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Abstract— Optical Coherence Tomography Angiography
(OCTA) is a non-invasive imaging technique that has been
increasingly used to image the retinal vasculature at cap-
illary level resolution. However, automated segmentation
of retinal vessels in OCTA has been under-studied due to
various challenges such as low capillary visibility and high
vessel complexity, despite its significance in understand-
ing many vision-related diseases. In addition, there is no
publicly available OCTA dataset with manually graded ves-
sels for training and validation of segmentation algorithms.
To address these issues, for the first time in the field of
retinal image analysis we construct a dedicated Retinal
OCTA SEgmentation dataset (ROSE), which consists of 229
OCTA images with vessel annotations at either centerline-
level or pixel level. This dataset with the source code has
been released for public access to assist researchers in
the community in undertaking research in related topics.
Secondly, we introduce a novel split-based coarse-to-fine
vessel segmentation network for OCTA images (OCTA-Net),
with the ability to detect thick and thin vessels separately.
In the OCTA-Net, a split-based coarse segmentation module
is first utilized to produce a preliminary confidence map
of vessels, and a split-based refined segmentation module
is then used to optimize the shape/contour of the retinal
microvasculature. We perform a thorough evaluation of the
state-of-the-art vessel segmentation models and our OCTA-
Net on the constructed ROSE dataset. The experimental
results demonstrate that our OCTA-Net yields better vessel
segmentation performance in OCTA than both traditional
and other deep learning methods. In addition, we provide a
fractal dimension analysis on the segmented microvascu-
lature, and the statistical analysis demonstrates significant
differences between the healthy control and Alzheimer’s
Disease group. This consolidates that the analysis of retinal
microvasculature may offer a new scheme to study various
neurodegenerative diseases.

Index Terms— Optical coherence tomography angiogra-
phy, vessel segmentation, deep network, benchmark.
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Fig. 1: Illustration of the macula in color fundus image and
fovea-centred (green rectangle area) 3×3 mm2 OCTA images
of the same eye: (A) color fundus, (B) superficial vascular
complexes (SVC), (C) deep vascular complexes (DVC), and
(D) the inner retina vascular plexus including both SVC and
DVC (SVC+DVC).

I. INTRODUCTION

The vasculature is an essential structure in the retina, and
its morphological changes can be used not only to identify and
classify the severity of systemic, metabolic, and hematologic
diseases [1], but also to facilitate a better understanding of
disease progression, and assessment of therapeutic effects [2].
Color fundus is the most commonly used retinal imaging
technique: however, it is difficult with this method to capture
microvasculartures (thin vessels and capillaries), which are
surrounded in the fovea and parafovea regions, as shown in
the green rectangle area of Fig. 1 (A). Fluorescein angiography
and indocyanine green angiography can resolve the retinal vas-
culature including capillaries, but they are invasive techniques
and may cause severe side effects and even death [3].

In contrast, Optical Coherence Tomography Angiography
(OCTA) is a newly emerging non-invasive imaging technique,
with the ability to produce high-resolution 3D images of
the retinal vasculature, and has been increasingly accepted
as an invaluable imaging tool to observe retinal vessels [4],
[5]. By means of OCTA imaging technology, such as the
RTVue XR Avanti SD-OCT system (Optovue, Inc, Fremont,
California, USA), equipped with AngioVue software (version
2015.1.0.90), en face images of retinal vascular plexus at
different depths can be generated by using the maximum pro-
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jection of OCTA flow signals within specific slabs. Fig. 1 (B-
D) show superficial vascular complexes (SVC), deep vascular
complexes (DVC), and the inner retinal vascular plexus that
includes both SVC and DVC (SVC+DVC). In brief, the SVC
extended from 3 µm below the internal limiting membrane
(ILM) to 15 µm below the inner plexiform layer (IPL):
the DVC extended from 15 to 70 µm below the IPL; and
the inner retina extended from 3 µm beneath the ILM to
the outer boundary of the outer plexiform layer [6]. These
plexuses were distinguished and separated automatically, using
the proprietary tool supplied with the device. OCTA enables
observation of microvascular details down to capillary level,
permitting quantitative assessment of the microvascular and
morphological vessel structures in the retina.

By extracting microvascular structures from different OCTA
depth layers, one can obtain their corresponding en face
projections to analyze their respective variations. In particular,
the microvasculature distributed within the parafovea is of
great interest, as any abnormality there often indicates the
presence of some diseases such as early stage glaucomatous
optic neuropathy, diabetic retinopathy, and age-related macula
degeneration [7]–[11]. More recently, several studies have
shown that the morphological changes of microvasculature
revealed by OCTA are associated with Alzheimer’s Disease
and Mild Cognitive Impairment [12], [13]. A new avenue is
thereby opened up to study the relation between the appear-
ance of retinal vessels and various neurodegenerative diseases.
Thus, automatic vessel detection and quantitative analysis of
OCTA images are of great value for the early diagnosis of
vascular-related diseases affecting retinal circulation, and the
assessment of disease progression. However, automated vessel
segmentation in OCTA images has been explored only rarely,
and remains a challenging task, despite the fact that many
medical segmentation approaches - particularly deep learning
based techniques [14], [15] - have achieved great success in
segmenting blood vessels.

There is no publicly available OCTA dataset with manual
vessel annotations, which hinders the further validation of
OCTA segmentation techniques. To our best knowledge, only
a few automated methods have been developed to segment
the retinal vessels from OCTA images based on fully auto-
matic thresholding schemes, such as the methods proposed
in [16]–[20]. Recently, several deep learning-based methods
were developed for vessel segmentation in OCTA images,
and each using its own private OCTA dataset. For instances,
Eladawi et al. [8] proposed an automatic method on 47
OCTA images. Zhang et al. [11] set up the first 3D OCTA
microvascular segmentation approach to directly extract 3D
capillary networks from OCTA volume data for subsequent
shape modeling and analysis. However, they mainly evaluated
the test re-test reliability of their 3D framework on 360 OCTA
volume images, as there were no manually annotated 3D vessel
networks available. Mou et al. trained a deep network [1]
with 30 OCTA images, but the small dataset used suggests
that this method may not be universally applicable across
different pathological scenarios. Li et al. [21] more recently
introduced an image projection network that can achieve 3D-
to-2D vessel segmentation: they evaluated their method on

Fig. 2: Comparison of two OCTA images with different
scan modes of 3 × 3 mm2 (in top row) and 6 × 6 mm2

(in bottom row), respectively. Columns 1 to 3 respectively
show the original OCTA images, manually annotated vessel
networks by experts, and zoomed image patches of the same
size (0.5× 0.5 mm2) in both scans.

316 OCTA images. Although these methods achieve usable
segmentations for OCTA vessel analysis, the privacy of their
datasets makes a unified evaluation benchmark impossible.

In addition, Eladawi [8] and Li et al. [21] set up their
segmentation frameworks based on the OCTA data within a
6 × 6 mm2 fovea-centered field of view (FOV). It is worth
noting that the scan density for the 3 × 3 mm2 is higher
than that for the 6 × 6 mm2 scans [22], 6 × 6 mm2 scans
has relatively wider area of scan coverage, and is more like
to detect the presence of pathological features, e.g., microa-
neurysms and non-perfusion. By contrast, the 3 × 3 mm2

protocol has a higher scan resolution, and thus is able to
delineate the foveal avascular zone (FAZ) and capillaries
more clearly than 6 × 6 mm2 scans. Previous findings by
Zhang et al. [11] have shown that small capillaries play a
much more important role in distinguishing different disease
groups compared with relatively large vessels. It is therefore
necessary to established a dedicated OCTA dataset focusing on
more detailed capillary networks within a 3 × 3 mm2 FOV,
and is the main motivation we construct our ROSE dataset.
Fig. 2 demonstrates a comparison between 3 × 3 mm2 and
6×6 mm2 FOVs. We may clearly observe the richer capillary
information graded by experts from the 3 × 3 mm2 scans,
while 6× 6 mm2 scan has wider FOV but poorer delineation
of microvascular. Therefore, the proposed OCTA-Net will be
fully evaluated using the well-established 3 × 3 mm2 OCTA
dataset for more detailed microvascular study.

The OCTA imaging process typically produces images with
a low signal-to-noise ratio (SNR) [5]. Additionally, varying
vessel appearances at different depth layers, projection [23],
[24], motion and shadow artifacts [25]–[29], and the po-
tential existence of pathologies [11] increase the challenge
for achieving accurate segmentations, particularly for densely
connected capillaries, which can easily result in discontinuous
segmentations. Most deep learning-based methods are region-
based [30], a technique which is prone to produce imprecise



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3042802, IEEE
Transactions on Medical Imaging

PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 3

and discontinuous vessel segmentation results, and existing
methods do not perform well when required to detect subtle
differences in microvascular networks with different vessel
thicknesses and imaging depths.

A. Contributions
In order to mitigate the issues of lacking a public retinal

OCTA dataset and effective microvascular segmentation meth-
ods, we make the following contributions in this work.
• For the first time in the retinal image analysis field,

we establish a publicly available retinal OCTA dataset, with
precise manual annotations of retinal microvascular networks,
in order to promote relevant research in the community.
• We introduce a novel split-based coarse-to-fine vessel

segmentation network for blood vessel segmentation in OCTA,
aimed at detecting thick and thin vessels separately. In our
method, a split-based coarse segmentation (SCS) module is
first utilized to produce a preliminary confidence map of
vessels, and a split-based refined segmentation (SRS) module
is then used to optimize towards the finer vessels, with a view
to obtaining more accurate overall segmentation results.
• We give a full evaluation/benchmarking of OCTA mi-

crovascular segmentation, both quantitatively and qualitatively.
Comparative analysis shows that the proposed OCTA-Net
works robustly on different types of retinal images and yields
accurate vessel segmentations.

To further promote developments in this field, the code,
baseline models, and evaluation tools, are publicly available
at https://imed.nimte.ac.cn/dataofrose.html

II. RELATED WORKS

In the past two decades, we have witnessed a rapid de-
velopment of retinal blood vessel segmentation methods for
color fundus images (as evidenced by extensive reviews [2],
[31]). As blood vessels are curvilinear structures distributed
across different orientations and scales, the conventional vessel
segmentation methods are mainly based on various filters, in-
cluding Hessian matrix-based filters [32], matched filters [33],
multi-oriented filters [34], symmetry filters [2], and tensor-
based filters [35]. These filter-based methods aim to suppress
non-vascular or non-fiber structures and image noise, thus
enhance the curvilinear structures, thereby simplifying the
subsequent segmentation problem.

By contrast, automated vessel segmentation from OCTA
images is relatively unexplored tasks, and most of the exist-
ing methods are based on thresholding schemes. Yousefi et
al. [16] developed a hybrid Hessian/intensity based method
to segment and quantify shape and diameter of vessels. Gao
et al. [17] binarized en face retinal OCTA images according
to mean reflectance projection and maximum decorrelation
projection. Camino et al. [18] set an optimized reflectance-
adjusted threshold to segment the vascular. Sarabi et al. [19]
developed a three-step algorithm including adaptive threshold-
ing processes to construct the vessel mask. Wu et al. [20] pro-
posed an optimized approach based on an improved vascular
connectivity analysis (VCA) algorithm to extract the vascular
network. However, these thresholding-based approaches are

sensitive to noise distributed in en face OCTA images and
hard to perform well on regions with no significant intensity
difference.

In recent years, deep learning-based methods have made sig-
nificant progress in the fields of medical image segmentation.
In particular, many deep neural networks have been modified
and applied for blood vessel segmentation [1], [14], [36], [37]
and have yielded promising results. However, the extraction of
vessels from OCTA images has been relatively unexplored. We
will review and discuss the most relevant vessel segmentation
works in this section.

A method based on Convolutional Neural Network
(CNN) [36] was proposed to enhance training samples for
better retinal vessel detection: subsequently, a Conditional
Random Field (CRF) was incorporated into the CNN by Fu et
al. for retinal vessel detection [14]. Wang et al. [38] applied
the U-Net [39] for retinal vessel segmentation in fundus
images of pathological conditions. Xiao et al. [40] modified
ResU-Net [41] by introducing a weighted attention mechanism
for high-quality retinal vessel segmentation. Gu et al. [15]
proposed a context encoder network (CE-Net), which consists
of dense atrous convolution and residual multi-kernel pooling
modules for retinal vessel image segmentation. Jin et.al. [42]
integrated deformable convolution into the DUNet, which is
designed to extract context information and enable precise
localization by combining low-level features with high-level
ones. Yan et al. [43] proposed a three-stage deep model to
segment thick and thin vessels separately, which achieves ac-
curate vessel segmentation for both types of vessels. However,
there have been very few deep learning methods for vessel
segmentation in OCTA images. Mou et al. [1] proposed a
channel and spatial attention network (CS-Net) for curvilinear
structures (including vessels in some example OCTA images)
where they applied spatial and channel attention to further inte-
grate local features with their global dependencies adaptively.
Li et.al. [21] presented an image projection network, which
is a novel end-to-end architecture that can achieve 3D-to-2D
image segmentation in OCTA images.

III. DATASET

Our constructed Retinal OCT-Angiography vessel
SEgmentation (ROSE) dataset comprises of two subsets,
named as ROSE-1 and ROSE-2, which were acquired by
two different devices. All the data described in this paper
are acquired from studies that have appropriate approvals
from the institutional ethics committees, and written informed
consent was obtained from each participant in accordance
with the Declaration of Helsinki. The diagnosis result of each
subject is provided in the dataset.

A. ROSE-1
The ROSE-1 set consists of a total of 117 OCTA images

from 39 subjects (including 26 with Alzheimer’s disease (AD)
and 13 healthy controls). The mean age was 68.4 ± 7.4
years of the AD group and 63.0 ± 10.2 years of the control
group. Participants with known eye disease, such as glaucoma,
age-related macular degeneration, high myopia, etc, and with

https://imed.nimte.ac.cn/dataofrose.html
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Fig. 3: Illustration of OCTA images from ROSE-1 and their manual annotations. From top to bottom: en face of the SVC,
DVC and SVC+DVC, respectively. From left to right: en face, centerline-level labels, and pixel-level labels, respectively.

Fig. 4: Example of an OCTA image and its centerline-level
manual annotations in ROSE-2.

known systematic disease, e.g., diabetes, were excluded from
this study. The diagnosis of AD were based on the NINCDS-
ADRDA criteria [44] and participants did not undergo PET
imaging or lumbar puncture for assessment of biomarker
status. All the OCTA scans were captured by the RTVue
XR Avanti SD-OCT system (Optovue, USA) equipped with
AngioVue software, with an image resolution of 304 × 304
pixels. The scan area was 3× 3 mm2 centered on the fovea,
within an annular zone of 0.6 mm-2.5 mm diameter around
the foveal center. The SVC, DVC and SVC+DVC angiograms
of each participant were obtained.

Two different types of vessel annotations were made by
image experts and clinicians for the ROSE-1 dataset, and the
consensus of them was then used as the ground truth:

(1) Centerline-level annotation. The centerlines of vessels
were manually traced using ImageJ software [45] by our ex-
perts on the SVC, DVC, and SVC+DVC images individually,
as shown in Fig. 3 A-2, B-2, and C-2;

(2) Pixel-level annotation. We first invited an image expert
to grade the complete microvascular segments with varying
diameters in the SVC and SVC+DVC images at pixel level.
Since it is difficult for a human expert to perceive the diameters

of small capillaries located around the macula region, we asked
the expert to grade the small capillaries at centerline level. The
combination of these different labels is defined as the final
pixel-level annotation, as shown in Fig. 3 A-3, and C-3. (Note
that, Fig. 3 B-3 is also the centerline-level label of the DVC,
as it is difficult to obtain pixel-level grading in this layer.)
ROSE-1 dataset were further analysed in Section Discussion
to demonstrate the significance of retinal vasculature in the
management of neurodegenerative diseases.

B. ROSE-2
The ROSE-2 subset contains a total of 112 OCTA images

taken from 112 eyes, acquired by a Heidelberg OCT2 system
with Spectralis software (Heidelberg Engineering, Heidelberg,
Germany). These images are from eyes with various macula
diseases. All the images in this dataset are en face angiograms
of the SVC within a 3×3 mm2 area centred at the fovea. These
OCTA images were reconstructed from 512 × 512 repeated
A-scans, with the Heidelberg automated real time (ART) and
Trutrack system employed to reduce artefacts and noise. Each
image was resized into a grayscale image with 840 × 840
pixels. All the visible retinal vessels were manually traced
using an in-house program written in Matlab (Mathworks
R2018, Natwick) by an experienced ophthalmologist. An
example OCTA image and its corresponding centerline-level
annotation are shown in Fig. 4. It should be noted that only
the centerlines are annotated at single pixel level for ROSE-
2. For better visualization, all the centerlines are widened to
7-pixel wide in the illustration figures.

IV. PROPOSED METHOD

In this section, we introduce a novel split-based coarse-to-
fine network, named as OCTA-Net, for retinal vessel segmen-
tation in OCTA images. The pipeline of OCTA-Net has two



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3042802, IEEE
Transactions on Medical Imaging

PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS 5

Fig. 5: Architecture of the proposed OCTA-Net network (with an example of en face of the angioram of SVC+DVC in the
ROSE-1 set). The SCS module (coarse stage) is designed to produce two preliminary confidence maps that segment pixel-level
and centerline-level vessels, respectively. The SRS module (fine stage) is then introduced as a fusion network to obtain the
final refined segmentation results.

indispensable stages - coarse stage and fine stage, as illustrated
in Fig. 5. In the coarse stage, a split-based coarse segmentation
(SCS) module is designed to produce preliminary confidence
maps. In the fine stage, a split-based refined segmentation
(SRS) module is used to fuse these vessel confidence maps
to produce the final optimized results.

A. Coarse Stage: Split-based Coarse Segmentation
Module

Since the ROSE-1 set has both pixel-level and centerline-
level vessel annotations for each en face OCTA image, we
design a split-based coarse segmentation (SCS) module with
a partial shared encoder and two decoder branches (for pixel-
level and centerline-level vessel segmentation, respectively),
to balance the importance of both pixel-level and centerline-
level vessel information, as illustrated in the coarse stage of
Fig. 5. It should be noted that for the ROSE-2 set and en face
of the DVC layer in the ROSE-1 set on, the designed SCS
module only consists of one encoder and one decoder (same
architecture as pixel-level vessel segmentation) due to only
centerline-level annotations for them.

Pixel-level vessel segmentation: Pixel-level vessel seg-
mentation is a U-shape network including five encoder layers
and the symmetric decoder layers. A ResNet-style structure
with split attention module, ResNeSt block [46], is used as
the backbone of each encoder-decoder layer. The primary
point of ResNeSt block is to regard a series of representations
as the combination of different feature groups, then apply
channel-wise attention to these groups. The detailed structure
of ResNeSt block is illustrated as Fig. 6 (A). The input
X ∈ RH×W×C of the block is equally split into two cardinal
groups which are then fed into two cardinal blocks with same
structure respectively. In each cardinal block, the cardinal
group is further equally divided and input to two parallel

branches. Each branch consists of 1×1 and 3×3 convolutional
layers followed by batch normalization (BN) and ReLU layers,
and outputs feature maps with size of H ×W × C/4.

In addition, a split attention module is applied in each
cardinal block to integrate these feature maps from the two
branches, as illustrated in Fig. 6 (B). The module first fuses
feature maps from the two branches (denoted as U1 and U2)
via an element-wise summation, then adopts global pooling
(gp) to generate channel-wise statistics s:

s =
1

H ×W

H∑
i=1

W∑
j=1

[U1(i, j) + U2(i, j)]. (1)

Two fully connected (FC) layers followed by a softmax
layer are then applied to s to obtain a1 and a2, the channel-
wise soft attention weights of U1 and U2 respectively, as
illustrated in Fig. 6 (B).

With the weight vectors a1 and a2, the weighted results
of U1 and U2 and output of the cardinal block V are: V1 =
a1 · U1, V2 = a2 · U2, V = V1 + V2, where · represents
channel-wise product. Next, outputs of both cardinal blocks
(denoted as V 1 and V 2) are fused by concatenation along the
channel dimension and one 1 × 1 convolution F1×1: Z =
F1×1([V 1, V 2]). Therefore, the final output Y of the ResNeSt
block is produced using a shortcut connection: Y = Z+T (X),
where T represents an appropriate transformation, such as
stride convolution, combined convolution with pooling or even
identity mapping.

Centerline-level vessel segmentation: Compared with
pixel-level annotation, vessel annotation at centerline level
aims to grade the vessels in regions with poor contrast,
more complex topological structures, and relatively smaller
diameters. On one hand, considering the differences between
centerline-level and pixel-level vessels, the features used for
pixel-level vessel segmentation might not be suitable for
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Fig. 6: ResNeSt [46] block with split attention module. (A) ResNeSt block. (B) Split attention module.

centerline-level vessel segmentation. The deeper architecture
might be detrimental to closer attention to low-level features,
which are of great significance for centerline-level vessel
segmentation. On the other hand, pixel- and centerline-level
vessel segmentation may reveal shared features after feature
extraction, due to spatial dependencies between the two types
of vessel annotations. Based on the above considerations, we
append several ResNeSt blocks followed by an up-sampling
layer in the third encoder layer of the backbone, as the
decoder of the centerline-level vessel segmentation network.
Finally, the outputs of the decoder are processed by one 1×1
convolutional layer with a Sigmoid function to achieve the
centerline-level segmentation map.

B. Fine Stage: Split-based Refined Segmentation
Module

In order to further recover continuous details of small ves-
sels, we introduce the fine stage to adaptively refine the vessel
prediction results from the coarse stage. Inspired by [47], a
split-based refined segmentation (SRS) module is proposed as
the fine stage. The structure of our SRS module is illustrated
in the fine stage of Fig. 5. In order to fully integrate pixel-
level and centerline-level vessel information from the SCS
module, the predicted pixel-level and centerline-level vessel
maps and the original (single channel) OCTA image are first
concatenated as input (total 3 channels) to the SRS module. In
addition, the SRS module will produce adaptive propagation
coefficients to refine the pixel-level and centerline-level maps
respectively. In the SRS module, a mini network including
three convolutional layers with 3 × 3 kernels is designed to
refine the pixel-level map from the coarse stage. Besides,
one additional 3 × 3 convolutional layer is appended to the
second layer of the mini network to refine the centerline-level
map from the coarse stage. BN and ReLU layers are adopted
after each convolutional layer. Finally, the refined pixel- and
centerline-level maps are then merged into a complete vessel
segmentation map, by choosing the larger value from the two
maps at each pixel. As in the case of the coarse stage, for the
ROSE-2 set and en face of the DVC in the ROSE-1 set, no
additional convolutional layer is appended to the mini network
and only the centerline-level map from the coarse stage is
refined.

The detailed channel configuration of the SRS module is
shown in Fig. 5. For vessel refinements, the module produces
normalized m×m local propagation coefficient maps for all

the positions, formulated as:

wp
i =

exp
(
hpi
)∑m×m

t=1 exp
(
hti
) , p ∈ 1, 2, . . . ,m×m, (2)

where hpi is the confidence value at position i for its neighbor
p, and m×m is the size of propagation neighbors. Finally, the
local propagation coefficient vector wp

i at position i will be
multiplied by the confidence map of thick or thin vessels from
the front model and aggregate to the center point to generate
the refinement result, denoted as:

gi =

m×m∑
p=1

wp
i · f

p
i , (3)

where fpi is the confidence vector of the neighbor p at position
i from the SCS module, and gi is the final predicted vector at
position i. Note that the propagation coefficient maps can learn
the spatial relationship between position i and its neighbors
to refine the structure information of vessels. In addition, the
final vessel map must be similar to that before refinement. To
achieve this goal, the coefficient of position i should be far
larger than that of its neighbors, and we adopt a reasonable
method for initialization of network parameters following [47]:

kl(a, c) = ε, ε ∼ N
(
0, σ2

)
and σ � 1

bl(c) =

{
1 l = L, c = (m×m+ 1)/2
0 others

(l = 1, 2, . . . , L)

(4)

where L is the number of convolutional layers, kl and bl repre-
sent convolutional kernels and the bias of layer l respectively,
c is the channel of a layer and a is the position in kernels.

V. EXPERIMENTS

A. Experimental Setting

The proposed method was implemented with PyTorch. Both
the coarse and the fine stage were trained with 200 epochs and
with the following settings: Adam optimization with the initial
learning rate of 0.0005, batch size of 2 and weight decay of
0.0001. For more stable training, we adopted poly learning
rate policy with a poly power of 0.9.

For the coarse stage, we set r = 16 as the reduction ratio
of the FC layers in the split attention modules, and selected
mean square error (MSE) as the loss function:

LMSE =
1

N

N∑
i=1

(pi − gi)2 (5)

where N is the number of all pixels, pi and gi represents
the i-th pixel of the prediction map and the ground truth
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Fig. 7: Vessel segmentation results of different methods on different layers of ROSE-1 and ROSE-2. From left to right: en face
angiograms (original images), manual annotations, vessel segmentation results obtained by U-Net, CE-Net, CS-Net, backbone
(ResNeSt) and the proposed method (OCTA-Net), respectively. Note, the color purple indicates the segmentation results at
centerline level.

respectively. For the fine stage, we set m = 3 as the size
of aggregation neighbors. Considering that there is a large
imbalance between vessel regions and the background in
en face OCTA images, we replaced MSE loss with Dice
coefficient loss to further optimize the vessel segmentation in
the fine stage:

LDice = 1−
2
∑N

i=1 pigi + ε∑N
i=1 p

2
i +

∑N
i=1 g

2
i + ε

(6)

where the parameter ε is a small positive constant used to
avoid numerical problems and accelerate the convergence of
the training process. For training and inference of the proposed
method, the ROSE-1 subset was split into 90 images for
training and 27 images for testing, and the ROSE-2 subset
was split into 90 images for training and 22 images for testing.
Data augmentation was conducted by randomly rotation of an
angle from −10◦ to 10◦ during all training stages.

We train our OCTA-Net separately for ROSE-1 and ROSE-
2, so the annotation differences will not affect the reliability of
the evaluation results. In addition, for ROSE-1 dataset, we have
both pixel- and centerline-level annotations, so the proposed
method learns features from both types of manual annotations.

B. Evaluation Metrics

To achieve comprehensive and objective assessment of
the segmentation performance of the proposed method, the
following metrics are calculated and compared:
• Area Under the ROC Curve (AUC);
• Sensitivity (SEN) = TP / (TP + FN);

• Specificity (Specificity) = TN / (TN + FP);
• Accuracy (ACC) = (TP + TN) / (TP + TN + FP + FN);
• Kappa score = (Accuracy − pe)/(1− pe);
• False Discovery Rate (FDR) = FP / (FP + TP);
• G-mean score [48] =

√
Sensitivity × Specificity;

• Dice coefficient (Dice) = 2 × TP / (FP + FN + 2 × TP);
where TP is true positive, FP is false positive, TN is true
negative, and FN is false negative. pe in Kappa score repre-
sents opportunity consistency between the ground truth and
prediction, and it is denoted as:

pe =((TP + FN)(TP + FP ) + (TN + FP )(TN + FN))

/(TP + TN + FP + FN)2
(7)

The use of sensitivity and specificity is not adequate for the
evaluation of this segmentation task, since over-segmentation
still leads to high sensitivity, and the vast majority of pixels do
not belong to vessels. Specifically, for centerline-level vessel
detection in the DVC images from the ROSE-1 and all images
from the ROSE-2, a three-pixel tolerance region around the
manually traced centerlines is considered a true positive, which
follows the evaluating methods for extracting one pixel-wide
curves in [49].

C. Performance Comparison and Analysis

We have thoroughly evaluated the proposed method over
our ROSE dataset, and compared it to existing state-of-the-art
segmentation methods to demonstrate the superiority of our
OCTA-Net in the segmentation of OCTA microvasculature.
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TABLE I: Segmentation results obtained using different meth-
ods on the SVC layer from ROSE-1

ROSE-1 (SVC)
Methods AUC ACC G-mean Kappa Dice FDR Time (s) p-value
IPAC [50] 0.8420 0.8245 0.7517 0.4664 0.5751 0.4816 - <0.001
COSFIRE [32] 0.9286 0.9227 0.7883 0.7089 0.7517 0.0471 - <0.01
COOF [11] 0.8689 0.8530 0.8161 0.5684 0.6606 0.4121 - <0.001
U-Net [39] 0.9218 0.8955 0.8068 0.6476 0.7116 0.2627 0.018 <0.001
ResU-Net [41] 0.9252 0.9098 0.8229 0.6911 0.7461 0.2107 0.021 <0.01
CE-Net [15] 0.9292 0.9121 0.8256 0.6978 0.7511 0.1995 0.025 <0.001
DUNet [42] 0.9334 0.9118 0.8249 0.6970 0.7505 0.2006 0.266 <0.001
CS-Net [1] 0.9392 0.9152 0.8304 0.7093 0.7608 0.1883 0.045 <0.001
three-stage [43] 0.9341 0.9179 0.8318 0.7168 0.7663 0.1787 33.255 <0.01
OCTA-Net 0.9453 0.9182 0.8361 0.7201 0.7697 0.1775 0.059 -

TABLE II: Segmentation results obtained using different meth-
ods on the DVC images from ROSE-1

ROSE-1 (DVC)
Methods AUC ACC G-mean Kappa Dice FDR Time (s) p-value
IPAC [50] 0.7563 0.7522 0.7684 0.0636 0.0911 0.9510 - <0.001
COSFIRE [32] 0.8520 0.9130 0.8523 0.2199 0.2405 0.8516 - <0.001
COOF [11] 0.8162 0.6678 0.7847 0.0649 0.1003 0.9465 - <0.001
U-Net [39] 0.9186 0.9895 0.8442 0.6553 0.6605 0.3776 0.018 <0.01
ResU-Net [41] 0.9425 0.9885 0.8553 0.6510 0.6567 0.4002 0.021 <0.05
CE-Net [15] 0.9505 0.9843 0.8503 0.5707 0.5783 0.5147 0.025 <0.05
DUNet [42] 0.9631 0.9864 0.8369 0.6555 0.5850 0.4930 0.266 0.105
CS-Net [1] 0.9671 0.9882 0.8155 0.5825 0.5884 0.4710 0.045 0.991
three-stage [43] 0.9576 0.9894 0.8399 0.6569 0.6622 0.3780 33.255 <0.05
OCTA-Net 0.9673 0.9909 0.8811 0.7028 0.7074 0.3492 0.059 -

Comparison methods. In order to verify the superiority
of our method, we compared our method with other state-of-
the-art segmentation methods on both ROSE-1 and ROSE-
2, including three conventional methods: infinite perimeter
active contour (IPAC) [50], trainable COSFIRE filters [32],
and curvelet denoising based optimally oriented flux en-
hancement (COOF) [11] for their effectiveness in detecting
vessels with irregular and oscillatory boundaries; and six deep
learning approaches: U-Net [39], ResU-Net [41], CE-Net [15],
DUNet [42], CS-Net [1] and three-stage networks [43].
For [50] and [32], the parameters were tuned to achieve
segmentation results of all vessels in both ROSE-1 and ROSE-
2 subsets. For deep learning approaches, all hyper-parameters
were manually adjusted to yield the best performances.
• Subjective comparisons. Fig. 7 presents the respective

vessel segmentation results produced by the proposed method,
backbone, and the other three selected state-of-the-art segmen-
tation networks. We can see that U-Net achieves relatively low
performance, due to its over-segmentation at regions with high
density. CE-Net and CS-Net achieve better performance than
U-Net. However, they are not able to preserve fine capillaries
well in terms of producing weak vessel responses. In contrast,
the proposed method yields more visually informative results.
The benefit of the proposed method for segmentation can be
observed from the representative regions (green patches). It
is clear from visual inspection that our method has identified
more complete and thinner vessels particularly in ROSE-1 sub-
set (shown in purple). It achieves relatively uniform responses
in both thick and thin vessels, and provides more sensitive and
accurate segmentation on capillaries, as demonstrated in the
segmentation results of the DVC and SVC+DVC angiograms.

In contrast, all the methods yield very similar segmentation
performance in ROSE-2. Therefore, to better evaluate the
performance of the proposed method, we provide quantitative
results in the following subsections.

TABLE III: Segmentation results obtained using different
methods on the SVC+DVC angiograms from ROSE-1

ROSE-1 (SVC+DVC)
Methods AUC ACC G-mean Kappa Dice FDR Time (s) p-value
IPAC [50] 0.7941 0.8007 0.7054 0.3982 0.5223 0.5211 - <0.001
COSFIRE [32] 0.8800 0.8981 0.7256 0.6125 0.6671 0.0988 - <0.001
COOF [11] 0.8217 0.7762 0.7742 0.4306 0.5685 0.5465 - <0.001
U-Net [39] 0.9039 0.8865 0.8050 0.6308 0.7012 0.2892 0.018 <0.001
ResU-Net [41] 0.9108 0.8997 0.8188 0.6689 0.7309 0.2248 0.021 <0.001
CE-Net [15] 0.9155 0.8990 0.8203 0.6678 0.7300 0.2479 0.025 <0.001
DUNet [42] 0.9250 0.9046 0.8213 0.6819 0.7403 0.2223 0.266 <0.001
CS-Net [1] 0.9311 0.9073 0.8263 0.6919 0.7488 0.2137 0.045 <0.001
three-stage [43] 0.9248 0.9090 0.8275 0.6967 0.7524 0.2049 33.255 <0.001
OCTA-Net 0.9375 0.9099 0.8338 0.7022 0.7576 0.2087 0.059 -

TABLE IV: Segmentation results obtained using different
methods on ROSE-2

ROSE-2
Methods AUC ACC G-mean Kappa Dice FDR Time (s) p-value
IPAC [50] 0.7370 0.8592 0.8207 0.4758 0.5515 0.5590 - <0.001
COSFIRE [32] 0.7787 0.9212 0.7742 0.5699 0.6142 0.3891 - <0.001
COOF [11] 0.7442 0.8945 0.8117 0.5498 0.6112 0.4620 - <0.001
U-Net [39] 0.8370 0.9319 0.8001 0.6177 0.6564 0.3542 0.018 <0.001
ResU-Net [41] 0.8413 0.9339 0.8074 0.6348 0.6725 0.3337 0.021 <0.001
CE-Net [15] 0.8467 0.9377 0.8248 0.6708 0.7066 0.2930 0.025 <0.001
DUNet [42] 0.8526 0.9372 0.8213 0.6576 0.6935 0.3132 0.266 <0.001
CS-Net [1] 0.8542 0.9385 0.8235 0.6658 0.7010 0.3025 0.045 <0.001
three-stage [43] 0.8590 0.9384 0.8280 0.6671 0.7024 0.3071 33.255 0.244
OCTA-Net 0.8603 0.9386 0.8315 0.6724 0.7077 0.3019 0.059 -

• Performance on the SVC layer in ROSE-1. We will
first evaluate the vessel segmentation performance on each of
the plexus layers of the ROSE-1 subset. Table I quantifies the
segmentation performance in SVC images of the different ap-
proaches. Overall, our method achieves the best performance
in terms of almost all the metrics, with the single exception
that its FDR score is 0.0038 lower than that of the three-stage
network [43]. Nevertheless, the proposed method is able to
correctly identify the majority of vessels using our two-stage
architecture. Besides, the last column of Table I also gives
paired t-test results in terms of AUC. All p < 0.05 demonstrate
that the proposed method performs significantly better than the
other compared methods.
• Performance on the DVC layer in ROSE-1. For the

DVC images in the ROSE-1 subset, we first adopted the
ResNeSt backbone to obtain preliminary vessel segmentation
results at the coarse stage. Afterwards, the initial segmen-
tations are combined with their original images as inputs
of the fine stage for producing final vessel segmentations.
Table II demonstrates the segmentation results achieved by
our method and the state-of-the-art methods. Although the
improvement on AUC is not significant when compared with
CS-Net and DUNet, the proposed network outperformed all
the other compared approaches. In particular, it significantly
outperforms other methods by a large margin, with an increase
of about 12.0% and 11.9% in kappa and Dice, respectively,
and a reduction of about 13.2% in FDR when compared
with CS-Net. These performance improvements are consistent
with the segmentation results shown in the middle row of
Fig. 7, where the proposed method successfully extracts small
capillaries from macula regions with promising continuity
and integrity, while other methods produces relatively lower
capillary responses.
• Performance on the SVC+DVC angiograms in ROSE-
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Fig. 8: ROC curves of different methods in terms of SVC+DVC angiograms segmentation performance on ROSE-1 and that
of SVC of ROSE-2 datasets.

TABLE V: Ablation studies of our two-stage method on both the ROSE-1 and ROSE-2 subsets

ROSE-1 (SVC+DVC) ROSE-2
Methods AUC ACC G-mean Kappa Dice FDR AUC ACC G-mean Kappa Dice FDR
U-Net [39] 0.9039 0.8865 0.8050 0.6308 0.7012 0.2892 0.8370 0.9319 0.8001 0.6177 0.6564 0.3542
ResU-Net [41] 0.9108 0.8997 0.8188 0.6689 0.7309 0.2248 0.8413 0.9339 0.8074 0.6348 0.6725 0.3337
Backbone (ResNeSt) 0.9187 0.9064 0.8228 0.6887 0.7461 0.2112 0.8593 0.9382 0.8293 0.6692 0.7047 0.3052
Backbone (joint learning) 0.9363 0.9091 0.8341 0.7003 0.7564 0.2135 - - - - - -
Ours 0.9375 0.9099 0.8338 0.7022 0.7576 0.2087 0.8603 0.9386 0.8315 0.6724 0.7077 0.3019

1. Table III shows the results of using different segmentation
approaches on the SVC+DVC images. Again, the proposed
method achieves overall the best performance, with a single
exception at the FDR score, where a performance score
of 0.0988 is obtained using the method by Azzopardi et
al. [32]. However, detection rate of conventional methods of
of Azzopardi et al. [32] and Zhao et al. [50] are significantly
lower than those of all the deep learning-based methods. This
shows that the conventional methods have yet to solve the
problems as posed by the high degree of anatomical variations
across the population, and the varying scales of vessels within
an image. Moreover, motion artefacts, noise, poor contrast
and low resolution in OCTA exacerbate these problems. By
contrast, deep learning-based methods extract a set of higher-
level discriminative representations, which are derived from
both local and global appearance features and thus can achieve
better performance. All p ≤ 0.001 demonstrate the significant
performance of our method.

• Performance on ROSE-2. ROSE-2 only provides
centerline-level manual annotation, and includes en face
OCTA images of the SVC. Therefore, as with the DVC images
in ROSE-1 subset, for ROSE-2, our method adopts a ResNeSt
backbone at the coarse stage to obtain the preliminary vessel
segmentation results. Then, the final results are obtained at
the fine stage, using the original image and the preliminary
results from the coarse stage as input. Table IV presents the
performance of the different segmentation methods. It shows
that our method achieves the best AUC, ACC, Kappa and Dice
respectively. The statistical analysis reveals that our OCTA-Net
outperforms significantly other methods: all p < 0.001 with a
single exception that when compared with three-stage model.

Moreover, Table I - IV also report the inference time cost
of deep learning methods. We don’t list the time cost of three

conventional methods here because it is unfair to compare
these methods run on CPU or even with MATLAB codes that
are not optimized in efficiency with the deep learning methods
run on GPU. For fair comparison of inference time, we test all
these trained deep learning models with PyTorch. We observed
that although consisting of a coarse stage and a fine stage,
the proposed two-stage framework is capable to achieve better
segmentation performance within a relatively shorter time on
both ROSE-1 and ROSE-2.

In order to illustrate the vessel segmentation performance
of different methods in a more intuitive manner, we have
also provided ROC curves for both the ROSE-1 and ROSE-2
subsets, as shown in Fig. 8. Due to limited space, here we
show only the segmentation performances on the SVC+DVC
images in ROSE-1. Compared with the conventional methods
such as the algorithms proposed by Zhao et al. [50] and
Azzopardi et al. [32], deep learning based methods demon-
strate their superiority in segmenting OCTA images. This is
because the introduction of excellent modules such as ResNet
and attention blocks, are usually helpful in improving the
AUC score of the encoder-decoder architecture. In addition,
there are two reasons that our two-stage architecture achieves
the best ROC curve (shown in red in both the subfigures
of Fig. 8). Firstly, using ResNeSt as the backbone of the
encoder-decoder architecture further strengthens performance
for feature extraction, which improves the extraction of vessel
information at different complexities. Secondly, the fine stage
can adjust local details on the basis of preliminary results from
the coarse stage, which additionally refines the segmentation
accuracy of the coarse stage.

VI. DISCUSSION AND CONCLUSION



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2020.3042802, IEEE
Transactions on Medical Imaging

10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

A. Ablation Studies

In this paper, the proposed vessel segmentation method
consists of a ResNeSt backbone, joint learning from pixel-
level and centerline-level vessel segmentation, and two-stage
training. To validate the effectiveness of these components, we
carried out the following ablation studies. U-Net [39] is treated
as the baseline encoder-decoder method. Then, we gradually
evaluated how each of these components affect the results.
• Ablation for ResNeSt backbone. To discuss the per-

formance of the ResNeSt backbone, we compare segmenta-
tion performance of the original U-Net, ResU-Net [41] (the
modified U-Net with residual blocks in the encoder) and
our proposed encoder-decoder architecture (with ResNeSt as
the backbone), as shown in Table V. For both the ROSE-1
and ROSE-2 subsets, our encoder-decoder architecture with
ResNeSt as the backbone achieves the best performance on
AUC, ACC, Kappa, Dice and FDR in comparison with the
original U-Net and ResU-Net. This indicates that the ResNeSt
backbone is superior in feature extraction, which reveals more
information about vessels with different characteristics.
• Ablation for joint learning at pixel-level and centerline-

level vessel segmentation. In addition, we compared joint
learning from pixel-level and centerline-level vessel segmen-
tation with only one segmentation branch (with ResNeSt as
the backbone) of all vessels for the SVC+DVC images in
the ROSE-1 subset, so as to demonstrate the advantages
of joint learning from both pixel-level and centerline-level
vessel segmentation. Comparisons of both performance are
illustrated in Table V. We can observe that joint learning
achieves higher scores in terms of AUC, ACC, Kappa and
Dice than learning from only one segmentation branch. This
suggests that joint learning could help to improve both pixel-
level and centerline-level vessel segmentation performance
by highlighting the relevant topological distinctions between
pixel-level and centerline-level vessels.
• Ablation for two-stage training. Furthermore, we anal-

ysed the impact of the fine stage on the coarse stage in our
two-stage procedure. At the coarse stage, for the ROSE-1
subset, pixel-level and/or centerline-level vessel segmentation
results are treated as the preliminary segmentation results,
while for the ROSE-2 subset, vessel segmentation results
produced by the ResNeSt backbone are treated as the pre-
liminary segmentation results. At the fine stage, final vessel
segmentation results are derived from both the original images
and preliminary results from the coarse stage. Accordingly,
we made a comparison between the preliminary segmentation
results of the coarse stage and final vessel segmentation results
of the fine stage. As illustrated in Table V, final vessel
segmentation performance at the fine stage for the most parts
shows improvement when compared with results from the
coarse stage. The last column of Fig. 7 also indicates that some
details of microvasculature are optimized in the fine stage.

B. Clinical Evaluation

It has been suggested that the retina may serve as a window
for monitoring and assessing cerebral microcirculation [51]
and neurodegeneration conditions [13]. OCT images have been

utilized to observe neurodegenerative changes occurring in the
ganglion cell-inner plexiform layer (GC-IPL) thickness and
retinal nerve fiber layer (RNFL) thickness of AD and MCI
patients [52]. Recently, contributions of vascular biomarkers
such as length, density and tortuosity, to the diagnosis of MCI
and AD are increasingly recognized [52], [53]. OCTA, as
an extension of OCT, that can provide in vivo, noninvasive
visualization of the retinal vessels in different layers. With
the simultaneous occurrence of both neurodegeneration and
microvascular changes in the brain, many studies [51], [54],
[55] have suggested that the macula microvasculature may
provide vital information on the changes in the cerebral
microcirculation during the subclinical phase. Changes in the
retinal capillary network may indicate the onset and progres-
sion of retinopathy, and fractal dimension (FD) is a well-
known measure for characterizing the geometric complexity
of retinal vasculature that will be a promising biomarker for
vascular diseases [56]–[58] as well as neurodegenerative [59]
and cerebrovascular diseases [60]. In particular, Cheung et
al. [56] indicated that the conventional structural measures
(e.g., branching angle and vascular tortuosity) represent only
one of the many aspects of the retinal vascular geometry
and are lack of single global measure that can summarize
the branching pattern of the vasculature as a whole. On the
other hand, FD reflects the overall complexity [58], and has
been used as a global measure of the geometric pattern of
the retinal vasculature potentially representing the complex
branching pattern of the microvasculature [59].

In this work, we performed an FD analysis by applying a
box-counting method named Fraclab [61] on the segmentation
results of the SVC, DVC, and SVC+DVC images in ROSE-1
using the proposed method. The box-plots in Fig. 9 show the
statistical analysis results on the ROSE-1 dataset, including 39
images of normal and 78 images of AD subjects, and each sub-
ject has three OCTA angiograms: SVC, DVC, and SVC+DVC.
We have done three statistical tests with one for each of SVC,
DVC and SVC+DVC in order to avoid the potential correlation
issues amongst them. It can be observed that the AD group has
reduced FD in the SVC, DVC and SVC+DVC when compared
with the control group. Student’s t-test was employed to assess
the differences between the AD and control groups and results
confirmed that the differences between the AD and control
participants are significant in the SVC (p=0.004<0.05), DVC
(p=0.028<0.05) and SVC+DVC (p=0.007<0.05), respectively.
All the three tests have demonstrated significant differences
between AD and healthy groups. These results are consistent
with the previous findings that retinal microvascular changes
may reflect neurodegenerative changes [13], [52].

C. Projection artefacts

Projection artefacts are one of the main limitations of OCTA
images [62]. In this work we used the exported OCTA images
as it is and didn’t applied any further artifacts removal method.
However, Optovue has incorporated their own proprietary
three-dimensional projection artifact removal technique into
their AngioVue software, and so the ROSE-1 dataset we used
in fact have undergone some artifacts removal. In real scenario,
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Fig. 9: Descriptive results of the FD of AD patients and
controls in the SVC, DVC and SVC+DVC, respectively.

projection artefacts may still exist in OCTA images and require
further technological improvements, which however is not the
focus of the paper. In our experience if a segmentation works
on noisy images it will often works well (if not better) in
more clean images. We expect that the proposed approach will
continue to work on images free of projection artefacts.

D. Conclusions
In this paper, we have presented a novel Retinal OCTA SEg-

mentation dataset (ROSE) dataset, which is a large, carefully
designed and systematically manually-annotated dataset for
vessel segmentation in OCTA images. To our best knowledge,
this is the first OCTA dataset released to the research com-
munity for the vessel segmentation task. It contains two sub-
sets, where the images were acquired by two different devices.
All the vessels were manually annotated by human experts at
either centerline level and/or pixel level. All of the images
contained in the dataset were eventually used for clinical
diagnostic purposes. To ensure the utmost protection of patient
privacy, the identities of all patients have been removed and
cannot be reconstructed. We plan to keep growing the dataset
with more challenging situations and various types of eye and
neurodegenerative diseases, such as diabetic retinopathy and
Parkinson’s disease.

In addition to the new dataset, we further proposed a
novel two-stage framework for vessel segmentation in OCTA
images. In the coarse stage, a split-based coarse segmentation
(SCS) module has been designed to achieve the preliminary
segmentation results: ResNeSt block is used as the backbone
of the framework. In the fine stage, a split-based refined
segmentation (SRS) module has been adopted to improve
the vessel segmentation results by utilizing both the original
images and the preliminary results from the coarse stage.

The experimental results on the ROSE dataset show that
our vessel segmentation approach outperforms other state-
of-the-art methods. Small capillaries are major components
of the retinal microvasculature and many of them are very
tiny segments with only 2 − 4 pixel width. Due to the high
noise ratio and low capillary visibility in OCTA images, large
vessels can be easily extracted while the segmentation of
small capillaries becomes challenging. Thus, small increases
of metric values may already indicate significant improvement
of segmentation with more extracted capillaries. We have con-
ducted paired t-tests on the segmentation performance of our

method and other methods. The statistical analysis in Section
V.C demonstrates competitive performance of the proposed
method. In particular, the improvements of small capillaries
in quantitative evaluation metrics are quite significant also due
to the extreme imbalance between foreground and background
regions. The sub-analysis on AD shows the great potential of
exploring retinal microvascular-based analysis for the diagno-
sis of various neurodegenerative diseases.
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