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Abstract: Specially in the case of scenarios under uncertainty, the efficient management of risk1

when matching assets and liabilities is a relevant issue for most insurance companies. This paper2

considers such a scenario, where different assets can be aggregated to better match a liability (or the3

other way around), and the goal is to find the asset-liability assignments that maximises the overall4

benefit over a time horizon. To solve this stochastic optimisation problem, a simulation-optimisation5

methodology is proposed. We use integer programming to generate efficient asset-to-liability6

assignments, and Monte-Carlo simulation is employed to estimate the risk of failing to pay due7

liabilities. The simulation results allow us to set a safety margin parameter for the integer program,8

which encourage the generation of solutions satisfying a minimum reliability threshold. A series9

of computational experiments contribute to illustrate the proposed methodology and its utility in10

practical risk management.11

Keywords: assets and liabilities management; risk management; uncertainty; matheuristics;12

simulation13

1. Introduction14

Within the enormous variety of insurance types that we can find, long-term life insurance stands15

out for its complexity in terms of financial management. The cash flows generated by these insurances16

extend over several decades and play an important role in the social sphere since they have a close17

relationship with pensions and retirements and, therefore, with people’s vital planning. For this reason,18

legislation and administrative authorities play a special role in ensuring that insurers faithfully comply19

with their commitments. The fact that they are extended in the long term, or in the very long term,20

generates a series of difficulties for their management because the insurer must plan the necessary21

income with enormous precision to cover its future commitments. Therefore, it is a requirement that22

the insurer has a range of techniques that allow for matching its assets, as long-term income generators,23

with its liabilities. Conventionally, we refer to this set of techniques as asset and liability management24

(ALM) (Ziemba et al. 1998), and it has raised the interest of numerous researchers over the last few25

years, with a wide variety of approaches being proposed. One of most popular solutions to this asset26

management problem is cash-flow matching (Iyengar and Ma 2009), whose main objective is to ensure27

the timely payment of the liabilities. This approach minimises the number of contractual breaches. Due28

to the volatility of the financial markets, we always have uncertainty regarding income, and this will29

be linked to the quality of financial assets. Moreover, the credit quality of assets plays a fundamental30

role, in particular when we deal with bonds, which are widely used in the insurance industry (Gründl31

et al. 2016). When the default event occurs, the price of the bond is immediately decreased, in such a32
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way that we have lower income. Since Merton (1974), a lot of models have been developed to forecast33

the price under a default event.34

Likewise, the obligations cannot be considered as exact or totally predictable. Those liabilities or35

obligations are the customer’s premium that the insurance company receives. In practice, we consider36

average values for obligations and we can establish certain ranges of dispersion that can be estimated37

based on the insurer’s own experience. Once the premium has been paid, the company invests it in38

the long term, so that the financial benefit envisaged in the insurance policy is secured. Finally, in the39

event of the customer’s retirement or death, the insurance company needs to have sufficient funds40

to meet its liability to the customer. Consequently, we are facing a highly complex asset allocation41

problem, since the amount of assets that an insurer can have is large, and the distribution of liabilities42

over time does not usually follow any regular pattern, both being stochastic in nature.43

Heuristic and metaheuristic algorithms have become a new standard when dealing with44

complex and large-scale portfolio optimisation and risk management problems Doering et al. (2019);45

Soler-Dominguez et al. (2017). In this paper we explore an asset allocation method by means of46

heuristic techniques, taking into account the random nature of both assets and liabilities. The goal47

is to find the most efficient (minimum cost) combination of assets that meets certain requirements:48

they must generate sufficient income to cover the obligations of the insurer with a high probability. In49

a recent work, Bayliss et al. (2020) considered a simplified ALM problem, based on the net present50

value (NPV) concept, in which only one-to-one asset-liability assignment were allowed. Notice that,51

since we are comparing monetary values of assets that belong to different time periods, it makes sense52

to consider the NPV associated with each asset in order to make a fairer comparison of assets. Our53

work goes a step further and allows many-to-many, one-to-many, and many-to-one asset-liability54

assignments as well. Such an approach increases the efficiency with which liabilities can be covered.55

This also allows us to address ALM problems regardless of the number of assets and liabilities,56

as well as their sizes. For addressing large scale instances which could not be solved using exact57

integer programming techniques, previous approaches were based on the use of greedy heuristics that58

prioritised larger liabilities over smaller ones. This work, however, proposes an improved approach59

based on sorting liabilities in ascending due date order, since liabilities with earlier due dates have60

fewer assets combinations that can be assigned to them. Additionally, assets with earlier maturity dates61

have higher NPVs, which is what is to be minimised. The main methodological contribution of our62

approach lies in the introduction of a matheuristic algorithm, which integrates integer programming63

and Monte-Carlo simulation. In particular, an integer program is solved recursively to generate feasible64

and efficient asset-liability assignments for a deterministic scenario (where we assume average values65

for each random variable in the model). After each iteration, the resulting asset-liability assignment66

mapping (solution) is assessed under a stochastic scenario by using Monte-Carlo simulation, which67

also provides estimates of the mapping reliability. The simulation outcomes are also employed to68

update a safety margin parameter of the integer program that controls the minimum ratio between69

the values of the assets and the liabilities of the generated asset-liability assignments. The proposed70

approach is then tested in a wide variety of problem instances. The combination of simulation and71

optimisation methods in NPV-related financial problems under uncertainty has been also explored in72

Panadero et al. (2020).73

The rest of the paper is structured as follows: Section 2 provides a brief literature review on74

ALM. Section 3 introduces a more detailed description of the specific ALM problem considered in this75

paper. Section 4 proposes a matheuristic algorithm for solving the aforementioned problem. A series76

of computational experiments are carried out in Section 5, while Section 6 provides an analysis of the77

obtained results. Finally, Section 7 highlights the most relevant findings of our work and points out78

future research lines.79

2. Literature Review on ALM80
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One of the first relevant works on ALM theory in due to Macaulay (1938). This author formulates81

the theory of duration considering: a fixed liability cash flow, a fixed income as assets, and a constant82

interest rate. Later, Hicks (1975) introduce the term “corrected duration”, to justify variances in the83

present value when the interest rate changes. These authors measure duration as a percentage, while84

the previous one measured duration in terms of time. Fisher and Weil (1971) present the first formalised85

work about immunisation, defining the condition under which the value of an investment is protected86

against the variations of the interest rate. A fixed income portfolio, with duration equal to a given87

investment horizon, is studied in Fong and Vasicek (1984). Bierwag et al. (1993) contribute to the ALM88

topic with an analysis of the properties of cash flow dispersion in duration hedged portfolios. Zenios89

(1995) use a real-world scenario to highlight the mismatch between assets and liabilities in the financial90

industry, showcasing a case of portfolios containing mortgage-backed securities. Mulvey et al. (1997)91

discuss an ALM with stochastic and risk factors, where different scenarios are expressed as a tree. This92

strategy, known as multistage stochastic programming, is also reviewed in more recent publications.93

Hence, Kouwenberg and Zenios (2008) do not only study the how-to structure of assets along time, but94

they also consider the associated stochastic nature. Boender et al. (2008) study the role of scenarios in95

ALM, as a lattice of possibilities for each element in the model, each one with an associated probability.96

More realistic approaches also exist. For instance, Kusy and Ziemba (1986) study a model with97

legal, financial, and bank-related policy considerations applied to a Canadian bank. Oguzsoy et al.98

(1997) present a multi-period stochastic linear model for ALM in banking. Mulvey et al. (2000) show99

how Towers Perring applies ALM planning to pension management, modelling stochasticity with100

scenarios. Nielsen and Zenios (1996) study how to apply a multi-period stochastic program using101

government bonds, mortgage-backed securities, and derivative products. Consigli and Dempster102

(1998) develop a pension fund problem with uncertainty. Carino et al. (1998), Carino and Ziemba103

(1998), and Carino et al. (1998) are a series of publications that describe an ALM model adapted104

to the complexities of the Japanese regulations, such as legal or taxes limitations. In the Iranian105

regulation framework, Abdollahi (2020) studies a multi-objective ALM programming problem where106

the constraints are realistic legal conditions of the banking industry. Within a dynamic stochastic107

control approach, Sun et al. (2019) studies a mean-variance ALM problem where assets and liabilities108

are both stochastic, and where liabilities transfer part of their risk by means of a reinsurance.109

Kouwenberg (2001) develops a scenario-generation for the ALM to minimise the expected110

contribution rates, taking risk into account. Gondzio and Kouwenberg (2001) focus on the computation111

complexity of the ALM problem, and solve a stochastic model with near 5 million scenarios, more than112

12 million constraints, and 25 million variables to study a pension fund. Fleten et al. (2002) compares a113

fixed mix model with a multistage stochastic program. Dash and Kajiji (2005) implement a nonlinear114

model for the optimisation of property-liability insurers. A Monte-Carlo simulation approach to the115

analysis of an ALM problem can be found in Dempster et al. (2003). These authors use a model116

involving global assets and contribution pension plans. Hibiki (2006) compares the results of two117

different approaches modelling the evolution of assets. This authors check the performance of scenarios118

trees and hybrid trees with simulation paths. Zhang and Zhang (2009) improve the previous model by119

introducing new metrics and using a genetic algorithm to solve it. Consiglio et al. (2006) and Consiglio120

et al. (2008) study the optimisation problem derived from a liability with complex conditions, leading121

to a non-linear problem. For a model with just two assets, Papi and Sbaraglia (2006) solve the ALM122

problem with a recourse algorithm and a method that guarantees convergence. A complete handbook123

that describes the ALM and the multistage ALM for particular markets can be found in Zenios and124

Ziemba (2007). Also, Kouwenberg and Zenios (2008) review different stochastic programming models125

for ALM, analysing the performance of these models when they are applied to pension funds. Escudero126

et al. (2009) introduces a mixed integer-linear model by adding discrete variables into the model to127

limit the number of transactions and assets in each stage. Ferstl and Weissensteiner (2011) consider a128

multi-stage ALM under time-varying investment opportunities, using stochastic linear programming.129

Several other approaches to the ALM problem have been studied recently. Thus, Zhang and Chen130
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(2016) focus on the mean-variance ALM with constant elasticity of variance. Wei and Wang (2017) focus131

on random coefficients, while Li et al. (2018) study models with stochastic volatility. Fernández et al.132

(2018) introduce a stochastic ALM model for a life insurance company using GPUs to run Monte-Carlo133

simulations. Dutta et al. (2019) uses big data analytics and stochastic linear programming under134

stochastic scenarios. Li et al. (2019) use a multi-period mean-variance model to analyse the ALM135

problem with probability constraints. Orlova (2019) develops an algorithm to solve a discrete dynamic136

process for cash distribution, in which the goal is to minimise the payment of fines for non-timely137

financing of expenses. This approach solves the problem of financial resources distribution under138

uncertainty over time. Kopa and Rusý (2020) formulates a complete stochastic program for ALM credit139

institutions that grant loans to general customers. In this paper, stochastic multi-stage scenarios are140

considered and the behaviour of the consumer are modelled. This behaviour impacts on the decisions141

the credit institution has to take and how it has to allocate its assets.142

3. Problem Description and Formulation143

When the conditions set out in a contract are met, insurers pay the insured. If they do not have144

sufficient available funds, they are subject to monetary fines issued by monetary authorities and, most145

likely, to lost customers. In order to ensure the insurers can meet their liabilities, they perform a process146

of matching assets to liabilities. Assigning assets to liabilities in an efficient manner is critical to the147

success of an insurance firm, since assigned (or frozen) assets cannot be used for any other purpose.148

Assets can only be assigned to liabilities if their maturity date precedes the due date of the liability.149

The value of the assets assigned to liabilities must equal or exceed the liability values. At the same150

time, asset maturity values and liability payment values are uncertain, thereby introducing a risk that151

liabilities cannot be met, even when the expected values imply that they could be met on the average.152

An asset-liability assignment is the terminology used in this work to refer to a group of assets used153

to cover a group of liabilities. A feasible solution to the net present value asset-liability management154

(NPV-ALM) problem consists of a set of asset-liability assignments such that: (i) all liabilities are155

covered; and (ii) no individual assets or liabilities are part of more than one asset-liability assignment.156

Furthermore, a solution is also required to be robust under uncertain asset and liability values.157

Specifically, a solution must meet a minimum reliability level, where reliability is defined as the158

probability that all liabilities can be paid successfully using their assigned assets. Figure 1 illustrates a159

single asset-liability assignment consisting of three assets and two liabilities. Notice that, under the160

expected values for assets and liabilities (dashed lines), the liabilities can be met. However, due to161

uncertain asset maturity values and liability payment values, there is a risk that the assets fail to cover162

the liabilities in the assets-liability assignments. If fi is the probability that asset-liability assignment i163

fails to cover its liabilities, then the reliability of a set of asset-liability assignment (I) covering all of164

our liabilities is computed as r = ∏
i∈I

(1− fi). Following Faulin et al. (2008), we employ Monte-Carlo165

simulation to estimate failure probabilities associated with candidate asset-liability assignments.166

In this work, we propose a matheuristic algorithm for solving the NPV-ALM problem. A167

matheuristic integrates mathematical programming techniques with heuristics in order to develop an168

algorithm that benefits from exact optimisation as well as from fast and efficient heuristic techniques.169

For the case of the NPV-ALM problem, an integer program (Section 3.2) is used to calculate a set170

of feasible asset-liability assignment decisions that cover the liabilities. The solution is tested in a171

simulation to measure its reliability, and the result is employed to tune a safety margin parameter172

of the integer program. The safety margin parameter controls the minimum ratio between the asset173

values and the liability values of a generated asset-liability assignment. The process continues until a174

specified number of iterations have been completed. Section 3.1 formulates the NPV-ALM problem.175
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Figure 1. An asset-liability assignment with a failure probability.

3.1. A model for the net present value asset and liability management problem176

Summary of the notation177

Sets
A : Set of all assets
L : Set of all liabilities

Stochastic variables
ṽa : The uncertain value of asset a at maturity
ṽl : The uncertain value of liability l on its due date

Decision variables
yga : Binary variable indicating whether asset a is selected as part of asset-liability assignment g
zgl : Binary variable indicating whether liability l is selected as part of asset-liability assignment g
wa : Binary variable indicating whether asset a is selected as part of a generated asset-liability assignment
xl : Binary variable indicating whether liability l is selected as part of a generated asset-liability assignment

Input parameters
va : The expected maturity value of asset a
vl : The expected value of liability l on its due date
ta : The maturity maturity date of asset a
tl : The due date of liability l
d : Discount factor used to calculate the net present value of an asset
rmin : Minimum reliability level
m : Safety parameter decrease factor
h : Safety parameter increase factor

Other parameters
fg : Failure probability of asset-liability assignment g
Ng : Asset-liability assignment g
npvg : Net present value associated with Asset-liability assignment g

178

The objective (1) is to minimise the NPV of the assets committed to covering liabilities. In this179

context, yga is a binary decision variable indicating whether asset a is an element of asset-liability180

assignment g. Similarly, zgl is a binary decision variable indicating whether liability l is an element of181

asset-liability assignment g. Each asset a ∈ A can only be part of at most one asset-liability assignment,182

as specified by Constraint (2). Each liability l ∈ L can only be part of one selected asset-liability183

assignment, as specified by Constraint (3). As a result of Constraints (2) and (3), the maximum number184

of asset-liability assignments is |G| = min (|A|, |L|). A feasible asset-liability assignment requires that185

each of the selected assets matures before all of the selected liabilities in the asset-liability assignment.186

Constraint (4) introduces a continuous variable φg representing the latest maturity date of an asset187

in asset-liability assignment g. Constraint (5) introduces a continuous variable σg representing the188

earliest due date of a liability in asset-liability assignment g. Here, H is a large number which ensures189

the feasibility of Constraint (5) in asset-liability assignments that the liability l is not part of. Then,190

Constraint (6) enforces the time constraints for each asset-liability assignment. Constraint 7 requires191

that the sum of the asset values exceeds the value of the covered liabilities by a factor S in each192
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asset-liability assignment g, thus ensuring that our liabilities are covered. Also, S is a multiplicative193

safety margin parameter for ensuring that the asset values are able to cover the liabilities under194

uncertain asset returns and liability values. Constraints (8) and (9) define the binary decision variables.195

min ∑
g∈G

∑
a∈A

yga

(
va

(1 + d)ta

)
. (1)

∑
g∈G

yga ≤ 1, ∀a ∈ A. (2)

∑
g∈G

zgl = 1, ∀l ∈ L. (3)

φg ≥ ygata, ∀a ∈ A, ∀g ∈ G. (4)

σg ≤ zgltl + H
(

1− zgl

)
, ∀l ∈ L, ∀g ∈ G. (5)

φg ≤ σg, ∀g ∈ G. (6)

∑
a∈V

ygava ≥ S ∑
l∈U

zglvl , ∀g ∈ G. (7)

yga ∈ {0, 1}, ∀a ∈ A, ∀g ∈ G. (8)

zgl ∈ {0, 1}, ∀m ∈ L, ∀g ∈ G. (9)

3.2. An integer programming model for generating feasible asset-liability assignments196

Since solution time and memory requirements become an issue when solving the mixed integer197

program specified in Section 3.1 for realistic sized problem instances, our heuristic solution approach198

is based upon solving an integer program repeatedly to generate a sequence of efficient asset-liability199

assignments that cover all of the liabilities. This iterative approach is an alternative to generating200

all of the required asset-liabilities assignments in one go. This approach also vastly reduces the201

size and complexity of the mathematical programs that need to be solved. This integer program is202

denoted as IP (U, V, k, S). Here, U is the set of remaining uncovered liabilities, and V is the set of203

available assets currently unassigned to any liabilities. Initially, U = L and V = A. Every time a new204

asset-liability assignment is generated using the integer program, the selected assets are removed from205

V and the selected liabilities are removed from U. The integer program is solved repeatedly until206

the set U is empty. The input k is a randomly selected uncovered liability that must be covered by207

the next asset-liability assignment generated. This provides a mechanism for randomising the sets208

of asset-liability assignments generated. The ith asset-liability assignment generated is denoted as Ni.209

It contains the set of selected assets and liabilities. The efficiency of an asset-liability assignment is210

measured by the value of the liabilities covered minus the value of the assets used, which encourages211

asset-liability assignments to cover as many liabilities as possible with the fewest assets possible.212

The net present value of the assigned assets is then subtracted, which captures our overall objective.213

Higher values of this efficiency measure correspond to more efficient asset-liability assignments. This214

efficiency objective function is expressed by Objective (10). In this expression, xl is a binary variable215

indicating which liabilities, l ∈ U, are part of the generated asset-liability assignment, and wa is a216

binary variable indicating which assets, a ∈ V, are part of the generated asset-liability assignment.217
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max ∑
l∈U

xlvl − ∑
a∈V

wava

(
1 +

1

(1 + d)ta

)
. (10)

218

A feasible asset-liability assignment requires that each of the selected assets matures before the selected219

liabilities. Constraint (11) expresses this, where tm is the asset maturity date or liability due date of an220

asset or liability m ∈ V ∪U. Also, H is a large number which is used to ensure that Constraint (11)221

remains feasible in cases where liabilities are not selected. Optionally, Constraint (11) can be replaced222

by a constraint using the same form used in Constraints (4)-(6).223

wata ≤ xltl + H (1− xl) , ∀a ∈ V, ∀l ∈ U. (11)

224

Constraint (12) requires that the sum of the asset values exceeds the value of the covered liabilities by225

a factor S, where S is a multiplicative safety margin parameter for ensuring that the asset values are226

able to cover the liabilities under uncertain asset returns and liability values.227

∑
a∈V

wava ≥ S ∑
l∈U

xlvl . (12)

228

Constraint (13) states that the randomly selected uncovered liability, k, must be included in the next229

asset-liability assignment generated.230

xk = 1. (13)

Constraints (14) and (15) define the binary decision variables.231

xl ∈ {0, 1}, ∀l ∈ U. (14)

wa ∈ {0, 1}, ∀a ∈ V. (15)

4. Our Matheuristic Approach232

This section describes our matheuristic algorithm, which combines integer programming and233

Monte-Carlo simulation for solving the NPV-ALM problem. This solving approach consists of two234

main phases: (i) generation of ‘promising’ solutions; and (ii) simulation and parameter tuning of the235

aforementioned solutions. The solution generation phase uses integer programming (specified in236

Section 3.2) to generate a set of asset-liability assignments that cover the liabilities. This process is237

iterative, i.e., each iteration generates one new asset-liability assignment from the remaining unused238

assets and uncovered liabilities. In order to increase the diversity of these solutions, a random factor239

is introduced: we randomly select one of the remaining liabilities and add a constraint which forces240

this liability to be part of the next asset-liability assignment. The simulation phase is used to measure241

the reliability of the generated solution. Monte-Carlo simulation is used estimate the failure probability242

associated with each asset-liability assignment. This is the probability that the sum of the maturity243

values of the assets, in an asset-liability assignment, is less than the corresponding sum of the liabilities.244

If the solution is sufficiently reliable, a best solution check is performed to see if the solution has the245

lowest associated NPV of any reliable solution found. The reliability result is also used to update the246

safety margin parameter of the integer program. The procedure followed is given in Algorithm 1.247

5. Computational experiments248

The proposed heuristic has been implemented as a Python application running on a CPU with 3.60249

GHz and 16 GB of RAM. Instances from Bayliss et al. (2020) have been used to test the new approach,250
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Algorithm 1: AssetLiabilityAssignmentGeneration (A, L, rmin, β, m, h, runs)
Data: A set of available assets, L set of liabilities, maxIterations, rmin the minimum reliability

level, β geometric distribution parameter, m safety margin decrease factor, h safety
margin increase factor, runs the number of Monte-Carlo simulation runs used to
estimate asset-liability assignment failure probabilities

1 iteration = 1, the number of asset-liability assignments generated so far.;
2 bestSolution← ∅;
3 bestNPV = ∞;
4 //Initialise the safety margin parameter S = 1;
5 S = 1;
6 while iteration ≤ maxIterations do
7 //Reset the set of unassigned assets V and uncovered liabilities U;
8 V ← A;
9 U ← L;

10 newSolutionNPV ← 0;
11 N ← ∅;
12 i← 1;
13 while U 6= ∅ do
14 //Select an uncovered liability k from an ascending due date sorted list according to a

geometric distribution with parameter β.;
15 //Solve integer program to obtain the get the next asset asset-liability assignment Ni.;
16 (Ni, npvi)← IP (U, V, k, S);
17 //Estimate the failure probability fi of the new asset-liability assignment using

Monte-Carlo sampling of asset return and liability values.;
18 fi ← simulation (Ni, runs);
19 newSolutionNPV ← newSolutionNPV + npvi;
20 U ← U \ Ni;
21 V ← V \ Ni;
22 i← i + 1;
23 end
24 //Calculate the reliability r of the new solution;

25 r =
i−1
∏
j=1

(1− fi);

26 //Update the safety margin parameter using the reliability level of the new solution;
27 if r ≥ rmin then
28 //Decrease the safety margin parameter (slowly);
29 S← mS;
30 //Check for a new best solution;
31 if newSolutionNPV < bestNPV then
32 bestNPV ← newSolutionNPV;
33 bestSolution← N;
34 end
35 else
36 //Increase the safety margin parameter (relatively quickly);
37 S← hS;
38 end
39 iteration← iteration + 1
40 end
41 return bestSolution;
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plus two new instances that could not be solved with the methodology presented in the former paper.251

Table 1 provides the details on the number of assets and liabilities for each instance, discount rate, and252

value modifier (if any was employed). Assets and liabilities have been distributed over time using253

a random uniform probability distribution from 0 to 100 and from 50 to 150, respectively. Similarly,254

values for assets and liabilities have been randomly generated using a uniform probability distribution255

from 0 to 1 and from 0 to 0.5, respectively. Asset values from instances 4 and 5 have been modified256

to simulate scenarios where its value varies over time, i.e.: given an asset a ∈ A with a value va at257

time ta, a new value v′a is computed v′a = va f (ta, T), with T = max{ta : a ∈ A} and f the asset value258

modifier function. Likewise, instances 6 and 7 consider scenarios with liability values varying over259

time: given a liability l ∈ L with a value vl at time tl , a new value v′l is computed v′l = vl g(tl , T), with260

T = max{tl : l ∈ L} and g the liability value modifier function. Instance 10 simulates a scenario with261

small assets and large liabilities, which encourages the use of multiple assets to cover a liability, while262

instance 11 considers a scenario with a few large assets and several small liabilities, to force the use of263

a single asset to cover multiple liabilities.264

Table 1. Characteristics of the set of instances.

# Instance # assets # liabilities
Discount

rate
Asset

value modifier
Liability

value modifier
1 Control_Instance 1000 200 0.05 - -
2 Large_x3 3000 600 0.05 - -
3 Large_x5 5000 1000 0.05 - -
4 Asset_Value_Increases 1000 200 0.05 t/T -
5 Asset_Value_Decreases 1000 200 0.05 1− (t/T) -
6 Liability_Value_Increases 1000 200 0.05 - t/T
7 Liability_Value_Decreases 1000 200 0.05 - 1− (t/T)
8 Reduced_Discount_Rate 1000 200 0.005 - -
9 Liabilities_x2 1000 400 0.05 - -

10 Small_Asset_Large_Liability 1000 200 0.05 0.5 10
11 Large_Asset_Small_Liability 50 1000 0.05 10 0.2

Some initial experiments have been performed using instance 1 to set the parameter α associated265

with the geometric probability distribution that drives the liability selection and the relative mixed266

integer programming optimality gap, MIPGap, which is used to terminate the integer programming267

algorithm. Experiments to determine α have been carried out in a deterministic scenario, while268

experiments to determine MIPGap have been performed with stochastic variables. In this case, a269

better performance is attained with α = 0.75 and MIPGap = 0.4. Figure 2 and Figure 3 present the270

results of the numerical tests.271

Each instance in Table 1 has been solved using the integer programming algorithm presented272

in Algorithm 1, with a limit of 100 iterations. A time-limit of 300 seconds has also been imposed to273

terminate the algorithm after a solution has been generated if the aforementioned time-limit has been274

reached. The minimum reliability rmin to consider a solution as feasible in the stochastic scenario is275

0.95. The values of the parameters to increase and decrease the safety margin parameter S used are276

m = 0.99 and h = 1.1. In the stochastic scenario, both asset and liability values have been considered277

uncertain, with a standard deviation of 5% of its expected maturity value. 500 iterations are executed278

for each asset-liability assignment generated in the Monte-Carlo simulation.279

Table 2 provides the experimental results, compared with the results obtained in Bayliss et al.280

(2020). The first column contains the instance number (same as in Table 1). The second column (Cplex)281

contains the optimal value for each instance in a one-to-one asset-to-liability mapping. The third282

column (BR) contains the results of a previous biased-randomised algorithm, with its associated283

reliability values in the next column. Then, column 5 contains the best values obtained in the284

deterministic scenario with our matheuristic algorithm. Similarly, the best solutions obtained with a285
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Figure 2. Boxplot comparison of instance 1 results with different alpha values.

Figure 3. Boxplot comparison of instance 1 results with different MIPGap values.
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reliability higher than 0.95 and its reliability are presented in the next two columns. Finally, some gaps286

between pairs of columns are also provided.287

Table 2. Results obtained for each instance.

Bayliss et al. (2020) Our Matheuristic Gaps
# Cplex (1) BR (2) r (3) Det. (4) Stoch. (5) r (6) (4) - (1) (5) - (4) (5) - (2) (6) - (3)
1 1.25 1.56 0.95 1.17 1.81 0.95 -6.56% 54.72% 15.84% 0.12%
2 3.73 4.61 0.70 3.51 5.92 1.00 -5.89% 68.65% 28.43% 42.57%
3 OoM 7.7 0.47 5.96 9.43 0.99 - 58.25% 22.44% 111.07%
4 1.22 1.44 0.25 1.18 2.30 0.99 -2.95% 94.06% 59.56% 295.22%
5 3.66 5.85 0.88 1.99 2.97 0.96 -45.73% 49.75% -49.15% 9.61%
6 5.99 8.53 0.95 3.13 3.72 0.98 -47.69% 18.75% -56.38% 2.76%
7 10.06 11.65 0.97 9.97 12.28 0.96 -0.88% 23.20% 5.45% -1.15%
8 33.99 42.81 0.90 34.10 42.64 0.95 0.34% 25.03% -0.39% 5.69%
9 3.58 4.58 0.84 2.49 5.04 1.00 -30.41% 102.21% 9.99% 18.81%

10 - - - 5.25 10.96 0.97 - 108.77% - -
11 - - - 7.70 11.53 0.96 - 49.79% - -

6. Analysis of Results288

As it can be seen in Table 2, the stand-alone matheuristic is providing reasonably good solutions289

when compared with the optimal ones given by Cplex for the deterministic scenario. Actually, Cplex290

is not able to solve all instances since it gets an “out of memory” (OoM) error for instance 3 (which291

justifies the need of using matheuristics even for the deterministic case). Also, notice that the cost of the292

assets-to-liabilities mapping is quite different in the deterministic scenario (Det.) and in the stochastic293

one (Stoch.). In other words, the deterministic scenario represents an ‘ideal’ (but not realistic) situation294

that provides a lower-bound to the real NPV cost under uncertainty conditions. Probably, the most295

interesting comparison in this table is between columns BR and Stoch. As one can see, the proposed296

matheuristic-simulation algorithm is usually able to outperform the previous simulation-optimisation297

approach proposed in Bayliss et al. (2020). This is mainly due to the fact that the methodology298

proposed in this paper does not require to assume a one-to-one mapping between assets and liabilities,299

thus allowing for an increasing number of mapping combinations. The main benefit of using the300

matheuristic-simulation algorithm is that it treats reliability as a hard constraint, an issue which is301

very important in the context of meeting liabilities. However, since the matheuristic is a more complex302

algorithm than BR, the 300 second time limit meant that there was not enough time for it to find303

solutions that met the 95% reliability constraint exactly, allowing it to achieve a low NPV. Notice304

that the gap between the NPVs of BR and the matheuristic are largest when the matheuristic return305

very reliable solution, while BR returns solution with low reliability. Figure 4 highlights the large306

average reliability gain attained from using the matheuristic, at the expense of a slightly higher NPV307

on average.308

7. Conclusions309

This paper proposes a hybrid matheurisctic-simulation approach to solve the stochastic version310

of the asset and liability management problem, where the goal is to minimise the net present value of311

the assets that are employed to cover the liabilities, while satisfying a reliability constraint. First, a312

matheuristic is designed by combining integer programming with a heuristic. The heuristic prioritises313

the selection of liabilities with an earlier maturity date, and it also makes use of a random procedure314

to increase the diversity of solutions generated. Then, the most promising solutions generated in the315

previous stage are simulated in a stochastic scenario. For this, a Monte-Carlo simulation is run multiple316

times in order to obtain estimates of the NPV-cost and the associated reliability of each solution. One of317

the main novelties of this paper is that approach integrates Monte-Carlo simulation with a matheuristic318

to provide and algorithm which can guarantee reliable solutions for the asset and liability management319



Version December 14, 2020 submitted to Risks 12 of 14

Figure 4. Boxplot comparison of NPV and reliability results w.r.t. a previous work.

problem. It also considers the possibility of aggregating different assets, or different liabilities, before320

completing the assignment mapping, i.e.: several assets can be aggregated to cover each liability, and321

multiple liabilities can be covered by a single asset. To the best of our knowledge, it is the first time322

that this many-to-many assignment procedure is considered in the literature on asset and liability323

management.324

The results show that the best deterministic mapping of assets to liabilities is far from being325

an optimal solution when uncertainty is present. Hence, simulation-optimisation methods become326

necessary to generate high-quality solutions whenever some components of the asset and liability327

management problem need to be modelled as random variables instead of deterministic values. In328

addition, the numerical experiments show how, by allowing many-to-many assignments between329

assets and liabilities, our combined matheuristic-simulation algorithm is able to outperform other330

simulation-optimisation approaches. As future work, we plan to: (i) include additional characteristics331

in the model so it fully represents the real-life problem that insurance companies and other financial332

institutions have to face; and (ii) introduce and test the algorithm in real-life benchmark instances.333
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