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Abstract— Precise characterization and analysis of
corneal nerve fiber tortuosity are of great importance in
facilitating examination and diagnosis of many eye-related
diseases. In this paper we propose a fully automated
method for image-level tortuosity estimation, comprising
image enhancement, exponential curvature estimation, and
tortuosity level classification. The image enhancement
component is based on an extended Retinex model, which
not only corrects imbalanced illumination and improves
image contrast in an image, but also models noise explic-
itly to aid removal of imaging noise. Afterwards, we take
advantage of exponential curvature estimation in the 3D
space of positions and orientations to directly measure
curvature based on the enhanced images, rather than rely-
ing on the explicit segmentation and skeletonization steps
in a conventional pipeline usually with accumulated pre-
processing errors. The proposed method has been applied
over two corneal nerve microscopy datasets for the estima-
tion of a tortuosity level for each image. The experimental
results show that it performs better than several selected
state-of-the-art methods. Furthermore, we have performed
manual gradings at tortuosity level of four hundred and
three corneal nerve microscopic images, and this dataset
has been released for public access to facilitate other re-
searchers in the community in carrying out further research
on the same and related topics.

Index Terms— Corneal nerve, tortuosity, enhancement,
segmentation, curvature.
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I. INTRODUCTION

Existing clinical research [1], [2] suggests that the morpho-
logical changes observable in numerous anatomical curvilinear
structures - e.g., retinal blood vessels, coronary blood vessel,
carotid or corneal nerve fibers - are closely related to the
presence of many diseases. For example, several studies [1]–
[6] have confirmed that some quantitative properties of the
corneal nerves such as nerve fiber branching, density, length,
and tortuosity are linked to eye and systemic diseases. Corneal
nerve damage and repair from surgical interventions may be
reflected in nerve branching, while fungal keratitis patients
usually exhibit lower nerve density [7]. Tortuosity is one of
the most significant biomarkers reflecting variations in corneal
nerve fibers, as larger tortuosity implies process of nerve
degeneration and subsequent regeneration, leading to active
neural growth [2]. In addition, ophthalmologists often use
the tortuosity of corneal nerve fibers as an important clinical
parameter to assess hypertensive retinopathy [8] and diabetic
neuropathy [9]–[12], respectively.

Corneal Confocal Microscopy (CCM) imaging is a common
procedure to visualize and inspect corneal nerves - in particular
the subbasal nerve plexus - due to its non-invasive nature
of acquisition [9]. In several studies [3], [9], [13], corneal
nerve fibre tortuosity has been categorized into between three
and five levels, or simply as normal/abnormal. However, these
assessments are usually subjective, and can lead to substantial
inter-observer and intra-observer variations [3]. Fig. 1 illus-
trates three examples of CCM images with increasing tortuos-
ity. Clinicians have suggested that any measure of tortuosity
should be invariant to translation, rotation and scaling [2].
An accurate measurement of tortuosity should be able to
extract the key tortuosity characteristics - e.g., amplitude and
number of inflection points (frequency) - and to overcome time
constraints and inaccurate measurements.

The conventional approaches for automatic tortuosity mea-
surement start from a segmentation step of curvilinear struc-
tures, followed by a skeletonization to obtain a centerline map.
Afterwards, junction points such as bifurcations and crossings
are detected and then used to break the centerline map into
individual centerline segments. For each segment, a curve
fitting and parameterization step is applied to achieve the best
approximation to the original curvilinear structures. The local
curvatures of each centerline segment are finally estimated for
the purpose of generating different tortuosity metrics.

To our best knowledge, the tortuosity of curvilinear struc-



Fig. 1. Three examples of corneal nerve images with different tortuosity
levels. From left to right: levels 1 to 3.

Fig. 2. Examples of CCMs with poor contrast, inhomogeneous back-
grounds and presence of noise during image acquisition.

tures has no universal accepted definition or standard descrip-
tion. It has different characteristics for different anatomical
structures [8], [9], [14], [15]. Most tortuosity measurements
are historically rooted in metrics designed for quantifying
the curvature of curvilinear structures such as retinal ves-
sels [8], cerebral blood vessels [16], and corneal nerves [17].
Bracher [18] suggests that tortuosity may be obtained by
computing the ratio (ARC) of the distance traveled (arcs
length) and the straight-line distance between contour end-
points (chord length). However, this approach ignores inflec-
tion points, and tends to assign the same value to potentially
very different shapes. Bullitt et al. [16] further multiply the
ARC by the number of inflection points along the retinal
vessels, while Grisan et al. [8] sum the ARC computed from
each vessel between inflection points, and then multiply by
the number of inflection points. Semdby et al. [19] measure
tortuosity through a sum of angles metric, which evaluates the
angles between consecutive trios of points along the space
curve represented by the vessel skeleton. This measure is
effective in detecting high-frequency, low-amplitude coils or
sine waves. Goh et al. [20] measure tortuosity by computing
the change of angles calculated at reasonable discrete steps
along the blood vessel, and direction change along the path
of the vessels, respectively. Bribiesca [21] proposes a mea-
sure of tortuosity for retinal blood vessels based on slope
chain code. This method places constant-length straight-line
segments along the curve, and computes the slope changes
between contiguous segments scaled to a continuous range.

Hart et al. [22] use total curvature and total squared cur-
vature along the vessel centerlines to distinguish the retinal
blood vessels as simply tortuous or non-tortuous. 18 tortu-
osity measures are calculated from a corneal nerve dataset
by Annunziata et al. [3], [13]. The researchers employ the
multinomial logistic ordinal regressor to identify the best
combination of tortuosity measures, and the nerves are graded
into four levels of tortuosity. Scarpa et al. [9] adapt the
algorithm [8] for the analysis of corneal nerve tortuosity by

further partitioning each nerve into several turn curves, which
are located between two consecutive twists. The twists are
denoted by changes in curvature sign between the contour
endpoints.

A. Challenges
Most of the aforementioned tortuosity measures may lead

to disagreement, in particular that an image may be perceptu-
ally classified by an ophthalmologist as highly tortuous even
though it contains only one or two nerves with many little
twists [3]. In addition, manual analysis of nerve fibers by
ophthalmologists is a tedious task and prone to human errors,
while existing commercial software analysis still largely relies
on manual refinement. On the other hand, the accuracy of
a computational tortuosity measure is highly dependent on
the quality of pre-processing: errors can be propagated and
accumulated due to poor imaging quality, and imperfect curvi-
linear structure segmentation or tracing. The imaging quality
of CCM remains an issue of concern for the development of
automated fiber detection and tortuosity estimation [17]. As a
consequence, a fully automated and reliable assessment of the
tortuosity level of curvilinear structures has long been deemed
desirable to overcome time constraints and avoid human error.

Automated corneal nerve fiber analysis methods, such as
fiber segmentation or tortuosity estimation, are particularly
challenging due to poor contrast, imaging noise, and/or imbal-
anced intensity, as shown in Fig. 2. Intensity inhomogeneity
and poor contrast, and/or speckle noise are often inherited
from the medical image acquisition process [23]. These obsta-
cles pose significant challenges to subsequent fiber detection
and tortuosity estimation tasks. To this end, it is also crucial
to produce high-quality enhancements of the captured images
so as to reveal significant details obscured inside.

B. Contributions
Being well acquainted with the above challenges, we pro-

pose a novel method that seamlessly integrates two distinct
technical components, image enhancement and tortuosity es-
timation, with the underlying ideas that each of them will ad-
dress one of the aforementioned challenges. More specifically,
this paper makes three contributions:
• We employ a novel algorithm to improve the quality

of CCM images, by modeling noise explicitly in the classic
Retinex model, so that different components - illumination,
reflectance, and noise - can be estimated simultaneously. To
this end, an objective function is constructed by minimizing
their difference, gradient, and magnitude and optimized using
the powerful alternating direction method of multipliers.
• To better describe the tortuosity of curvilinear structures,

we introduce an advanced exponential curvature estimation
method, with a view to avoid the unstable factors in the
conventional approach. Exponential curvature estimation has
the great advantage of measuring the curvature values directly
from the enhanced images, rather than relying on the complex
pre-processing steps in the conventional pipeline.
• The proposed framework has been validated quantita-

tively using two corneal nerve tortuosity datasets and one



retinal blood vessel tortuosity dataset. In addition, we have
performed manual annotations of nerve fibers in these corneal
nerve datasets, and constructed a new corneal nerve tortuosity
dataset. All these datasets have been released for public access.

II. CORNEAL CONFOCAL MICROSCOPY ENHANCEMENT

In this work, we introduce an image enhancement algo-
rithm [24] to improve the quality of CCM imagery and reduce
the noise by considering a noise term explicitly in the classic
Retinex model. Using this model, we make a first attempt to
predict the noise map by applying the Retinex model to the
medical images, while simultaneously estimating a structure-
enhanced reflectance map.

Throughout this paper, the following notations are used: the
low case letter in italics denotes a scalar, the upper case letter
denotes a matrix, the lower case letter in bold face denotes a
vector, the vectorization of a matrix X is represented as x,
the operations on matrices or vectors such as multiplication ·,
less than or equal to ≤, and division / is performed element-
wise, unless stated otherwise, and superscript T denotes the
transpose of a vector or matrix.

A. Preliminaries

The classic Retinex model assumes that a given image S
can be decomposed into two components, the reflectance R
and the illumination L:

S = L ·R, s.t. S ≤ L. (1)

where S, L, and R are matrices, whose element values are in
the unit interval [0, 1]. The goal is to estimate the reflectance
R and the illumination L from S. Once R is estimated
reliably, it can be regarded as the desired enhanced image
S for the more faithful representation of the reflectance of the
object of interest and for the purpose of subsequent analysis.
Most existing Retinex methods [25]–[28] utilize logarithmic
operations to linearize the model and reduce computational
complexity, resulting in log(S) = log(L) + log(R).

To estimate L and R, the conventional methods [29], [30]
usually build and optimize the following objective function:

argmin
R,L

‖R · L− S‖2 + α‖∇L‖+ β‖∇R‖2,

s.t. R ≤ 1 and S ≤ L.
(2)

In this objective function, α and β are used to control the trade-
off between the fidelity term and the gradient term. ‖ · ‖2 and
‖ · ‖ are the l2 and l1 norms, respectively. However, a direct
estimation of the reflectance may lead to excessive smoothing,
and remove semantically significant edge details. Moreover,
the gradient variation in the log-transformed reflectance is
represented as: ∇(log(R)) = (1/R) · ∇R, and so is heavily
influenced by 1/R when R is very small. 1/R becomes highly
unstable if R contains intensive noise (which is a common
phenomenon in the CCM images), and it often amplifies
the latent intensive noise due to a lack of constraint on the
reflectance [24], [31].

B. Noise-constrained Retinex model

In order to avoid the above-mentioned issues, in this
work [24], it does not apply logarithmic transformation to
the Retinex model, instead introduce a noise map N into the
conventional Retinex model directly with a view to enhance
images corrupted by intensive noise. This model is thus
defined as:

S = L ·R+N. (3)

The objective function that simultaneously estimates the
reflectance R, the illumination L and the noise N from the
given image S can then be defined as:

argmin
R,L,N

‖R ·L+N−S‖2 +α‖∇L‖+β‖∇R−G‖2 +σ‖N‖2, (4)

where R ≤ 1, S ≤ L, and we use the l2 norm to constrain the
overall intensity of noise N . The fidelity term ‖R·L+N−S‖2
is the squared difference between the S and the recomposed
one R ·L+N . The second term ∇L denotes the regularization
term, which is employed to preserve the edges and details
and compress noise. The term ‖∇R − G‖2 minimizes the
difference between the gradient of the reflectance R and G,
where G is the adjusted gradient of S, so that the structure
of the edges of the reflectance is smooth and continuous. In
this work, G is the amplified version of the gradient of the
input image with a factor K, such that: G = K · ∇S, where
K = 1 + λe−|∇S|/δ . This amplification operation ensures
less adjustment in regions with higher gradient magnitudes,
while regions with lower gradient magnitudes are strongly
enhanced [24]. As a result, the adjusted gradient G tends to
reach an even magnitude. λ and δ control the degree of the
amplification and the amplification rate of different gradients.

It is clear that Eqn. (4) is an ill-posed inverse image decom-
position problem to recover three variables R, L and N from
only one known variable S. In this case, an approach giving a
convergence guarantee for non-convex optimization problems
will be required. To this end, the Alternating Direction Method
of Multipliers (ADMM) [32] is used to optimize this objective
function. By introducing an auxiliary variable B [33], we can
rewrite the objective function in Eqn. (4) as:

argmin
R,L,B,N

‖R · L+N−S‖2 + α‖B‖+ β‖∇R−G‖2 + σ‖N‖2,

s.t. B = ∇L.
(5)

C. Solutions to the optimization problem

In this subsection, we show the solutions to the sub-
problems in Eqn. (5) in the kth iteration.
• L sub-problem: To optimize the above objective function

in Eqn. (5), we introduce a Lagrange multiplier Z to remove
the equality constraint, so as to iteratively update each variable,
while regarding the others estimated in the previous iteration as
constants. By neglecting the unrelated terms of L, the objective
function in Eqn. (5) can be rewritten as:

argmin
L
‖R · L+N − S‖2 + Φ(Zk,∇L−Bk), (6)



Fig. 3. Examples of image decomposition and corresponding enhancement results. From left to right: original CCM images, illumination maps,
reflectance maps, noise maps and enhanced images.

where Φ(X,Y) = 〈X,Y〉+ µ
2 ‖Y ‖2 as suggested by [24], and

〈·, ·〉 represents the matrix inner product, and the solution to
L is then derived as:

lk+1 = (2f(rk+1) + µf(D))−1

(2rk+1(s− nk+1) + µDT (bk − zk

µ
)),

(7)

where µ is the penalty scalar, D is the discrete gradient
operator; and µk+1 = 1.5 · µk; and f(X) = XTX .
• R sub-problem: Similarly, by neglecting the unrelated

terms of R, the objective function in Eqn. (5) is rewritten
as:

argmin
R

‖R · L+N − S‖2 + β‖∇R−G‖2. (8)

We further replace the first term as a classical least squares
problem:

argmin
R
‖r · l + n− s‖2 + β‖∇R−G‖2. (9)

By differentiating the above equation with respect to R and
setting the derivative to 0, we have

2(lk)T (lkr + nk − s) + 2βDT (Dr− g) = 0, leading to

(f(lk) + βf(D))r = lk(s− nk) + βDTg and thus

rk+1 = (f(lk) + βf(D))−1(lk(s− nk) + βDTg).

(10)

• N sub-problem: By neglecting the unrelated terms of N ,
the objective function in Eqn. (5) can be rewritten as:

argmin
N

‖R · L+N − S‖2 + σ‖N‖2. (11)

The closed form solution to this quadratic problem is:

Nk+1 = (S −Rk+1 · Lk+1)/(1 + σ). (12)

• B sub-problem: By neglecting the unrelated terms of B,
the objective function in Eqn. (5) can be rewritten as:

argmin
B

α‖B‖+ Φ(Zk,∇Lk+1 −B). (13)

A shrinkage operation is adopted to update Bk+1, giving the
solution to Eqn. (13) as:

Bk+1 = shrinkε(∇Lk+1 +
Zk

µk
), (14)

where shrinkε(·) = sign(·)max(| · | − ε, 0) and ε = α
µk

. This
solution can be expanded as:

Bk+1 = sign(∇Lk+1+
Zk

µk
)·max(|∇Lk+1+

Zk

µk
|− α

µk
, 0), (15)

The auxiliary matrix Z can be finally updated as Zk+1 =
Zk + µk(∇Lk+1 −Bk+1).

D. Implementation details

We set initial values of L, N , Z, B, k and µ as L0 = S,
N0 = Z0 = B0 = 0, k = 0, and µ0 = 1. The whole process
is repeated until the difference between Rk and Rk+1 is
smaller than 0.01. After having estimated the illumination and
the reflectance maps, illumination adjustment is performed to
enhance the detail of the input image, by employing a Gamma
correction of L with L′ = L

1
γ , where γ is empirically set

as 1.8. Many Retinex-based image enhancement methods are
accompanied with gamma correction such as those proposed
in [34]–[36]. They use the gamma correction to compress
the dynamic range of the illumination, and reduce the rapid
changes in actual lighting, so as to improve the visibility of the
input image. In this work, we employed the gamma correction
in order to prevent over-enhancement and under-enhancement
for a good balance between foreground and background. The
enhanced image Ŝ produced by the proposed method is finally
estimated as Ŝ = L′ ·R.

Fig. 3 illustrates the decomposed illumination, reflectance,
and noise maps, as well as the proposed enhancement results
without and with gamma correction applied. It can be observed
that the enhanced results (right column of Fig. 3) maintain the
overall structure of the illumination, suppress the majority of
the noisy granular texture and present better visual quality by
revealing greater local details about the nerve fibers.

III. CURVATURE-BASED TORTUOSITY ESTIMATION

As curvature-based tortuosity biomarkers are valuable fea-
tures to quantify the development of disease complications,
accurate curvature computation is highly needed to describe



the tortuosity changes of enhanced corneal nerve fibers. How-
ever, curvature measurement in conventional pipelines requires
complicated segmentation and skeletonization steps which
may cause inaccurate estimation due to accumulated pre-
processing errors. To precisely describe nerve fiber geometric
variations, we set up a tortuosity measurement framework
based on the direct estimation of curvatures over the en-
hanced images to avoid the unstable factors in the conven-
tional approach. The theoretical basics for setting up the
exponential curvature estimation and the details for obtaining
the curvature-based nerve fiber tortuosity biomarkers will be
explained in the following subsections.

A. Curvilinear data representation using orientation
scores

Exponential curvature is defined in the domain of positions
and orientations R2 o S1, which is identified by the group of
planar translations x = (x, y) ∈ R2 and rotations θ ∈ [0, 2π]
with group element g = (x, θ). The group product in this
domain is defined as

gg′ = (x, θ)(x′, θ′) = (x+Rθ·x′, θ+θ′), for all g, g′ ∈ R2oS1,

where Rθ =

(
cos θ − sin θ
sin θ cos θ

)
is a counter-clockwise rota-

tion over angle θ. The semi-direct product “o" indicates that
translations are accompanied with rotations in SE(2) since
a rotation Rθ pops up in the translation part. The domain
of translations and rotations R2 o S1 provides the geometric
basics for analyzing curvilinear structures like corneal nerve
fibers in a new space. In R2 oS1, the tangent vector Xe of a
curve γ : R→ SE(2) at the origin o = (0, 0, 0)T is spanned
by the unit basis e = {ex, ey, eθ} of positions and orientations.
After this curve has been translated by x and rotated by θ, the
tangent vector Xg to this new curve can be transformed in a
left-invariant way with g = (x, θ), so that both Xe and Xg

have the same components with a new Euclidean invariant
basis [37] for the effective operation of the original image:

{eξ|g, eη|g, eθ|g} = {cos θex+sin θey,cos θey − sin θex, eθ}.
(16)

To analyze the curvilinear structures in the domain R2oS1,
the enhanced 2D image obtained from the previous section is
first mapped to a 3D space of positions and orientations via a
wavelet-type transform, creating orientation scores (OS) [37],
[38] (Fig. 4(a)-(b)). The transform is achieved through convo-
lution, with an anisotropic kernel ψ ∈ L2(R2) :

Uf (x, θ) =

∫
R2

ψ(R−1
θ (y−x))f(y)dy, (17)

where Uf represents an orientation score, constructed from
image f via the oriented cake wavelet transform, and depends
on two variables (x, θ). It actually represents the orientation
responses of each spatial location (x, y) at different angles
θ. The OS of the curved geometry in R2 o S1 can lift and
separate crossed curvilinear structures and provide a novel
representation of data for calculating their curvatures in the
3D space, rather than in the normal 2D image space.

Fig. 4. Validation of the exponential curvature estimation in R2 o S1

on (a) a typical synthetic image with SNR=1; (b) shows the lifted data
representation in orientation scores; (c) gives the color-coded curvature
map, obtained using the exponential curve fit for the estimation of
optimal tangent vector c∗; (d) shows the projected curvature map in
the 2D image domain.

B. Local curvature κ from the best fit exponential curves

An exponential curve is defined as a curve γc in R2 o S1

with constant tangent vector components c = (cξ, cη, cθ)T

expressed in the Euclidean-invariant basis {eξ, eη, eθ}: i.e.,

γ̇c(t) = cξeξ|γc(t) + cηeη|γc(t) + cθeθ|γc(t), (18)

where t ∈ R is an arbitrary parameter for defining the
arc length in the domain of R2 o S1. In orientation scores,
exponential curves are similar to straight lines with respect
to the curved geometry in R2 o S1. Their spatial projections
directly define the curvature at each pixel, see Fig. 4 (b).
Therefore, for a tangent vector c of the exponential curve,
we can directly deduce the curvature of its spatially projected
curves PR2γc from their tangent vector components via

κ(x, θ) =
cθ sign(cξ)√
|cξ|2 + |cη|2

, (19)

i.e., the rate of angular change with respect to the spatial
movement along the curve, as shown in Fig. 4(b).

The orientation scores provide rich angular information for
each pixel in a 2D image. However, the local orientations in
the score domain are not always perfectly aligned with local
structure, as only a limited number of orientations is set in
the transformation. Since we aim to estimate local curvatures
by considering the corresponding angular changes, we need
to ensure the best alignment between the oriented kernels and
real data. As such, the exponential curve fit is employed to
achieve the best alignment with locally oriented structures.
This can provide more accurate local curvature estimation for
corneal nerve fibers. The optimal tangent vector c∗ (shown in
red color in Fig. 4 (b)) of the best fit exponential curve is used



Fig. 5. Typical examples of the exponential curvature estimation applied to corneal nerve fiber images. (a) and (d) are original images; (b) and (e)
give color-coded curvature maps in the lifted orientation score space; (c) and (f) show the projected curvature map in the 2D image domain.

to compute the local curvature κ. It can be obtained through
the following minimization problem:

c∗(g) = argmin
c∈R3,||c||µ=1

{|| d
dt
∇Uf (γcg (t))|t=0||2µ}, (20)

with ||c||2µ = µ2|cξ|2 + µ2|cη|2 + |cθ|2 = ||Mµc||2. Here we
have Mµ = diag(µ, µ, 1) with a dimension 1/length for µ [39],
[40]. This is introduced to make sure that the distances in
spatial and orientation dimensions in R2 oS1 are comparable
and is empirically determined in practice. In this work, the
optimal tangent vector c∗ is found via eigensystem analysis
of the Gaussian Hessian. We best fit the exponential curves
to real corneal nerve fiber data via second-order Hessian
features in orientation scores. Hence, the numerical method
for solving c∗ can be considered as obtaining the eigenvectors
of the orientation score-based symmetrized and µ normalized
Hessian matrix HµUf = Mµ−1(HUf )TMµ−2(HUf )Mµ−1 ,
with

HUf =

 ∂2
ξUf ∂ξ∂ηUf ∂θ∂ξUf

∂ξ∂ηUf ∂2
ηUf ∂θ∂ηUf

∂ξ∂θUf ∂η∂θUf ∂2
θUf

 , (21)

where it is computed via rotation-invariant derivative frames
{∂ξ, ∂η, ∂θ} := {cos θ∂x+sin θ∂y, cos θ∂y−sin θ∂x, ∂θ}, and
where we use the short hand notation {∂x, ∂y} for the basis
instead of the conventional {ex, ey}. Hence, the final curvature
measurement κc∗(x, θ) is obtained via the vector components
of the optimal tangent vector c∗. Fig. 4 shows an example
of using the exponential curvature estimation on a synthetic
image with curvilinear structures. Visual comparison shows an
excellent agreement between the estimated curvature and the
real curvature of the synthetic curves.

C. Curvature-based tortuosity biomarker
We take advantage of the proposed vessel enhancement

technique to provide high-quality curvilinear structure maps
for more accurate curvature estimation, rather than using
the original images directly. In Fig. 5, we show two typi-
cal examples of curvature estimation on corneal nerve fiber
images. The results show that the curvature maps capture
local changes of curvilinear structures well. Our method is
in contrast with an existing one [39], which estimates the
curvature measure based on the 3D orientation confidence,
obtained via the Laplacian computed in the cross-sectional
plane orthogonal to the structures in orientation scores. The
orientation confidence is estimated in an iterative way, and the
curvature values are also updated and weighted accordingly

Fig. 6. Curvatures estimated using different methods or schemes.
(a) The original image; (b) The projected curvature map based on
our method with the maximum orientation response and no iterative
refinement; (c) The curvature map of using the iterative method [39];
(d) The projected curvature map based on our method with the average
orientation response.

using the newly estimated orientation confidence. One of our
improvements is that we simplify this curvature calculation
by directly computing curvature from the enhanced corneal
nerve fiber maps rather than using the iterative refinement.
This iterative refinement process may improve the precision
of curvature measurement on smoothly elongated structures.
However, it could also cause over-smoothing of the curvilinear
structures when using a large number of iterations for refine-
ment. This is particularly a case illustrated in Fig. 6(c), in
which this iterative refinement process causes over-smoothing
effect and thus produces an inaccurate estimation of curvatures
over curved nerve fiber parts (the black frame for example).
Fig. 6(b) shows the projected curvature map based on our
approach.

The curvature-based global tortuosity biomarker in this
work is defined as

κexp =
1

V

∫ ∞
−∞
|κc∗(x,Θ(x))|Ŝ(x)dx, with

Θ(x) = arg max
θi∈ πNo {1,...,No}

{U(x, θi)},
(22)



where U(x, θ) gives the orientation scores of the enhanced
corneal nerve fibers Ŝ and where the total image summation
V =

∫∞
−∞ Ŝ(x)dx is used for normalization. Thus, κexp

represents the summation of the absolute curvatures that are
weighted by our enhanced nerve fiber map Ŝ(x).

To emphasize local curvature changes, here we take the
curvature value of the maximum orientation response at Θ(x)
in the 3D space over all the orientations per position, instead
of directly averaging the whole 3D volume for curvature mea-
surement. This can help to better describe the local curvature
changes rather than obscuring the local nerve fibre structure
details. Two typical examples of the 2D projected curvature
map using the maximum and average response schemes are
shown in Fig. 6(b) and (d) respectively. We can observe that
the averaged curvature results in fluctuated variations, while
the maximum response provides a more stable and reliable
curvature estimation without losing much structure details. For
each image, we obtain the measure κexp as the exponential
curvature-based biomarker for further tortuosity analysis.

D. Tortuosity classification
The final task is to assign a tortuosity grade to each image.

In practice, each image contains variable numbers of blood
vessels or nerve fibers with varying lengths, which lead to
considerably different tortuosity characteristics [3]. Therefore,
we use a weighted average operation to measure the tortuosity
at image level. This takes into account the length (l) of the ith

curvilinear structure as the weight: M =
∑n
i=1 li×mi∑n
i=1 li

, where
m is one of the tortuosity measures described in TABLE I,
as well as our measure κexp. The total number of curvilinear
segments within an image is n.

Finally, a total of 14 tortuosity measures are employed to
form a feature vector per image. The classification of the
tortuosity level is achieved based on the extracted image-
level features by employing the linear Support Vector Machine
(SVM). We employed the Matlab built-in linear SVM model
with all the parameters set to default values. Given the modest
size of the used datasets, we use a 10-fold cross-validation to
make sure for SVM to produce reliable classification results.
Note, we try to abide by Occam’s razor, a principle that
states that out of all the possible models that provide similar
performance, the one that is the simplest should be selected
as the final model.

IV. MATERIALS

Here, we describe two datasets to be used in the next section
for the evaluation of the proposed approach, including our
newly-released corneal nerve fiber dataset (CCM-A) along
with manual annotations of nerve fiber and tortuosity levels,
and one existing publicly available dataset (CCM-B).
• CCM-A: This dataset was collected and created by

the Peking University Third Hospital, China. 403 CCM im-
ages of corneal subbasal epithelium were acquired from 103
normal and pathological subjects using a Heidelberg Retina
Tomograph equipped with a Rostock Cornea Module (HRT-
III) microscope. The subject population included, 28 healthy
subjects, 24 patients with diabetes, 28 subjects with dry eye

TABLE I
EXISTING TORTUOSITY MEASUREMENTS FOR CURVILINEAR

STRUCTURES.
No. Tortuosity Measures Notations

1 Chord Length [18] Lχ
2 Curve Length [18] Lc

3 Arc Length over Chord Length Ratio [41] τ
4 Absolute Curvature [22] κa
5 Squared Curvature [22] κs
6 Absolute Curvature Weighted by Curve Length [42] κac
7 Tortuosity Density [8] TD
8 Tortuosity Coefficient [43] TC
9 Slope Chain Coding [44] SCC

10 Directional Change of a Line [45] DCI
11 Mean Direction Angle Change [46] MAC
12 Absolute Direction Angle Change [20] AAC
13 Inflection Count Metric [16] ICM

disease, and 23 patients with both dry eye and diabetes. Each
image has a resolution of 384 × 384 pixels covering a field
of view of 400 × 400µm2. The reference fiber centerlines
were manually annotated by an ophthalmologist using the
open source software ImageJ. These images were further
categorized into four groups based on fiber tortuosity level. An
image analysis expert and the clinical author (obs 1 and obs
2) each independently labeled the tortuosity level according
to a previously published protocol [47], and the consensus
between them was then used as ground truth (GT), i.e., Level
1: the fibers appear almost straight (54 images); Level 2: the
fibers appear moderately tortuous (212 images); Level 3: the
fibers are quite tortuous; the amplitude of the changes in the
fiber direction is quite severe (108 images); Level 4: the fibers
appear very tortuous, presenting frequent changes in the fiber
direction (29 images). We have made this dataset available
online 1.
• CCM-B: This is a publicly available database [9] con-

structed by University of Padova, Italy. The database is
composed of 60 CCM images, which were acquired from
normal and pathologic subjects (diabetes, pseudoex foliation
syndrome, and keratoconus), using an HRT-II microscope. An
expert grouped all the images by the degree of tortuosity into
three different classes - low, mid, and high. In addition, one
of our clinical authors traced the centerlines of all the visible
nerves, and this manual annotation has also been released for
public access alongside CCM-A.

V. EXPERIMENTAL RESULTS

In order to validate the effectiveness and superiority of the
proposed method, we evaluate separately its individual com-
ponents: image enhancement, tortuosity grading and tortursity
measurement in the following subsections.

A. Evaluation on image enhancement

Firstly, we analyze the effect of noise-constrained Retinex
pre-processing step in the proposed framework. In practice,
the λ and δ are empirically set as 10.

1http://imed.nimte.ac.cn/

http://imed.nimte.ac.cn/


Fig. 7. An example of image enhancement result from CCM-A using different enhancement methods, and its guided nerve fiber tracing result using
the IPACHR segmentation method [48].

1) Subjective comparisons: The top row of Fig. 7
presents the enhancement results produced by the em-
ployed enhancement method, and other five state-of-the-art
approaches: Single Scale Retinex (SSR) [49], Multi Scale
Retinex (MSR) [50], Contrast-Limited Adaptive Histogram
Equalization (CLAHE) [51], Guided Image Filter (GIF) [52],
and Weighted Variational Model (WVM) [53]. SSR and MSR
attempt to remove the effect of illumination on the given image
in order to enhance its contrast. However, these two methods
generate noticeable artifacts or noise in flat regions, as the
continuous values of adjacent pixels are stretched apart. This
is a side effect of the logarithmic transformation discussed in
Section II-A.

CLAHE enhances the image uniformly, irrespective of
whether a given region is in the foreground or background.
SSR can easily over-enhance regions with relatively high
intensities. MSR and GIF provide over-smoothed results, and
do not preserve well fine structures such as smaller fibers. In
contrast, the WVM model and the proposed method yielded
more visually informative results.

2) Evaluation by using SNR: It is difficult to demonstrate
conclusively the superiority of the enhancement method purely
by the above visual inspection. In this subsection, we compute
the signal to noise ratio (SNR): SNR = 10 log10(mn/mb)dB,
where mn and mb are the mean pixel intensity of the nerves
and the mean pixel intensity of the background respectively. As
aforementioned, the nerve fibres have been manually traced,
and we define the regions after a disk-shaped dilation operation
on the manual traced fibres with a radius (r) of 5 and 9 pixels,
respectively, as the background. Fig. 8 illustrates an example
of these background regions (green label) in an original and
enhanced image.

The quantitative results of different enhancement ap-
proaches are shown in TABLE II. The enhancement method
in proposed framework has achieved the best performance
- it exhibits a large advantage against the original images
by an increase in SNR of about 4.60dB and 6.70dB when
r = 5 and r = 9, respectively. Comparatively, our method is
able to reduce inhomogeneities due to imbalanced intensity,
and normalize the entire background to a similar level, so
as to increase the contrast between the nerve fibers and their
background, as expected.

Fig. 8. An example to show the regions selected as background so
as to compute the SNR. The background was determined by a dilation
operation on the manual traced fibres (red color) with a radius of 5
and 9 pixels, respectively. Top row: an original image; Bottom tow: the
enhanced image. .

3) Image enhancement-guided fiber segmentation: In
this section, we perform corneal nerve fiber segmentation of
the enhanced images to confirm the relative benefits of the
employed method and the others.

We obtained two sets of corneal nerve fiber segmentation
results both with and without the application of enhancement
methods. Two different segmentation methods were selected
to extract the corneal nerves from the original and enhanced
images respectively: 1) a deep learning-based method; and 2)
an infinite active contour-based segmentation method. Deep
learning methods have demonstrated superior performance
and better prospects for many medical image segmentation
problems. In this work, we employed one of the most latest
curvilinear structure segmentation network: CS-Net [54], for
fully automatic segmentation of corneal nerves, with and with-
out application of image enhancement methods. We trained



TABLE II
THE RESULTS OF SNR OF THE ORIGINAL AND ENHANCED IMAGES

PRODUCED BY DIFFERENT METHODS.
r=5 r=9

Raw 13.54±0.05 dB 14.21±0.10 dB
SSR 15.23±0.04 dB 14.96±0.09 dB
MSR 12.98±0.11 dB 13.24±0.10 dB
CLAHE 14.37±0.09 dB 15.17±0.11 dB
GIF 16.98±0.07 dB 14.55±0.06 dB
WVM 16.56±0.09 dB 18.43±0.08 dB
Ours 18.14±0.06 dB 20.91±0.04 dB

TABLE III
SEGMENTATION RESULTS OBTAINED USING DIFFERENT METHODS WITH

DIFFERENT ENHANCEMENT METHODS APPLIED TO CCM-A.
IPACHR CS-Net

FDR SE FDR SE
Raw 0.394±0.007 0.738±0.010 0.252±0.004 0.842±0.003
SSR 0.398±0.015 0.720±0.012 0.251±0.008 0.840±0.004
MSR 0.375±0.012 0.739±0.010 0.256±0.007 0.847±0.006
CLAHE 0.375±0.009 0.739±0.011 0.249±0.006 0.839±0.005
GIF 0.372±0.007 0.745±0.006 0.246±0.011 0.845±0.003
WVM 0.370±0.009 0.751±0.007 0.246±0.005 0.849±0.004
Ours 0.361±0.011 0.754±0.004 0.240±0.001 0.857±0.001

the CS-Net on randomly sampled 80% images from CCM-A,
leaving out 20% of this dataset as a testing set.

In addition, we investigate how the illumination correc-
tion method will affect conventional segmentation methods.
The Infinite Perimeter Active Contour with Hybrid Region
(IPACHR) method [48] was used for its effectiveness in de-
tecting curvilinear objects (e.g., vessels and nerve fibers) with
irregular and oscillatory boundaries. Any small and/or isolated
objects were eliminated by the use of a disk-shaped opening
operation with a radius of 2 pixels. For fair comparison the
segmentation performance of IPACHR was evaluated on the
test set used by the CS-Net.

To compare the segmentation performance of the proposed
method with the corresponding ground truth, we compute the
sensitivity (SE) and false discovery rate (FDR) between the
predicted centerlines and ground truth ones. SE is the fraction
of the number of pixels on the true positive nerves over the
total number of pixels on the ground truth ones. FDR is defined
as the fraction of the total number of pixels on the false
positive nerves over the total number of pixels on the manually
traced ones. The use of specificity, defined as the number of
correctly classified pixels on the true negative class, is not
adequate for the evaluation of this segmentation task, since
the vast majority of pixels do not belong to corneal nerves.
We should note that since the evaluation methods in general
extract only one pixel-wide curves, a three-pixel tolerance
region around the manually-traced nerves is considered to be
true positive: in other words, a predicted centerline point is
considered as true positive if it has at most three-pixels distant
from a ground truth point.

The bottom row of Fig. 7 demonstrates the enhancement-
guided fiber segmentation results obtained by the IPACHR
method. The benefit of the proposed enhancement method for
segmentation may be observed from the representative region
(yellow arrow). It may be seen that more completed fibers
have been identified by our method. It achieves relatively

uniform responses in both high- and low- intensity regions
of the original image, and provides relatively more sensitive
segmentation on small fibers than the other methods. The pro-
posed enhancement method is not only able to correct intensity
inhomogeneities, making fibers stand out more conspicuously
from background, but also has the ability to reject non-
fiber features. This is because the proposed method estimates
reflectance and illumination simultaneously, allowing the noise
term in Eqn. (5) to handle noise more effectively.

This finding is also evidenced by the segmentation per-
formance illustrated in TABLE III. The proposed method
improves the segmentation of the original images (raw) in
CCM-A: by an increase of about 0.032 and 0.015 in SE, and
a reduction of about 0.017 and 0.012 in FDR by the IPACHR
and CS-Net segmentation methods, respectively. By contrast,
relatively more significant margins of tracing results have been
shown when the proposed method was compared with other
enhancement methods, which indicate that our enhancement
method has larger improvement than the other competitors.
Because the proposed enhancement method is able to enhance
the contrast between the nerve fibers and background, it
reduces false detection more effectively, which in the end
raises the sensitivity score. A statistical t-test indicates that
the improvement of fiber tracing is significant with p < 0.001
for both the IPACHR and CS-Net methods.

B. Evaluation of Tortuosity Grading
In this section, we validate the proposed tortuosity estima-

tion method over two corneal nerve datasets.
1) Evaluation metrics: As suggested in [3], weighted sen-

sitivity (wSe), specificity (wSp), and accuracy (wAcc) are
employed to compare the classification results of different
methods with ground truth. These metrics are defined as:

wSp =

N∑
i=1

ri
TNi

TNi + FPi
, wSe =

N∑
i=1

ri
TPi

TPi + FNi
, (23)

wAcc =

N∑
i=1

ri
TPi + TNi

TPi + TNi + FPi + FNi
(24)

where i is the level of tortuosity, TPi, TNi, FPi, and FNi
indicate the true positives, true negatives, false positives, and
false negatives, respectively over all the images available. N
denotes the number of levels/classes, and ri is the percentage
of all the available images belonging to class/level i.

2) Tortuosity level classification: Discriminating between
four tortuosity levels in CCM-A and three levels in CCM-B are
multi-class classification problems. In order to demonstrate the
superiority of the proposed tortuosity classification method, we
computed the performance measure on a per-level and overall
basis: the results are reported in TABLE IV. One state-of-the-
art tortuosity classification method [3] (referred to as M1 in
TABLE IV) was re-implemented for the purpose of a compara-
tive study: Annunziata et al. [3] included the DM, TDD, SCC,
κa, and κac (see TABLE I) in their dictionary of features, and
employed a weighted average operation to combine the image
level features, and finally employed the Multinomial Logistic
Ordinal Regression (MLOR) to classify the tortuosity level of



TABLE IV
RESULTS OF PER-LEVEL TORTUOSITY CLASSIFICATION BY DIFFERENT APPROACHES. M1: ANNUNZIATA’S APPROACH [3]; M2: THE
PROPOSED METHOD, WITHOUT THE ENHANCEMENT STEP; M3: THE PROPOSED METHOD; M4: THE PROPOSED METHOD APPLIED

TO MANUAL FIBER SEGMENTATIONS.
CCM-A CCM-B

level 1 level 2 level 3 level 4 overall low mid high overall

M1
wSe 0.718 0.644 0.660 0.707 0.663 0.783 0.743 0.761 0.766
wSp 0.867 0.790 0.783 0.857 0.806 0.904 0.860 0.864 0.912
wAcc 0.858 0.780 0.759 0.843 0.790 0.877 0.826 0.847 0.848

M2
wSe 0.729 0.652 0.667 0.711 0.674 0.809 0.755 0.781 0.782
wSp 0.876 0.801 0.793 0.864 0.813 0.913 0.863 0.884 0.920
wAcc 0.864 0.786 0.771 0.851 0.796 0.908 0.831 0.869 0.869

M3
wSe 0.740 0.673 0.681 0.732 0.711 0.821 0.761 0.787 0.801
wSp 0.896 0.817 0.807 0.879 0.850 0.928 0.870 0.889 0.927
wAcc 0.879 0.796 0.790 0.860 0.818 0.911 0.839 0.879 0.875

M4
wSe 0.743 0.680 0.688 0.738 0.717 0.826 0.769 0.800 0.810
wSp 0.901 0.801 0.814 0.881 0.859 0.932 0.876 0.894 0.932
wAcc 0.884 0.803 0.800 0.866 0.824 0.918 0.843 0.882 0.879

each CCM image. Note, all the suggested parameters in [3]
were used in our experiments.

TABLE IV also shows a comparison between the proposed
method (referred to as M3) and Annunziata’s approach [3]
(referred to as M1) in terms of all performance measures on
the enhanced images of CCM-A and CCM-B. Our method
outperforms Annunziata’s approach, with higher wSe, wSp,
and wAcc scores. The proposed method achieved overall accu-
racies of 0.818 and 0.875 in CCM-A and CCM-B, respectively,
while Annunziata’s approach yielded lower performance, with
overall accuracies of 0.790 and 0.848, respectively. It is worth
noting that careful observation shows that some tortuosity
levels, such as grades 1 and 4 of CCM-A and the lower levels
of CCM-B, may be easier to identify than the others, whether
in terms of manually-segmented fibers (M4) or automated
segmentation (M1-M3). High accuracies of 0.879, 0.860, and
0.911 were achieved by the proposed method, while 0.858,
0.843 and 0.877 were obtained by Annunziata’s approach.
In our experiments, only 2 images from the lower level
of CCM-B were incorrectly classified. A close inspection
of these two images revealed that some nerve fibers were
incompletely traced due to the pathology characteristics. By
contrast, performances decreased for the medium levels, such
as grades 2 and 3 in CCM-A, due to the smaller differences
between them.

3) The effectiveness of image enhancement for tortuos-
ity analysis: Fig. 9 demonstrates how the tortuosity analysis
benefits from the proposed enhancement method using expo-
nential curvature. Different from conventional curvature mea-
surement which was performed on pre-segmented structures,
the exponential curvature estimation produces a curvature map
for all the pixels in an image, where nerve fiber structures have
relatively high curvature values, while background pixels have
curvature values close to zero. In Fig. 9, we can observe that
the generated map also suffers from curvature values in the
curvilinear shape of the artifacts in the background. However,
after performing curvature estimation on the enhanced nerve
fibers, we obtain a more accurate curvature map with more
clearly visible fine structures and cleaner background, as
shown in the bottom-right of Fig. 9.

We further validate the effectiveness of the proposed en-
hancement method for tortuosity analysis. TABLE IV reports

Fig. 9. The effect of the proposed enhancement method on the
exponential curvature estimation. Left: original and enhanced images.
Middle: Exponential curvature estimation. Right: Projected curvature.

the evaluation results in terms of the proposed method first
without and then with the proposed enhancement method
applied: these methods are referred to as M2 and M3, re-
spectively. As can be observed, the proposed enhancement
method assisted the tortuosity analysis in yielding higher
performance in terms of all the metrics by significant margins,
when compared with the direct application of the tortuosity
analysis to the original images. The noise-constrained Retinex
model contributed significantly to the final results, with an
overall improvement of about 0.037 and 0.019 in wSe over
CCM-A and CCM-B, respectively. In conclusion, the proposed
noise-constrained Retinex model is helpful in improving the
accuracy of tortuosity grading, since the correction of intensity
inhomogeneities enhances the visibility of the fiber structures
for subsequent processing.

4) The effectiveness of manual fiber segmentation
for tortuosity analysis: As aforementioned, both sets of
manually-traced fiber centerlines from datasets CCM-A and
CCM-B are available from our clinical author. In order to
characterize how the errors of both original images and manual
fiber segmentations affect the results of tortuosity analysis,
we report the tortuosity classification performances on manual
segmentation (referred to as M4 in TABLE IV). These results
show that our tortuosity estimation method is relatively stable
whether applied to original images or to manual fiber seg-



TABLE V
THE PROPOSED TUOTORSITY MEASUREMENT κEXP IN

CONTROL SUBJECTS AND OTHER DRY EYE DISEASE AND
DIABETES PATIENTS.

Conditions No. of patients No. of images κexp
Healthy 28 123 0.1706
Dry eye 28 124 0.2104
Diabetes 24 120 0.2396

Dry eye and diabetes 23 36 0.2453

TABLE VI
SPEARMAN CORRELATION SCORES OF THE RETINAL BLOOD

VESSEL TORTUOSITY MEASURES WITH AUTOMATIC AND
MANUAL VESSEL SEGMENTATIONS.
Manual segmentation Automated segmentation

Diff†Measures Arteries Veins Arteries Veins
Lχ 0.801 0.662 0.756 0.638 0.035
Lc 0.813 0.701 0.784 0.677 0.027
τ 0.792 0.656 0.812 0.629 0.035
κa 0.922 0.837 0.893 0.801 0.033
κs 0.925 0.826 0.901 0.812 0.019
κac 0.919 0.814 0.877 0.768 0.044
TD 0.890 0.760 0.912 0.753 0.075
TC 0.949 0.853 0.919 0.812 0.036
SCC 0.850 0.770 0.827 0.745 0.024
DCI 0.787 0.589 0.734 0.621 0.101
MAC 0.820 0.814 0.801 0.795 0.019
AAC 0.838 0.695 0.841 0.677 0.075
ICM 0.684 0.575 0.661 0.542 0.028
κexp 0.945 0.868 0.928 0.857 0.014

† Diff = ‖ave(SCmanual)− ave(SCautomated)‖.

mentations, where small differences of only 0.006 and 0.004
in overall accuracies were recorded over CCM-A and CCM-B,
respectively.

5) Clinical evaluation: In order to demonstrate the capa-
bility in differentiating the health and pathology states, the
proposed tortuosity measurement was further validated by the
clinical practice. CCM-A dataset was used for evaluation, and
it includes four groups based on the pathology conditions: 28
healthy subjects, 24 patients with diabetes, 28 subjects with
dry eye disease, and 23 patients with both dry eye and diabetes.
The clinical details of the study subjects and the proposed
tortuosity measures are shown in TABLE V.

The results have demonstrated that the mean exponential
curvature score of the healthy group is lower than those of all
the other groups (p < 0.01), while that of the patients with
both dry eye disease and diabetes is higher than those of all the
other groups. These results indicate that the tuotorsity of nerve
fibres measured by our exponential curvature has a potential
to help in distinguishing the healthy subjects from those with
diabetes or dry eye disease.

C. Validation of Tortuosity Measurement

In order to demonstrate the proposed tortuosity measure
(κexp) is superior to other conventionally used measures, we
further make a comparative study on a retinal vessel dataset:
RET-TORT [8]. This dataset consists of images of 30 arteries
and 30 veins of similar length and calibre, extracted from 60
retinal color fundus images taken from normal and hyperten-
sive patients by the University of Padova, Italy. The acquired
images were captured with a 50◦ fundus camera (TRC 50,
Topcon, Japan) with a resolution of 1100× 1300 pixels. The

images were manually ranked by a retinal specialist based on
the degree of the vessel tortuosity.

Rather than relying on the tortuosity grading of the corneal
nerves, the RET-TORT provides separate lists of images
ordered by increasing tortuosity of arteries and veins, respec-
tively. Since we are considering correlations among rankings,
the Spearman Correlation was computed as a measure of
fitness between automated and manual tortuosity grading. In
addition, the automated grading results were further compared
with those of the aforementioned tortuosity measures (see
TABLE I). The result in TABLE VI shows that the proposed
tortuosity measure has the highest correlation with automated
grading in the assessment of both artery and vein tortuosities.
It is worth noting that all the tortuosity measures require prior
vessel segmentation, and the IPACHR model was employed
again to generate the automated segmentation.

As we noted above, grading errors can propagate and
accumulate due to image quality. Therefore, the SC scores
of all the tortuosity measures over the manually-segmented
retinal vessels are also reported in TABLE VI. This is a
potential concern, because the IPACHR model utilizes a local
phase operation, which may smooth the boundaries of the
tortuous structures. This reservation was confirmed by the
differences reported in the last column of TABLE VI. The
SC scores of the conventional measures reveal significant
differences between those performed on manual segmentations
and those on automated segmentations. However, the SC
scores of the proposed measure are only slightly lower than
those on manual segmentation, resulting in a small difference
of only 0.014. In summary, the above findings provide further
evidence that the proposed tortuosity measure is less sensitive
to curvilinear structure extraction methods than all the other
measures studied.

VI. DISCUSSION AND CONCLUSION

It is worth noticing that inter-observer variability (IOV) is
ubiquitous at many aspects of medical image analysis, such as
the manual contour delineation of structures in CT [55], and
fibre tortuosity estimation in the proposed task. With the rapid
boost of deep learning-based medical imaging analysis, the
IOV affects the development of deep learning-based methods
from the training of network models to the evaluation of their
performance [56]. As indicated in [55], the IOV in manual
delineations for different structures in CT images is large and
two or three observers may not be sufficient to establish the full
range of IOV. Therefore, the conventional consensus amongst
multiple observers is adopted in this paper.

Recently, a number of researchers focus on handling the
uncertainty in deep learning-based segmentation, classification
and registration. Several of them propose measurements which
quantify uncertainties of deep learning methods [57]. In ad-
dition to the predictive uncertainty, the IOV is another major
source of uncertainty in the supervised learning-based meth-
ods. Such uncertainty is typically reflected in the inconsistent
annotations/labels of multiple observers and is independent of
learning models and training algorithms. A common practice
in the literature is to collect multiple annotations per sample



and produce determined training samples with label fusion
such as majority voting. This approach is particularly useful
when inter-rater agreement is expected to be low [58]. A
recent work [58] exploits IOV, where the uncertainty brought
by IOV is treated as a target in supervised learning prob-
lem [57]. We conclude that since the evaluation of curvilinear
structure segmentation is pixel-sensitive, it can be expected
that the standardization of annotated positions on targeted
curvilinear structures can be very helpful to increase the pixel-
level agreements of multiple observers, and hence reduce
the aleatoric uncertainty in IOV. This can be fulfilled by
clarifying requirements of annotations to observers in protocol
and automated standardizations of annotation results via data
cleansing and augmentation.

Automated grading of the tortuosity level of nerve fibers
or blood vessels in medical images still faces two major chal-
lenges. On one hand, there is no universally-accepted standard
measure of tortuosity. On the other hand, traditional automated
tortuosity grading is highly dependent on the quality of pre-
processing: errors can be propagated and accumulated due
to poor imaging quality and inaccurate results from the pre-
processing pipeline.

To this end, we firstly employed a noise-constrained Retinex
model [24] to enhance CCM images, so as to address speckle
noise, illumination inhomogeneities, and low contrast simul-
taneously. We modeled the noise term explicitly, and built
and optimized an objective function for the estimation of
the illumination, reflectance and noise components. We then
adapted the orientation scores to lift and separate those crossed
curvilinear structures in the enhanced image, defined a new
tortuosity measure for these curvilinear structures and finally
estimated their curvatures from their best fit curvilinear shape
exponential curves in the orientation score space.

Our experimental results over three datasets demonstrate
that the proposed tortuosity measure has performed better than
conventional ones and that it has performed as well as a human
expert. In addition, we have obtained manual annotations of
nerve fiber tracing on two CCM datasets and constructed a
new corneal nerve tortuosity dataset. All these datasets have
been released for public access. As future work, we intend
to investigate the importance of different features and employ
other methods for the classification of the tortuosity of the
corneal nerve fibers.
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