
Noname manuscript No.
(will be inserted by the editor)

An Operational Guide to Monitorability with Applications
to Regular Properties

Luca Aceto · Antonis Achilleos · Adrian

Francalanza · Anna Ingólfsdóttir · Karoliina

Lehtinen

Received: date / Accepted: date

Abstract Monitorability underpins the technique of runtime verification because
it delineates what properties can be verified at runtime. Although many moni-
torability definitions exist, few are defined explicitly in terms of the operational
guarantees provided by monitors, i.e., the computational entities carrying out the
verification. We view monitorability as a spectrum, where the fewer guarantees
that are required of monitors, the more properties become monitorable. Accord-
ingly, we present a monitorability hierarchy based on this trade-off. For regular
specifications, we give syntactic characterisations in Hennessy–Milner logic with
recursion for its levels. Finally, we map existing monitorability definitions into our
hierarchy. Hence our work gives a unified framework that makes the operational
assumptions and guarantees of each definition explicit. This provides a rigorous
foundation that can inform design choices and correctness claims for runtime ver-
ification tools.

Keywords Runtime Verification · Monitors · Monitorability · Logical Fragments

This research was supported by the Icelandic Research Fund projects “TheoFoMon: Theo-
retical Foundations for Monitorability” (�:163406-051) and “Epistemic Logic for Distributed
Runtime Monitoring” (�:184940-051), the EPSRC project “Solving parity games in theory and
practice” (�:EP/P020909/1), project BehAPI, funded by the EU H2020 RISE programme un-
der the Marie Sk lodowska-Curie grant agreement �:778233, project FouCo, funded by the EU
H020 research and innovation programme under the Marie Skodowska-Curie grant agreement
�:892704, and the Italian MIUR project PRIN 2017FTXR7S IT MATTERS “Methods and
Tools for Trustworthy Smart Systems”.

L. Aceto
Gran Sasso Science Institute, L’Aquila, Italy

L. Aceto · A. Achilleos · Ingólfsdóttir
Reykjavik University, Reykjavik, Iceland

A. Francalanza
University of Malta, Msida, Malta

K. Lehtinen
University of Liverpool, Liverpool, UK

2 Luca Aceto et al.

1 Introduction

Runtime verification (RV) [15] is a lightweight verification technique that checks
for a specification by analysing the current execution exhibited by the system
under scrutiny. Despite its merits, the technique is limited in certain respects:
any sufficiently expressive specification language contains properties that cannot
be monitored at runtime [2, 5, 24, 32, 38, 51, 54]. For instance, the satisfaction of a
safety property (“bad things never happen”) cannot, in general, be determined by
observing the (finite) behaviour of a program up to the current execution point; its
violation, however, can. Monitorability [15, 54] concerns itself with the delineation
between properties that are monitorable and those that are not.

Besides its importance from a foundational perspective, monitorability is para-
mount for a slew of RV tools, such as those described in [12, 21, 30, 52, 56], that
synthesise monitors from specifications expressed in a variety of logics. These
monitors are executed with the system under scrutiny to produce verdicts con-
cerning the satisfaction or violation of the specifications from which they were
synthesised. Monitorability is crucial for a principled approach to the construc-
tion of RV tools: It defines, either explicitly or implicitly, a notion of monitor

correctness [35, 36, 39, 49], which then guides the automated synthesis of monitors
from specifications. It also delimits the monitorable fragment of the specifica-
tion logic on which the synthesis is defined; monitors need not be synthesised for
non-monitorable specifications. In some settings, a syntactic characterisation of
monitorable properties can be identified [1, 5, 38], and used as a core calculus for
studying optimisations of the synthesis algorithm. More broadly, monitorability
boundaries may assist in the design of the monitoring set-up, and guide the de-
sign of hybrid verification strategies, which combine RV with other verification
techniques (see the work in [2] for an example of this approach). We therefore
emphasize the separation of concerns between the specification of a correctness
property on the one hand, and the method(s) used to verify it on the other [38].

In spite of its importance, there is no generally accepted notion of monitora-
bility to date. The literature contains a number of definitions, such as the ones
proposed in [5,17,33,38,41,54]. These differ in aspects such as the adopted specifi-
cation formalism, e.g., LTL, Street automata, recHML etc., the operational model,
e.g., testers, automata, process calculi etc., and the semantic domain, e.g., infinite
traces, finite and infinite (finfinite) traces or labelled transition systems. Even
after these differences are normalised, many of these definitions are not in agree-
ment: there are properties that are monitorable according to some definitions but
not monitorable according to others. More alarmingly, as we will show, frequently
cited work on defining monitorability, by Falcone et al. [33], is inconsistent.

Example 1.1 Consider the runtime verification of a system exhibiting (only) three
events over finfinite traces: failure (f), success (s) and recovery (r). One property
we may require is that “failure never occurs and eventually success is reached”, oth-
erwise expressed in LTL fashion as (G¬f) ∧ (F s). According to the definition of
monitorability attributed to Pnueli and Zaks [54] (discussed in Section 8), this
property is monitorable. However, it is not monitorable according to others, in-
cluding Schneider [60], Viswanathan and Kim [64], and Aceto et al. [5], whose
definition of monitorability coincides with some subset of safety properties. �

An Operational Guide to Monitorability with Applications to Regular Properties 3

This discrepancy between definitions raises the question of which one to adopt
when designing and implementing an RV tool, and what effect this choice has on
the behaviour of the resulting tool. A difficulty in informing this choice is that
few definitions make explicit the relationship between the operational model, i.e.,
the behaviour of a monitor, and the monitored properties. In other words, it is
not clear what the guarantees provided by the various monitors mentioned in the
literature are, and how they differ from each other. Yet, this is key in designing
a monitoring set-up. For example, if a monitor is used to check that the input of
a critical component, produced by an untrusted third-party component, satisfies
some boundary conditions, then it is important that all violations are identified.
On the other hand, if runtime monitoring is used as a best-effort attempt to catch
bugs without model checking, then weaker guarantees can suffice.

Contributions. To our mind, this state of the art is unsatisfactory for tool con-
struction. More concretely, an RV tool broadly relies on the following ingredients:

1. the input of the tool in terms of the formalism used to describe the specification
properties;

2. the executable description of monitors that are the tool’s output and
3. the mapping between the inputs and outputs, i.e., the synthesis function of

monitors from specifications.

Any account on monitorability should, in our view, shed light on those three
aspects, particularly on what it means for the synthesis function and the moni-
tors it produces to be correct. This involves establishing the relationship between
the truth value of a specification, given by a two-valued semantics, and what the

runtime analysis tells us about it, given by the operational behaviour exhibited by
the monitor; ideally, the specification and operational descriptions should also be
described independently of one another, in order to ensure the aforementioned
separation of concerns.1 In addition, any account on monitorability should also
be flexible enough to incorporate a variety of relationships between specification
properties and the expected behaviour of monitors. This is essential for it be of use
to the tool implementors, acting as a principled foundation to guide their design
decisions.

For these reasons, we take the view that monitorability comes in a spectrum.
There is a trade-off between the guarantees provided by monitors and the proper-
ties that can be monitored with those guarantees. We argue that considering differ-
ent requirements gives rise to a hierarchy of monitorability—depicted in Figure 1.1
(middle)—which classifies properties according to what types of guarantees RV
can give for them. At one extreme, anything can be monitored if the only require-
ment is for monitors to be sound, that is, their verdicts should not contradict the
monitored specification. However, monitors that are just sound give no guarantees
of ever giving a verdict. More usefully, informatively monitorable properties enjoy
monitors that reach a verdict for some finite execution; arguably, this is the min-
imum requirement for making monitoring potentially worthwhile. Informatively

1 In RV, it is commonplace to see the expected monitor behaviour described via an inter-
mediary n-valued logic semantics [16,17,41] (e.g., mapping finite traces into the three verdicts
called accepting, rejecting and inconclusive). Although convenient in certain cases, the ap-
proach goes against our tenet for the separation of concerns.

4 Luca Aceto et al.

2Act∞

∃PZ

∀PZ

Safe ∪ CoSafe

CoSafe Safe

Safe ∩ CoSafe

Sound

Informative

Satisfaction i. Violation i.

Persistently Informative

Satisfaction p. i. Violation p. i.

Partially complete

Satisfaction c. Violation c.

Complete

recHML

iHML

ciHML siHML

pHML

cpHML spHML

cHML ∪ sHML

cHML sHML

{tt,ff}

Fig. 1.1 The monitorability hierarchy over finfinite traces. The leftmost hierarchy contains the
various existing interpretations of monitorability, as described in the literature (see Sections 7
and 8). The central hierarchy contains our definitions of monitorability from Section 3. These
are reformulations of the leftmost hierarchy that result by taking an operational approach.
The rightmost hierarchy characterizes these definitions, when restricted to regular properties
of finfinite traces, with their corresponding monitorable syntactic fragments of recHML (see
Section 5).

monitorable properties can be further categorised into those informatively moni-
torable for violations and those informatively monitorable for satisfaction. More
stringent requirements can demand this capability to be invariant over monitor
executions, i.e., a monitor never reaches a state where it cannot provide a verdict;
then we speak of persistently informative monitors. Requiring a specific verdict to
always be reachable further refines this class into into persistently rejecting and
persistently accepting monitors. Adding completeness requirements of different
strengths, such as the requirement that a monitor should be able to identify all
failures and/or satisfactions, yields stronger definitions of monitorability: partial,
satisfaction or violation complete, and complete.

Our first contribution is to define this hierarchy of monitorability, depicted in
Figure 1.1 (middle). In order not to favour a specific operational model, the hierar-
chy is cast in terms of abstract behavioural requirements for monitors, and is not
restricted to regular properties. We then provide an instantiation that concretises
those requirements into an operational hierarchy, establishing operational counter-
parts for each type of monitorability over regular properties. To this end, we use
the operational framework developed in [5], that uses finite-state monitors and
in which partial and complete monitorability were already defined. We show this
framework to be, in a suitable technical sense, maximally general (Theorem 4.4)

An Operational Guide to Monitorability with Applications to Regular Properties 5

for regular properties. This shows that our work is equally applicable to other oper-
ational models for monitoring regular properties. We choose to work with regular
properties for two reasons. First of all, the simplicity of regular properties allows
us to study notions of monitorability without delving into the additional technical
intricacies that come with more powerful models of computation. However, when
one specifies monitors syntactically, our methods and results for regular proper-
ties can often be lifted to settings with even infinite-state monitors using symbolic
techniques: the interested reader is invited to consult [5, pg. 6-7] for a discussion on
this matter from a monitorability perspective, and [7,36,40] for concrete examples
of how such techniques have been employed in the context of runtime monitoring.
We also provide a detailed comparison of our results to settings of non-regular
properties in Section 9.

In order for a tool to synthesise monitors from specifications, it is useful to have
syntactic characterisations of the properties that are monitorable with the required
guarantees: synthesis can then directly operate on the syntactic fragment. Our
second contribution is to provide monitorability characterisations as fragments of
Hennessy–Milner logic with recursion, recHML [8, 47] (a variant of the modal µ-
calculus [44]) interpreted over finfinite traces—see Figure 1.1 (right). This logic is
expressive enough to capture all regular properties—the focus of nearly all existing
definitions of monitorability—and subsumes more user-friendly but less expressive
specification logics such as LTL. Partial and complete monitorability already enjoy
monitor synthesis functions and neat syntactic characterisations in recHML [5];
related synthesis functions based on syntactic characterisations for a branching-
time setting [37, 38] have already been implemented in a tool [11, 12]. Here, we
provide the missing syntactic characterisations for informative and persistently
informative monitorability as well as their violation and satisfaction refinements.2

Note that we work in the finfinite domain, where executions can be finite or in-
finite, like Falcone et al. did in [33]. This setting is a natural one when it comes
to monitoring, as it does not make the potentially unrealistic assumption that
executions never stall, deadlock, or otherwise remain silent with respect to the
events that are monitored. This gives our result more generality than restricting
ourselves to the infinite domain.

However, since this is not the only interesting domain, we also consider how
the set of traces considered affects the syntactic characterisations of different mon-
itorability classes. We show that the syntactic characterisations for violation and
satisfaction completeness are robust accross all linear domains. We also show that
while this is not the case for informative and persistently informative monitora-
bility, their syntactic characterisations are still valid for the important domain of
infinite traces.

Finally, we show that the proposed hierarchy accounts for existing notions
of monitorability. See Figure 1.1 (left). Safety, co-safety and their union corre-
spond to partial monitorability and its two components, satisfaction- and violation-
monitorability; Pnueli and Zaks’s definition of monitorability can be interpreted
in two ways, of which one (∃pz) maps to informative monitorability, and the other
(∀pz), also identified by Bauer, Leucker and Schallhart [18], to persistently informa-
tive monitorability. We also show that the definitions of monitorability proposed

2 We note that, as depicted in Figure 1.1, partial monitorability does not imply any of these
refinements.

6 Luca Aceto et al.

by Falcone et al. [33], contrary to their claim, do not coincide with safety and
co-safety properties. To summarise, our principal contributions are:

1. A unified operational perspective on existing notions of monitorability, clarify-
ing what operational guarantees each provides, see Theorems 3.1, 7.1 and 8.1;

2. An extension of the syntactic characterisations of monitorable classes from [5],
mapping all of these classes to fragments in recHML, which can be viewed
as a target byte-code for higher-level logics, see Theorems 5.2 and 5.3, as well
as proofs of robustness and non-robustness accross domains for each of these
characterisations.

This article extends the conference version [6]. The main technical novelty here
is the logical characterisation of persistently informative monitorability and the
proofs and counter-examples of robustness accross domains for all the syntactic
characterisations. Furthermore, we refine the monitorability hierarchy by treating
informative monitorability and persistently informative monitorability for satisfac-
tion and violation as monitorability classes in their own right (with corresponding
logical characterisations). We have also added detailed proofs, extended examples,
added more detailed discussions of related work and improved explanations.

Roadmap. We start with defining notation for traces and properties in the finfinite
domain in Section 2. We then define the monitorability hierarchy for properties
over finfinite traces in Section 3, and instantiate it with concrete operational se-
mantics in Section 4 for regular properties. In Section 5 we give syntactic charac-
terisations of each level of our hierarchy. In Section 6 we study how robust each
of these syntactic characterisations is if the domain changes, for example to the
infinite, rather than finfinite, domain. In Sections 7 and 8 we show how existing
notions of monitorability embed into our hierarchy and discuss an error in Fal-
cone et al.’s notion of monitorability. Finally, before concluding, in Section 9 we
discuss other notions of monitorability and how changing various aspects of the
framework, such as the alphabet, the trace domain or the definition of monitors
affects the resulting monitorability hierarchy.

2 Preliminaries

Traces. We assume a finite set of actions, a, b, . . . ∈ Act. The metavariables t, u ∈
Actω range over infinite sequences of actions. Finite traces, denoted as s, r ∈ Act∗,
represent finite prefixes of system runs. We also find it useful to denote sets of
finite traces, S ⊆ Act∗. Collectively, finite and infinite traces in the set Act∞ =
Actω∪Act∗ are called finfinite traces. We use f, g ∈ Act∞ to range over finfinite
traces and F ⊆ Act∞ to range over sets of finfinite traces. A (finfinite) trace with
action a at its head is denoted as af . Similarly, a (finfinite) trace with a prefix
s and continuation f is denoted as sf . We write s � f to denote that the finite
trace s is a prefix of f , i.e., there is a g such that f = sg. We use the notation
f [k] to denote the action at position k in f : for f = ag, f [0] = a, and for k ≥ 0,
f [k + 1] = g[k].

An Operational Guide to Monitorability with Applications to Regular Properties 7

Properties. A property over finfinite (resp., infinite) traces, denoted by the variable
P , is a subset of Act∞ (resp., of Actω). In general, a property refers to a finfinite
property, unless stated otherwise. A finite trace s positively determines a property
P ⊆ Act∞ when sf ∈ P for every continuation f ∈ Act∞; analogously, s negatively

determines P when sf /∈ P for every f ∈ Act∞. The same terms apply similarly
when P ⊆ Actω. We say that P is suffix-closed when for all s, r ∈ Act∗, s ∈ P
implies sr ∈ P — notice that we only quantify over finite traces. For a given
P ⊆ Act∞ we identify the following two sets of finite traces:

D−P = { s ∈ Act∗ | s negatively determines P };

D+
P = { s ∈ Act∗ | s positively determines P }.

We say that a finfinite property is regular if it is the union of a regular property
Pfin ⊆ Act∗ and an ω-regular property Pinf ⊆ Actω [63].

Example 2.1 Recall the system discussed in Example 1.1 with actions failure (f),
success (s) and recovery (r). A trace that contains at least two occurrences of r

positively determines the property described by the LTL syntax F
(
r ∧ X(F r)

)
. A

finite trace that contain the action s negatively determines the property G (f∨r)∧F r.
Note, however, that not all violating traces have a prefix that contains the action
s. Indeed, the infinite fω does not satisfy this property, but none of its prefixes
contain s. �

3 A Monitor-Oriented Hierarchy

From a tool-construction perspective, it is important to give concrete, imple-
mentable definitions of monitors; we do so in Section 4. To understand the guaran-
tees that these monitors will provide, we first discuss the general notion of monitor
and monitoring system. We then identify, already in this abstract setting, the var-
ious requirements that give rise to the hierarchy of monitorability, depicted in the
middle part of Figure 1.1. Section 4 will then provide operational semantics to this
hierarchy, in the setting of regular properties.

Note that, as we show in Sections 7 and 8, the definitions that arise naturally
in this general framework cover various definitions that have been presented in the
literature, depicted in the left part of Figure 1.1. The purpose of this section is to
demonstrate how the hierarchy of monitorability arises naturally, when one starts
from a monitor-oriented perspective.

3.1 Monitoring systems

It is important to agree up-front on what properties are common to any reasonable
monitoring framework. We consider a monitor to be a computational entity, m,
that analyses finite traces and (at the very least) identifies a set of finfinite traces
that it accepts and a set of finfinite traces that it rejects. We assume two postulates.
Firstly, an acceptance or rejection verdict has to be based on a finite prefix of a
trace because we target online monitors that observe an (ever increasing) trace of
events generated by the running system under scrutiny. In Definition 3.1.1 verdicts

8 Luca Aceto et al.

are thus given for incomplete traces. Secondly, verdicts must be irrevocable, Defi-
nition 3.1.2. Without this second requirement, verdicts would become ephemeral
(and not dependable, since they could change when more events from the running
system are observed). These postulates make explicit two features shared by most
monitorability definitions in the literature. On a technical level, verdict irrevoca-
bility allows us to extend acceptances and rejections to the continuation of the
trace prefix (which can be infinite). Put differently, a monitor m can be abstractly
conceived as an entity consisting of two predicates, acc and rej, defined over the
finfinite trace domain as follows.

Definition 3.1 A monitoring system consists of a triple 〈M,acc, rej〉, where M is
a nonempty set of monitors, acc, rej ⊆M×Act∞, and for every m ∈M :

1. For every finfinite trace f∈Act∞:
– acc(m, f) implies ∃s ∈ Act∗ ·

(
s � f and acc(m, s)

)
and

– rej(m, f) implies ∃s ∈ Act∗ ·
(
s � f and rej(m, s)

)
;

2. For every finite trace s ∈ Act∗:
– acc(m, s) implies ∀f∈Act∞·acc(m, sf) and
– rej(m, s) implies ∀f∈Act∞·rej(m, sf). �

Remark 3.1 The set of finite automata does not satisfy the requirements of a mon-
itoring system as defined in Definition 3.1 because (i) they do not process infinite
traces and, more importantly, (ii) their verdicts can be revoked since they allow
transitions from final to non-final states.3 Standard Büchi automata are not good
candidates either, since they need to read the entire infinite trace to accept or
reject. �

We define a notion of maximal monitoring system for a collection of properties;
for each property P in that set, such a system must contain a monitor that reaches
a verdict for all traces that have some prefix that determines P .

Definition 3.2 A monitoring system (M,acc, rej) is maximal for a collection of
properties C ⊆ 2Act∞ if for every P ∈ C there is a monitor mP ∈M such that

(i) acc(mP , f) iff trace f∈Act∞ has a prefix that positively determines P ;
(ii) rej(mP , f) iff trace f∈Act∞ has a prefix that negatively determines P . �

In Section 4, we present an instance of such a maximal monitoring system for
regular properties. This shows that, for regular properties at least, the maximality
of a monitoring system is a reasonable requirement. Unless otherwise stated, we
assume a fixed maximal monitoring system (M,acc, rej) throughout the rest of
the paper.

Remark 3.2 Working with an abstract maximal monitoring system allows us to
build a hierarchy over all properties of finfinite traces, regardless of their compu-
tational complexity. However, considering the monitoring system as a parameter of
monitorability enables this hierarchy to also account for questions of computabil-
ity and resource usage, which become particularly relevant for non-regular proper-
ties. For instance, when monitoring context-free languages, it might be practical,

3 One could restrict the class of automata used, but then would also need to show that
closure properties are preserved, the proof of which does not seem immediate.

An Operational Guide to Monitorability with Applications to Regular Properties 9

from an implementation perspective, to restrict the monitors M to determinis-

tic automata with a stack and irrevocable verdicts, rather than nondeterministic
ones, to avoid excessive memory overheads associated with keeping track of sev-
eral stacks. However, deterministic pushdown monitors are not powerful enough to
make a maximal monitoring system for context-free languages, because pushdown
automata are not in general determinisable. Then, the monitorability classes will
differ, according to the computational power of the monitors; parameterising the
hierarchy with the monitoring system allows us to account for these variations.

For a monitor m ∈ M to monitor for a property P , it needs to satisfy some
requirements. The most important such requirement is soundness.

Definition 3.3 (Soundness) Monitor m is sound for property P if for all f :

– acc(m, f) implies f ∈ P , and
– rej(m, f) implies f /∈ P . �

Soundness is important for a number of reasons. For instance, it prevents mon-
itor inconsistency which is arguably an intrinsic quality that is expected of any
sensible monitor (Definition 3.2 does not preclude inconsistent monitors). We here
adapt the definition of monitor consistency [5, Def. 3.2] to the present setting.

Definition 3.4 (Consistency) A monitor m is consistent if for all t ∈ Act∞:

– acc(m, t) implies that rej(m, t) does not hold.4

– acc(m, t) implies that rej(m, t) does not hold. �

Lemma 3.1 If a monitor m is sound for some property P then it is consistent.

Proof Pick a monitor m that is sound for some property P and assume, towards a
contradiction, that for some t ∈ Act∞, we have both acc(m, t) and rej(m, t). By
soundness, this implies both f ∈ P and f 6∈ P , which is clearly a contradiction. ut

Lemma 3.2 If monitor m is sound for property P then

– if acc(m, s), then s positively determines P , and

– if rej(m, s), then s negatively determines P .

Proof Fix some s ∈ Act∗ where acc(m, s) and pick some f ∈ Act∞. By Defi-
nition 3.1.2 and acc(m, s) we know that acc(m, sf) and by soudness we obtain
sf ∈ P . ut

The following lemma explains why a maximal monitoring system subsumes
other systems wrt. soundness.

Lemma 3.3 For every property P ⊆ Act∞ and monitor mP in a maximal monitoring

system (M,acc, rej):

1. mP is sound for P ; and

2. if m is a sound monitor for P then

– acc(m, f) implies acc(mP , f)

4 When acc and rej are viewed as predicated, “rej(m, t) does not hold” means that either
¬rej(m, t) or that it is undefined.

10 Luca Aceto et al.

– rej(m, f) implies rej(mP , f).

Proof For the first clause, pick a f ∈ Act∞ such that acc(mP , f). By Definition 3.2,
there exists some prefix s � f that positively determines P . Since f is an extension
of s, to follows that f ∈ P . The case for rej(mP , f) is analogous.

For the second clause, pick a finfinite trace f such that acc(m, f). By Defini-
tion 3.1 we know there exists some finite prefix, s where s � f , such that acc(m, s).
By Lemma 3.2 we know that s positively determines P . By Definition 3.2 we de-
duce that acc(mP , s) and by s � f and Definition 3.1 we obtain acc(mP , f). The
case for rej(m, f) is analogous. ut

3.2 Shades of completeness

We are now ready to define monitorability in terms of the guarantees that the
monitors are expected to give. Our tenet is that soundness is not negotiable. The
dual requirement to soundness, i.e., completeness, entails that the monitor detects
all violating and satisfying traces.

Definition 3.5 (Completeness) Monitor m is satisfaction-complete for P if f∈P
implies acc(m, f) and violation-complete for P if f /∈P implies rej(m, f). It is com-

plete for P if it is both satisfaction- and violation-complete for P and partially-

complete if it is either satisfaction- or violation-complete. �

Unfortunately, as shown now in Proposition 3.1, completeness is only possible
for trivial properties in the finfinite domain; in the infinite domain more properties
are completely monitorable—see Section 9.

Proposition 3.1 If m is sound and complete for P then P=Act∞ or P=∅.

Proof If ε ∈ P , then acc(m, ε), so from Definition 3.1, ∀f ∈ Act∞. acc(m, f). Due
to the soundness of m, P = Act∞. Similarly, P = ∅ when ε /∈ P . ut

Given the consequences of requiring completeness, as evidenced by Proposi-
tion 3.1, we also consider weaker forms of completeness. The weaker the complete-
ness guarantee, the more properties can be monitored.

Definition 3.6 (Complete Monitorability) Property P is completely moni-
torable when there exists a monitor that is sound and complete for P . It is mon-

itorable for satisfactions (resp., violations) when there exists a monitor m that is
sound and satisfaction (resp., and violation) complete for P . It is partially moni-
torable when it is monitorable for satisfactions or violations.

A class of properties C ⊆ 2Act∞ is satisfaction, violation, partially, or com-
pletely monitorable, when every property P∈C is, respectively, satisfaction, viola-
tion, partially or completely monitorable. We denote the class of all satisfaction,
violation, partially, and completely monitorable properties by maximal monitoring
systems as SCmp, VCmp, PCmp, and Cmp, respectively. �

The following lemma makes explicit the relation between the monitorability
classes of Definition 3.6 and finite prefixes that determine a property, which are
also called good and bad prefixes [45].

An Operational Guide to Monitorability with Applications to Regular Properties 11

Lemma 3.4 If P ⊆ Act∞ is monitorable for satisfaction (resp., for violation) by any

monitoring system, then every f ∈ P (resp., f ∈ Act∞ \ P) has a finite prefix that

positively (resp., negatively) determines P .

Proof We treat the case for satisfaction, as the case for violation is dual. Let f ∈ P
and m be a monitor that is sound and satisfaction-complete for P . Then, due to
satisfaction-completeness, acc(m, f), and by the requirements of Definition 3.1,
there is a finite prefix s of f , such that acc(m, s). Therefore, by the same require-
ments, for every g ∈ Act∞, acc(m, sg). As we know that m is sound for P , this
yields that s positively determines P . ut

Since even partial monitorability, the weakest form in Definition 3.6, renders a
substantial number of properties unmonitorable [5], one may consider even weaker
forms of completeness that only flag a subset of satisfying (or violating) traces.
Sound denotes monitorability without completeness requirements. Arguably, how-
ever, the weakest guarantee for a sound monitor of a property P to be of use is the
one that pledges to flag at least one trace. One may then further strengthen this
requirement and demand that this guarantee is invariant throughout the analysis
of a monitor: for every observed prefix the monitor is still able to reach a verdict
(possibly after observing more actions).

Definition 3.7 (Informative Monitors5) A monitor m is:

– informatively accepting if there is trace that m accepts: ∃f ∈ Act∞ ·acc(m, f);
– informatively rejecting if there is a trace that m rejects: ∃f ∈ Act∞ · rej(m, f);
– informative when it either accepts or rejects a trace:
∃f ∈ Act∞ · rej(m, f) or acc(m, f);

– persistently accepting if it remains informatively accepting for all finite traces:
∀s ∈ Act∗ · ∃f · acc(m, sf);

– persistently rejecting if it remains informatively rejecting for all finite traces:
∀s ∈ Act∗ · ∃f · rej(m, sf);

– persistently informative when it remains informative for all finite traces:
∀s ∈ Act∗ · ∃f · rej(m, sf) or acc(m, sf). �

Remark 3.3 The reader familiar with the seminal definition of monitorability given
by Pnueli and Zaks in [54] will have noticed the similarity between the require-
ments for a monitor to be (persistently) informative and those for s-monitorability
of a property given in op. cit. Indeed, as we will see in Section 8, persistently in-
formative monitors capture exactly one flavour of monitorability in the sense of
Pnueli and Zaks, namely s-monitorability for all finite strings s, whereas informa-
tive monitors recognise the properties that are s-monitorable for some finite string
s. �

Definition 3.8 (Informative Monitorability) We say that:

– A property P is informatively monitorable for satisfaction (resp., for violation)
if there is an informatively accepting (resp., informatively rejecting) monitor
that is sound for P .

– A property P is informatively monitorable if there is an informative monitor
that is sound for P .

5 These are not related to the informative prefixes from [45] or to persistence from [57].

12 Luca Aceto et al.

– A property P is persistently informatively monitorable for satisfaction (resp.,
for violation) if there is a persistently accepting (resp., persistently rejecting)
monitor that is sound for P .

– A property P is persistently informatively monitorable if there is a persistently
informative monitor that is sound for P .

– A class of properties C⊆2Act∞ is informatively (resp., persistently informa-
tively) monitorable, when all its properties are informatively (resp., persistently
informatively) monitorable— the class of all informatively (resp., persistently
informatively) monitorable properties by maximal monitoring systems is de-
noted as ICmp (resp., PICmp). �

Example 3.1 Recall the property “f never occurs and eventually s is reached” from
Example 1.1 (expressible in LTL as (G¬f)∧ (F s)). Given any maximal monitoring
system, this property is not partially monitorable: a monitor cannot accept the
satisfying infinite trace s(r)ω by just observing a finite prefix, nor can it reject the
violating trace rω by observing one of its finite prefixes. It is, however, persistently
informatively monitorable for violation: every finite prefix that is not yet violating
can be extended to produce the action f which would be enough evidence for a
monitor to reject the trace. �

Example 3.2 The property requiring that “r only appears a finite number of times” is
not informatively monitorable. If it were, the respective sound informative monitor
m in the maximal system should at least accept or reject one trace. If it accepts
a trace f , by Definition 3.1, it must accept some prefix s � f . Again, by Defini-
tion 3.1, all continuations, including srω, must be accepted by m. This makes it
unsound, which is a contradiction. A dual argument can also be made for rejec-
tions. If m rejects some f , it must reject some finite s � f that necessarily contains
a finite number of r actions, making it unsound. �

Theorem 3.1 (Monitorability Hierarchy) In any maximal monitoring system,

the monitorability classes given in Definitions 3.6 and 3.8 form the inclusion hierarchy

depicted in Figure 1.1(middle).

Proof The only non-trivial inclusion to show from Figure 1.1(middle) is

PCmp = SCmp∪VCmp ⊆ PICmp.

Pick a property P ∈ VCmp. Pick also a finite trace s ∈ Act∗. If sf /∈ P for
some f , then by Definition 3.5 we have rej(mP , sf). Otherwise, sf ∈ P for each f ,
meaning that s positively determines P , and by Definition 3.2 we have acc(mP , sf).
By Definition 3.7, we deduce that mP is persistently informative since ∀s∃f ·
acc(mP , sf) or rej(mP , sf). Thus, by Definition 3.8, it follows that P ∈ PICmp.
The case for P ∈ SCmp is dual. ut

Remark 3.4 We note that a property being partially monitorable does not imply
that it is also persistently informatively monitorable for satisfaction or for vio-
lation. Furthermore, not all persistently informatively monitorable properties are
also informatively monitorable for satisfaction, and they are not all informatively
monitorable for violation. To see why this is the case, one can simply observe that
tt is not informatively monitorable for violation whereas ff is not informatively
monitorable for satisfactions. �

An Operational Guide to Monitorability with Applications to Regular Properties 13

4 An Instantiation for Regular Properties

We now provide a concrete maximal monitoring system for regular properties.
This monitoring system gives an operational interpretation to the levels of the
monitorability hierarchy, and enables us to find syntactic characterisations for
them in the next section.

We use Hennessy–Milner logic with recursion [47], recHML, to represent reg-
ular properties. This is a reformulation of the modal µ-calculus [44], and embeds
other specification formalisms such as LTL, (ω-)regular expressions, Büchi au-
tomata, and Street automata, used in the state of the art on monitorability. This
logic has deep connections to program equivalence theories [8,42,61] and has also
been used to model-check systems using industry-strength verifiers [28,48].

We begin by recalling the syntax and semantics of recHML and the monitoring
system for regular properties from [5]. We then argue that this monitoring system
is maximal for regular properties, in the sense of Definition 3.2, and show that
this means that it subsumes all other monitoring systems for regular properties.
This both demonstrates that the framework proposed in Section 3 is realistic and
allows us to work with a fixed monitoring system in the sequel without loss of
generality.

4.1 The logic

The syntax of recHML is defined by the following grammar, which assumes a
countable set of logical variables X,Y ∈ LVar.

ϕ,ψ ∈ recHML ::= tt | ff | ϕ∨ψ | ϕ∧ψ
| 〈a〉ϕ | [a]ϕ | minX.ϕ | maxX.ϕ | X

Apart from the standard constructs for truth, falsehood, conjunction and disjunc-
tion, the logic is equipped with existential (〈a〉ϕ) and universal ([a]ϕ) modal op-
erators, and two recursion operators expressing least and greatest fixpoints (resp.,
minX.ϕ and maxX.ϕ). The order of precedence of operators is, as usual: the ex-
istential and universal modal operators, conjunctions, disjunctions, and fixpoint
operators. The semantics is given by a function J−K, which maps a (possibly open)
formula to a set of (finfinite) traces [5] by induction on the formula structure, us-
ing valuations that map logical variables to sets of traces, σ : LVar → P(Act∞),
where σ(X) is the set of traces assumed to satisfy X. The function J−K is defined
in the following:

Jtt, σK def

= Act∞ Jff, σK def

= ∅
Jϕ1∨ϕ2, σK def

= Jϕ1, σK ∪ Jϕ2, σK Jϕ1∧ϕ2, σK def

= Jϕ1, σK ∩ Jϕ2, σK
J[a]ϕ, σK def

= {f | f = ag implies g ∈ Jϕ, σK} J〈a〉ϕ, σK def

= {af | f ∈ Jϕ, σK}
JminX.ϕ, σK def

=
⋂
{F | Jϕ, σ[X 7→ F]K ⊆ F }

JmaxX.ϕ, σK def

=
⋃
{F | F ⊆ Jϕ, σ[X 7→ F]K } JX,σK def

= σ(X)

An existential modality 〈a〉ϕ denotes all traces with a prefix action a and a con-
tinuation that satisfies ϕ, whereas a universal modality [a]ϕ denotes all traces
that are either not prefixed by a or are of the form ag for some g that satisfies

14 Luca Aceto et al.

ϕ. The sets of traces satisfying least and greatest fixpoint formulae, say minX.ϕ

and maxX.ϕ, are the least and the greatest fixpoints, respectively, of the function
induced by the formula ϕ. For closed formulae, we use JϕK in lieu of Jϕ, σK (for
some σ). Formulae are generally assumed to be closed and guarded [46]. In the
discussions we occasionally treat formulae, ϕ, as the properties they denote, JϕK.

LTL [25] is the specification logic of choice for many RV approaches. As a
consequence, it is also the logic used by a number of studies on monitorability
(e.g., see [16, 17, 41]). Our choice of logic, recHML, is not limiting in this regard
because it is well known [44,65] that LTL can be translated into recHML. There
are other reasonable and equally expressive choices for the logic (see, for instance,
[59]), but we chose recHML as it is convenient for synthesizing monitors as we see
later in this section, and for identifying monitorable syntactic fragments as we do
in Section 5.

Example 4.1 The characteristic LTL operators can be encoded in recHML as:

Xϕ
def

=
∨
a∈Act 〈a〉ϕ ϕUψ

def

= minY.
(
ψ ∨ (ϕ∧X Y)

)
Fϕ

def

= tt Uϕ

ϕRψ
def

= maxY.
(
(ψ ∧ϕ)∨ (ψ ∧X Y)

)
Gϕ

def

= ff Rϕ

In the following examples, atomic propositions a and ¬a resp., denote 〈a〉tt and
[a]ff respectively. �

The use of recHML allows us to consider monitorable properties that may be
missed by previous approaches. For instance, it is well known that logics such as
the modal µ-calculus (and variants such as recHML) can describe properties that
are not expressible in popular specification languages like LTL [65].

Example 4.2 Recall the system discussed in Example 1.1 where Act = {f, s, r}.
Consider the property requiring that “success (s) occurs on every even position”.
Although this is not expressible in LTL [65], it can be expressed in recHML as:

ϕeven = maxX.
(∨

a∈{f,s,r}〈a〉〈s〉X
)

Note that LTL properties such as ¬s ∧ G(s ⇔ X¬s) do not express the aforemen-
tioned property; the LTL property given is in fact too strict (it describes “s at
even positions only”) and rules out traces of the form sω which clearly satisfy
the property ϕeven. The weaker property “success (s) occurs on every even position

until the execution ends” still cannot be expressed in LTL, but can be expressed in
recHML:

ϕevenW = maxX.
(∧

a∈{f,s,r}[a] ([s]X ∧ [f]ff ∧ [r]ff)
)

�

Remark 4.1

More broadly, recHML captures all (ω-)regular properties, while LTL can only
express properties recognised by counter-free Büchi automata [31]. Our logic of
choice has several other advantages over LTL:

– recHML semantics adapt easily to the finite, infinite and finfinite domains.
LTL semantics are only standard on infinite traces; there is no canonical finite
or finfinite semantics. (See, however, [29] for a finite-trace semantics for LTL
and Linear Dynamic Logic.) In particular, to specify whether a property holds

An Operational Guide to Monitorability with Applications to Regular Properties 15

or not on a finite trace, we would need to add to the syntax of LTL modalities
corresponding to the box and diamond of recHML that indicate whether a
continuation is allowed or required, thus moving away from standard LTL.

– recHML is closer to the underlying automata models, and to the process al-
gebras describing our monitors. For instance, given a monitor, it is straight-
forward to deduce the recHML formula for which it is sound and complete;
however, it is nontrivial to even decide whether such an LTL formula exists.

Therefore, to study monitorability, we prefer to use recHML, as it can express all
regular properties, allowing for clearer distinctions between monitorability classes.
Furthermore, when synthesizing a monitor, one can use a specification in LTL,
translate it into recHML in a straightforward manner, and then use a monitor
synthesis that relies on recHML, thus gaining all advantages these logics offer.
For the sake of better readability, and in the light of its familiarity to the RV
community, we use LTL for the examples that can be encoded in that logic. Note
that, since we operate in the finfinite domain, X should be read as a strong next
operator, (the trace should not terminate there) in line with Example 4.1.

In the sequel, we use the following classical result for recHML-like specification
logics (see [10] for more on the µ-calculus and recHML):

Lemma 4.1 If ϕ ∈ recHML, then JϕK ∩Act∗ is regular.

Lemma 4.2 If ϕ ∈ recHML, then D+
ϕ and D−ϕ are regular.

Proof We know that JϕK∩Act∗ is regular (Lemma 4.1) and JϕK∩Actω, the infinite-
trace interpretation of ϕ, is ω-regular. Therefore, there are a DFA DF that recog-
nizes JϕK∩Act∗ and a deterministic ω-automaton DI that recognizes JϕK∩Actω.
Let AF = {s ∈ Act∗ | ∀r ∈ Act∗. sr ∈ JϕK} and AI = {s ∈ Act∗ | ∀t ∈ Actω. st ∈
JϕK}. Let QF (resp., QI) be the set of states in DF (resp., in DI) that can be
reached reading some trace s ∈ AF (resp.,AI). By construction, for each s ∈ Act∗,
we have that s ∈ AF (resp., s ∈ AI) if and only if s does not end in QF (resp.,
QI). Therefore, there are DFAs D′F and D′I for AF and AI , respectively, and thus
D+
ϕ = AF ∩AI is regular. The case for D−ϕ is similar. ut

4.2 The monitors

We consider the operational monitoring system of [5,38], summarised in Figure 4.1
(symmetric rules for binary operators are omitted). Monitors are states of a transi-
tion system where m+n denotes an (external) choice and m�n denotes a composite
monitor where � ∈ {⊕,⊗}. Composition with ⊕ corresponds to disjunctive par-
allelism, which reaches a positive verdict whenever any of its components reaches
a positive verdict, while ⊗ is conjunctive in that is favours the negative verdict.
There are three distinct verdict states, yes, no, and end, although only the first
two are relevant to monitorability. The syntax in Figure 4.1 assumes a countably
infinite set of variables x, y, . . . ∈ Vars; see [5] for a comprehensive discussion.

The monitoring system (Mon,acc, rej) is given by a labelled transition system

(LTS) based on Act, which is comprised of the monitor states, or monitors, and

16 Luca Aceto et al.

m,n ∈Mon ::= v | a.m | m+ n | m⊗n | m⊕n | recx.m | x
v, u ∈ Verd ::= end | no | yes

mAct
a.m

a−−→ m
mVer

v
a−−→ v

mRec
m[recx.m/x]

a−−→ n

recx.m
a−−→ n

mSelL m
a−−→ m′

m+ n
a−−→ m′

mPar m
a−−→ m′ n

a−−→ n′

m�n a−−→ m′�n′

mTauL m
τ−−→ m′

m�n τ−−→ m′�n
mVrE

end�end
τ−−→ end

mVrC1
yes⊗m τ−−→ m

mVrC2
no⊗m τ−−→ no

mVrD1
no⊕m τ−−→ m

mVrD2
yes⊕m τ−−→ yes

Fig. 4.1 Monitor Syntax and Labelled-Transition Semantics

a transition relation. The set of monitor states, Mon, and the monitor transi-
tion relation, −→⊆ (Mon × (Act ∪ {τ}) ×Mon), are defined in Figure 4.1. The

suggestive notation m
µ−−→ n denotes (m,µ, n) ∈−→; we also write m 6 µ−−→ to de-

note ¬(∃n. m µ−−→ n). We employ the usual notation for weak transitions and

write m =⇒ n in lieu of m(
τ−−→)∗n and m

µ
=⇒ n for m =⇒ · µ−−→ · =⇒ n, where

µ ∈ (Act ∪ {τ}). We write sequences of transitions m
a1=⇒ · · · ak=⇒ n as m

s
=⇒ n,

where s = a1 · · · ak. A monitor that does not use any parallel operator is called
a regular monitor. The full monitoring system and regular monitors were defined
and used in [1, 4, 5, 35, 36, 38]. We refer the interested reader to these studies for
explanations and motivations.

This semantics gives an operational account of how a monitor in state m in-
crementally analyses a sequence of actions s = a1 . . . ak to reach a new monitor
state n; the monitor m accepts (resp., rejects) a trace f , written acc(m, f) (resp.,
rej(m, f)), when it can transition to the verdict state yes (resp., no) while analysing
a prefix s � f .

Definition 4.1 (Acceptance and Rejection) For a monitor m ∈Mon, we define:

– rej(m, s) and say that m rejects when m
s

=⇒ no

– acc(m, s) and say that m accepts when m
s

=⇒ yes.

Similarly, for t ∈ Actω, we write

– rej(m, t) if there exist s ∈ Act∗ and u ∈ Actω where t=su and m rejects s.
– acc(m, t) if there exist s ∈ Act∗ and u ∈ Actω where t=su and m accepts s. �

For a finite nonempty set of indices I, we use
∑
i∈I mi to denote any com-

bination of the monitors in {mi | i ∈ I} using the operator +. For each j ∈ I,∑
i∈I mi is called a sum of mj , and mj is called a summand of

∑
i∈I mi. The

following Lemma 4.3 assures us that regular monitors satisfy the conditions to be
a monitoring system, given in Definition 3.1.

Lemma 4.3 (Verdict Persistence, [5, 38]) For all verdicts v, it is the case that

v
s

=⇒ m implies m = v.

An Operational Guide to Monitorability with Applications to Regular Properties 17

We will use the following definitions and results in our proofs. We define de-
terminism for regular monitors.

Definition 4.2 ([3,4]) A closed regular monitor m is deterministic iff every sum
of at least two summands that appears in m is of the form

∑
α∈A α.mα, where

A ⊆ Act. �

Definition 4.3 (Verdict Equivalence) Monitors m and n are verdict equivalent

when for every f ∈ Act∞, acc(m, f) iff acc(n, f) and rej(m, f) iff rej(n, f). �

Theorem 4.1 ([4,5]) Every monitor in Mon is verdict equivalent to a deterministic

regular monitor.

Due to Theorem 4.1, we can assume that every monitor in Mon is a regular,
or deterministic regular monitor. We often do so in the following proofs.

Theorem 4.2 ([3,4]) If L,L′ ⊆ Act∗ are regular and suffix-closed, and L∩L′ = ∅,
then there is a regular monitor m, such that acc(m, s) iff s ∈ L and rej(m, s) iff s ∈ L′.

We use the formula synthesis function from regular monitors to formulae de-
fined in [5, 38] (we assume a bijection between logical variables, X, and monitor
variables, x, that we leave implicit):

f(no) = ff f(end) = f(yes) = tt f(x) = X

f(m+ n) = f(m)∧f(n) f(a.m) = [a]f(m) f(recX.m) = maxX.f(m)

Theorem 4.3 ([5]) Every consistent regular monitor m is sound and violation-

complete for f(m).

From properties such as Lemma 4.3 is not hard to see that this operational
framework satisfies the conditions for a monitoring system of Definition 3.1. The
monitoring system of Figure 4.1 is also maximal for regular properties, according
to Definition 3.2. This concrete instance thus demonstrates the realisability of the
definitions in Section 3.

Theorem 4.4 For all ϕ ∈ recHML, there is a regular monitor m that is sound for ϕ

and accepts all finite traces that positively determine ϕ and rejects all finite traces that

negatively determine ϕ.

Proof By Lemma 4.2, D+
ϕ and D−ϕ , the sets of finite traces that (respectively)

positively or negatively determine ϕ are regular. It is also not hard to see that
they are suffix-closed. Therefore the theorem follows from Theorem 4.2. ut

As a corollary of Theorem 4.4, from Lemma 3.2 we deduce that for any arbi-
trary monitoring system (M,acc, rej), if m ∈ M is sound for some ϕ ∈ recHML,
then there is a monitor n ∈ Mon from Figure 4.1 that accepts (resp., rejects) all
traces f that m accepts (resp., rejects).

Corollary 4.1 If m is a sound monitor for ϕ ∈ recHML, then there is a regular

monitor n that is sound for ϕ, and such that for every s ∈ Act∗, acc(m, s) implies

acc(n, s), and rej(m, s) implies rej(n, s).

18 Luca Aceto et al.

Proof By Theorem 4.4, there is a regular monitor n that is sound for ϕ, and accepts
all finite traces that positively determine ϕ, and rejects all the finite traces that
negatively determine ϕ. If acc(m, s) (resp., rej(m, s)) for some finite trace s, then,
due to the soundness of m, s ∈ JϕK (resp., s /∈ JϕK), and therefore, from Lemma 3.2,
s positively (resp., negatively) determines ϕ. By the properties of n, we have that
acc(n, s) (resp., rej(n, s)). ut

In the sequel, we thus assume (Mon,acc, rej) from Figure 4.1 as our fixed
monitoring system, as it subsumes all others.

5 A Syntactic Characterisation of Monitorability for Regular Properties

We present syntactic characterisations for the various monitorability classes of
regular properties as fragments of recHML. We begin by recalling the syntactic
characterisation of partial monitorability by Aceto et al. from [5], and then proceed
to provide the corresponding syntactic characterisations for informative and per-
sistently informative monitorability. The fragments we provide are maximal in the
sense that they not only guarantee that any property expressible within the frag-
ment is monitorable with the corresponding guarantees, but also conversely, every
regular property that is monitorable with respect to the corresponding notion of
monitorability is expressible in the fragment.

5.1 Partial monitorability, syntactically

In [5], Aceto et al. identify a maximal partially monitorable syntactic fragment of
recHML.

Theorem 5.1 (Partially-Complete Monitorability [5]) Consider the syntactic

fragments:

ϕ,ψ ∈ sHML ::= tt | ff | [a]ϕ | ϕ∧ψ | maxX.ϕ | X and

ϕ,ψ ∈ cHML ::= tt | ff | 〈a〉ϕ | ϕ∨ψ | minX.ϕ | X.

The fragment sHML is monitorable for violation whereas cHML is monitorable for

satisfaction. Furthermore, if ϕ ∈ recHML is monitorable for satisfaction (resp., for

violation) by some m∈Mon, it is expressible in cHML(resp., sHML), i.e., ∃ψ∈cHML

(resp., ψ∈sHML), such that JϕK=JψK.

Observe that for every regular monitor m, f(m) ∈ sHML. As a corollary of
Theorem 5.1 we obtain maximality: any ϕ ∈ recHML that is monitorable for
satisfaction (resp., for violation) can also be expressed as some ψ ∈ cHML (resp.,
ψ ∈ sHML) where JϕK = JψK. For this fragment, the following automated synthesis
function, which is readily implementable, is given in [5].

m(ff)
def

= no m(ϕ1∧ϕ2)
def

= m(ϕ1)⊗m(ϕ2) m(maxX.ϕ)
def

= recx.m(ϕ)

m(tt)
def

= yes m(ϕ1∨ϕ2)
def

= m(ϕ1)⊕m(ϕ2) m(minX.ϕ)
def

= recx.m(ϕ)

m([a]ϕ)
def

= a.m(ϕ) +
∑

b∈Act\{a}

b.yes m(X)
def

= x

m(〈a〉ϕ)
def

= a.m(ϕ) +
∑

b∈Act\{a}

b.no

An Operational Guide to Monitorability with Applications to Regular Properties 19

5.2 Informative monitorability, syntactically

We proceed to identify syntactic fragments of recHML that correspond to infor-
mative monitorability. Intuitively, a sHML formula is informatively monitorable
for violation if ff appears in it: there is a trace that falsifies the formula. Further-
more, the conjunction of any such formula with an arbitrary formula is still falsified
by the same trace. Dually, cHML formulas in which tt occurs are informatively
monitorable for satisfaction, and so are their disjunctions with arbitrary formulas.
We now formalise this intuition.

Definition 5.1 The informative fragment is iHML = siHML ∪ ciHML where

siHML = {ϕ1 ∧ ϕ2 ∈ recHML | ϕ1 ∈ sHML and ff appears in ϕ1},
ciHML = {ϕ1 ∨ ϕ2 ∈ recHML | ϕ1 ∈ cHML and tt appears in ϕ1}. �

We define the depth of ff in an sHML formula in a recursive way: dff(ff) = 0;
dff(tt) = dff(X) =∞; dff(ψ1∧ψ2) = min{dff(ψ1), dff(ψ2)}+1; dff([α]ψ) = dff(ψ)+1;
and dff(maxX.ψ) = dff(ψ) + 1.

Lemma 5.1 For all possibly open ϕ,ψ ∈ sHML dff(ϕ[ψ/X]) ≤ dff(ϕ).

Proof Straightforward induction on ϕ. ut

Lemma 5.2 – If ϕ ∈ siHML, then there is a regular monitor that is sound and

informatively rejecting for ϕ.

– If ϕ ∈ ciHML, then there is a regular monitor that is sound and informatively

accepting for ϕ.

– If ϕ ∈ iHML, then there is a regular monitor that is sound and informative for ϕ.

Proof We assume that ϕ ∈ siHML, as the case for ϕ ∈ ciHML is similar. Let
ϕ = ϕ1 ∧ ϕ2, where ϕ1 ∈ sHML and ff appears in ϕ1. First of all, we prove by
strong numerical induction on dff(ψ) that for all ψ ∈ sHML, if dff(ψ) < ∞, then
there is a finite trace that negatively determines ψ. If dff(ψ) = 0, then ψ = ff,
and we are done, as ε negatively determines ff. Otherwise, dff(ψ) = k + 1 and we
consider the following cases:

ψ = ψ1 ∧ ψ2 In this case, either dff(ψ1) = k or dff(ψ2) = k, so by the inductive
hypothesis, there is a finite trace that negatively determines one of the two
conjuncts, and therefore also ψ.

ψ = [α]ψ′ In this case, dff(ψ′) = k, so, by the inductive hypothesis, there is a finite
trace s that negatively determines ψ′, so αs negatively determines ψ.

ψ = maxX.ψ′ In this case, dff(ψ′) = k. Therefore, from Lemma 5.1, dff(ψ′[ψ/X]) ≤
dff(ψ′) = k, so, by the inductive hypothesis, there is a finite trace s that
negatively determines ψ′[ψ/X], so it also negatively determines ψ, because
Jψ′[ψ/X]K = JψK.

As ff appears in ϕ1, dff(ϕ) <∞, so there is a finite trace that negatively determines
ϕ1, and therefore also ϕ. The lemma follows from Theorem 4.4. ut

Lemma 5.3 Let ϕ ∈ recHML and m a monitor that is sound for ϕ. If m is infor-

matively accepting for ϕ, then there is some ψ ∈ ciHML such that JψK = JϕK. If m is

informatively rejecting for ϕ, then there is some ψ ∈ siHML, such that JψK = JϕK.

20 Luca Aceto et al.

Proof If m is sound and informatively accepting for ϕ, then by Lemma 3.2, there
is a finite trace s that positively determines ϕ. We can then easily construct a
formula ψ1(s) that is satisfied exactly by s and all its extensions, recursively on s:
let ψ1(ε) = tt, and let ψ1(αs) = 〈α〉ψ1(s). Then, let ψ = ψ1(s)∨ϕ. Thus, ψ ∈ ciHML

and JψK = JϕK. The case for informatively rejecting monitors is similar. ut

Theorem 5.2 For ϕ ∈ recHML, ϕ is informatively monitorable for violation (resp.,

satisfaction) if and only if there is some ψ ∈ siHML (resp., ciHML) such that JψK =
JϕK. ϕ is informatively monitorable for satisfaction if and only if there is some ψ ∈
ciHML such that JψK = JϕK. ϕ is informatively monitorable if and only if there is some

ψ ∈ iHML, such that JψK = JϕK.

Proof A consequence of Lemmata 5.2 and 5.3. ut

Example 5.1 The property ϕevenW from Example 4.2 is monitorable for violation;
this can be easily determined since it is expressible in sHML. By contrast, ϕeven

from Example 4.2 cannot be expressed in either sHML or cHML. In fact, it is not

partially-complete monitorable: it cannot be monitored completely for satisfaction
because the trace (rs)ω ∈ JϕevenK but none of its prefixes can be accepted by a sound
monitor since they all violate the property; it cannot be monitored completely
for violation either, since the trace ε 6∈ JϕevenK but is can be extended by (rs)ω

which makes (persistent) rejection verdicts unsound. The property (G¬f) ∧ F s

from Example 3.1 (expressed here in LTL) is a siHML property, as G¬f can be
written in sHML as maxX.[f]ff∧[s]X∧[r]X. In contrast, FG¬r cannot be written in
iHML since it is not informatively monitorable. �

Remark 5.1 In siHML and ciHML, ϕ1 describes an informative part of the formula,
that is, a formula with at least one path to tt (or ff), which indicates that the
corresponding finite trace determines the property. Monitor synthesis from these
fragments can use this part of the formula to synthesize a monitor that detects the
finite traces that satisfy (violate) ϕ1. The value of the synthesised monitor then
depends on ϕ1. It is therefore important to have techniques to extract some ϕ1

that will retain as much monitoring information as possible. One obvious choice
is a formula describing D+, the set of finite traces that positively determines a
property, and dually the formula describing Act∞ \D−, the set of traces that do
not negatively determine the property. See Kupferman and Vardi’s construction
in [45] for how to construct these formulas; this method has to be adapted a little
in the finfinite domain, but this is outside the scope of the present work. �

The maximality results of Theorems 5.1 and 5.2 permit tool constructors to
concentrate on the syntactic fragments identified when synthesizing monitors. To
achieve the corresponding monitorability guarantees, one would have to first work
on the given formula and find an appropriate equivalent form in the right fragment.
Theorems 5.1 and 5.2 also serve as a syntactic check to determine when a property
is monitorable (according to the monitorability classes in Figure 1.1).

Example 5.2 The formula ϕ = min X.max Y.(〈a〉tt ∨ 〈b〉tt ∨ X) /∈ ciHML, but it is
equivalent to ϕ1 = ϕ ∨ 〈a〉tt ∈ ciHML, to ϕ2 = ϕ ∨ (〈a〉tt ∨ 〈b〉tt) ∈ ciHML, and
to ϕ3 = min X.(〈a〉tt ∨ 〈b〉tt ∨ X) ∈ cHML. The formulas ϕ1 and ϕ2 are evidence
that ϕ is informatively monitorable, while ϕ3 is evidence that ϕ is monitorable for
satisfactions.

An Operational Guide to Monitorability with Applications to Regular Properties 21

In Example 5.2, if one uses ϕ1 to synthesize a monitor for ϕ, the resulting
monitor would detect the satisfying traces that start from a; starting from ϕ2,
the synthesized monitor would also detect the satisfying traces that start with
b; finally, the monitor that is synthesized from ϕ3 is satisfaction complete for ϕ.
Thus, we observe that, depending on the form of the given formula, the monitor
synthesis that results from these syntactic characterisations may not always yield
monitors that detect all possible satisfactions or violations. However, Theorem 4.4
assures us that for each recHML formula ϕ, there is a monitor m that detects
all traces that positively or negatively determine ϕ, and therefore that monitor
will satisfy all guarantees that are possible when monitoring ϕ, and therefore the
knowledge that ϕ is in a certain fragment informs us of a certain good behaviour
of m.

5.3 Persistently informative monitorability for satisfaction and violation,
syntactically

As the requirements for persistently informative monitors are subtler than for
informative monitors, the fragments we present are more involved than those for
informative monitorability.

We begin by characterising persistently informative monitorability for satis-
faction and for violation separately. The following definition of explicit formulas
forces modal subformulas to explicitly list every action. Observe that a disjunction
of existential modalities requires there to be a successor while the conjunction of
universal modalities holds if there is no successor.

Definition 5.2 We define eHML, the explicit fragment of recHML:

ϕ,ψ, ϕa ∈ eHML ::= tt | ff | minX.ϕ | maxX.ϕ | X

| ϕ∨ψ | ϕ∧ψ |
∨

a∈Act

〈a〉ϕa |
∧

a∈Act

[a]ϕa. �

Example 5.3 Formula [f][s]ff is not explicit, but, assuming that Act = {f, s, r}, it
can be rewritten as the explicit formula [f]([s]ff ∧ [f]tt ∧ [r]tt) ∧ [s]tt ∧ [r]tt. �

Roughly, the following definition captures whether tt and ff are reachable from
subformulas (where the binding of a variable is reachable from the variable).

Definition 5.3 Let ϕ be a closed recHML formula and let ψ be a subformula of
ϕ. We say that:

– ψ can refute (resp., verify) in ϕ in 0 unfoldings, when ff (resp., tt) appears in
ψ, and that

– ψ can refute (resp., verify) in ϕ in k + 1 unfoldings, when
– ψ can refute (resp., verify) in k unfoldings, or
– X appears in ψ and ψ is in the scope of a subformula maxX.ψ′ or minX.ψ′

that can refute (resp., verify) in k unfoldings.

We simply say that ψ can refute (resp., verify) in ϕ when it can refute (resp., verify)
in ϕ in k unfoldings, for some k ≥ 0. We may also simply say that ψ can refute
(resp., verify) when ϕ is evident or not relevant. �

22 Luca Aceto et al.

Example 5.4 For formula maxX.([s]X ∧ [f]ff ∧ [r]ff), subformula [s]X ∧ [f]ff ∧ [r]ff can
refute in 0 unfoldings. In contrast, [s]X cannot refute in 0 unfoldings, but it can
refute in 1, because X appears in it and maxX.[s]X ∧ [f]ff ∧ [r]ff can refute in 0
unfoldings. Therefore, all subformulas of maxX.([s]X ∧ [f]ff ∧ [r]ff) can refute. �

We now define the fragments of recHML corresponding to recHML properties
that are persistently informatively monitorable for satisfaction or violation. The
intuition is similar to the one underlying the definition of the informative fragment,
except here the reachability condition is quantified universally over subformulas,
and we need the informative part of the formula to be explicit.

Definition 5.4 We define the fragments spHML and cpHML as:

spHML =

{
ϕ1 ∧ ϕ2 ∈ recHML

∣∣∣ ϕ1 ∈ sHML ∩ eHML and every
subformula of ϕ1 can refute

}
cpHML =

{
ϕ1 ∨ ϕ2 ∈ recHML

∣∣∣ ϕ1 ∈ cHML ∩ eHML and every
subformula of ϕ1 can verify

}
�

Theorem 5.3 For ϕ ∈ recHML, ϕ is persistently informatively monitorable for

violation (resp., for satisfaction) if and only if there is some ψ ∈ spHML (resp.,

ψ ∈ cpHML), such that JψK = JϕK.

The proof of Theorem 5.3 can be found in Appendix A. The intuition is that
every finite trace s can be extended to one that violates or satisfies, respectively,
the ϕ2 part in Definition 5.4. On the other hand, a formula that is persistently
informatively monitorable for satisfaction or violation must have a sound persis-
tently informative for satisfaction or violation, respectively, monitor, from which
we can synthesize ϕ2.

5.4 Persistently informative monitorability, syntactically

We now give a syntactic characterisation of persistently informative monitorabil-
ity. The reasoning is rather different from the one we employed for the previous
fragments of recHML, and relies on a deterministic form for recHML.

We first introduce the deterministic fragment of recHML and argue that all
recHML formulas can be determinised. This is a simple consequence of the ex-
pressive completeness of deterministic finite automata and deterministic parity
automata in the domains of regular and ω-regular languages, respectively [43,63].

We start by defining the deterministic fragment of recHML (Definition 5.5).
We continue by giving background on deterministic automata over finite, infinite,
and finfinite traces (Definition 5.6). We show that every recHML formula is equiv-
alent to a deterministic automaton over finfinite traces (Lemma 5.4), and then we
use this result to prove that every recHML formula is equivalent to a deterministic
one over finfinite traces (Lemma 5.5). This allows us to identify the persistently
informatively monitorable formulas as certain deterministic formulas with special
characteristics (Theorem 5.4).

Definition 5.5 The deterministic fragment dHML of recHML is given by:

ϕ,ϕa ∈ dHML ::= tt | ff |
∧

a∈Act

[a]ϕa |
∨

a∈Act

〈a〉ϕa | maxX.ϕ | minX.ϕ | X.

An Operational Guide to Monitorability with Applications to Regular Properties 23

In order to motivate the definition of this fragment, consider a formula ϕ ∈
dHML. By induction on the length of a finite trace s, we can see that for every
s, there is a unique, up to unfolding, subformula ψ of ϕ, such that for every
finfinite trace f , sf satisfies ϕ if, and only if, f satisfies ψ. Conversely, by structural
induction on ψ, for every subformula ψ (after unfolding) of ϕ, there is a finite trace
s, which intuitively is formed by the sequence of actions in the modalities of ϕ that
leads to an occurrence of ψ in ϕ such that every finfinite trace sf satisfies ϕ if,
and only if, f satisfies ψ. In contrast, for a sHML formula ϕ the violation of a
subformula can only yield the violation of ϕ, while the satisfaction of a subformula
often does not yield the satisfaction of ϕ, and dually for cHML. Since persistently
informative monitorability depends on both violations and satisfactions, we turn
to the deterministic fragment of Definition 5.5.

While the determinisation of both finite automata and ω-automata are stan-
dard, automata over the finfinite domain are not well-established. We define these
automata and show that using determinisation procedures from the finite and
the infinite domain, we can obtain, for any recHML formula ϕ, a deterministic
automaton over finfinite words that recognises the traces satisfying ϕ. We then
translate such automata into dHML.

The following definition recalls from [43, 63] the definitions of deterministic
automata over finite and infinite traces (words) and defines deterministic automata
over finfinite traces.

Definition 5.6 A deterministic automaton is given by D = (Q,Σ, q0, δ, Ω) where
Q is a set of states, Σ is an alphabet, q0 ∈ Q is an initial state, δ : Q×Σ → Q is a
transition function and Ω is an acceptance condition, which depends on the type
of the automaton.

For deterministic automata over finite traces (DFA), Ω is a subset F ⊆ Q;
for deterministic automata over infinite traces (DPA), Ω is a priority assignment
ρ : Q → I where I is a finite set of integer priorities; for deterministic automata
over finfinite traces (DPFA), Ω is a pair of the form (F, ρ).

A run of an automaton D over a finite trace s ∈ Σ∗ is a sequence of states
π = π0π1 · · ·π|s|+1 of length |s|+1 such that π0 = q and πi+1 = δ(πi, s[i]). Similarly,
a run of an automaton D over an infinite trace t ∈ Σω is an infinite sequence of
states π = π0π1..., such that π0 = q and πi+1 = δ(πi, t[i]). A run of a DFA over
a finite word is accepting if the final state of the run is in F ; a run of a DPA
over an infinite word is accepting if the highest priority assigned by ρ to a state
occurring infinitely often on the run is even; a run of a DPFA over a finfinite word
is accepting if it is either finite and its final state is in F or it is infinite and the
highest priority assigned by ρ to a state occurring infinitely often is even.

A deterministic automaton D accepts a word t if the (unique) run over t is
accepting. The language recognised by the automaton, L(D) is the set of traces
that D accepts. �

DFA are known to recognise all regular properties over finite traces [55], while
DPA recognise all ω-regular properties over infinite traces [58]. We now argue that
it follows that any recHML property ϕ is recognised by a DPFA. Lemma 5.4 uses
a variation of the classical product construction to combine a DFA and a DPA
into a DPFA.

24 Luca Aceto et al.

Lemma 5.4 For each recHML formula ϕ there is a DPFA that recognises the lan-

guage of finfinite traces that satisfy ϕ.

Proof The set of finite traces S∗ that satisfy ϕ is a regular property of finite
words, and therefore there is a DFA D∗ = (Q,Act, q0, δ, F) that recognises S∗.
Similarly, the set Sω of infinite traces that satisfy ϕ is ω-regular, so there is a DPA
Dω = (Q′,Act, q′0, δ

′, ρ) that recognises Sω.
Let D = (Q×Q′,Act, (q0, q

′
0),∆, (F ′, ρ′)) where ∆((q, q′), a) = (δ(q, a), δ(q′, a))

and F ′ = F ×Q′ and ρ′(q, q′) = ρ(q′).
D recognises JϕK. Indeed, D accepts a finite trace s if and only if the first

component of its run is an accepting run over s in D∗, and an infinite trace t if
and only if the second component of its run is an accepting run over t in Dω. ut

Lemma 5.5 For every recHML formula ϕ, there is an equivalent dHML formula ψ.

Proof From Lemma 5.4, there is a DPFA D = (Q,Act, q0, δ, (F, ρ)) that accepts
exactly the traces that satisfy ϕ. We now show how to translate D into a dHML

formula that is equivalent to ϕ.
We now consider all (finite) paths in D that start from q0. For k ≥ 0, states

q1, q2, . . . , qk ∈ Q, and actions a1, a2, . . . , ak ∈ Act, $ = q0a1q1a2q2 · · · akqk is a
path (for our purposes) of length k in D, if

– for all states qi, qj , where j > i, if qi = qj , then there is some i < l < j, such
that ρ(ql) > ρ(qi); and

– for all i < k, qi+1 = δ(qi, ai+1).

It is not hard to see, with a combinatorial argument, that k ≤ 2|Q| (the highest
priority can only occur once, the second highest twice, and the ith-highest 2i−1

times). We use the notations q$ = qk and $|q = q0a1q1a2q2 · · · aiqi, where qi = q

is the last position where q appears in the path.
We then define a formula for each path $ = q0a1q1a2q2 · · · akqk:

ϕ$ =

maxX$.

∧
a∈Act [a]g($, a), if qk ∈ F and ρ(qk) is even;

minX$.
∧
a∈Act [a]g($, a), if qk ∈ F and ρ(qk) is odd;

maxX$.
∨
a∈Act 〈a〉g($, a), if qk /∈ F and ρ(qk) is even;

minX$.
∨
a∈Act 〈a〉g($, a), if qk /∈ F and ρ(qk) is odd;

where g($, a) = ϕ$aδ(q,a) if $aδ(q, a) is a path, and X$|δ(q,a) otherwise. Further-
more, we define ψ$ to be such that ϕ$ = maxX$.ψ$, or ϕ$ = minX$.ψ$.

Observe that the definition above is recursive, with maximal paths as base
cases, and therefore for all $, ϕ$ is well defined. Furthermore, according to the
above definition, a fixpoint variable appears only if it is marked by a subscript of
a prefix of the corresponding path, and therefore it appears only in the scope of a
(unique) formula that binds it.

We proceed to prove that Jϕq0K is exactly the language of D, i.e., we show that
for every finfinite trace f , D accepts f if and only if f ∈ Jϕq0K. We distinguish two
cases.

Case 1: f is a finite trace. For this case, we consider an environment σ, such that
for every path $, σ(X$) = Jϕ$, σK, and we use induction on f to prove that
for every path $ = q0a1q1 · · · akqk, f ∈ Jϕ$, σK if and only if the run of D from
q$ on f is an accepting run, and this suffices, because ϕq0 is a closed formula.

An Operational Guide to Monitorability with Applications to Regular Properties 25

Case 2: f is an infinite trace. In this case, let π = π0π1 · · · be the (infinite) run
of D on f , where q0 = π0. Let f = a1a2 · · · , and for each i ≥ 0, let fi =
aiai+1 · · · . We can define the path-run π′ = π′0π

′
1 · · · , where each π′i is a path

in D, such that π′0 = q0, and for all i > 0, if π′i−1δ(qπ′i−1
, ai) is a path, then

π′i = π′i−1δ(qπ′i−1
, ai), and otherwise π′i = π′i−1|δ(qπ′

i−1
,ai). Let q be such that

ρ(q) is the highest priority that appears infinitely often in the run.
We first assume that D accepts f (and therefore ρ(q) is even), and we prove
that f ∈ Jϕq0K. Let I0 ≥ 0 be such that πI0 = q, and every priority that does
not appear infinitely often in the path-run, only appears before position I0.
We proceed to prove the following claims:
Claim 1: fI0 ∈ Jϕπ′I0

, σK. Since ρ(qπ′I0
) is even, ϕπ′I0

is a greatest fixpoint for-

mula, and therefore, from its semantics, it suffices to find a set of traces
S, such that S ⊆ Jψπ′I0

, σ[Xπ′I0
7→ S]K. Let S = {fi | i ≥ I0 and π′i = π′I0}.

Let I ′ > I ≥ I0 be such that π′I = π′I′ = π′I0 . To prove the claim, it
suffices to prove that fI ∈ Jϕπ′I , σ[Xπ′I0

7→ S]K. Note that ρ(π′I) is the

greatest priority that appears from position I onward, and therefore all
paths that appear in the path-run after position I are extensions of π′I .
Therefore, all ϕπ′i , where i ≥ I are subformulas of ϕπ′I . We show that

for every I ≤ i < I ′, fi ∈ Jϕπ′i , σ[Xπ′I0
7→ S]K and we use induction on

I ′ − i. The base case is i + 1 = I ′, and therefore g($, ai) = Xπ′I0
, so

fi+1 ∈ S ⊆ Jg($, ai), σ[Xπ′I0
7→ S]K, yielding that fi ∈ Jϕπ′i , σ[Xπ′I0

7→ S]K.
The inductive step is straightforward, after observing that ϕπ′i is equivalent
to ψπ′i [ϕπ′i/Xπ′i], which, under σ[Xπ′I0

7→ S] is equivalent to ψπ′i (we have

established that Xπ′I0
6= Xπ′i).

Claim 2: for all i ≤ I0, fi ∈ Jϕπ′i , σK. We can prove this by induction on I0 − i.
The base case is Claim 1 and the inductive steps are straightforward and
similar to the above.

We now assume that D does not accept f (and therefore ρ(q) is odd), and we
prove that f /∈ Jϕq0K. This case is similar to the above. ut

We are ready to define the persistently informative fragment of recHML.

Definition 5.7 The persistently informatively monitorable fragment of recHML

is pHML, which consists of all the formulas in dHML all of whose subformulas can
refute or verify.

Theorem 5.4 For ϕ ∈ recHML, ϕ is persistently informatively monitorable if and

only if there is some ψ ∈ pHML such that JϕK = JψK.

Proof Assume that ϕ ∈ recHML is a persistently informatively monitorable.
By Lemma 5.5, we can assume, without loss of generality, that ϕ ∈ dHML. Fur-
thermore, assume that unsatisfiable subformulas are replaced by ff and valid sub-
formulas are replaced by tt. Towards a contradiction, assume that a subformula ψ
of ϕ can neither refute or verify. Consider a sequence of modalities under the scope
of which ψ is located and let s be the finite trace read off these modalities. Since ϕ
is persistently informatively monitorable, it has a sound persistently informative
monitor, and therefore, from Lemma 3.2, there is some r such that sr determines
ϕ. Since ψ can neither refute nor verify, ψ is neither ff nor tt; since it is neither

26 Luca Aceto et al.

valid nor unsatisfiable, there are traces srt ∈ JϕK and srt′ /∈ JψK, contradicting that
sr determines ϕ.

For the other direction, consider ϕ ∈ dHML all of whose subformulas can refute
or verify. Then, for every trace s, we can find some r such that sr determines ϕ;
indeed r is the trace labelling the sequence of modalities leading to tt or ff. Hence
ϕ is persistently monitorable, and we are done. ut

6 The Robustness of the Syntactic Fragments of recHML

So far, we have assumed that executions can be finite, as well as infinite. However,
in some settings one may expect all executions to be, in fact, infinite, or, on the
contrary, that all executions eventually terminate. Furthermore, we may also have
access to prior knowledge about the system that affects the domain of executions
to consider. In such cases, guarantees on monitor behaviour need only be restricted
to the domain of interest and it is natural to wonder how our syntactic hierarchy
of monitorability adapts to different domains.

First, observe that a smaller domain means less stringnent requirements on
monitors: in particular, monitors don’t have to be sound with respect to execu-
tions excluded by the domain of study. In the infinite domain, for example, this
enables monitors to reach verdicts that they could not reach in the finfinite do-
main. Indeed, modal properties, such as “Initialise occurs within the first 10
events”, which are determined by a prefix of bounded length, are all monitorable
both for violations and satisfactions in the infinite domain, but only persistently
informatively monitorable in the finfinite domain.

Second, note that formulas that are not equivalent in the finfinite domain can
be equivalent in a smaller domain, so more formulas can be rewritten into each
fragment of recHML. For example, on the infinite domain the modal operators
〈a〉ψ can be rewritten as

[a]ψ ∧
∧

b∈Act\{a}

[b]ff,

and is monitorable for violations whenever ψ is monitorable for violations. In the
finfinite domain, this is not the case, since the two formulas evaluate differently
on the empty trace. While 〈a〉ψ can easily be re-written, some formulas, such as
minX.

∧
a∈Act [a]X (“the trace is finite”), which on the infinite domain is equivalent

to ff, are not as easily detected. Due to these semantic equivalences, more formulas
are monitorable on the infinite domain than in the finfinite domain (see also [5]).

Is it then necessary to analyse monitorability in each domain separately, or
can our syntactic characterisations be shown to be robust across domains? In this
section we show that sHML and cHML characterise violation and satisfaction mon-
itorability across all linear domains, but that the other syntactic characterisations
are not as robust and may require special conditions or variations. Specifically,
iHML and pHML, although not robust for arbitrary domains, also characterise in-
formative and persistently informative monitorability for a certain class of domains
— and in particular for the finite and the infinite domains. If we parameterize the
definition of iHMLwith a semantic condition that depends on the domain, then we
can show that it is a robust characterization of informative monitorability across
all linear domains.

An Operational Guide to Monitorability with Applications to Regular Properties 27

Monitorability parameterised by domain To begin, we can parameterise soundness,
completeness, informativity, and persistent informativity with domains in the ob-
vious way. Soundness in a domain D ⊆ Act∞ only requires a monitor to agree
with a property over traces in D. Similarly, completeness in D only requires the
monitor to identify violations or satisfying traces within D. Informative monitors
must reach a verdict with a prefix of a trace in D and persistently informative
monitors must be able to do so after reading any prefix of a trace in D. Then, each
type of monitorability extends to monitorability in D.

For the following definitions, we fix a domain D ⊆ Act∞.

Definition 6.1 (Soundness in domain D) Monitor m is sound for property P

in domain D if for all f ∈ D:

– acc(m, f) implies f ∈ P , and
– rej(m, f) implies f /∈ P . �

Definition 6.2 (Completeness in domain D) Monitor m is satisfaction-complete

for P in domain D if f∈P ∩ D implies acc(m, f) and violation-complete for P if
f∈(D \ P) implies rej(m, f). It is complete for P in D if it is both satisfaction- and
violation-complete for P in D and partially-complete if it is either satisfaction- or

violation-complete in D. �

Definition 6.3 (Informative Monitors in domain D) A monitor m is:

– informatively accepting if there is trace in D that m accepts: ∃f ∈ D ·acc(m, f);
– informatively rejecting if there is a trace in D that m rejects: ∃f ∈ D ·rej(m, f);
– informative when it either accepts or rejects a trace in D:
∃f ∈ D · rej(m, f) or acc(m, f);

– persistently accepting if it remains informatively accepting for all finite traces
that can be extended into D:
∀s ∈ Act∗ · ∃f · (sf ∈ D and acc(m, sf));

– persistently rejecting if it remains informatively rejecting for all finite traces
that can be extended into D:
∀s ∈ Act∗ · ∃f(sf ∈ D and · rej(m, sf));

– persistently informative when it remains informative for all finite traces that
can be extended into D:
∀s ∈ Act∗ · ∃f · (sf ∈ D, and rej(m, sf) or acc(m, sf)). �

Then, the various grades of monitorability can similarly be parameterized with
respect to D in a straightforward manner.

We now show that sHML and cHML are robust descriptions of violation and
satisfaction monitorability, in the following sense:

Theorem 6.1 Given a domain D ⊆ Act∞, a property described by a formula ψ ∈
recHML is monitorable for violations in D if and only if there is a formula ψ′ ∈ sHML

such that JψK ∩D = Jψ′K ∩D.

Similarly, ψ is monitorable for satisfactions in D if and only if there is a formula

ψ′ ∈ cHML such that JψK ∩D = Jψ′K ∩D.

Proof Since a trace in D is also a trace in Act∞, a monitor that is sound for ψ′ in
Act∞ is also sound for ψ in D. Furthermore, a monitor that is violation-complete

28 Luca Aceto et al.

for ψ′ in Act∞ is also violation-complete in D, since every violating trace in D is
also a violating trace in Act∞. Hence a sound and violation complete monitor for
ψ′ in Act∞ also witnesses the violation-monitorability of ψ in D.

Conversely, let m be a sound and violation-complete monitor in D for ψ. Then,
by Theorem 4.3, it is also sound and violation-complete in Act∞ for some ψ′ ∈
sHML, obtained by formula synthesis from m. Then, JψK ∩D ⊆ Jψ′K ∩D since by
completeness for ψ′, m identifies all traces in D\Jψ′K, and by soundness for ψ, these
traces must also be violations of ψ. By a similar argument, Jψ′K ∩D ⊆ JψK ∩D.

The argument for monitorability for satisfactions is similar. ut

In other words, sHML and cHML are the syntactic fragments that describe
monitorability for violations and satisfactions for any domain D ⊆ Act∞, in par-
ticular the infinite domain and the finite domain.

This conclusion is in line with the work presented in [5], where we identified
sHML and cHML as the fragments describing violation and satisfaction monitora-
bility in the infinite domain. Interestingly, this robustness seems to extend even
to the branching-time domain [38], although this is beyond the scope of the above
theorem.

We can then ask whether a similar robustness result holds for the other types
of monitorability. In what follows, we show that such a strong result does not hold
for any of the other fragments that we have identified so far, yet the fragments
for informative and persistently informative monitorability are preserved for the
infinite domain Actω.

Complete monitorability From its definition, the collection of completely moni-
torable properties is the intersection of the sets of satisfaction- and violation-
monitorable properties. However, this does not mean that the collection of com-
pletely monitorable, regular properties is described by the syntactic intersection
of sHML and cHML on all domains, even though this is indeed the case in the
finfinite domain. Rather, it is captured by a fragment F such that any sHML for-
mula equivalent to some cHML formula over D is also equivalent to a formula of
F over D. For example, in the infinite domain, HML, the fragment of recHML

without fixpoints, characterises all completely monitorable properties [5, Theo-
rem 4.8] (without the requirement that they are regular), and we can see that in
certain specific domains, we can completely monitor for all recHML properties.
For instance, if the domain is Actk, the finite traces of length exactly k ≥ 0, a
monitor can simply evaluate any recHML property after observing k events —
on the other hand, if the domain allows traces of length at most k, then [α]tt is
not monitorable for violations. A purely syntactic characterisation of completely
monitorable formulas does not seem plausible, but we can give one with a semantic
condition.

Theorem 6.2 For every recHML formula ϕ and domain D ⊆ Act∞, ϕ is completely

monitorable in D if and only if there are formulas ψ ∈ sHML and ψ′ ∈ cHML, such

that

JϕK ∩D = JψK ∩D = Jψ′K ∩D.

Proof Theorem 6.2 is a direct consequence of Theorem 6.1. ut

An Operational Guide to Monitorability with Applications to Regular Properties 29

Informative and persistently informative monitorability Unlike satisfaction and vio-
lation monitorability, informative monitorability, as defined in Definition 3.8, is
not robust to variations in the domain. For example, the property “a occurs either
immediately or infinitely often” is informatively monitorable in Act∞ since the
finite trace a determines the property. However, if D is pathological, i.e. D = J¬aK,
then the property is not informatively monitorable in D. Then, there is no hope for
the syntactic fragment iHML to be robust in the same way as sHML and cHML

are robust.
Similarly, persistently informative monitorability is also not necessarily pre-

served in subdomains. Indeed, “Either a occurs infinitely often or eventually b” is
persistently informative in Act∞, but not in (Act \ {b})∞.

That being said, the syntactic fragments of recHML that correspond to the in-
formatively and persistently informatively monitorable properties are robust with
respect to certain natural domains such as the infinite domain — specifically for
the domains whose finite prefixes are Act∗. To show this, we first define the set
of prefixes of a domain D to be:

pr(D) = {s ∈ Act∗ | ∃f · sf ∈ D}.

Lemma 6.1 Let D ⊆ Act∞, such that pr(D) = Act∗. Then, for every monitor m,

m is informative (resp., persistently informative) monitorable in D if and only if m is

informative (resp., persistently informative) monitorable in Act∞.

Theorem 6.3 Let D ⊆ Act∞, such that pr(D) = Act∗. Then, for every ϕ ∈
recHML, ϕ is informatively (resp., persistently informatively) monitorable in D if

and only if there is some ψ ∈ siHML ∪ ciHML (resp., ψ ∈ pHML), such that

JϕK ∩D = JψK ∩D.

Proof We first assume that ϕ ∈ pHML (resp., ϕ ∈ iHML) and we demonstrate that
there is a regular monitor m that is persistently informative (resp., informative)
and sound for ϕ in D. From Theorem 5.4, we see that there is a regular monitor
m that is persistently informative (resp., informative) and sound for ϕ in Act∞.
From the fact that pr(D) = Act∗, we get that m is persistently informative (resp.,
informative) in D (notice that all finite traces can be extended into D), and from
the fact that D ⊆ Act∞, we get that m remains sound for ϕ in D.

For the cases where ϕ is informatively and persistently informatively moni-
torable in D, we follow the proofs of Lemma 5.3 and Theorem 5.4 respectively,
taking D into account. ut

The reason that Theorem 6.3 holds for domains D with pr(D) = Act∗ is that
these domains preserve the finite prefixes that determine a property. The theorem
can be generalized to any domain D for the case of siHML∪ ciHML, but after we
generalize the definitions of siHML ∪ ciHML with the domain D as a parameter,
as follows.

Definition 6.4 The informative fragment in D is iHMLD = siHMLD ∪ ciHMLD
where

siHMLD = {ϕ1 ∧ ϕ2 ∈ recHML | ϕ1 ∈ sHML and D \ Jϕ1K 6= ∅},
ciHMLD = {ϕ1 ∨ ϕ2 ∈ recHML | ϕ1 ∈ cHML and D ∩ Jϕ1K 6= ∅}. �

30 Luca Aceto et al.

Theorem 6.4 Let D ⊆ Act∞. Then, for every ϕ ∈ recHML, ϕ is informatively

monitorable in D if and only if there is some ψ ∈ siHMLD ∪ ciHMLD, such that

JϕK ∩D = JψK ∩D.

It is likely that a similar generalization and characterization can be achieved
for pHML, but we expect the syntactic condition to be more convoluted.

This concludes our quest for syntactic characterisations of regular properties
monitorable according to the different levels of our monitorability hierarchy in
different domains. We now lift our restriction to regular properties and turn our
attention to how existing notions of monitorability from the literature embed into
this hierarchy, starting with (co-)safety properties.

7 Safety and Co-safety

In this section and the next, we study how classic definitions of monitorability cor-
respond to levels of the monitorability hierarchy, starting with safety and co-safety
as definitions of monitorability. While these correspondences between a language-
based view of monitorability and an operational view of monitorability might seem
straight-forward, there are some subtleties involved. Indeed, in this section, we also
discuss an error in Falcone et al.’s work that aimed to establish such a correspon-
dence between safety properties and an operational view of monitorability.

The classic (and perhaps the most intuitive) definition of monitorability con-
sists of (some variation of) safety properties [5,9,33,41,60,64]. There are, however,
subtleties associated with how exactly safety properties are defined—particularly
over the finfinite domain—and how decidable they need to be to qualify as truly
monitorable. For example, Kim and Viswanathan [64] argued that only recursively
enumerable safety properties are monitorable (they restrict themselves to infinite,
rather than finfinite traces). By and large, however, most works on monitorability
restrict themselves to regular properties, as we do in Section 4.

We adopt the definition of safety that is intuitive for the context of RV: a
property can be considered monitorable if its failures can be identified by a finite
prefix. This is equivalent to Falcone et al.’s definition of safety properties [33, Def. 4]
and, when restricted to infinite traces, to other work such as [9, 20,41].

Definition 7.1 (Safety) A property P ⊆ Act∞ is a safety property if every f /∈ P
has a prefix that determines P negatively. The class of safety properties is denoted
as Safe in Figure 1.1. �

Pnueli and Zaks, and Falcone et al. (among others) argue that it makes sense
to monitor both for violation and satisfaction. Hence, if safety is monitorable for
violations, then the dual class, co-safety (a.k.a. guarantee [33], reachability [19]), is
monitorable for satisfaction. That is, every trace that satisfies a co-safety property
can be positively determined by a finite prefix.

Definition 7.2 (Co-safety) A property P ⊆ Act∞ is a co-safety property if every
f ∈ P has prefix that determines P positively. The class of co-safety properties is
denoted as CoSafe, also represented in Figure 1.1. �

An Operational Guide to Monitorability with Applications to Regular Properties 31

Example 7.1 “Eventually s is reached”, i.e., F s, is a co-safety property whereas “f

never occurs”, i.e., G¬f, is a safety property. The property “s occurs infinitely often”,
i.e., G F s, is neither safety nor co-safety. The property only holds over infinite traces
so it cannot be positively determined by a finite trace. Dually, there is no finite
trace that determines that there cannot be an infinite number of s occurrences in
a continuation of the trace. Similarly, ϕeven from Example 4.2 is neither a safety
nor a co-safety property, but ϕevenW is a safety property. �

Safety and Co-safety, operationally. It should come as no surprise that safety and
co-safety coincide with an equally natural operational definition. Here, we establish
the correspondence with the denotational definition of safety (co-safety), complet-
ing three correspondences amongst the monitorability classes of Figure 1.1.

Theorem 7.1 VCmp = Safe and SCmp = CoSafe.

Proof We treat the case for safety, as the case for co-safety is similar. If P is a
safety property, then for every f ∈ Act∞ \ P , there is some finite prefix s of f
that negatively determines P . Therefore, mP is sound (Lemma 3.3) and violation-
complete (Definition 3.2) for P . The other direction follows from the fact that
whenever P ⊆ Act∞ is monitorable for violation, every f ∈ Act∞ \P has a finite
prefix that negatively determines it. ut

Aceto et al. [5] already show the correspondence between violation (dually, sat-
isfaction) monitorability over finfinite traces and properties expressible in sHML

(dually, cHML). As a corollary of Theorem 7.1, we obtain a syntactic characteri-
sation for the Safe and CoSafe monitorability classes; see Figure 1.1.

7.1 The operational monitorability characterisation of safety due to Falcone et al.

Falcone et al. [33, Pg. 362, Col. 2] remark that the classical definitions of monitora-
bility are hard to use in practice. They follow a similar agenda to ours, namely that
of providing alternative characterisations for the different monitorability classes of
properties. They propose three definitions of monitorability [33, Defs. 16 and 17]
which they claim to coincide with safety, co-safety, and the union of safety and co-
safety properties in [33, Thm. 3]. These alternative definitions elegantly generalise
the n-valued logic semantics approach pioneered by Bauer et al. for LTL [16, 18].
We view n-valued logic semantics as more operational in flavour because they ab-
stractly describe the expected behaviour of a monitor, in terms to the verdicts it
should return when presented with a partial trace. In this sense, these alternative
definitions are more amenable for the purposes of correct monitor construction
and is in line with our motivations discussed in Section 1.

Obtaining characterisations for monitorability classes can however be quite
subtle. Particularly, we here argue that the claim made by [33, Thm. 3] does
not hold. We were alerted to this when relating the monitorability hierarchy of
Figure 1.1 to the state of the art. Prior to this work, we were of the understanding
that the linear-time monitorability classes studied in [5] were different from those
studied in [33]. Our judgement was clouded by a number of factors that made the
definitions hard to relate, such as the different formalisms used (e.g., recHML vs
regular expressions, process calculi vs Strett Automata, etc.). However, once were

32 Luca Aceto et al.

went through the effort of recasting these results in our unifying framework the
similarities and discrepancies became easier to spot.

Remark 7.1 Falcone et al. present finfinite properties as a pair consisting of a set
of finite traces and a set of infinite traces. This difference is cosmetic and here we
speak of just one set, containing both finite and infinite traces.

We recall Falcone et al.’s definitions and show that their definitions of moni-
torability include more than just safety and co-safety properties. Their definition
of monitorability relies on the notion of a property evaluation parameterised by
a truth domain [33, Def. 16]. They then give a uniform condition that defines
monitorability with respect to any truth-domain and its associated mapping. Here
we focus on their monitorability with respect to the truth-domains {tt, ?}, {ff, ?}
and {tt,ff, ?}, which they claim correspond to co-safety, safety and their union,
respectively.

Definition 7.3 (Property evaluation wrt. a truth-domain [33, Def. 16]) For
each of three different verdict-domains and finfinite properties P (“r-properties”
in their terminology), Falcone et al. define the following evaluation functions:

For B = {ff, ?} and s ∈ Act∗:
JP KB(s) = ff if ∀f ∈ Act∞. sf /∈ P
JP KB(s) =? otherwise.

For B = {tt, ?} and s ∈ Act∗:
JP KB(s) = tt if ∀f ∈ Act∞. sf ∈ P
JP KB(s) =? otherwise.

For B = {tt,ff, ?} and s ∈ Act∗:
JP KB(s) = tt if s ∈ P and ∀f ∈ Act∞. sf ∈ P
JP KB(s) = ff if s /∈ P and ∀f ∈ Act∞. sf /∈ P
JP KB(s) =? otherwise. �

Definition 7.4 (Alternative FFM-monitorability [33, Def. 17]) A property P
is B-monitorable over a truth domain B if for all s, r ∈ Act∗, if s ∈ P and r /∈ P ,
then JP KB(s) 6= JP KB(r). �

In [33, Thm. 3], they then claim that (i) For B = {ff, ?}, B-monitorability
equates to Safety (ii) For B = {tt, ?}, B-monitorability equates to Co-safety (iii)
For B = {tt,ff, ?}, B-monitorability equates to Safety ∪ Co-safety.

From [33, Def. 17], it easily follows that any property P for which P ∩Act∗ = ∅
or Act∗ ⊆ P is vacuously B-monitorable for any truth-domain B, and evaluation
function. However, not all such properties are necessarily Safety or Co-safety prop-
erties which contradicts [33, Thm. 3].

Example 7.2 Recall the property “always eventually s”, expressed in LTL as G F s.
Using the encoding outlined in Example 4.1, this property can be expressed as the
recHML formula:

maxX.
(

minY.
(
〈s〉tt ∨ (

∨
a∈Act

〈a〉Y
)
∧
∨

a∈Act

〈a〉X
)

We argued in Example 3.2 that this property is not a safety property. From the
structure of the recHML formula, one can easily conclude that no finite traces

An Operational Guide to Monitorability with Applications to Regular Properties 33

satisfy this property.6 This means that the implication defining Definition 7.4 is
trivially satisfied, which in turn means that G F s is B-monitorable. This counter-
example contradicts [33, Thm. 3]. �

We believe the critical error can be traced back to [33, Lem. 3] used by [33,
Thm. 3]. In particular, the proof of [33, Lem. 3] (Appendix 2.3) falsely claims that
whenever P ∩Act∗ = ∅ or Act∗ ⊆ P , then that property P is necessarily either a
safety or co-safety property. This property does not hold even when the domain of
discourse is limited to the reactivity class [20], which is obtained by the boolean
combination of response and persistence properties.7

Example 7.3 Consider the set Pf = { sf | s ∈ Act∗ }, i.e., the set of all finite
traces ending with a f. We can use the construction in [33, Def. 4] to build from
Pf the response property P∞f containing all finite traces ending in f and all the
infinite traces where f occurs infinitely often. In the same manner, we can build
the second response property P∞s containing all finite traces ending in s and all
the infinite traces where s occurs infinitely often. Now by the definition of the
reactivity class [20], the conjuction P∞f ∩ P∞s should be a reactive property. It
should also be clear that P∞f ∩ P∞s does not have any finite traces (i.e., a trace
cannot both end with f and s) but it clearly contains infinite traces (e.g., (fs)ω).
This means that P∞f ∩ P∞s 6= ff, contradicting the key assumption used in the
reasoning for the proof of [33, Lem. 3]. �

This concludes our analysis of how safety and co-safety, used as notions of
monitorability, fit into the hierarchy established in Section 3.

8 Pnueli and Zaks

The work on monitorability due to Pnueli and Zaks [54] is often cited by the RV
community [15]. The often overlooked particularity of their definitions is that they
only define monitorability of a property with respect to a (finite) sequence.

Definition 8.1 ([54]) Property P is s-monitorable, where s ∈ Act∗, if there is
some r ∈ Act∗ such that P is positively or negatively determined by sr. �

Example 8.1 The property
(
f ∧ F r

)
∨
(
F G s

)
is s-monitorable for any finite trace

that begins with f, i.e., fs, since it is determined by the extension fsr. It is not

s-monitorable for finite traces that begin with an action other than f. �

Monitorability over properties—rather than over property–sequence pairs—can
then be defined by either quantifying universally or existentially over finite traces:
a property is monitorable either if it is s-monitorable for all s, or for some s. We
address both definitions, which we call ∀pz- and ∃pz-monitorability respectively.
∀pz-monitorability is the more standard interpretation: it appears for example

6 It can be easily inferred from the outer maximal fixpoint and the exlusive use of existential
modalities.

7 A response is one where all of its infinite traces have an infinite number of prefixes satisfying
the property as well. A persistence property is one where all of its infinite sequences contain
a finite number of prefixes that do not satisfy the property.

34 Luca Aceto et al.

in [33] where it is attributed to Pnueli and Zaks. However, the original intent seems
to align more with ∃pz-monitorability: in [54], Pnueli and Zaks refer to a property
as non-monitorable if it is not monitorable for any sequence. This interpretation
coincides with weak monitorability used in [22]. The earliest definition equivalent
to ∀pz (restricted to infinite words) that we could find is due to Bauer, Leucker
and Schallhart [18]. They complement the terminology of Kupferman and Vardi
of good and bad prefixes with ugly prefixes, which are those with no good or bad
extension. Their definition of monitorability consists of properties without ugly
prefixes. It is easy to see that this is in fact exactly equivalent to Pnueli and
Zack’s definition quantified universally.

Definition 8.2 (∀pz-monitorability) A property P is (universally Pnueli–Zaks)
∀pz-monitorable if it is s-monitorable for all finite traces s. The class of all ∀pz-
monitorable properties is denoted ∀PZ. �

Definition 8.3 (∃pz-monitorability) A property P is (existentially Pnueli–Zaks)
∃pz-monitorable if it is s-monitorable for some finite trace s, i.e., if it is ε-monitorable.
The class of ∃pz-monitorable properties is written ∃PZ. �

The apparently innocuous choice between existential and universal quantifica-
tion leads to different monitorability classes ∀PZ and ∃PZ.

Example 8.2 Consider the property “Either s occurs before f, or r happens infinitely

often”, expressed in LTL fashion as
(
(¬f) U s

)
∨
(
G F r

)
. This property is ∃pz-

monitorable because the trace s positively determines the property. However, it is
not ∀pz-monitorable because no extension of the trace f positively or negatively de-
termines that property. Indeed, all extensions of f violate the first disjunct and, as
we argued in Example 7.1, there is no finite trace that determines the second con-
junct positively or negatively. Property ϕeven from Example 4.2 is ∀pz-monitorable:
any prefix of the form a0s . . . ans or a0s . . . an (including ε), where n ≥ 0 and every
ai ∈ {s, f, r}, can be extended to a prefix that negatively determines it (e.g., by
extending it with ff). �

From Definitions 8.2 and 8.3, it follows immediately that ∀PZ ⊂ ∃PZ.

Proposition 8.1 All properties in Safe ∪ CoSafe are ∀pz-monitorable.

Proof Let P ∈ Safe and pick a finite trace s. If there is an f such that sf /∈ P then,
by Definition 7.1, there exists r � sf that negatively determines P , meaning that s
has an extension that negatively determines P . Alternatively, if there is no f such
that sf /∈ P , s itself positively determines P . Hence P is s-monitorable, for every

s, according to Definition 8.1. The case for P ∈ CoSafe is dual. ut

Pnueli and Zaks, operationally. ∃pz-monitorability coincides with informative moni-
torability: ∃pz-monitorable properties are those for which some monitor can reach
a verdict on some finite trace. For similar reasons, ∀pz-monitorability coincides
with persistently informative monitorability. See Figure 1.1.

Theorem 8.1 ∃PZ = ICmp and ∀PZ = PICmp.

An Operational Guide to Monitorability with Applications to Regular Properties 35

Proof Since the proofs of the two claims are analogous, we simply outline the one
for ∀PZ = PICmp. Let P ∈ ∀PZ and pick a finite trace s ∈ Act∗. By Lemma 3.3,
mP is sound for P . By Definition 3.7 we need to show that there exists an f such
that acc(mP , sf) or rej(mP , sf). From Definitions 8.1 and 8.2 we know that there
is a finite r such that sr positively or negatively determines P . By Definition 3.2
we know that acc(mP , sr) or rej(mP , sr). Thus P ∈ PICmp, which is the required
result.

Conversely, assume P ∈ PICmp, and pick some s ∈ Act∗. By Definitions 8.1
and 8.2, we need to show that there is an extension of s that positively or nega-
tively determines P . From Definitions 3.7 and 3.8, there exists some f such that
acc(mP , sf) or rej(mP , sf). By Definition 3.1, there is a finite extension of s, say
sr, that is a prefix of sf such that acc(mP , sr) or rej(mP , sr). By Definition 3.2,
we know that sr either positively or negatively determines P . Thus P ∈ ∀PZ. ut

9 Related Work

We have shown how classical definitions of monitorability fit into our hierarchy and
provided the corresponding operational interpretations and syntactic characterisa-
tions, focussing on regular finfinite properties over a finite alphabet and monitors
with irrevocable verdicts. Here we discuss how different parameters, both within
our setting and beyond, affect what is monitorable, and how the framework of the
monitorability hierarchy can be adapted to these settings.

Monitorability wrt. the alphabet. The monitorability of a property can depend on
Act. For instance, if Act has at least two elements {a, b, . . .}, property {aω}, which
can be represented as max X.〈a〉X, is s-monitorable for every sequence s, as s can
be extended to sb, which negatively determines the property. On the other hand,
assume that Act = {a}. In this case, {aω} is neither ∃pz- nor ∀pz-monitorable.
Indeed, no string s = ak, k ≥ 0, determines {aω} positively or negatively as s does
not satisfy p but its extension aω does. On the other hand, when restricted to
infinite traces, p is again ∃pz-monitorable.

Whether the robustness results of Section 6 can be extended from domain
variations to alphabet variations is left as future work. It is particularly interesting
to consider infinite alphabets, which enable the processing of data. While the
definitions of monitorability can easily be extended to infinite alphabets, it is no
longer interesting to just consider a maximal monitoring system. Indeed, the ability
to parameterise the monitorability hierarchy with different monitoring systems
becomes paramount: the choice of monitoring system defines what computational
capabilities the monitors are given, for instance whether the monitors can do
restricted arithmetic on the data, or just compare it to a fine set of values.

Monitoring with revocable verdicts. Early on, we postulated that verdicts are irre-
vocable. Although this is a typical (implicit) assumption in most work on moni-
torability, some authors have considered monitors that give revocable judgements
when an irrevocable one is not appropriate. This approach is taken by Bauer,
Leucker and Schallhart when they define a finite-trace semantics for LTL, called
RV-LTL [16]. Falcone et al. [33] also have a definition of monitorability based on
this idea (in addition to those discussed in Section 7.1). It uses the four-valued
domain {yes, no, yesc, noc} (c for currently). Finite traces that do not determine a

36 Luca Aceto et al.

property yield a (revocable) verdict yesc or noc that indicates whether the trace
observed so far satisfies the property; yes and no are still irrevocable. This defini-
tion allows all finfinite properties to be monitored since it does not require verdicts
to be irrevocable.

This type of monitoring does not give any guarantees beyond soundness: there
are properties that are monitorable according to this definition for which no sound
monitor ever reaches an irrevocable verdict: F G s for the system from Example 1.1
has no sound informative monitor, yet can be monitored according to Falcone
et al.’s four-valued monitoring. This type of monitorability is complete, in the
sense of providing at least a revocable verdict for all traces.

Other ways to classify RV properties. Havelund and Peled recently presented a re-
lated classification of infinitary properties [41]. Their classification is also based on
the type of verdicts one can reach from finite traces. Their classification consists
of safety and co-safety properties, (there called AFS and AFR), properties that
are not positively or not negatively determined by any sequence (NFS and NFR),
and properties where some, but not all prefixes have an extention that determines
the property positively, and their negations (SFS and SFR). While their classes
AFS and AFR coincide with safety and co-safety, their classification is otherwise
quite different. Indeed, they show that several of their classes contain both ∀pz-
monitorable and non-∀pz-monitorable properties. In contrast, in our classification,
∀pz-monitorability is not orthogonal to other types of monitorability; rather, it is
part of a spectrum that reflects the trade-offs between the strengths of the guaran-
tees a monitor can provide and the specifications that can be monitored with these
guarantees. As such, in our hierarchy the core monitorability classes are all either
subclasses or superclasses of ∀pz-monitorability. The Havelund and Peled classifi-
cation is therefore somewhat orthogonal to ours. However, note that many of their
classes can be recovered as boolean combinations of the classes we consider here.
For example, NFS is the negation of properties that are informatively monitorable
for violations. SFS on the other hand is the set difference of properties informa-
tively monitorable for satisfaction and persistently informatively monitorable for
satisfaction.

Another important classification is the safety-progress hierarchy [20]. There
the safety and guarantee classes correspond to the safety and co-safety classes dis-
cussed earlier. However, the richer classes, that is, response properties, persistence
properties, and their boolean combinations (also known as reactive properties),
are orthogonal to the monitorability classes considered here.

Monitoring in finite trace domains. Barringer et al. [14] consider monitoring of prop-
erties over finite traces. In this domain, all properties are monitorable if, as is the
case in [14], the end of a trace is observable; indeed, a monitor can just wait for
the end of the trace and then give a verdict. In this setting the question of moni-
torability is less relevant. However, if the end of the trace is not observable, then
this corresponds to restricting the domain to Act∗, and the question of monitora-
bility is again non-trivial, but can be addressed with the techniques developed
in Section 6.

Monitorability parameterised by the domain. In Section 6, we observe that instead of
considering finite, infinite or finfinite traces, we could equally consider monitora-

An Operational Guide to Monitorability with Applications to Regular Properties 37

bility with respect to any set of traces S. This could, for example, reflect some
prior knowledge we have about the system. Then, the level of S-monitorability of a
property will correspond to the guarantees that monitors can provide assuming the

execution is from S. This approach is also called grey-box monitoring, as it no longer
treats the system as a black box. Cimatti et al. and Leucker consider monitoring
with prior knowledge in [23,50]. Leucker proposes an LTL semantics parameterised
by this prior knowledge while Cimatti et al. incorporate the assumption directly
into the monitoring algorithm, thereby treating violations of the assumptions and
violations of the property to be monitored differently. Stucki et al. parameterise
monitorability of hyperproperties with prior knowledge in [62]. The developments
in Section 6 provide some insights into how a syntactic approach can be lever-
aged to approach monitorability with prior knowledge. It is not yet clear, how this
approach might extend to hyperproperties.

Monitoring branching-time properties. The domains we consider in this paper, and,
in fact, in most bodies of work on monitorability, are linear domains. However,
one can also consider the monitorability of branching-time properties, as it was
done in [1, 2, 5, 38] for regular properties expressed in recHML. The version of
monitorability the authors of these papers considered is partial monitorability,
similarly defined as in Definition 3.6. Specifically, Francalanza et al. show that
sHML∪cHML is the fragment of recHML that captures the partially monitorable
fragment of branching time recHML, and Aceto et al. [1] extend this to a setting
with silent actions and partial obervability. Aceto et al. [2] demonstrate how these
limits can be extended for the non-classical monitoring setup where the monitors
can observe other aspects of the system under scrutiny besides the events executed
in the current run; these might include events that could not have been carried
out (i.e., refusals [53]) or traces from previous executions of the system. For the
classical monitoring setup considered in this article, Aceto et al. [5] show how
monitorability compares between linear-time and branching-time properties. The
paper [37] gives a comprehensive high-level overview of this line of research.

Monitoring non-regular properties. Although we have focussed on the monitorabil-
ity of regular properties, the monitorability hierarchy of Section 3 is not restricted
to this setting. Indeed, although non-regular properties require richer monitors,
for example monitors with a stack or registers, the same concerns of soundness
and degress of completeness remain relevant. Barringer et al. consider a specifi-
cation logic that allows for context-free properties in [14], while in [34], Ferrier
et al. consider monitors with registers (i.e., infinite state monitors) to verify safety
properties that are not regular. Bauer, Leucker and Schallhart also consider mon-
itoring timed languages in [18]. In each of these cases, the properties considered
span more than just regular languages. Therefore, the syntactic characterisations
we provide no longer characterise monitorability for these classes. Characterising
(e.g., syntactically) the different classes of monitorability for non-regular proper-
ties is left as future work. Note that while context-free languages can directly be
understood in the framework of Section 3, this not the case for languages with
data or timed languages, which, technically, have an infinite alphabet. However,
the alphabet is of little consideration in Section 3 and could, mutatis mutandis, be
taken to be infinite.

A further dimension of monitorability comes into play with non-regular prop-
erties: computability. Indeed, while with regular languages most language manipu-

38 Luca Aceto et al.

lations are computable, this is not necessarily the case for more general properties.
This means that monitorability has to also take into account the computational
power of the monitors and one further has to ask whether the set of good or
bad prefixes of a property is computable. Monitorability can therefore be limited
by computability. Indeed, Kim and Viswanathan [64] who consider monitorability
for properties beyond regular, restrict themselves to recursively enumerable safety
properties. More recently, Stucki et al. differentiate between theoretical monitora-
bility and computable monitorability of hyperproperties. Interestingly, there is a
subtle difference in the approaches here: one can either restrict the whole class
of properties to satisfy some computational demands, or just the monitors. This
might lead to different hierarchies of monitorability as it is conceivable that, for
some properties, their good or bad prefixes might be computationably simpler than
the property itself. Indeed, the separation of concerns between the computational
objects, the monitors, and the specifications allows the monitorability hierarchy
to be parameterised independently by the class of specifications and the class of
monitors, enabling an analysis of both approaches.

In our monitorability hierarchy, the set of monitors in the monitoring system
handles this dimension: the set of monitors determines the computational power of
the monitors, and monitorability is parameterised by this set. For some classes of
non-regular properties, a maximal monitoring system might not be implementable
or practical and it becomes interesting to consider non-maximal monitoring sys-
tems that use limited resources, and the monitorability hierarchies they generate.

Beyond monitorability. Stream-based monitoring systems such as those presented
in [26, 27] are more concerned with producing (revocable) aggregate outputs and
transforming traces to satisfy properties, employing more powerful monitors than
the ones considered here (e.g., transducers). Instead of monitorability, enforceabil-

ity [7, 33] is a criterion that is better suited for these settings.

10 Conclusion

We have proposed a unified, operational view on monitorability. This allows us to
clearly state the implicit operational guarantees of existing definitions of monitora-
bility. For instance, recall Example 1.1 from the introduction: since (G¬f) ∧ (F s)
is ∃pz- and ∀pz-monitorable but it is neither a safety nor a co-safety property, we
know there is a monitor which can recognise some violations and satisfactions of
this property, but there is no monitor that can recognise all satisfactions or all

violations. Although we focussed on regular, finfinite properties, the definitions
of monitorability in Section 3, and, more fundamentally, the methodology that
systematically puts the relationship between monitor behaviour and specification
centre stage, are equally applicable to other settings.

The emphasis our approach places on the explicit guarantees provided by the
different types of monitorability should clarify the role of monitorability in the de-
sign of RV tools which, depending on the setting, may have different requirements.
Indeed, a monitor that checks that the output of a module does not violate the
preconditions of the next module had better be violation-complete; on the other
hand, it is probably sufficient that a monitor be informative when it is used as a
light-weight, best-effort part of a hybrid verification strategy.

An Operational Guide to Monitorability with Applications to Regular Properties 39

Acknowledgements

We thank the anonymous reviewers for their useful comments, which led to im-
provements in the paper.

A Appendix: The proof of Theorem 5.3

In this appendix, we present the proof of Theorem 5.3, which was omitted from the main text.
We first define a notion for monitors that is similar to the one of Definition 5.3.

Definition A.1 Let m be a closed monitor and let n be a submonitor of m. We say that:

– n can reject (resp., accept) in m in 0 unfoldings, when no (resp., yes) appears in n, and
that

– n can reject (resp., accept) in m in k + 1 unfoldings, when it can reject (resp., accept) in
k unfoldings, or x appears in n and n is in the scope of a submonitor recX.n′ that can
reject (resp., accept) in k unfoldings.

We simply say that n can reject (resp., accept) in m when it can reject (resp., accept) in m in
k unfoldings, for some k ≥ 0. We may also simply say that n can reject (resp., accept) when
m is evident or not relevant. �

We now make explicit two straightforward lemmata that we will use.

Lemma A.1 Let ϕ = maxX.ψ or ϕ = minX.ψ. If ϕ can refute (resp., verify) in ϕ, then it
is also the case that ψ[ϕ/X] can refute (resp., verify) in ψ[ϕ/X].

Lemma A.2 – If all subformulas of [α]ϕ or ϕ∧ψ or ψ ∧ϕ or 〈α〉ϕ or ϕ∨ψ or ψ ∨ϕ can
refute (or, respectively, verify), then all subformulas of ϕ can refute (or verify).

– Let ϕ = maxX.ψ or ϕ = minX.ψ. If all subformulas of ϕ can refute (resp., verify), then
all subformulas of ψ[ϕ/X] can refute (resp., verify).

We define the box-depth of a formula from eHML ∩ sHML recursively:

dB

 ∧
γ∈Act

[γ]ϕγ

 = dB(ff) = 0;

dB(X) = dB(tt) = ∞;

dB(ϕ1 ∧ ϕ2) = min{dB(ϕ1), dB(ϕ2)}+ 1; and

dB(maxX.ϕ′) = dB(ϕ′) + 1.

The box-depth of a formula measures how deep in the syntactic tree of the formula one can
find a box or ff.

Lemma A.3 For all possibly open ϕ,ψ ∈ eHML ∩ sHML, dB(ϕ[ψ/X]) ≤ dB(ϕ).

Proof Straightforward induction on ϕ. ut

Lemma A.4 Let α ∈ Act.

– Let ϕ ∈ eHML ∩ sHML, where all subformulas of ϕ can refute. There is some ψ ∈
eHML ∩ sHML, such that all subformulas of ψ can refute, and for every f ∈ Act∞,
αf ∈ JϕK implies that f ∈ JψK.

– Let ϕ ∈ eHML ∩ cHML, where all subformulas of ϕ can verify. There is some ψ ∈
eHML ∩ cHML, such that all subformulas of ψ can verify, and for every f ∈ Act∞,
f ∈ JψK implies that αf ∈ JϕK.

Proof We assume that ϕ ∈ eHML ∩ sHML, as the case for ϕ ∈ eHML ∩ cHML is similar.
Since ϕ is a closed formula and can refute, ff appears in ϕ, and therefore dB(ϕ) < ∞. We
proceed to prove the lemma by strong numerical induction on dB(ϕ), similarly to the proof of
Lemma 5.2.

40 Luca Aceto et al.

If ϕ = ff, then we are done immediately by taking ψ = ff.
If ϕ =

∧
γ∈Act [γ]ϕγ , then we can set ψ = ϕα.

If ϕ = ϕ1 ∧ ϕ2, then either da(ϕ1) < ∞ or da(ϕ2) < ∞, and we are done by the inductive
hypothesis on one of the two subformulas.

If ϕ = maxX.ϕ′, then ϕ′[ϕ/X] ∈ eHML∩sHML and all subformulas of ϕ′[ϕ/X] can refute, by
Lemma A.2. Furthermore, JϕK = Jϕ′[ϕ/X]K, and we are done by the inductive hypothesis.

ut

Lemma A.5 If ϕ ∈ spHML or ϕ ∈ cpHML, then there is a regular monitor that is sound
for ϕ and persistently rejecting, or, respectively, persistently accepting.

Proof We assume that ϕ ∈ spHML, as the case for ϕ ∈ cpHML is similar. Let ϕ = ψ ∧ ψ∗,
where ψ ∈ eHML ∩ sHML and all of its subformulas can refute, and ψ∗ ∈ recHML. By
Theorem 4.4, it suffices to prove that for every s ∈ Act∗, there is some r ∈ Act∗, such that
sr negatively determines ϕ. We prove this by structural induction on s. If s = ε, then as in
the proof of Lemma 5.2, we can show that there is a finite trace that negatively determines ψ.
If s = as′, then by Lemma A.4. there is some ψ′ ∈ eHML ∩ sHML, such that all subformulas
of ψ′ can refute, and for every f ∈ Act∞, af ∈ JψK implies that f ∈ Jψ′K. By the inductive
hypothesis, there is some r, such that s′r negatively determines ψ′, and therefore, sr negatively
determines ψ. ut

We define the depth of a variable x in a regular monitor m recursively:

dx(x) = 0;

dx(y) = d(no) = d(yes) = d(end) =∞, where y 6= x;

dx(m1 +m2) = min{dx(m1), dx(m2)}+ 1;

dx(α.m) = dx(m) + 1; and

dx(recx. m) = dx(rec y. m) = dx(m) + 1.

Lemma A.6 Let m be a persistently rejecting, deterministic regular monitor. If A (Act,
then

∑
α∈A α.mα can only appear in m as a submonitor of a larger sum.

Proof Let a ∈ Act\A and let m′ be an open monitor and x a variable that does not appear in

m, such that m = m′[
∑
α∈A α.mα/x]. It is clear that

∑
α∈A α.mα 6

a
=⇒. Therefore, it suffices

to prove that for every deterministic n with free variable x, if n′ 6 a=⇒, then there is a finite

trace s, such that there is no regular monitor o for which n[n′/x]
sa

==⇒ o. We proceed to prove
this claim by induction on dx(n), and the case for n = x is immediate. If n = n1 +n2, then, as
n is deterministic, n = b.n′1 + c.n′2, where b 6= c, and we are done by the inductive hypothesis
on either n′1 or n′2, and n′. If n = b.n1, then if the inductive hypothesis on n′1 and n′ gives
trace r, then we can set s = br. If n = rec y.n1, then we are done by the inductive hypothesis
on n1[n/y] (notice that dx(n1[n/y] < dx(m)) and n′[n/y]. ut

Here we call a regular monitor explicit when it is generated by the grammar:

m ::= end | no | x |
∑
a∈Act

a.ma | recx.m.

Corollary A.1 Every persistently rejecting, deterministic regular monitor is explicit.

Proof A consequence of Lemma A.6. ut

Lemma A.7 Let m be an explicit deterministic regular monitor, such that all of its submon-
itors can reject. Then, f(m) ∈ eHML and all of its subformulas can refute.

Proof By induction on the construction of m. ut

Lemma A.8 If ϕ ∈ recHML and there is a monitor that is sound for ϕ and persistently
rejecting or persistently accepting, then there is some ψ ∈ spHML, or, respectively, ψ ∈
cpHML, such that JψK = JϕK.

An Operational Guide to Monitorability with Applications to Regular Properties 41

Proof We treat the case where the monitor is persistently rejecting, as the case for a persis-
tently accepting monitor is similar. From Corollary 4.1, there is a regular monitor, m, that is
sound for ϕ and persistently rejecting. By Theorem 4.1, we can assume that m is deterministic
(Definition 4.2). From Corollary A.1, m is explicit. If there is a submonitor of m that cannot
reject, then we can prove by induction on m that there is a finite trace s, for which there is

no finite trace r, such that m
sr

==⇒ no, which is a contradiction. Observe that f(m) ∈ sHML.
Then, from Lemma A.7, the sHML formula f(m) is in eHML, and all of its subformulas can
refute. Since m is sound for ϕ and sound and violation complete for f(m), it is the case that
Act∞ \ Jf(m)K ⊆ Act∞ \ JϕK, and therefore f(m) ∧ ϕ ∈ spHML and Jf(m) ∧ ϕK = JϕK. ut

Theorem 5.3 Let ϕ ∈ recHML. Then, ϕ is persistently informatively monitorable for vi-
olation if and only if there is some ψ ∈ spHML, such that JψK = JϕK; ϕ is persistently
informatively monitorable for satisfaction if and only if there is some ψ ∈ cpHML, such that
JψK = JϕK.

Proof A consequence of Lemmata A.5 and A.8. ut

References

1. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent actions. In:
S. Lokam, R. Ramanujam (eds.) FSTTCS, LIPIcs, vol. 93, pp. 7:1–7:14. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017)

2. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A Framework for Parameterized
Monitorability. In: Foundations of Software Science and Computation Structures - 21st
International Conference, FOSSACS 2018, LNCS, vol. 10803, pp. 203–220 (2018). URL
https://doi.org/10.1007/978-3-319-89366-2_11

3. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: Deter-
minizing monitors for HML with recursion. CoRR abs/1611.10212 (2016). URL
http://arxiv.org/abs/1611.10212

4. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: On the
complexity of determinizing monitors. In: A. Carayol, C. Nicaud (eds.) Implementation
and Application of Automata - 22nd International Conference, CIAA 2017, LNCS, vol.
10329, pp. 1–13. Springer (2017). URL https://doi.org/10.1007/978-3-319-60134-2_1

5. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adventures in
monitorability: From branching to linear time and back again. Proceedings of the ACM
on Programming Languages 3(POPL), 52:1–52:29 (2019). URL https://dl.acm.org/
citation.cfm?id=3290365

6. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An operational
guide to monitorability. In: P.C. Ölveczky, G. Salaün (eds.) Software Engineering and
Formal Methods - 17th International Conference, SEFM 2019, Oslo, Norway, September
18-20, 2019, Proceedings, Lecture Notes in Computer Science, vol. 11724, pp. 433–453.
Springer (2019). DOI 10.1007/978-3-030-30446-1\ 23. URL https://doi.org/10.1007/
978-3-030-30446-1_23

7. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On Runtime Enforcement via
Suppressions. In: 29th International Conference on Concurrency Theory, CONCUR 2018,
LIPIcs, vol. 118, pp. 34:1–34:17. Schloss Dagstuhl (2018). URL https://doi.org/10.
4230/LIPIcs.CONCUR.2018.34

8. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specifi-
cation and Verification. Cambridge Univ. Press, New York, NY, USA (2007)

9. Alpern, B., Schneider, F.B.: Defining liveness. Information processing letters 21(4), 181–
185 (1985)

10. Arnold, A., Niwinski, D.: Rudiments of µ-calculus, Studies in Logic and the Foundations
of Mathematics, vol. 146. North-Holland (2001)

11. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingolfsdottir, A.: A runtime monitoring
tool for actor-based systems. In: S. Gay, A. Ravara (eds.) Behavioural Types: From Theory
to Tools, pp. 49–74. River Publishers (2017)

12. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In: Y. Fal-
cone, C. Sánchez (eds.) Runtime Verification - 16th International Conference, RV 2016,
LNCS, vol. 10012, pp. 473–481. Springer (2016). URL https://doi.org/10.1007/
978-3-319-46982-9_31

42 Luca Aceto et al.

13. Baier, C., Tinelli, C. (eds.): Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, LNCS, vol. 9035. Springer (2015)

14. Barringer, H., Rydeheard, D., Havelund, K.: Rule systems for run-time monitoring: from
Eagle to RuleR. Journal of Logic and Computation 20(3), 675–706 (2008)

15. Bartocci, E., Falcone, Y., Francalanza, A., Reger, G.: Introduction to runtime verification.
In: E. Bartocci, Y. Falcone (eds.) Lectures on Runtime Verification - Introductory and
Advanced Topics, LNCS, vol. 10457, pp. 1–33. Springer (2018). URL https://doi.org/
10.1007/978-3-319-75632-5_1

16. Bauer, A., Leucker, M., Schallhart, C.: Comparing LTL semantics for runtime verification.
Journal of Logic and Computation 20(3), 651–674 (2010)

17. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology 20(4), 14:1–14:64 (2011). URL
http://doi.acm.org/10.1145/2000799.2000800

18. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM
Transactions on Software Engineering and Methodology 20(4), 14 (2011)

19. Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen,
P.: Systems and Software Verification: Model-checking Techniques and Tools. Springer
Science & Business Media (2013)

20. Chang, E.Y., Manna, Z., Pnueli, A.: Characterization of temporal property classes. In:
W. Kuich (ed.) Automata, Languages and Programming, 19th International Colloquium,
ICALP 1992, LNCS, vol. 623, pp. 474–486. Springer (1992). URL https://doi.org/10.
1007/3-540-55719-9_97

21. Chen, F., Rosu, G.: Mop: an efficient and generic runtime verification framework. In:
R.P. Gabriel, D.F. Bacon, C.V. Lopes, G.L.S. Jr. (eds.) Proceedings of the 22nd Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2007, pp. 569–588. ACM (2007). URL https://doi.org/10.1145/
1297027.1297069

22. Chen, Z., Wu, Y., Wei, O., Sheng, B.: Poster: Deciding weak monitorability for runtime
verification. In: 2018 IEEE/ACM 40th International Conference on Software Engineering:
Companion (ICSE-Companion), pp. 163–164 (2018)

23. Cimatti, A., Tian, C., Tonetta, S.: Assumption-based runtime verification with partial
observability and resets. In: International Conference on Runtime Verification, pp. 165–
184. Springer (2019)

24. Cini, C., Francalanza, A.: An LTL proof system for runtime verification. In: Baier and
Tinelli [13], pp. 581–595. URL https://doi.org/10.1007/978-3-662-46681-0_54

25. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT press (1999)
26. Convent, L., Hungerecker, S., Leucker, M., Scheffel, T., Schmitz, M., Thoma, D.: TeSSLa:

Temporal Stream-Based Specification Language. In: Formal Methods: Foundations and
Applications - 21st Brazilian Symposium, SBMF 2018, LNCS, vol. 11254, pp. 144–162
(2018). DOI 10.1007/978-3-030-03044-5\ 10

27. D’Angelo, B., Sankaranarayanan, S., Sánchez, C., Robinson, W., Finkbeiner, B., Sipma,
H.B., Mehrotra, S., Manna, Z.: Lola: Runtime monitoring of synchronous systems. In:
12th International Symposium on Temporal Representation and Reasoning (TIME’05),
pp. 166–174. IEEE Computer Society Press (2005)

28. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tu-
torial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). DOI 10.1007/
s10009-014-0361-y. URL https://doi.org/10.1007/s10009-014-0361-y

29. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on fi-
nite traces. In: F. Rossi (ed.) IJCAI 2013, Proceedings of the 23rd International Joint
Conference on Artificial Intelligence, pp. 854–860. IJCAI/AAAI (2013). URL http:
//www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6997

30. Decker, N., Leucker, M., Thoma, D.: jUnitrv-adding runtime verification to jUnit. In:
NASA Formal Methods, 5th International Symposium, NFM, LNCS, vol. 7871, pp. 459–
464 (2013). URL https://doi.org/10.1007/978-3-642-38088-4_34

31. Diekert, V., Gastin, P.: First-order definable languages. In: Logic and Automata: History
and Perspectives, Texts in Logic and Games, pp. 261–306. Amsterdam University Press
(2008)

32. Diekert, V., Leucker, M.: Topology, monitorable properties and runtime verification. The-
oretical Computer Science 537, 29–41 (2014). DOI 10.1016/j.tcs.2014.02.052

33. Falcone, Y., Fernandez, J.C., Mounier, L.: What can you verify and enforce at runtime?
International Journal on Software Tools for Technology Transfer 14(3), 349–382 (2012)

An Operational Guide to Monitorability with Applications to Regular Properties 43

34. Ferrère, T., Henzinger, T.A., Saraç, N.E.: A theory of register monitors. In: A. Dawar,
E. Grädel (eds.) Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, pp. 394–403. ACM (2018). URL https://doi.org/10.
1145/3209108.3209194

35. Francalanza, A.: A Theory of Monitors (Extended Abstract). In: Foundations of Soft-
ware Science and Computation Structures - 19th International Conference, FOSSACS,
Eindhoven, The Netherlands, LNCS, vol. 9634, pp. 145–161 (2016)

36. Francalanza, A.: Consistently-detecting monitors. In: 28th International Conference on
Concurrency Theory (CONCUR), LIPIcs, vol. 85, pp. 8:1–8:19. Schloss Dagstuhl (2017).
DOI 10.4230/LIPIcs.CONCUR.2017.8

37. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Monica, D.D.,
Ingólfsdóttir, A.: A Foundation for Runtime Monitoring. In: Runtime Verification - 17th
International Conference, RV 2017, LNCS, vol. 10548, pp. 8–29. Springer (2017). URL
https://doi.org/10.1007/978-3-319-67531-2_2

38. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy-Milner logic
with recursion. Formal Methods in System Design 51(1), 87–116 (2017). URL https:
//doi.org/10.1007/s10703-017-0273-z

39. Francalanza, A., Seychell, A.: Synthesising Correct concurrent Runtime Monitors. Formal
Methods in System Design (FMSD) 46(3), 226–261 (2015). URL http://dx.doi.org/10.
1007/s10703-014-0217-9

40. Francalanza, A., Xuereb, J.: On implementing symbolic controllability. In: S. Bliudze,
L. Bocchi (eds.) Coordination Models and Languages - 22nd IFIP WG 6.1 International
Conference, COORDINATION 2020, Lecture Notes in Computer Science, vol. 12134, pp.
350–369. Springer (2020). DOI 10.1007/978-3-030-50029-0\ 22. URL https://doi.org/
10.1007/978-3-030-50029-0_22

41. Havelund, K., Peled, D.: Runtime Verification: From Propositional to First-Order Tem-
poral Logic. In: Runtime Verification - 18th International Conference, RV 2018, Limas-
sol, Cyprus, November 10-13, 2018, Proceedings, LNCS, vol. 11237, pp. 90–112. Springer
(2018). URL https://doi.org/10.1007/978-3-030-03769-7_7

42. Hennessy, M., Milner, R.: Algebraic Laws for Nondeterminism and Concurrency. Journal
of the ACM 32(1), 137–161 (1985). DOI 10.1145/2455.2460

43. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages,
and computation. Acm Sigact News 32(1), 60–65 (2001)

44. Kozen, D.C.: Results on the propositional µ-calculus. Theoretical Computer Science 27,
333–354 (1983)

45. Kupferman, O., Vardi, M.Y.: Model checking of safety properties. Formal Methods in
System Design 19(3), 291–314 (2001)

46. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-
time model checking. Journal of the ACM 47(2), 312–360 (2000)

47. Larsen, K.G.: Proof systems for satisfiability in Hennessy-Milner logic with recursion.
Theoretical Computer Science 72(2), 265 – 288 (1990). DOI http://dx.doi.org/10.1016/
0304-3975(90)90038-J

48. Larsen, K.G., Lorber, F., Nielsen, B.: 20 years of UPPAAL enabled industrial model-
based validation and beyond. In: T. Margaria, B. Steffen (eds.) Leveraging Applications
of Formal Methods, Verification and Validation. Industrial Practice - 8th International
Symposium, ISoLA 2018, Limassol, Cyprus, November 5-9, 2018, Proceedings, Part IV,
Lecture Notes in Computer Science, vol. 11247, pp. 212–229. Springer (2018). DOI
10.1007/978-3-030-03427-6\ 18. URL https://doi.org/10.1007/978-3-030-03427-6_18

49. Laurent, J., Goodloe, A., Pike, L.: Assuring the Guardians. In: Runtime Verification (RV),
LNCS, vol. 9333, pp. 87–101 (2015)

50. Leucker, M.: Sliding between model checking and runtime verification. In: International
Conference on Runtime Verification, pp. 82–87. Springer (2012)

51. Manna, Z., Pnueli, A.: Completing the temporal picture. Theoretical Computer Science
83(1), 97–130 (1991). DOI 10.1016/0304-3975(91)90041-Y

52. Neykova, R., Bocchi, L., Yoshida, N.: Timed runtime monitoring for multiparty conversa-
tions. Formal Aspects of Computing 29(5), 877–910 (2017). URL https://doi.org/10.
1007/s00165-017-0420-8

53. Phillips, I.: Refusal testing. Theor. Comput. Sci. 50, 241–284 (1987). DOI 10.1016/
0304-3975(87)90117-4. URL https://doi.org/10.1016/0304-3975(87)90117-4

54. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: J. Misra,
T. Nipkow, E. Sekerinski (eds.) FM 2006: Formal Methods, 14th International Symposium

44 Luca Aceto et al.

on Formal Methods, LNCS, vol. 4085, pp. 573–586. Springer (2006). URL https://doi.
org/10.1007/11813040_38

55. Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM Journal of
Research and Development 3(2), 114–125 (1959)

56. Reger, G., Cruz, H.C., Rydeheard, D.E.: MarQ: Monitoring at runtime with QEA. In:
Baier and Tinelli [13], pp. 596–610. URL https://doi.org/10.1007/978-3-662-46681-0_
55

57. Rosu, G.: On safety properties and their monitoring. Scientific Annals of Computer Science
22(2), 327–365 (2012)

58. Safra, S.: Exponential determinization for ω-automata with strong-fairness acceptance
condition (extended abstract). In: Proceedings of the Twenty-Fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’92, p. 275282. Association for Computing Ma-
chinery, New York, NY, USA (1992). DOI 10.1145/129712.129739

59. Sánchez, C., Leucker, M.: Regular linear temporal logic with past. In: G. Barthe,
M. Hermenegildo (eds.) Verification, Model Checking, and Abstract Interpretation, pp.
295–311. Springer Berlin Heidelberg, Berlin, Heidelberg (2010)

60. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information and
System Security 3(1), 30–50 (2000)

61. Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. Inf.
Comput. 110(1), 149–163 (1994). DOI 10.1006/inco.1994.1028. URL https://doi.org/
10.1006/inco.1994.1028

62. Stucki, S., Sánchez, C., Schneider, G., Bonakdarpour, B.: Gray-box monitoring of hyper-
properties. In: M.H. ter Beek, A. McIver, J.N. Oliveira (eds.) Formal Methods – The Next
30 Years, pp. 406–424. Springer International Publishing, Cham (2019)

63. THOMAS, W.: Chapter 4 - automata on infinite objects. In: J.V. LEEUWEN (ed.)
Formal Models and Semantics, Handbook of Theoretical Computer Science, pp. 133 – 191.
Elsevier, Amsterdam (1990). DOI https://doi.org/10.1016/B978-0-444-88074-1.50009-3.
URL http://www.sciencedirect.com/science/article/pii/B9780444880741500093

64. Viswanathan, M., Kim, M.: Foundations for the run-time monitoring of reactive systems
- fundamentals of the MaC language. In: Z. Liu, K. Araki (eds.) Theoretical Aspects of
Computing - ICTAC 2004, First International Colloquium, LNCS, vol. 3407, pp. 543–556.
Springer (2004). URL https://doi.org/10.1007/978-3-540-31862-0_38

65. Wolper, P.: Temporal logic can be more expressive. Information and Control 56(1/2),
72–99 (1983). URL https://doi.org/10.1016/S0019-9958(83)80051-5

