

Asymmetric Reduction of Pyridinium Salts to Piperidines

Shiyu Zhang

2020.12.15

ACKNOWLEDGMENTS

I would like to take this opportunity to express my deepest sense of gratitude to my supervisor Prof. Jianliang Xiao. Without his guidance, support and encouragement I would not learn so much. His knowledge, innovative ideas, enthusiastic attitude and demand for excellence have been a constant source of inspiration for me in the past two years and will be in my future career. I truly feel privileged to be a member of his group.

I would like to thank my friends and colleagues. In particular, thanks to Dr. Elliot for his help and suggestions. I am grateful to Dr. Jane for her insightful discussions and advice. I would like to thank Dr Naomi who stay at the lab G58 with me. I learnt a lot from her in our daily discussions. Many thanks go to past and present members of the Xiao group, who helped me throughout these years. Thanks go to Dr. Konstantin Luzyanin for his help about NMR training at the beginning. From this class, not only I learnt much knowledge about NMR but also I knew many friends, Haofan Yang, Ni Wang, Li Qie, Lei Xiao, Ping Li, Donglin He, Yu Jiang, Shuming Che, Zhiwei Fu. Especially thanks to my roommates, Ye Zhou, Qiao Li and her baby, Ting Qiu, Haiping Yang and Victor. My parents are thousands miles away, but you guys made me feel at home. And you guys taught me a lot. I felt very comfortable with you guys. I would like to thank Kai Li for picking me up from the airport when I arrived in UK for the first time and provide accommodation for me in UK.

Thanks to Yuanyuan Han for her companion when I left my family for the first time. Last but not least, I would like to thank all my family members. Without their unconditional support and love, I would never finish my MPhil today.

Т

ABSTRACT

Piperidines, especially chiral piperidines, have served as important structural motifs due to their great value in pharmaceutical chemistry during the last several decades. Many chemists have focused their attention on the synthesis of piperidines with different methods. However, the asymmetric hydrogenation (AH) of pyridine derivatives is one of the most straightforward and efficient ways to access chiral piperidines compared with other methods. As a part of AH, asymmetric transfer hydrogenation (ATH) is a safer and operationally simpler reduction method. Nonetheless, the ATH of pyridine derivatives to prepare chiral piperidines has rarely been reported. In this thesis, we will present our contribution to the synthesis of chiral piperidines via ATH.

Chapter 1 describes recent development on the synthesis of piperidines, especially chiral piperidines.

Following an introduction to recent development in asymmetric hydrogenation to synthesis chiral piperidines in Chapter 1, Chapter 2 depicts how to prepare 2 or 3-substituted pyridinium salts.

Chapter 3 describes the synthesis of chiral piperidines without hydrogenation in detail. From this section, we can find the pros and cons of this method. Experimental detail and NMR spectrums are provided in Chapter 4.

Ш

CONTENTS

ACKNOWLEDGMENTS	I
ABSTRACT	
CONTENTS	
ABBREVIATIONS	VI
CHAPTER 1 INTRODUCTION-RECENT DEVELOPMENT IN SYNTH	ESIS OF
PIPERIDINES	1
1.1 Introduction	2
1.2 Synthesis of piperidines	5
1.3 Synthesis of chiral piperidines	6
1.3.1 Asymmetric hydrogenation to synthesise chiral piperidines	6
1.4 Research significance	17
1.5 Experimental proof of the displayed stereochemistry	19
References	20
CHAPTER 2 PREPARATION OF 2 OR 3-SUBSTITUTED PYRIDINIU	M SALTS
	27
2.1 Introduction	28
2.2 Synthesis of 2- or 3-substituted arylpyridines	29
2.3 Synthesis of 2 or 3-arylpyridinium salts	30
2.4 Synthesis of 2 or 3- alkylpyridinium salts	32
References	35
CHAPTER 3 ASYMMETRIC REDUCTIVE TRANSAMINATION	36

3.1 Introduction	37
3.2 Metal and metal-free methods in transamination	38
3.2.1 Metal catalysts in transamination	38
3.2.2 Metal-free transamination	39
3.3 Synthesis of chiral piperidines	41
3.3.1 Introduction	41
3.3.2 Synthesis of 2-arylpiperidines	41
3.3.3 Synthesis of chiral 2 or 3- alkylpiperidines	43
3.3.4 Different amines	43
3.4 Discussion	44
3.5 Conclusions and Perspectives	49
References	51
CHAPTER 4 EXPERIMENTAL	53
CHAPTER 4 EXPERIMENTAL	53
CHAPTER 4 EXPERIMENTAL. 4.1 Introduction. 4.2 Experimental details.	53 54 54
CHAPTER 4 EXPERIMENTAL	53 54 54
CHAPTER 4 EXPERIMENTAL	53 54 54 54
 CHAPTER 4 EXPERIMENTAL. 4.1 Introduction. 4.2 Experimental details. 4.2.1 Synthetic procedure for 2-arylpyridine. 4.2.2 General procedure for synthesis of pyridinium salts. 4.2.3 General Procedure for synthesis of chiral piperidine. 	53 54 54 54 54
 CHAPTER 4 EXPERIMENTAL. 4.1 Introduction. 4.2 Experimental details. 4.2.1 Synthetic procedure for 2-arylpyridine. 4.2.2 General procedure for synthesis of pyridinium salts. 4.2.3 General Procedure for synthesis of chiral piperidine. 4.3 Analytic data. 	53 54 54 54 54 54 54
 CHAPTER 4 EXPERIMENTAL	53 54 54 54 54 54 54 54
 CHAPTER 4 EXPERIMENTAL	53 54 54 54 54 54 54 54 54
 CHAPTER 4 EXPERIMENTAL	53 54 54 54 54 54 54 54 54 54 54 54 54 54 54
 CHAPTER 4 EXPERIMENTAL. 4.1 Introduction. 4.2 Experimental details. 4.2.1 Synthetic procedure for 2-arylpyridine. 4.2.2 General procedure for synthesis of pyridinium salts. 4.2.3 General Procedure for synthesis of chiral piperidine. 4.3 Analytic data. 4.3.1 Assigned peaks. 4.3.2 Analytic data of 2-arylpyridine. 4.3.3 Analytic data of 2 or 3-arylpyridinium salts. 4.3.4 Analytic data of chiral piperidines. 	53 54 54 54 54 54 54 55 55 57 61 61

ABBREVIATIONS

AH	asymmetric hydrogenation
ATH	asymmetric transfer hydrogenation
Ar	aryl
ee	enantiomeric excess
min	minute
r.t.	room temperature
S/C	substrate to catalyst ratio
ТН	transfer hydrogenation
THF	tetrahydrofuran
TOF	turnover frequency
TON	turnover number
Ср*	pentamethylcyclopentadiene
Су	cyclohexyl
Ph	phenyl
ХуІ	3,5-xylyl
DCE	1,2-dichloroethane
DCM	dichloromethane
D/P	DCM to Isopropanol
TCCA	trichloroisocyanuric acid

PMP	pyridoamine phosphate
PLP	pyridoxal phosphate
Bz	benzoyl
DDR	drug data report
MFS	metal free system
TFAA	trifluoroacetic anhydride
DIPEA	diisopropylethylamine
Bu	butyl
cod	1,5-cyclooctadiene

CHAPTER 1 INTRODUCTION - RECENT DEVELOPMENTS IN

THE SYNTHESIS OF PIPERIDINES

1.1 Introduction

Piperidines are a family of heterocyclic compounds that have five -CH₂- and one -NHgroup in their structures.¹ Piperidine has been widely used as chemical reagents (solvents or bases), anesthetics, painkillers, and drug intermediates because of biological activity.² According to DDR(drug data report), 12000 piperidine derivatives were used as pharmaceutical intermediates during 1988-1998.³

Due to their various biological activities, numerous natural products containing highly functionalised piperidine moiety were used as drugs.⁴ For instance, Pipermethystine from the Kava plant and 3,4-epoxy-5-pipermethystine are good anti-anxiety agents.⁵ Spectaline, Canavaline and Spectalinine from plants possess good cytotoxic activities.⁶ oxathiapiprolin is an efficient fungicide (Figure 1).⁷

Figure 1. Representative examples of natural piperidines with biological activies.

Due to their biological properties, the synthesis of piperidines has attracted much attention during the last several decades. For example, Risperdal is used for treatment of schizophrenia,⁸ Concerta for attention deficit hyperactivity disorder,⁹ Aricept for Alzheimer's disease,¹⁰ Paroxetine as an antidepressant¹¹ and Fentanyl as a pain reliever.¹² Ticlopidine treats the coronary arteriosclerosis (Figure 2).¹³

Figure 2. Piperidine derivatives as drugs.

Apart from being used as pharmaceutical intermediates, piperidines are also used as insecticides and herbicides. For instance, dimepiperate¹⁴ and piperophos¹⁵ were widely used to control Valerian and fescue (pests) in the rice fields (Scheme 3). According to WO 2005095380,¹⁶ compound 1 could kill Citrus Scorpions and

Armyworms at 125mg/L and compound 217 from WO2007040280 could control

Citrus and Diptera similar concentration at 125mg/L.

Figure 3. Piperidine derivatives as insecticides and herbicides.

Compound 3¹⁸ was reported to kill most of the noctuidae (over 80%) at 200mg/L. In 2007, the same company combined quinoline and cinnamon piperidine to get compound 4 which is used to kill plutella and aedes aegypti (Figure 3).¹⁹ In Chapter I, an overview is given on the advances in the area of synthesizing piperidines, with a focus on the chiral piperidines.

1.2 Synthesis of piperidines

Many methodologies for the synthesis of piperidines have been documented during the last several decades.²⁰ Piperidines could be prepared by hydrogenation of pyridines. For example, some homogeneous catalysts like rhodium²¹, iridium²² and metal free systems²³ were used for the hydrogenation of pyridines, but the limited substrate scope or strict conditions required restricted these ways to be widely used (Scheme 1).

Scheme 1. Known catalytic hydrogenations of pyridines.

In industry, heterogeneous catalysts are preferred, because they can be easily separated from products and bare good stability. However, in generally, their catalytic efficiency is not as good as homogeneous catalysts. Known heterogeneous catalysts for the synthesis of piperidines via hydrogenation are based on heavy metals like rhodium, palladium and so on.²⁴ Recently, a new method was found with heterogeneous N-modified cobalt nanoparticles in the neutral conditions. However, high temperature over 140 °C and 60 bar hydrogen for 36 h were still needed (Scheme 2).²⁵

Scheme 2. The synthesis of piperidines via heterogeneous N-modified Co nanoparticles under neutral conditions.

In 2004, it was found that pyrrole could be converted into piperidines via ring expansion by V. Kumar and co-workers. They used nucleophilic reagent like TFAA and DIPEA to attack 2-substituted pyrroles via bicyclic azaheterocycles salts (Scheme 3).²⁶

Scheme 3. Formation of piperidines via expansion of ring.

1.3 Synthesis of chiral piperidines

Chirality is a chemical term to describe a molecule or ion which cannot be overlapped by its mirror image.²⁷ The synthesis of chiral piperidines has received much attention in the field of organic synthesis and pharmaceutical chemistry.^{28, 29}

1.3.1 Asymmetric Hydrogenation to synthesize chiral piperidines

In particularly, asymmetric hydrogenation of pyridines is a straightforward way to access piperidines. However, due to the stabilizing aromaticity and strong coordination ability of pyridines³⁰ and piperidines which may poison catalysts,³¹ only a few examples have been investigated in the past 20 years. Studer and co-workers disclosed the first successful AH of pyridines using homogeneous rhodium

diphosphine catalysts in 2000. However, only 27% ee was achieved in the harsh conditions (Schemes 4 and figure 4).³²

Scheme 4. First AH was realized by Studer and co-workers.

Figure 4. Ligands for the synthesis of chiral piperidines used by Stude.

In 2003, Charette and co-workers established a novel and highly regioselective approach to synthesize substituted 1,2,3,6-tetrahydropyridines, 2,6-disubstituted 1,2,3,6-tetrahydropyridines (Scheme 5).³³ In the presence of RMgX, chIral piperidines were synthesized.

Scheme 5. Synthesis of tetrahydropyridines including chiral piperidines.

Entry	RMgX	1/2	Yield(%)
1	MeMgBr	69/31	86
2	n-PrMgCl	81/19	85
3	<i>i</i> -PrMgBr	>95/5	84

Table 1. Reaction conditions:1) CH₂Cl₂ (5 ml), RMgX (0.7 mmol), 2) NaBH₄ (1.4 mmol), MeOH (2 ml)

Charette's group realized asymmetric hydrogenation of N-acyliminopyridinium ylides which could partly activate the pyridine rings. Concerning safety, this method is not suitable in industrial scale.³⁴ And also, this method still needs hydrogenation. By contrast, chiral auxiliaries were used by Frank Glorius in 2004 (Scheme 6).³⁵

Scheme 6. Chiral auxiliaries were used by Frank and co-workers.

The shortcoming of this method is the multi-step synthesis that was required. After that, Rueping and co-workers applied the system of Hantzsch esters in the asymmetric hydrogenation of pyridine derivatives with electron withdrawing substituents such as cyano and carbonyl group installed at the *meta*- position of pyridine ring, which were successfully reduced (Scheme 7) (Chart 1).³⁶

Scheme 7. Hantzsch esters were used in the AH of pyridines by Rueping.

Entry	Ar	ee [%]	Yield[%]
1	Ph₃Si, [H] ₈	67	85
2	phenyl	46	83
3	4-biphenyl	44	82
4	3,5-(CF ₃) ₂ C ₆ H ₃	36	60
5	3,5- <i>t</i> Bu ₂ -4-MeOC ₆ H ₂	56	69
6	anthracenyl	89	87
7	9-phenanthryl	75	80
8	1-naphthyl	35	68
9	2-naphthyl	32	50

Table 2. Hantzsch esters were used in the AH of pyridines by Rueping.

Hantzsch esters were also introduced into pyridine's derivatives.³⁶ From scheme 8,

chiral quinolines were synthesized using hantzsch esters.

Scheme 8. Hantzsch esters were used in AH of pyridine derivatives.

From Chart 1 and 2, Hantzsh ester were used in the reduction of pyridines or their derivatives with moderate ee (52-79%). In 2008, Zhou and co-workers applied $[Ir(COD)CI]_2/(S)-MeO-BiPhep/I_2$ to the similar substrates and obtained good yield (up to 98%) and high enantioselectivities (up to 97% ee) (Scheme 9).³⁷

These substrates make it easier to accomplish hydrogenation reactions because electron withdrawing substituents in the 3rd position and 2,6-disubstituents could weaken the coordination ability of nitrogen. Later on, pyridinium salts were introduced by the same group to obtain chiral piperidines at the first time (Scheme 10 and figure 5).³⁸

Scheme 10. First example for the synthesis of chiral piperidines from pyridinium salts.

Figure 5. Ligands for the synthesis of chiral piperidines from Zhou's study

Entry	Ar	Ligand	Yield [%]	ee [%]
1	Ph	L1	97	75
2	2-MeOC ₆ H ₄	L1	93	70
3	2-(MeO ₂ C)C ₆ H ₄	L1	99	89
4	$4-(MeO_2C)C_6H_4$	L1	95	79
5	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L1	98	92
6	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L2	96	93
7	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L3	98	93
8	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L4	98	85
9	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L5	98	91
10	2-(<i>i</i> PrO ₂ C)C ₆ H ₄	L6	99	91

Table 3. Pyridinium salts were introduced

From table 2, we can see that current methodology works very well. The key to the success of this method is that the pyridinium salts could weaken the coordinative ability of pyridines and impair the stabilizing aromaticity of pyridines which enhance the activation of pyridines. In addition, ester group can coordinate with iridium which is good for combining with the catalyst.

Andersson synthesized the trans-2,3-dihydropyridine N-oxides and piperidines in 2009 (Scheme 11).³⁹ In the first step, chiral center were got by using PhMgCl. After that, Pd/C system were applied to reduced double bonds.

Scheme 11. N-oxides were accomplished by Andersson and co-workers.

The yield (28-76 %) of first step still needs to be improved. In 2013, the same group altered this method by using different chiral ligands to introduce chiral centers (Scheme 12).³⁹ However, this method also need two steps (Scheme 13).⁴⁰

	R + N O	1) Binol ArMgX 2) [H]	N N H H ee up to 99%	
Entry	R	Ar	Yield%	ee
1	Ph	4-MePh	86	70
2	Ph	3,5(Me)₂Ph	76	62
3	Ph	4-biphenyl	68	46
4	Ph	4-(MeO)Ph	94	70
5	Ph	2-MePh	51	56
6	Ph	4-ClPh	71	80

Scheme 12. Different Ar groups were present in synthesize chiral piperidines.

Andersson used two steps to get N ylides which reduced to get chiral piperidines in the presence of specific catalyst (Scheme 13).

Scheme 13. Specific steps in the Andersson's study.

Andersson also used N-acyliminopyridinium ylides to synthesize chiral piperidines (Scheme 14) (Figure 6).⁴¹ He and co-workers tried many different types ligands to get chiral centers in the pyridine rings. H_2 were used as hydrogen source. Chiral piperidines were synthesized within 6 hours in the room temperature.

Scheme 14. N-acyliminopyridinium ylides were used by Andersson.

Figure 6. Ligands for the synthesis of chiral piperidines in Andersson's study.

In 2013, Mashima and co-workers discovered that iodine could improve enantiomeric excess (up to 82%) whilst not all substituted were tolerated (Scheme 15).⁴² In this reaction, three chiral centers were realized in one step.

[{Ir(H)(chiral diphosphine)}2(µ-X)3]X

Scheme 15. Di-, tri-substituent pyridines in the Mashima study.

In 2014, Zhang and co-workers screened more ligands (Scheme 16) and found that MP^2 -SegPhos (L12) could improve enantioselectivities (>90% ee) (Scheme 16).⁴³ Iridium catalysts and phosphole ligands were introduced in this system while H₂ still as hydrogen source.

Scheme 16. Different chiral ligands were screened to obtain high ee by Zhang's

group.

Zhou and co-workers have synthesized trifluoromethyl substituted piperidines with multiple stereogenic centers in one step (Scheme 17).⁴⁴ Pyridines were reduced to chiral piperidines with CF₃ group in the third position, which limited this method development in future.

$$\begin{array}{c} & \left[lr \right] \\ R \xrightarrow{-N} \\ Cl H \end{array} \xrightarrow{Ar} Ar \end{array} \xrightarrow{25 \ ^{\circ}C, \ H_2 \ (800 \ psi)} R^{\times} \xrightarrow{N} \\ \end{array} \xrightarrow{R^{\times} } \begin{array}{c} & \left[lr \right] \\ R \xrightarrow{-N} \\ H \end{array} \xrightarrow{N} \\ \begin{array}{c} & Ar \end{array} \xrightarrow{Ar} \\ \end{array} \xrightarrow{R^{\times} } \begin{array}{c} & \left[lr \right] \\ \hline \\ \hline & \left[lr \right] \\ \hline & \left[lr \right] \\$$

Scheme 17. CF₃- group in the 3rd position was studied by Zhou's group.

Lefort's group utilized mixed ligands for the asymmetric hydrogenation of 2-substituted pyridinium salts in 2016 (Scheme 18) $.^{45}$ [Ir(cod)Cl]₂ as catalyst while DCM as solvent in the 50 °C for 18 hours.

Entry	Ligand	Yield [%]	ee [%]
1	L1	94	31
2	L2	87	49
3	L3	88	50

Scheme 18. Pyridinium salts were studied by Lefort and co-workers.

From scheme 18, we can see that the ee is only 30%. In 2016, Bo Qu and co-workers used MeO-BoQPhos to carry out asymmetric hydrogenation of pyridinium salts (Scheme 19).⁴⁶ The same as previous result, H₂ still as hydrogen source. The advantage of Bo Qu's result, they found new type of ligands to reduce pyridines.

Scheme 19. Bo Qu and co-workers used MeO-BoQPhos to accomplish AH for pyridinium salts.

Although they got good results in terms of enantioselectivities and yields, only limited substrates with substituents at the *ortho*-position were restricting the method in synthetic applications. Lefort investigated the AH of 3-substituented pyridinium salts, obtaining low yield (from 2% to 57%) and moderate enantioselectivities (from 33% to 90%) (Scheme 20).⁴⁷

Metal-free catalysis was introduced in the hydrogenation by Du in 2013 (Scheme 26).⁴⁸ The pyridines were reduction by H_2 into piperidines. From scheme 21, the yield was over 90% while dr over 90%.

Entry	product	Yield [%]	dr [%]
1	Ar=Ar'=Ph	98	98:2
2	Ar=Ar'=4-MeC ₆ H ₄	97	98:2
3	Ar=Ar'=4-MeOC ₆ H ₄	99	98:2
4	Ar=Ar'=4- <i>t</i> BuC ₆ H ₄	99	98:2
5	Ar=Ar'=3-MeC ₆ H ₄	99	98:2
6	Ar=Ar'=2-MeC ₆ H ₄	97	98:2
7	Ar=Ar'=2-MeC ₆ H ₄	98	>99:1
8	Ar=Ar'=2-MeOC ₆ H ₄	99	>99:1
9	Ar=Ar'=2-naphthyl	99	98:2
10	Ar=Ar'=2-furyl	93	90:10
11	$Ar=4-FC_6H_4$, $Ar'=4-MeOC_6H_4$	92	99:1

Scheme 21. Metal free were used to obtain chiral piperidines.

1.4 Research Significance

Chiral piperidines are very important compounds in nature and as many drug intermediates. Numerous methods of synthesis were developed such as asymmetric hydrogenation.

Asymmetric hydrogenation is an advanced methodology compared with others. It is a straightforward method to get chiral piperidines and it is suitable for green chemistry, as it minimizes or eliminates the use and generation of hazardous substances.⁴⁹

All previous asymmetric hydrogenation methods require high pressure of hydrogen. Thus, finding another hydride source is urgently required. Our group developed a new method to synthesize chiral piperidines using (R)-(+)- α -methylbenzylamine as amine source and formic acid as hydrogen source. The asymmetric transfer hydrogenation allows pyridinium salts to be reduced to a new piperidine with high diastereoselectivity (Scheme 22).⁵⁰ This thesis aimed to expand the substrate scope of this newly developed reaction.

Scheme 22. Synthesis of chiral piperidines without hydrogen.

A possible mechanism explaining the transamination is shown in Scheme 12. The transamination reaction probably occurs after the initial reduction of the pyridinium salt to a dihydropyridinium. The nucleophilic addition of water to the intermediate **a** leads to the formation of **b**. After isomerisation to open the ring, **c** was produced. The condensation of the ring-opened product **c** with the chiral amine unit, followed by ring closure, would yield the amine-exchanged product **h**, which may undergo further reduction to give the final product **i** (Scheme 23).

Scheme 23. Proposed mechanism for the in situ transamination of pyridinium salts.

1.5 Experimental proof of the displayed stereochemistry

Dr Wu in our group did this experiment to check stereochemistry. Phenyl group was removed while Nitrogen was protected by Boc. 95% yield, 96% ee were got using method A and 90% yield, 96% ee in method B.

Method A (1) 1% Pd/C, 1 atm H₂, EtOH, 6N HCl, 65 ^OC, 16 h (2) 1 eq. Boc₂O, 1.5 eq. NEt₃, CH₂Cl₂, rt, 2 h

Method B 1eq. Boc₂O, 1 mol% Pd(OH)₂/C, EtOAc, 15 atm H₂, rt, 16 h, one-pot

Scheme 24. Derivatization of asymmetric reductive transamination

C19H23N, M = 265.38, orthorhombic, space group P212121 (no. 19), a = 7.8158(6) Å, b = 10.3447(7) Å, c = 18.8075(14) Å, V = 1520.63(19) Å3,

Z = 4, T = 100.0 K, μ (Mo k α) = 0.499 mm-1, Dcalc = 1.159 g/mm3,

13955 reflections measured (9.4 $\leq 2 \Theta \leq 149.24$), 3073 unique (Rint = 0.0281) which were used in all calculations. The final R1 was 0.0305 (>2sigma(I)) and wR2 was 0.0776 (all data).

References

1. P. Arora, V. Arora, H. S. Lamba, D. Wadhwa, IJPSR, 2012, 8, 2947-2954.

2. K. Eller, E. Henkes, R. Rossbacher, H. Höke, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

3. P. M. Weintraub, J. S. Sabol, J. M. Kane, *TETRAHEDRON Lett.*, 2003, **59**, 2953-2989.

4. (a) Y. Kase, K. Takahama, Y. Okano, Jpn. J. Psychopharmacol., 1989, 9, 257-271; (b)

P. D. Bailey, P. A. Millwood, P. D. Smith, Chem. Commun., 1998, 6, 633-641.

5. K. Dragulla, W. Y. Yoshidab, J. Phytochemistry, 2003, 63, 193-198.

6. V. D. Bolzani, A. A. Gunatilaka, *Tetrahedron Lett.*, 1995, **51**, 5929-5934.

7. Pasteris R J, Hanagan M A, Shapiro R. WO2008013622(A2)[P]. 2008-01-31.

8. (a) A. A. H. P. Megens, F. H. L. Awouters, A. Schotte, T. F. Meert, C. Dugovic, C. J. E. Niemegeers, J. E. Leysen, *J. Psychopharmacology,* 1994, **114**, 9; (b) P. Tyrer, P. C. Oliver-Africano, Z. Ahmed, N. Bouras, S. Cooray, S. Deb, D. Murphy, M. Hare, M. Meade, B. Reece, K. Kramo, S. Bhaumik, D. Harley, A. Regan, D. Thomas, B. Rao, B. North, J. Eliahoo, S. Karatela, A. Soni, M. Crawford, *Lancet*, 2008, **371**, 57.

9. W. E. Pelham, E. M. Gnagy, L. Burrows-Maclean, A. Williams, G. A. Fabiano, S. M. Morrisey, A. M. Chronis, G. L. Forehand, C. A. Nguyen, M. T. Hoffman, T. M. Lock, K. Fielbelkorn, E. K. Coles, C. J. Panahon, R. L. Steiner, D. L. Meichenbaum, A. N. Onyango, G. D. Morse, *J. Pediatrics*, 2001, **107**, 105.

10. A. Burns, M. Rossor, J. Hecker, S. Gauthier, H. Petit, H. J. Mçller, S. L. Rogers, L. T. Friedhoff, D. G. Cognit, *J. Affect. Dis.*, 1999, **10**, 237.

(a) K. L. Dechant, S. P. Clissold, *Drugs* 1991, **41**, 225; (b) M. Bourin, P. Chue, Y.
 Guillon, *CNS Drug Rev.*, 2001, **7**, 25.

21

12. W. Jeal, P. Benfield, J. new Drugs, 1997, 53, 109.

13. A. D. Marco, M. D. Candia, A. Carotti, S. Cellamarea, E. D. Candia, C. Altomare, *Eur. J. Pharm. Sci.*, 2004, **22**, 153-164.

14. Y. Zhang, 世界农药新进展[M]. 3 版. 北京: 化学工业出版社, 2013.

15. X. Gu, Y. Liu, 作物田杂草解决方案及除草剂的优选与集成[M]. 南通: 农药市场信息传媒, 2015.

16. H. Isami, T. Jun, Y. Makio, WO, 2005095380A1[P]. 2005-10-13.

17. H. Isami, T. Jun, Y. Makio, WO, 2007040280A1[P]. 2007-04-12.

18. P. Moleyres , J. Casssyres , F. Cederbaum, WO, 2005061500[P]. 2005-07-07.

19. C. Jerome, M. Peter, WO, 2007072143(A2)[P]. 2007-06-28.

20. S. Källström, R. Leino, Biol. Chem., 2008, 16, 601-635.

21. (a) E. Baralt, S. J. Smith, J. Hurwitz, I. T. Horvath, R. H. Fish, *J. Am. Chem. Soc.*, 1992, **114**, 5187-5196; (b) M. Studer, C. Wedemeyer-Exl, F. Spindler, H. Blaser, *Chem. Monthly*, 2000, **131**, 1335-1343.

22. (a) X. Wang, W. Zeng, Y. Zhou, *Tetrahedron Lett.*, 2008, **49**, 4922-4924. (b) W. Tang, J. Tan, L. Xu, K. Lam, Q. Fan, A. S. C. Chan, *Adv. Synth. Catal.*, 2010, **352**, 1055-1062.

23. (a) T. Mahdi, J. N. d. Castillo, D. W. Stephan, Organometallics, 2013, 32, 1971-1978; (b) Y. Liu, H. Du, J. Am. Chem. Soc., 2013, 135, 12968-12971; (c) Z. Liu, Z. Wen, X. Wang, Angew. Chem., 2017, 56, 5817-5820.

24. (a) M. Freifelder, G. R. Stone, J. Org. Chem., 1961, 26, 3805-3808; (b) G. N.
Walker, J. Org. Chem., 1962, 27, 2966-2967; (c) M. Freifelder, J. Org. Chem., 1964, 29,
2895-2898; (d) H. U. Blaser, H. Hçnig, M. Studer, C. Wedemeyer-Exl, J. Mol. Catal.
1999, 139, 253-257. (e) S. A. Raynor, J. M. Thomas, R. Raja, B. F. G. Johnson, R. G. Bell,

M. D. Mantle, *Chem. Commun.*, 2000, 1925-1926; (f) B. Zacharie, N. Moreau, C. Dockendorff, *J. Org. Chem.*, 2001, 66, 5264-5265; (g) F. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, *Angew. Chem. Int. Ed.*, 2004, 43, 2850-2852; (h) A. Lei, M. Chen, M. He, X. Zhang, *Eur. J. Org. Chem.*, 2006, 2006, 4343-4347; (i) L. Piras, E. Genesio, C. Ghiron, M. Taddei, *Synlett*, 2008, 1125-1128; (j) M. Irfan, E. Petricci, T. N. Glasnov, M. Taddei, C. O. Kappe, *Eur. J. Org. Chem.*, 2009, 1327-1334; (k) A. Karakulina, A. Gopakumar, I. AkÅok, B. L. Roulier, T. La Grange, S. A. Katsyuba, S. Das, P. J. Dyson, *Angew. Chem. Int. Ed.*, 2016, 55, 292-296.

25. F. Chen, W. Li, B. Sahoo, C. Kreyenschulte, G. Agostini, H. Lund, K. Junge, M. Beller, *Angew. Chem. Int. Ed.*, 2018, **57**, 14488-14492.

26. P. S. Lonkar, V. A. Kumar, Biol. Chem., 2004, 14, 2147-2149.

27. P. Y. Bruice. Org. Chem. (4th Edition) ISBN 9780131407480

A. H. Beckett, R. G. Lingaed, A. E. E. Theobald, *J. Med. Chem.*, 1969, **12**, 4-10; (b)
 T. H. Jones, M. S. Blum, H. G. Robertson, *JONP*, 1990, **53**, 429-435; (c) S. Zhao, M. J.
 Totleben, J. P. Freeman, C. L. Bacon, G. B. Fox, E. O'Driscoll, A. G. Foley, J. Kelly, U.
 Farrell, Ciaran Regan, S. A. Mizsak, J. Szmuszkovicz, *Biol. Chem.*, 1999, **7**, 1637-1646;
 (d) R. He, T. Kurome, K. M. Giberson, K. M. Johnson, A. P. Kozikowski, *J. Med. Chem.*, 2005, **48**, 7970-7979; (e) T. J. Ritchie1, S. J. F. Macdonald, R. J. Young, S. D. Pickett, *Drug Discovery Today*, 2011, **16**, 164-171; (f) P. Goel, O. Alam, M. J. Naim, F. Nawaz, M. Iqbal, M. I. Alam, *J. Med. Chem.*, 2018, **157**, 480-502; (g) M. Rk, S. Begum, A. Begum, K. Bharathi, *J. Pharm. Clin. Res.*, 2018, **11**, 66-73.

29. For selected reviews on synthesis of piperidines, see: (a) P. M. Weintraub, J. S. Sabol, J. M. Kane, D. R. Borcherding, *Tetrahedron Lett.*, 2003, **59**, 2953-2989. (b) S. Nara, R. Tanaka, J. Eishima, M. Hara, Y. Takahashi, S. Otaki, R. J. Foglesong, P. F.

23

Hughes, S. Turkington, Y. Kanda, *J. Med. Chem.*, 2003, **46**, 2467-2473. (c) F. Felpin, J. Lebreton, *Eur. J. Org. Chem.*, 2003, **19**, 3693-3712. (d) M. G. P. Buffat, *Tetrahedron Lett.*, 2004, **60**, 1701-1729. (e) J. Cossy, *Chem. Rec.*, 2005, **5**, 70-80.

30. S. Pal, Pyridine: A Useful Ligand in Transition Metal Complexes, 2018, 5, 57-74.

31. Z. Nairoukh, M. Wollenburg, C. Schlepphorst, K. Bergander, F. Glorius, *Nat. Chem.*, 2019, **11**, 264-270.

32. M. Studer, C. Wedemeyer-Exl, F. Spindler, H. Blaser, *Monatshefte fur Chemie*, 2000, **131**, 1335-1343.

33. C. Legault, A. B. Charette, J. Am. Chem. Soc., 2003, 125, 6360-6361.

34. M. Barday, C. Janot, N. R. Halcovitch, J. Muir, C. A"ssa, *Angew. Chem. Int. Ed.*, 2017, **56**, 13117-13121.

35. F. Glorius, N. Spielkamp, S. Holle, R. Goddard, C. W. Lehmann, *Angew. Chem. Int. Ed.*, 2004, **43**, 2850-2582.

36. M. Rueping, A. P. Antonchick, Angew. Chem. Int. Ed., 2007, 46, 4562-4565.

37. X. Wang, W. Zeng, Y. Zhou, *Tetrahedron Lett.*, 2008, **49**, 4922-4924.

Z. Ye, M. Chen, Q. Chen, L. Shi, Y. Duan, Y. Zhou, *Angew. Chem. Int. Ed.*, 2012, **51**, 10181-10184.

39. H. Andersson, M. Gustafsson, D. Bostrom, R. Olsson, F. Almqvist, *Angew. Chem. Int. Ed.*, 2009, **48**, 3288-3291.

40. M. Hussain, T. S. Banchelin, H. Andersson, R. Olsson, F. Almqvist, *Org. Lett.*, 2013, **15**, 54-57.

41. A. Cadu, P. K. Upadhyay, P. G. Andersson, *Asian J. Org. Chem.*, 2013, **2**, 1061-1065.

42. M. Hussain, T. S. Banchelin, H. Andersson, R. Olsson, F. Almqvist, *Org. Lett.*, 2013, **15**, 54-57.

43. M. Chang, Y. Huang, S. Liu, Y. Chen, S. W. Krska, I. W. Davies, X. Zhang, Angew. Chem Int. Ed., 2014, **53**, 12761-12764.

44. M. Chen, Z. Ye, Z. Chen, B. Wu, Y. Zhou, Org. Chem. Frontiers, 2015, 2, 586-589.

45. M. Renom-Carrasco, P. Gajewski, L. Pignataro, J. G. de Vries, U. Piarulli, C. Gennari, L. Lefort, *Adv. Synth. and Catal.*, 2016, **358**, 2589-2593.

(a) B. Qu, H. P. R. Mangunuru, X. Wei, K. R. Fandrick, J. Desrosiers, J. D. Sieber, D. Kurouski, N. Haddad, L. P. Samankumara, H. Lee, J. Savoie, S. Ma, N. Grinberg, M. Sarvestani, N. K. Yee, J. J. Song, C. H. Senanayake, *Org. Lett.*, 2016, **18**, 4920-4923; (b)
 B. Qu, H. P. R. Mangunuru, S. Tcyrulnikov, D. Rivalti, O. V. Zatolochnaya, D. Kurouski,
 S. Radomkit, S. Biswas, S. Karyakarte, K. R. Fandrick, J D. Sieber, S. Rodriguez, J. Desrosiers, N. Haddad, K. McKellop, S. Pennino, H. Lee, N. K. Yee, J. J. Song, M. C. Kozlowski, C. H. Senanayake, *Org. Lett.*, 2018, **20**, 1333-1337.

47. M. R. Carrasco, P. Gajewski, L. Pignataro, J. G. de Vries, U. Piarulli, C. Gennari, L. Lefort, *Eur. Chem. Commun*, 2016, **22**, 9528-9532.

48. Y. Liu, H. Du, J. Am. Chem. Soc., 2013, 135, 12968-12971.

49. (a) J. H. Clark, R. Luque, A. S. Matharu, Annu. Rev. Chem. Biomol., 2012, 3, 183-207; (b) R. Cernansky, Nature, 2015, 519, 379-380; (c) K. Sanderson, Nature, 2011, 469, 18-20; (d) M. Poliakoff, P. Licence, Nature, 2007, 450, 810-812; (e) J. H. Clark, Green Chem., 1999, 1, 1-8.

(a) Y. Wei, J. Wu, D. Xue, C. Wang, Z. Liu, Z. Zhang, G. Chen, J. Xiao, *Synlett*, 2014,
 25, 1295-1298; (b) J. Wu, J. H. Barnard, Y. Zhang, D. Talwar, C. M. Robertson, J. Xiao,
 Chemi. Commun., 2013, 49, 7052-7054; (c) J. Wu, D. Talwar, S. Johnston, M. Yan, J.

25

Xiao, Angew. Chem. Int. Ed., 2013, **52**, 6983-6987; (d) J. Wu, W. Tang, A. Pettman, J. Xiao, Adv. Synth Catal, 2013, **335**, 35-40; (e) J. Wu, C. Wang, W. Tang, A. Pettman, J. Xiao, Chem. Eur. J, 2012, **18**, 9525-9529.

CHAPTER 2 PREPARATION OF 2 OR 3-SUBSTITUTED PYRIDINIUM SALTS

2.1 Introduction

In order to exploit the asymmetric transamination method for the synthesis of chiral piperidines, we firstly synthesized a number of different pyridinium salts. After that, these pyridinium salts were used to synthesize the corresponding piperidines via the asymmetric transamination.

This synthesis was carried out first using the Suzuki coupling. The reaction mechanism is shown in Scheme 1. First of all, 2-bromopyridine reacts with $Pd(PPh_3)_4$ to form intermediate **1**. The transmetalation of boronic acid with the intermediate **1** leads to the formation of **2**. After reductive elimination to remove $Pd(PPh_3)_4$, 2-phenylpyridine is obtained (Scheme 25).¹

Scheme 25. The mechanism of Suzuki reaction.
2.2 Synthesis of ortho- or meta-arylpyridines

Scheme 26. Suzuki reaction to synthesize 2-phenylpyridines.

Boronic acids were reacted with 2-bromopyridine in the presence of $Pd(PPh_3)_4$, to obtain the corresponding 2-phenylpyridines. The isolated yield for each compound is listed in Figure 7.

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	3a		97%
2	3b		100%
3	3c	F N	100%
4	3d		75%
5	Зе	OMe	95%
6	3f	NO ₂	74%
7	3g		100%

8	3h	F F	80%
9	3i		85%
10	3j	N	86%
11	3k	COOMe	57%
12	31	N N	92%
13	3m	N E	75%

[a] Reaction conditions: 3 mol % Pd(PPh₃)₄, 2.6 mmol **1a-m**, 2 mmol **2a**, 7 ml toluene, 1.5 ml ethanol, 7 ml H₂O, 15 mmol Na₂CO₃, 85 °C, 18h. [b] Isolated yield.

Table 4. Synthesis of 2 or 3-phenylpyridines.

2.3 Synthesis of 2 or 3-arylpyridinium salts

The substituted pyridines were then reacted with iodoethane to

synthesize the following pyridinium salts (Scheme 27). The results are shown in the

Table 4.

Scheme 27. Synthesis of pyridinium salts.

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	4a		92%
2	4b		97%
3	4c		95%
4	4d		94%
5	4e	I ⊂ N F	95%
6	4f		96%
7	4g		98%
8	4h		97%
9	4i	G N OMe	98%
10	4j		97%

11	4k	O I N COOMe	90%
12	41		80%
13	4m		82%
14	4n		95%
15	40		72%
16	4p		92%
17	4q		82%

[a] Reaction conditions: 2.75 mmol 3a-l, 2.75 mmol iodoethane, 5 ml CH_3CN ,

85 °C, overnight. [b] Isolated yield.

 Table 5. Synthesis of pyridinium salts.

2.4 Synthesis of other pyridinium salts

A 2 or 3-alkylpyridine was mixed with iodoethane in CH_3CN in a flask. The mixture was refluxed at 85 °C overnight to afford the product. Other salts were prepared similarly (Scheme 28).

5a-m6a-mScheme 28. Synthesis of 2 or 3- pyridinium salts.

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	6a	CN CN	90%
2	6b		93%
3	6c		95%
4	6d		92%
5	6e		100%
6	6f		95%
7	6g		92%
8	6h		95%
9	6m		98%

[a] Reaction conditions: 2.75 mmol **3a-I**, 2.75 mmol iodoethane, 5 ml CH₃CN, 85 °C, overnight.

[b] Isolated yield. Determined by NMR.

Table 6. The results of synthesizing other pyridinium salts.

Reference

(a) N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.*, 1979, **20**, 3437–3440; (b)
 N. Miyaura, A. Suzuki, *Chem. Commun.*, 1979, **19**, 866-867; (c) N. Miyaura, A. Suzuki,
 Chem. Rev., 1995, **95**, 2457-2483; (d) A. Suzuki, *J. Organomet. Chem.*, **576**, 147-168.

CHAPTER 3 ASYMMETRIC REDUCTIVE TRANSAMINATION

3.1 Introduction

Chapter 1 presented asymmetric hydrogenation of pyridines, especially about how to synthesize chiral piperidines. In this chapter a brief introduction about asymmetric transamination and synthesizing chiral piperidines via the transamination method will be given .

Asymmetric transamination usually is used in the keto acids to generate amino acids.¹ In this process, an enzyme plays a crucial role in the transamination. Keto acids are combined with PMP *via* asymmetric [1,3]-hydrogen shift to generate PLP and vice verse (Scheme 29).²

Scheme 29. Biological transamination of keto acids.

3.2 Metal and metal-free methods in transamination

3.2.1 Metal catalysts in transamination

Apart from transaminases, metal catalysts have been used in this area to generate amino acids and derivatives (Scheme 30).

Scheme 30. Chiral catalysts for transamination.

In 1952, Snell and co-workers showed that Mn^{2+} could catalyze this reaction (Scheme 31).³

Scheme 31. Metal catalyst for transamination at the first time.

Chiral amino acids were first time synthesized by Kuzuhara in 1978, with ee up to 90% (Scheme 32).⁴

Scheme 32. Chiral amino compounds were used to synthesize chiral amine.

Breslow and co-workers synthesized many pyridoxamine derivatives as nitrogen source to realize asymmetric transamination (Scheme 33).⁵⁻¹³

Scheme 33. Pyridoxamine derivatives for transamination.

Breslow and co-workers found that $Zn(OAc)_2$ could catalyze this reaction and tried to explain the mechanism in 1986⁵⁻⁶ (Scheme 34).

Scheme 34. Suggested mechanism of transamination by Breslow.

3.2.2 Metal-free transamination

In 1994, Soloshonok and co-workers reported transamination of ketoesters and the ee was up to 36% (Scheme 35).¹⁴

Scheme 35. Transamination of keto ester to obtain chiral amine.

In 2011, a big breakthrough was realized by the Shi group and they obtained for the first time an ee over 90% using o-ClPhCH₂NH₂ as nitrogen source. However, the yield was just 47-71% (Scheme 36).¹⁵

Scheme 36. An ee of over 90% was realized by Shi and co-workers.

In 2016, Zhao and co-workers discovered a new class of ligand to accomplish transamination, which gave a variety of optically active amines in 67-99% yields with 83-94% ee (Scheme 37).¹⁶

Scheme 37. Using ligand for transamination by Zhao and co-workers.

A new type of novel chiral pyridoxamines was developed by Zhao and co-workers in biomimetic asymmetric transamination of keto acids to give 47-90% yields and up to 87% ee under mild conditions (Scheme 38).¹⁷

Scheme 38. Zhao and co-workers investigated a new class of ligands to catalyse transamination.

3.3 Synthesis of chiral piperidines

3.3.1 Introduction

In summary, much research has been done in AH area by many chemists. However, high hydrogen pressure was needed, hindering synthesis of chiral piperidines. Dr Jianjun Wu of our group developed a new method to synthesize chiral piperidines without using hydrogen gas (Scheme 39).

Scheme 39. Synthesis of chiral piperidines without hydrogen.

3.3.2 Synthesis of 2-arylpiperidines

Following Wu's method, (R)-(α)-methylbenzylamine was used to carry out the asymmetric transamination to produce the chiral piperidines. Formic acid as the H source replaces H₂. In the ¹H NMR spectra, each isolated product only showed one isomer, suggesting dr > 99/1 for the transamination reaction (Scheme 40).

The isolated yield for each compound is given (Table 6).

2	7b	N Ph	15%(48h)
3	7c	N Ph	86%
4	7d	F N Dh	64%
5	7e		64%
6	7f	N Ph NO ₂	73%
7	7g	N Ph	67%
8	7h		80%
9	7i		74%
10	7j		65%
11	7k	N Ph	78%
12	71	OMe N Ph	trace

[a] Reaction conditions: 0.5 mmol 6a-h, 5 mmol methylbenzylamine,
 0.005 mmol [RhCp*Cl₂]₂, 12 mmol HCOOH, 3.75 ml DCM, 0.25 ml H₂O. [b] Isolated yield.
 Table 7. Synthesis of 2-phenylpiperidines.

3.3.3 Synthesis of chiral 2 or 3- alkylpiperidines

[RhCp*Cl₂]₂ was used as catalyst to synthesize chiral piperidines with formic acid as

hydrogen source at 40 °C for 24 h (Scheme 41).

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	9a		72%
2	9b		61%
3	9c	NHBoc Ph	30%
4	9d		75%

Scheme 41. Chiral piperidines were synthesized without H₂.

[a] Reaction conditions: 0.5 mmol 6a-h, 5 mmol methylbenzylamine,
0.005 mmol [RhCp*Cl₂]₂, 12 mmol HCOOH, 3.75 ml DCM, 0.25 ml H₂O.
[b] Isolated yield.

Table 8. Synthesis of chiral 2 or 3- alkylpiperidines

After synthesizing of 2-substituented chiral piperidines, the 2 or 3- alkylpiperidines

were synthesized. However, 9c were in just got 30% yield.

3.3.4 Different amines

Different amines were used to synthesize chiral and achiral piperidines with formic

acid as hydrogen source at 40 °C for 24 h (Scheme 42).

Scheme 42. Different amines were introduced

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	11a		60%
2	11b		91%
3	11c		90%
4	11d	N N N Ph	77%
5	11e	N Ph N Ph	53%

[a] Reaction conditions: 0.5 mmol 6a-h, 5 mmol methylbenzylamine,
0.005 mmol [RhCp*Cl₂]₂, 12 mmol HCOOH, 3.75 ml DCM, 0.25 ml H₂O.
[b] Isolated yield.

 Table 9. Different amines were introduced in this reaction.

3.4 Discussion

This study provides a new development in the synthesis of chiral piperidines.

New chiral piperidines were synthesized without hydrogenation. However, there are

still some restrictions.

We can see that this method is not tolerate for all groups. The same results we got as the previous many chemists did show that the method is more suitable for 2-arylpyridinium salts compared with 2-alkylpyridinium or 3-alkylpyridinium salts.

Even in this conditions, steric effect still impedes its development, such as **7b** with lower yield than **7c** even in a long reaction time (Table 10 and 11).

The bulky group such as methyl or methoxy group (Entry 2, 3) in the 2-position of the benzene ring will give lower yield than a smaller group (Entry 1, 4) even in a long reaction time (Table 11).

Entry	Structure	Yield
1	Ph 7b	85%
2	Ph 7c	15% (48h)
3	OMe N Ph	trace
4	Ph	64%

Table 10. Different groups in the same position.

Table 10 illustrates that the yields with methyl group in the 2 or 4 position are very different. Even at a prolonged reaction time, the yields still have big difference (Table 11). From Table 9 and 10, this study shows that the steric effect is an important factor for yield.

Entry	Structure	Yield
1	N Ph	15% (48h)
2	N Ph	86%

Table 11. The same group in the different positions.

Electronic effect is an another factor to affect the application of this method. In the synthesis of chiral 2 or 3-alkylpiperidines, only electron donating substituents afforded products. It means that this method is not suitable for electron withdrawing substituents in the 2 or 3 positions (Table 12). In addition, vinyl and alkynyl substituents also inhibited the reaction.

Entry	Structure	Yield
1	N Ph	72%
2	Ph	61%
3	N CN Ph	Not detected
4		Not detected

Table 12. Different groups in the piperidine ring.

From the results, we can see that the electron withdrawing substituents such as nitrile and ester group in the pyridine ring are detrimental in this reaction system. (Table 13).

Table 13. The methyl group in the different group.

Based on the above facts, we know that benzene group in the 2nd position without a big substituent is the best substrate in this system. So the benzene group in the 2nd position and the methyl group in the 3rd position were tried. However, the transamination process did not occur. The interesting thing was found that hydrogenation product was produced as the major product. Clearly, hydrogenation occurd instead of asymmetric transamination (Table 13). After that, we tried different amines in this reaction system and found that most amines were tolerated in this system. That means that this system can be used for the synthesis of compounds for potential treatment of epilepsy¹⁸.

Entry	Prod. ^[a]	Structure	Yield ^[b]
1	11a		60%
2	11b		91%
3	11c		90%
4	11d	N N N Ph	77%
5	11e	N Ph N Ph	53%

Table 9. Different amines were introduced in this reaction.

Method A (1) 1% Pd/C, 1 atm H₂, EtOH, 6N HCl, 65 ^OC, 16 h
(2) 1 eq. Boc₂O, 1.5 eq. NEt₃, CH₂Cl₂, rt, 2 h
Method B 1eq. Boc₂O, 1 mol% Pd(OH)₂/C, EtOAc, 15 atm H₂, rt, 16 h, one-pot

Scheme 24. Derivatization of asymmetric reductive transamination

Dr Wu in our group did this reaction. From this reaction, we can see that these products have stereochemistry. And also, we can find that in the crude NMR.

C19H23N, M = 265.38, orthorhombic, space group P212121 (no. 19), a = 7.8158(6) Å, b = 10.3447(7) Å, c = 18.8075(14) Å, V = 1520.63(19) Å3, Z = 4, T = 100.0 K, μ (Mo k α) = 0.499 mm-1, Dcalc = 1.159 g/mm3, 13955 reflections measured (9.4 $\leq 2 \Theta \leq$ 149.24), 3073 unique (Rint = 0.0281) which were used in all calculations. The final R1 was 0.0305 (>2sigma(I)) and wR2 was 0.0776 (all data).

3.5 Conclusions and Perspectives

In summary, this thesis describes the efforts made to tackle synthesizing chiral piperidines using asymmetric transfer hydrogenation. From the previous chapters,

we can see that problems were identified in the area of synthesis of chiral piperidines, although a number of chiral piperidines had been synthesized.

To compare this work with those of previous chemists, the advantage is very clear. Using formic acid to replace hydrogen gas which is safer, operationally simpler and more versatile. In addition to 2-substituented piperidines, we also investigated the methyl group in the 3rd position which did not appear in previous work.

However, the limitation of this method is that it does not have broad substrate scope. There are two major factors for this. One is steric effect (Table 9 and 10) and another is electronic effect (Table 11).

In the future, the 3-substituented chiral piperidines could be realized. To accomplish this target, a new catalyst would be developed in this system. From others' previous work, it can be seen that iridium catalysts can work in the synthesis of chiral piperidines. So the iridium catalysis could be studied in the future.

References

 (a) D. Zhu, L. Hua, *Biotechnol. J.*, 2009, **4**, 1420-1431; (b) J. Ward, R. Wohlgemuth, *Curr. Org. Chem.*, 2010, **14**, 1914-1927; (c) A. E. Martell, *Account Chem. Res.*, 1989, **22**, 115-124; (d) R. Breslow, *Account Chem. Res.*, 1995, **28**, 146-153; (e) Y. Murakami, J. Kikuchi, Y. Hisaeda, O. Hayashida, *Chem. Rev.*, 1996, **96**, 721-758; (f) J. Han, A. E. Sorochinsky, T. Ono, V. A. Soloshonok, *Curr. Org. Synth.*, 2011, **8**, 281; (g) E. Arceo, P. Melchiorre, *Chem. Cat. Chem.*, 2012, **4**, 459-461.

2. Y. Xie, H. Pan, M. Liu, X. Xiao, Y. Shi, Chem. Soc. Rev., 2015, 44, 1740-1748.

3. D. E. Metzler, E. E. Snell, J. Am. Chem. Soc., 1952, 4, 979-983.

4. (a) K. Bernauer, R. Deschenaux, T. Taura, *Helvetica*, 1983, **66**, 2049-2058. (b) R. Deschenaux, K. Bernauer, *Helvetica*, **67**, 373-377.

5. S. C. Zimmerman, R. Breslow, J. Am. Chem. Soc., 1984, 106, 1490-1491.

6. R. Breslow, A. W. Czarnik, M. Lauer, R. Leppkes, J. Winkler, S. Zimmerman, *J. Am. Chem. Soc.*, 1986, **108**, 1969-1979.

7. R. Breslow, M. Hammond, M. Lauer, J. Am. Chem. Soc., 102, 421-422.

8. R. Breslow, A. W. Czarnik, J. Am. Chem. Soc., 105, 1390-1391.

9. R. Breslow, J. Chmielewski, D. Foley, B. Johnson, N. Kumabe, M. Varney, R. Mehra, *Tetrahedron*, 1988, **44**, 5515-5524.

10. B. Ronald, Pure Appl. Chem., 1990, 62, 1859-1866.

R. Breslow, J. W. Canary, M. Varney, S. T. Waddell, D. Yang, J. Am. Chem. Soc.,
 112, 5212-5219.

12. I. Tabushi, Y. Kuroda, M. Yamada, H. Higashimura, R. Breslow, *J. Am. Chem. Soc.*, 1985, **107**, 5545-5546.

13. J. Winkler, E. Coutouli-Argyropoulou, R. Leppkes, R. Breslow, *J. Am. Chem. Soc.*, 1983, **105**, 7198-7199.

14. (a) V. A. Soloshonok, T. Ono, *J. Org. Chem.*, 1997, **62**, 3030-3031; (b) V. A. Soloshonok, A. G. Kirilenko, S. V. Galushko, V. P. Kukhar, *Tetrahedron Lett.*, 1994, 5063-5064.

15. (a) X. Xiao, Y. Xie, C. Su, M. Liu, Y. Shi, J. Am. Chem. Soc., 2011, 133, 12914-12917.
(b) X. Xiao, M. Liu, C. Rong, F. Xue, S. Li, Y. Xie, Y. Shi, Org. Lett., 2012, 14, 5270-5273.
(c) Y. Xie, H. Pan, X. Xiao, S. Lia, Y. Shi, Org. Biomol. Chem., 2012, 10, 8960-8962. (d) F. Xue, X. Xiao, H. Wang, Y. Shi, Tetrahedron, 2012, 68, 6862-6867. (e) M. Liu, J. Li, X. Xiao, Y. Xie, Y. Shi, Chem. Commun., 2013, 49, 1404-1406. (f) H. Pan, Y. Xie, M. Liu, Y. Shi, RSC Adv., 2014, 4, 2389-2392. (g) C. Su, Y. Xie, H. Pan, M. Liu, H. Tian, Y. Shi, Org. Biomol. Chem., 2014, 12, 5856-5860. (h) Y. Xie, H. Pan, M. Liu, X. Xiao, Y. Shi, Chem. Soc. Rev., 44, 1740-1748. (i) C. Rong, H. Pan, M. Liu, H. Tian, Y. Shi, Chem. Eur. J., 2016, 22, 2887-2891.

(a) Y. E. Liu, Z. Lu, B. Li, J. Tian, F. Liu, J. Zhao, C. Hou, Y. Li, L. Niu, B. Zhao, J. Am. Chem. Soc., 2016, 138, 10730-10733. (b) J. Chen, J. Zhao, X. Gong, D. Xu , B. Zhao, Tetrahedron Lett., 2016, 57, 4612-4615.

17. X. Lan, C. Tao, X. Liu, A. Zhang, B. Zhao, Org. Lett., 2016, 18, 3658-3661.

18. O'Hagan, D. Pyrrole, Nat. Prod. Rep., 2000, 17, 435-446.

CHAPTER 4 EXPERIMENTAL

4.1 Introduction

Unless otherwise specified, the chemicals were obtained commercially from Aldrich, Alfa Aesar, Apollo Scientific or TCI and used without further purification. Silica gel plates (GF254) were used for TLC monitoring and silica gel (230-400 mesh) was used for running column chromatography. NMR spectra were recorded on a Bruker 400 MHz NMR spectrometer with TMS as the internal standard. The mass spectra were obtained by chemical ionization (CI) or electrospray ionization (ESI).

4.2 Experimental details

4.2.1 Synthetic procedure for 2-arylpyridines¹

To a solution of arylboronic acid (2.6 mmol) in toluene (7 ml), ethanol (1.5 ml), water (7 ml) and Na₂CO₃ (1.6 g, 15 mmol) were added sequentially Pd(PPh₃)₄ (0.069 g, 0.060 mmol) and 2-bromopyridine (2.0 mmol) under N₂ in a two-necked flask. The reaction mixture was refluxed at 80 °C for 18 h. After the reaction, NH₄Cl (15 ml) was added followed by extracting with EtOAc (30 ml) three times, and the solution was dried over Na₂SO₄ and evaporated in vacuum to afford the crude product, which was purified by flash chromatography on silica gel with n-hexane/EtOAc (10:1) to give the corresponding aryl pyridine.

4.2.2 General procedure for synthesis of pyridinium salts

Pyridine (2.75 mmol) was mixed with iodoethane (13.75 mmol) and CH_3CN (5 ml) in a flask. The mixture was refluxed at 85 °C overnight. After the reaction was cooled down, the solvent was removed in vacuum to get the pure product.

4.2.3 General Procedure for synthesis of chiral piperidine

To a flask containing a magnetic stirring bar and (R)-(α)-methylbenzylamine (0.636 ml, 5 mmol) was added formic acid (0.5525 g, 12 mmol) dropwise at room

temperature for 10 min. Pyridinium salt (0.5 mmol), [RhCp*Cl₂]₂ (3.1 mg, 5 µmol), 3.75 mL of CH₂Cl₂ and 0.25 mL of distilled H₂O were introduced into the mixture. The reaction system was placed in a carousel reactor. The mixture was stirred at 40 °C for 22 h, cooled to room temperature and then basified with an aqueous solution of KOH. The final mixture was extracted with ethyl acetate (3 × 10 mL) and dried over Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by column chromatography (EtOAc/hexane) to obtain the desired product.

4.3 Analytic data

4.3.1 Assigned peaks

From NMR, we can see that 7.4-7.0 belongs to phenyl group, chemical shift 3.7 belongs to 7, 3.4 belongs to 4, 1.0 belongs to 8, and others belongs to piperidine ring.

The peak 145 belongs to 9, 144 belongs to 15, 128-126 belongs to phenyl group, 65 belongs to 4, 54 belongs to 7, 8 belongs to methyl group, and others belongs to piperidine ring.

8.7 belongs to 8, 7.8 belongs to 2, 3.8 belongs to methyl group and others belongs to

phenyl group.

4.83 belongs to 13, 2.47 belongs to 15, 1.5 belongs to 14, 8.5and adjacent peaks belongs to pyridine ring, and 7.5 belongs to phenyl group. Because different substituents are changed, the NMR spectrum are similar.

4.3.2 Analytic data of 2-arylpyridine

2-Phenylpyridine, colorless oil². Yield : 97%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.67 (d, J = 4.8 Hz, 1H), 7.99 – 7.97(m, 2H), 7.68 –

7.66 (m, 2H), 7.47 - 7.37 (m, 3H), 7.18 - 7.14 (m, 1H);

N 3-(o-Tolyl)pyridine, yellow oil³. Yield: 100% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.69 (d, J = 5.0 Hz, 1H), 7.73 (td, J = 7.7, 1.9 Hz, 1H), 7.39 (d, J = 7.3 Hz, 2H), 7.26 (m, 4H), 2.36 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 160.0, 149.2, 140.4, 136.1, 135.7, 130.7, 129.6,

128.2, 125.8, 124.1, 121.6, 20.2.

2-(2-Fluorophenyl)pyridine, yellow oil⁴. Yield: 100% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.73 (d, J = 4.8 Hz, 1 H), 7.98 (td, J = 7.9, 1.9 Hz, 1 H), 7.79 (ddt, J = 8.0, 2.5, 1.3 Hz, 1 H), 7.75 (td, J = 7.9, 7.5, 1.8 Hz, 1 H), 7.38 (ddd, J = 15.2, 5.0, 1.9 Hz, 1 H), 7.30–7.23 (m, 2 H), 7.16 (ddd, J = 11.4, 8.2, 1.2 Hz, 1 H).

3-(4-Fluorophenyl)pyridine, yellow solid⁵. Yield: 75% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.73 (d, J = 4.8 Hz, 1H), 7.97 (td, J = 8, 2 Hz, 1H), 7.78 (m, 2H), 7.38 (m, 1H), 7.26 (m, 2H), 7.16 (td, J = 9.2, 1.2 Hz, 1H).

NO₂

2-(4-Nitrophenyl)pyridine, yellow solid⁶. Yield: 74% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.75 (dt, J = 4.8, 1.2 Hz, 1H), 8.32 (dt, J = 9.2, 2.6 Hz, 2H), 8.19 (dt, J = 8.8, 2 Hz, 2H), 7.82 (m, 2H), 7.34 (m, 1H).

1-(4-(Pyridin-2-yl)phenyl)ethan-1-one, yellow solid⁷. Yield : 100%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.73 (d, J = 4.8 Hz, 1H), 8.11-8.04 (m, 4H),

7.79-7.77 (m, 2H), 7.30-7.26 (m, 1H), 2.65 (s, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 206.9, 197.8, 156.1, 149.9, 148.5, 137.1, 136.9, 128.8, 127.0, 122.9, 121.0, 30.9, 26.7.

3-(3,5-Difluorophenyl)pyridine, orange solid⁸. Yield: 80% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.70 (dq, J = 4.8, 0.8 Hz, 1H), 7.79 (td, J = 7.6, 1.6 Hz, 1H), 7.70 (dt, J = 8, 0.8 Hz, 1H), 7.5 (m, 2H), 7.30 (td, J = 6.8, 1.2 Hz, 1H), 6.86 (tt, J = 8.4, 2.4 Hz, 1H).

Ethyl 3-(pyridin-2-yl)benzoate, colorless oil⁹. Yield: 85% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.73 (tt, J = 4.8, 1.2 Hz, 1H), 8.64 (t, J = 1.6 Hz, 1H), 8.25 (dt, J = 8, 1.6 Hz, 1H), 8.12 (dt, J = 7.6, 1.2 Hz, 1H), 7.80 (m, 2H), 7.56(t, J = 7.6 Hz, 1H), 7.29 (m, 1H), 4.44 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H).

2-(2-Methoxyphenyl)pyridine, yellow oil¹⁰. Yield: 95%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.71 (dq, J = 4.8, 1.2 Hz, 1H), 7.80 (d, J = 8 Hz, 1H), 7.77 (dd, J = 7.6, 2 Hz, 1H), 7.70 (td, J = 7.6, 2 Hz, 1H), 7.38 (td, J = 8, 1.6 Hz, 1H), 7.20 (td, J = 4.8, 1.2 Hz, 1H), 7.10 (td, J = 7.2, 0.8 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 3.86 (s, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 156.9, 156.1, 149.4, 135.5, 131.5, 129.8, 129.1,
125.0, 121.6, 121.0, 111.3, 55.6.

3-Methyl-2-phenylpyridine, yellow oil¹¹. Yield: 86% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.53 (dd, J = 5.2, 0.8 Hz, 1H), 7.57 (dd, J = 7.6, 0.8 Hz, 1H), 7.54 (m, 2H), 7.47 (m, 2H), 7.37 (m,1H) 7.17 (q, J = 4.8 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 158.7, 146.9, 140.6, 138.4, 130.7, 128.9, 128.1, 127.8, 122.0, 20.0.

Methyl 2-phenylnicotinate, red oil¹². Yield: 57% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.79 (dd, J = 4.8, 1.6 Hz, 1H), 8.11 (dd, J = 7.6, 1.6 Hz, 1H), 7.54 (m, 2H), 7.44 (m, 3H), 7.34 (q, J = 4.8 Hz, 1H), 3.7 (s, 3H) ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 168.5, 158.8, 151.3, 140.0, 137.8, 128.7, 128.4, 128.1, 126.9, 121.5, 52.3.

4-Methyl-2-phenylpyridine, white solid¹³. Yield: 92% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.55 (dd, J = 5.0, 0.8 Hz, 1H), 8.02 (m, 2H), 7.54 (dq, J = 1.6, 0.8 Hz, 1H), 7.50 (m, 2H), 7.43 (m, 1H), 7.04 (ddt, J = 5.0, 1.4, 0.7 Hz, 1H), 2.40 (d, J = 0.8 Hz, 3H).

Tert-butyl (2-(pyridin-2-yl)ethyl)carbamate, white solid¹⁴. Yield: 100%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.54 (dd, J = 4.8, 0.4 Hz, 1H), 7.62 (td, J = 7.6, 1.6 Hz, 1H), 7.15 (m, 2H), 5.12 (s, 1H), 3.5 (m, 2H), 2.97 (t, J = 6.4 Hz, 2H), 1.43 (s, 9H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 156.09, 151.94, 149.47, 146.11, 136.61, 123.57, 121.59, 40.46, 38.02, 33.16, 28.56.

4.3.3 Analytic data of 2 or 3-arylpyridinium salts

1-Ethyl-2-phenylpyridin-1-ium,¹⁵ orange solid. Yield: 92% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 8.70 (dt, *J* = 4.8, 1.6 Hz, 1H), 8.00 (d, *J* = 7.2 Hz, 2H), 7.80-7.77 (m, 2H), 7.50 (td, *J* = 6.8, 1.6 Hz, 2H), 7.43 (tt, *J* = 7.2, 1.6 Hz, 1H), 7.22 (td, *J* = 6.0, 2.4 Hz, 1H).

Ethyl-2-(p-tolyl)pyridin-1-ium, orange solid. Yield: 97%

¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.80 (d, *J* = 6.4 Hz, 1H), 8.60 (td, *J* = 8, 1.6 Hz, 1H), 8.25 (td, *J* = 6.4, 1.6 Hz, 1H), 7.84 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.46 (t, *J* = 8 Hz, 4H), 4.85 (t, *J* = 7.6 Hz, 2H), 2.50 (s, 3H), 1.53 (t, *J* = 7.2 Hz, 3H).

Ethyl-2-(o-tolyl)pyridin-1-ium, yellow solid. Yield: 95% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 10.00 (d, *J* = 6.4 Hz, 1H), 8.63 (td, *J* = 8, 1.6 Hz, 1H), 8.33 (t, *J* = 6.4 Hz, 1H), 7.81 (dd,*J* = 8, 1.6 Hz, 1H), 7.57 (td, *J* = 7.2, 2 Hz, 1H), 7.45-7.39 (m, 3H), 4.94-4.88 (m, 1H), 4.52-4.47 (m, 1H), 2.17 (s, 3H), 1.53 (t, *J* = 7.2 Hz, 3H).

Ethyl-2-(2-fluorophenyl)pyridin-1-ium, red solid. Yield: 94% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.92 (dd, *J* = 6, 0.8 Hz, 1H), 8.62 (td, *J* = 7.6, 1.2 Hz, 1H), 8.35 (t, *J* = 7.2 Hz, 1H), 7.91 (dd, *J* = 8, 1.2 Hz, 1H), 7.80 (td, *J* = 7.6, 1.6 Hz, 1H), 7.77-7.67 (m, 1H), 7.46 (td, *J* = 7.6, 0.8 Hz, 1H), 7.34 (t, *J* = 9.2 Hz, 1H), 4.75 (m, 2H), 1.57 (t, *J* = 7.6 Hz, 3H).

1-Ethyl-2-(4-fluorophenyl)pyridin-1-ium, yellow solid. Yield: 95%

¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.71 (dd, *J* = 6, 1.2 Hz, 1H), 8.58 (td, *J* = 7.6, 1.2 Hz, 1H), 8.25 (td, *J* = 6.8, 1.6 Hz, 1H), 7.85 (dd, *J* = 8, 1.6 Hz, 1H), 7.75 (m, 2H), 7.30 (t, *J* = 8.4 Hz, 2H), 4.81 (q, *J* = 7.2 Hz, 2H), 1.56 (t, *J* = 7.2 Hz, 3H).

1-Ethyl-2-(4-nitrophenyl)pyridin-1-ium, yellow solid. Yield: 96% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.67 (dd, *J* = 6, 1.2 Hz, 1H), 8.58 (td, *J* = 8, 1.2 Hz, 1H), 8.49 (dm, *J* = 8.8 Hz, 2H), 8.31 (td, *J* = 6, 1.6 Hz, 1H), 8.05 (d, *J* = 8.8 Hz, 2H), 7.90 (dd, *J* = 8, 1.6 Hz, 1H), 4.78 (q, *J* = 7.2 Hz, 2H), 1.57 (t, *J* = 7.6 Hz, 3H).

2-(3,5-Difluorophenyl)-1-ethylpyridin-1-ium, white solid. Yield: 98% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.73 (dd, *J* = 6, 1.2 Hz, 1H), 8.64 (td, *J* = 7.6, 1.2 Hz, 1H), 8.36 (td, *J* = 6.8, 1.6 Hz, 1H), 7.91 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.33 (m, 2H), 7.13 (tt, *J* = 8.8, 2.4 Hz,1H), 4.79 (q, *J* = 7.2 Hz, 2H), 1.61 (t, *J* = 7.2 Hz, 3H).

(4-Acetylphenyl)-1-ethylpyridin-1-ium, brown solid. Yield: 97%
¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.75 (dd, J = 6.4, 1.2 Hz, 1H), 8.64 (td, J = 8, 1.6 Hz, 1H), 8.31 (td, J = 10.8, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz, 1H), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz), 8.20 (d, J = 8.4 Hz, 2H), 7.91 (dd, J = 7.6, 1.6 Hz), 9.20 (d, J = 8.4 Hz),

1H), 7.89 (d, *J* = 8.8 Hz, 2H), 4.80 (q, *J* = 7.2 Hz, 2H), 2.70 (s, 3H), 1.57 (t, *J* = 7.2 Hz, 3H).

1-Ethyl-2-(2-methoxyphenyl)pyridin-1-ium, yellow solid. Yield: 98% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.96 (dd, *J* = 6, 0.8 Hz, 1H), 8.64 (td, *J* = 7.6, 1.2 Hz, 1H), 8.28 (td, *J* = 6.8, 1.6 Hz, 1H), 7.82 (dd, *J* = 8, 1.2 Hz, 1H), 7.64 (td, *J* = 8, 1.6 Hz, 1H), 7.43 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.22 (td, *J* = 7.6, 0.8 Hz, 1H), 7.18 (d, *J* = 0.4 Hz, 1H), 4.84-4.79 (m, 1H), 4.61-4.56 (m, 1H), 3.84 (s, 3H), 1.50 (t, *J* = 7.2 Hz, 3H).

2-(3-(Ethoxycarbonyl)phenyl)-1-ethylpyridin-1-ium, yellow solid. Yield: 97% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.85 (dd, *J* = 6.2, 0.8 Hz, 1H), 8.59 (td, *J* = 7.6, 1.2 Hz, 1H), 8.32 (dt, *J* = 8, 1.2 Hz, 1H), 8.28 (td, *J* = 6.8, 1.6 Hz, 1H), 8.16 (t, *J* = 1.6 Hz, 1H), 8.01 (dt, *J* = 8, 1.2 Hz, 1H), 7.88 (dd, *J* = 8, 1.6 Hz, 1H), 7.79 (td, *J* = 8, 0.8 Hz, 1H), 4.85 (q, *J* = 7.2 Hz, 2H), 4.46 (q, *J* = 7.2 Hz, 2H), 1.57 (t, *J* = 7.2 Hz, 3H), 1.44 (t, *J* = 7.2 Hz, 3H).

Ethyl-3-(methoxycarbonyl)-2-phenylpyridin-1-ium, orange solid. Yield: 90%
¹HNMR (400 MHz, CDCl₃) δ (ppm): 10.12 (dd, *J* = 6, 1.2 Hz, 1H), 8.92 (td, *J* = 8, 1.6 Hz, 1H), 8.45 (t, *J* = 7 Hz, 1H), 7.61-7.52 (m, 3H), 7.50-7.40 (m, 2H), 4.78 (q, *J* = 7.2 Hz, 2H), 3.65 (s, 3H), 1.56 (t, *J* = 7.2 Hz, 3H).

1-Ethyl-3-methyl-2-phenylpyridin-1-ium, orange solid. Yield: 80% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.64 (d, *J* = 6.4 Hz, 1H), 8.39 (d, *J* = 8 Hz, 1H), 8.16 (t, *J* = 6.8 Hz, 1H), 7.67 (t, *J* = 3.2 Hz, 3H), 7.49 (m, 2H), 4.64 (q, *J* = 7.2 Hz, 2H), 2.23 (s, 3H), 1.51 (t, *J* = 7.2 Hz, 3H).

Ethyl-2-isopropylpyridin-1-ium, red solid. Yield: 100% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.63 (dd, *J* = 6, 1.2 Hz, 1H), 8.55 (td, *J* = 8, 1.6 Hz, 1H), 8.00-7.96 (m, 2H), 5.01 (q, *J* = 7.2 Hz, 2H), 3.57 (m, 1H), 1.68 (t, *J* = 7.2 Hz, 3H), 1.48 (d, *J* = 6.8 Hz, 6H).

1-Ethyl-2,3-dimethylpyridin-1-ium, brown solid. Yield: 92% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.34 (d, *J* = 6 Hz, 1H), 8.23 (d, *J* = 7.6 Hz, 1H), 7.85 (t, *J* = 6.8 Hz, 1H), 4.96 (q, *J* = 7.2 Hz, 2H), 2.88 (s, 3H), 2.57 (s, 3H), 1.66 (t, *J* = 7.2 Hz, 3H).

2-(2-((Tert-butoxycarbonyl)amino)ethyl)-1-ethylpyridin-1-ium, white solid. Yield: 98% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.32 (d, J = 6 Hz, 1H), 8.41 (t, J = 8.8 Hz, 1H), 8.14 (d, J = 8 Hz, 1H), 8.0 (t, J = 7.6 Hz, 1H), 5.87 (t, J = 6 Hz, 1H), 4.97 (q, J = 7.2 Hz, 2H), 3.68 (q, J = 6.8 Hz, 2H), 3.54 (m, 2H), 1.71 (t, J = 7.2 Hz, 3H), 1.36 (s, 9H).

1-Ethyl-[2,2'-bipyridin]-1-ium, yellow solid. Yield: 72% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.74 (dd, J = 6.4, 1.2 Hz, 1H), 8.81 (dt, J = 4.8, 1.2 Hz, 1H), 8.72 (td, J = 8, 1.2 Hz, 1H), 8.31 (t, J = 6.4 Hz, 1H), 8.12 (dd, J = 8, 1.2 Hz, 1H), 8.07 (m, 2H), 7.60 (m, 1H), 4.92 (q, J = 7.2 Hz, 2H), 1.64 (t, J = 7.2 Hz, 3H).

2,2'-(Propane-1,3-diyl)bis(1-ethylpyridin-1-ium, yellow solid. Yield: 82% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.08 (dd, J = 6.4, 1.2 Hz, 2H), 8.55 (td, J = 7.6, 1.2 Hz, 2H), 8.17 (dd, J = 8, 1.2 Hz, 2H), 8.03 (t, J = 6 Hz, 2H), 4.69 (q, J = 7.2 Hz, 4H), 3.36 (m, 6H), 2.50 (t, J = 1.6 Hz, 2H), 1.53 (t, J = 7.2 Hz, 6H).

1-Ethyl-3-phenylpyridin-1-ium, orange solid. Yield: 82%

¹HNMR (400 MHz, CDCl₃) δ (ppm): 9.47 (s, 1H), 9.32 (d, J = 6.0 Hz, 1H), 8.61 (dt, J = 8.4, 1.2 Hz, 1H), 8.16 (t, J = 6.8 Hz, 1H), 7.88 (m, 2H), 7.56 (m, 3H), 5.18 (q, J = 7.6 Hz, 2H), 1.74 (t, J = 7.2 Hz, 3H).

4.3.4 Analytic data of chiral piperidines

(S)-2-phenyl-1-((R)-1-phenylethyl)piperidine, white oil. Yield: 85% ¹HNMR (400 MHz, CDCl₃) δ (ppm): 7.50-7.42 (m, 4H), 7.32-7.25 (m, 4H), 7.22-7.14 (m, 2H), 3.85 (q, J = 6.8 Hz, 1H), 3.51 (dd, J = 10.4, 2.8 Hz, 1H), 2.57 (d, J = 11.2 Hz, 1H), 2.22 (td, J = 11.6, 2.8 Hz, 1H), 1.85-1.75 (m,2H), 1.70-1.60 (m,1H), 1.53-1.25(m, 3H), 1.15 (d, J = 6.8 Hz, 3H); ¹³C NMAP (400 MHz, CDCL) δ (ppm): 145.4, 144.0, 128.0, 128.2, 128.0, 127.2, 126.5

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 145.4, 144.9, 128.9,128.2,128.0, 127.3, 126.5, 66.0, 55.4, 45.6, 37.6, 26.7, 26.1, 8.55;

HRMS (ESI) $_{m/z}$ [M+H]⁺ calcd for C₁₉H₂₃N: 266.1903; found: 266.1908

(S)-1-((R)-1-phenylethyl)-2-(o-tolyl)piperidine, red oil. Yield: 15% (48h)
¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.77 (s, 1H), 7.47 (d, J = 8.0 Hz, 2H), 7.31 (t, J = 7.6 Hz, 2H), 7.21 (m, 2H) 7.13 (m, 2H), 3.90 (q, J = 6.8 Hz, 1H), 3.80 (d, J = 10.8 Hz, 1H),
2.62 (d, J = 10.8, 1H), 2.44 (s, 3H), 2.24 (td, J = 11.6, 2.8 Hz, 1H), 1.77 (t, J = 16 Hz, 2H),
1.52 - 1.28 (m, 4H), 1.15 (d, J = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 127.6, 127.3, 125.8, 45.2, 26.2, 25.6, 19.4

HRMS (ESI) m/z [M+H]⁺ calcd for C₂₀H₂₅N: 280.206; found: 280.2065

(S)-1-((R)-1-phenylethyl)-2-(p-tolyl)piperidine, brown oil. Yield: 86% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.36 (d, *J* = 7.6 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 7.2 Hz, 2H), 7.08-7.03 (m, 4H), 3.80 (d, *J* = 7.2 Hz, 1H), 3.40 (d, *J* = 10 Hz, 1H), 2.50 (d, *J* = 11.6 Hz, 1H), 2.3 (s, 3H), 2.17-2.10 (m, 1H), 1.70-1.61 (m, 3H), 1.48-1.45 (m, 2H), 1.27-1.23(m,1H) 1.10 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 143.8, 141.2, 135.4, 128.2, 126.7, 126.5, 126.4, 124.9, 64.2, 59.4, 53.8, 44.1, 36.2, 25.3, 24.6, 20.1, 20.0, 13.2, 7.0 HRMS (ESI) _{m/z} [M+H]⁺ calcd for C₂₀H₂₅N: 280.206; found: 280.2066

(S)-2-(2-fluorophenyl)-1-((R)-1-phenylethyl)piperidine, brown oil. Yield: 64% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.68 (td, *J* = 7.2, 2 Hz, 1H), 7.44 (d, *J* = 7.2 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.20-7.11 (m, 3H), 7.03 (t, *J* = 8 Hz, 1H), 4.0 (dd, *J* = 10.8, 2.8 Hz, 1H), 3.88 (q, *J* = 6.8, 1H), 2.58 (d, *J* = 11.2 Hz, 1H), 2.27 (td, *J* = 11.2, 2.4 Hz, 1H), 1.80 – 1.66 (m, 4H), 1.50-1.30 (m, 2H), 1.22 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 162.1, 159.7, 144.9, 131.9(d, J_{C-F} = 50.4 Hz),

129.6(d, $J_{C-F} = 18 \text{ Hz}$),128.4(d, $J_{C-F} = 33.2 \text{ Hz}$), 128.2, 127.9, 126.5, 124.9(d, $J_{C-F} = 13.6$

Hz), 116.0, 115.7,55.7, 45.7, 36.3, 26.6, 25.9, 8.88, 8.87

HRMS (ESI) _{m/z} [M+H]⁺ calcd for C₁₉H₂₂FN: 284.1809; found: 284.1811

(S)-2-(4-fluorophenyl)-1-((R)-1-phenylethyl)piperidine, brown oil. Yield: 64% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.44-7.39 (m, 4H), 7.27 (td, *J* = 7.2, 2 Hz, 2H) 7.17 (t, *J* = 7.6 Hz, 1H) 6.99 (t, *J* = 8.8 Hz, 2H) 3.79 (q, *J* = 6.8 Hz, 1H), 3.50 (dd, *J* = 10.8, 3.2 Hz, 1H), 2.56 (dt, *J* = 11.2, 1.6 Hz, 1H), 2.21 (td, *J* = 11.6, 2.8 Hz, 1H), 1.81(m, 2H), 1.62 (qd, *J* = 10.8, 3.6 Hz, 1H), 1.45 (qt, *J* = 12.4, 3.6 Hz, 1H) 1.32 (qt, *J* = 12.4, 3.6 Hz, 1H), 1.19 (d, *J* = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 161.9, 159.5, 143.4, 139.8, 127.8(d, J_{C-F} = 30.8 Hz), 126.7, 126.4, 125.1, 114.3(d, J_{C-F} = 84 Hz), 63.6, 53.8, 44.0, 36.2, 25.2, 24.5, 7.1 HRMS (ESI) _{m/z} [M+H]⁺ calcd for C₁₉H₂₂FN: 284.1809; found: 284.1812

(S)-2-(4-nitrophenyl)-1-((R)-1-phenylethyl)piperidine, yellow oil. Yield: 73% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.20 (dd, *J* = 7.2, 1.2 Hz, 2H), 7.66 (d, *J* = 8.8 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H) 7.30 (t, *J* = 7.6 Hz, 2H) 7.22 (tt, *J* = 7.2, 1.6 Hz, 1H), 3.72 (q, *J* = 6.8 Hz, 1H), 3.64 (dd, *J* = 10.8, 3.2 Hz, 1H), 2.61 (d, *J* = 11.6 Hz, 1H), 2.25 (td, *J* = 11.6, 2.8 Hz, 1H), 1.84 – 1.75 (m, 2H), 1.63-1.56 (m,3H) 1.48 (qt, *J* = 12.4, 3.6 Hz, 1H) 1.37 (qt, *J* = 12.8, 3.6 Hz,1H), 1.22 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 153.2, 147.0, 143.8, 128.2, 127.9, 127.3, 126.4, 123.9, 64.9, 55.6, 44.8, 37.1, 25.9, 25.2, 8.4

HRMS (ESI) $_{m/z}$ [M+H]⁺ calcd for C₁₉H₂₂N₂O₂: 311.1754; found: 311.176

(S)-2-(3,5-difluorophenyl)-1-((R)-1-phenylethyl)piperidine, brown oil. Yield: 67% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.44 (d, *J* = 8.4 Hz, 2H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.20 (t, *J* = 6.8 Hz, 1H), 7.02(dd, *J* = 8.4, 2.4 Hz, 2H), 6.66 (tt, *J* = 8.8, 2.4 Hz, 1H), 3.79 (q, *J*= 6.8 Hz, 1H), 3.52 (dd, *J* = 10.8, 2.8 Hz, 1H), 2.55 (dt, *J* = 11.6, 1.2 Hz, 1H), 2.20 (td, *J* = 2.8, 11.6 Hz, 1H), 1.80 – 1.75 (m, 2H), 1.64-1.56 (m, 2H), 1.46 (qt, *J* = 12.4, 3.6 Hz, 1H), 1.34 (qt, *J* = 12.4, 4 Hz, 1H), 1.21 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 164.4, 162.0, 161.9, 149.6, 144.0, 127.9 (d, *J*_{C-F} = 206.8 Hz), 126.3, 110.3, (d, *J*_{C-F} = 96.8 Hz), 102.3 (t, *J*_{C-F} = 101.2Hz), 64.9, 55.2, 44.8, 36.9, 25.9, 25.2, 8.3

HRMS (ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₉H₂₁F₂N: 302.1715; found: 302.1714

Ethyl 3-((S)-1-((R)-1-phenylethyl)piperidin-2-yl)benzoate, colorless oil. Yield: 80% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.14 (s, 1H), 7.92 (dt, *J* = 7.6, 1.6Hz, 1H), 7.70 (d, *J* = 7.6, 1H), 7.44 (d, *J* = 8 Hz, 2H), 7.39 (t, *J* = 8 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 4.39 (m, 2H), 3.77 (q, *J* = 6.8 Hz, 1H), 3.57 (dd, *J* = 10.8, 2.8 Hz, 1H), 2.57 (d, *J* = 11.2 Hz, 1H), 2.24 (td, *J* = 11.6, 2.8 Hz, 1H), 1.80 – 1.75 (m, 2H), 1.70-1.63 (m, 1H), 1.57-1.46 (m, 2H), 1.40 (t, *J* = 7.2Hz, 3H), 1.39-1.30 (m, 1H), 1.20 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 166.7, 145.7, 144.4, 131.9, 130.7, 128.7, 128.6, 128.2, 127.8, 127.8, 127.5, 126.1, 65.2, 60.9, 55.1, 44.9, 37.3, 26.2, 25.5, 14.4, 8.2 HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₂₂H₂₇NO₂: 338.2115; found: 338.2121

(S)-2-isopropyl-1-((R)-1-phenylethyl)piperidine, colorless oil. Yield: 72%
¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.41 (d, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.6 Hz, 2H),
7.14 (t, *J* = 7.2 Hz, 1H), 4.24 (q, *J* = 6.4 Hz, 1H), 2.41 (dt, *J* = 11.2, 3.6 Hz, 1H),
2.20-2.08 (m, 3H), 1.65-1.53 (m, 2H), 1.38-1.33 (m, 1H), 1.17-1.16 (d, *J* = 6.8 Hz, 6H),
0.85 (dd, *J* = 6.8, 4.8 Hz, 6H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 144.6, 126.9, 126.6, 125.1, 61.8, 52.4, 44.2, 25.8,
24.6, 23.7, 22.7, 22.7, 19.4, 14.9, 9.3

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₆H₂₅N: 232.206; found: 232.2054

 $(2R,3S)-2,3-dimethyl-1-((R)-1-phenylethyl)piperidine,^{20}$ brown oil. Yield: 61% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.37 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 7.2 Hz, 2H), 7.2 (t, *J* = 7.2 Hz, 1H), 3.60 (q, *J* = 6.4 Hz, 1H), 3.15 (q, *J* = 4.4 Hz, 1H), 2.28-2.17 (m,2H), 1.93-1.88 (m, 1H), 1.41-1.38 (m, 3H), 1.26 (d, *J* = 6.4 Hz, 4H), 0.88 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 128.1, 127.2, 126.3, 60.2, 53.6, 43.9, 35.1, 27.9, 25.3, 18.5

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₅H₂₃N: 218.1903; found: 218.1903

1-Allyl-2-phenylpiperidine, colorless oil. Yield: 60% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.32 (m, 4H), 7.21 (tt, J = 8.8, 2 Hz, 1H), 5.7 (m, 1H), 5.02 (m, 2H), 3.14(d, J = 12 Hz, 2H), 3.03 (dd, J = 11.2, 2.8 Hz, 1H), 2.47 (q, J = 8 Hz, 1H), 2.03 (td, J = 11.6, 3.6 Hz, 1H), 1.75 (m, 4H), 1.58 (m, 1H), 1.33 (m, 1H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 145.10, 135.58, 128.37, 127.47, 126.84, 116.99, 68.76, 58.54, 53.39, 36.63, 26.04, 25.17.

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₄H₁₉N:202.159; found: 202.1591

1,2-Bis(2-phenylpiperidin-1-yl)ethane, red oil. Yield: 53%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.21 (m, 10H), 2.94 (d, J = 10.8 Hz, 2H), 2.79 (m,

2H), 2.55 (m, 2H), 1.90 (m, 4H), 1.70 (m, 3H), 1.42 (m, 9H).

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₂₄H₃₂N₂: 349.2638; found: 349.2639

Tert-butyl (2-((S)-1-((R)-1-phenylethyl)piperidin-2-yl)ethyl)carbamate, red oil.

Yield: 30%

¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.39 (m, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.20 (t, J = 7.2Hz, 1H), 4.98 (s, 1H), 4.05 (d, J = 6.8 Hz, 1H), 3.16 (m, 2H), 2.75 (m, 1H), 2.48 (m, 2H), 1.77 (m, 3H), 1.63 (m, 2H), 1.43 (m, 13H), 1.28 (d, J = 6.8 Hz, 5H) ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 156.04, 145.99, 128.19, 127.41, 126.55, 57.23, 53.66, 43.97, 38.10, 28.67, 28.46, 27.87, 24.08, 21.94, 16.46, 11.19. HRMS(ESI) _{m/z} [M+H]⁺: calcd for C₂₀H₃₂N₂O₂: 333.2537; found: 333.2542

1-((R)-1-phenylethyl)-2-(thiophen-2-yl)piperidine, yellow oil. Yield: 74% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.47 (d, J = 8.4 Hz, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.20 (m, 2H), 7.00 (dd, J = 3.2, 1.2 Hz, 1H), 6.91 (m, 1H), 3.96 (q, J = 6.8 Hz, 1H), 3.89 (dd, J = 9.6, 3.2 Hz, 1H), 2.55 (dtd, J = 11.6, 3.6, 1.6 Hz, 1H), 2.25 (td, J = 11.2, 2.8 Hz, 1H), 1.93 (m, 1H), 1.79 (m, 2H), 1.42 (m, 2H), 1.24(d, J = 6.8 Hz, 3H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 149.42, 144.64, 127.77, 127.58, 126.15, 125.84, 124.25, 59.92, 55.29, 45.01, 37.73, 25.87, 25.16, 8.91. HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₇H₂₁NS: 272.1467; found: 272.1476

1,3-Bis((S)-1-((R)-1-phenylethyl)piperidin-2-yl)propane, yellow oil. Yield: 75% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.42 (d, J = 7.2 Hz, 4H), 7.29 (t, J = 7.6 Hz, 4H), 7.20 (t, J = 7.2 Hz, 2H), 4.017 (q, J = 6.8 Hz, 2H), 2.73 (s, 2H), 2.38 (m, 2H), 2.53 (m, 2H), 1.68 (m, 2H), 1.59 (m, 4H), 1.54 (m, 2H), 1.36 (m, 8H), 1.26 (d, J = 6.4 Hz, 6H), 1.22 (s, 2H). ¹³C NMR (400 MHz, CDCl₃) δ (ppm): 128.04, 127.56, 126.35, 56.93, 56.01, 45.01,
29.26, 25.60, 21.91, 14.72, 1.03.

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₂₉H₄₂N₂: 419.3421; found: 419.3424

2-((S)-1-((R)-1-phenylethyl)piperidin-2-yl)pyridine, yellow oil. Yield: 65% ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.53 (dt, J = 4.8, 1.2 Hz, 1H), 7.66 (td, J = 6.8, 1.6 Hz, 1H), 7.60 (d, J = 8 Hz, 1H), 7.44 (d, J = 8.4 Hz, 2H), 7.29 (t, J = 7.2 Hz, 2H), 7.19 (t, J = 7.2 Hz, 1H), 7.13 (td, J = 6.8 Hz, 1.6Hz, 1H), 3.79 (dd, J = 10.8, 3.2 Hz, 1H), 3.71 (q, J = 6.8 Hz, 1H), 2.60 (dtd, J = 11.2, 3.6, 1.6 Hz, 1H), 2.28 (td, J = 11.2, 2.8 Hz, 1H), 1.87 (dq, J = 12.8, 2 Hz, 1H), 1.78 (dt, J = 12.4, 4 Hz, 1H), 1.60 (m, 2H), 1.50 (qt, J = 12, 3.6 Hz, 1H), 1.36 (qt, J = 12.8, 3.6 Hz, 1H), 1.27 (d, J = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 164.82, 148.89, 144.35, 136.62, 127.84, 127.50, 126.18, 121.92, 121.78, 67.05, 55.84, 44.78, 35.63, 26.04, 25.09, 8.71.
HRMS(ESI) _{m/z} [M+H]⁺: calcd for C₁₈H₂₂N₂: 267.1856; found: 267.186

(S)-2-phenyl-1-((R)-1-(p-tolyl)ethyl)piperidine, white solid. Yield: 91%
¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.46 (d, J = 7.2 Hz, 2H), 7.30 (m, 4H), 7.19 (t, J = 7.2 Hz, 1H), 7.09 (d, J = 8 Hz, 2H), 3.80 (q, J = 6.8 Hz, 1H), 3.49 (dd, J = 10.4, 2.8 Hz, 1H), 2.58 (dt, J = 11.2, 3.2 Hz, 1H), 2.30 (s, 3H), 2.20 (td, J = 11.2, 2.8 Hz, 1H), 1.75 (m, 14), 1.75 (m, 14)

2H), 1.66 (m, 1H), 1.53 (m, 1H), 1.45 (tt, J = 12.4, 3.6 Hz, 1H), 1.33 (m, 1H), 1.16 (d, J = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 145.39, 141.78, 135.51, 128.54, 127.59, 127.47, 126.91, 66.65, 54.71, 45.10, 37.34, 26.41, 25.73, 21.06, 8.22
HRMS(ESI) _{m/z} [M+H]⁺: calcd for C₂₀H₂₅N: 280.206; found: 280.2063

(S)-1-((R)-1-(4-chlorophenyl)ethyl)-2-phenylpiperidine, white solid. Yield: 90%
¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.45 (d, J = 6.4 Hz, 2H), 7.35 (d, J = 7.6 Hz, 2H),
7.33 (t, J = 7.6 Hz, 2H), 7.25 (m, 3H), 3.77 (q, J = 6.8 Hz, 1H), 3.49 (dd, J = 10.8, 2.8 Hz,
1H), 2.51 (dt, J = 11.2, 1.6 Hz, 1H), 2.20 (td, J = 11.6, 2.8 Hz, 1H), 1.76 (m, 2H), 1.66 (m,
1H), 1.55 (m, 1H), 1.46 (qt, J = 12.4, 3.2 Hz, 1H), 1.34 (qt, J = 12, 3.6 Hz, 1H), 1.16 (d, J = 6.8 Hz, 3H).

¹³C NMR (400 MHz, CDCl₃) δ (ppm): 145.05, 143.32, 131.73, 128.87, 128.57, 127.85, 127.48, 127.01, 65.55, 54.48, 45.11, 37.13, 26.28, 25.58, 8.17 HRMS(ESI) _{m/z} [M+H]⁺: calcd for C₁₉H₂₂ClN: 300.1514; found: 300.1515

(R)-2-phenyl-1-((S)-1-phenylethyl)piperidine, white solid. Yield: 77%
¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.45 (m, 4H), 7.30 (m, 4H), 7.19 (m, 2H), 3.85 (q, J = 6.8Hz, 1H), 3.51 (dd, J = 10.8, 2.8 Hz, 1H), 2.58 (dt, J = 11.2, 2 Hz, 1H), 2.22 (td, J =

11.2, 2.8 Hz, 1H), 1.78 (m, 2H), 1.68 (m, 1H), 1.55 (m, 1H), 1.48 (qt, J = 12, 3.2 Hz, 1H),

1.35 (tt, J = 12, 4.4 Hz, 1H), 1.19 (d, J = 6.8 Hz, 3H)

 ^{13}C NMR (400 MHz, CDCl_3) δ (ppm): 145.27, 144.76, 128.51, 127.76, 127.56, 127.52,

126.90, 126.04,65.60, 54.92, 45.12, 37.22, 26.32, 25.65, 8.09

HRMS(ESI) $_{m/z}$ [M+H]⁺: calcd for C₁₉H₂₃N: 266.1903; found: 266.1906

-	MFG	-= F C19	ormula / ¥ A S H23 N ((pecies ∨ + N+H)+	Score ¥ 98.38	t⊐ m/z ¥ 266.1908	Diff (ppm)	4				
Sp ((M+H)+ 26	√z ⊽ 6.1908	Score (mass) ♥ 97.6	= Score (MS 98.38	S) ⊽ ⊨ Sco 98	ore (MFG) ⊽ ⊨ .38	Height ⊽ ⊨ Ic 681499.8 C	n Formul <table-cell> 🖻 19 H24 N</table-cell>				
F	Height (Calc) 5	'-⊨ Heig 81	ht Sum% (Calc ⊽-	Height %	(Calc ∀ s	m/z (Galc) 73	Diff (mDa) ⊽	+ Height ⊽ +	Height % ⊽ ⊽ ≴	Height Sum 2	a m/z Tr	Diff (ppm) 7

			Spectrum	n Identification	n Re	esults: + S	Scan (0.209	-0.596 m	iin) Sub (B351.d)		
Be	7 MFG	urce 7+	Formula / TH C19 H22 F N	Species 7 + m/z (M+H)+ 284.18	11	99.69 -0.	66					
F	Species ¥ +2 m/z ¥ +2 Score (mass) ¥ +2 Score (ma			¥ ≄ Score (MS) ¥ ≄ 99.69	Score 99.69	(MFG) ⊽ ¥ ₽	Height ¥ 10 Formula ¥ 10 3654007.8 C19 H23 F N					
	Height (Cal	0) V =	Height Sum% (Cak	c v ⊨ Height % (Cal	C V P	m/z (Calc) /	Y ≠ Diff (mDa) ¥	➡ Height \ + =	Height % V 🖶	Height Sum V-	m/z ¥ s	Diff (ppm) V =
	36/0167.	•	al.1									

Pregent (Carler) Mergent Summ/s (Carler) Mergent % (Carler) Merg	2 57 5 Diff (ppm) 54	m/2 14 311.176	it Sum 14 4	% ¥ = Height 81.5	Height 9	0a) ¥ ≠ Height ¥ 6790.5	V - Diff (m -0.6	a m/z (Calc 311.1754	% (Calc 🖌 🖨	alc Y = Height	Height Sum% (Ca	10) 7 to	Fleight (Cale
						0/00.0	1-0.0			100	80.5	CONCERNED.	6703.6

FG) ¥ a Height ¥ + Ion Formula ¥ a 6087.6 C22 H28 N O2 (Calc) ½ ♥ + Off (mDa) ♥ = Height ♥ + Height ♥ + 115 -0.7 6087.6 100 88.3 338.2121	7 - Diff (spm) 1 21 -2
(Colc) ' ♥ = Olff (mDa) ♥ = Height ♥ = Height ♥ = Height % ♥ = Height	7 = Diff (ppm) 1 21 -2
	21 2

10* 210:150 0:150 <t< th=""><th>210.10</th><th></th><th>14 1471</th><th>99.71</th><th>99.71</th><th>50</th><th>080485 C15 H</th><th>124 N</th><th></th><th></th><th></th><th></th></t<>	210.10		14 1471	99.71	99.71	50	080485 C15 H	124 N				
075544.4 84.6 100 218.1903 0 5060463 100 011 100 011	Calc) 🐨	Height	Sum% (Cal	c ⊽ + Height %	(Calc 🖙 🖛 m/z	z (Calc) / 🐨 🕯	Diff (mDa) 🐨	Height 17 +	Height % TH	Height Sum 7	m/z 7 4	
		(Calc) 🐨 🕯	Calc) 🐨 🕬 Height 144.4 84.6	Caic) ♥ + Height Sum% (Cai i44.4 84.5	Catc ♥ → Height Som% (Catc ♥ → Height % 544.4 84.5 100	Caic) 포소 Height Sum% (Caic 포소 Height % (Caic 포속 m 544.4 84.6 100 21	Calc) ♥ + Height Sum% (Calc ♥ + Height % (Calc ♥ + m/z (Calc) * ♥ + 544.4 84.6 100 218.1903	Calc) ♥ Height Sum% (Calc ♥ Height % (Calc ♥ mtz (Cald) / ♥ H Din (m0a) * * 544.4 84.5 100 218.1903 0	Catc) T = Height Sum% (Catc) Height Sum% (Catc) T = Height Sum (Catc) T = Height Sum (Catc) Height Sum (Catc) Height Sum (Catc) Height Sum (Catc) Height Sum (Catc) <td>Catc) T = Height Sum% (Catc) T = Int (mLa) T = Integration Height Sum% Int (mLa) T = Int (mLa) Int (mLa) Int (mLa) Int (mLa) Int (mLa)</td> <td>Catc) Teleph Sum% (Catc) Height % (Catc) Teleph % Catc) Teleph % Teleph %<!--</td--><td>Calc)</td></td>	Catc) T = Height Sum% (Catc) T = Int (mLa) T = Integration Height Sum% Int (mLa) T = Int (mLa) Int (mLa) Int (mLa) Int (mLa) Int (mLa)	Catc) Teleph Sum% (Catc) Height % (Catc) Teleph % Catc) Teleph % Teleph % </td <td>Calc)</td>	Calc)

MFG		Formula / y -a 9 0 H32 N2 O2	Species ¥ + M+H)+	Score V - 98.46	⊨ m/z ∨ d 333.2542	Diff (ppm) ¥ +=		inn) Sub (C 1440.0)		
(M+H)+	m/z ₹ 333.2542	■ Score (mass) ▼ 97.39	⊨ Score (MS 98.46	S) ♥ ⊨ Scc 98.	ore (MFG) ⊽ ⊨ 46	Height ⊽ ⊨ Ion 1151297.9 C20	Formula VI H33 N2 O2				
1138910.7	79.4	In Sum% (Calc 9.	Height %	(Calc 🖓 🕁	m/z (Calc) 😨 - 333.2537	⇔ Diff (mDa) ⊽ ⇔	Height 7 =	Height %	Height Sum 7=	m/2 7-6	Diff (ppm) 7 s

				Spectru	ım Ide	ntificati	ion Res	sults: + S	can (0.11	9-0.374 r	nin) Sub (C1473.d)			
 Bes	t VP	ID Source MFG	eve	Formula C17 H21 N S	144	Species V + (M+H)+	Score ¥	+⊐ m/z ¥ 272.1475	-= Diff (ppm) \	1					
0	Species (M+H)	F⊽‡	m/z 272.14	⊽ # Score (75 94.16	mass) 🖓	96.11	S) 🖓 🗗 Sco 96	ore (MFG) ⊽ ≄ .11	Height 7 0 10 626004.9 C	on Formula 💎 -	3				
	Heig	nt (Calc)	VAL	leight Sum%	(Calc V	Height %	(Calc V -	m/z (Calc) ¥	+ Diff (mDa)		Height % 🗸 🖌	Height Sum	1 m/z ¥ 1	Diff (ppm) ¥	

Spectrum i Best ⊽ # ID Source ⊽ # Formula / ▼ Ø MFG C29 H42 N2	Species ☆ +> Score * (M+H)+ 99.16	⊽ +a m/z ⊽ + 419.3424	Diff (ppm) ⊽-⊨	10.007				
Species V + m/z Y + Score (mass) V (M++H)+ 419,3424 99,12	99.16 99	core (MFG) ¥ +	Height ¥ + Ion 564742.8 C29	Formula V # H43 N2				
Height (Calc) V Height Sum% (Calc V	- Height % (Calc V	m/z (Calc) V -	Diff (mDa) V =	Height V ≴	Height % ⊽ ∀ ₽	Height Sum Y 4	m/z ¥-	Diff (ppm) * +
550938.0 12.0	100	410.0421	0.4	DUTI ILIU				

Image: carbon series Image: ca	mvz v e Diff (ppm) v e 267.186 -1.59
Height (Calc) Height (Calc) Height (Calc) Height (Calc) Height (Calc)	m/z Y = D/f (ppm) Y = 267.186 -1.59
1643240.9 81.7 100 267.1856 -0.4 1680354 100 83.5 2	267.186 -1.59

		s Y + Score Y +	n/z V-P Diff (p	opm) ¥ ₽					
VFG VV+2 m/z 202.159	C14 H19 N (M+H) ∇ + Score (mass) ∇ + 91 99.93	99.13 20 Score (MS) 77+ Scor 99.13 99.1	02.1591 -0.41 re (MFG) ⊽ ≠ H 13 1	leight 장금 Ion Fi 493727.1 C14 I	ormula マーロ H20 N				
Calc) 7-9 H	eight Sum% (Calc V = 5.5	Height % (Calc ▼ = 100	m/z (Calc) ⊽ = 202.159	Diff (mDa) ⊽-¤ -0.1	Height T-P	Height % 🖓 🐨 🖛	Height Sum Tre	m/z ▼ ₽ 202.1591	Diff (ppm) 3
1	 ▼-a m/z 202.156 (Catc) ▼ - 14 119.4 82 			▼ + m/z ▼ + Score (MS) ▼ + Score (MFG) ▼ + 202.1591 99.93 99.13 99.13 99.13 1 (Calc) ▼ - Height Sum% (Calc ▼ - Height % (Calc ▼ - 119.4 85.5 100 202.159 202.159	v → m/z y → Score (mess) y → Score (MS) y → Score (v v i m/z v v i Score (mss) v v i Score (MS) v v i Score (MS) v v i Height v v i Ion Formula v v i 202 1591 99.93 99.13 1493727.1 C14 H20 N (Cake) v v i Height v v i Score (MS) v i Height v v i C14 H20 N (Cake) v v i Height v v i Height v v i Height v v i Height v v i T14 H20 N (Cake) v v i Height v v i 119.4 85.5 100 202.159 -0.1 1493727.	v → m/z y → Score (mss) y → Score (MS) y → Score (MS) y → Height y	▼ → m/z Y → Score (MS) Y → Score (MS) Y → Height Y → In Formula Y → 202 1591 99.93 99.13 1493727.1 C14 H20 N (Cabl) ▼ → Height Y → Height Y → Height Y → (Cabl) ▼ → Height Y → Height Y → Height Y → (Cabl) ▼ → Height Score (MZ Cable) ▼ → Height Y → Height Score Y → 118.4 85.5 100 202.159 -0.1 1493727 100 86.9	▼ → m/z Y → Score (MSS) Y → Score (MS) Y → Height Y → In Formula Y → 202 1591 99.93 99.13 1493727.1 C14 Hz0 N (Cabl) Y → Height Y → Height

Spectrum Identification Results: + Scan (0.112-0.279 min) Sub (D052.d) Best ¥ 4 10 Source ¥ 4 5 pecies ¥ 4 5 core ¥ 4 miz ¥ 4 Diff (pm) ¥ 4 Best ¥ 4 10 Source ¥ 5 core (MS) ¥ 4 5 core (MS) ¥								0.5	0.1569	ml	25/142	0.899 g/mL	
Spectrum Identification Results: + Scan (0.112-0.279 min) Sub (D052.d) Best Y = 105 Source Y = 100 Min Y = 5000 K = 100 Min Y = 100 Min (pm) Y = 100 Min Y = 1													
Spectrum Identification Results: + Scan (0.112-0.279 min) Sub (D052.d) Best v = 10 Source v = Formula v = Spectrum Identification Results: + Scane (M.112-0.279 min) Sub (D052.d) Best v = 10 Source v = Formula v = Spectrum Identification Results: + Scane (M.112-0.279 min) Sub (D052.d) Spectrum Identification Results: + Scare (M.9) v = 9.52 349.2639 0.03 Spectrum Identification Results: + Scare (M.9) v = Height v = Ion Formula v = Ion Form Formula v = Ion Formula v = Ion Formula v = Ion Form Formula v = Ion Form Formula v = Ion Form Form Form Form Form Form Form Form													
Best V = [ID Source V =] Formula V = [Source V =] Source V = [Mic V =]			:	Spectrum I	dentification	Results: + \$	Scan (0.	112-0.279 m	in) Sub (I	D052.d)		
Speckes T Score (mass) T Score (MS) T Height T Informula T 0 (M+1)+ 349.2539 100 99.52 99.52 686124 C24 H33 N2 Height (Cac) Y Height % (Cac) Y Height	₽Ĺ	Best V D ID Sc MFG	Durce V I F.	ormula / √-⇔ \$ 4 H32 N2 (Species Y + Score M+H)+ 99.52	v t⊃ m/z v t⊃ 349.2639	Diff (ppm) ¥ -0.03						
Height (Carc) Y = Height Sum% (Carc) Y = Height % Y Y = Height Sum Y = miz Y = Height Sum Y = miz Y = Diff com Y = Height % Y Y = Height Sum Y = miz Y = Diff com Y = Miz Y = Height Sum Y = miz Y = Diff com Y = Miz Y = Height Sum Y = Miz Y = Diff com Y = Miz Y = Miz Y = Diff com Y = Miz	Ē	Species TT (M+H)+	tu m/z ⊽ s 349.2639	Score (mass) T	7 + Score (MS) マー 99.52	Score (MFG) ㅠ + 99.52	Height T-4	Ion Formula TH					
079495.4 75.4 100 349.255 U 668124 100 77.3 349.255 411		rleight (Calc) Y ₽ Heig	ht Sum% (Calc \	/ -= Height % (Calc	¥ ≒ m/z (Calc) ¥	Diff (mDa		ieight % ∇ -v =				
		070465.4	70.4		100	349.2038	10	686124	100	77.3	349.2639	-0.11	

References

- 1. Juhyeon Park, Dr. Sukbok Chang, Angew. Chem. Int. Ed, 2015, 54, 14103-14107.
- 2. W. Hao, Z. Xi, M. Cai, Synthetic Commun., 2012, 2396–2406.
- 3. X. Li, D. Zou, F. Leng, C. Sun, J. Li, Y. Wu and Y. Wu, *Chem. Commun.*, **2013**, 312-314.
- 4. S. Roesner, S. L. Buchwald, Angew. Chem. Int. Ed. 2016, 10463-10467.
- 5. Y. Li, W. Liu, C. Kuang, Chem. Commun., 2014, 7124--7127.
- 6. B. Mahajan, D. Aand, A. K. Singh, Eur. J. Org. Chem., 2018, 2831-2835.
- 7. J. Yang, S. Liu, J. Zheng, J. Zhou, Eur. J. Org. Chem., 2012, 6248-6259.
- 8. P. Kumar, K. Griffiths, C. E. Anson, A. K. Powell, G. E. Kostakis, *Dalton T.*, **2018**, 17202-17205.
- 9. G. Corinne, B. Carine, D. Muriel, *Tetrahedron*, **2009**, 6141-6146.
- 10. X. Rao, C. Liu, J. Qiua, Z. Jina, Org. Biomol. Chem., 2012, 7875-7883.
- 11. L.Xi, R. Zhang, S. Liang, S. Chen, X. Yu, Org. Lett., 2014, 5269-5271.

12. A.V.Galenko, F. M. Shakirova, E. E. Galenko, M. S. Novikov, A. F. Khlebnikov, *J. Org. Chem.*, **2017**, 5367-5379.

13. H. A. Duong, W. Wu, Y. Yuan, Organometallics, **2017**, 4363-4366.

14. A. J. Boyington, C. P. Seath, A. M. Zearfoss, Z. Xu, N. T. Jui, *J. Am. Chem. Soc.*, **2019**, 4147-415.

(a) N. Miyaura, K. Yamada, A. Suzuki, *Tetrahedron Lett.*, 1979, **20**, 3437–3440; (b)
 N. Miyaura, A. Suzuki, *Chem. Commun.*, 1979, **19**, 866-867; (c) N. Miyaura, A. Suzuki,
 Chem. Rev., 1995, **95**, 2457-2483; (d) A. Suzuki, *J. Organomet. Chem.*, **576**, 147-168.