of the paper we deal with SW-TVC. For our second problem,

SW-TVC, we prove in Section 4.1 a strong complexity lower bound on arbitrary temporal graphs. More
specifically we prove that, for any (arbitrarily growing) functions f : N→ N and g : N→ N, there exists a
constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T)·2εn·g(∆) time, assuming the Exponential
Time Hypothesis (ETH). This ETH-based lower bound turns out to be asymptotically almost tight, as
we present an exact dynamic programming algorithm with running time O(T∆(n+m) · 2n(∆+1)). This
worst-case running time can be significantly improved in certain special temporal graph classes. In
particular, when the “snapshot” of (G,λ) at every time step has vertex cover number bounded by k, the
running time becomes O(T∆(n+m) · nk(∆+1)). That is, for small values of ∆ (say, when ∆ is O(log n)
or O(log T)), this algorithm is polynomial in the input size on temporal graphs with bounded vertex
cover number at every time step. Notably, when every snapshot is a star (i.e. a superclass of the star
temporal graphs studied in Section 3) the running time of the algorithm is O(T∆(n+m) · 2∆).

In Section 5 we prove strong inapproximability results for SW-TVC even when restricted to temporal
graphs with length ∆ = 2 of the sliding window. In particular, we prove that this problem is APX-hard
(and thus does not admit a Polynomial Time Approximation Scheme (PTAS), unless P = NP), even when
∆ = 2, the maximum degree in the underlying graph G is at most 3, and every connected component at
every graph snapshot has at most 7 vertices. Finally, in Section 6 we provide a series of approximation
algorithms for the general SW-TVC problem, with respect to various incomparable temporal graph
parameters. In particular, we provide polynomial-time approximation algorithms with approximation
ratios (i) O(lnn+ln ∆), (ii) 2k, where k is the maximum number of times that each edge can appear in a
sliding ∆ time window (thus implying a ratio of 2∆ in the general case), (iii) d, where d is the maximum
vertex degree at every snapshot of (G,λ). Note that, for d = 1, the latter result implies that SW-TVC
can be optimally solved in polynomial time whenever every snapshot of (G,λ) is a matching.

2 Preliminaries and notation

A theorem proving that a problem is NP-hard does not provide much information about how efficiently
(although not polynomially, unless P = NP) this problem can be solved. In order to prove some use-
ful complexity lower bounds, we mostly need to rely on some complexity hypothesis that is stronger
than“P 6= NP”. The Exponential Time Hypothesis (ETH) is one of the established and most well-known
such complexity hypotheses.

Exponential Time Hypothesis (ETH [24]). There exists an ε < 1 such that 3SAT cannot be solved
in O(2εn) time, where n is the number of variables in the input 3-CNF formula.

In addition to formulating ETH, Impagliazzo and Paturi proved the celebrated Sparsification
Lemma [23], which has the following theorem as a consequence. This result is quite useful for pro-
viding lower bounds assuming ETH, as it expresses the running time in terms of the size of the input
3-CNF formula, rather than only the number of its variables.

Theorem 1 ([23]). 3SAT can be solved in time 2o(n) if and only if it can be solved in time 2o(m) on
3-CNF formulas with n variables and m clauses.

Given a (static) graph G, we denote by V (G) and E(G) the sets of its vertices and edges, respectively.
An edge between two vertices u and v of G is denoted by uv, and in this case u and v are said to be
adjacent in G. The maximum label assigned by λ to an edge of G, called the lifetime of (G,λ), is
denoted by T (G,λ), or simply by T when no confusion arises. That is, T (G,λ) = max{t ∈ λ(e) : e ∈ E}.
For every i, j ∈ N, where i ≤ j, we denote [i, j] = {i, i + 1, . . . , j}. Throughout the paper we consider
temporal graphs with finite lifetime T , and we refer to each integer t ∈ [1, T] as a time point (or time
slot) of (G,λ). The instance (or snapshot) of (G,λ) at time t is the static graph Gt = (V,Et), where
Et = {e ∈ E : t ∈ λ(e)}. For every i, j ∈ [1, T], where i ≤ j, we denote by (G,λ)|[i,j] the restriction
of (G,λ) to the time slots i, i+ 1, . . . , j, i.e. (G,λ)|[i,j] is the sequence of the instances Gi, Gi+1, . . . , Gj .
We assume in the remainder of the paper that every edge of G appears in at least one time slot until T ,
namely

⋃T
t=1Et = E.

3

Although some optimization problems on temporal graphs may be hard to solve in the worst case,
an optimal solution may be efficiently computable when the input temporal graph (G,λ) has special
properties, i.e. if (G,λ) belongs to a special temporal graph class (or time-varying graph class [6,8]). To
specify a temporal graph class we can restrict (a) the underlying topology G, or (b) the time-labeling λ,
i.e. the temporal pattern in which the time-labels appear, or both.

Definition 2. Let (G,λ) be a temporal graph and let X be a class of (static) graphs. If G ∈ X then
(G,λ) is an X temporal graph. On the other hand, if Gi ∈ X for every i ∈ [1, T], then (G,λ) is an
always X temporal graph.

In the remainder of the paper we denote by n = |V | and m = |E| the number of vertices and edges of
the underlying graph G, respectively, unless otherwise stated. Furthermore, unless otherwise stated, we
assume that the labeling λ is arbitrary, i.e. (G,λ) is given with an explicit list of labels for every edge.

That is, the size of the input temporal graph (G,λ) is O
(
|V |+

∑T
t=1 |Et|

)
= O(n + mT). In other

cases, where λ is more restricted, e.g. if λ is periodic or follows another specific temporal pattern, there
may exist a more succinct representations of the input temporal graph.

For every u ∈ V and every time slot t, we denote the appearance of vertex u at time t by the pair
(u, t). That is, every vertex u has T different appearances (one for each time slot) during the lifetime
of (G,λ). Similarly, for every vertex subset S ⊆ V and every time slot t we denote the appearance of
set S at time t by (S, t). With a slight abuse of notation, we write (S, t) =

⋃
v∈S(v, t). A temporal

vertex subset of (G,λ) is a set S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of vertex appearances in (G,λ). Given
a temporal vertex subset S, for every time slot t ∈ [1, T] we denote by St = {(v, t) : (v, t) ∈ S} the set
of all vertex appearances in S at the time slot t. Similarly, for any pair of time slots i, j ∈ [1, T], where
i ≤ j, S|[i,j] is the restriction of the vertex appearances of S within the time slots i, i + 1, . . . , j. Note
that the cardinality of the temporal vertex subset S is |S| =

∑
1≤t≤T |St|.

2.1 Temporal Vertex Cover

Let S be a temporal vertex subset of (G,λ). Let e = uv ∈ E be an edge of the underlying graph G
and let (w, t) be a vertex appearance in S. We say that vertex w covers the edge e if w ∈ {u, v}, i.e. w
is an endpoint of e; in that case, edge e is covered by vertex w. Furthermore we say that the vertex
appearance (w, t) temporally covers the edge e if (i) w covers e and (ii) t ∈ λ(e), i.e. the edge e is active
during the time slot t; in that case, edge e is temporally covered by the vertex appearance (w, t). We
now introduce the notion of a temporal vertex cover and the optimization problem Temporal Vertex
Cover.

Definition 3. Let (G,λ) be a temporal graph. A temporal vertex cover of (G,λ) is a temporal vertex
subset S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of (G,λ) such that every edge e ∈ E is temporally covered by at
least one vertex appearance (w, t) in S.

Temporal Vertex Cover (TVC)

Input: A temporal graph (G,λ).
Output: A temporal vertex cover S of (G,λ) with the smallest cardinality |S|.

Note that TVC is a natural temporal extension of the problem Vertex Cover on static graphs. In
fact, Vertex Cover is the special case of TVC where T = 1. Thus TVC is clearly NP-complete, as it
also trivially belongs to NP.

2.2 Sliding Window Temporal Vertex Cover

In the notion of a temporal vertex cover given in Section 2.1, the optimal solution actually depends on
the lifetime T (and thus also on the size) of the input temporal graph (G,λ). On the other hand, in
many real-world applications where scalability is important, the lifetime T can be arbitrarily large. In
such cases it may not be satisfactory enough that an edge is temporally covered just once during the
whole lifetime of the temporal graph. Instead, in such cases it makes sense that every edge is temporally
covered by some vertex appearance at least once during every small period ∆ of time, regardless of how

4

large the lifetime T is. Motivated by this, we introduce in this section a natural sliding window variant
of the TVC problem, which offers a greater scalability of the solution concept.

For every time slot t ∈ [1, T−∆+1], we define the time window Wt = [t, t+∆−1] as the sequence of the
∆ consecutive time slots t, t+1, . . . , t+∆−1. We denote byW(T,∆) = {W1,W2, . . . ,WT−∆+1} the set of
all time windows in the lifetime of (G,λ). Furthermore we denote by E[Wt] =

⋃
i∈Wt

Ei the union of all
edges appearing at least once in the time window Wt. Finally we denote by S[Wt] = {(v, t) ∈ S : t ∈Wt}
the restriction of the temporal vertex subset S to the window Wt. We are now ready to introduce the
notion of a sliding ∆-window temporal vertex cover and the optimization problem Sliding Window
Temporal Vertex Cover.

Definition 4. Let (G,λ) be a temporal graph with lifetime T and let ∆ ≤ T . A sliding ∆-window
temporal vertex cover of (G,λ) is a temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of (G,λ) such
that, for every time window Wt and for every edge e ∈ E[Wt], e is temporally covered by at least one
vertex appearance (w, t) in S[Wt].

Sliding Window Temporal Vertex Cover (SW-TVC)

Input: A temporal graph (G,λ) with lifetime T , and an integer ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ) with the smallest cardinality |S|.

Whenever the parameter ∆ is a fixed constant, we will refer to the above problem as the ∆-TVC
(i.e. ∆ is now a part of the problem name). Note that the problem TVC defined in Section 2.1 is the
special case of SW-TVC where ∆ = T , i.e. where there is only one ∆-window in the whole temporal
graph. Another special case3 of SW-TVC is the problem 1-TVC, whose optimum solution is obtained
by iteratively solving the (static) problem Vertex Cover on each of the T static instances of (G,λ);
thus 1-TVC fails to fully capture the time dimension in temporal graphs.

2.3 Alternative models

In this section we briefly discuss two alternative variations of the problem SW-TVC, namely the problems
Flexible SW-TVC and the Disjoint Window TVC. Although both these temporal variations of the
(static) problem Vertex Cover could also be considered as being natural, it turns out that each of
these problems is equivalent to iteratively solving either the static Vertex Cover problem or the TVC
problem (defined in Section 2.1). We first introduce the notion of a flexible sliding ∆-window temporal
vertex cover and the optimization problem Flexible SW-TVC.

Definition 5. Let (G,λ) be a temporal graph with lifetime T and let ∆ ≤ T . A flexible sliding ∆-window
temporal vertex cover of (G,λ) is a temporal vertex subset S ⊆ {(v, t) : v ∈ V, 1 ≤ t ≤ T} of (G,λ) such
that, for every time window Wt and for every edge e ∈ E[Wt], there exists at least one vertex appearance
(w, t) ∈ S[Wt] where e is covered by w.

Note by Definitions 4 and 5 that a sliding ∆-window temporal vertex cover is also a flexible sliding ∆-
window temporal vertex cover, but not vice versa. To illustrate the differences between these two notions,
consider a temporal graph (G,λ), a time window Wt, and an edge e = uv ∈ E[Wt]. Furthermore let S
be a temporal vertex subset of (G,λ). In order for S to be a sliding ∆-window temporal vertex cover
(see Definition 4), it is required that S contains at least one of the vertex appearances (u, s) and (v, s),
where s is a time slot in which e is active in Wt. In contrast, in order for S to be a flexible sliding
∆-window temporal vertex cover (see Definition 5), it is required that S contains at least one of the
vertex appearances (u, s) and (v, s), where s is any time slot in Wt, i.e not necessarily a time slot of Wt

in which e is active.
The problem Flexible Sliding Window Temporal Vertex Cover (for short, Flexible SW-

TVC) asks to compute a flexible sliding ∆-window temporal vertex cover S of (G,λ) with the smallest
cardinality |S|. The next lemma shows that Flexible SW-TVC is equivalent to iteratively solving
Vertex Cover on

⌊
T
∆

⌋
static graphs that are easily derived from the input temporal graph (G,λ), and

thus Flexible SW-TVC fails to fully capture the time dimension in temporal graphs. For the sake of

3The problem 1-TVC has already been investigated under the name “evolving vertex cover” in the context of maintenance
algorithms in dynamic graphs [9]; similar “evolving” variations of other graph covering problems have also been considered,
e.g. the “evolving dominating set” [7].

5

the presentation of the next lemma, for every 1 ≤ i ≤
⌊
T
∆

⌋
we define the interval Di = [(i− 1)∆ + 1, (i+

1)∆− 1] ∩ [1, T].

Lemma 1. Let (G,λ) be a temporal graph with lifetime T , let ∆ ≤ T , and let k =
⌊
T
∆

⌋
. For every

i ∈ [1, k], let Si be a minimum vertex cover of the (static) graph
⋃
j∈Di

Gj, where the union of the

graph snapshots is understood as their edge-union. Then S =
⋃k
t=1(Si, i∆) is an optimum solution of

Flexible SW-TVC for (G,λ).

Proof. First we prove that S is a flexible sliding ∆-window temporal vertex cover of (G,λ). Consider an
edge e of the underlying graph G such that t0 ∈ λ(e), i.e. e is active at the time slot t0 ∈ [1, T]. Then e is
active at least once at each of the time windows Wt ∈ W(T,∆), where t ∈ [t0−∆ + 1, t0]∩ [1, T −∆ + 1].
Consider any of these time windows Wt. Note that Wt contains at least one time slot that is a multiple
of ∆, say i · ∆, where 1 ≤ i ≤ k. Therefore e belongs to the static graph

⋃
j∈Di

Gj . Thus, since Si is
a vertex cover of this graph, it follows that there exists at least one vertex appearance (w, i∆) ∈ S[Wt]
where e is covered by w. Therefore, since e is arbitrary by assumption, S is a flexible sliding ∆-window
temporal vertex cover of (G,λ) by Definition 5.

We now prove that S is an optimum solution of Flexible SW-TVC. To this end, let S ′ be a
flexible sliding ∆-window temporal vertex cover of (G,λ) with minimum cardinality. Let i ∈ [1, k] be
arbitrary. Consider the (static) graph Hi (resp. H ′i) which is the edge-union of all snapshots Gj , where
j ∈ [(i− 1)∆ + 1, i∆] (resp. j ∈ [i∆, (i+ 1)∆− 1]). Let Xi and X ′i be minimum vertex covers of Hi and
H ′i, respectively. Then, by Definition 5, S ′ must contain at least one vertex occurrence for every vertex
in Xi ∪X ′i. That is, |S ′| ≥

∑
1≤i≤k |Xi ∪X ′i|. Consider now the static graph H ′′i =

⋃
j∈Di

Gj , which is
the edge-union of Hi and H ′i, and let X ′′i be a vertex cover of H ′′i . Then note that |Xi ∪X ′i| ≥ |X ′′i |, and
thus |S ′| ≥

∑
1≤i≤k |X ′′i | = |S|. Therefore S is an optimum solution of Flexible SW-TVC.

We now introduce the notion of a disjoint ∆-window temporal vertex cover and the optimization
problem Disjoint Window TVC.

Definition 6. Let (G,λ) be a temporal graph with lifetime T , let ∆ ≤ T , and let k =
⌈
T
∆

⌉
. A disjoint

∆-window temporal vertex cover of (G,λ) is the union
⋃k
i=1 Si, where Si is a temporal vertex cover of

the temporal graph (G,λ)|[(i−1)∆+1,i∆]∩[1,T].

The problem Disjoint Window Temporal Vertex Cover (for short, Disjoint Window TVC)
asks to compute a disjoint ∆-window temporal vertex cover S of (G,λ) with the smallest cardinality
|S|. As it immediately follows by Definition 6, an optimum solution to Disjoint Window TVC
is obtained by iteratively solving TVC (as defined in Section 2.1) on each of the temporal graphs
(G,λ)|[(i−1)∆+1,i∆]∩[1,T], where 1 ≤ i ≤

⌈
T
∆

⌉
. Therefore Disjoint Window TVC does not provide any

additional temporal insights compared to the problems TVC and SW-TVC (cf. Sections 2.1 and 2.2,
respectively).

3 Hardness and approximability of TVC

In this section we investigate the complexity of Temporal Vertex Cover (TVC). First we prove
in Section 3.1 that TVC remains NP-complete even on star temporal graphs, i.e. where the underlying
graph G is a star. Furthermore we prove that, for any ε < 1, TVC on star temporal graphs cannot
be optimally solved in O(2εn) time, unless the Strong Exponential Time Hypothesis (SETH) fails, as
well as that it does not admit a polynomial-time (1 − ε) lnn-approximation algorithm, unless NP has
nO(log logn)-time deterministic algorithms.

In contrast, we prove that TVC on star temporal graphs can be (Hn−1 − 1
2)-approximated in poly-

nomial time, where Hn =
∑n
i=1

1
i ≈ lnn is the nth harmonic number. In Section 3.2 we use randomized

rounding to prove that TVC on general temporal graphs admits a polynomial-time randomized approx-
imation algorithm with expected ratio O(lnn). This result is complemented by our results in Section 6.1
where we prove that SW-TVC (and thus also TVC) can be deterministically approximated with ratio
H2n∆ − 1

2 ≈ lnn+ ln 2∆− 1
2 in polynomial time.

6

3.1 Hardness on star temporal graphs

In the next theorem we prove that TVC on star temporal graphs (i.e. when the underlying graph G is
a star, cf. Definition 2) is equivalent to Set Cover, and thus the known (in)approximability results for
Set Cover carry over to TVC. This hardness result of TVC is in wide contrast to the (trivial) solution
of Vertex Cover on a static star graph.

Theorem 2. TVC on star temporal graphs is NP-complete and it admits a polynomial-time (Hn−1− 1
2)-

approximation algorithm. Furthermore, for any ε > 0, TVC on star temporal graphs does not admit
any polynomial-time (1− ε) lnn-approximation algorithm, unless NP has nO(log logn)-time deterministic
algorithms.

Proof. First we reduce Set Cover to TVC on star temporal graphs, and vice versa.

Set Cover

Input: A universe U = {1, 2, . . . , n} and a collection of C = {C1, C2, . . . , Cm} of m subsets of U
such that

⋃n
i=1 Ci = U .

Output: A subset C′ ⊆ C with the smallest cardinality such that
⋃
Ci∈C′ Ci = U .

Given an instance (U, C) of Set Cover, we construct an equivalent instance (G,λ) of TVC on star
temporal graphs as follows. We set T = m and we let G be a star graph on n+ 1 vertices, with center c
and leaves v1, v2, . . . , vn. The labeling λ is such that, at every time slot i ∈ [1,m], Gi is a star centered
at c and with leaves all the vertices vj such that j ∈ Ci.

Conversely, let (G,λ) be an instance of TVC on star temporal graphs, where G is a star on n + 1
vertices, with center c and leaves v1, v2, . . . , vn. From (G,λ) we construct an equivalent instance (U, C)
of Set Cover as follows. We set m = T and, for every i = 1, 2, . . . , T , we define Ci to be the set of all
elements j such that vjc ∈ Ei.

In both reductions, we will now prove that there exists a temporal vertex cover S in (G,λ) such that
|S| ≤ k if and only if there exists a set cover C′ of (U, C) such that |C′| ≤ k.

(⇒) Let S be a minimum-cardinality temporal vertex cover of (G,λ), and let |S| ≤ k. Since S has
minimum cardinality and G is a star, it follows that, for every i = 1, 2, . . . ,m, either Si = {(c, i)}
or Si = ∅. Then the collection C′ = {Ci ∈ C : Si 6= ∅} is a set cover of U . Indeed, if Si 6= ∅ then
the appearance (c, i) in S covers all the edges cvj of G, where j ∈ Ci. Thus, as the sequence of all
non-empty sets Si covers all edges of (G,λ), it follows that the union of all sets Ci ∈ C′ covers all
elements of U = {1, 2, . . . , n}. Finally, since |S| ≤ k, it follows by construction that |C| ≤ k .

(⇐) Let C′ be an optimal solution to Set Cover, and let |C′| ≤ k. We define the temporal vertex set
S = {(c, i) : Ci ∈ C′}. For every Ci ∈ C′, the appearance of (c, i) in S covers all edges cvj of G,
where j ∈ Ci. Thus, as the sets of C′ cover all elements of U = {1, 2, . . . , n}, it follows that S is a
temporal vertex cover of (G,λ). Finally, since |C| ≤ k, it follows by construction that |S| ≤ k .

Therefore TVC on star temporal graphs is equivalent to Set Cover, and thus in particular TVC
on star temporal graphs is NP-complete.

The polynomial-time greedy algorithm of [10] for Set Cover achieves an approximation ratio of

Hk − 1
2 , where k is the maximum size of a set in the input instance and Hk =

∑k
i=1

1
i is the kth

harmonic number. Therefore, since in an input instance (U, C) of Set Cover with n elements in the
universe U , the maximum size of a set in C is at most n, the approximation algorithm of [10] has ratio
Hn − 1

2 on such an instance. Furthermore, due to the above polynomial-time reduction of TVC on star
temporal graphs to Set Cover, it follows that TVC on star temporal graphs with n vertices can be
approximated in polynomial time within ratio Hn−1 − 1

2 .
Finally, it is known that, for any ε > 0, Set Cover cannot be approximated in polynomial time

within a factor of (1 − ε) lnn unless NP has nO(log logn)-time deterministic algorithms [15]. Therefore,
due to the above polynomial-time reduction of Set Cover to TVC on star temporal graphs, it follows
that TVC on star temporal graphs does not admit such polynomial-time approximation algorithms as
well.

In the next theorem we complement our hardness results for TVC on star temporal graphs by reducing
Hitting Set to it.

7

Theorem 3. For every ε < 1, TVC on star temporal graphs cannot be optimally solved in O(2εn) time,
unless the Strong Exponential Time Hypothesis (SETH) fails.

Proof. The proof is done via a reduction of Hitting Set to TVC on star temporal graphs. This
reduction has a similar flavor as the one presented in Theorem 2, since the problems Set Cover and
Hitting Set are in a sense dual to each other4. We first present the definition Hitting Set.

Hitting Set

Input: A universe U = {1, 2, . . . , n} and a collection of C = {C1, C2, . . . , Cm} of m subsets of U
such that

⋃n
i=1 Ci = U .

Output: A subset U ′ ⊆ U with the smallest cardinality such that U ′ contains at least one element
from each set in C.

Given an instance (U, C) of Hitting Set, we construct an equivalent instance of TVC on star
temporal graphs as follows. We set T = n and let G be a star on m+ 1 vertices with center vertex c and
leaves v1, v2, . . . , vm. The labeling λ is such that, at every time slot i ∈ [1, n], Gi is a star centered at c
and with leaves all the vertices vj such that i ∈ Cj . Following a similar argumentation as in Theorem 2,
it follows that there exists a temporal vertex cover S in (G,λ) such that |S| ≤ k if and only if there
exists a hitting set U ′ ⊆ U of (U, C) such that |U ′| ≤ k.

Assume now that there exists an O(2εT)-time algorithm for optimally solving TVC on star temporal
graphs, for some ε < 1. Then, due to the above reduction from Hitting Set, we can use this algorithm
to optimally solve Hitting Set in O(2εn)-time. This is a contradiction, unless the Strong Exponential
Time Hypothesis (SETH) fails [12].

3.2 A randomized rounding algorithm for TVC

In this section we provide a linear programming relaxation of TVC, and then, with the help of a
randomized rounding technique, we construct a feasible solution whose expected size is within a factor
of O(lnn) of the optimal size.

Let (G,λ) be a temporal graph with lifetime T ; let G = (V,E), where |V | = n and |E| = m. First
we give an integer programming formulation of TVC. We introduce a variable xvt, for every vertex and
time slot pair, that will be 1 if the vertex appearance (v, t) is selected in the candidate temporal vertex
cover and 0 otherwise. The objective then is to minimize the sum of vertex appearances selected in the
candidate temporal vertex cover, while covering every edge at a time slot in which it appears. Since
every edge e = uv must be covered by at least one of its endpoints’ appearances at a time slot t ∈ λ(e),
we require for every edge e = uv the inequality:∑

t∈λ(e)

(xut + xvt) ≥ 1

This inequality constraint together with the integrality constraint for all variables yields the following
integer programming formulation of TVC:

minimize
∑

v∈V,t∈[T]

xvt

subject to
∑

t∈λ(uv)

(xut + xvt) ≥ 1, for all uv ∈ E

xvt ∈ {0, 1}, for all v ∈ V, t ∈ [T]

If Z∗IP is the optimal value of this integer program, then it is not hard to see that Z∗IP = OPT, where
OPT is the value of an optimal solution to TVC.

The corresponding linear programming relaxation of this integer program is:

4That is seen by observing that an instance of Set Cover can be viewed as an arbitrary bipartite graph, with sets
represented by vertices on the left, the universe represented by vertices on the right, and edges representing the inclusion
of elements in sets. The task is then to find a minimum-cardinality subset of left-vertices which covers all of the right-
vertices. In the Hitting Set problem, the objective is to cover the left-vertices using the smallest number of right vertices.
Converting from one problem to the other is therefore achieved by interchanging the two sets of vertices.

8

minimize
∑

v∈V,t∈[T]

xvt

subject to
∑

t∈λ(uv)

(xut + xvt) ≥ 1, for all uv ∈ E

xvt ≥ 0, for all v ∈ V, t ∈ [T]

We could also add the constraints xvt ≤ 1, for all v ∈ V, t ∈ [T] but they would be redundant, since
in any optimal solution to the problem all the variables are at most 1; indeed, notice that any xvt > 1
can be reduced to xvt = 1 without affecting the feasibility of the solution. If Z∗LP is the optimal value of
this linear program, then clearly Z∗LP ≤ Z∗IP = OPT.

Theorem 4. There exists a polynomial-time randomized approximation algorithm for Temporal Ver-
tex Cover with expected approximation factor O(lnn).

Proof. We apply randomized rounding to our linear program. Let x∗ be an optimal solution to the linear
programming relaxation. For every vertex appearance (v, t) we pick (v, t) to our solution (equivalently,
we set xvt to 1) with probability x∗vt independently.

We begin by analyzing the probability that a given edge e = uv is covered. Pick an arbitrary edge
e = uv. Let λ(e) = {l1, . . . , lk}, for some k ≥ 1. For all i = 1, . . . , k denote by αi the value 1− x∗uli and
denote by βi the value 1 − x∗vli . Then, by applying the arithmetic-geometric mean inequality5, we see
that:

Pr[edge e = uv is not covered] =
∏
t∈λ(e)

(1− x∗ut) (1− x∗vt)

=

k∏
i=1

(αiβi)

≤

(
1

2k

(
k∑
i=1

αi +

k∑
i=1

βi

))2k

. (1)

Since x∗ is an optimal solution to the linear programming relaxation, it holds that:

∑
t∈λ(e)

(x∗ut + x∗vt) ≥ 1⇔
k∑
i=1

(
x∗uli + x∗vli

)
≥ 1⇔

k∑
i=1

((1− αi) + (1− βi)) ≥ 1⇔

k∑
i=1

αi +

k∑
i=1

βi ≤ 2k − 1.

Hence, equation (1) becomes:

Pr[edge e = uv is not covered] ≤
(

1− 1

2k

)2k

≤ e−1. (2)

We now repeat the above random experiment γ lnn times independently, for some constant γ ≥ 4.
Let C∗ denote the union of all of the sets of selected vertex appearances per experiment, i.e. C∗ contains
all vertex appearances (v, t) which have been picked in at least one experiment. The probability that
there is an edge of the graph that is not covered by C∗ is, by the union bound, bounded from above by
the product of the number of edges and the probability that a particular edge is not covered by C∗. By
equation (2), we get that the probability of a particular edge not being covered by C∗ is bounded from
above by e−γ lnn. Therefore, we have that the probability that C∗ is a Temporal Vertex Cover is:

5For any nonnegative α1, . . . , αk,
(∏k

i=1 αi

)1/k
≤ 1

k

∑k
i=1 αi

9

Pr[C∗ is a temporal vertex cover] = 1− Pr[∃e = uv ∈ E that is not covered by C∗]

≥ 1− n2e−γ lnn

= 1− 1

nγ−2
.

Consider a particular experiment (out of the γ lnn). Let Xvt be a Bernoulli random variable that
takes value 1 if (v, t) was picked in this experiment, and 0 otherwise. Then E[

∑
v,tXvt] =

∑
v,tE[Xvt] =∑

v,t x
∗
vt = Z∗LP . Now, notice that the expected size of C∗ is:

E[|C∗|] ≤ γ lnn E[
∑
v,t

Xvt] = γ lnn Z∗LP ≤ γ lnn Z∗IP = γ lnn OPT.

If C∗ is not a temporal vertex cover, then one may select as a temporal vertex cover the trivial
temporal vertex cover, C ′, which selects for every edge e = uv ∈ E(G) an appearance (u, t) or (v, t) at
a time slot t with t ∈ λ(e); C ′ has size at most m ≤ n2. Then the expected temporal vertex cover size
that we get is:

E[size of temporal vertex cover] ≤ γ lnn OPT

(
1− 1

nγ−2

)
+ n2 1

nγ−2

= γ lnn OPT +
1

nγ−4
− γ lnn

nγ−2
OPT

≤ γ lnn OPT + 1 (since γ ≥ 4).

Since we can assume that the input temporal graph has at least one edge, we have OPT ≥ 1, and so
the expected approximation ratio is:

E[size of temporal vertex cover]

OPT
≤ γ lnn+ 2. (3)

The time complexity of our proposed algorithm is at most TLP + nTγ lnn + mT + m =
O (TLP + T (nγ lnn+m)), where TLP is the time required to solve the linear programming relaxation of
the problem. Indeed, performing a single randomized rounding experiment takes time nT , then verifying
if C∗ is a temporal vertex cover takes time at most mT and finding a trivial temporal vertex cover C ′

(if needed) takes time m.

4 An almost tight algorithm for SW-TVC

In this section we investigate the complexity of Sliding Window Temporal Vertex Cover (SW-
TVC). First we prove in Section 4.1 a strong lower bound on the complexity of optimally solving this
problem on arbitrary temporal graphs. More specifically we prove that, for any (arbitrarily growing)
functions f : N → N and g : N → N, there exists a constant ε ∈ (0, 1) such that SW-TVC cannot
be solved in f(T) · 2εn·g(∆) time, assuming the Exponential Time Hypothesis (ETH). This ETH-based
lower bound turns out to be asymptotically almost tight. In fact, we present in Section 4.2 an exact
dynamic programming algorithm for SW-TVC whose running time on an arbitrary temporal graph is
O(T∆(n+m) ·2n(∆+1)), which is asymptotically almost optimal, assuming ETH. In Section 4.3 we prove
that our algorithm can be refined so that, when the vertex cover number of each snapshot Gi is bounded
by a constant k, the running time becomes O(T∆(n + m) · nk(∆+1)). That is, for small values of ∆
(say, when ∆ is O(log n) or O(log T)), this algorithm is polynomial in the input size on temporal graphs
with bounded vertex cover number at every slot. Notably, for the class of always star temporal graphs
(i.e. a superclass of the star temporal graphs studied in Section 3.1) the running time of the algorithm
is O(T∆(n+m) · 2∆).

10

4.1 A complexity lower bound

In the classic textbook NP-hardness reduction from 3SAT to Vertex Cover (see e.g. [18]), the produced
instance of Vertex Cover is a graph whose number of vertices is linear in the number of variables and
clauses of the 3SAT instance. Therefore the next theorem follows by Theorem 1 (for a discussion see
also [30]).

Theorem 5. Assuming ETH, there exists an ε0 < 1 such that Vertex Cover cannot be solved in
O(2ε0n), where n is the number of vertices.

In the the following theorem we prove a strong ETH-based lower bound for SW-TVC. This lower
bound is asymptotically almost tight, as we present in Section 4.2 a dynamic programming algorithm
for SW-TVC with running time O(T∆(n + m) · 2n∆), where n and m are the numbers of vertices and
edges in the underlying graph G, respectively.

Theorem 6. For any two (arbitrarily growing) functions f : N → N and g : N → N, there exists a
constant ε ∈ (0, 1) such that SW-TVC cannot be solved in f(T) · 2εn·g(∆) time assuming ETH, where n
is the number of vertices in the underlying graph G of the temporal graph.

Proof. We reduce Vertex Cover to SW-TVC as follows. Let G be an instance graph of Vertex
Cover with n vertices. We construct the temporal graph (G,λ) with T = ∆ = 2 such that G1 = G and
G2 is an independent set on n vertices. Then, clearly the optimum solutions of Vertex Cover on G
coincide with the optimum solutions of SW-TVC on (G,λ).

For the sake of contradiction assume that, for every ε < 1, there exists an algorithm Aε that solves
SW-TVC in f(T) · 2εn·g(∆) time. Then we optimally solve SW-TVC on the temporal graph (G,λ) by
applying the algorithm Aε, where ε = ε0

2g(2) and ε0 is the constant of Theorem 5 for Vertex Cover.

Note that ε is a constant, since both ε0 and g(2) are constants. Furthermore note that the result of the
algorithm is also a minimum vertex cover in the original (static) graph G. The running time of Aε is by

assumption f(2) · 2
ε0

g(2)
n·g(∆) = f(2) · 2ε0n. Therefore, since f(2) is also a constant, the existence of the

algorithm Aε for SW-TVC implies an algorithm for Vertex Cover with running time O(2ε0n), which
is a contradiction, assuming ETH, due to Theorem 5.

4.2 An exact dynamic programming algorithm

The main idea of our dynamic programming algorithm for SW-TVC is to scan the temporal graph from
left to right with respect to time (i.e. to scan the snapshots Gi increasingly on i), and at every time slot
to consider all possibilities for the vertex appearances at the previous ∆ time slots. Before we proceed
with the presentation and analysis of our algorithm, we start with a simple but useful observation.

Observation 1. Let (G,λ) be a temporal graph with lifetime T . Let S be a sliding ∆-window temporal
vertex cover of (G,λ). Then, for every ∆ ≤ t ≤ T , the temporal vertex subset S|[1,t] = {(v, i) ∈ S : i ≤ t}
is a sliding ∆-window temporal vertex cover of (G,λ)|[1,t].

Let (G,λ) be a temporal graph with n vertices and lifetime T , and let ∆ ≤ T . For every t =
1, 2, . . . , T −∆ + 1 and every ∆-tuple of vertex subsets A1, . . . A∆ of G, we define f(t;A1, A2, . . . , A∆) to
be the smallest cardinality of a sliding ∆-window temporal vertex cover S of (G,λ)|[1,t+∆−1], such that
St = (A1, t), St+1 = (A2, t + 1), . . . , St+∆−1 = (A∆, t + ∆ − 1). If there exists no sliding ∆-window
temporal vertex cover S of (G,λ)|[1,t+∆−1] with these prescribed vertex appearances in the time slots
t, t + 1, . . . , t + ∆ − 1, then we define f(t;A1, A2, . . . , A∆) = ∞. Note that, once we have computed all
possible values of the function f(·), then the optimum solution of SW-TVC on (G,λ) has cardinality

OPTSW-TVC(G,λ) = min
A1,A2,...,A∆⊆V

{f(T −∆ + 1;A1, A2, . . . , A∆)} . (4)

Observation 2. If the temporal vertex set
⋃∆
i=1(Ai, t + i − 1) is not a temporal vertex cover of

(G,λ)|[t,t+∆−1] then f(t;A1, A2, . . . , A∆) =∞.

Due to Observation 2 we assume below without loss of generality that
⋃∆
i=1(Ai, t+i−1) is a temporal

vertex cover of (G,λ)|[t,t+∆−1]. We are now ready to present our main recursion formula in the next
lemma.

11

Lemma 2. Let (G,λ) be a temporal graph, where G = (V,E). Let 2 ≤ t ≤ T−∆+1 and let A1, A2, . . . A∆

be a ∆-tuple of vertex subsets of the underlying graph G. Suppose that
⋃∆
i=1(Ai, t+ i− 1) is a temporal

vertex cover of (G,λ)|[t,t+∆−1]. Then

f(t;A1, A2, . . . , A∆) = |A∆|+ min
X⊆V

{f(t− 1;X,A1, . . . , A∆−1)} . (5)

Proof. First consider the case where minX⊆V {f(t− 1;X,A1, . . . , A∆−1)} = ∞. Assume that
f(t;A1, A2, . . . , A∆) 6= ∞ and let S be a sliding ∆-window temporal vertex cover of the instance
(G,λ)|[1,t+∆−1], in which the vertex appearances in the the last ∆ time slots t, t + 1, . . . , t + ∆ − 1
are given by St = (A1, t), St+1 = (A2, t+ 1), . . . , St+∆−1 = (A∆, t+ ∆− 1). Then, by Observation 1,
S|[1,t+∆−2] is a sliding ∆-window temporal vertex cover of the instance (G,λ)|[1,t+∆−2]. Moreover, the
vertex appearances of S|[1,t+∆−2] in the the last ∆ − 1 time slots t, t + 1, . . . , t + ∆ − 2 are given by
St = (A1, t), St+1 = (A2, t+ 1), . . . , St+∆−2 = (A∆−1, t+ ∆− 2). Now let X be the set of vertices of
G which are active in S|[1,t+∆−2] during the time slot t − 1. Then note that f(t − 1;X,A1, . . . , A∆−1)
is upper-bounded by the cardinality of S|[1,t+∆−2], and thus f(t− 1;X,A1, . . . , A∆−1) 6= ∞, which is a
contradiction. That is, if minX⊆V {f(t− 1;X,A1, . . . , A∆−1)} =∞ then also f(t;A1, A2, . . . , A∆) =∞,
and in this case the value of f(t;A1, A2, . . . , A∆) is correctly computed by (5).

Now consider the case where minX⊆V {f(t− 1;X,A1, . . . , A∆−1)} 6= ∞, and let X ⊆ V be a vertex
subset for which f(t − 1;X,A1, . . . , A∆−1) is minimized. Furthermore let S be a minimum-cardinality
sliding ∆-window temporal vertex cover of the instance (G,λ)|[1,t+∆−2], in which the vertex appearances
in the the last ∆ time slots t−1, t, . . . , t+∆−2 are given by St−1 = (X, t−1), St = (A1, t), . . . , St+∆−2 =
(A∆−1, t+ ∆− 2). Then S ∪ (A∆, t+ ∆− 1) is a sliding ∆-window temporal vertex cover of the instance

(G,λ)|[1,t+∆−1], since
⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1] by the assumption

of the lemma. Thus

f(t;A1, A2, . . . , A∆) ≤ |S ∪ (A∆, t+ ∆− 1)| = |A∆|+ |S|
= |A∆|+ min

X⊆V
{f(t− 1;X,A1, . . . , A∆−1)} , (6)

and thus, in particular, f(t;A1, A2, . . . , A∆) 6= ∞. Now let S ′ be a minimum-cardinality sliding ∆-
window temporal vertex cover of the instance (G,λ)|[1,t+∆−1], in which the vertex appearances in the
the last ∆ time slots t, t+ 1, . . . , t+ ∆− 1 are given by S ′t = (A1, t), S ′t+1 = (A2, t+ 1), . . . , S ′t+∆−1 =
(A∆, t+ ∆−1). Note that |S ′| = f(t;A1, A2, . . . , A∆), since S ′ has minimum cardinality by assumption.
Observation 1 implies that the temporal vertex subset S ′′ = S ′|[1,t+∆−2] is a sliding ∆-window tempo-
ral vertex cover of the instance (G,λ)|[1,t+∆−2], and thus |S ′′| ≥ minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}.
Furthermore, since |S ′| = |A∆|+ |S ′′| by construction, it follows that

f(t;A1, A2, . . . , A∆) = |A∆|+ |S ′′| ≥ |A∆|+ min
X⊆V

{f(t− 1;X,A1, . . . , A∆−1)} . (7)

Summarizing, equations (6) and (7) imply that f(t;A1, A2, . . . , A∆) = |A∆| +
minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}, whenever minX⊆V {f(t− 1;X,A1, . . . , A∆−1)} 6= ∞. This
completes the proof of the lemma.

Using the recursive computation of Lemma 2, we are now ready to present Algorithm 1 for computing
the value of an optimal solution of SW-TVC on a given arbitrary temporal graph (G,λ). Note that
Algorithm 1 can be easily modified such that it also computes the actual optimum solution of SW-
TVC (instead of only its optimum cardinality). The proof of correctness and running time analysis of
Algorithm 1 are given in the next theorem.

Theorem 7. Let (G,λ) be a temporal graph, where G = (V,E) has n vertices and m edges. Let T be its
lifetime and let ∆ be the length of the sliding window. Algorithm 1 computes in O(T∆(n+m) · 2n(∆+1))
time the value of an optimal solution of SW-TVC on (G,λ).

Proof. In its main part (lines 1-9), the algorithm iterates over all time slots 1 ≤ t ≤ T − ∆ + 1 and
over all vertex subsets A1, A2, . . . A∆ ⊆ V . Whenever it detects a tuple (t;A1, A2, . . . A∆) such that⋃∆
i=1(Ai, t+ i−1) is not a temporal vertex cover of (G,λ)|[t,t+∆−1], then it sets f(t;A1, A2, . . . A∆) =∞

in line 9. This is correct by Observation 2.

12

Algorithm 1 SW-TVC

Input: A temporal graph (G,λ) with lifetime T , where G = (V,E), and a natural ∆ ≤ T .
Output: The smallest cardinality of a sliding ∆-window temporal vertex cover in (G,λ).

1: for t = 1 to T −∆ + 1 do
2: for all A1, A2, . . . , A∆ ⊆ V do

3: if
⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex cover of (G,λ)|[t,t+∆−1] then

4: if t = 1 then
5: f(t;A1, A2, . . . , A∆)←

∑∆
i=1 |Ai|

6: else
7: f(t;A1, A2, . . . , A∆)← |A∆|+minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}
8: else
9: f(t;A1, A2, . . . , A∆)←∞

10: return minA1,...,A∆⊆V {f(T −∆ + 1;A1, . . . , A∆)}

For all other tuples (t;A1, A2, . . . A∆), the algorithm distinguishes in lines 4-7 the cases t = 1 and
t ≥ 2. If t ≥ 2 the algorithm recursively computes in line 7 the value of f(t;A1, A2, . . . A∆) using
values that have been previously computed. The correctness of this recursive computation follows by
Lemma 2. If t = 1, then clearly the optimum solution of SW-TVC on (G,λ)|[1,∆] has value equal to the

total number of vertex appearances in the time slots 1, 2, . . . ,∆, i.e. f(1;A1, A2, . . . A∆) =
∑∆
i=1 |Ai|,

as it is computed in line 5. Finally, the algorithm correctly returns in line 10 the smallest value of
f(T −∆ + 1;A1, A2, . . . A∆) among all possible ∆-tuples A1, A2, . . . A∆. The correctness of this step has
been discussed above, in equation (4).

With respect to running time, Algorithm 1 iterates for each value t = 1, 2, . . . , T and for each of the
2n∆ different ∆-tuples A1, A2, . . . A∆ ⊆ V in lines 1-9. The only non-trivial computations within these
lines are in lines 3 and 7. In line 3 the algorithm checks whether

⋃∆
i=1(Ai, t+ i− 1) is a temporal vertex

cover of (G,λ)|[t,t+∆−1]. This can be done in O(∆(n+m)) time, where m is the number of edges in the
(static) underlying graph G, by simply enumerating all edges that are covered by the vertex appearances

in
⋃∆
i=1(Ai, t+ i−1) and comparing their number with the total number of edges that are active at least

once in the time window Wt = [t, t+ ∆−1]. On the other hand, to execute line 7 we need at most O(2n)
time for computing the minimum among at most 2n different known values. Similarly, to execute line 10
we need at most O(2n∆) time for computing the minimum among at most 2n∆ different known values.
Therefore the total running time of Algorithm 1 is upper-bounded by O(T∆(n+m) · 2n(∆+1)) time.

4.3 Always bounded vertex cover number temporal graphs

Let (G,λ) be a temporal graph of lifetime T , and let S be a minimum-cardinality sliding ∆-window
temporal vertex cover of (G,λ). Note that the minimality of |S| implies that, for every i = 1, 2, . . . , T ,
|Si| is upper-bounded by the (static) vertex cover number of Gi. Therefore, in the recursive relation of
Lemma 2, it is enough to only consider subsets X,A1, A2, . . . , A∆ ⊆ V whose cardinalities are bounded
by the vertex cover numbers of the corresponding snapshots. Thus, for small values of ∆ (say, when ∆
is O(log n) or O(log T)), Algorithm 1 can be modified to a polynomial time algorithm for the class of
always bounded vertex cover number temporal graphs, when ∆. Formally, let k be a constant and let
Ck be the class of graphs with the vertex cover number at most k. The next theorem follows now from
the analysis of Theorem 7.

Theorem 8. SW-TVC on always Ck temporal graphs can be solved in O(T∆(n+m) · nk(∆+1)) time.

In particular, in the special, yet interesting, case of always star temporal graphs (i.e. where every
snapshot Gi is a star graph), our search at every step reduces to just one binary choice for each of the
previous ∆ time windows, of whether to include the central vertex of a star in a snapshot or not. Hence
we have the following theorem as a direct implication of Theorem 8.

Theorem 9. SW-TVC on always star temporal graphs can be solved in O(T∆(n+m) · 2∆) time.

13

5 Approximation hardness of 2-TVC

In this section we study the complexity of ∆-TVC where ∆ is constant. We start with an intuitive
observation that, for every fixed ∆, the problem (∆ + 1)-TVC is at least as hard as ∆-TVC. Indeed, let
A be an algorithm that computes a minimum-cardinality sliding (∆ + 1)-window temporal vertex cover
of (G,λ). It is easy to see that a minimum-cardinality sliding ∆-window temporal vertex cover of (G,λ)
can also be computed using A, if we amend the input temporal graph by inserting one edgeless snapshot
after every ∆ consecutive snapshots of (G,λ), see Figure 1.

t = 1 t = 2 t = ∆

t = ∆ + 1

t = ∆ + 2

G1 G2
. . . G∆ ∅ G∆+1 . . . ∅G2∆

t = 2∆ + 1

t = 2∆ + 2

.

t = T + b T
∆
c

. . .

Figure 1: Inserting “empty” time slots to compute a minimum-cardinality sliding ∆-window temporal
vertex cover on (G,λ) using algorithm A for (∆ + 1)-TVC.

Since the 1-TVC problem is equivalent to solving T instances of Vertex Cover (on static graphs),
the above reduction demonstrates in particular that, for any natural ∆, ∆-TVC is at least as hard as
Vertex Cover. Therefore, if Vertex Cover is hard for a class X of static graphs, then ∆-TVC is
also hard for the class of always X temporal graphs. In this section, we show that the converse is not
true. Namely, we reveal a class X of graphs, for which Vertex Cover can be solved in linear time,
but 2-TVC is NP-hard on always X temporal graphs. In fact, we show the even stronger result that
2-TVC is APX-hard (and thus does not admit a PTAS, unless P = NP) on always X temporal graphs6.

To prove the main result (in Theorem 10) we start with an auxiliary lemma, showing that Vertex
Cover is APX-hard on the class Y of graphs which can be obtained from a cubic graph by subdividing
every edge exactly 4 times.

Lemma 3. Vertex Cover is APX-hard on Y.

Proof. Vertex Cover is known to be APX-hard on cubic graphs [4]. By a simple reduction we will
show that the problem remains APX-hard on the class Y.

Given a cubic graph G, let H ∈ Y be the graph obtained from G by subdividing each edge 4 times.
It is well known and can be easily verified that a double subdivision of an edge increases the size of a
minimum vertex cover exactly by one. Hence, denoting by τ(G) and τ(H) the sizes of minimum vertex
covers of G and H, respectively, we have:

τ(H) = τ(G) + 2m, (8)

where m is the number of edges in G.
Further, we will show that for every vertex cover SH for H we can efficiently obtain a vertex cover

SG for G of size at most |SH | − 2m. To this end we show how to construct SG from SH by decreasing
the cardinality of SH by at least two for every edge of G. Initially, we set SG = SH . Let uv ∈ E(G) be
an edge in G, and let ua1, a1a2, a2a3, a3a4, a4v be the edges of H corresponding to the 4-subdivision of
uv. Note that at least two of the vertices a1, a2, a3, a4 belong to SH . If SH contains at least three of
these vertices, then we remove them from SG, and add either u or v to SG if none of them was already
in SG. Otherwise, if exactly two of a1, a2, a3, a4 belong to SH , then at least one of u and v must also
belong to SH , and we just remove the two vertices from SG. After repeating this procedure for every
edge of G, we obtain a set SG that covers all edges of G, and |SG| ≤ |SH | − 2m.

Now suppose, for the sake of contradiction, that there exists a PTAS for Vertex Cover in Y. That
is, for every ε > 0, we can find in polynomial time a vertex cover SH of H such that |SH | ≤ (1 + ε)τ(H).

6More specifically, 2-TVC on always X temporal graphs is APX-complete. In fact, since the maximum vertex degree of
any static graph in the class X is at most 3, this problem can be 3-approximated in polynomial time by Algorithm 3 (see
also Lemma 7 in Section 6.2), and thus the problem also belongs to the class APX.

14

By the above discussion, we can find a vertex cover SG of G such that

|SG| ≤ |SH | − 2m

≤ (1 + ε)τ(H)− 2m

= (1 + ε)(τ(G) + 2m)− 2m

= (1 + ε)τ(G) + 2ε ·m
≤ (1 + ε)τ(G) + 6ε · τ(G)

= (1 + 7ε)τ(G),

(9)

where in the first equality we used (8), and in the last inequality we used the fact that m ≤ 3τ(G),
because every vertex in the cubic graph G covers exactly 3 edges. Summarizing, the existence of a PTAS
for Vertex Cover in the class Y would imply the existence of a PTAS in the class of cubic graphs,
which would be a contradiction by [4] unless P = NP.

Let now X be the class of graphs whose connected components are induced subgraphs of graph Ψ (see
Figure 1). Clearly, Vertex Cover is linearly solvable on graphs from X . We will show that 2-TVC is
APX-hard on always X temporal graphs by using a reduction from Vertex Cover on Y.

Ψ

Figure 2: The graph Ψ.

Theorem 10. 2-TVC is APX-hard on always X temporal graphs.

Proof. To prove the theorem we will reduce Vertex Cover on Y to 2-TVC on always X temporal
graphs. Let H = (V,E) be a graph in Y. First we will show how to construct an always X temporal
graph (G,λ) of lifetime 2. Then we will prove that the size τ of a minimum vertex cover of H is equal
to the size σ of a minimum-cardinality sliding 2-window temporal vertex cover of (G,λ).

Let R ⊆ V be the set of vertices of degree 3 in H. We define (G,λ) to be a temporal graph of lifetime
2, where snapshot G1 is obtained from H by removing the edges with both ends being at distance exactly
2 from R, and snapshot G2 = H −R. Figure 3 illustrates the reduction for H = K4.

Let S = (S1, 1) ∪ (S2, 2) be an arbitrary sliding 2-window temporal vertex cover of (G,λ) for some
S1, S2 ⊆ V . Since every edge of H belongs to at least one of the graphs G1 and G2, the set S1 ∪ S2

covers all the edges of H. Hence, τ ≤ |S1 ∪ S2| ≤ |S1| + |S2| = |S|. As S was chosen arbitrarily we
further conclude that τ ≤ σ.

To show the converse inequality, let C ⊆ V be a minimum vertex cover of H. Let S1 be those vertices
in C which either have degree 3, or have a neighbor of degree 3. Let also S2 = C \ S1. We claim that
(S1, 1) ∪ (S2, 2) is a sliding 2-window temporal vertex cover of (G,λ). First, let e ∈ E be an edge in H
incident to a vertex of degree 3. Then, by the construction, e is active only in time slot 1, i.e. e ∈ E1 \E2,
and a vertex v in C covering e belongs to S1. Hence, e is temporally covered by (v, 1) in (G,λ). Let now
e ∈ E be an edge in H whose both end vertices have degree 2. If one of the end vertices of e is adjacent
to a vertex of degree 3 in H, then, by the construction, e is active in both time slots 1 and 2. Therefore,
since C = S1 ∪ S2, edge e will be temporally covered in (G,λ) in at least one of the time slots. Finally,
if none of the end vertices of e is adjacent to a vertex of degree 3 in H, then e is active only in time slot
2, i.e. e ∈ E2 \ E1. Moreover, by the construction a vertex v in C covering e belongs to S2. Hence, e is
temporally covered by (v, 2) in (G,λ). This shows that (S1, 1) ∪ (S2, 2) is a sliding 2-window temporal
vertex cover of (G,λ), and therefore σ ≤ |S1|+ |S2| = |C| = τ .

Note that the size of a minimum vertex cover of H is equal to the size of a minimum-cardinality
sliding 2-window temporal vertex cover of (G,λ) and that any feasible solution to 2-TVC on (G,λ) of
size r defines a vertex cover of H of size at most r. Thus, since Vertex Cover is APX-hard on Y by
Lemma 3 and the reduction is approximation-preserving, it follows that 2-TVC is APX-hard as well.

15

K4 The 4-subdivision of K4 Snapshot G1 Snapshot G2

Figure 3: A cubic graph K4, its 4-subdivision, and the corresponding snapshots G1 and G2

6 Approximation algorithms

In this section we provide several approximation algorithms for SW-TVC with respect to different tem-
poral graph parameters. As the various approximation factors that are achieved are incomparable, the
best option for approximating an optimal solution depends on the specific application domain and the
specific values of those parameters.

6.1 Approximations in terms of T , ∆, and the largest edge frequency

We begin by presenting a reduction from SW-TVC to Set Cover, which proves useful for deriving
approximation algorithms for the original problem. Consider an instance, (G,λ) and ∆ ≤ T , of the
SW-TVC problem. Construct an instance of Set Cover as follows: Let the universe be U = {(e, t) :
e ∈ E[Wt], t ∈ [1, T − ∆ + 1]}, i.e. the set of all pairs (e, t) of an edge e and a time slot t such that e
appears (and so must be temporally covered) within window Wt. For every vertex appearance (v, s) we
define Cv,s to be the set of elements (e, t) in the universe U , such that (v, s) temporally covers e in the
window Wt. Formally, Cv,s = {(e, t) : v is an endpoint of e, e ∈ Es, and s ∈ Wt}. Let C be the family
of all sets Cv,s, where v ∈ V, s ∈ [1, T]. The following lemma shows that finding a minimum-cardinality
sliding ∆-window temporal vertex cover of (G,λ) is equivalent to finding a minimum-cardinality family
of sets Cv,s that covers the universe U .

Lemma 4. A family C = {Cv1,t1 , . . . , Cvk,tk} is a set cover of U if and only if S = {(v1, t1), . . . , (vk, tk)}
is a sliding ∆-window temporal vertex cover of (G,λ).

Proof. First assume that C is a set cover of U , but S is not a sliding ∆-window temporal vertex cover
of (G,λ). Then there exists a window Wr for some r ∈ [1, T −∆ + 1], such that an edge uv appears in
Wr but is not temporally covered in Wr by S. This means that, for every j ∈ Wr such that uv ∈ Ej ,
neither (u, j) nor (v, j) belongs to S. Therefore, Cu,j , Cv,j /∈ C for all j ∈ Wr such that uv ∈ Ej . But
then C does not cover (uv, r) ∈ U , which is a contradiction.

Conversely, assume that S is a sliding ∆-window temporal vertex cover of (G,λ), but C is not a set
cover of U , i.e. there exists some (uv, r) ∈ U which belongs to none of the sets in C. The latter means
that Cu,j , Cv,j /∈ C, and therefore (u, j), (v, j) /∈ S, for every j ∈ Wr such that uv ∈ Ej . Therefore uv is
not covered in Wr, which is a contradiction.

O(lnn+ ln ∆)-approximation. In the instance of Set Cover constructed by the above reduction,
every set Cv,s in C contains at most n∆ elements of the universe U . Indeed, the vertex appearance
(v, s) temporally covers at most n − 1 edges, each in at most ∆ windows (namely from window
Ws−∆+1 up to window Ws). Thus we can apply the polynomial-time greedy algorithm of [10] for
Set Cover which achieves an approximation ratio of Hn∆− 1

2 , where n∆ is the maximum size of

a set in the input instance and Hn∆ =
∑n∆
i=1

1
i ≈ lnn+ ln ∆ is the n∆-th harmonic number.

2k-approximation, where k is the maximum edge frequency. Given a temporal graph (G,λ) and
an edge e of G, the ∆-frequency of e is the maximum number of time slots at which e appears
within a ∆-window. Let k denote the maximum ∆-frequency over all edges of G. Clearly, for
a particular ∆-window Wt, an edge e ∈ E[Wt] can be temporally covered in Wt by at most 2k
vertex appearances. So in the above reduction to Set Cover, every element (e, t) ∈ U belongs to
at most 2k sets in C. Therefore, the optimal solution of the constructed instance of Set Cover

16

can be approximated within a factor of 2k in polynomial time [36], yielding a polynomial-time
2k-approximation for SW-TVC.

2∆-approximation. Since the maximum ∆-frequency of an edge is always upper-bounded by ∆, the
previous algorithm gives a worst-case polynomial-time 2∆-approximation for SW-TVC on arbi-
trary temporal graphs.

6.2 Approximation in terms of maximum degree of snapshots

In this section we give a polynomial-time d-approximation algorithm for the SW-TVC problem on always
degree at most d temporal graphs, that is, temporal graphs where the maximum degree in each snapshot
is at most d. In particular, the algorithm computes an optimum solution (i.e. with approximation ratio
d = 1) for always matching (i.e. always degree at most 1) temporal graphs. As a building block, we
first provide an exact O(T)-time algorithm for optimally solving SW-TVC in the class of single-edge
temporal graphs, namely temporal graphs whose underlying graph is a single edge.

Single-edge temporal graphs Consider a temporal graph (G0, λ) where G0 is the single-edge graph,
i.e. V (G0) = {u, v} and E(G0) = {uv}. We reduce SW-TVC on (G0, λ) to an instance of Interval
Covering, which has a known greedy algorithm that we then translate to an algorithm for SW-TVC
on single-edge temporal graphs.

Interval Covering

Input: A family I of intervals in the line.
Output: A minimum-cardinality subfamily I ′ ⊆ I such that

⋃
I∈I =

⋃
I∈I′ .

We construct the family I as follows. For every i = 1, 2, . . . , T such that uv ∈ Ei we include into I
the interval Ii = [i−∆ + 1, i] ∩ [1, T −∆ + 1], which contains the first time slot of all those ∆-windows
that include time slot i.

Lemma 5. Let i1, i2, . . . , ik be such that uv ∈ Eij for every j = 1, 2, . . . , k. Then I ′ = {Ii1 , . . . , Iik} is
an interval covering of I if and only if S = {(u, i1), (u, i2), . . . , (u, ik)} is a sliding ∆-window temporal
vertex cover of (G0, λ).

Proof. Assume first that I ′ is an interval covering of I, but S is not a sliding ∆-window temporal
vertex cover of (G0, λ). The latter means that there exists a ∆-window Wt such that uv exists at some
time slot s in Wt, but uv is not temporally covered by any vertex appearance in S[Wt]. Therefore
t /∈ Ii1 ∪ Ii2 ∪ . . . ∪ Iik , but t ∈ Is, which contradicts the assumption that I ′ is an interval covering of I.

Conversely, assume that S a sliding ∆-window temporal vertex cover of (G0, λ), but I ′ is not an
interval covering of I, that is, there exists Ii ∈ I and t ∈ Ii such that t /∈

⋃
I∈I′ I. By the construction,

this means that uv ∈ Ei is not temporally covered by any vertex appearances in S[Wt], which is a
contradiction.

Lemma 5 shows that finding a minimum-cardinality sliding ∆-window temporal vertex cover of (G0, λ)
is equivalent to finding a minimum interval covering of I. An easy linear-time greedy algorithm for the
Interval Covering picks at each iteration, among the intervals that cover the leftmost uncovered
point, the one with largest finishing time. Algorithm 2 implements this simple rule in the context of the
SW-TVC problem.

Lemma 6. Algorithm 2 solves SW-TVC on a single-edge temporal graph and can be implemented to
work in time O (T).

Proof. The time complexity of the algorithm is dominated by the running time of the while-loop. We
provide an implementation of the while-loop, which works in time O(T): in each iteration, we inspect
the current ∆-window [t, t + ∆ − 1] from the rightmost time slot moving to the left. As we go through
the time slots, we mark the ones in which edge uv does not appear as “NO”. When we move to the next
iteration (the next ∆-window), we do not need to revisit any time slots that have been marked as “NO”
and we immediately move to the next iteration whenever we meet such a slot. This way we visit every
time slot at most once, and hence we exit the while-loop after O(T) operations.

17

Algorithm 2 SW-TVC on single-edge temporal graphs

Input: A temporal graph (G0, λ) of lifetime T with V (G0) = {u, v}, and ∆ ≤ T .
Output: A minimum-cardinality sliding ∆-window temporal vertex cover S of (G0, λ).

1: S ← ∅
2: t = 1
3: while t ≤ T −∆ + 1 do
4: if ∃r ∈ [t, t+ ∆− 1] such that uv ∈ Et then
5: choose maximum such r and add (u, r) to S
6: t← r + 1
7: else
8: t← t+ 1
9: return S

Always degree at most d temporal graphs We present now the main algorithm of this section,
the idea of which is to independently solve SW-TVC for every possible single-edge temporal subgraph
of a given temporal graph by Algorithm 2, and take the union of these solutions. We will show that this
algorithm is a d-approximation algorithm for SW-TVC on always degree at most d temporal graphs.

Let (G,λ) be a temporal graph, where G = (V,E), |V | = n, and |E| = m. For every edge e = uv ∈ E,
let (G[{u, v}], λ) denote the temporal graph where the underlying graph is the induced subgraph G[{u, v}]
of G and the labels of e are exactly the same as in (G,λ).

Algorithm 3 d-approximation of SW-TVC on always degree at most d temporal graphs

Input: An always degree at most d temporal graph (G,λ) of lifetime T , and ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ).

1: for i = 1 to T do
2: Si ← ∅
3: for every edge e = uv ∈ E(G) do
4: Compute an optimal solution S ′(uv) of the problem for (G[{u, v}], λ) by Algorithm 2
5: for i = 1 to T do
6: Si ← Si ∪ S ′i(uv)
7: return S

Lemma 7. Algorithm 3 is a O (mT)-time d-approximation algorithm for SW-TVC on always degree
at most d temporal graphs.

Proof. Let (G,λ) be an always degree at most d temporal graph of lifetime T , and let S∗ be a minimum-
cardinality sliding ∆-window temporal vertex cover of (G,λ). We will show that |S| ≤ d · |S∗|. To this
end we apply a double counting argument to the set C of all triples (v, e, t) ∈ V × E × [1, T] such that
v ∈ S∗t , e ∈ Et, and v is incident to e.

On the one hand

|C| =
T∑
t=1

∑
v∈S∗t

|{(v, e, t) : e ∈ Et and v is incident to e}| ≤
T∑
t=1

∑
v∈S∗t

d = d · |S∗|,

where the inequality follows from the assumption that every snapshot of (G,λ) has maximum degree at
most d.

On the other hand

|C| =
∑
e∈E

T∑
t=1

|{(v, e, t) : e ∈ Et, v ∈ S∗t , and v is incident to e}| ≥
∑
e∈E
|S ′(e)| = |S|,

where the inequality follows from the fact that the restriction of any sliding ∆-window temporal vertex
cover of (G,λ) to the temporal subgraph induced by the endpoints of e is a sliding ∆-window temporal
vertex cover of the temporal subgraph, and therefore has cardinality at least |S ′|.

We conclude that |S| ≤ |C| ≤ d · |S∗|, as required.

18

The time-complexity of Algorithm 3 is dominated by the time needed to execute the for-loop of
lines 3-6. The latter requires time O (mT).

Note that in the case of always matching temporal graphs, i.e. where every snapshot is a matching,
the maximum degree in each snapshot is d = 1, so the above d-approximation actually yields an exact
algorithm.

Corollary 1. SW-TVC can be optimally solved in O(mT) time on the class of always matching temporal
graphs.

References

[1] E. Aaron, D. Krizanc, and E. Meyerson. DMVP: foremost waypoint coverage of time-varying graphs.
In Proceedings of the 40th International Workshop on Graph-Theoretic Concepts in Computer Sci-
ence (WG), pages 29–41, 2014.

[2] E. C. Akrida, L. Gasieniec, G. B. Mertzios, and P. G. Spirakis. Ephemeral networks with random
availability of links: The case of fast networks. Journal of Parallel and Distributed Computing,
87:109–120, 2016.

[3] E. C. Akrida, L. Gasieniec, G. B. Mertzios, and P. G. Spirakis. The complexity of optimal design
of temporally connected graphs. Theory of Computing Systems, 61(3):907–944, 2017.

[4] P. Alimonti and V. Kann. Some APX-completeness results for cubic graphs. Theoretical Computer
Science, 237(1-2):123–134, 2000.

[5] B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and foremost journeys in
dynamic networks. International Journal of Foundations of Computer Science, 14(2):267–285, 2003.

[6] A. Casteigts and P. Flocchini. Deterministic Algorithms in Dynamic Networks: Formal Models and
Metrics. Technical report, Defence R&D Canada, April 2013.

[7] A. Casteigts and P. Flocchini. Deterministic Algorithms in Dynamic Networks: Problems, Analysis,
and Algorithmic Tools. Technical report, Defence R&D Canada, April 2013.

[8] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. Time-varying graphs and dy-
namic networks. International Journal of Parallel, Emergent and Distributed Systems (IJPEDS),
27(5):387–408, 2012.

[9] A. Casteigts, B. Mans, and L. Mathieson. On the feasibility of maintenance algorithms in dynamic
graphs. CoRR, abs/1107.2722, 2011.

[10] R. chii Duh and M. Fürer. Approximation of k-set cover by semi-local optimization. In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing (STOC), pages 256–264, 1997.

[11] A. E. F. Clementi, C. Macci, A. Monti, F. Pasquale, and R. Silvestri. Flooding time of edge-
markovian evolving graphs. SIAM Journal on Discrete Mathematics (SIDMA), 24(4):1694–1712,
2010.

[12] M. Cygan, H. Dell, D. Lokshtanov, D. Marx, J. Nederlof, Y. Okamoto, R. Paturi, S. Saurabh, and
M. Wahlström. On problems as hard as CNF-SAT. ACM Transactions on Algorithms, 12(3):41:1–
41:24, 2016.

[13] S. Dobrev, S. Durocher, M. E. Hesari, K. Georgiou, E. Kranakis, D. Krizanc, L. Narayanan, J. Opa-
trny, S. M. Shende, and J. Urrutia. Complexity of barrier coverage with relocatable sensors in the
plane. Theoretical Computer Science, 579:64–73, 2015.

[14] T. Erlebach, M. Hoffmann, and F. Kammer. On temporal graph exploration. In Proceedings of
the 42nd International Colloquium on Automata, Languages, and Programming (ICALP), pages
444–455, 2015.

19

[15] U. Feige. A threshold of lnn for approximating set cover. Journal of the ACM, 45(4):634–652, 1998.

[16] A. Ferreira. Building a reference combinatorial model for MANETs. IEEE Network, 18(5):24–29,
2004.

[17] P. Flocchini, B. Mans, and N. Santoro. Exploration of periodically varying graphs. In Proceedings of
the 20th International Symposium on Algorithms and Computation (ISAAC), pages 534–543, 2009.

[18] M. R. Garey and D. S. Johnson. Computers and intractability: A guide to the theory of NP-
completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[19] G. Giakkoupis, T. Sauerwald, and A. Stauffer. Randomized rumor spreading in dynamic graphs.
In Proceedings of the 41st International Colloquium on Automata, Languages and Programming
(ICALP), pages 495–507, 2014.

[20] M. E. Hesari, E. Kranakis, D. Krizanc, O. M. Ponce, L. Narayanan, J. Opatrny, and S. M.
Shende. Distributed algorithms for barrier coverage using relocatable sensors. Distributed Com-
puting, 29(5):361–376, 2016.

[21] A. Himmel, H. Molter, R. Niedermeier, and M. Sorge. Adapting the bron-kerbosch algorithm for
enumerating maximal cliques in temporal graphs. Social Network Analysis and Mining, 7(1):35:1–
35:16, 2017.

[22] P. Holme and J. Saramäki, editors. Temporal Networks. Springer, 2013.

[23] R. Impagliazzo and R. Paturi. On the complexity of k-SAT. Journal of Computer and System
Sciences, 62(2):367–375, 2001.

[24] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complexity?
Journal of Computer and System Sciences, 63(4):512–530, 2001.

[25] D. Kempe, J. M. Kleinberg, and A. Kumar. Connectivity and inference problems for temporal
networks. In Proceedings of the 32nd annual ACM symposium on Theory of computing (STOC),
pages 504–513, 2000.

[26] O. Kostakis and A. Gionis. On mining temporal patterns in dynamic graphs, and other unrelated
problems. In Proceedings of the 6th International Conference on Complex Networks and Their
Applications (COMPLEX NETWORKS), pages 516–527, 2017.

[27] O. Kostakis, N. Tatti, and A. Gionis. Discovering recurring activity in temporal networks. Data
Mining and Knowledge Discovery, 31(6):1840–1871, 2017.

[28] E. Kranakis, D. Krizanc, F. L. Luccio, and B. Smith. Maintaining intruder detection capability in a
rectangular domain with sensors. In Proceedings of the 11th International Symposium on Algorithms
and Experiments for Wireless Sensor Networks (ALGOSENSORS), pages 27–40, 2015.

[29] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graph evolution: Densification and shrinking
diameters. ACM Transactions on Knowledge Discovery from Data, 1(1), 2007.

[30] D. Lokshtanov, D. Marx, and S. Saurabh. Lower bounds based on the Exponential Time Hypothesis.
Bulletin of the EATCS, pages 41–71, 2011.

[31] G. B. Mertzios, O. Michail, I. Chatzigiannakis, and P. G. Spirakis. Temporal network optimiza-
tion subject to connectivity constraints. In Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), Part II, pages 657–668, 2013.

[32] O. Michail and P. G. Spirakis. Traveling salesman problems in temporal graphs. Theoretical Com-
puter Science, 634:1–23, 2016.

[33] O. Michail and P. G. Spirakis. Elements of the theory of dynamic networks. Communications of
the ACM, 61(2):72–72, Jan. 2018.

20

[34] S. E. Nikoletseas and P. G. Spirakis. Probabilistic distributed algorithms for energy efficient routing
and tracking in wireless sensor networks. Algorithms, 2(1):121–157, 2009.

[35] J. K. Tang, M. Musolesi, C. Mascolo, and V. Latora. Characterising temporal distance and reacha-
bility in mobile and online social networks. ACM Computer Communication Review, 40(1):118–124,
2010.

[36] V. V. Vazirani. Approximation algorithms. Springer, 2003.

[37] J. Viard, M. Latapy, and C. Magnien. Revealing contact patterns among high-school students using
maximal cliques in link streams. In Proceedings of the 2015 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM), pages 1517–1522, 2015.

[38] T. Viard, M. Latapy, and C. Magnien. Computing maximal cliques in link streams. Theoretical
Computer Science, 609:245–252, 2016.

[39] C. Zhu, C. Zheng, L. Shu, and G. Han. A survey on coverage and connectivity issues in wireless
sensor networks. Journal of Network and Computer Applications, 35(2):619–632, 2012.

21

	1 Introduction and Motivation
	1.1 Our contribution

	2 Preliminaries and notation
	2.1 Temporal Vertex Cover
	2.2 Sliding Window Temporal Vertex Cover
	2.3 Alternative models

	3 Hardness and approximability of TVC
	3.1 Hardness on star temporal graphs
	3.2 A randomized rounding algorithm for TVC

	4 An almost tight algorithm for SW-TVC
	4.1 A complexity lower bound
	4.2 An exact dynamic programming algorithm
	4.3 Always bounded vertex cover number temporal graphs

	5 Approximation hardness of 2-TVC
	6 Approximation algorithms
	6.1 Approximations in terms of T, , and the largest edge frequency
	6.2 Approximation in terms of maximum degree of snapshots

