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Abstract 

Increasing evidences suggest that post-transcriptional RNA modifications regulate 

essential biomolecular functions and are related to the pathogenesis of various 

diseases. To date, the study of epitranscriptome layer gene regulation is mostly 

focused on the function of mediator proteins of RNA methylation limited by laborious 

experimental procedures, i.e., the readers, writers and erasers. However, there is 

limited investigation of the functional relevance of individual m6A RNA methylation 

sites. To address this, we annotated human m6A sites in large-scale based on the 

guilt-by-association principle from complex biological networks. In the first chapter, 

the network was constructed based on public human MeRIP-Seq datasets profiling 

the m6A epitranscriptome under independent experimental conditions. By 

systematically examining the network characteristics obtained from the RNA 

methylation profiles, a total of 339,158 putative gene ontology functions associated 

with 1446 human m6A sites were identified. These are biological functions that may 

be regulated at epitranscriptome layer via reversible m6A RNA methylation. The 

results were further validated on a soft benchmark by comparing to a random 

predictor. In the second chapter, another approach was applied to annotate the 

individual human m6A sites by integrating the methylation profile, gene expression 

profile and protein-protein interaction network with guilt-by-association principle. 

The consensus signals on sites were amplified by multiplying the co-methylation 

network and the methylation-expression network. The PPI network smoothed the 

correlation for a query site to gene expression for furthering GSEA functional 

annotation. In the third chapter, we functionally annotated 18,886 m6A sites that are 

conserved between human and mouse from a larger epitranscriptome datasets using 



iv 
 

method previously described. Besides, we also completed two side projects related 

to SARS-CoV-2 viral m6A site prediction and m6A site prediction from Nanopore 

sequencing technology. 
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Chapter 1 m6Acomet: large-scale functional prediction of individual 

m6A RNA methylation sites from an RNA co-methylation network 

Section 1.1 Introduction 

N6-methyladenosine (m6A) is one of the most common RNA post-transcriptional 

chemical modifications. It is formed with an addition of a methyl group at the 6’ 

position of adenosine in RNA [1]. It is abundant in mRNA, snRNA and rRNA among 

plants, viruses and eukaryotes [2, 3]. In mammals, methyltransferases (m6A writer), 

such as METTL3, METTL14 and WTAP, together with demethylases (m6A eraser), and 

YTH domain family of proteins (m6A reader), regulate the complex reverse 

mechanism of m6A [4]. The m6A was found to influence diverse biological regulations 

such as RNA stability [5], heat shock response [6], and circadian clock [7] etc. Diseases, 

such as cancer [8] are proved to be regulated by m6A as well. Current research 

focuses more on the overall functions or regulations involving m6A. However, the 

biological function of each individual RNA methylation sites is not exactly known. 

Although the regulatory roles of several specific methylation sites have been 

elucidated, it is very expensive to identify the functions of RNA methylation sites with 

wet-lab experiments. Instead, computational approach may provide a viable venue. 

It is possible that the functions of each individual RNA methylation sites can be 

predicted from the statistical evidence such as strong correlation with the expression 

level of genes whose functions are already known. 

 

The regulatory functions of methylation sites in biological processes are still under 

research [9-11]. It is conceivable to assume that m6A sites that have similar properties 
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would share similar biological functions. Indeed, our previous studies showed that 

the RNA methylation sites consisting of an epitranscriptome module, which is a 

number of RNA methylation sites whose methylation level are co-regulated across 

different experimental conditions, are more likely to be functionally enriched 

compared to a random module [12, 13]. This strongly suggests that the 

epitranscriptome functions of the RNA methylation sites may be identified based on 

existing high-throughput sequencing data. It is meaningful to investigate the 

regulatory role of these sites by constructing the co-methylation network with the 

guilt-by-association principle. The guilt-by-association is a validated principle in 

network research, which states that if two patterns share some similar properties, 

they are most likely to share a connection. To be more specific, gene pairs are more 

likely to be functionally related if they show similar expression patterns across 

samples [14]. This principle has been widely applied in lncRNA functional prediction 

by the protein-protein interaction network [15], co-transcription factor network, and 

co-expression network [14]. In our research, we suppose that, if both methylation 

sites are hyper- or hypo-methylated simultaneously across various samples, they will 

be considered co-methylated and often of related biological interests. In the co-

methylation network, each node represents a methylation site, and each edge 

denotes a strong correlation or anti-correlation between each pair of sites. 

 

The datasets used for generating the methylation level on sites in this program are 

all produced by the MeRIP-Seq technique [1, 16]. Methylated RNA 

immunoprecipitation sequencing (MeRIP-Seq) technique was developed to 

investigate m6A in epitranscriptome analysis [17]. The mRNAs which contain m6A 
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sites are first fragmented into short pieces of ~ 100 bp long, following which 

fragments with methylation sites are filtered by antibodies in immunoprecipitate as 

IP samples, while raw fragments are treated as Input control samples [18]. After 

mapping both the reads of eluted IP sample and control (Input) sample back to the 

reference genome, the peak-calling or methylation evaluation algorithm will be 

employed to detect the m6A peaks for furthering investigation [19]. The mi-CLIP [20] 

and the m6A-CLIP [21] were developed recently to generate single-base resolution 

m6A profile, and the upcoming data sets were utilized to obtain the m6A sites directly 

in the project. The principle of mi-CLIP is to bind the cross-linking RNA-m6A antibody 

to specific sites where mutagenesis will occur during reverse transcription of the 

antibody-bound RNA. Trucations or C-T transitions, which are mutagenesis signatures, 

can be sequenced to precisely map m6A sites. The m6A-CLIP located thousands of m6A 

residues using cross-linking immunoprecipitation technique (UV CLIP) with high 

accuracy since only the m6A-containing oligonucleotide can attract the m6A antibody. 

 

Before constructing the co-methylation network, the matrix which gives the 

methylation level on each site over various samples needs to be constructed. 

However, preprocessing is required for the raw data due to technical or biological 

biases. The DESeq2 [22] is a R package which uses shrinkage estimation for fold 

changes, and dispersion for gene-level differential analysis with RNA-Seq data. The 

reproducibility and stability of results are improved by shrinkage estimators after 

using DESeq2. This algorithm can reduce type-I errors and offer consistent 

performance on small studies. Guanine-cytosine (GC) content is one of the critical 

technical variabilities. It was shown to have significant impact on m6A-seq [23] and 
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other sequencing techniques such as RNA-seq and ChIP-seq. The CQN algorithm 

developed by Hansen [24] is aimed to reduce systematic bias in GC content. It 

combines the robust generalized regression and conditional quantile normalization 

to improve the precision of gene expression level measurement. In our project, 

DESeq2 and CQN are applied to estimate the methylation level of each m6A site. 

 

After building the complex network, cellular modules were identified for further 

annotation with gene ontology (GO). The GO is a bioinformatics initiation to unify 

gene product across species [25]. We mainly used GO for annotating on gene sets to 

describe the functions of a specific gene list. The GO enrichment analysis will 

determine which GO terms are over represented, generate the GO term list with 

statistical evidence such as the p-value. The GO terms may be classified into three 

main categories: biological process (BP), cellular component (CC) and molecular 

function (MF). To improve the annotation performance, the enriched GO terms will 

be reduced to generic GO slim terms, by skipping specific fine-grained terms, which 

is useful when board classifications of function annotation are required [26]. 

 

In this project, we computationally predicted the biological functions that are likely 

to be associated with individual m6A RNA methylation sites. We used bioinformatics 

methods such as clustering, network topological analysis, as well as enrichment 

analysis for functional annotation in this project. The results may be queried directly 

on a public webserver, which provides predicted functions for each individual RNA 

methylation sites. 
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Section 1.2 Methods 

Section 1.2.1 mi-CLIP and m6A-CLIP supported m6A sites 

A total of 69,446 human m6A sites reported by six mi-CLIP and m6A-CLIP experiments, 

which profiles the m6A epitranscriptome at base-resolution, were obtained from the 

WHISTLE project [20, 21, 27-29]. The m6A sites were labeled positive and retained for 

the following analysis if it embodies the DRACH consensus motifs of m6A modification 

and were supported by at least two out of the total six samples. 

 

Section 1.2.2 MeRIP-Seq data for quantifying the RNA methylation level  

The mi-CLIP and m6A-CLIP report only the location of the methylation site, but do not 

provide direct quantification of the methylation level of these sites. The information 

of the methylation level was obtained from MeRIP-Seq data. Specifically, 32 samples 

in 10 publicly human m6A MeRIP-Seq data sets from published studies were obtained 

from public database. All these samples contain both IP and Input data, and most of 

them were selected from the epitranscriptome database MeT-DB [30], with which it 

is now possible to construct the RNA co-methylation network. The biological 

replicates under the same cell line and from the same laboratory were merged, and 

the methylation level of the combined sample is essentially the average of all the 

biological replicates. Moreover, several outlier samples such as the sample from 

HepG2 cell line with heat shock treatment were dropped before the construction of 

the network due to low quality. Table 1 summarizes the data sets used in this project. 

All the original data were down loaded in SRA format from Gene Expression Omnibus, 

and the reads were aligned to human reference genome (hg19/GRCh37) with aligner 

Tophat2 [31]. 
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Table 1 Datasets used in Section 1. 

ID GEO accession Cell line Treatment Source 

1-4 
SRR456542-SRR456549, 
SRR456551-SRR456557 

HepG2 UV, HGF, IFN, UT [17] 

5-6 SRR903368-SRR903379 U2OS CTL, DAA [32] 

7-10 SRR847358-SRR847377 HeLa 
Ctrl, METTL14-, 

METTL3-, WTAP- 
[33] 

11-12 SRR1182582-SRR1182590 ES/NPC hNPC, hESC 

[34] 

13-18 
SRR1182591-SRR1182596, 

SRR494613-SRR494618, 
SRR5080301-SRR50312 

Hek293T, 
Hek293A 

Ctrl, WTAP-, 
METTL3-, 
METTL16- 

19-21 SRR1182597-SRR1182602 OKMS 
D0, 

D5_WITH_DOX, 
D5_WO_DOX 

22-26 SRR1182603-SRR1182630 A549 
Ctrl, METTL14-, 

METTL3-, WTAP-, 
KIAA1429- 

27-28 SRR3066062-SRR3066069 AML Ctrl, FTO+ [35] 

29-30 SRR5239086-SRR5239109 AML2 Ctrl, METTL3- [36] 

31-32 SRR1035213-SRR1035224 ESC T0, T48 [37] 

 

 

Section 1.2.3 Processing the methylation data 

The R package DESeq2 [22] was applied to estimate the methylation level at each 

m6A site. All the samples were labeled with conditions (IP and Input) and sequence 

types (Single-end and Paired-end), and the reads count matrix was generated by 

counting the reads which share overlaps with bins. These bins are 101 bp long with 

each methylation site located at the center. The methylation level was then 

quantified by calculating the fold enrichment of reads in the IP sample compared with 

the input control sample with DESeq2, which uses shrinkage estimation and considers 

the over-dispersion of reads. This step produces the quantification result of the 

logarithmic fold change indicating the methylation level of each site. However, we 
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found that conditions from the same laboratory cell line could not be classified into 

the same group by hierarchical clustering. We suppose that the GC content, which is 

the common systematic bias when dealing with RNA-seq data, could be further 

reduced. Therefore, the output of DESeq2 was first normalized by package CQN [24] 

to reduce the GC bias. After this additional bias correction, the estimated methylation 

level after the normalization by CQN does not show any GC content bias, and we can 

see that the conditions from the same cell line could be clustered together. 

 

Section 1.2.4 Site filtering 

The methylation sites need to be filtered due to low estimation accuracy on part of 

the raw sites. These sites were filtered by the following steps: 

 

i. The methylation level will be masked NA if the expression value is lower than 

8, or the count number on (IP + Input) samples of the same site is lower than 

50. Throughout all the 32 conditions, sites should be dropped if too many 

missing values (NA count > 15) occur. 

 

ii. Filtering the neighboring sites helps reduce the influence of replication on 

functional prediction. If the distance between two sites is too small, e.g., less 

than 50 bp, due to limited resolution of the m6A seq technology, it is highly 

possible that they are located on the same gene and be annotated with the 

same function. We ought to keep one of them for further annotation. The 

Spearman correlation between two methylation sites which are located closer 

than 101 bp is calculated. If the correlation between them is above 0.8, they 
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may be in fact corresponding to the same m6A site but incorrectly captured 

twice due to limited resolution of the m6A-seq technology. In that case, the 

site with lower methylation level will be dropped. 

 

iii. Since a larger variance among different conditions indicates more obvious 

functions, sites with median absolute deviation of methylation level value 

across different conditions higher than 0.4 will be retained. 

 

After site filtering, the site number was reduced from 69,446 to 13,415, following 

which quantile normalization was performed to remove potential batch effect. 

 

Section 1.2.5 Construction of the RNA co-methylation network 

The RNA methylation data which contains the methylation level of 13,415 sites over 

32 conditions was used to construct the RNA co-methylation network. In the 

beginning, the Spearman correlation between each site pair was computed. Fisher’s 

asymptotic distribution was applied to estimate the p-value of each Spearman 

correlation coefficient (scc), and the p-value of each site pair was adjusted with 

Bonferroni method. The scc p-value for each gene pair with Fisher’s asymptotic test 

was implemented with function corPvalueFisher in package WGCNA [38]. The p-

values were adjusted with Bonferroni method with function mt.rawp2adjp in 

package multtest. Site pairs with high spearman correlation (correlation value ranked 

in the top or bottom 10%) and low p-value (lower than 0.05) for their methylation 

levels are regarded to be significant co-methylation pair. The adjacency matrix was 

then built to denote the correlation in methylation level between each pair of sites. 
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To build the network, function graph.adjacency in package igraph was applied to 

create the graphs file, and the degree distribution of this co-methylation network can 

be visualized. The power-law degree distribution indicates that our co-methylation 

network is a typical scale-free network [39], which means that the majority of the 

nodes in the network are connected with few other nodes, while the minority of the 

hub nodes are connected with plenty of nodes. Moreover, the network topological 

property will be visualized and analyzed with the professional network investigation 

software such as Cytoscape [40]. The function exportNetworkToCytoscape in package 

WGCNA can export the file from the adjacency matrix for visualization in Cytoscape 

[40]. 

 

The function of each m6A site was annotated with two different algorithms: hub-

based method and module-based method. 

 

Section 1.2.6 The hub-based method 

From the degree distribution of our co-methylation network, it is observed that the 

minority of hub sites are related to large number of methylation sites. Since these 

hub sites play a significant role in the whole network, it would be of interest to 

investigate their functions in human biological process. The function neighbors in 

package igraph [41] helped us find the neighboring sites of each m6A site. 

 

In hub-based method, the function of the hub methylation site is determined by the 

enrichment result of its neighbor sites, and only the sites with more than three 

immediate neighbor sites are treated as the hub sites. A total of 1889 hub sites 
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remained if only those with more than 3 edges are considered. Before annotating the 

function, we assume that the functions of the methylation sites are the same as the 

ones in their corresponding genes. The Entrez Gene ID and Gene Symbol of the gene 

corresponding to each hub site and their neighboring sites were labeled for 

annotation. Therefore, the enriched GO BP terms of the neighboring sites on the 

genes may convey the function of the hub site. In addition, the functions of the gene 

where the hub-site located can reflect the role of the hub site. We performed the GO 

BP enrichment analysis on the corresponding gene of the hub site and the 

corresponding genes of its neighboring sites. The GO slim terms, which are the subset 

of GO term, were applied to reduce the GO enriched terms. This generic subset is 

used as the scope of GO Slim. Since the term GO:0008150 (biological process) is too 

general, it was removed from the analysis as well. The consistent terms between GO 

Slim BP terms of the hub gene, where each hub site located, and GO Slim BP terms of 

the neighbor genes, where the neighbor sites of the same hub site located, were 

treated as the reliably predicted functions of each hub site. To evaluate the prediction 

performance of the predicted GO terms, the functional enrichment p-value of the 

slim term (PV) and the number of the enriched slim terms of neighbor sites (GN) are 

calculated and set as the cutoff parameters. The recall and precision of the prediction 

performance are defined as Equation 1 and Equation 2. 

 

Equation 1 

Recall =
∑ Both known & predicted GO term number

∑ Known GO term number
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Equation 2 

Precision =
∑ Both known & predicted GO term number

∑ Predicted GO term number
 

 

GO terms of the hub site, the corresponding neighbors, and their overlap on each PV 

and GN cutoff were generated separately by previous data. The values of recall and 

precision for each cutoff were calculated to evaluate the prediction performance. 

 

Section 1.2.7 Permutation on the network 

To assess the efficacies of the predicted GO terms, permutation on sites was 

performed to rebuild the random network. If both the recall and precision values of 

real network are much higher than that of the random network, the predicted 

functions in the functional network should be biologically significant. The functions 

rewire and keeping_degseq in the ig raph package were used to randomly rewire the 

edges without creating multiple edges, keeping the degree distribution of the raw 

graph unchanged without loop edges. The rewiring algorithm substitutes two 

arbitrary edges in each step ((a, b) and (c, d)) with the edges which are not existed in 

the raw graph as ((a, d) and (c, b)). The exchanging steps were repeated 100 times for 

the original graph. After the permutation, the number of neighbors of the same site 

does not change. This is similarly carried out on the random network as well. Since it 

is highly possible that the neighboring sites of the same hub site correspond to the 

same gene in the real network, this might result in a lower overall p-value of terms 

annotated in the random network. We constrained the neighbor gene number of the 

same hub site in the random network as that in the real network. The GO and GO 

slim terms enriched in permutation network together with other parameters were 
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used to predict the function of methylation sites. The results of the random network 

were compared to that of the real network in terms of the performance of prediction. 

 

Section 1.2.8 The module-based method 

Another way to predict the site function is to investigate the modules in the network. 

It is common that sites among the same co-methylated module share similar 

functions. In the module-based method, the Markov Cluster (MCL) algorithm [42] is 

chosen as the clustering algorithm in grouping methylation sites. MCL is a scalable 

cluster algorithm, which is based on the stochastic flow in graphs to identify modules 

with random walk. We transformed the co-methylation network into the MCL input 

format, which contained the information of two nodes (sites) and the edge weight 

between nodes. With the inflation value set to 1.4 by default, the modules containing 

more than 9 sites were identified to be significant modules. These clustered sites will 

then be annotated according to the Gene Ontology of their hosting genes. The terms 

of the same site annotated by module-based method and hub-based method were 

then compared to test the annotation accuracy. 

 

Section 1.3 Results 

Section 1.3.1 Selection of raw m6A sites and normalization 

After filtering the methylation sites corresponding to lowly expressed genes with low 

gene expression level and low read count quantity in IP and Input samples, the raw 

predicted single-base resolution human m6A sites were reduced from 69,446 to 

36,542. Furthermore, 17,758 sites were discarded to reduce the number of 

neighboring sites corresponding to the same gene that are very close to each other. 
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A total of 13,415 sites with relatively higher median absolute deviation (over 0.4) 

among the remained 18,784 sites were kept. We believe that the m6A sites remained 

after selection should be statistically significant. After merging the biological 

replicates from the same condition together with methylation level estimation by 

DESeq2, the GC content bias were normalized by CQN. The dendrograms in Figure 1, 

constructed using Euclidean distance as the metric, helped us insight into the joint 

distribution between samples with and without the CQN normalization. Samples 

from the same cell line and experiment were labelled with the same color. Samples 

of the same color were not clustered together in the dendrogram without CQN 

(Figure 1a). In contrast, after the CQN normalization, almost all the conditions from 

the same cell line were clustered into the same group with highly correlated 

methylation patterns (Figure 1b). This indicates that the GC content biases were 

removed. Additionally, we tested the relative importance of each individual samples.  

To test for sample independence, we removed each individual sample from the 

original 32 samples in the methylation-level matrix to build the adjacency matrix. 

Since the matrix generated from previous section is filled with “0” and “1” and the 

dimensions of two matrices are the same as well, we can compare their topological 

similar by calculating the odds ratio (OR) between the adjacency matrix of original 

and new one generated with one sample removed. The histogram of odds ratios 

between adjacency matrices built by all the 32 samples and with one sample removed 

is shown in Figure 2a. All the OR values are large, ranging between 2400 and 2700, 

which means that the topological connections are 2000 times more likely to be 

consistent with each other compared with the random permutation. There are no 

obvious outliers corresponding to samples that will induce substantial topological 
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changes to the co-methylation network. Besides, although the samples perturbed 

with m6A enzymes represent an abnormal kind of methylation profiles and may 

induce more bias, To prove whether samples with m6A enzymes (METTL3, METTL14, 

FTO etc.) perturbation would induce bias to the co-methylation network. We 

followed similar procedure described previously. As shown in Figure 2b, the 

topological changes induced by samples with enzyme permutation are actually 

slightly smaller than the other samples, as indicated by higher consistency between 

the adjacency matrices. Given that the number of MeRIP-seq samples is very limited, 

we believe it is better to keep all samples for the following analysis. 
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Figure 1 Correction of technical variability. (A) The clustered dendrogram of samples 
before applying CQN to remove technical variability. Many highly related samples are 
not clustered closely. (B) The clustered dendrogram of samples after applying CQN 
to remove technical variability. More related samples are clustered together, 
suggesting that the application of CQN in the analysis is very effective. 
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Figure 2 Outlier identification. (A) The histogram of odds ratios between adjacency 
matrix built by all the 32 samples and with one sample removed. There are no obvious 
outliers corresponding to samples that will induce substantial topological changes to 
the co-methylation network. (B) Topological changes induced to the co-methylation 
network. The topological changes induced to the co-methylation network by samples 
with enzyme permutation are not bigger than the other samples. 
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Section 1.3.2 Co-methylation network construction 

The methylation data of 13,415 sites under 32 conditions was used to construct the 

co-methylation network. Since the location of these sites are known, the genes where 

these sites correspond to (Entrez Gene ID & Gene Symbol) were labeled. A total of 52 

sites were dropped due to the absence of relevant gene annotation, and the 

remaining sites were kept for network construction. The site pair was defined as the 

co-methylation site pair only if its scc is ranked in the highest or lowest 10% and its 

adjusted p-value is lower than 0.05. According to the above strategy, the adjacency 

matrix was constructed to obtain the linkage between site pairs. The function in 

package igraph transformed the format of the matrix to the igraph format. A network 

consisting of 18,477 edges and 13,363 nodes was constructed. The constructed 

network with the most significant functions of four main modules in Cytoscape is 

shown in Figure 3. We observed that majority sites are clustered together in a huge 

group, where several modules can be identified. Moreover, we obtained small 

clusters ranging between 2 and 9 sites. To have a better understanding of the 

network, we looked at the degree distribution (see Figure 4), which unveiled that this 

co-methylation is a typical scale-free network. The scale-free network tallies with 

most biology networks for its robustness against disruptions. In the scale-free 

network, highly connected hubs, making up a relatively small number of nodes, will 

mainly are pivotal in determining the property of the network. The log-log plot gives 

an almost linear trend, with the degree exponents to be around 2. 
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Figure 3 Visualization of the co-methylation network in Cytoscape. A total of 18,477 
edges and 13,363 nodes make up this co-methylation network. The m6A sites are 
represented by blue nodes, and gray lines represent the high positive and negative 
correlation between each node. Majority of the sites (91.5%) were clustered into a 
huge module, and few sites share high correlation in methylation level within small 
modules. Four largest modules were amplificated and labelled in yellow, and the 
most significant Gene Ontology term of each module was labelled as well. 
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Figure 4 The degree distribution of the co-methylation network. The tendency of 
the degree on the log-log plot fits with power law, and the degree exponent of this 
network is close to 2, thus the powerlaw degree distribution conforms to scale-free 
network topology. 

 

Additionally, it should be of great interests to compare the constructed co-

methylation network to the co-expression network. For this purpose, we downloaded 

the human co-expression data (Coexpression version: Has-u.c2–0) from COXPRESdb 

[43], and built the gene co-expression network with cut-off threshold 0.8, i.e., if the 

Pearson correlation value between two genes is more than 0.8, the gene pair are 

considered co-expressed. Meanwhile, a gene-gene co-methylation network was 

converted from the site-site co-methylation network constructed previously. If two 

sites are co-methylated, their hosting genes are considered co-methylated as well. 
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The gene-gene co-methylation network was then compared to the gene-gene co-

expression network. However, we failed to observe strong topological correlation 

between the co-expression and co-methylation networks. Although is still positive, 

the Pearson correlation of their adjacency matrices is only 2.2E-4, which suggests the 

epitranscriptome regulatory impact of transcriptional expression may be relatively 

weak at global level. 

 

Section 1.3.3 Hub-based method 

The annotation of methylation sites relies on the functional enrichment in the hosting 

genes of their neighbor sites according to the guilt-by-association principle. Because 

the functional information of individual RNA methylation sites is unavailable in 

existing database, we consider a soft benchmark by assuming that the functions of a 

sites are similar to that of its hosting genes. In the network, 1899 (14.2%) sites with 

connections to more than 3 immediate neighbors are defined as hub sites. To 

evaluate the accuracy of the prediction, we also annotated the predicted functions 

with the known GO terms of their corresponding gene. Thus, the enriched GO BP 

terms of genes where these hub sites correspond to were annotated with the Entrez 

ID using packages GO.db and AnnotationDbi. The corresponding genes of 1780 hub 

sites were annotated with GO BP terms. We also annotated all the neighboring sites 

of each hub site with GO BP terms. Both the annotated terms were reduced to GO 

Slim BP terms, and the term GO:0008150 (biological process) was excluded in 

enrichment results because this term almost occurs in every reduced GO Slim term. 

A total of 1446 sites were annotated with more than one GO slim BP term. The terms 

occurring as both predicted and known terms were treated as hit terms. Permutation 
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on sites was performed to construct the random network. In the random network, 

the GO BP terms and GO BP slim terms of the corresponding genes of the hub-sites 

were the same as that in the real network, while the predicted terms by their 

neighbors were different. We defined recall and precision to measure the prediction 

performance, and two cutoff parameters PV and GN can affect the prediction 

performance. 

 

We showed in Figure 5 the relationship between recall and precision values of both 

real and random networks under different cutoffs of PV (circle size) and GN (facet 

title). The points in blue are the performance values in the real network, and the 

points in red are the performance values in the random network. The values of recall 

and precision in the real network under these cutoffs are much higher than that in 

random network, which proves that the prediction in the real network should be of 

biological significance. The recall value is highest (13.8%) when the values of both GN 

(16) and PV (10−1) cutoff are high. The precision value is highest (15.3%) when the 

values of both GN (4) and PV (10−3) are low. The recall value is strongly affected by 

GN, while the precision value is affected more by PV. Therefore, the PV and GN will 

not be set too low or too high to get the reasonable recall and precision. 
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Figure 5 Performance of hub-based functional prediction. In the recall-precision 
plot, blue circles represent values under the real network, and red circles represent 
values under the random network. The x-axis and y-axis give the respective values of 
recall and precision. The number labelled as title in each facet represents each GN 
cutoff. The lower PV cutoff represent the smaller circle in the figure. From the figure, 
the values of recall and precision in the real network are much higher than the 
random network with the same cutoff. 

 

Section 1.3.4 Module-based method 

It is highly possible that sites within a co-methylated module share similar functions. 

Therefore, analyzing the corresponding genes of methylation sites in the same 

module can help us predict the site functions in the module-based method. The 

igraph object after network construction was set as the input file of the clustering 

algorithm. After clustering the sites with MCL algorithm (inflation value set to 1.4), 

76 modules (2303 sites) containing 10 or more sites were defined as modules, the 

enrichment analysis of GO BP terms of these modules was performed. All the 
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modules were enriched with more than one GO BP terms whose p-values are lower 

than 0.05. After adjusting the p-value by the BH method, 8 modules were significantly 

(adjusted p-value < 0.05) annotated with at least one GO term. In Figure 6, the 

enriched result of the eight modules in the module-based method is given. The 

enriched terms in each module are labeled using different colors and columns. The 

size of points in the dot plot gives an indication of the magnitude of p-values 

corresponding to the enriched terms. The shape of points there indicates the 

statistical significance of the terms. The GO BP terms in module 2 (small molecule 

metabolic process, organonitrogen compound biosynthetic process, etc.) and 

module 3 (co-translational protein targeting to membrane, protein targeting to ER, 

etc.) are statistically significant (shown the Figure 6) 
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Figure 6 GO enrichment plot of the eight most significant modules from the 
module-based method. The larger the point size means the lower the p-value of the 
GO term. The shape in rectangle means the significance in statistics (p-value after BH 
adjustment is lower than 0.05), while the shape in circle means the insignificant term. 
GO BP terms such as RNA processing as well as small molecule metabolic process are 
statistically significant. 

 

Section 1.3.5 Overlap of the functional enrichment 

To evaluate the prediction accuracies of both methods, we compare the enriched 

functions of the same site by the two methods. Among the 2303 sites annotated by 

the module-based method, 1346 (58.4%) sites are annotated in hub-based method. 

Majority of them (1262, 93.8%) are annotated with one or more GO BP term 

predicted by both methods, and about 27 GO BP overlap terms occur on each site in 

average. We also calculate the number of overlap terms in the random network, with 
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the findings that 61.3% (825) sites are enriched with one or more GO BP term by both 

methods, and 3.2 overlap terms occur on each site. Figure 7 is the boxplot which 

shows the count of overlap terms predicted by the hub-based method and the 

module-based method on each site. The number of overlapping terms of both 

prediction methods is higher in the real network than the random network, indicating 

that the predicted functions annotated by the module-based method are credible. 

 

 

Figure 7 The enriched terms are more consistent in real network. The boxplot of the 
overlap term number in the real network and the random network at the same 
methylation site. The box in red represents the term count in the random network, 
and the box in blue represents the term count in the real network. After log10 
transforming the term count on y-axis. It is obvious that the overlap terms are much 
more in the real network (mean 27) than in the random network (mean 3.2). 
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Section 1.3.6 Database construction 

To enable the direct query of the predicted functions associated with individual m6A 

RNA methylation sites, we constructed a web site m6Acomet, which stands for 

functional prediction of m6A RNA methylation sites from RNA co-metylation network, 

and is freely available: http://180.208.58.19/m6acomet/. A data table, which 

contains the necessary information of sites, is provided, including: methylation site 

ID, position on chromosome, RNA strand, corresponding Gene Symbol, 

corresponding Gene Entrez ID, count of neighbor sites, count of corresponding genes 

of neighbor sites, count of GO BP terms of the hub gene, count of GO BP Slim terms 

of the hub gene, count of GO BP terms of predicted neighbor genes, count of GO BP 

Slim terms of the predicted neighbor genes, count of hit terms of the two slim term 

columns, and count of the GO BP terms annotated by module-based method. The 

detailed information, which includes the exact GO (or GO slim) terms together with 

the enrichment significance (p-value < 0.05) and its neighboring m6A sites in the RNA 

co-methylation network, will be shown if the user clicks on the relevant hyperlinks. 

 

Section 1.4 Conclusion 

The functional characterization of post-transcriptional modification sites by wet 

experiments is extremely expensive and laborious. For this reason, we propose a 

computational framework, for the first time, to predict the putative functions of 

individual RNA methylation sites from an RNA co-methylation network in large-scale. 

Specifically, before network construction, the methylation level on each site was 

estimated and normalized by DESeq2 and CQN. Several systematic biases in GC 

content and batch effect were adjusted. The raw predicted m6A sites were further 

http://180.208.58.19/m6acomet/
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filtered, and only the sites with substantial biological signals were kept for further 

analysis. The RNA co-methylation network was built from MeRIP-seq data profiling 

the transcriptome-wide RNA methylation status in 32 experimental conditions. We 

showed that the co-methylation network exhibit typical scale-free characteristics. 

The biological functions of each individual RNA methylation sites were then inferred 

based on the guilt-by-association principle. Two different types of algorithms were 

developed for functional annotation. We suppose that the regulation role of each 

m6A site should be similar to the annotation roles of its corresponding gene. For this 

purpose, the methylation sites with three or more edges were functionally annotated 

by the hub-based method. The prediction performances (recall and precision) were 

defined to assess the predictive efficacies of the real and random networks. The PV 

and GN were chosen as cutoff parameters to assess the prediction performance. The 

random network was constructed to compare the prediction performance with that 

from the real network. By taking advantage of a soft benchmark, our result showed 

that the recall and precision values of the real network are both higher than that of 

the random network with various cutoff. In other words, the prediction results in the 

co-methylation network suggested higher biological significance. In the module-

based method, sites from largest modules (module size ≥ 10) clustered by MCL 

algorithm were annotated by GO terms. After comparing the enriched terms of the 

sites annotated by both methods, we found that majority of the sites share 

overlapping GO terms, suggesting that the functional enrichment in module-based 

method is reasonable. Functional enrichment by different methods can extend the 

range of annotation terms and increase the number of predicted sites. The 
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predictions in some cases by two methods are complementary and coherent, which 

reinforce the validity in prediction. 

 

It is worthwhile mentioning that the biological function of an RNA methylation site 

may be different from that of its host gene. The former focused on epitranscriptome 

layer regulation; while the latter may be regulated through any layers of gene 

expression regulation, e.g., DNA methylation, post-translation modification, etc. In 

this work, we focused specifically on the RNA methylation profiles, which is governed 

by RNA epigenetics regulation and thus echo biological processes regulated at 

epitranscriptome layer. Although the epitranscriptome modules (or RNA co-

methylation pattern) have previously been shown to demonstrate functional 

relevance of the RNA methylation sites [12, 13], it is, to the best of our knowledge, 

that we are the first to use this property for functional prediction for individual RNA 

methylation sites. 

 

The annotation result of the human m6A sites in our project are presented in an 

online database m6Acomet. It supports the query with respect to a biological function 

or a number of co-methylated RNA methylation sites, and may serve as a source of 

reference for further biological research. 

 

However, the project still has a few limitations. For example, the annotation rates for 

all the filtered methylation sites in both methods are not satisfactory. The criteria for 

the construction of the co-methylation network may be too stringent and could be 

further optimized; more data sources such as protein-protein interaction, pathways, 



29 
 

can be integrated with the RNA co-methylation network for a more accurate 

functional annotation. 
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Chapter 2 Functional annotation of m6A methylation sites using guilt-

by-association principle in WHISTLE 

Section 2.1 Introduction 

The function of epitranscriptome has been mainly investigated from their mediator 

proteins. The m6A epitranscriptome is directly manipulated by three classes of RNA 

binding proteins, namely the writer (methyltransferase), eraser (demethylase) and 

reader (m6A specific RNA binding protein), which install, erase or recognize the m6A 

modification [44]. The key role of m6A in regulation of gene expression regulation has 

become evident from a number of knockdown and overexpression experiments. 

Genetic inactivation of m6A writer METTL3 resulted in long-lasting Nanog expression 

upon differentiation and resulting defective ESC exit [45, 46]. Knockdown of RBM15 

or METTL3 was shown to impair XIST-mediated X chromosome inactivation [47]. 

METTL3 and METTL14 were shown to modulate murine spermatogenesis [27, 48]. 

The m6A reader YTHDF2 recognizes and reduces the stability of transcripts [5]; while 

another reader, YTHDF1 promotes translation of targeted transcripts [49]. With the 

advance of next-generation sequencing [50] and other techniques, the versatile 

functions of m6A RNA modification have been more comprehensively understood. 

However, existing functional studies are primarily limited by laborious experimental 

procedures or limited samples, resulting low statistical significance and low 

resolution [50]. In spite of this, such methods are only suitable for investigating the 

molecular functions of individual mediator protein under a specific context, but are 

sufficient to uncover the functions of individual RNA methylations site under 

different conditions.  
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The exploration of epitranscriptomics has greatly benefited from computational 

biology and bioinformatics. The realization of online databases enabled the 

annotation of transcriptome-wide RNA modification sites with tissue/cell type 

specificity, potential association with RNA-binding-protein binding proteins, disease-

associated SNPs, miRNA binding sites, differential methylation profile across multiple 

experiments, etc. [51, 52]. Nonetheless, despite the great efforts being made, there 

is, to our knowledge, still no available database or computational effort for functional 

annotation of individual RNA methylation sites under the Gene Ontology framework. 

Instead of characterizing the functional relevance of individual epitranscriptome 

mediator protein, the question we are pursuing is: what biological process may be 

affected when a specific site is (de)methylated, i.e., providing a Gene Ontology-

annotated map of the m6A epitranscriptome at single site resolution using machine 

learning approach. 

 

The accumulation of high-throughput data and theories on complex networks have 

furthered the understanding of biology components in context instead of as discrete 

parts [39, 53]. A network presents a graphical model where the nodes represent the 

biological components and the edges allow functional information flow between the 

connecting nodes [54]. There are many successful applications in recent years. 

Disease gene prioritization in complex disease yielded a fruitful result since single 

gene abnormalities might only confer a marginal phenotypic defect while the overall 

malfunction is a collective effect of a myriad of interactors [55]. Random walk with 

restart was successfully used in drug-target interaction mining [56], and predicted 
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functions of long-noncoding RNAs derived from a co-expression network [14]. 

Meanwhile, with the rapid update of genomic information and high-throughput 

techniques, several major databases, e.g. STRING [57], have been built for the 

integration of multi-omics data that are freely available to public, which may serve as 

prior knowledge when modeling the unknown relationships. One of the major 

challenges of functional prediction is the sparse known site-gene functional 

connections, which usually serve as the “seed” for many network based algorithm. 

Therefore we here adopted the philosophy of "guilt-by-association" [58, 59] to build 

initial edges from data. In particular, if an RNA methylation site has methylation 

profile that is well correlated to the expression profile of a set of genes, then one may 

assume that they are functionally related and thus “connected” in the network. 

MeRIP-seq data are well-controlled and naturally suitable for such purpose, since the 

Input and IP sample of the m6A-seq data share common upstream preparation and 

the Input sample is essentially an equivalent to RNA-seq when quantifying gene 

expression abundance. When we use a network approach to infer the functions of 

each m6A sites, one of the potential challenges is the limited number of datasets. Due 

to the laborious nature of m6A-seq preparation [50], the pool is limited in both 

number of experiments and number of replicates. To obtain a biologically robust 

network structure, we consider amplifying only the consistent signals and add prior 

knowledge for regularization purposes. A classical pipeline for disease-associated 

gene prediction was provided by taking advantage of the network-based information 

propagation [60], which resulted in more consistent somatic mutation pattern 

thereby enabling downstream clustering of tumor subtypes [61]. Under this pipeline, 

the output is an influence confidence vector for a certain site, which is a ranked gene 



33 
 

list that could be used as input to the Gene Set Enrichment Analysis (GSEA). GSEA is 

based on the Kolmogorov–Smirnov test to identify if the distribution of enrichment 

scores is significantly different from the null distribution [62]. Compared to the over-

representation tests, e.g. the Fisher’s exact test, GSEA is non-parametric and 

considers the rank of genes under certain perturbation (e.g. methylation of a 

particular site). 

 

Here, the “guilt-by-association” principle was applied to further annotate the 

functional relevance of each individual RNA methylation site by integrating the gene 

expression profiles, RNA methylation profiles and PPI networks. Specifically, the m6A-

seq data profiling in 38 different experimental conditions obtained from 11 studies 

was used for analysis. The expression level for each gene and the methylation level 

for each site were quantified. The initial co-methylation and methylation-expression 

network were built from available datasets, and then the consensus signals for each 

site were amplified by multiplying these two. The correlations for a query site to gene 

expression were then smoothed using a Protein-Protein interaction (PPI) network 

[57], and the resulting gene lists are used as input for GSEA algorithm for functional 

annotation. Several case-studies related to YTH-domain m6A readers are presented 

as evidence of the biological insights obtained from the constructed networks. 

 

Section 2.2 Materials & methods 

Section 2.2.1 Gene expression level quantification 

The gene expression level is quantified from the Input control sample of the MeRIP-

seq data, so that we have the matched RNA m6A methylation profiles as well. 
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Specifically, the raw sequence data from 11 independent studies corresponding to 38 

independent experimental conditions, were downloaded from GEO list in Table 2 and 

aligned with HISAT2 [63] to the human genome assembly hg19 downloaded from the 

illumina iGenomes. The gene expression levels (FPKM) were averaged among 

biological replicates obtained from the same experimental condition, in which the 

samples are from different cell lines or subjected to different treatments. The 

resulting expression profile contains the expression level of 22,687 genes under 38 

experimental conditions. The technical bias such as GC content was corrected by 

conditional quantile normalization approach with the CQN R package [24]. 
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Table 2 m6A-seq data used in Section 2. 

ID Sample Label SRA Study GEO accession Source 

1 - 4 

HepG2-UV 

SRP012098 

SRR456542-SRR456543 

[17] 
HepG2-HS SRR456544-SRR456545 

HepG2-HGF SRR456546-SRR456547 

HepG2-IFN SRR456548-SRR456549 

5 HEK293T-1 SRP007335 SRR494613-SRR494618 [64] 

6 - 9 

Hela 

SRP022152 

SRR847358-SRR847361, SRR847370-SRR847373 

[33] 

Hela-
METTL14- 

SRR847362-SRR847365 

Hela-WTAP- SRR847366-SRR847369 

Hela-METTL3- SRR847374-SRR847377 

10 - 11 
U2OS 

SRP026127 
SRR903368-SRR903370, SRR903374-SRR903376 

[32] 
U2OS-DAA SRR903371-SRR903373, SRR903377-SRR903379 

12 - 13 
H1ESC 

SRP033229 
SRR1035213-SRR1035224 

[37] 
H1ESC-T48 SRR1035217-SRR1035220 

14 - 26 

hNPC 

SRP039397 

SRR1182582-SRR1182586 

[34] 

hESC SRR1182587-SRR1182590 

HEK293T-2- 
WTAP 

SRR1182591-SRR1182592 

HEK293T-2- 
METTL3- 

SRR1182593-SRR1182594 

HEK293T-2 SRR1182595-SRR1182596 

OKMSfibro-
Dox 

SRR1182597-SRR1182598 

OKMSfibro SRR1182599-SRR1182600 

OKMSiPC SRR1182601-SRR1182602 

A549-WTAP- SRR1182603-SRR1182606, SRR1182625-SRR1182626 

A549-
METTL14- 

SRR1182607-SRR1182614, SRR1182635-SRR1182636 

A549-METTL3- SRR1182615-SRR1182618, SRR1182629-SRR1182630 

A549 SRR1182619-SRR1182624, SRR1182633-SRR1182634 

A549- 
KIAA1429- 

SRR1182627-SRR1182628 

27 - 30  

AML-1-FTO+ 

SRP067910 

SRR3066062-SRR3066065 
[35] 

AML-1 SRR3066066-SRR3066069 

gsc11 SRR4310464-SRR4310465, SRR4310468-SRR4310469 

[65] gsc11-
ALKBH5- 

SRR4310466-SRR4310467, SRR4310470-SRR4310471 

31 - 32 
HEK293A 

SRP094637 

SRR5080301-SRR5080303, SRR5080307-SRR5080309 

[66] HEK293A 
METTL16- 

SRR5080304-SRR5080306, SRR5080310- 
SRR5080312 

33 - 34 
AML-2 

SRP099081 

SRR5239086-SRR5239101 

[36] AML-2-
METTL3- 

SRR5239090-SRR5239109 

35 - 38 

NB4 

SRP103072 

SRR5417009,SRR5417011, SRR5419908, SRR5419910 

[67] 

MM6 SRR5417010,SRR5417014, SRR5419912, SRR5419914 

NB4-
METTL14- 

SRR5417012-SRR5417013, SRR5419909, 
SRR5419911 

MM6-
METTL14- 

SRR5417015-SRR5417016, SRR5419913, 
SRR5419915 
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Section 2.2.2 RNA methylation level quantification 

The methylation levels of these sites were estimated from the m6A-seq data, which 

we previously used to estimate the expression level profiles based on their input 

control samples as well. The m6A-seq data regards methylation level as the relative 

abundance between IP (immunoprecipitation by antibody binding to m6A site) and 

input (normal RNA-seq). The methylation level for each site is calculated as Equation 

3. 

 

Equation 3 

( ), 2 , , , ,logi s i s t i s cm n n=  

 

Where 
, ,i s tn  and 

, ,i s cn  represent the read abundance (in RPKM) of a specific m6A site 

in the IP and input sample of MeRIP-seq data, respectively; and the methylation level 

,i sm  is estimated using the DESeq2 package with Bayesian shrinkage for more robust 

quantification of the very lowly expressed genes [22]. Similar to gene expression 

quantification, the technical bias was corrected by conditional quantile normalization 

approach [24]. 

 

Section 2.2.3 Initial network construction 

Filtering is necessary to remove any trivial or confounding signals from the predicted 

epitranscriptome map. First we filtered the trivial RNA methylation sites whose 

methylation level was consistently low (mean within 75% percentile). The filtered 

methylation site in this step may not be a strong (or house-keeping) methylation site 

and may function only under relatively fewer experimental conditions. After this step, 
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29,855 sites are retained among the original 82,245 sites supported by at least one 

of the six base-resolution experiments (see Table 3). Then, the top 10,000 sites with 

largest variance in methylation level were preserved for functional annotation. These 

sites were selected because more information related to their epitranscriptome 

function may be revealed through their highly dynamic methylation profiles. Please 

note that, although we performed transcriptome-wide m6A site prediction, only part 

of the m6A epitranscriptome is functionally annotated. The screening prior to 

functional annotation is necessary because that it will greatly reduce the 

computation load while increasing the accuracy and reliability of the annotation by 

focusing on only the most reliable, dynamic and extensively occurred RNA 

methylation sites. 

 

Table 3 Base-resolution dataset used in m6A site prediction. 

ID Cell line Note Technique Source 

1 
HEK293 

abacm antibody 
mi-CLIP [20] 

2 sysy antibody 

3 MOLM13 

 m6A-CLIP 

[27] 

4 A549 
[21] 

5 CD8T 

6 HeLa [28] 

 

An RNA co-methylation network (GMM, which stands for graph for methylation-

methylation) and a methylation-expression network (Pre-Amp GME, which denotes 

the graph for methylation-expression before signal amplification) are built according 

to the criteria used in [14]. The spearman correlation between site pairs and site-

gene pairs were calculated and p-values were generated through Fisher’s asymptotic 



38 
 

test [38], and adjusted by Bonferroni multiple test correction implemented in the R 

multtest package [68]. For both networks, only methylation site pairs with a p-value 

of 0.05 or less and with a Spearman correlation value ranked in the top or bottom 

0.05 percentile were regarded as an edge. Positive and negative correlations were 

explicitly encoded as “+1” or “ -1” in the adjacency matrix. Self-loops were 

prohibited. 

 

Section 2.2.4 Signal amplification 

From multiple knockout experiments biologists have come to understand that, the 

functional impact of RNA modification is an orchestrated event that involves the 

action of methyl-transferase on multiple sites. Thus we devised a scheme (Equation 

4) to amplify the consensus signals, which we believed are of more biological 

significance. 

 

Equation 4 

me mm meAdj Adj Adj =   

 

where meAdj
 represents the adjacency matrix of initial methylation-expression 

network, mmAdj
 represents the adjacency matrix of initial co-methylation network, 

and meAdj
 gives the adjacency matrix of amplified methylation-expression network 

(Post-Amp GME, which denotes the graph for methylation-expression after signal 

amplification). Any site conferring consensus functional impact (either positive or 

negative correlation) with its neighboring sites in the co-methylation network on a 
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gene, which should have been more reliably connected to that gene will be 

strengthened in terms of edge weight. In contrast, if the neighboring sites of a query 

site have no predominate correlations (an even chimeric combination of positive or 

negative) to a gene, then the query site may not be convincingly connected to that 

gene and such edge tends to be diminished in matrix multiplication. An additional 

merit of signal amplification is to increase the number of edges present in the 

network, which might be of biological significance since those edges come from 

consensus behavior of highly related sites.  

 

Section 2.2.5 Network smoothing 

We adopted the PRINCE network smoothing framework described by [60]. Starting 

from the amplified methylation-expression network we want to find an optimal 

information source in matrix form that could both smooth over the protein 

interaction network and the known connections, which could be expressed as 

Equation 5. 

 

Equation 5 

( )1 1t tF W F Y −= + −
 

 

where 𝑎  is the relative importance for protein-interaction matrix to the known 

interactions, and F  represents a mapping from a particular site to a gene set with 

different weights, while the superscript denotes the number of iterations. Y  gives 

the original seed mapping between a site to gene set in amplified GME. W   gives the 
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normalized version of adjacency matrix of STRING Protein-Protein Interaction 

network [69], which is calculated as Equation 6. 

 

Equation 6 

1 1

2 2W D WD
− −

 =  

 

where W  is the weighted adjacency matrix of STRING PPI and  D is the diagonal 

matrix where ( , )D i i  is the sum of the i -th row in W . 

 

Section 2.2.6 Network randomization 

A random network needs to be generated for the purpose of comparing 

performance. To better simulate biology network we used a node-switching 

algorithm that preserves the degree of each node. The resulting randomized network 

is believed to better serve as a null model. In this work, we randomized the co-

methylation network by rewire function in igraph R package [41] and randomized the 

initial methylation-expression network by BiRewire R package [70], which is 

specifically designed for randomization of a bipartite graph. The final randomized 

methylation-expression matrix is the product of two randomized version of adjacency 

matrix of initial co-methylation network and the incidence matrix of the methylation-

expression network. Similarly, the randomized network was also smoothed over PPI 

as described in previous section. 
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Section 2.2.7 Functional prediction by GSEA 

According to the guilt-by-association principle, it is reasonable to assume that, if a 

specific methylation site exhibit a strong association with a functional gene module 

(a number of genes participate in a specific biological process), it is likely that the 

methylation site is functionally related to the module via epitranscriptome layer of 

gene expression regulation, which directly controls the methylation level of an m6A 

site via RNA methyltransferases, demethylases or RNA binding proteins.  

 

The resulting GME network after amplification and smoothing is composed of the 

association between each individual RNA methylation site and the genes derived 

from RNA methylation, gene expression and protein-protein interaction data. We 

then adopted the GSEA method [62] using the R package clusterProfiler [71] to 

predict the Gene Ontology terms that are likely to be associated with a specific RNA 

methylation site from the ranked gene list extracted from the amplified and 

smoothed GME network. 

 

Section 2.2.8 Soft benchmark for functional prediction 

To overcome the problem of the lack of benchmark for experimentally verified 

functional sites, we use the function of the gene where a site resides as a soft-

benchmark to assess prediction performance. It is also worth to mention that the 

predictions not supported by the soft benchmark may correspond to previously 

unknown biological mechanisms that regulated at epitranscriptome layer, and 

worthy to be explored. Researchers have previously shrunk the predicted GO pool to 

GO slim terms and compared specificity and precision for true and random network 



42 
 

[14]. However the slim version of GO is clearly not as comprehensive. Here, following 

previous approaches, we define the prediction “hit” as any term that has semantic 

similarity measure higher than 0.8 by Wang’s graph-based method implemented in 

GOSemsim package to a term annotated to the residing gene [72, 73]. Then, we 

compared our prediction results with the performance achieved on the random 

network. 

 

Section 2.2.9 Feature gene selection for YTH-domain readers 

To further validate the biological significance of our analysis, we focused on the three 

well-characterized readers: YTHDC1, YTHDF1 and YTHDF2 to verify if their binding site 

could be predicted to mediate the known functions of these enzymes in RNA 

metabolism. First the reader target sites were filtered based on differential 

methylation upon reader knockout from MeT-DB [30] or Clip mappings from RMBase 

[52]. For the subset of target site for a certain reader, only the genes that shows 

consensus influence pattern among all sites were included, by applying the following 

filters: (1) Retain the genes that have absolute association in smoothed GME over 

0.001 among all reader-targeted sites, which ensures consistency of association 

among all binding site to that reader; (2) For each selected genes, rank sites by 

association weight in the smoothed GME. (3) Select genes by variance of site ranks. 

The genes with the lower variance in site rank is retained for subsequent analysis. 

This will result in three gene sets for each of the three m6A readers. Fisher’s exact 

test with Benjamini-Hochberg multiple hypothesis correction [74] was then applied 

for GO molecular function (MF) prediction. 
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Section 2.3 Results 

Section 2.3.1 Functional annotation of individual m6A sites 

We then functionally annotated individual m6A sites using the guilt-by-association 

principle from a network constructed from gene expression data, RNA co-

methylation data and protein-protein interaction data with gene set enrichment 

analysis. 

 

Section 2.3.2 Network characterization 

Scale-free network structure is desired for most biology networks [39] for its 

robustness against disruptions. In scale-free networks, the majority of network nodes 

are of low degree, and only minority of them are important. From Figure 8, we could 

observe a good fit with power law (the black line in each plot). Comparison of two 

plots revealed that there are significantly more nodes after signal amplification, but 

the overall scale-free property of biology network is well-preserved. This result 

supported the potential biological relevance of the network (Figure 8B). The signal 

amplification step is important to strengthen the confident edges between 

expression and genes, as well as to build new connections that may be of biological 

significance. As a result, more sites could be annotated after signal amplification, 

which further supports the design (Figure 8A). 

 



44 
 

 

Figure 8 Effects of network amplification. (A) Post-Amp GME predicts more sites 
than Pre-Amp GME, since the amplification expands the edge weight, highlighting the 
most consistent signals from sites to genes, in sharp contrast to a random network. 
(B) Degree distribution of Pre-Amp GME and Post-Amp GME conforms to scale-free 
network topology. 

 

Section 2.3.3 Self-gene correlation 

As noted in previous sections, we used the function of a gene where a site resides as 

a “soft-benchmark” for prediction performance evaluation. However under such 

assumption, the edges that connects an m6A site to its own gene, which could be 

signified by deviation of Spearman correlation distribution of self-gene with a site 

compared with permutated correlation distribution, would potentially contribute 

significantly to the results. To assess this risk, we looked at the Spearman correlation 

between the methylation level of an m6A site and the expression level of its residing 

gene (we termed it as “self-gene”), and built the null distribution by permutation and 

resampling the same number of sites from other genes. Figure 9 demonstrated that 

the self-gene correlation distribution is not significantly different from the 

background null distribution, and self-gene correlation only constitutes a tiny fraction 

of the methylation-expression networks. This result further corroborates that the 
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methylation level of each site tends to be independent of the expression level of its 

residing gene. Therefore, most of the signals that agree well with our assumed “soft-

benchmark” come from the biology-driven network topology, instead of self-gene 

connections. 

 

 

Figure 9 The effect of self-gene. (A) The red line indicates the 6,150 self-gene 
Spearman correlation coefficients, and the grey lines are 1,000 permutations which 
serves as a null model of spearman correlation distribution. The p-value of 
Kolmogorov–Smirnov test is higher than 0.1, suggesting self-gene is not over-
presented in our constructed network. (B) Examination of site-gene overlapping 
shows that self-gene only marginally overlaps with both Pre-AMP and Post-AMP 
GME. The given numbers denotes the number of edges belonging to that subset. 

 

Section 2.3.4 Functional enrichment 

GSEA is performed for each weighted gene vector, which is a list of genes that are 

associated to a specific RNA methylation site, to annotate the functional relevance of 

each individual RNA methylation site via the guilt-by-association principle. To assess 

the performance, we ask the following two questions: (1) How much biological 

significance, in terms of the number of sites that would be convincingly annotated 

under certain significance level, could be deduced from our analysis? (2) How many 

terms being annotated are shared between the m6A site annotated and its host gene? 

Figure 10 shows that in all of three domains, the enrichment result for true network 
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is significantly superior to the random counterpart. As the FDR adjusted p-value 

cutoff increases, more sites tends to be annotated. A similar trend was observed as 

alpha (the relative importance  ) increases, which is not unexpected since   favors 

stronger information propagation by the biologically meaningful PPI network. The 

FDR corrected p-value was chosen as cutoff, since the raw p-value is limited in 

resolution due to our preset number of permutation. Despite the seemingly large 

adjusted p-value by FDR, the raw p-value with adjusted value less than 0.2 normally 

is below 0.002. For a reasonable combination of p-value cut-off and    (e.g.,  0.5 =

and 
0.25adjp =

), one might safely annotate the functions of more than 1,000 sites. 

To answer the second question, we regard a predicted GO term as a “hit” when it has 

semantic similarity with any terms annotated for that gene (“soft-benchmark”). The 

number of hit terms is significantly greater in our method compared to random, 

which well-demonstrated the biological significance of our network-based approach 

(Figure 10B). 
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Figure 10 Performance assessment for GSEA method. (A) The red node represents 
the number of sites with at least one predicted terms for true matrix, and the blue 
node represents the randomized counterpart. The number on the grey panel denotes 
the FDR adjusted p-value. The X-axis in all plots gives the relative importance. (B) The 
total number of “hit” term in true and random network for GO categories, i.e., 
biological process (BP), cellular compartment (CC) and molecular function (MF). 

 

Section 2.3.5 Case study: the YTH-domain readers 

The functions of m6A modification are presumably executed by readers, which are 

RNA binding proteins that recognizes specifically m6A sites [44]. Among known 

readers, three YTH-domain readers, YTHDC1, YTHDF1, and YTHDF2 are comparatively 

well-characterized. YTHDF1 has been shown to interact with translation machinery 

(eIF3, G3BP1, etc.) and promotes active protein synthesis [49]. YTHDF2 was shown to 

participate in mRNA decay by redirecting those transcripts into decay sites [5, 75, 76]. 

YTHDC1 has been shown to promote exon inclusion by selectively recruiting mRNA 

splicing factors [77-79]. 

 

To demonstrate the feasibility of our feature gene selection pipeline, we applied 

hierarchical clustering of two groups of sites (in-group, which is the selected sites; 

the other is out-group, which has the same quantity with in-group but is randomly 
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sampled from the unselected sites) based on selected features to see our selected 

features are sufficient to distinguish one from the other. From the following 

clustering pattern (Figure 11A), we could clearly find enrichment of in-group (red) at 

one end of the graph. YTHDF1-mapped genes forms a densely connected network in 

STRING database, which further support the functional coherence. The other two 

reader, YTHDC1 and YTHDF2, shows similar pattern in terms of site-differentiation 

and network enrichment.  

 

We further characterize each gene set by Fisher’s exact test for GO enrichment of 

molecular functions (MF), and the enrichment results were then corrected by 

Benjamini–Hochberg procedure [74] and shown in Figure 11C. YTHDC1 is known to 

function in pre-RNA splicing. Enriched GO terms such as “nuclease activity” can be 

directly linked to splicing. There are also terms related to RNA metabolism, which 

features “RNA binding” or “methyltransferase activity”. These result collectively 

show that the predicted functions of YTHDC1 related sites agrees well with the 

function of YTHDC1 itself. YTHDF1 is known to be functional in translation by 

interacting with translational machinery. We could identify many known components 

of the translational machinery, including translation initiation factors and aminoacyl-

tRNA ligase (which is responsible to add appropriate amino acid to tRNA). An 

interesting finding is related to microtubule plus-end binding, which is observed in 

the neuronal growth cone [80]. There are also many components of transcriptional 

machineries, including nucleoside diphosphate kinase, which is responsible for 

nucleoside triphosphate (e.g.  5' Guanosine-triphosphate Cap m7G), and presumed to 
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serve as a positioning guide for translation [81] by 43S ribosomal preinitiation 

complex via eIF4F complex. 

 

 

Figure 11 Functional prediction from YTH-domain reader mapped sites. (A) The 
cluster dendrogram shows that YTHDF1-mapped sites and random sites can be well-
distinguished from the feature set. (B) Selected feature genes for YTHDF1 formed a 
dense cluster in STRING database. (C) The predicted GO MF function of YTHDC1, 
YTHDF1 and YTHDF2 mapped sites. Grey terms denotes functions that are only 
marginally correlated with this particular enzyme, orange terms denote the functions 
that are generally related to m6A readers, red terms are specifically associated with 
this m6A reader.  

 

YTHDF2 is known to mediate RNA decay. The He lab has come up with a unified 

perspective that YTHDF2-mediated degradation controls the life-time of transcripts 

while YTHDF1-mdiated translation increases translational efficiency. The overall 
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effect is fast responsive gene expression [49], which is likely to be observed in cell 

cycle, where self-perpetuating positive feedback loops are frequent to generate quick 

responses. The Cyclin related pathway controls processes related to cell cycle. 

Although there are no well-established experimental data that connects cyclin and 

YTHDF2, YTHDF2 was observed to contribute to “migration-proliferation dichotomy” 

and might be responsible for carcinogenesis [82, 83]. Single-stranded or mismatched 

DNA is the characteristics of cellular stress [84, 85], which is prone to inducing 

apoptosis which triggers global RNA decay [86, 87]. The role of YTHDF2 related sites 

in mediating RNA decay can be further substantiated by the frequent appearance of 

“stabilization” in the biological process (BP) terms of GO. Moreover, the link between 

YTHDF2 and translation may be established by heat shock protein in cellular stress 

[88]. Under physiological conditions, FTO functions to remove the m6A from the 

5’UTR from nucleus and YTHDF2 usually localizes in the cytoplasm [44]. However 

upon heat shock, YTHDF2 was found to translocate into the nucleus to protect m6A 

at 5’UTR and assembles m7G cap for translation initiation in eukaryotes. This 

mechanism is presumed to promote cap-independent translation for heat-shock 

specific proteins. 

 

Section 2.4 Conclusions 

To functionally annotate the potential regulatory impact of each individual RNA 

methylation site, a high-quality methylation-expression network was constructed, 

strengthened by an RNA co-methylation network and then smoothed by a protein-

protein interaction network. Each vector in the resulting matrix is a ranked gene list 

which serves as an input for GSEA functional enrichment of each individual site based 
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on the guilt-by-association principle. By integrating gene expression profiles, RNA 

methylation profiles and protein interactome with the guilt-by association principle, 

we functionally annotated the top 10,000 most dynamic m6A RNA methylation sites 

with 4,310,949 gene ontology terms, for the first time, at single site resolution, 

providing a useful reference for researchers who are particularly interested in the 

biological functions that are regulated at epitranscriptome layer through reversible 

m6A methylation.  

 

In-depth biology mining was performed on YTH domain m6A reader families, and the 

molecular function enrichment of each gene set corresponds well with the 

experimental-validated functions of each reader. Please note that, of interests here 

are the biological functions that exhibit putative association to the epitranscriptome. 

It is different from an arbitrary functions of the m6A site-containing gene, which may 

be regulated through other types of biological regulation, such as, the transcription 

factor, miRNA, DNA methylation, post-translational modification, etc.  

 

By correlating with the RNA methylation profiles, the functions we predicted here are 

restricted to those that are likely to be regulated via the epitranscriptome, and should 

be favorable to the researchers in the RNA epigenetics field. The predicted functions 

of individual RNA methylation sites are available from our WHISTLE web server: 

www.xjtlu.edu.cn/biologicalsciences/whistle. 

 

 

 

http://www.xjtlu.edu.cn/biologicalsciences/whistle
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Chapter 3 Annotating functions of m6A sites conserved between 

human and mouse in m6A-Atlas and other side projects 

Section 3.1 Introduction 

A variety of chemical modifcations are naturally decorated on cellular RNAs, 

modulating their biogenesis, stability and functions [89]. To date, > 150 types of RNA 

modifcations have been identifed [90], among which, N6-methyladenosine (m6A) is 

the most pervasive and the most intensively studied non-cap reversible marker 

present on eukaryotic mRNAs and lncRNAs [44]. Recent studies suggest that m6A 

plays a pivotal role during various biological processes including stress [91], heat 

shock [6] and DNA damage [92], and regulates molecular functions such as RNA–

protein interaction [93], RNA stability [5] and translation efficiency [49]. 

 

A number of high-throughput experimental approaches have been developed for 

profling the transcriptome-wide distribution of m6A RNA modifcation, including, 

most notably, the antibody-based approach m6A-seq (or MeRIP-seq) [17, 64]. With 

m6A-seq, it is possible to identify condition-specifc m6A sites [94, 95], quantify the 

m6A methylation levels [96, 97], or compare between experimental condition [95]. 

Despite the limits of m6A-seq regarding the reproducibility, data quality and mediocre 

resolution (around 100bp) [23], this technology has been widely applied to 

characterize the m6A epitranscriptome under various biological contexts in more 

than 30 organisms since its invention in 2012. Besides m6A-seq, there are also recent 

techniques such as miCLIP [20] and m6A-CLIP [21], that offer improved or even 

baseresolution epitranscriptome determination. However, these approaches report 
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primarily the precise location of m6A sites in physical, and are unsuitable for 

quantifcation of m6A methylation levels. 

 

To date, several bioinformatics websites and databases have been constructed 

aiming to properly collect, annotate, share and interpret the rapidly growing 

knowledge in RNA modifcations [30, 52, 90, 98]. Among them, Met-DB [30] is the frst 

epitranscriptome database collecting m6A sites on mRNAs and lncRNAs (rather than 

small RNAs) reported from highthroughput sequencing approaches. The most recent 

release of Met-DB hosted m6A sites in seven species collected from 185 m6A-seq 

experiments. RMBase [52] is currently the most comprehensive epitranscriptome 

database containing ∼1,397,000 RNA modifcation sites among 13 species including 

m6A and other RNA modifcations such as m5C and m1A. These works addressed 

various aspects of RNA modifcations, and together greatly improved our 

understanding of the epitranscriptome. Nevertheless, the m6A site collections in 

existing epitranscriptome databases (Met-DB and RMBase) suffer from limited 

reliability and only collect binary profiles.  

 

To address these limitations, we constructed m6A-Altas, a comprehensive 

knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. 

Compared to existing databases, m6A-Atlas features a high-confdence collection of 

reliable m6A sites identifed from base-resolution technologies only and the 

quantitative condition-specifc epitranscriptome profles estimated from a large 

number of high-throughput sequencing samples covering various tissues and cell 

lines. Conservation analysis is a powerful way for identifying the functionally 
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important m6A sites [99]. The putative biological functions of individual m6A sites 

were predicted for the conserved sites between human and mouse according to the 

guilt-by-association principle, as m6Acomet [100]. This method is based on the 

association of methylation patterns (or co-methylation) among functionally related 

m6A sites inferred from the collected quantitative epitranscriptome data.  

 

The co-methylated m6A sites exhibit correlated methylation status under different 

experimental conditions, it is often reasonable to speculate that they share some 

common regulators at the epitranscriptome layer and have related biological 

functions. This is the basic idea of the guilt-by-association principle. The guilt-by-

association is a validated principle in network research, which states that if two 

patterns share some similar properties, they are most likely to share a connection. 

This principle has been widely applied in lncRNA functional prediction by the protein-

protein interaction network [15], co-transcription factor network, and co-expression 

network [14]. The predicted biological functions of the m6A sites may help generate 

hypotheses for subsequent experimental validation.  

 

Section 3.2 Methods 

Section 3.2.1 Quantifcation of m6A methylation levels 

There are a total of 22,359 m6A sites in human that are conserved in mouse with 

LiftOver tool from the UCSC genome browser [101]. The epitranscriptome profiles 

(RNA methylation levels) of these sites were inferred from the m6A-seq data obtained 

under 109 experimental conditions with exomePeak R/Bioconductor package [95]. 
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Quantile normalization was performed to remove potential batch effects among 

samples. 

 

Section 3.2.2 Construction of the co-methylation network 

Two sites are considered to be co-methylated if their epitranscriptome profiles are 

significantly correlated (with p-value of the Pearson’s correlation less than 0.05 and 

ranked in the highest or lowest 10%). The linkage between co-methylated site pairs 

was retained in the adjacency matrix of the co-methylation network with package 

igraph [41].  

 

Section 3.2.3 Functional annotation with hub-based method 

As the functions of individual m6A sites are not available, we rely on the Gene 

Ontology (GO) of the m6A-hosting genes, and infer the functions of individual m6A 

sites using the hub-based method. In hub-based method, the function of the hub 

methylation site is determined by the enrichment result of its neighbor sites. Only 

the sites with more than three immediate neighbor sites are treated as the hub sites. 

We then use the significantly enrichment GO functions to annotate the hub sites. It 

may be worth mentioning that the GO terms associated with the hub site-carrying 

gene were not used in the prediction analysis, so that the predicted functions of m6A 

site are independent from its hosting gene. Please also note that the GO prediction 

was made from the epitranscriptome profiles of individual m6A site (rather than 

entire gene), and thus can only predict site-specific GO functions. The functions of 

methylation for the entire gene are not covered in this analysis.  
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Section 3.3 Results 

Section 3.3.1 Construction of the co-methylation network 

The matrix contains the methylation level of 22,359 conserved human m6A sites 

under 109 samples was applied to generate the adjacency matrix, which is the co-

methylation network as well. the co-methylation network consists of 19,149 nodes 

and 3,015,649 edges, with the degree distribution of the network in line with a typical 

scale-free network. 

 

Section 3.3.2 Annotation of conserved m6A sites with hub-based method 

18,886 conserved hub sites with more than three immediate neighboring sites were 

annotated with GO framework. The Entrez Gene ID and associated GO terms of the 

genes carrying the neighboring site of a hub site were obtained and enrichment 

analyzed. With a p-value cutoff of 0.1 for the GO enrichment analysis, a total of 

8,570,604 GO terms were associated with the 18,886 conserved hub sites. Figure 12 

shows the density plot of the GO term number. Each hub site is enriched with about 

443 GO terms with the enrichment p-value cutoff as 0.1. When there are more than 

50 terms associated with a hub m6A site, the m6A-Atlas database by default displays 

the top 50 most enriched GO terms. The annotation results can be visualized in the 

corresponding human m6A sites on the m6A-Atlas web server. 
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Figure 12 Number of GO terms predicted to be associated with an individual m6A 
site. Most hub sites were enriched with GO terms number ranged from 200 to 700 

with a cutoff of 0.1. On average, each hub m6A site is associated with 443 GO terms 
for the enrichment p-value.  

 

Section 3.4 Conclusion 

This work is part of the m6A-Atlas project. The co-methylation network was built to 

annotate the regulatory function of each human conserved site based on the guilt-

by-association principle. With the hub-based approach described in the m6Acomet, 

the GO framework was applied in functional enrichment of individual site. 18,886 

human conserved sites were annotated with 8,570,604 gene ontology terms, and the 

predicted functions of individual human conserved sites are available from our m6A-

Atlas database: www.xjtlu.edu.cn/biologicalsciences/atlas. 

 

Section 3.5 Side project 1: COVID-19 project  

Section 3.5.1 Introduction 

Three coronaviruses crosses the species barrier to human that bring deadly 

pneumonia to us since the 21st century: severe acute respiratory syndrome 
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coronavirus (SARS-CoV) [102], Middle-East respiratory syndrome coronavirus (MERS-

CoV) [103], and SARS-CoV-2 [104]. SARS-CoV-2 was firstly discovered in Wuhan, 

Hubei province of China in December 2019, and was sequenced in January 2020 

[105]. SARS-CoV-2, similar to other coronaviruses, is an enveloped virus with a ~30 

kb, positive-sense, single-stranded RNA genome. The ongoing outbreak of atypical 

pneumonia (COVID-2019) caused by SARS-CoV-2 that has spread all over the world 

affected over 5,900,000 people and killed over 350,000 people as of the end of May. 

On January 30, 2020, the World Health Organization declared the SARS-CoV-2 

epidemic a public health emergency of international concern. The main lethal 

symptoms of SARS-CoV-2 virus infecting on human immune system include adult 

respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome 

(MODS). 

 

Lu et al. found that RNA m6A might be an important mechanism that enables virus to 

escape the attacking of the host cell immune system [106]. Chemical modifications 

will not change the basic genetic information on sequence, while these modifications 

might bring new features on virus. We decide to focus on the most abundant RNA 

modification m6A. It assumes that viral m6A and host m6A sites should have the 

sequence property, because viral transcripts rely on the enzyme of the host. It should 

be reasonable to use human m6A site predictor to predict the m6A sites on virus 

strains. Therefore, in this project, we used SRAMP [107] method, which is a m6A 

predictor based on species’ sequence information, to study the m6A sites on SARS-

CoV-2 by predicting on sequence data. Since many studies indicate that m6A sites are 

more likely to enrich near the stop codon position [21], we also investigated the most 
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frequent appeared 27 m6A 41bp sequences positional relationship with essential 

virus genes’ stop codon. The results show that two m6A 41bp sequences are quiet 

near the stop codon position of spike (S) protein which is the major mediation that 

assists the coronavirus entry into the host cells by forming the homotrimers 

protruding on the viral surface [108].   

 

Section 3.5.2 Materials and mothods 

451 SARS-CoV-2 strains were downloaded from China National Center for 

Bioinformation (2019 Novel Coronavirus Resource) (https://bigd.big.ac.cn/ncov) the 

beginning of April, 2020 in fasta format. SRMAP was used to predict the m6A sites on 

SARS-CoV-2, which is a reliable predictor based on the sequence information of the 

species. The SARS-CoV-2 strain file was imported into SRAMP tool, and the predicted 

m6A motifs with its corresponding confidence value were obtained. Then only the 

high/very high confidence m6A motif would be retained with the extracted 41nt 

flanking window where the m6A site settled at the central position. The most 

frequently 41bp sequences were detected and ordered by MUSCLE [109] according 

to the sequence similarity. The most frequent m6A sites positions were compared 

with major SARS-CoV-2 stop codon positions to see whether they are specifically 

enriched near some stop codons. 

 

Section 3.5.3 Results and discussion 

SRAMP predicted results show in Figure 13 the number of m6A motifs that each strain 

has and the distribution indicates that most of the strains have 26-27 motifs (81.15%). 

Overall, 9980 high/very high confidence motifs are retained here. Table 4 summary 

https://bigd.big.ac.cn/ncov
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the 27 most frequent motif sequences (41bp), which is ordered by the sequence 

similarity (MUSCLE). The centered m6A site is in bold font. Figure 14 demonstrates 

the comparison of the stop codon (red lines) with those m6A motif sequences (41bp). 

We could notice that the third red line (left to right) stands for the S protein stop 

codon position of SARS-CoV-2, and it is very near to two sequences (No. 8: 

ATGGGAATCTGGAGTAAAAGACTGTGTTGTATTACACAGTT  and No. 19: 

TAATCCTTATGACAGCAAGAACTGTGTATGATGATGGTGCT). These two types of m6A 

motifs may play an important role in involving the virus infection. within the motif 

with an underline. 

 

 

Figure 13 m6A motif number(s) of individual strain. Most strains have 26-27 motifs. 
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Table 4 The Most Frequent 27 41bp Sequences Ordered By Sequence Similarity. 

41bp_seq Frequency 

AAATAGAGATGTTGACACAGACTTTGTGAATGAGTTTTACG 386 

AACCATTACAGATGCTGTAGACTGTGCACTTGACCCTCTCT 379 

AAGCAAAATGTTGGACTGAGACTGACCTTACTAAAGGACCT 383 

AGAGTCACATGTTGACACTGACTTAACAAAGCCTTACATTA 383 

AGGAACTAATCAGACAAGGAACTGATTACAAACATTGGCCG 392 

AGTGTGTAACATTAGGGAGGACTTGAAAGAGCCACCACATT 376 

ATACCACTTATGTACAAAGGACTTCCTTGGAATGTAGTGCG 388 

ATGGGAATCTGGAGTAAAAGACTGTGTTGTATTACACAGTT 377 

ATTACATTACACATAAACGAACTTATGGATTTGTTTATGAG 383 

CAAGCTGAAAATGTAACAGGACTCTTTAAAGATTGTAGTAA 235 

CAAGCTGAAAATGTAACAGGACTTTTTAAAGATTGTAGTAA 149 

CACTTTGTCCGAACAACTGGACTTTATTGACACTAAGAGGG 384 

CATACCTGGCATACCTAAGGACATGACCTATAGAAGACTCA 384 

CTCTCAGCCTTTTCTTATGGACCTTGAAGGAAAACAGGGTA 373 

GCTAACACCTGTACTGAAAGACTCAAGCTTTTTGCAGCAGA 381 

GGAACTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAA 407 

GTAGCCTCAAAGATTTTGGGACTACCAACTCAAACTGTTGA 383 

GTCCGCAATTTACAACACAGACTTTATGAGTGTCTCTATAG 391 

TAATCCTTATGACAGCAAGAACTGTGTATGATGATGGTGCT 383 

TGAGAATCTTCACAATTGGAACTGTAACTTTGAAGCAAGGT 384 

TGGAGTTCATGCTGGCACAGACTTAGAAGGTAACTTTTATG 383 

TGGGTTATCTTCAACCTAGGACTTTTCTATTAAAATATAAT 379 

TGTCTGAAGCAAAATGTTGGACTGAGACTGACCTTACTAAA 384 

TTAGAAGGTAACTTTTATGGACCTTTTGTTGACAGGCAAAC 383 

TTGATAAAGCTGGTCAAAAGACTTATGAAAGACATTCTCTC 383 

TTGTTAAGCGTGTTGACTGGACTATTGAATATCCTATAATT 383 

TTTCTTTGAGAGAAGTGAGGACTATTAAGGTGTTTACAACA 384 



62 
 

 

A  

B  

 
Figure 14 Position distributions of most frequent motif sequences. Red lines stand 
for stop codon positions. (A) Overall distribution (B) 27 most frequent sequences 
distribution (sequences in Table 4). 

 

Section 3.5.4 Conclusion 

To the best of our knowledge, we provided here the first computational prediction 

study of RNA methylation sites in SARS-CoV-2. According to the predicted results on 

SARS-CoV-2, we found the majority of each virus has 26-27 m6A motifs. We also 

summarized the most frequent 27 motif sequences (41bp) here, and detected two of 

them are enriched near the S protein stop codon, which is the primary bridge that 
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enables the virus entering the host cells. The reason why we look at the stop codon 

position is that the previous m6A studies stated the preferred enrichment of m6A in 

those positions. The special relationship with the critical S protein indicates the 

potential role that m6A might play in the virus infection. In the further, we could also 

explore the m6A association with other virus parameters such as infection time, 

location, and additional clinical information to see whether there could be more 

implications.   

 

Section 3.6 Side project 2: Nanopore project   

Section 3.6.1 Introduction 

To date, internal RNA modifications are widespread in different classes of RNA and 

essential in different biological functions such as human pathology, Biomolecule [1, 

19, 110, 111]. However, due to the fact that the construct of the RNA sequence is 

complex, the mapping and quantifying approaches for modified RNA nucleotides still 

require further progress [16, 112, 113].  

 

Looking through the development of sequencing technology - from Sanger’s Method 

to the next-generation sequencing (NGS) technologies, and then to the third-

generation sequencing (TGS) technologies, the TGS technologies has played the most 

pivotal role in the detection of m6A modifications in RNA. Through this process, 

technical limitations, such as labor-intensive workload, high cost, and comparatively 

short reads per operation, have been subsequently addressed [114]. Liu et al [115] 

makes the assumption that the base-calling ‘errors’ happening during the process of 

in vitro transcription can reflect the current intensity changes and as a result detect 
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the m6A. In view of this, we emphasize the meanings of base-calling ‘errors’ and make 

the similar assumptions with them. Later, we reproduce the results and validate the 

performance of SVM algorithms with different kernels on the detection of m6A RNA 

modifications in native RNA sequence. 

 

Section 3.6.2 Methodology 

Liu et al.’s research [115] reveals that the bias of current intensity owing to RNA 

modifications causes the errors in base-calling. Furthermore, these errors may be 

utilized in the detection of  m6A RNA modification. Therefore, in order to verify the 

detection of m6A, our experiment process follows three main steps: the generation 

of the raw data, extraction of features from based-called files and application of SVM 

models as the classifiers to train the data.  

 

We used the raw data generated by Liu et al. Following their pipeline of processing 

based-called files, we extract and combine feartures such as base quality, mismatch 

and deletion frequency. In order to better emulate the RNA sequence model, a total 

of 4 sequences were designed by splitting the 10kb sequence (the current intensity 

changes of this sequence have been read by Nanopore before) into smaller 

sequences of slightly different size (2329bp, 2543bp, 2678bp and 2795bp, which we 

named ‘Curlcake 1’, ‘Curlcake 2’, ‘Curlcake 3’ and ‘Curlcake 4’, respectively) by using 

the software curlake. These four files can highly represent the construct of the RNA 

sequence and were in-vitro transcribed either in the presence of ATP or N6-

Methyladenosine-5'-Triphosphate (m6ATP). Sequences are performed with two 

replicates of modified RNA and two with unmodified.  
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After obtaining the four RNA sequence, we use the EpiNano 

(https://github.com/enovoa/EpiNano) to perform the pretreatment of the data so as 

to extract the base-calling features from the file. First, sequence are locally base-

called using Albacore 2.1.7 and filted by NanoFilt. Setting ‘--headcrop 5 --tailcrop 3’ 

to trim the first five nucleotides and the last three from the end. Secondly, convert 

the ‘U’ in the sequence to ‘T’ and map the synthetic sequences using minimap2 [112] 

with the settings ‘-ax map-on‘. The mapped results are transformed into mpileup 

format using samtools1.4, and after that calling variants for each single read-to-

reference alignment. Variants at each single reference site were extracted from the 

mapping results. Thus, we need to summarize the variants results into the format 

’csv’ file using cutomized Python script from [115]. Finally, extract the features from 

the fast5 file and get a csv file of 16 columns.  

 

SVM is a supervised learning technique for classification by first constructing a 

hyperplanein a high- or infinite-dimensional space [116]. In the sample space, the 

hyperplane can be expressed as ωTx+b=0, where ω=(ω_1;ω_2;ω_3;…;ω_d )is the 

normal vector of the hyperplane‚‘b‘is the displacement term, which determine the 

distance between the origin and thehyperplane.Therefore,the distance between any 

point xin the space and the hyperplane (ω,b) could be written as  

𝐫 =
|𝛚𝐓𝐱+𝐛|

‖𝛚‖
. Suppose the hyperplane(𝛚, 𝐛) can classify the sample accurately, namely 

for ∀(𝐱i, 𝐲𝐢) ∈ D(sample set), there are inequalities in Equation 7. The points closed 

to the hyperplane are support vector, where the equalities hold. The sum of the 

https://github.com/enovoa/EpiNano
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distances between the support vectors and the points (also known as ‘margin’ is  
𝟐

‖𝛚‖
, 

and larger margin means better generalization. Therefore, it is necessary to search 

for the pair(𝛚, 𝐛) to maximize 𝐫 in Equation 8. More specifically, the parameters can 

be solved by applying the mehod of  Lagrange Multiplier in Equation 9. When the 

linear classification is impossible, we should use kernel function to map the original 

sample space to higher-dimensional space, namely in  

𝐟(𝐱) = 𝛚𝐓𝛟(𝐱) + 𝐛. 

 

Equation 7 

{
𝛚𝐓𝐱𝐢 + 𝐛 ≥  +𝟏 ,   𝐲𝐢 =  +𝟏

𝛚𝐓𝐱𝐢 + 𝐛 ≤  −𝟏 ,   𝐲𝐢 =  −𝟏
 

 

Equation 8 

max
𝛚,𝐛

2

‖𝛚‖
 

𝐬. 𝐭. 𝐲𝐢(𝛚𝐓𝐱𝐢 + 𝐛) ≥ 𝟏, 𝐢 = 𝟏, 𝟐, 𝟑, … 𝐦. 

 

Equation 9 

𝐋(𝛚, 𝐛, 𝛂) =
𝟏

𝟐
‖𝛚‖𝟐 + ∑ 𝛂𝐢(𝟏 − 𝐲𝐢(𝛚𝐓𝐱𝐢 + 𝐛))

𝐦

𝐢=𝟏

 

 

The most commonly used kernel are linear 𝛋(𝐱𝐢, 𝐱𝐣) = 𝐱𝐢
𝐓𝐱𝐣, polynomial 𝛋(𝐱𝐢, 𝐱𝐣) =

(𝐱𝐢
𝐓𝐱𝐣)

𝐝 and Gaussian kernel 𝛋(𝐱𝐢, 𝐱𝐣) =  𝐞
‖𝐱𝐢−𝐱𝐢‖

𝟐

𝟐𝛔𝟐 .In this project, we mainly used 

Linear and Gaussian kernel. After kernel mapping, the subsequent steps are similar. 
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we obtain four CSV files (since the overall RNA sequence is divided into four parts) 

after the process of feature extraction. Two of the Excels contain m6A), and the other 

two collect the unmodified ribonucleotides (‘unm’).In order to train the data, we 

combine the Excels into two parts, each including both ‘m6A’ and ‘unm’ data. We 

then add a new column to the table called ‘Sample’ which is used for denoting the 

situation of the nucleotide (0 as the unmodified and 1 as the modified). We use the 

SVM classifier to numerically identify each feature. To improve the accuracy of the 

experiment, we shall use the file1 (rep1) to carry out training and testing 

independently, and use file2 to conduct the cross-validation check. For the file1, we 

do the independent testing and training, namely 75% of the data for training and 25% 

of the data for predicting. On the other hand, file2 is used for cross-validation of the 

training which we divide the data into five cross to validate the result we obtain from 

file1. Therefore, the first part focus more on the features while the second part lay 

emphasis on the performance of kernel function (adjusting the parameters to 

maximize the performance of the classifiers). 

 

Section 3.6.3 Results 

The method of dividing a long RNA sequence into many 5-mer sequences is that we 

consecutively shift one nucleotide at a time. (e.g., the raw sequence is ‘GACGUAG’, 

and then the three 5mer sequences are ‘GACGU’, ‘ACGUA’, and ‘CGUAG’). Due to the 

fact that the m6A modification tends to present in a well-defined RNA motif, RRACH, 

we focus on the structure of 5-mer. In addition, since the raw data has large numbers 

of 5-mer centred in G, C, U, we attribute these 5-mers as the control group to make 

comparison with the m6A group.  
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We focus on whether a single feature at position0 is able to classify a given RRACH k-

mer into m6A-modified or unmodified nucleotides. Results show that base quality, 

deletion frequency and mismatch frequency are able to predict the test with 66-80% 

accuracy while some other features like current intensity are not strong enough to 

distinguish the example (50% accuracy). To better compare the AUC score between 

each single feature, we draw the ROC curve below (Figure 15).Though we cannot 

assert which factor has greatest impact (since the ROC curve intersect with each 

other), current intensity has a poor performance with the curve almost coinciding 

with y=x. As a control, we use the same set of features in control k-mers (i.e., those 

with the same sequence context, but centralize in C, G, U), finding that the features 

do not distinguish between m6A-modified and m6A-unmodfied datasets. To make the 

difference between m6A group and control group more obvious, we visualize the 

feature performance of the control group on the same figure. It is clear that the 

control group fail to distinguish the RNA and the figure also illustrates the importance 

of centralizing in ‘A’ during the detection of m6A. To improve the performance of the 

algorithm, we then examined whether a combination of the features will improve the 

prediction accuracy. Results (Figure 16) show that the combination of these three 

features can achieve the highest accuracy above 83% with an AUC score over ninety 

percent. (Since the current intensity change is too weak to be a feature, we neglect 

it in the experiment). Finally, we test whether the inclusion of all the features from 

the neighbouring positions (-2, -1, 1, 2) will improve the performance of the 

algorithm. We find out that the inclusion of the neighbourhood will increase the 
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accuracy to 89-91% (AUC > 95%) (Figure 17), suggesting that the feature of 

neighbourhood should be considered into the experiment. 

 

 

Figure 15 Single Features (m6A vs Control). 

 

 

Figure 16 Accuracy of the combined Features. 
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Figure 17 Inclusion of all the features from the neighbouring positions improves the 
performance. 

 

Therefore, we choose ‘mean per-base quality’, ‘mismatch frequency’ and ‘deletion 

frequency’ as the input features (since the current intensity change is too weak to be 

a feature, we neglect it in the following experiment). To optimize the model, we 

examine the performance of SVM with different kernel and utilize grid search to 

obtain the optimal parameters. From the perspective of run-time, polynomial kernel 

is time-consuming, while Linear and Gaussian kernel is relatively time-efficient. The 

results also show that in terms of accuracy and AUC, the performance of SVM with 

linear kernel are slightly worse than Gaussian kernel and the following discussion will 

focus on the Gaussian kernel. The result (Figure 18) reveals that when gamma = 0.01 

and C = 100, the accuracy of test data attains its maximum which is close to one 

hundred percent. To evaluate the sensitivity of the model from the data, we apply 

five-fold cross-validation to assess the performance of the model in terms of 

accuracy, AUC and recall rate. We find that the accuracy is between 94% and 97%, 

which is slightly worse than test set and the recall rate is 92-96%. The AUC scores get 

close to 99% which informs us that the model is relatively strong and robust. The 
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overall performance is close to Liu’s research and our model is even slightly better in 

term of accuracy. 

 

 

Figure 18 Results of the cross-validation. 
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