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Abstract

This thesis introduces and develops a number of mathematical models to investigate
the propagation of waves in a stented artery. Generally, healthy arteries have smooth
inner walls and blood flows through them easily. However, vessels may become occluded
due to the accumulation of plaque on the inner walls, which can reduce blood flow or,
in some instances, block it altogether. Intraluminal stenting is one technique that can
be performed to restore adequate flow and avoid ischaemia (restriction of blood flow to
tissues) occurring.

Arterial walls are elastic and subjected to pulse waves originating from the left
ventricle of the heart, the frequency of which vary with physical activity and possible
disease states. It is important to identify how the reinforcement of arteries with stents
may affect the propagation of these waves through the arterial network. New models are
proposed here to analyse how elastic waves, induced by a pulsating flow in a stenotic
artery containing several stents, are reflected and transmitted, both in the frequency and
time domains.

The reflection of waves in blood vessels is well documented in the literature, but it
has generally been linked to a strong variation in geometry, such as the branching of
vessels. The aim of this work is to detect the possibility of wave reflection in a stented
artery due to the repetitive pattern of the stents, using the Bloch-Floquet approach and
the analysis of reflection-transmission problems. The investigation of time-harmonic wave
propagation and possible blockages is complemented with numerical simulations in the
transient regime.

Dispersion properties of the waves depend on the stent structure and are addressed
throughout this thesis. Several vascular stenting procedures include overlapping stents;
this configuration is included within the models, as well as the presence of atherosclerotic
plaque. An additional analytical one-dimensional model is developed as an approximation
to the full three-dimensional methods. The analytical derivations are accompanied by
numerous illustrative examples and simulations.

This thesis introduces a complete set of coupled fluid-solid models to analyse wave
propagation in stented arteries. An appealing aspect of the work is that the one-
dimensional model is able to identify ranges of interest rapidly, which can then be
investigated in more detail using the more precise, but time-consuming, full three-
dimensional models.
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Chapter 1

Introduction

Cardiovascular disease (CVD) is the most common cause of mortality in adults within

the Western world. The pathological process underpinning CVD is atherosclerosis, which

can lead to narrowing and/or occlusion of blood vessels and result in an interruption in

blood flow to the heart. Common causes are the accumulation of plaque within arteries

or thickening of the arterial wall, see Charonko et al. [26], for example. The resulting

reduction in both the volume and velocity of blood flow causes tissue ischaemia (lack of

oxygen delivery) in the region supplied by the affected artery. Intraluminal stenting is one

technique that can be performed to restore adequate flow and avoid ischaemia occurring.

The outcomes of stenting vary, depending on the anatomical site of the diseased arteries.

For example, coronary stents have very good success rates in improving patency (degree

of openness measured as a percentage) of vessels, preventing further cardiac ischaemia

and avoiding the need for surgical bypass.

However, stenting of larger limb vessels in peripheral vascular disease has been less

successful and large amounts of energy and resources have been exhausted in determining

explanations. The reasons for this variability in stenting outcome are poorly understood

and likely to be multifactorial. Arterial walls are elastic and subjected to pulse waves

originating from the left ventricle of the heart, the frequency and regularity of which

are altered with physical activity and multiple disease states. It is a possibility that

reinforcement of arteries with stents alters the propagation of pulse waves through the

arterial network, changing the flow dynamics. This may lead to decreased flow velocity or

increased shear stresses in the arterial wall that could induce changes leading to restenosis

of occlusion.

The standard reference for blood flow in arteries is the book by McDonald, first

published in 1960 [76]. Since then, several updated editions have been published [94],

which include the latest scientific, technical and medical developments that occurred

in the intervening years. Several topics are covered by McDonald, including coronary

circulation, atherosclerosis, reflection of waves, harmonic analysis of pressure and flow in

the arterial system etc.

Reflection of waves in blood vessels is a well known phenomenon, but it has always

been related to strong geometrical changes within the arterial tree, such as the branching

1



Chapter 1. Introduction 2

of vessels. Some references for the topic of branching include the books by Ethier and

Simmons [32] and by Humphrey and O’Rourke [56]. Standing, or stationary, waves

are rarely observed, as reported by Peynircioglu et al. [98] but appear as multiple

serrated indentations symmetrically distributed at evenly spaced intervals along arteries;

in most cases, these have been seen at peripheral arteries [98]. A major aim of this

thesis is to investigate whether reflection of waves can occur in a stented artery, due to

the reinforcement provided by the stents. Mathematical models, informed by the vast

literature of medical research on the subject, were derived to increase understanding of

the underlying physics and biomedical mechanisms associated with blood flow in stented

arteries.

Wave propagation in fluid-filled cylinders has been extensively investigated in the

applied dynamics literature. Fluid-solid structure interaction is well-known to be chal-

lenging; on one hand, it is difficult to find solutions in a closed form, meaning that

approximations and/or numerical techniques were often employed; on the other hand,

the study of the dynamics of fluid-filled cylinders constitutes the basis for the analysis of

piping systems for a range of applications. Examples listed in the recent study by Jiang

et al. [58] include the oil and water industries (often for the detection of potential leaks),

manufacturing industries (for example, food, pharmaceutical and chemical industries)

and in several engineering sectors, from civil to mechanical.

For example, the collection of papers by Baik et al. [9, 10] and by Jiang et al. [58]

compared results for an analytical model [9] with finite element methods [58] for predictions

of attenuation and sound speeds in a fluid-filled pipe. Two practical applications, beyond

the analysis of the original analytical model [9], were investigated in [58] demonstrating

the versatility of mathematical modelling techniques. The first example models acoustic

propagation within the mercury-filled steel pipework of the Spallation Neutron Source

at the Oak Ridge National Laboratory in Tennessee in the United States. The second

example considers acoustic sensors used on planetary probes. The results showed the

importance of modelling the fluid-solid coupling correctly.

Theoretically, several early investigations were conducted to determine the resonant

frequencies and wave propagation in piping systems with fluids [31, 61–63, 72]. The

frequency equation for vibrations of a thin cylindrical elastic shell, filled with non-viscous,

compressible fluid, was derived using the exact three dimensional equations of motion for

the shell by Kumar [61]. The equation was solved for two different sets of parameters,

with comparisons provided with respect to the preceding work by Lin and Morgan [72],

which used a basis of approximate equations of motion. Further work by Kumar included

a study of the flexural vibrations of empty and fluid-filled shells of varying thickness [62].

The analysis identified propagating and attenuating modes and it was observed that the

effect of the fluid was negligible on the vibrations of thick shells. As the wall thickness

decreases, additional modes of vibration, linked to the presence of the fluid, arise. It was

also noted that for the attenuating modes, the frequency spectra of the fluid-filled shells

follow the spectra of an empty shell, or of a fluid column with rigid walls.
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In a subsequent study by Kumar [63], dispersion of axially symmetric waves in empty

and fluid-filled circular cylindrical shells, of varying thickness, was investigated. A specific

regime of frequency and wavenumber was found such that the number of real, imaginary

and complex branches for an empty shell decreases as the walls become thinner. However,

the presence of fluid within the shell contributes extra radial modes of vibration and,

therefore the number of real, imaginary and complex branches increases as the walls

become thinner for a fluid-filled shell. The analysis also used exact three-dimensional

equations of linear elasticity and thus presented a comparison of various shell theories.

A complementary study on the dispersion behaviour and distributions of energy for

free waves in thin-walled cylindrical elastic shells filled with fluid were investigated by

Fuller and Fahy [39]. Dispersion curves were presented for a range of parameters and the

characteristics of individual branches were discussed and explained. A non-dimensional

equation that provides the distribution of vibrational energy, between the shell wall and

the filling fluid, was also derived, as well as its variation with frequency and material

parameters.

Some more recent studies include Liu et al. [73], which considers the effect of hydro-

static pressure on the vibration dispersion characteristics of fluid-loaded and fluid-filled

cylindrical shells, and Zhang et al. [126]. The latter article implements a wave propaga-

tion model to analyse coupled structural-acoustic systems of finite fluid-filled cylindrical

shells. The coupled analysis provides comparisons of the frequencies with those obtained

using established numerical finite element/boundary element methods (FEM/BEM). The

fluid effect on the shell was shown to be significant, as indicated many years earlier by

Kumar [62].

Of course, there are also significant achievements devoted to the motions of empty cylin-

drical shells, including the early technical report produced by Herrmann and Mirsky [47]

for the United States Airforce in 1955, which led directly to two research articles [48, 83].

The first of these papers [48] demonstrated a Timoshenko-type theory for cylindrical shells

possessing axial symmetry, which was then generalised to include non-axially symmetric

motion [83]. The original model described the connection of transverse shear and rotatory

inertia, in addition to the standard membrane and bending effects, but was restricted

to axially symmetric motion. The subsequent generalisation to non-axially symmetric

motion, which includes the axially symmetric theory as a special case, is able to describe

a much wider range of phenomena than the classical shell theories that were limited to

membrane and bending effects only.

As an extension to the model the propagation of free harmonic waves through an

infinite, hollow, circular cylinder using the three-dimensional equations of linear elasticity

was carried out by Gazis [41] in 1958, and there were several related publications by

Gazis, Herrmann and Mirsky for the remainder of the decade [42, 43, 84, 85]. These

articles focus attention on the vibrations of thick-walled cylinders [41–43], as well as some

corrections and errata [43, 84].
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The approximate theories, proposed by Herrmann and Mirsky [47, 48, 83] and Naghdi

and co-workers [30, 91, 92], govern the free vibrations of infinitely long, hollow, elastic

cylindrical shells but are mainly based on assumptions that restrict validity to shells

whose thickness is small compared with the inner radius, see McNiven et al. [79]. These

latter models are also mainly restricted to low frequency regimes and could be used to

analyse flow in arteries. The subsequent studies on thick-walled cylindrical shells [82, 84]

were also primarily applicable to low frequency regimes, but they were restricted to the

analysis of the longitudinal mode.

An alternative approach was developed in a two-part publication by McNiven et

al. [78, 79] in the 1960s. The theory was designed to be applicable to a much wider range

of cylinder thicknesses, from thin-walled hollow rods to thick-walled cases, and even

to the solid cylinder in the limit. The first paper [79] takes into account the coupling

between the lowest three modes (longitudinal, lowest radial and lowest axial shear). The

results comparing the frequency spectra for the approximate model with those of the

exact three-dimensional theory reported by Gazis [41, 42], for various wall thicknesses

and physical parameters, showed excellent agreement [79].

The theory developed in [78, 79] followed the method utilised for solid rods by

Mindlin and McNiven [81]. It was based on expansions of the displacements as a series

of orthogonal polynomials that retain only the terms representing the lowest three

modes. The discrepancy, arising from the omission of higher order terms, was offset by

introducing adjustment factors chosen such that the behaviour of the first three branches

of the exact frequency spectrum is matched at long wavelengths. The quality of the

approximate theory [78, 79], as with any, is best judged by how well the frequencies

and the vibration modes match, for a given propagation constant, to the corresponding

frequencies from the exact three-dimensional theory [78]. Frequency spectra were obtained

and the approximate theory was effective in reproducing important physical features of

the exact three-dimensional theory [65] for the first three modes.

The extension by Kumar and Stephens [65] investigated the dispersion of flexural

waves in circular, cylindrical shells of various wall thickness, using exact three-dimensional

theory and shell theory. Both real and purely imaginary branches were analysed and

the effects of varying the Poisson ratio, and the ratio of inner to outer shell radii, were

studied. This work was also related to the earlier article by Kumar [62], for the case of

flexural vibrations of fluid-filled circular cylindrical shells. Kumar went on to consider

the finite case with a series of related publications.

The two-part study by Kumar and Chandra [20, 64] for axially symmetric vibrations

of finite-sized cylindrical shells (with various wall thicknesses) was published in 1976

and 1977. This was followed by the two-part report for flexural vibrations by the same

authors [21, 22]. The first pair of papers produced aspect ratio curves, residual stresses

and displacements for various wall thicknesses. The motion of the shell was assumed to

be axially symmetric in both cases, but it was assumed to be symmetric about the central

plane in part one, [64], and anti-symmetric about the central plane in part two [20].
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Both papers utilised the exact three-dimensional linear elasticity theory. The flexural

case was studied in a similar way [21, 22], with frequency-aspect ratio curves obtained

for finite, isotropic, cylindrical shells of varying wall thickness. Part one [21] assumed

symmetric motion about the central plane, whereas the follow-up [22] considered the case

of anti-symmetric motion about the central plane.

Interesting extensions of the literature included a study by Fuller [38] of the effects

of discontinuities in the pipe walls. For the case of flexural waves, theoretical curves

of transmission loss were obtained for various wavenumber and wave types, as func-

tions of frequency [38]. Key factors influencing the propagation of waves through wall

discontinuities were found to include:

- Material stiffness;

- Frequency;

- Radial vibration amplitude.

Some more recent works include a review of various shell theories without fluid by

Farshidianfar and Oliazadeh [34] and a pair of papers by Zhang et al. [125, 126], for which

a wave propagation method was implemented to analyse coupled structural-acoustic

systems of finite fluid-filled cylindrical shells.

In biomechanics, many computational models were performed for haemodynamics,

but only a limited number of investigations addressed the propagation of waves in stented

blood vessels. The paper by Casciaro et al. [19] used one-dimensional patient-specific

models to predict the effect on pulse wave reflections for certain endovascular cases. Even

fewer studies investigated systems that exhibit a repetitive pattern in their geometry, with

one example being the work by Papathanasiou et al. [96]. A recent paper by Jaganathan

et al. [57] shows a comparison between different types of stents on the basis of their

natural frequencies, and the analysis was performed for the metallic structure in isolation.

The collection of papers by Charonko and co-authors [24–26] combined mathematical

modelling and experimental measurements to investigate the reflection of pressure waves

in stented arteries. The first of these publications [26] describes a one-dimensional finite-

difference model that was used to perform a parametric study of variations in stent and

vessel properties; these included stiffness and length of stent, vessel radius and arterial

wall thickness. The authors introduce a single non-dimensional parameter to describe the

effect of all the factors listed above on wave reflections, with the emphasis on comparing

the magnitudes of reflected pressure waves with and without stents.

Some other articles featuring stented artery modelling are discussed in the review by

Hirschhorn et al. [49], specifically in their Section 10. Pulse wave propagation (PWP)

is integral to the circulatory system; the body’s large arteries are elastic and facilitate

blood flow by responding to the pressure cycles initiated by the left ventricle of the

heart and stents are believed to contribute to a reduction in PWP [49]. The review [49]

cited one of the papers [36] featured in this thesis, see Chapter 3, where the models and

explanations are expanded beyond the journal publication. As stated by [49], the results
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of [36] illustrate why certain vessels respond better to stenting than others, and provide

important insights to guide the orientation of stents to aid PWP. Another good source of

relevant literature is the review by Karanasiou et al. [59] which summarises biomechanics,

biomaterials and insights from computational modelling for stents.

One well-known biomechanical phenomenon is that the junctions between blood

vessels act as scatterers, and reflection of acoustic waves from branched blood vessels is

observed in routine measurements. For more details, the reader is advised to refer to the

book by Caro et al. [14] and the review paper by Van de Vosse and Stergiopulos [116].

Accordingly, reflection of acoustic waves is expected whenever the properties of the

arterial wall are altered. Another important aspect is compliance mismatch, which is

described by Selvarasu et al. [108], and may arise due to the presence of a stent. The

resultant localised haemodynamic effects were investigated in [108], which noted that the

compliance mismatch is at its maximum at the proximal and distal ends of the stent.

The main focus was the generation of non-physical wall shear stress. Three-dimensional,

spatio-temporally resolved computational simulations of pulsatile flow were carried out

for a simplified coronary artery, with physiologically relevant flow parameters [108].

Another important factor for modelling stented vessels is the consideration of atheroscle-

rotic plaque. As described by Pericevic et al. [97] and Naghavi et al. [90], the plaque is a

highly complex material, typically consisting of accumulated cells, lipids, calcium, collagen

and inflammatory infiltrates. Understanding the mechanical behaviour of atheroscle-

rotic plaque is critical for the prediction, treatment and prevention of cardiovascular

diseases. An excellent review on the subject is provided by Topoleski and Stephen [113].

It is natural to consider first the material properties, but as explained in [113], plaques

demonstrate huge variability and therefore it is an open research topic to narrow down

both geometries and material parameters for simulations. Most biological tissues are

unpredictable in their presentation for mechanical evaluation, and especially atheroscle-

rotic plaque according to [113]. Numerous studies have been conducted to investigate

the material and mechanical properties of plaque, including those by Barrett et al. [11],

Chua et al. [29] and Lawlor et al. [67].

This thesis primarily focuses on carotid arteries, and the study [67] utilised experiments

to determine the material characteristics of fresh carotid artery plaques. One of the

motivations for [67] was the implication that mechanical forces during stent deployment

were a critical factor in plaque fatigue and rupture which was reported by Cheng et al.

in [28]. Tables, stress and strain plots are provided in [67] to inform simulations but the

results are based on a small sample of patients.

A similar study was carried out by Barrett et al. [11]. The earlier work of Chua et

al. [29] presented an analysis of the interactions between a stented artery and plaque

using finite element simulations. The study included investigation of the post-expansion

response of the stent in the presence of the plaque-artery system. The model assumed the

arterial wall and plaque to both be linearly isotropic and nearly incompressible [29]. A

subsequent paper by Pericevic et al. [97] analysed the influence of plaque composition on
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arterial over-stretching and how this may impose damage to the vessel wall post-expansion

of the stent.

The geometry of the majority of commercially available stents, which is described in

the paper by Auricchio et al. [6], is based on a brand-specific pattern consisting of the

repetition of a primitive cell along the circumference of the structure, thus yielding the

unit cell of the system. The geometry and unit cell used for the models in this thesis

are described in detail in Section 3.1.3. The deployed stent structure consists of the

repetition of several unit cells along the axis of the vessel. These features suggest that a

stented artery can be considered as a periodic structure, defined by a unit cell composed

of the artery wall, the stent structure, and the blood; hence, the system can be modelled

as a fluid-filled periodically reinforced cylinder with a flexible wall.

Periodic structures are known to exhibit special features when subjected to harmonic

vibrations in terms of the propagation and attenuation of waves. A valuable technique

to analyse the behaviour of periodic systems is the Bloch-Floquet analysis which was

pioneered by Brillouin [12]. Its application to fluid-filled periodically reinforced cylinders

constitutes a novel approach for the detection of reflected waves in stented arteries, in

the absence of branching or any other sudden geometrical variation. The Bloch-Floquet

analysis is used to obtain the deformation modes of the stented blood vessel in the

time-harmonic pulsation regime, as shown in Figure 1.1 and in Chapter 3.

The Bloch-Floquet waves technique has been recently employed in many applications

in order to understand the dynamic properties of periodic systems. Examples include

bi-coupled periodic civil engineering structures such as bridges, pipelines and railways as

reported in the studies by Carta et al. [15, 16]. Another recent paper by Carta et al. [18]

used Bloch-Floquet analysis to investigate the suppression of vibrations for periodic

arrays of fluid-filled tanks such as those in petrochemical plants or used to store water.

Studies of periodically distributed cracks that arise in delaminating bi-material strips

have also been carried out by Mishuris and co-workers [86, 117, 118]. An important

observation made in [15] is that some structures composed of repeating units, although

finite in reality, may be analysed as infinite systems for which Bloch-Floquet analysis is

effective. In particular, in the studies by Haslinger et al. [46] and Brun et al. [13] it has

been shown that there is a link between the dispersion properties of an infinite periodic

system and the transmission problem for the corresponding finite system.

The effects of propagation and attenuation of waves on localisation of strain and

reduction of flow velocity can be investigated by means of the frequency response analysis,

which is utilised in this thesis for an assembly of a finite number of unit cells. In addition,

a transient regime analysis is performed for the finite-length stented artery, which shows

in detail how the flow is affected by the reinforcements. In the transient computations,

the fluid is described by the complete Navier-Stokes equations and full fluid-structure

interaction is taken into account.

Two main branches of analysis are presented throughout this thesis:

- the Bloch-Floquet waves analysis for a periodically stented artery;
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(a) Axisymmetric mode. (b) Flexural mode. (c) Torsional mode.

Figure 1.1: Representative shapes of some of the deformation modes observed in the unit cell
with a stent.

- the frequency response analysis linked to the transmission/reflection problem for

the case of a stented region of finite length.

Chapter 3 also features a transient regime analysis for a finite-length stented artery with

nonlinear viscous fluid. Each of the analysis techniques assumes the blood to be an

acoustic fluid.

Biomedical acoustics is a well-developed research area encompassing the investigation

of acoustic and ultrasonic wave interaction with biological systems of soft tissues, bones

and organs. There are numerous established concepts and ideas used in medical diagnosis

techniques and for a range of technical applications. One specific topic of interest is

acoustic wave propagation in biological materials such as arterial tissue. As is often the

case for the analysis of acoustic waveguides, mathematical modelling is very important in

biomechanical problems that include pulsating flow.

Analytical models and numerical simulations presented in [35, 55, 80, 96] cover

pulsating blood flow for an unstented artery. All four of these articles consider one-

dimensional blood flow models, with three of them applying linear analysis whilst the

paper by Formaggia et al. [35] presents a suite of one-dimensional non-linear systems to

model blood pulse propagation in compliant arteries. The effects of including inertia,

longitudinal pre-stress and viscoelasticity are all included within the models. Branching

and possible discontinuities in the wall properties are also investigated in [35]. The

effects of branching and vessel permeability are also included in the earlier work of

Hughes and Lubliner [55] from the 1970s. The more recent paper by Melicher and

Gajdoš́ık [80] considers one-dimensional blood flow models applicable to larger arteries,

with its numerical solution obtained using a moving grid method, rather than the standard

Taylor-Galerkin scheme.

The biomechanical studies of Alastruey et al. [2, 3] used experimental measurements as

a basis for a one-dimensional viscoelastic non-linear model of the human arterial network.

The first mentioned paper [2] tested the accuracy of the non-linear one-dimensional blood

flow model in large arteries, by comparing wave measurements in a silicone tree with the

numerical predictions. Inclusion of viscoelastic contributions for the wall demonstrated

some reduction in relative errors. The subsequent study [3] concentrated on physical

determining factors of the arterial pulse waveform. Properties such as local elasticity
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and viscosity of the arterial wall, total compliance (zero stiffness) and net peripheral

resistance of the systemic arterial tree are impossible to measure in vivo [3], but can be

computed from pressure, flow and wall displacement measurements obtained from in vivo

experiments.

A linear analysis of the one-dimensional equations of blood flow in viscoelastic arteries

was carried out by Alastruey et al. [3] to investigate the effects of blood viscosity, flow

inertia, wall viscoelasticity, total arterial compliance, net resistance, peripheral outflow

pressure and flow rate (at the aortic root) on pulse wave propagation. These dynamic

factors are described in detail by standard biomechanics books mentioned earlier in the

introduction, including [32, 56, 94].

It should be noted that the wall of a healthy blood vessel is a highly adaptable,

nonlinear system. Thus, in order to introduce a universal mathematical approach,

that system would best be described by non-linear partial differential equations, whose

coefficients depend on both spatial and temporal variables. However, an unhealthy

(clogged) or stented blood vessel loses much of its flexibility as noted by Back et al. in [8]

and so linearised approaches may be adopted to provide valuable insights.

Chapter 2 presents underlying theoretical background material used throughout

the research, and consists of sections on wave propagation, Bloch-Floquet analysis in

periodic structures, reflection-transmission methods, finite element methods and Mathieu’s

equation.

In Chapter 3, an extended version of the author’s publication [36], three approaches are

combined: the first one uses the Bloch-Floquet framework applied to an infinite periodic

system, the second method is based on the transmission analysis of a finite-thickness

structured interface and the third features a transient regime analysis for a finite-length

stented artery. This combination of approaches is new for the dynamic response analysis

of blood vessels, and it uncovers important phenomena attributed to transitional regimes

where pulsating flow changes rapidly and hence higher-order harmonics occur. The

Bloch-Floquet method is extended to the case of arteries containing atherosclerotic plaque

in Chapter 4.

The analytical nature of the approach, in conjunction with transient simulations, is

used to effectively identify the values of parameters leading to the transitional regimes,

which may be linked to vascular blockages in multi-scale stented systems. The vibration

eigenmodes and dispersion curves are obtained using fully three-dimensional finite element

methods (FEM). Details related to parameter values for the artery tissue, blood and

stents are provided in Sections 3.1.3, 3.1.4. The meshing and time steps used in the finite

element domains are optimised with respect to wavelength and wave speeds. General

concepts of finite element analysis are provided in Section 2.5 in the background and

underlying theory Chapter 2.

In Chapter 5, based on the recent paper by Frecentese et al. [37], a simplified

one-dimensional model is developed as an approximation to the full three-dimensional

formulation introduced in Chapter 3. It follows previous work published by Papathanasiou
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et al. [96], for a general Bloch-Floquet analysis of a solid-fluid interaction problem. The

novel feature in this chapter of the thesis is the introduction of the stent for the one-

dimensional model, for which different material parameters are defined. In particular,

homogenisation approximations are explored, where a stented region is described by

differential equations with variable coefficients. Conclusions and future work are discussed

in Chapter 6.



Chapter 2

Theory and background

2.1 Wave propagation in arteries

As described in the book by Caro et al. [14], when blood is ejected from the heart during

systole, the pressure in the aorta and other large arteries rises, and then during diastole

it falls again. The pressure rise is associated with outward motions of the walls, and they

subsequently recover their shape because they are elastic. This process occurs during

every cardiac cycle, and it can be seen that elements of the vessel walls oscillate cyclically,

with a frequency of oscillation equal to that of the heartbeat. The blood also flows in

a pulsatile manner, in response to the pulsatile pressure. In fact, a pressure wave is

propagated throughout the whole system of arteries, known as the arterial tree.

In particular, as blood is pumped into the entrance of the aorta, pressure increases

there and the vessel wall becomes stretched. As the rate of cardiac ejection naturally

slows down, the pressure begins to drop and the distended wall returns to its equilibrium

position. However, the fluid continues moving, due to its inertia, after the driving pressure

difference has fallen. Thus, some of the artery wall extends beyond its equilibrium position,

and an oscillatory cycle is initiated. Simultaneously, the adjoining section of the arterial

wall becomes distended and as it springs back, the fluid ejected distends a further section

which recoils, and so on.

The propagation of this disturbance is a pressure wave, and it is analogous to a wave

that propagates along a stretched string. An important factor is that there is a balance

between the restoring force, linked to the elasticity of the artery walls, and inertia, mainly

due to the blood albeit with a small contribution from the wall itself. The pressure

wave may propagate in either direction, but it is well known that in systemic arteries, it

primarily originates in the heart and travels distally.

Another type of motion is associated with the pressure wave: radial wall disturbances

cause some longitudinal motions of the vessel wall as it is stretched or compressed.

However, these are secondary and have a negligible impact on the propagation of the

pressure wave. One may also imagine an alternative type of wave where the oscillatory

wall motions are longitudinal which, in turn, drive longitudinal fluid motions in the

boundary layer due to viscosity, thereby providing inertia.

11
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The consequences of pulsatile blood flow can be modelled using the laws of classical

mechanics. Many theoretical and experimental studies have been published to describe

pulsatile flow through the arterial tree. An example is the Moens-Korteweg relationship,

which was derived for an inviscid fluid in an infinitely long, thin-walled elastic tube.

This model contains no viscous terms but the momentum equations still contain non-

linear convective acceleration terms although these can be neglected as a first order

approximation as described in the book by Chandran et al. [23]. The well-known Moens-

Korteweg equation expresses the speed of pressure wave propagation through a thin-walled

elastic tube that contains an incompressible, inviscid fluid. The wave speed is proportional

to the tube’s modulus of elasticity and to the ratio of the tube’s thickness and radius.

Womersley [121, 122] published several papers on the theoretical analysis of blood

flow through arteries. His models considered unsteady flow of incompressible, Newtonian

fluid through elastic tubes and the results were expressions for velocity profiles in the

cross-section of the tube. Morgan and Kiely [87] also published work on viscous blood

flow through arteries. The modelling in this thesis assumes incompressible, inviscid fluid

for the blood. All the details are provided in the next section and in Chapter 3.

2.2 Derivation of the one-dimensional model

Wave propagation in blood vessels is mainly associated with the displacement of the

arterial wall (due to its elasticity) in response to the motion of pressure/velocity waves

as blood flows through the artery. In order to model this phenomenon, a system of

partial differential equations describing fluid-solid interaction must be derived and solved

simultaneously, as described in detail by Rubenstein et al. in [103], and summarised in

what follows. An important concept is the intrinsic fluid-solid interaction, such that fluid

forces impact the wall and, in turn, the elastic wall imparts responsive forces.

A blood vessel is considered to be a tube (i.e. cylindrical and straight) with mechanical

properties that are homogeneous and elastic. Furthermore, it is assumed that the fluid is

incompressible, inviscid and its motion is relatively slow. The application of a pressure

pulse at one end of the blood vessel results in a geometric change in the vessel, and

the pulse propagates, with a specific speed, along the length of the tube. In many

cases, the wavelength is much larger than the diameter of the tube; such an assumption

enables one to model the flow velocity as one-dimensional, as used in Chapter 5 here.

The combination of these assumptions and the use of the Navier-Stokes and continuity

equations are implemented to determine the speed of wave propagation within the artery.

The analysis begins with the forces that act on the blood vessel as the pressure pulse

propagates through the vessel. It is assumed that the forces balance in the y-direction

(see Figure 2.1). In the x-direction, the summation of the pressure forces is given by

∑
Fx = pinletAinlet − poutletAoutlet + pwallsAwalls , (2.1)
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u(x)

p(x)

A(x)

u(x) + ∂u
∂x

dx

p(x) + ∂p
∂x

dx

A(x) + ∂A
∂x

dx

dx

Figure 2.1: Wave propagation within a deformable homogeneous artery.

which is expressed mathematically as

p(x)A−
[
p(x) +

∂p

∂x
dx

] [
A+

∂A

∂x
dx

]
+ p(x)

∂A

∂x
dx = −A∂p

∂x
dx , (2.2)

provided that the second order derivatives are ignored. Note that A is the cross-sectional

area of the tube and p is the pressure. Applying Newton’s second law of motion, the

resultant force acting on a differential element (the right-hand side of (2.2)) is equal to

the product of its mass and acceleration. In equation form, this may be written as

−A∂p
∂x
dx = (ρAdx)

(
∂u

∂t
+ u

∂u

∂x

)
, (2.3)

where ρ is the density, and u is the flow velocity. Rearranging equation (2.3),

1

ρ

∂p

∂x
+
∂u

∂t
+ u

∂u

∂x
= 0 , (2.4)

which is a simplified form of the Navier-Stokes equation. The principle of conservation of

mass applied to the differential element must take into account the increase in area of

the element during an infinitesimal interval of time. Assuming that the density remains

constant throughout the entire element (the fluid is assumed to be incompressible), the

conservation of mass states that

uA =

(
u+

∂u

∂x
dx

)(
A+

∂A

∂x
dx

)
+
∂A

∂t
dx , (2.5)

which, after expansion and neglecting second order terms, produces

uA = uA+ u
∂A

∂x
dx+A

∂u

∂x
dx+

∂A

∂t
dx . (2.6)

Rearranging (2.6) yields

u
∂A

∂x
+A

∂u

∂x
+
∂A

∂t
= 0 , (2.7)

and applying the chain-rule, the above equation may be written as

∂A

∂t
+

∂

∂x
(uA) = 0 . (2.8)
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To determine the wave propagation in the blood vessel, the material properties of the

elastic arterial wall are related to the properties of the fluid. It is assumed that changes

in the radius (ri) of the blood vessel are linearly proportional to the blood pressure (p)

acting on the vessel wall, according to the following relationship:

ri = ri,0 + αp , (2.9)

where ri,0 is the radius of the blood vessel at zero external pressure and α is a constant

that describes material properties of the artery.

Recalling that the fluid velocity is relatively slow, the product of the velocity and its

rate of change with respect to the spatial coordinate is negligible and so equation (2.4)

becomes
1

ρ

∂p

∂x
+
∂u

∂t
= 0 . (2.10)

Substituting the area A = πr2
i into (2.8), the equation is expanded in the form:

0 =
∂
(
πr2

i

)
∂t

+
∂

∂x
(uπr2

i ) = 2πri
∂ri
∂t

+ πr2
i

∂u

∂x
+ uπ

∂r2
i

∂x
= πr2

i

(
2

ri

∂ri
∂t

+
∂u

∂x

)
, (2.11)

where second order terms have been neglected. Substituting (2.9) into (2.11), and for

non-trivial solutions it follows

0 =
2

ri

∂

∂t
(ri,0 + αp) +

∂u

∂x
=

2α

ri

∂p

∂t
+
∂u

∂x
. (2.12)

It will be assumed that the changes in the radius are too small compared with ri,0.

To solve this in the form of a wave equation the temporal derivative of (2.12) is

subtracted from the spatial derivative of (2.10) such that

∂2p

∂x2
− 1

c2

∂2p

∂t2
= 0 , (2.13)

where the wave speed is expressed in the form

c =

√
ri

2αρ
. (2.14)

2.3 Bloch-Floquet waves in periodic structures

Bloch-Floquet analysis is a useful technique for investigating periodic systems. The

underlying concept is a repeating elementary cell, from which the dynamic properties of

the whole system may be obtained. The approach is adopted here in Chapters 3-5 to

analyse a stented artery which may be considered as a periodic structure consisting of

repeating units. The application of Bloch-Floquet analysis was formulated for several

classes of problems in the classical book by Brillouin [12] and more recently, by Kittel [60].

Many engineering studies have also demonstrated the effectiveness of the technique for

real structures such as bridges, pipelines, railways, fluid-filled tanks [13, 15, 17, 18, 46].
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un−1 un un+1

d

(a) Periodic spring-mass chain.

µ Mn µF−

u−

F+

u+

(b) Unit cell.

un−1 vn

M2

un

M1

vn+1

D

(c) Periodic spring-mass chain containing two types of masses.

Figure 2.2: Spring-mass systems to illustrate Bloch-Floquet waves in periodic structures. The
size of the elementary cell is given by d in part (a) and (b) , and by D in part (c). The stiffness
of the spring is denoted by µ.

The great advantage of the Bloch-Floquet method is that the complexity of the problem

is reduced to the study of the elementary cell and implementation of quasi-periodicity

conditions to connect all the cells within the system. Three cases are presented here to

illustrate the technique, which is applied to more complicated problems in Chapters 3-5.

The illustrative examples in this Chapter are based on those described in the book by

Movchan et al. [89]:

1. infinite lattice of rigid particles with the same mass connected by massless springs,

2. infinite lattice of rigid particles with different mass connected by massless springs,

3. infinite lattice of elastic rods of different stiffness.

2.3.1 One-dimensional lattice of identical particles

Consider an infinite lattice of rigid particles connected by massless springs. All the

particles have the same mass M . The distance between neighbouring masses is set to be

d, and the stiffness of springs is assumed to be µ. The coordinate position of the particle

n is given by xn = nd. The system described is shown in Figure 2.2a. Let un be the

displacement of the nth particle within the chain. The equations of motion then take the

form

Mün = µ(un+1 − un)− µ(un − un−1) = µ(un+1 + un−1 − 2un) . (2.15)
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Assuming that the motion is time harmonic, that is un(t) = Une
− iωt , then

−Mω2Un = µ(Un+1 + Un−1 − 2Un) . (2.16)

Solutions are sought in the form of Bloch-Floquet waves, which satisfy the following

relation

un+q = une
i qdK , (2.17)

where K is called the Bloch parameter (or wavenumber). In the case of travelling waves,

Un = UeinKd , (2.18)

with U a constant, and the equation of motion (2.16) becomes

−Mω2UeinKd = µ(Uei(n+1)Kd + Uei(n−1)Kd − 2UeinKd) . (2.19)

Rearranging and simplifying the equation results in

−Mω2 = µ(eiKd + e− iKd − 2) . (2.20)

Recalling that 2 cos(Kd) = eiKd + e− iKd then the equation of motion becomes

−Mω2 = 2µ(cos(Kd)− 1) . (2.21)

A non-trivial solution Un of (2.16) and (2.21) exists, provided ω and K satisfy the

following dispersion relation

ω2 = 2
µ

M
(1− cos(Kd)) , (2.22)

whose non-negative roots have the form

ω = 2

√
µ

M

∣∣∣∣sin(Kd2
)∣∣∣∣ . (2.23)

A plot of the dispersion curve for ω versus K is shown in Figure 2.3 for specified values

of µ, M and d. The irreducible and first Brillouin zones are illustrated using solid and

dashed lines, respectively. The dispersion curve represents a periodic function of the

wavenumber K with the period

K =
2π

d
. (2.24)

The range of wave numbers may be restricted to the following interval

− π

d
≤ K ≤ π

d
, (2.25)

which is called the first Brillouin zone [12]. Using symmetry, all the required information

is contained within 0 ≤ K ≤ π/d, which is called the irreducible Brillouin zone and is
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Figure 2.3: Dispersion curve for the periodic spring-mass system shown in 2.2a. The values used
are µ = 1.5, M = 1, d = 1.

illustrated in Figure 2.3.

2.3.2 Group velocity

Taking the limit ωd→ 0, one obtains the continuum limit. Noting that

Un+1/Un = eiKd , (2.26)

and within the Brillouin zone Kmax = π/d, in the continuum limit, Kmax →∞.

The transmission velocity of a wave packet is called the group velocity, and it is given

by

vg =
dω

dK
=

√
µ

M
d cos

(
Kd

2

)
, (2.27)

for 0 < K < π/d. On the boundaries K = ±π/d of the Brillouin zone, vg = 0; the solution

Un represents a standing wave with zero net transmission velocity, and Un = (−1)nU .

Chapter 3 features analysis of standing waves for a stented artery.

In many physical applications, it is useful to have asymptotic approximations cor-

responding to the long wave limit. In particular, this will give the slope of the curve

ω = ω(K) as K → 0+, which is also referred to as the effective group velocity veff often

used in homogenisation approximations of wave phenomena in structured media [12].

When Kd � 1, we have cos (Kd) ≈ 1 − 1
2 (Kd)2, and hence ω2 ≈ µ

M (Kd)2. Hence,

veff =
√

µ
M d, and thus veff is frequency-independent in this limit.

2.3.3 Two mass chain

Consider now the one-dimensional periodic lattice consisting of two types of particles, of

different masses M1 and M2 with stiffness µ. The scheme is shown in Figure 2.2c. In this

case, the elementary cell of the periodic lattice comprises two different particles, whose
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Figure 2.4: Dispersion curves for the periodic spring-mass system shown in 2.2c. The parameter
values used are µ = 1.5, M1 = 1, M2 = 2, D = 2.

displacements are denoted by un and vn. Two equations of motion are required:

M1
d2un
dt2

= µ (vn + vn−1 − 2un) , (2.28a)

M2
d2vn
dt2

= µ (un+1 + un − 2vn) . (2.28b)

Let D be the size of the elementary cell (see Figure 2.2c), which is equal to the

distance between the particles of the same mass. Travelling waves are defined by

un = Uei(nKD−ωt) , (2.29a)

vn = V ei(nKD−ωt) , (2.29b)

where K is the wave number. Substituting into the equation of motion, then gives

ω2µ−1M1U + V
(
1 + e− iKD

)
− 2U = 0 (2.30a)

ω2µ−1M2V + U
(
1 + eiKD

)
− 2V = 0 . (2.30b)

This is a system of homogeneous linear algebraic equations with respect to U and V .

There is a non-trivial solution if and only if the determinant of the matrix associated

with the equations is equal to zero, i.e.

M1M2

µ2
ω4 − 2 (M1 +M2)

µ
ω2 + 2 (1− cos (KD)) = 0 . (2.31)

This is the dispersion equation providing the relationship between the frequency ω

and the wavenumber K. Equation (2.31) has explicit solutions of the form

ω2 = µ
M1 +M2 ±

√
(M1 +M2)2 − 2M1M2 (1− cos (KD))

M1M2
. (2.32)
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From equation (2.32) it is possible to deduce that the dispersion diagram shown in

Figure 2.4 has two branches known as the “acoustic branch” (corresponding to the sign“-”)

and “optical branch” (corresponding to the sign “+”). Note that for the non-homogeneous

system, when M1 6= M2, there is a non-zero separation between the dispersion curves,

known as a stop-band. The width of the stop-band can be computed by evaluating the

frequencies at the end points of the Brillouin zone. At the boundary of the Brillouin

zone, when K = ±π/D, the roots of the dispersion equation are defined by

ω2 =
µ

M1M2
[M1 +M2 ± |M1 −M2|] . (2.33)

The stop-band width is calculated by finding the difference of the two frequencies obtained

from (2.33).

2.3.4 Asymptotic approximation for continuous structured media

Consider a bi-material continuum system such as the propagation of out-of-plane shear

elastic waves through a periodic array of homogeneous isotropic layers described in [88],

as shown in Figure 2.5, or a one-dimensional periodic array of elastic rods of different

stiffness Ej , j = 1, 2, and non-zero mass density [89]. The two problems share the same

method of solution and here the second case is explained, following the analysis of [89].

b a

D

x

Figure 2.5: One-dimensional bi-material stratified periodic structure. The widths of the two
layers are indicated by a and b, and D is the width of the elementary cell.

For simplicity, it is assumed that the linear mass density ρ is the same for all the

elements of the structure. The elementary cell contains two types of elastic rods. The

notations S
(n)
1 = (−b+ nD, nD), and S

(n)
2 = (nD, a+ nD), where n is integer, and

D = a+ b is the total size of the elementary cell, are used.

Assuming time harmonic waves, with radian frequency ω, the amplitudes of the

longitudinal displacements Uj(x) satisfy the equations:

EjU
′′
j + ω2ρUj = 0 , x ∈ S(n)

j , j = 1, 2 . (2.34)
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A boundary condition of ideal contact at the interface between neighbouring rods implies

continuity of both displacements and tractions, such that

U1 = U2 , E1U
′
1 = E2U

′
2 . (2.35)

The solution is then sought in the class of Bloch-Floquet waves, which satisfy the following

relation:

Uj(x+D) = eiKDUj(x) , j = 1, 2 , |K| < π/D . (2.36)

The general solution of (2.34) is given by

Uj = Aje
i kjx +Bje

− i kjx , x ∈ S(n)
j , j = 1, 2 , (2.37)

where Aj and Bj are constant coefficients and kj(ω) = ω
√
ρ/Ej are linear functions of

the radian frequency ω for j = 1, 2. Application of the interface conditions (2.35) and

Bloch-Floquet conditions (2.36), for displacements within the elementary cell, lead to a

homogeneous system of linear equations for the coefficients Aj and Bj :

Q(K,ω)


A1

B1

A2

B2

 = 0 , (2.38)

where

Q(K,ω) =


1 1 −1 −1

E1k1 −E1k1 −E2k2 E2k2

−ei(KD−k1b) −ei(KD+k1b) ei k2a e− i k2a

k1e
i(KD−k1b) −k1e

i(KD+k1b) −E2k2
E1

ei k2a E2k2
E1

e− i k2a

 . (2.39)

This system has a non-trivial solution for zeros of the determinant of the matrix Q:

det Q(K,ω) = 0 , (2.40)

which relates the frequency to the Bloch parameter K, and hence represents the dispersion

equation for Bloch-Floquet waves that propagate within the periodic system. Introducing

the notation ε = E1/E2, it follows that k2 = k1
√
ε. Then, the dispersion relation (2.40)

leads to

(ε+ 1) sin (k1b) sin
(
k1a
√
ε
)
− 2
√
ε
[
cos (k1b) cos

(
k1a
√
ε
)
− cos (KD)

]
= 0 . (2.41)

The assumptions ε� 1 and k1b� 1 imply that the structure has a high contrast in

the stiffness of its phases, and the length b of one of the elastic rods in the elementary

cell is relatively small. Then the corresponding sine and cosine terms of (2.41) may be

expanded into power series. After truncation, a polynomial in powers of ω is obtained.
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Figure 2.6: Dispersion diagram for Bloch-Floquet waves in the high-contrast bi-material periodic
system. The parameters used are D = 1, a = b = 0.5, ε = 0.1, ρ = 1.

Retaining the terms up to the fourth power of the frequency, the following approximate

dispersion equation is obtained:

ω4Π− ω2Θ + 2 (1− cos (KD)) = 0 , (2.42)

where the terms Π and Θ are positive-valued and have the form:

Π =
ρ2E2

1

12

(
εa2 + 2εba+ b2

) (
εa2 + b2 + 2ba

)
, (2.43a)

Θ =
ρ

E1
(a+ b) (εa+ b) . (2.43b)

Recall that the dispersion equation for the discrete system, consisting of a one-dimensional

array of masses M1,M2 connected by elastic springs with stiffness E, is given by (2.31)

which has the same structure as (2.42). Hence, a discrete lattice may be used to

approximate a high-contrast periodic continuous medium to derive its dynamic response

for the low frequency regime. This discrete model (2.31) is characterised by the two

parameters M1/E and M2/E so that the two dispersion equations become identical when

Π =
M1M2

E2
, Θ =

2 (M1 +M2)

E
. (2.44)

Note that the dispersion relation for the bi-material continuum (2.41) is a transcen-

dental equation and so has an infinite number of solutions. In contrast, the lattice

approximation model covers only the first two dispersion curves, nearest to the origin.

Figure 2.6 illustrates solutions of the full dispersion equation (2.41) for the high-contrast

two-phase system, and also indicates the regime where the lattice approximation may be

applied (the first two dispersion curves).



Chapter 2. Theory and background 22

2.3.5 Periodic stent structure

A stent is a tube that is inserted into the lumen of an atherosclerotic blood vessel to open

it up. Many types of stent are used for different purposes, for example coronary stents,

vascular stents, stent grafts, ureteral stents, etc. Vascular stents are commonly used to

treat peripheral and cerebrovascular disease. The arteries most frequently treated are

the carotid, iliac and femoral. Due to the external compression and mechanical forces

that act at these locations, flexible stent materials such as nitinol are used.

Vascular self-expanding nitinol stents are usually between 5− 10 mm in diameter and

can be between 20− 200 mm in length. Typically they consist of several coils connected

by links and they present a structure that can be considered periodic due to the pattern

repetition. Therefore, Bloch-Floquet analysis, although applicable to infinite systems,

gives insight about dispersion properties of pulse waves in a finite portion of stented

arteries, similar to other finite systems reported in [13] and [46]. Depending on the stent

geometry, a specific unit cell is defined for the Bloch-Floquet analysis. One important

feature related to group velocity is when it is zero, for which standing waves occur in the

blood vessel. This type of wave is undesirable because it disrupts blood flow and causes

changes in pressure.

Elastic systems, in general, possess resonant frequencies, which can be obtained using

eigenfrequency analysis. Such frequencies are often initiated by external forces and

for a human body, these may be linked to factors such as walking, running, riding a

motorcycle, using heavy machinery, all of which produce vibrations. For example, public

transportation for cases of rough street surface, speed bumps, and old railway tracks

induce vibrations that range between 1 Hz and 20 Hz or wider, as reported by Argani et

al. [5]. This range of frequencies is relevant for the cases of overlapping (see Chapter 5)

or clusters of stents (see Chapter 3). In these scenarios, stop-band regions may arise

meaning that pulse waves are likely to be significantly attenuated leading to possible

disruption of blood flow. Stop-band regimes are affected by many parameters such as

number of coils, number of links between the coils, and location, geometry and density of

plaque.

2.4 Reflection-transmission

Consider a similar system to that of Section 2.3.4, but with a finite number of sequentially

connected elastic rods aligned with the x-axis. The book [89] describes this as a “structured

interface” and states that the rods may have different lengths, densities and stiffness. A

wave that propagates in the positive direction of the x-axis arrives at, and interacts with,

the interface. Some of the energy is reflected, whilst the remaining energy is transmitted

through the interface, the percentage of which is frequency-dependent.

In the case of a repeating pattern of a sufficiently large number of rods, it becomes

possible to associate this interface with the analysis of Bloch-Floquet waves and their

dispersion properties, as explained by Lekner [69] and by Movchan et al. [89]. However,
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when the number of rods is relatively small, i.e. the interface has a finite thickness, the

analysis requires a different approach that focuses on trapped modes; their existence

within the structured interface may modify and enhance transmission effects. An effective

tool for such investigations is the transmission matrix technique [69], which is described

in the following section. This technique is used in 3 for both the case of a portion of

stented artery and for the case of a cluster of stents. In addition, it is used in 5 for the

one-dimensional model and the case of overlapping stents.

2.4.1 Transmission matrix technique

The amplitude of the displacement for time-harmonic motion with radiant frequency ω is

denoted by u and satisfies the following ordinary differential equation:

E
d2u

dx2
(x) + ρω2u (x) = 0 , (2.45)

where ρ is the mass density and E is the stiffness of a single rod. The solution may be

expressed in terms of complex amplitudes A and B:

u(x) = AeiKx +Be− iKx , (2.46)

where

K = ωc , c =

√
ρ

E
. (2.47)

Consider a one-phase interface between x = x0 and x = x1 = x0 +D, where D is a

small increment. Then, the displacements and tractions are related by(
u(x1)

E ∂u
∂x (x1)

)
= T

(
u(x0)

E ∂u
∂x (x0)

)
, (2.48)

where, referring to equation (2.46), the transmission matrix T is defined by [69]

T =

[
cos (KD) sin (KD)

EK

−EK sin (KD) cos (KD)

]
. (2.49)

Note that KD is known as the phase increment. The eigenvalues of the transmission

matrix T are straightforwardly determined to be

cos (KD)±
√

cos2 (KD)− 1 = e± iKD . (2.50)

Similarly, a discrete interface, which consists of two springs of stiffness µ and mass M ,

may be analysed using transmission matrix methods. The spring-mass lattice is a mono-

coupled system since each mass has only one degree of freedom and the coupling between

two adjacent cells is given only by the force exerted by the spring. As a consequence,

in this case the transfer matrix is a two-by-two matrix that relates the vector u+ of



Chapter 2. Theory and background 24

displacement and the force at the end of each cell to the vector u− at the beginning of

the cell shown in Figure 2.2b:

u+ =

(
u+

F+

)
= Tnu

− =

[
T

(n)
11 T

(n)
12

T
(n)
21 T

(n)
22

](
u−

F−

)
, (2.51)

where n = 1, · · · , N is an index denoting the nth position of the mass. According to

Newton’s law of motion,

F+ + F− = M
d2u

dt2
, (2.52)

where

F+ = µ
(
u+ − u

)
, (2.53)

and

F− = µ
(
u− u−

)
. (2.54)

Assuming time-harmonic motion, equation (2.52) becomes

F+ + F− = −Mω2u . (2.55)

Inserting equations (2.55), (2.54), and (2.53) in the system (2.51), the following set

of equations is obtained

u+ = u−
(

1− Mω2

µ

)
+ F−

(
2

µ
− Mω2

µ2

)
, (2.56a)

F+ = u−
(
−Mω2

)
+ F−

(
1− Mω2

µ

)
. (2.56b)

In this case then, the transfer matrix Tn for the discrete interface is written in the

following form

Tn =

[
1− Mω2

µ
2
µ −

Mω2

µ2

−Mω2 1− Mω2

µ

]
. (2.57)

The eigenvalues are:

1− Mω2

µ
±

√
Mω2

µ

(
Mω2

µ
− 2

)
. (2.58)

The algebraic dependence contrasts with the continuous one-phase interface case (2.50).

It is also notable that the eigenvalues for the discrete case (2.58) become complex for

sufficiently small values of ω, and are real for sufficiently large values, in particular when

ω2 > 2µ/M .

The power of the transmission matrix technique is that if an interface consists of

several regions, whether continuous or discrete, placed together to form a stack, the

overall transmission matrix is obtained by appropriate multiplication of the constituent

transmission matrices that characterise each individual layer [69].
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Figure 2.7: Representation of the transmission problem for a monatomic lattice located between
two semi-infinite elastic rods of stiffness EA and EB , and mass densities ρA and ρB .

2.4.2 Reflection-transmission problem for non-uniform interface

To illustrate an application of the transmission matrix technique, consider the case of

a monatomic lattice perfectly connected to two semi-infinite elastic rods, as shown in

Figure 2.7. Recall that the equation of motion for a single elastic rod is given by (2.45).

For this discrete-continuous system, there are two semi-infinite rods so index notation is

adopted when writing the equation of motion for each rod:

Ej
d2uj(x)

dx2
+ ρjω

2uj(x) = 0 , j = A,B . (2.59)

Here EA, EB and ρA, ρB are, respectively, the elastic moduli and mass densities of the

rods. The phase velocities are denoted as cA =
√
EA/ρA and cB =

√
EB/ρB, and the

impedances of the two rods, as QA = EAω/cA and QB = EBω/cB.

The displacement field for rod A is represented by the sum of incident and reflected

waves:

uA (x) = UIe
iKAx + URe

− iKAx , (2.60)

where KA = ω/cA is the wavenumber. The displacement field in rod B represents the

transmitted waves and it is written as

uB (x) = UT e
iKBx , (2.61)

where KB = ω/cB is the wavenumber. In order to derive the system of governing

equations, the tensile stresses of the rods are defined by

σj = Ej
duj
dx

, j = A,B. (2.62)

The system of equations is then written in matrix form:(
uB (x = xB)

σB (x = xB)

)
=

(
UT e

iKBxB

iKBEBUT e
iKBxB

)
= TN

(
uA (x = xA)

σA (x = xA)

)

=

[
T

(N)
11 T

(N)
12

T
(N)
21 T

(N)
22

](
UIe

iKAxA + URe
− iKAxA

iKAEA
(
UIe

iKAxA − URe− iKAxA
)) .

(2.63)

Note that the subscript becomes a superscript when writing the matrix TN in component

form.
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The solution of the system yields expressions for the normalised reflection and

transmission coefficients:

UR
UI

=
QAQBT

(N)
12 + T

(N)
21 + i

(
QAT

(N)
22 −QBT (N)

11

)
QAQBT

(N)
12 − T (N)

21 + i
(
QAT

(N)
22 +QBT

(N)
11

)ei 2KAxA (2.64)

and

UT
UI

=
i 2QA

QAQBT
(N)
12 − T (N)

21 + i
(
QAT

(N)
22 +QBT

(N)
11

)ei(KAxA−KBxB) , (2.65)

respectively. The respective energies are obtained by determining the squares of the

moduli of the coefficients:

R =

∣∣∣∣URUI
∣∣∣∣2 =

(
QAQBT

(N)
12 + T

(N)
21

)2
+
(
QAT

(N)
22 −QBT (N)

11

)2

(
QAQBT

(N)
12 − T (N)

21

)2
+
(
QAT

(N)
22 +QBT

(N)
11

)2 (2.66)

and

T =

∣∣∣∣UTUI
∣∣∣∣2 =

4Q2
A(

QAQBT
(N)
12 − T (N)

21

)2
+
(
QAT

(N)
22 +QBT

(N)
11

)2 . (2.67)

By the conservation of energy principle, the sum of R and T should be 1 and this is

easily verified by noting that det(T(N)) = 1. In non-propagation regimes, almost all the

energy is reflected for which R ' 1 and T ' 0.

Illustrative energy plots for the reflection and transmission coefficients are shown in

Figure 2.8 for two specific examples. Figure 2.8a considers the case of the monatomic

lattice and Figure 2.8b shows the reflection-transmission for a two-mass chain lattice.

Note the connection between stop-bands in Figure 2.4, and the reflection maxima in

Figure 2.8b. Similar reflection-transmission plots are shown in Section 5.4 for stented

artery problems.

2.5 Finite element approximation: the Galerkin method

Finite element methods are based on a solid mathematical background and provide

a general solution technique for partial differential equations with a wide range of

applications. The steps to derive a finite element discretization are outlined in the

following. Most problems in mechanics and physics are described by a set of partial

differential equations accompanied by initial or boundary conditions, and the whole set

of equations is referred to as the strong form of the problem. However, finite element

methods are based on the weak form of the problem, which is equivalent to the former,

as shown by the proof given by Hughes in [54].

A finite element approach using the Galerkin method is used in Chapter 5 for a

one-dimensional approximation of a stented artery. The underlying theory is presented
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(a) Reflection-transmission diagram for a monatomic lattice. The parameter values used are
EA = 1, EB = 1, ρA = 1, ρB = 1, µ = 1.5, M = 1.
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(b) Reflection-transmission diagram for a two-mass chain lattice. The parameter values used are
EA = 1, EB = 1, ρA = 1, ρB = 1, µ = 1.5, M1 = 1, M2 = 2.

Figure 2.8: Reflection-transmission diagrams. For both diagrams N = 5.

here for the following one-dimensional linear boundary-value problem:

− d

dx

(
a(x)

du

dx

)
+ b(x)

du

dx
+ c(x)u(x) = f(x) , x ∈ (0, 1) (2.68a)

u(0) = g0 , a(1)
du

dx
(1) = g1 , (2.68b)

with u ∈ C2(0, 1) ∩ C1([0, 1]). The functions a ∈ C1([0, 1]) and b, c, f ∈ C0([0, 1]) are

given functions on the interval (0, 1) and g0, g1 ∈ R are given boundary data. Here,

Cn([x0, x1]) denotes the space of n-times continuously differentiable functions on the

interval [x0, x1]. For many applications, for instance with discontinuous coefficients, and

more general boundary conditions these requirements are too restrictive and so it is

necessary to relax the smoothness requirements. This is accomplished by considering

weak solutions and transforming the boundary value problem into a weak formulation.

In order to define the weak formulation for (2.68) it is necessary to introduce the space

Vg =
{
u ∈ C1([0, 1]) such that u(0) = g

}
. (2.69)

Multiplying equation (2.68a) with an arbitrary test function ϕ = ϕ(x) in V0, and

integrating over the domain [0, 1], then a weighted residual formulation of the original
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equation is obtained:

−
∫ 1

0

d

dx

(
a(x)

du

dx

)
ϕdx +

∫ 1

0
b(x)

du

dx
ϕdx +

∫ 1

0
c(x)u(x)ϕdx =

∫ 1

0
f(x)ϕdx . (2.70)

The weak formulation is obtained using integration by parts:∫ 1

0

(
a(x)

du

dx

dϕ

dx
+ b(x)

du

dx
ϕ+ c(x)u(x)ϕ

)
dx =

∫ 1

0
f(x)ϕdx +

[
a(x)

du

dx
ϕ

]1

0

. (2.71)

The integration by parts results in boundary contributions, which can be replaced by

either using the boundary conditions or using the restrictions imposed on the test function

ϕ. At x = 0 the restriction ϕ(0) = 0 on the test function ϕ is imposed, so that the

boundary contribution at 0 is eliminated from the weak formulation. At x = 1 the

boundary condition a(1)du
dx (1) = g1 is used and there is no restriction on the test function

ϕ at x = 1.

The boundary value problem (2.68) can be now formulated in terms of the equivalent

weak formulation. Find u ∈ Vg0 , such that for all ϕ ∈ V0, the equation:∫ 1

0

(
a(x)

du

dx

dϕ

dx
+ b(x)

du

dx
ϕ+ c(x)u(x)ϕ

)
dx =

∫ 1

0
f(x)ϕdx + ϕ(1)g1 , (2.72)

is satisfied. An important benefit of the weak formulation is that now it is only required

that u is differentiable once instead of two times. The weak formulation provides the

basis for the finite element discretization.

The objective is to construct piecewise linear continuous functions to be used as test

functions in order to compute approximate solutions to the problem of interest. Let N

be a positive integer and let xi, i = 0, · · · , N , define points (called vertices) in Ω = (0, 1)

such that 0 = x0 < x1 < x2 < · · · < xN = 1. Let Ii = [xi−1, xi] be the intervals (called

elements) such that Ω̄ =
⋃N
i=1 Ii. The size of the elements is given by hi = |xi − xi−1|.

Let V k
g,h =

{
u ∈ C0 | u ∈ P k(Ii), ∀Ii ⊂ Ω, u(0) = g

}
⊂ Vg, with P k(0, 1) the space

of polynomials of degree k on the interval (0, 1). This implies that in each element,

polynomial basis function of degree k are used, and it is only required that the functions

are continuous at the element boundaries. The basis functions are defined as φi(x) ∈ P k(Ii)

if x ∈ Ii, and satisfy the condition φi(xj) = δij , with δij the Kronecker delta symbol,

which is defined as δij = 1 if i = j, and zero otherwise. This implies that:

φi(x) =

1 , if x = xi

0 , if x = xj , j 6= i .
(2.73)
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An example of linear basis functions are:

φi(x) =


x−xi−1

hi
, if x ∈ Ii

xi+1−x
hi+1

, if x ∈ Ii+1

0 , otherwise .

(2.74)

The function u ∈ V k
g,h and the test function ϕ ∈ V k

0,h can now be defined as a linear

combination of the basis functions, i.e.:

u(x) = g0φ0(x) +

N∑
i=1

uiφi(x) , (2.75)

and

ϕ(x) =

N∑
i=1

ϕiφi(x) . (2.76)

The contribution g0φ0(x) is added to satisfy the boundary condition u(0) = g0, since

all the other basis functions φi are zero at the boundary. Since each of the global basis

functions φi is only non-zero in the two elements connecting to the node xi, it is convenient

to introduce the element basis functions ψ1 and ψ2, which are defined in the interval Ii

as:

ψ1(x) =
xi − x
hi

, (2.77)

and

ψ2(x) =
x− xi−1

hi
. (2.78)

Therefore, ψ1(x) = φi−1(x) and ψ2(x) = φi(x) for xi ∈ Ii. For more complex basis

functions, and also domains in multiple dimensions it is, however, easier to introduce a

reference element Î = (0, 1), with local coordinates ξ, and use the mapping

FIi : (0, 1)→ (xi−1, xi)

ξ 7→ x

with x = hiξ + xi−1. In local coordinates, it is possible to define the basis functions as

ψ̂1(ξ) = 1− ξ , (2.79)

and

ψ̂2(ξ) = ξ . (2.80)

The finite element discretization is now obtained by choosing test functions ϕ which

satisfy the condition ϕ(x) = φi(x), i = 1, · · · , N . Since the basis functions φi are linearly

independent and span the space V k
0,h, this will result in N linearly independent equations

for the coefficient ui. The finite element discretization is most simply obtained by splitting
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the integrals in the weak formulation into integrals over each element:∫ 1

0

(
a(x)

du

dx

dϕ

dx
+ b(x)

du

dx
ϕ+ c(x)u(x)ϕ− f(x)ϕ

)
dx =

N∑
i=1

∫ xi

xi−1

(
a(x)

du

dx

dϕ

dx
+ b(x)

du

dx
ϕ+ c(x)u(x)ϕ− f(x)ϕ

)
dx .

(2.81)

Using the mapping FIi it is possible to define the following element integrals:

Ainm =

∫ xi

xi−1

a(x)
dψm
dx

dψn
dx

dx =
1

hi

∫ 1

0
a(x(ξ))

dψ̂m
dξ

dψ̂n
dξ

dξ , (2.82a)

Bi
nm =

∫ xi

xi−1

b(x)
dψm
dx

ψn dx =
1

hi

∫ 1

0
b(x(ξ))

dψ̂m
dξ

ψ̂n dξ , (2.82b)

Cinm =

∫ xi

xi−1

c(x)ψmψn dx =
1

hi

∫ 1

0
c(x(ξ))ψ̂mψ̂n dξ , (2.82c)

F in =

∫ xi

xi−1

f(x)ψn dx =
1

hi

∫ 1

0
f(x(ξ))ψ̂n dξ , (2.82d)

where m,n = 1, 2.

Consider now the test function ϕ(x) = φi(x), i = 2, · · · , N − 1. This function is only

non-zero in the elements Ii and Ii+1, where it is equal to ϕ(x) = ψ2(x) = ψ̂2

(
F−1
Ii

(x)
)

=

ψ̂2(ξ) and ϕ(x) = ψ1(x) = ψ̂1

(
F−1
Ii+1

(x)
)

= ψ̂1(ξ), respectively. The representation of uh

in each element Ii:

uh = ui−1ψ̂1(ξ) + uiψ̂2(ξ) , (2.83)

is introduced into the element integrals of the weak formulation. Then non-zero contri-

butions are obtained only from the integrals in the elements Ii and Ii+1, because the

test function ϕ is zero in the other elements. The weak formulation for the test function

ϕ(x) = φi(x), (i = 2, · · · , N − 1) is now:

∫ xi

xi−1

(
a(x)

(
ui−1

dψ1

dx
+ ui

dψ2

dx

)
dψ2

dx
+ b(x)

(
ui−1

dψ1

dx
+ ui

dψ2

dx

)
ψ2(x)+

c(x) (ui−1ψ1(x) + uiψ2(x))ψ2(x)− f(x)ψ2(x)

)
dx+

∫ xi+1

xi

(
a(x)

(
ui

dψ1

dx
+ ui+1

dψ2

dx

)
dψ1

dx
+ b(x)

(
ui

dψ1

dx
+ ui+1

dψ2

dx

)
ψ1(x)+

c(x) (uiψ1(x) + ui+1ψ2(x))ψ1(x)− f(x)ψ1(x)

)
dx = 0 .

(2.84)

Substituting (2.82) into (2.84), then the previous relation can be simplified as:

(
Ai2,1 +Bi

2,1 + Ci2,1
)
ui−1 +

(
Ai2,2 +Bi

2,2 + Ci2,2 +Ai+1
1,1 +Bi+1

1,1 + Ci+1
1,1

)
ui+(

Ai+1
1,2 +Bi+1

1,2 + Ci+1
1,2

)
ui+1 = F i2 + F i+1

1 , i = 2, · · · , N − 1 .
(2.85)
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For the test function ϕ(x) = φ1(x), different relations are obtained, because the

function uh in the element Ii must be modified to account for the boundary condition at

x = 0:

uh = g0ψ̂1(ξ) + u1ψ̂2(ξ) . (2.86)

Introducing (2.86) into the weak formulation, the following is obtained:

∫ x1

x0

(
a(x)

(
g0

dψ1

dx
+ u1

dψ2

dx

)
dψ2

dx
+ b(x)

(
g0

dψ1

dx
+ u1

dψ2

dx

)
ψ2(x)+

c(x) (g0ψ1(x) + u1ψ2(x))ψ2(x)− f(x)ψ2(x)

)
dx+

∫ x2

x1

(
a(x)

(
u1

dψ1

dx
+ u2

dψ2

dx

)
dψ1

dx
+ b(x)

(
u1

dψ1

dx
+ u2

dψ2

dx

)
ψ1(x)+

c(x) (u1ψ1(x) + u2ψ2(x))ψ1(x)− f(x)ψ1(x)

)
dx = 0 ,

(2.87)

which can be simplified as(
A1

2,2 +B1
2,2 + C1

2,2 +A2
1,1 +B2

1,1 + C2
1,1

)
u1+(

A2
1,2 +B2

1,2 + C2
1,2

)
u2 = F 1

2 + F 2
1 −

(
A1

2,1 +B1
2,1 + C1

2,1

)
g0 .

(2.88)

Similarly, for ϕ(x) = φN (x), it is:

∫ xN

xN−1

(
a(x)

(
uN−1

dψ1

dx
+ uN

dψ2

dx

)
dψ2

dx
+ b(x)

(
uN−1

dψ1

dx
+ uN

dψ2

dx

)
ψ2(x)+

c(x) (uN−1ψ1(x) + uNψ2(x))ψ2(x)− f(x)ψ2(x)

)
dx = −g1 ,

(2.89)

which can be simplified as:

(
AN2,1 +BN

2,1 + CN2,1
)
uN−1 +

(
AN2,2 +BN

2,2 + CN2,2
)
uN = FN2 − g1 . (2.90)

By introducing the coefficients:

K1
i = Ai2,1 +Bi

2,1 + Ci2,1 , i = 2, · · · , N ,

K2
i = Ai2,2 +Bi

2,2 + Ci2,2 +Ai+1
1,1 +Bi+1

1,1 + Ci+1
1,1 , i = 1, · · · , N − 1 ,

K2
N = AN2,2 +BN

2,2 + CN2,2 ,

K3
i = Ai+1

1,2 +Bi+1
1,2 + Ci+1

1,2 , i = 1, · · · , N − 1 ,
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and

Ri = F i2 + F i+1
1 , i = 2, · · · , N − 1 ,

R1 = F 1
2 + F 2

1 −
(
A1

2,1 +B1
2,1 + C1

2,1

)
g0 ,

RN = FN2 − g1 ,

then it is possible to write the equations for the coefficients ui for i = 1, · · · , N as the

linear system:

Ku = R . (2.91)

Here K is called the stiffness matrix and R the load vector. The linear system (2.91)

has a tri-diagonal matrix and can be solved using standard numerical linear algebra

techniques. As stated at the beginning of this section, this method is applied to the

one-dimensional model for the stented artery in Chapter 5.

2.6 Mathieu’s Equation

Mathieu’s equation is a linear second-order differential equation with periodic coefficients

and is discussed in various references, including the book by Abramowitz and Stegun [1].

Given a, q ∈ R the Mathieu equation is defined as

d2y

dz2
+ [a− 2q cos(2z)] y = 0 . (2.92)

The equation (2.92) has two families of independent solutions, namely the even and

odd Mathieu functions of the first kind which are denoted by cen(z; q) and sen(z; q),

respectively, where n = 0, 1, 2, · · · is the order. In general, the solutions of Mathieu’s

equation are not periodic. However, there exist values of q for which periodic solutions

exist. These solutions are periodic in z, with period π or 2π. A period π means that the

eigenfunction has the property

y(z + π) = y(z). (2.93)

The related antiperiod π means that

y(z + π) = −y(z). (2.94)

For even parity, y(−z) = y(z), and odd parity infers y(−z) = −y(z). As a consequence

of the periodicity, the values of a in equation (2.92) are the eigenvalues or characteristic

values and are denoted by an(q) for cen(z; q) and bn(q) for sen(z; q).

According to the Sturm-Liouville theory, the eigenvalues form an infinite set of

countable real values that have the property a0 < b1 < a1 < b2 < · · · . Each function

cen and sen is associated with an eigenvalue an or bn, which in turn depends on q. In

Figure 2.9 the functions cen and sen are plotted for q = 1 and q = 10.

Basic properties of Mathieu’s equation include
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Figure 2.9: cen and sen plotted for q = 1 and q = 10.
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• The three transformations z → −z; z → z ± π; z → z ± 1
2π , q → −q each leave

equation (2.92) unaltered.

• Mathieu’s equation (2.92) has two fundamental solutions, y1(z; a, q) and y2(z; a, q)

with y1 even and y1(0; a, q) = 1 , y
′
1(0; a, q) = 0; y2 is odd and y2(0; a, q) = 0 ,

y
′
2(0; a, q) = 1.

The fundamental solutions are connected to the Mathieu functions in the following way

(see the book by Olver et al. [95]):

cen(z; q)

cen(0; q)
= y1(z; an(q), q) , n ≥ 0 , (2.95a)

sen(z; q)

se′n(0; q)
= y2(z; bn(q), q) , n ≥ 1 . (2.95b)

Another important property involves the orthogonality of the Mathieu functions of the

first kind, i.e. ∫ 2π

0
cepceq dz =

∫ 2π

0
sepseq dz = 0 , if p 6= q; (2.96a)∫ 2π

0
cepseq dz = 0 . (2.96b)

2.6.1 Floquet’s Theorem

Floquet’s theorem derives from the fact that an arbitrary solution y(z) of a linear

homogeneous second-order ODE, such as (2.92), can be expressed as a linear combination

of at most two linearly independent solutions y1(z) and y2(z), i.e.

y(z) = c1y1(z) + c2y2(z) . (2.97)

Since the Mathieu equation has exactly the same form at z+π as it has at z, the solution

y(z + π) must be a linear combination of y1(z) and y2(z), i.e.

y(z + π) = h1y1(z) + h2y2(z) . (2.98)

It is also true that

y1(z + π) = f1y1(z) + f2y2(z) , (2.99a)

y2(z + π) = g1y1(z) + g2y2(z) , (2.99b)

and, from equation (2.97) evaluated for z + π,

y(z + π) = c1y1(z + π) + c2y2(z + π) . (2.100)
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Combining equations (2.99) and (2.100) results in

y(z + π) = (f1c1 + g1c2) y1(z) + (f2c1 + g2c2) y2(z) . (2.101)

From equations (2.98) and (2.101), it is clear that

f1c1 + g1c2 = h1 , (2.102a)

f2c1 + g2c2 = h2 . (2.102b)

Floquet’s analysis now proceeds with the observation that c1 and c2 may be chosen in

such a way that h1 = µc1 and h2 = µc2. It follows that y(z + π) = µy(z). This selection

is equivalent to imposing that c1 and c2 are obtained from a solution of the eigenvalue

problem [
f1 g1

f2 g2

](
c1

c2

)
= µ

(
c1

c2

)
. (2.103)

In summary, Floquet’s theorem states that it is possible to choose y such that it satisfies

the condition y(z + π) = µy(z), where µ is a root of∣∣∣∣∣f1 − µ g1

f2 g2 − µ

∣∣∣∣∣ = 0 , (2.104)

with the ci given as eigenvectors, corresponding to µ, of the system (2.103). A solution

to the Mathieu equation in the form consistent with Floquet’s theorem is often called

a Floquet solution, as stated in [1], and its qualitative behaviour is associated with the

eigenvalue µ. A Floquet solution is only periodic for special values of µ, with |µ| = 1

being a necessary condition for periodicity.

It is useful to gain more understanding of the Floquet solutions, and this can be done

by firstly assuming that y is a solution corresponding to µ. Then the quantities ν and Φ

are defined such that µ = exp (π i ν) and Φ(z) = exp (− i νz)y(z), from which it follows

that y(z + π) = exp (π i ν)y(z). These definitions have the effect that

Φ(z + π) = e− i ν(z+π)y(z + π) = e− i νz
[
e− i νπy(z + π)

]
= e− i νzy(z) = Φ(z) , (2.105)

showing that Φ(z) is a periodic function of z with period π. Furthermore,

y(z) = ei νzΦ(z) , (2.106)

which shows that a Floquet solution y(z) consists of a periodic function of z multiplied

by a complex exponential in z. The quantity ν, which controls the exponential behaviour,

is referred to as the characteristic exponent of the Floquet solution y.

It is possible to classify various cases dependent upon the characteristic exponent ν.

If Im(ν) > 0, the Floquet solution will asymptotically approach zero as z is increased. In

contrast, if Im(ν) < 0, y(z) will grow as z increases. In addition, the Floquet solution y
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has constant magnitude through successive cycles of length π only if ν is real. Since y

includes the factor Φ(z), which is periodic with period π, y(z) is also periodic with the

period defined as:

(a) π, if ν = 0, 2, · · · (corresponding to µ = 1),

(b) 2π, if ν = 1, 3, · · · (corresponding to µ = −1) or

(c) sπ, if ν = 2r/s where r and s > 2 are integers with no common divisor.

In order to illustrate how Floquet’s theorem is applied to Mathieu’s equation, y1 is

chosen to be an even function of z, such that y1(0) = 1 and y
′
1(0) = 0, and y2 is chosen

to be an odd function such that y2(0) = 0 and y
′
2(0) = 1. Then, from equation (2.99),

and from the derivatives of equation (2.99) evaluated at z = 0, it follows that

y1(π) = f1 , (2.107a)

y2(π) = g1 , (2.107b)

y
′
1(π) = f2 , (2.107c)

y
′
2(π) = g2 . (2.107d)

The eigenvalue problem (2.104), then becomes∣∣∣∣∣y1(π)− µ y2(π)

y
′
1(π) y

′
2(π)− µ

∣∣∣∣∣ = µ2 −
[
y1(π) + y

′
2(π)

]
µ+W = 0 , (2.108)

where

W = y1(π)y
′
2(π)− y2(π)y

′
1(π) , (2.109)

is the Wronskian of the yi, evaluated at z = π. However, the Wronskian of the Mathieu

equation is a constant, as given by Arfken et al. [4], and therefore it is possible to evaluate

W at z = 0, for which W = 1.

Using standard properties of quadratic equations, it is possible to identify W as the

product of two roots, such that

µ1µ2 = 1 . (2.110)

Now, it is possible to enumerate the various possibilities for the eigenvalues µi. If

|µ1| < 1, then |µ2| > 1 and vice versa. In these cases neither solution y1 nor y2 is

periodic. If |µ1| = |µ2| = 1, by writing the roots in the form exp (i νiπ) and observing that

equation (2.110) is only satisfied if ν2 = −ν1, then µ2 = µ∗1, where ∗ indicates complex

conjugation. Thus, the solutions will have period π if µ = 1, period 2π if µ = −1 and

period sπ (s > 2) if the νi are rational fractions. Note that in the cases µ = 1 and µ = −1,

there is a double root µ1 = µ2 = ±1 but if the µi are complex, there will be distinct

roots.

The nature of the roots µi determines the number of periodic solutions. If the µi are

distinct, there are two periodic solutions since there must be at least one eigenvector
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for each distinct eigenvalue. It follows that the periodic solutions with period sπ, s > 2

are found in pairs. However, if the eigenvalues are degenerate, which corresponds to

periodicity π or 2π, there can only be two eigenvectors (i.e. periodic ODE solutions) if the

matrix in equation (2.103) is not defective (non-diagonalizable). Although defectiveness

may appear to be unlikely, it occurs exactly when one of the solutions, say y1, is periodic

with period π or 2π. For the former case, the coefficients g1 and g2, that describe y2, are

both non-zero and the matrix from (2.103) takes the form:[
1 g1

0 1

]
, (2.111)

for which the only eigenvector is y1. For physical reasons, the most important solutions

occur when the periods are π or 2π, and these are the even and odd Mathieu functions

of the first kind, cen(z; q) and sen(z; q).

2.6.2 Fourier expansions

Since the Mathieu functions of the first kind cen and sen are periodic, they can be

expanded in terms of Fourier series. The corresponding expansions fall into four classes,

according to their symmetry or antisymmetry, about z = 0 and z = π/2, namely,

ce2n(z; q) =

∞∑
k=0

A
(2n)
2k (q) cos (2kz) , (2.112a)

ce2n+1(z; q) =
∞∑
k=0

A
(2n+1)
2k+1 (q) cos ((2k + 1)z) , (2.112b)

se2n+1(z; q) =
∞∑
k=0

B
(2n+1)
2k+1 (q) sin ((2k + 1)z) , (2.112c)

se2n+2(z; q) =
∞∑
k=0

B
(2n+2)
2k+2 (q) sin ((2k + 2)z) , (2.112d)

where n ≥ 0. By insertion of these expansions into equation (2.92), the recurrence

relations between the coefficients A and B can be derived. For instance, for the functions
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ce2n it is:(
d2

dz2
+ a

)
ce2n(z; q) =

∞∑
k=0

(
−4k2 + a2n(q)

)
A

(2n)
2k (q) cos (2kz) , (2.113a)

−2q cos (2z)ce2n(z; q) = −2q cos (2z)ce2n(z; q)
∞∑
k=0

A
(2n)
2k (q) cos (2kz)

= −2qA2n
0 cos (2z)− 2q

∞∑
k=1

A
(2n)
2k (q) cos (2z) cos (2kz)

= −2qA2n
0 cos (2z)− q

∞∑
k=1

A
(2n)
2k (q) [cos ((2k + 2) z) + cos ((2k − 2) z)] .

(2.113b)

Equating coefficients of cos (2kz) for k = 0, 1, 2, · · · , and simplifying the notation by using

a for a2n(q) and A2k for A
(2n)
2k (q), it is

aA0 − qA2 = 0 , (2.114a)

(a− 4)A2 − q (A4 + 2A0) = 0 , (2.114b)(
a− 4k2

)
A2k − q (A2k+2 +A2k−2) = 0 , k ≥ 2 . (2.114c)

A similar procedure is valid for ce2n+1, se2n+1 and se2n+2. Again simplifying the notation

by using b for bn(q) and Bk for B
(2n+1)
2k+1 (q) and B

(2n+2)
2k+2 (q) the following recurrence

relations yield. For ce2n+1(q; z) it is

(a− 1− q)A1 − qA3 = 0 , (2.115a)(
a− (2k + 1)2

)
A2k+1 − q (A2k−1 +A2k+3) = 0 , k ≥ 1 . (2.115b)

For se2n+1(q; z) it is

(b− 1 + q)B1 − qB3 = 0 , (2.116a)(
a− (2k + 1)2

)
B2k+1 − q (B2k−1 +B2k+3) = 0 , k ≥ 1 . (2.116b)

For se2n+2(q; z) it is

(b− 4)B2 − qB4 = 0 , (2.117a)(
b− 4k2

)
B2k − q (B2k−2 +B2k+2) = 0 , k ≥ 2 . (2.117b)

The theory of Mathieu functions is used in Chapter 5, where a special case for the

one-dimensional model for a stented artery is shown to be reducible to the Mathieu

equation.



Chapter 3

Three-dimensional model for

blood vessels reinforced by stents

3.1 Waves in a periodically reinforced blood vessel

In this chapter, based on the paper by Frecentese et al. [36], the Bloch-Floquet approach

is used to analyse the waves that can propagate through the stented artery system and

to determine their dynamic properties. As explained in Section 2.3, this method allows

one to derive the relation between the frequency and the wavenumber (or, equivalently,

the Bloch-Floquet parameter). This relation is called the dispersion relation and its

real solutions yield the so-called dispersion curves. The dispersion curves provide the

group velocity (corresponding to the slope of the curve) and the phase velocity (secant

slope) at each frequency. They also indicate the frequency ranges in which waves can

physically propagate within the system (called pass-bands) and the ranges in which waves

cannot propagate (called stop-bands). The Bloch-Floquet analysis reduces the problem

to the study of a single unit cell which, in this case, includes the artery wall, the stent

structure, and the blood. The elementary cell for this problem is more complicated than

the illustrative introductory examples described in Section 2.3 but the same principles of

reduction to an elementary cell and implementation of quasi-periodicity conditions are

applied. Some examples of representative mode shapes are shown in Figure 3.1.

3.1.1 Governing equations

In the following, subscripts ‘a’, ‘s’, and ‘f’ in the equations denote the artery, the stent,

and the fluid (blood), respectively. Small displacement theory is implemented in this

work.

In order to determine the dispersion relation, the artery is modelled as a hollow

cylinder composed of a linear elastic isotropic homogeneous material. Accordingly, its

equations of motions are

µa∇2ua + (λa + µa)∇(∇ · ua) = ρa
∂2ua

∂t2
, (3.1)

39
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(a) Axisymmetric mode. (b) Flexural mode. (c) Torsional mode.

(d) Axial mode. (e) Mode involving simple
flattening of the wall.

(f) Mode involving trefoil
flattening of the wall.

(g) Mode involving qua-
trefoil flattening of the
wall.

(h) Flexural-torsional
mode with rotated end
sections.

Figure 3.1: Representative shapes of the deformation modes observed in the unit cell with a stent.

where µa and λa are the Lamé parameters, ρa is the density (mass per unit volume), ua

is the displacement vector, t is time, and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T represents the vector

differential operator.

The blood is modelled as an acoustic medium, and its equation of motion is

Kf∇2pf = ρf
∂2pf

∂t2
, (3.2)

where pf and Kf are the pressure and the bulk modulus of the fluid, respectively, and ρf is

the density of the fluid. This approximation yields accurate results within the framework

of eigenfrequency analysis, as previously shown in the literature, see for example the

study of fluid-filled containers in the recent paper by Carta et al. [18].

Since the fluid is modelled as an acoustic medium, the coupling at the fluid-solid

interface is obtained by means of the following relation for the stresses

σan = −pfn , (3.3)
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where σa is the stress tensor in the artery wall and n is the unit outward normal vector.

The exterior boundary of the artery wall is free and this is expressed using the relation

σan = 0 . (3.4)

It should be noted that the simplified time-harmonic computations are accompanied by

the full transient analysis of the fluid-structure interaction in the presence of the viscous

Newtonian fluid in Section 3.4. The most interesting wave regimes identified in the

linearised time-harmonic model are given special attention in the transient computations.

In the linearised time-harmonic computations, the stent is modelled as a curved wire

with a circular cross-section; the material is assumed to be linearly elastic, isotropic and

homogeneous. The stents are considered to be already deployed and in contact with

the artery wall. In this work the connection between the stent and the artery wall is

assumed to be bilateral, which means that the stents are tied to the inner artery wall.

Hence, continuity of displacements and tractions is assumed at the interface. No other

constraints are applied in the model in order to allow for a broad class of deformation of

the vessel. In fact, arteries themselves can be mobile with the movement of the body,

including elongation and twisting, as observed by Scheinert et al. [104] and Cheng et

al. [27].

3.1.2 Bloch-Floquet waves

As is standard for Bloch-Floquet analysis, the time-harmonic regime is assumed. Hence,

the displacement field in the artery, the pressure field in the blood, and the displacement

field in the stent are expressed as

ua(x, t) = Ua(x)eiωt , (3.5a)

pf(x, t) = Pf(x)eiωt , (3.5b)

us(x, t) = Us(x)eiωt , (3.5c)

where Ua and Us denote, respectively, the displacement amplitude vectors for the artery

wall and for the stent, Pf is the pressure amplitude, and ω is the radian frequency.

Bloch-Floquet quasi-periodicity conditions are imposed, as shown in Figure 3.2a, and

they are given by

Ua(x+ La, y, z) = Ua(x, y, z)ei kLa , (3.6a)

Pf(x+ La, y, z) = Pf(x, y, z)e
i kLa , (3.6b)

Us(x+ La, y, z) = Us(x, y, z)e
i kLa , (3.6c)

where La is the length of the unit cell, k is the wavenumber, which is inversely proportional

to the wavelength λ = 2π/k, and (x, y, z) is a point in the elementary cell, which includes

the boundary.
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(a) Scheme of the Bloch-Floquet quasi-periodic conditions.
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(b) Scheme of the unit cell.

Figure 3.2: Representation of the geometry and of the quasi-periodic boundary conditions of the
unit cell employed in the numerical simulations. The middle lines of the coils are represented by
red dotted lines in (b). The dash-dotted circumferences shown in (b) represent the intersection
between the inner wall of the artery and the transverse planes containing the centroids of the two
coils.

3.1.3 Definition of the three-dimensional geometries

The unit cell for the stented artery is composed of a hollow cylinder (representing

the wall of the vessel), two zigzag-shaped coils (representing the stent pattern), and a

cylindrical fluid domain enclosed by the hollow cylinder (representing the blood), as

sketched in Figure 3.2b. The artery wall is modelled as a three-dimensional solid, having

a length La of 10 mm, a lumen diameter 2Ra of 7.3 mm, and a thickness ha of 0.7 mm.

Therefore, the outer diameter 2Rb is equal to 8.7 mm and the average radius is equal

to 4 mm, reproducing representative values available in the literature (see, for example,

[32, Tab. 4.2, p. 187]). The zigzag-shaped coils are characterised by 8 crowns (16 segments)

and are modelled as beams with a constant circular cross-section (0.1 mm diameter).

The distance between the opposite crowns is equal to one third of the unit cell length

(≈ 3.333 mm), whereas the distance between the centroids of the two coils is equal to
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(a) Example of a Cook zilver stent structure.

(b) Unit cell with
type A stents.

(c) Unit cell with
type B stents.

(d) Unit cell with
type A connected
stents.

Figure 3.3: Examples of unit cells with different stent configurations employed in the numerical
simulations. Part (a) illustrates one of many stent geometries. Parts (b)-(d) represent different
typical patterns for coils.

half the unit cell length (5 mm), as indicated in Figure 3.2b (on the left and right sides,

respectively).

The dynamic response of the stented artery with three different configurations of

the coils, shown in Figure 3.3, is investigated. In particular, the following cases are

analysed: a symmetric unit cell (type A), where the coils are symmetric with respect to

the middle cross-section of the cell (see Figure 3.3b); a unit cell with unidirectional stents

(type B), obtained by translation of the coils (see Figure 3.3c); a unit cell with connected

type A stents, where some of the crowns are linked with additional beam elements (see

Figure 3.3d). It is possible to note that for the cases of Type A and Type B stents, the

coils may be connected either by fabric or by very soft and less dense material, such as

nylon, and these components may be neglected in the model as they will not affect the

overall system. The computations for both Bloch-Floquet and reflection-transmission are

performed using the University of Liverpool licensed COMSOL Multiphysics R© versions

5.3 and 5.4.

3.1.4 Material parameters

Arteries are characterised by nonlinear behaviour, for which nonlinear elastic constitutive

models (including the description as a heterogeneous material) are reported in the

literature as well as their calibration based on experiments by several research groups

including Holzapfel et al. [51, 53], Lally and co-workers [99, 124], Gastaldi et al. [40] and

Zhang et al. [127]. However, it has been reported, by Back et al. [8] for instance, that

unhealthy or stented arteries lose much of their flexibility and so linearised approaches

can provide useful insights.



Chapter 3. 3D stented blood vessels 44

Table 3.1: Elastic properties of the materials employed in the simulations.

Properties
Materials

Artery Stent

Young Modulus Ea = 800 kPa Es = 210 GPa
Poisson ratio νa = 0.49 νs = 0.3
Density ρa = 1200 kg m−3 ρs = 7800 kg m−3

Regarding stents, nonlinear constitutive models for shape memory alloys are generally

used to describe the behaviour of balloon-expandable and self-expanding stents. Some ref-

erences include the papers by Azaouzi et al. [7] and by Nematzadeh and Sadrnezhaad [93].

Some authors prefer to employ linear elastic constitutive models, see for example the

works of Lally et al. [66], Walke et al. [119] and Schiavone et al. [105]. It is worth noting

that nonlinear constitutive models are often employed for atherosclerotic tissue and

restenosis, as reported in 1994 [74] and more recently by Lally and colleagues [66, 124].

The aim of this study is to identify possible pass-bands and stop-bands for the coupled

system composed of the stented artery and the blood by means of the Bloch-Floquet

approach. The components of the coupled system are modelled as linear elastic isotropic

homogeneous materials. The elastic parameters for the artery tissue and the stents

employed in this work are summarised in Table 3.1, and they correspond to typical

average values for the carotid artery [32, 94] and for metals commonly used for stents, as

reported by Tambaca et al. [111]. The blood is modelled as an acoustic medium of bulk

modulus Kf = 2.4 GPa and density ρf = 1050 kg m−3.

3.1.5 Dispersion curves

In this section, the dispersion properties of the Bloch-Floquet elastic waves propagating

along the walls of the artery are discussed. The results are presented as dispersion curves

in the wavenumber-frequency plane. The dispersion curves are even and 2π/La-periodic

functions. The interval [−π/La, π/La] is known as the irreducible Brillouin zone, as

defined in Section 2.3. Owing to their symmetry and periodicity, the dispersion curves

are illustrated for the range 0 ≤ k ≤ π/La. The dispersion diagrams presented in

Figures 3.4-3.10 identify ω as a multi-valued function of the Bloch-Floquet parameter k.

The dispersion diagrams show the presence of stop-bands and standing waves (concepts

introduced here in Section 2.3) in stented blood vessels. The stop-bands represent the

intervals of frequencies for which only evanescent waveforms occur. Standing waves

are characterized by zero group velocity and they are observed at the boundaries of

stop-bands.

As a first step, the comparison between the case of a healthy artery and the case of

an artery with type A stents (Figure 3.3b) is provided. Subsequently, a comparison of

the three types of stents depicted in Figure 3.3 is presented to show the influence of the

stent geometry on the dispersion properties of the system.
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Figure 3.4: Dispersion curves in the wavenumber-frequency plane representing different vibration
modes for the symmetric unit cell shown in Figure 3.3b. The shapes of the deformation modes
associated with the points highlighted with arrows are depicted in Figure 3.1, where the same
letters are used.

3.1.5.1 Vibrational modes: type A stents

Figure 3.4 presents the complete dispersion diagram for type A stents. The labels (a)-(h),

which mark the individual dispersion curves in this figure, correspond to representative

vibrational modes shown in Figure 3.1. In particular, the four curves corresponding to

modes (a)-(d) begin at the origin and are referred to as “acoustic” dispersion curves. Recall

that acoustic dispersion curves were introduced in Section 2.3. These curves are dominated

by flexural motion (b), axially symmetric expansion/contraction deformation (a), torsional

motion (c) and longitudinal motion (d). As the frequency is increased, the individual

dispersion curves represent mixed-modes, which incorporate elastic deformations of

different types, like the mode represented by curve (h). Here only 8 modes are illustrated

because at higher frequencies, the modes become mixed to such a degree that it becomes

very difficult to distinguish features and the dispersion properties. It should be noted

that there are no common stop-bands. However, it is possible to investigate stop-band

formation for each individual vibrational mode separately, by splitting Figure 3.4 into

a set of different curves representing different modes. In the following, a selection of

representative vibrational modes are discussed.

Figure 3.5 considers the case of type A stents, with the unit cell shown in Figure 3.5a.

From Figures 3.5b and 3.5c, it can be noted that the group velocities for the axisymmetric

mode are slightly different, with an increase observed in the case of the stented artery.

Furthermore, there are no stop-bands at low frequencies, and hence no blockages in

transmission are observed. Conversely, at high frequencies the appearance of a stop-band
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in the stented artery is noted. The same observations hold true for the flexural mode

shown in Figures 3.5d and 3.5e.

A different behaviour is detected for the mode involving simple flattening of the wall,

shown in Figures 3.5f and 3.5g. In fact, for the stented artery, the stop-band at low

frequencies is much wider in comparison with the unstented artery, and an additional

stop-band appears at high frequencies. The stop-band at low frequencies in Figure 3.5f

indicates that this mode cannot propagate within the typical frequency range of the blood

vessels in human beings. When a type A stent is installed in the artery, this stop-band is

wider, which prevents the propagation of the simple wall flattening mode within a larger

frequency range, compared to the one that may have been activated without stents.

In Figure 3.6, additional modes for the type A stents are considered. In particular,

the dispersion diagrams corresponding to modes involving trefoil and quatrefoil flattening

of the wall, and to the flexural-torsional mode with rotation of the end sections, are

shown. Large stop-bands are observed for lower frequencies, hence it is unlikely that these

modes occur within the standard pulsatile flow regime of the human body. In Figure 3.7,

the dispersion properties of torsional and axial modes are illustrated. In these cases, no

stop-bands appear.

3.1.5.2 Vibrational modes: comparisons of different types of stents

Comparing Figures 3.5 and 3.8, it can be noted that the behaviour of the system with

type A stents and type B stents is very similar. Connected type A stents show a slightly

different group velocity at low frequencies compared with type A and B stents, and an

additional stop-band appears between the first two dispersion curves associated with each

mode. Furthermore, when connected type A stents are installed, the stop-band between

the second and the third dispersion curves appears at higher frequencies compared with

type A and B stents. In Figure 3.9 the dispersion diagrams corresponding to modes

involving trefoil and quatrefoil flattening of the wall and to the flexural-torsional mode

with rotation of the end sections are shown. Large stop-bands are observed for lower

frequencies, hence it is unlikely that these modes occur within the standard pulsatile flow

regime of human body. In Figure 3.10 the dispersion properties of torsional and axial

modes are illustrated. In these cases no stop-bands appear.
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(b) Unit cell without stents, axisymmetric
mode.
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(c) Unit cell with type A stents, axisymmet-
ric mode.
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(d) Unit cell without stents, flexural mode.
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(e) Unit cell with type A stents, flexural
mode.
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(f) Unit cell without stents, mode involving
simple flattening of the wall.
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(g) Unit cell with type A stents, mode in-
volving simple flattening of the wall.

Figure 3.5: Dispersion curves for the axisymmetric mode (b)-(c), the flexural mode (d)-(e), and
for the mode involving simple flattening of the wall (f)-(g), for the unit cell without stents and
with type A stents shown in part (a). The shaded zones denote the stop-bands.
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(a) Unit cell without stents, mode involving
trefoil flattening of the wall.
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(b) Unit cell with type A stents, mode in-
volving trefoil flattening of the wall.
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(c) Unit cell without stents, mode involving
quatrefoil flattening of the wall.
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(d) Unit cell with type A stents, mode involv-
ing quatrefoil flattening of the wall.
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(e) Unit cell without stents, flexural-torsional
mode with rotation of the end sections.
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(f) Unit cell with type A stents, flexural-
torsional mode with rotation of the end sec-
tions.

Figure 3.6: Dispersion curves for the mode involving trefoil (a)-(b), and quatrefoil (c)-(d), and
for the flexural-torsional modes with rotation of the end sections (e)-(f), for the unit cell without
stents and with type A stents. The shaded zones denote the stop-bands.
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(a) Unit cell without stents, torsional mode.
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(b) Unit cell with type A stents, torsional
mode.
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(c) Unit cell without stents, axial mode.
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(d) Unit cell with type A stents, axial mode.

Figure 3.7: Dispersion curves for the torsional mode (a)-(b), and the axial mode (c)-(d), for the
unit cell without stents and with type A stents.
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(a) Unit cell with
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(b) Unit cell with
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stents.
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(c) Unit cell with type B stents, axisymmet-
ric mode.
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(d) Unit cell with connected type A stents,
axisymmetric mode.
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(e) Unit cell with type B stents, flexural
mode.
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(f) Unit cell with connected type A stents,
flexural mode.
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(g) Unit cell with type B stents, mode in-
volving simple flattening of the wall.
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(h) Unit cell with connected type A stents,
mode involving simple flattening of the wall.

Figure 3.8: Comparison of the dispersion curves for the axisymmetric mode (c)-(d), the flexural
mode (e)-(f), and for the mode involving simple flattening of the wall (g)-(h), for the unit cell
with different types of stents, (a) type B and (b) type A connected. The shaded zones denote the
stop-bands.
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(a) Unit cell with type B stents, mode in-
volving trefoil flattening of the wall.
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(b) Unit cell with connected type A stents,
mode involving trefoil flattening of the wall.
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(c) Unit cell with type B stents, mode involv-
ing quatrefoil flattening of the wall.
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(d) Unit cell with connected type A stents,
mode involving quatrefoil flattening of the
wall.
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(e) Unit cell with type B stents, flexural-
torsional mode with rotation of the end sec-
tions.
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(f) Unit cell with connected type A stents,
flexural-torsional mode with rotation of the
end sections.

Figure 3.9: Comparison of the dispersion curves for the mode involving trefoil (a)-(b), and
quatrefoil (c)-(d), and for the flexural-torsional modes with rotation of the end sections (e)-(f),
for the unit cell with different types of stents. The shaded zones denote the stop-bands.
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(a) Unit cell with type B stents, torsional
mode.
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(b) Unit cell with connected type A stents,
torsional mode.
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(c) Unit cell with type B stents, axial mode.
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(d) Unit cell with connected type A stents,
axial mode.

Figure 3.10: Comparison of the dispersion curves for the torsional mode (a)-(b), and for the axial
mode (c)-(d), for the unit cell with different types of stents.
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3.2 Bloch-Floquet formulation for the cluster of stents

The cases analysed in the previous section are representative of common stent designs,

where a single stent is installed in the artery. Periodicity and geometry of the rein-

forcements in the vessel can affect the dynamic response of the system in terms of wave

propagation. Hence, the question of finding particular geometries and patterns inducing

stop-bands at low frequency regimes arises. Clinical experience shows that it is extremely

rare for just one area of a diseased artery to be affected. It is not unusual for several small

areas within one artery to have profound luminal reduction or a much longer segment

affected. This raises the question as to whether it is better to put in multiple small stents

or one long stent to treat several areas of disease at once. The case of multiple stents

provides a different and very interesting pattern of the reinforcement of the vessel, linked

to the periodicity of the structure, as shown by Papathanasiou et al. [96].
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(a) Unit cell employed in the computations.
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(b) Alternative unit cell, equivalent to (a).

Figure 3.11: Geometry of the unit cell for the cluster of type A stents. Part (b) shows clearly the
spacing between the groups of coils, whereas part (a) shows the length of the repeated stented
zone. Part (b) illustrates the length Leq of the shell employed in the semi-analytical model shown
in Figure 3.13a.

In this section, an in-depth investigation of the case in which more stents are installed

in different sections of the arteries is provided for the three-dimensional model, thus

generalising the one-dimensional analysis by Papathanasiou et al. [96]. To this purpose,

a unit cell is composed of a finite-length stent (denoted by Lsc) and unstented section of

the artery, which is then repeated periodically with a specific spacing Lfc. The geometry

of this system is shown in detail in Figure 3.11, where type A stents are used. The total

length Ltc of such a unit cell is equal to 60 mm and the length Lfc of the stent free zone
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is equal to 20 mm. Two equivalent unit cells can be employed, and these are shown in

Figures 3.11a and 3.11b.

3.2.1 Numerical simulations

The dispersion curves obtained from the Bloch-Floquet analysis are shown in Figure 3.12.

It can be noted that for the axisymmetric mode (Figure 3.12a) there are two additional

stop-bands appearing in the low frequency regime, but the width of these stop-bands is

much smaller compared with those determined for type A, type B, and type A connected

stents (see Figures 3.5c, 3.8c, and 3.8d). Similarly, a narrow stop band appears in the

low frequency regime for the flexural mode (Figure 3.12b), which is smaller than the first

stop-band appearing for type A, type B, and type A connected stents (see Figures 3.5e,

3.8e, and 3.8f).

For the simple flattening of the wall (Figure 3.12c), the dispersion curves have a slope

close to zero, so they represent standing waves and/or waves with a very small group

velocity. This means that energy is not transmitted through the system. The deformation

modes corresponding to the standing waves, illustrated in Figure 3.12c, show that the

deformation occurs only within the zones separating the groups of stents (Figure 3.12d).

Therefore, the system behaves similarly to a simplified system composed of a fluid-filled

cylinder with a length Leq = 30 mm, indicated in Figure 3.11b. Appropriate boundary

conditions need to be applied at the end sections of this equivalent system. In particular,

the deformation modes associated with the (quasi-)zero slope dispersion curves for the

cluster of stents suggest the application of simply supported boundary conditions. The

resonant frequencies of the equivalent system, corresponding to the standing waves for

the cluster of stents, can be determined analytically as discussed in the next section.

Figure 3.12d shows that exponential localization and flattening of the arterial wall

can occur in the unstented section. This can lead to slight change in the shape of the

lumen and subsequently influences the blood flow at higher frequencies.

3.2.2 Semi-analytical model

The frequencies corresponding to standing waves and to small group velocity waves, deter-

mined numerically in Section 3.2.1, can be also estimated analytically by approximating

the arterial wall as a finite elastic shell with the simply supported boundary conditions at

the ends. The thin shell theory is employed here, together with the assumption of small

displacements. The fluid exerts pressure on the artery wall. The equivalent cylindrical

shell has thickness heq, radius of the middle surface Req, and length Leq. The reference

system (x, θ, r) is depicted in Figure 3.13, where the x-axis is the axis of the shell. The

components of the displacement field u = uex + veθ + wer of the middle surface of the

shell are aligned with the local x, θ, r directions respectively.
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Figure 3.12: Dispersion curves for the cluster of stents.
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Figure 3.11b.
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3.2.2.1 Framework of the thin shell theory

The equations of motions for a cylindrical thin shell are found in numerous references

including the books by Soedel [109] and Rao [101], and have the form

∂Nxx

∂x
+

1

Req

∂Nxθ

∂θ
= ρaheq

∂2u

∂t2
, (3.7a)

∂Nxθ

∂x
+

1

Req

∂Nθθ

∂θ
+

1

Req

∂Mxθ

∂x
+

1

R2
eq

∂Mθθ

∂θ
= ρaheq

∂2v

∂t2
, (3.7b)

∂Mxx

∂x2
+

2

Req

∂2Mxθ

∂x∂θ
+

1

R2
eq

∂2Mθθ

∂θ2
− Nθθ

Req
+ fr = ρaheq

∂2w

∂t2
, (3.7c)

where the external load fr represents the fluid pressure at the fluid-solid interface, whereas

the generalised stresses are given by

(Nxx, Nθθ, Nxθ) =

∫ heq/2

−heq/2
(σxx, σθθ, σxθ) dr , (3.8a)

(Mxx,Mθθ,Mxθ) =

∫ heq/2

−heq/2
(σxx, σθθ, σxθ)r dr . (3.8b)

The moments are represented by M , and the forces by N . The constitutive equations for a

linear elastic isotropic homogeneous material, relating the stress tensor σ in equation (3.8)

to the strain tensor ε, have the formσxxσθθ

σxθ

 =

Q11 Q12 0

Q12 Q22 0

0 0 Q66


εxxεθθ
εxθ

 . (3.9)

The non-zero components of the elastic matrix Q are

Q11 = Q22 =
Ea

1− ν2
a

, Q12 =
Eaνa

1− ν2
a

, Q66 =
Q11 −Q12

2
=

Ea

2(1 + νa)
, (3.10)

where Ea and νa are the Young modulus and the Poisson ratio of the shell’s material

(the artery), respectively. Following Love’s theory, the components of the strain tensor ε

introduced in equation (3.9) are defined in terms of the displacement field u as

εxx =
∂u

∂x
− ∂2w

∂x2
r , (3.11a)

εθθ =
1

Req

(
∂v

∂θ
+ w

)
+

1

R2
eq

(
∂v

∂θ
− ∂2w

∂θ2

)
r , (3.11b)

εxθ =
∂v

∂x
+

1

Req

∂u

∂θ
+

1

Req

(
∂v

∂x
− 2

∂2w

∂x∂θ

)
r . (3.11c)
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Substituting equations (3.8)-(3.11) into equation (3.7) yields the following form for the

equations of motions: L11 L12 L13

L21 L22 L23

L31 L32 L33


uv
w

 =

 0

0

−fr

 , (3.12)

where Lij (i, j = 1, 2, 3) are the differential operators with respect to x, θ and t, given by

L11 =
Eaheq

(1− ν2
a)

∂2

∂x2
+

Eaheq

2(1 + νa)R2
eq

∂2

∂θ2
− ρaheq

∂2

∂t2
, (3.13a)

L12 = L21 =
Eaheq

2(1− νa)Req

∂2

∂x∂θ
, (3.13b)

L13 = −L31 =
νaEaheq

(1− ν2
a)Req

∂

∂x
, (3.13c)

L22 =
Eaheq

2(1 + νa)

(
1 +

h2
eq

12R2
eq

)
∂2

∂x2
+

Eaheq

(1− ν2
a)R2

eq

(
1 +

h2
eq

12R2
eq

)
∂2

∂θ2
− ρaheq

∂2

∂t2
,

(3.13d)

L23 = −L32 =
Eaheq

(1− ν2
a)R2

eq

∂

∂θ
−

Eah
3
eq

12(1− ν2
a)R2

eq

∂3

∂x2∂θ
−

Eah
3
eq

12(1− ν2
a)R4

eq

∂3

∂θ3
, (3.13e)

L33 = −
Eah

3
eq

12(1− ν2
a)

(
∂2

∂x2
+

1

R2
eq

∂2

∂θ2

)2

− Eaheq

(1− ν2
a)R2

eq

− ρaheq
∂2

∂t2
. (3.13f)

The fluid is modelled as an acoustic medium, hence the equations of motions of the

fluid can be expressed in the cylindrical coordinate system (x, θ, r) as

1

r

∂

∂r

(
r
∂pf

∂r

)
+

1

r2

∂2pf

∂θ2
+
∂2pf

∂x2
=

1

C2
f

∂2pf

∂t2
, (3.14)

where pf is the fluid pressure, and Cf is the speed of sound in the fluid (Cf =
√
Kf/ρf).

3.2.2.2 Time-harmonic regime

In the framework of the time-harmonic regime, the displacement field u of the shell can

be expressed in the form of a travelling wave, associated with an axial wavenumber km

and circumferential mode number n. The expression of the displacement field u is

u(x, θ, t) = Ue−kmx cos(nθ) cos(ωt) , (3.15a)

v(x, θ, t) = V e−kmx sin(nθ) cos(ωt) , (3.15b)

w(x, θ, t) = We−kmx cos(nθ) cos(ωt) , (3.15c)
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where ω is the radian frequency, and U, V,W are the wave amplitudes in the x, θ, r

directions respectively. The associated form of the acoustic pressure field is expressed as

pf = Pf e
−kmx cos(nθ) Jn(krr) cos(ωt) , (3.16)

where Pf is the pressure amplitude of the acoustic fluid, kr is the radial wavenumber,

and Jn(krr) is the Bessel function of the first kind of order n. The radial wavenumber is

related to the axial wavenumber by the relation

kr =

√
ω2

C2
f

− k2
m . (3.17)

3.2.2.3 Approximation of the trapped waveforms

The fluid-solid interaction is taken into account by imposing the following boundary

condition in terms of equivalence between the acceleration of the fluid and the shell:

∂2w

∂t2

∣∣∣∣
r=Req

=
∂vf

∂t

∣∣∣∣
r=Req

= − 1

ρf

∂pf

∂r

∣∣∣∣
r=Req

(3.18)

where vf is the velocity of the fluid. Substituting equations (3.15c) and (3.16) into the

boundary conditions (3.18) yields the pressure amplitude Pf of the acoustic fluid in the

form

Pf =
ω2ρf

kr J′n(krReq)
W . (3.19)

The displacement field (3.15) and the pressure amplitude (3.19) can be substituted

into the equations of motions (3.12), so that the equations of motions of the coupled

system can be written as C11 C12 C13

C21 C22 C23

C31 C32 C33


U

V

W

 =

0

0

0

 , (3.20)
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where the elements Cij are given by

C11 =
Eaheq

1− ν2
a

k2
m +

Eaheq

2(1 + νa)R2
eq

n2 − ρaheq ω
2 , (3.21a)

C12 = i
Eaheq

2(1− νa)Req
nkm = −C21 , (3.21b)

C13 = i
Eaheqνa

(1− ν2
a)Req

km = −C31 , (3.21c)

C22 =

(
1 +

h2
eq

12R2
eq

)[
Eaheq

(1− ν2
a)R2

eq

n2 +
Eaheq

2(1 + νa)
k2
m

]
− ρaheq ω

2 , (3.21d)

C23 = C32 =
Eaheqn

(1− ν2
a)R2

eq

[
h2

eq

12

(
k2
m +

n2

R2
eq

)
+ 1

]
, (3.21e)

C33 =
Eaheq

(1− ν2
a)

[
1

R2
eq

+
h2

12

(
k2
m +

n2

R2
eq

)2
]
− ρaheq ω

2 + fr , (3.21f)

and the fluid loading term takes the form

fr = − ρf

kr

Jn(krReq)

J′n(krReq)
ω2 . (3.22)

The assumption of simply supported ends (at x = 0 and x = Leq) yields the following

boundary conditions

v = 0 , w = 0 , Nxx = 0 , Mxx = 0 , at x = 0 and x = Leq . (3.23)

In order to satisfy the boundary conditions (3.23), the axial wavenumber km is taken

as

km =
πm

Leq
. (3.24)

For (3.20) to have non-trivial solutions, the determinant of C must be equal to 0, so that

the characteristic equation takes the form

F (m,n, ω) = 0 . (3.25)

3.2.2.4 Frequency comparison for the simplified structure

The term “simplified structure” is used here for a finite section of the blood vessel, of

length Leq between the stents. To observe the trapped waveforms, finite element analysis

is also performed for the case when the appropriate boundary conditions are set at the

edges of the finite section. These computations are compared with the results obtained

from the semi-analytical shell model described above.

Equation (3.25) is used to obtain the natural frequencies of the fluid-filled shell that

approximate the frequencies corresponding to the dispersion curves for the cluster of

stents with zero or small slope. The second column of Table 3.2 summarises the first three

frequencies for standing waves evaluated by means of the semi-analytical model. The
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Table 3.2: Comparative results in terms of frequency between the semi-analytical model and the
finite element analysis for the determination of the standing waves within the cluster of stents.
In the semi-analytical model, the results refer to the case n = 2 assuming length Leq = 30 mm,
radius Req = 4 mm, and thickness heq = 0.7 mm.

m
Bloch-Floquet Finite structure

approach [Hz] Semi-analytical Simplified structure Simplified structure
model [Hz] (solid) [Hz] (shell) [Hz]

1 113.82 120.94 107.23 121.01
2 155.08 156.29 146.61 160.35
3 206.77 225.96 216.98 226.29

results are compared with the frequencies obtained through two finite element models of

the simplified structure described in this section. In particular, in the first model the

artery is modelled as a three-dimensional solid, whereas in the second model the artery

is modelled as a shell.

The first column in Table 3.2 corresponds to standing waves, with quasi-periodicity

boundary conditions set on the edges of the elementary cell. The third column corresponds

to a finite hollow cylinder, whose displacements at the edge boundaries are equal to zero.

The fourth column is produced from the finite element computations for the elastic shell

in the framework of the Kirchhoff-Love shell theory, with the simply supported edges of

the finite section of the blood vessel.

A comparison between the semi-analytical model and the simplified structure where

the artery is modelled as a shell (columns 2 and 4 of the Table 3.2) shows that there is a

good agreement between the two models. On the other hand, the model in which the

artery is treated as a three-dimensional solid shows a small difference (compared with

the approximation based on the shell theory in column 4 of Table 3.2) in the values of

the frequencies corresponding to standing waves. This difference is associated with the

choice of the fixed displacement boundary conditions at the edges of the thin-walled solid

used in the calculations. Furthermore, it can be noted that the values obtained from the

finite three-dimensional structure are closer to those obtained from the Bloch-Floquet

analysis for the cluster of stents (column 1 of the Table 3.2). The values of the frequencies

estimated using the semi-analytical model provide a good approximation for the standing

waves frequency characterised by exponential localisation within the unstented arterial

wall.

3.3 Transmission problem

In this section, the transmission problem for the single stent and for the cluster of stents

of finite-length is presented. The material properties employed for the models discussed

in this section are reported in Table 3.1. In both cases, a pressure with amplitude

p0 = 2.6 kPa ≈ 20 mmHg is applied at x = 0, and it generates a wave which propagates

from the left-hand side to the right-hand side of the finite-length system (see Figures 3.14a
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Figure 3.14: Scheme of the finite-length structure employed in frequency response analysis for
type A stents. The system is based on the repetition of five unit cells of type A stents illustrated
in Figure 3.3b, where two sections of unstented artery are present at the left and at right ends.
The pressure field is shown in (b) and (c).

and 3.15a). Zero displacement boundary conditions are applied to the end sections of the

artery.

The analysis is performed in the following way. In the first step, the response of the

system is investigated within the frequency range corresponding to a pass-band. In the

second step, the investigation is restricted to a frequency range corresponding to the first

stop-band of the system related to the axisymmetric mode, which was determined in

Section 3.1.5 (see Figure 3.5c).

3.3.1 Single type A stent

The geometry for the case of a single type A stent is represented in Figure 3.14a, where

the total length of the artery is equal to 100 mm. A type A stent composed of 10 coils

spaced by a distance La/2 = 5 mm is inserted in the middle of the artery, so that the left

end and the right end are not supported by stents.

From Figure 3.14b, it can be noted that within the pass-band regime for the axisym-

metric mode, waves can propagate without dissipation of energy and no reflection is

detected; in this figure, the pressure field at the frequency of 400 Hz is shown. Conversely,

waves having a frequency within the stop-band regime for the axisymmetric mode (ranging

from 606.9 Hz to 692.1 Hz) cannot propagate through the system (Figure 3.14c).
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3.3.2 Cluster of type A stents

The geometry for the case of a cluster of type A stents is represented in Figure 3.15a,

where the total length of the artery is equal to 380 mm. The system is composed of five

unit cells (each of length Ltc = 60 mm) described in Figure 3.11a, where type A stents

are employed. Additional sections of stent-free artery (length equal to 4La) are present

at the left and at the right ends of the assembly of unit cells.

Similar to the case of a single stent, Figure 3.15b shows that waves can propagate

without dissipation within the pass-band regime for the axisymmetric mode and no

reflection is detected; in this figure, the effect of a wave of frequency 61 Hz is illustrated.

Conversely, waves having a frequency inside the stop-band regime cannot propagate

through the system (Figure 3.15c). In the latter case, where the frequency of the wave is

equal to 68 Hz, the decrease in pressure amplitude is less evident because the stop-band

width for the axisymmetric mode of this system (ranging from 66.3 Hz to 69.7 Hz) is

narrower compared with that of the single stent (606.9 Hz to 692.1 Hz).

3.4 Response of the system in the transient regime

The pulsatile nature of flow varies in the arterial tree with a dependence on the anatomical

position and the resistance in its draining arterial bed (organs supplied). The vessel

calibre (diameter of the lumen) differs depending upon anatomical location and the blood

flow required at times of activity or rest. The arteries are also subjected to the effects of

human activities including low frequency walking or running, as well as higher frequencies

such as riding in vehicles. This means that evolution of the pulsatile flow can play an

important role in the behaviour of a stented artery. Therefore, a further investigation in

the framework of the transient regime is required to complete the dynamic analysis of

the stented artery. This can improve the understanding of failure when changes in the

wave propagation and stress occur, and can help to explain the observed tissue reactions

to the stent placements reported by Schillinger et al. [106, 107].

3.4.1 Computational transient framework

A computational model is developed for the analysis of a finite-length artery in the

transient regime. In the first step, transient regime analysis is performed for an idealised

straight artery without stents; in the second step, the analysis is performed for the same

artery where type B stents are installed, and a comparison of the results is provided.

The artery is modelled as a hollow cylinder, whose length is 100 mm, with inner and

outer diameters equal to 7.3 mm and 8.7 mm, respectively. Zero displacement boundary

conditions are applied to the end sections of the artery. In the case of a stented artery,

the vessel is reinforced with 10 coils, whose spacing is equal to 5 mm, placed in the

centre of the system, thus providing the geometry represented in Figure 3.14a, where

type A stents are replaced with type B stents. In a change from the previous section of

this text, the stents are modelled as three-dimensional solids with square cross-section
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(0.1 mm × 0.1 mm). Therefore, equations of motions (3.1) are used for the artery and

for the stents, whereas the complete Navier-Stokes equations are employed to model the

fluid (blood). The Navier-Stokes equations are written as

∂vf

∂t
+ (vf · ∇)vf +

∇pf

ρf
− µf

ρf
∇2vf = 0 , (3.26)

where vf is the velocity field of the fluid and µf is the dynamic viscosity.

3.4.1.1 Material properties and boundary conditions

Consistent with the analysis reported in the previous sections, linear elastic isotropic

homogeneous materials are employed for the artery and the stents. The material properties

of the artery and of the stents are reported in Table 3.1. The blood is modelled as a

viscous incompressible fluid of density 1050 kg m−3 and of dynamic viscosity 0.003 Pa s.

The continuity of the displacements and tractions between the stents and the artery

is applied at the interface corresponding to the external surface of the stent and the inner

surface of the artery. It is assumed that the inlet and the outlet surfaces of the fluid are

positioned at x = 0 mm and at x = 100 mm, respectively.

Full coupling between the fluid and the structure is taken into account. Coupling is

provided by means of condition (3.3), which involves a relation between the fluid pressure

and the stress in the artery, together with the following relation between the velocity of

the fluid and the displacement of the artery

vf =
∂ua

∂t
, (3.27)

representing the no-slip boundary condition for the viscous fluid.

3.4.1.2 Initial conditions

At the initial time t = 0 s, the whole system is at rest. Furthermore, a velocity field v0 is

applied to the fluid at the inlet. The magnitude of the initial inlet mean velocity vm,0

is equal to 0.2 m s−1 and laminar flow regime is assumed, whereas the outlet pressure is

assumed to equal zero. In a first phase, representing the initialisation of the flow, the inlet

velocity is assumed constant (namely, v(t) = v0, hence vm(t) = vm,0) in order to reach

the steady-state condition at a certain time t0. During this phase, the velocity profile of

the flow takes the form of a circular paraboloid, corresponding to the Poiseuille flow. The

maximum velocity of this profile is equal to 0.4 m s−1. A distribution pc, representing the

shape of a circular paraboloid, is applied to the inlet velocity field in order to facilitate

the system to reach the steady-state regime. In particular, for the system depicted in

Figure 3.14a the distribution pc is expressed as

pc = 1− y2 + z2

R2
a

, (3.28)
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Figure 3.16: Graph of the function b(t) expressed by (3.31) for A0 = 1, ∆A = 0.1, and n = 20.

where Ra is the inner radius of the artery, y and z are the Cartesian coordinates describing

the inlet surface at x = 0 mm. Therefore, the initial inlet velocity field can be expressed

as

v0 = 2vm,0 pc ex , (3.29)

where ex is the unit vector oriented along the x-axis, which is the axis of the artery.

3.4.1.3 Pulsating flow

After reaching the steady-state regime, pulsating flow inlet conditions are assumed

(v(t) 6= v0 for t ≥ t0) as follows. An idealised pulsation representing the variation of inlet

velocity is expressed in terms of Gaussian approximations and corresponds to 4 beats per

second. This beat-rate, corresponding to 240 bpm, is representative of patients affected

by tachycardia. It should be noted that the interest is focussed on some of the frequencies

composing the pulsation signal, which might be attenuated by the stent structure. The

idealised pulsation is chosen as a continuous function approximating the velocity profile

in an artery (see for instance Figure 1 in the paper by Li and Kleinstreuer [71]).

In the time-amplitude plane, the shape of this pulsation profile is flat (corresponding

to the initial inlet mean velocity vm,0) for approximately two thirds of the period, whereas,

in the remaining part of the period, there is the variation from vm,0 to the maximum

peak (assumed to be equal to 1.1vm,0), and back again to vm,0 (the same holds for the

velocity field), thus representing the beat.

The pulsation is defined by a smooth function, which is periodically extended for

all values of the time variable t. On a fixed interval, this function is approximated by

a linear combination of “shifted” Gaussians. In particular, it can be noted that for a

sufficiently large N the function

Const

2N∑
k=−2N

e−(t−k)2 (3.30)
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approximates a function, which is constant in the interval t ∈ (−N/2, N/2), and decays

exponentially fast when |t| > 2N . This function is infinitely differentiable and is fully

suitable for approximating smooth pulses in the transient model. The desired pulsation

is obtained by means of a distribution b(t) applied to the constant velocity field v0. The

expression employed for the pulsating inlet velocity profile is

b(t) = A0 + ∆A

(
n∑

k=−n
exp

(
−k

2

72

))−1 m∑
j=0

n∑
k=−n

exp

{
− 1

72

[
240

(
ft− j − 1

4

)
− k
]2
}
,

(3.31)

where A0 is the initial amplitude (unit value is assumed), ∆A is the variation of the

amplitude (assumed equal to 0.1), f is the number of beats per second, m denotes

the total number of beats, and n corresponds to the number of the series elements

approximating the flat zone (n = 20 provides a good approximation and has been used

in the simulations). The function b(t) in equation (3.31) is plotted in Figure 3.16. The

inlet velocity field is expressed as

v(t) =

v0 t < t0 ,

b(t)v0 t ≥ t0 .
(3.32)

Equation (3.32) provides the inlet condition that is applied in the computational model

for the whole duration of the analysis.

The inlet velocity field v(t) provided in equation (3.32) is smooth in the time domain

(b is infinitely differentiable with respect to time) and therefore more suitable for transient

analysis computations. The analysis is performed for a total of 30 beats after the

initialisation of the flow, which takes place at approximately 2.8 s.

The velocity field v(t) can potentially promote different vibration modes of the system,

because it includes several harmonics. From the spectral analysis of the distribution b(t)

it can be noted that the amplitudes of the harmonics with a frequency higher than 32 Hz

are already one tenth of the amplitude of the first harmonic. Similarly, the amplitudes of

higher harmonics having a frequency above 60 Hz are already two orders of magnitude

below that of the first harmonic. Hence, the inlet velocity field excites a broad range of

frequencies, although only a few of them can be considered in practice, since the effect of

the others becomes negligible.

In the case of a pulsation corresponding to 3 Hz but with a variation of amplitude ∆A

equal to 0.5, the spectral analysis shows that harmonics having a frequency above 40 Hz

are nearly two orders of magnitude below that of the first harmonic.

3.4.2 Computations of the fluid velocity and elastic deformation of the

blood vessel

Figures 3.17 and 3.18 illustrate the speed of the fluid flow on the axis of the cylindrical

vessel as a function of time for different inlet frequencies. A comparison between unstented
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and stented blood vessels emphasises the different transient response of these systems to

a pulsating flow. The computations are presented for the case of type B stents.

It is observed that in the pass-band region the overall transient response of the stented

artery does not show localisation, and it converges to the time-harmonic mode slightly

faster than in the case of the unstented softer system. It can be noted that for the case of

the higher frequency shown in Figure 3.17, the profile of the displacement curve varies in

transition from the unstented to stented case. This profile clearly indicates the variation

of the velocity of the flow due to the presence of stents in the system.
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(b) Point P1 at x = 25mm.
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(d) Point P3 at x = 45mm.
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(e) Point P4 at x = 55mm.
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(f) Point P5 at x = 65mm.
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Figure 3.17: Evolution of the maximum fluid velocity at different points along the axis of the
unstented artery and comparison with the case of a stented artery at 240 bpm, where the variation
of amplitude ∆A is assumed equal to 0.1.
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(b) Point P1 at x = 25mm.
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(c) Point P2 at x = 35mm.
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(d) Point P3 at x = 45mm.
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(e) Point P4 at x = 55mm.
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(f) Point P5 at x = 65mm.
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Figure 3.18: Evolution of the maximum fluid velocity at different points along the axis of the
unstented artery and comparison with the case of a stented artery at 180 bpm, where the variation
of amplitude ∆A is assumed equal to 0.5.



Chapter 4

Bloch-Floquet waves for a stented

artery with plaque

The three-dimensional model presented in Chapter 3 is extended to the case of a stented

artery in which the plaque is also considered. Generally, healthy arteries have smooth

inner walls and blood flows through them easily. Some people, however, develop occluded

(or clogged) vessels due to the build up of a substance called atherosclerotic plaque on

the inner walls of the arteries. This arterial plaque is made from various substances that

circulate in the blood including calcium, fat, cholesterol, cellular waste, and fibrin, a

material involved in blood clotting as noted in the review by Topoleski and Stephen [113].

The plaque can reduce blood flow or, in some instances, block it altogether. In response

to plaque build-up, cells in artery walls multiply and secrete additional substances that

can cause the state of clogged arteries to deteriorate. As the plaque deposits grow, a

condition that causes the arteries to narrow and harden called atherosclerosis results.

The aim of this chapter is to provide a preliminary analysis of the effect of plaque

on the propagation of pressure waves in the artery before and after stent deployment.

Various plaque geometries are considered. As explained by [113], atherosclerotic plaque is

an extremely complex and highly variable tissue. Plaques may be broadly characterised

as one of three types: cellular, hypocellular or calcified as described by Pericevic et

al. [97], with stiffness increasing accordingly. Material parameters and geometries vary

from one example to the next, and so their determination, and corresponding mechanical

properties, are difficult to ascertain [113]. The calcified case is considered here and the

observations of [113] are used to provide guidance for material property values for the

models and simulations. Note that some equations from Chapter 3 are repeated here for

the convenience of the reader.

70
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4.1 Governing equations for the flow in a stented artery

with plaque

In the following, subscripts ‘a’, ‘s’, ‘p’, and ‘f’ in the equations denote the artery, the

stent, the plaque and the fluid (blood), respectively. The arterial wall and the plaque are

modelled using full three-dimensional linear elasticity equations of motion

µa∇2ua + (λa + µa)∇(∇ · ua) = ρa
∂2ua

∂t2
, (4.1)

µp∇2up + (λp + µp)∇(∇ · up) = ρp
∂2up

∂t2
, (4.2)

where µa, λa, µp and λp are the Lamé parameters, ρa and ρp are the densities (mass per

unit volume) of the artery and the plaque respectively, ua and up are the displacement

vectors, t is time, and ∇ = (∂/∂x, ∂/∂y, ∂/∂z)T represents the vector differential operator.

As in Chapter 3 the blood is modelled as an acoustic medium, with the pressure pf,

which satisfies the wave equation

Kf∇2pf = ρf
∂2pf

∂t2
, (4.3)

where Kf is the bulk modulus of the fluid. The density of the blood is represented by ρf.

The coupling at the fluid-solid interface is given by the following relations for the

tractions:

σan = −pfn , (4.4)

and

σpn = −pfn , (4.5)

where σa and σp are the stress tensors in the artery wall and in the plaque, respectively,

and n is the unit outward normal vector. The exterior boundary of the artery wall is

free, which is defined by the condition

σan = 0 . (4.6)

The transmission conditions at the interface between the plaque and the arterial wall are

standard and incorporate the continuity of displacements and tractions as follows:

σan = σpn , (4.7)

and

ua = up . (4.8)

The geometry of the cross-section of a partially blocked vessel is shown in Figure 4.1,

with three examples of different percentages of the plaque cross-sectional areas, typically

observed in clinical practice, shown. As discussed in the introduction to this chapter, the
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elastic stiffness of the plaque is highly variable. Several models incorporating arterial and

plaque material properties have been published, including those of Gleason et al. [44, 45]

and Holfzapfel and co-workers [50, 52, 53]. As evidenced by the volume of literature

dedicated to its study, the material and biomechanical behaviours of plaques are under

constant scrutiny. Compressive stiffness depends on the type of plaque, with non-fibrous

(atheromatous) plaques being the least stiff [113], followed by fibrous and then calcified

plaques being the stiffest as reported by Topoleski et al. [114] and Maher et al. [75]. A

summary of published stiffness ranges is provided by [113]; for cellular (and non-fibrous,

atheromatous, haematoma-related), values range from 10kPa up to 1.4MPa; hypocellular

(or fibrous) plaques have values ranging from 10 to 900kPa. The calcified cases, considered

here, have measured values ranging from 70kPa up to 2.3GPa [113]. The specific calcified

case, considered in the current modelling, is higher than the stiffness of the wall of the

blood vessel, whereas the mass density of the plaque is significantly lower than the mass

density of the arterial wall. Table 4.1 gives the values of the material parameters used in

the numerical simulations.
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Figure 4.1: Variation of cross-sectional obstruction. The cross-sectional area of the channel of
flow is reduced by (a) 31%,(b) 64%,(c) 85%.

Table 4.1: Materials parameters employed in the simulations of stented arteries in the presence of
atherosclerotic plaque.

Properties
Materials

Artery Stent Plaque

Young Modulus Ea = 800 kPa Es = 210 GPa Ep = 0.9 GPa
Poisson ratio νa = 0.49 νs = 0.3 νp = 0.35
Density ρa = 1200 kg m−3 ρs = 7800 kg m−3 ρp = 500 kg m−3

As in the previous Chapter 3, the stent is modelled as a curved wire with a circular

cross-section. The material is assumed to be linearly elastic, isotropic and homogeneous

and its physical parameters are given in Table 4.1. The stents are in contact with the

arterial wall or plaque and continuity of displacements and tractions is assumed at the

corresponding interfaces. It is important to note that the stent has a periodic pattern,

and although the mass density of the metal components is relatively large, the actual
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Figure 4.2: Photograph of a peripheral stent.

added inertia may vary for different stent designs. Figure 4.2 gives a typical geometrical

design of a stent used in vascular surgery.

As in Section 3.1, the time-harmonic regime is assumed. Hence, the displacement fields

in the artery, plaque and the stent, and the pressure field in the blood, are represented

by the following equations:

ua(x, t) = Ua(x)eiωt , (4.9a)

up(x, t) = Up(x)eiωt , (4.9b)

us(x, t) = Us(x)eiωt , (4.9c)

pf(x, t) = Pf(x)eiωt , (4.9d)

where Ua, Up and Us denote the amplitude of the displacement vector for, respectively,

the artery wall, plaque and stent, Pf is the pressure amplitude, and ω is the radian

frequency.

Although most of the vascular processes are transient, in the analysis of a dynamic

response of elastic systems it is useful to use the time-harmonic framework. Furthermore,

resonant and localised waveforms are identified and, if required, the Fourier analysis can

follow.

4.2 Bloch-Floquet waves for a partially blocked blood ves-

sel containing plaque

In the time-harmonic regime, the analysis of Bloch-Floquet waves is a highly effective way

to characterise the dispersion and localisation in periodic systems. In this section, the

methodology developed throughout this research (Chapters 3- 5 here) and the associated

publications by Frecentese et al. [36, 37, 120], is adopted. Namely, an elementary cell

within the system is identified, and conditions at the transition boundaries of the cell are

imposed to take into account the phase shift, corresponding to the wave, which has been

transmitted through the cell. The implementation of the Bloch-Floquet quasi-periodicity

conditions leads to the following equations:

Ua(x+ La, y, z) = Ua(x, y, z)eiKLa , (4.10a)

Up(x+ La, y, z) = Up(x, y, z)eiKLa , (4.10b)

Us(x+ La, y, z) = Us(x, y, z)e
iKLa , (4.10c)

Pf(x+ La, y, z) = Pf(x, y, z)e
ikLa , (4.10d)
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where La is the length of the unit cell, k is the wavenumber, which is inversely proportional

to the wavelength λ = 2π/k, and (x, y, z) is a point in the elementary cell, including the

boundary, as for the case without plaque shown in Figure 3.2b.

As for the case with no plaque in Section 3.1.3, the wall of the vessel in the unit cell

for the stented artery with plaque, is a hollow cylinder. However, the rest of the unit

cell’s geometry is far more complicated since the interior of the artery is no longer filled

only with fluid representing the blood. As can be seen in Figure 4.1, the model now

contains a mixture of blood and atherosclerotic plaque. The various cases are defined

using a ratio of plaque to cross-sectional area of the channel; Figure 4.1a shows the case

of a 31% reduction, Figure 4.1b shows 64% and Figure 4.1c illustrates the case of 85%

cross-sectional area reduction due to the presence of plaque. Note that the obstructed

channel of blood flow in these examples no longer has a circular cross-section. Additional

cases for which a circular cross-section remains after the accumulation of plaque, which

facilitated the deployment of stents in the analysis, were investigated and are shown in

Figure 4.3.
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Figure 4.3: Different configurations of plaque for which the cross-sectional area of the channel is
reduced to 40%. (a) unstented artery with 55% plaque shifted to one side and 5% arterial wall,
(b) stented artery with plaque shifted to one side, (c) unstented artery with 30% plaque broken
into two pieces and 30% arterial wall, (d) stented artery with two-piece plaque.

Figures 4.3a 4.3b show cases where the plaque is shifted to one side of the artery, and

Figures 4.3c 4.3d illustrate the case of ruptured plaque which has been broken into two

pieces. Note also that Figures 4.3b and 4.3d show the stents, which are zigzag-shaped

coils characterised by eight crowns (16 segments), which are linked with four additional

beam elements as shown in Figure 4.4.
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Figure 4.4: Unit cell with type A connected stents with four links.

4.2.1 Unstented arteries with plaque

The aim of this part of the study was to identify possible pass-bands and stop-bands for

the coupled system composed of the unstented artery with plaque and the blood, via

Bloch-Floquet analysis. The components of the coupled system are modelled as linear

elastic isotropic homogeneous materials. As stated earlier, the elastic parameters are

summarised in Table 4.1, and they correspond to representative values for the carotid

artery and plaque [113, 114] and for metals commonly used for stents as reported by

Tambaca et al. [111]. The blood is modelled as an acoustic medium of bulk modulus

Kf = 2.4 GPa and density ρf = 1050 kg m−3.

Here the cases illustrated in Figure 4.1 are considered, where the cross-sectional area

is reduced by 31%, 64% and 85%, respectively, and the length of the unit cell is L=10

mm. The dispersion diagrams are presented in Figure 4.5. The case of no plaque is

shown in Figure 4.5a and this may be compared with the example of 31% plaque shown

in Figure 4.5b. It is clear that the pass bands are elevated to higher frequencies in the

presence of the plaque, and that there are no stop bands for either 0% or 31% plaque.

One interesting feature related to the introduction of plaque is the change in the shape

of the dispersion curves; the four curves emanating from the origin have much steeper

initial gradients for the 31% plaque case than for the unblocked artery, before flattening

at higher wavenumbers in the presence of the plaque. The unblocked arteries also have

some curves with low gradients across the whole Brillouin zone, which are not observed

for the plaque examples.

As the plaque is increased, similar trends are observed; the dispersion curves move

to higher frequency values, as can be seen when comparing Figures 4.5b-4.5d. For

highly occluded arteries, there are very few dispersion curves at low frequencies, as is

clearly illustrated in Figure 4.5d, where the second point of the steepest dispersion curve

emanating from the origin is at 350Hz for 85% plaque, compared with 210Hz for 64% in

Figure 4.5c and 90Hz for 31% in Figure 4.5b. The case with no plaque shows a mode at

around 30Hz for the corresponding dispersion curve shown in Figure 4.5a. No stop bands

are seen at frequencies below 1kHz for these specific calcified plaque cases.
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(b) 31% plaque.
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(c) 64% plaque.

0 100 200 300
0

200

400

600

800

Wavenumber K

F
re
q
u
en

cy
ω

(d) 85% plaque.

Figure 4.5: Dispersion curves for the cases of (a) no plaque, (b) 31% plaque, (c) 64% plaque and
(d) 85% plaque.

Examples of the arterial modes arising for low frequencies are shown in Figure 4.6

for the cases of 31%, 64% and 85% plaque. Figure 4.6a occurs for 10.7Hz, Figure 4.6b

corresponds to 9.4Hz and Figure 4.6c is observed for 16.0Hz. The modes are indicative of

the arterial type, but as the plaque percentage increases, the surface area over which the

mode is observed narrows, as one would expect for the increase in stiffness.

4.2.2 Stented arteries with plaque

The more complicated cases of Figure 4.3 were also analysed for trends in pass bands

and stop bands. The circular cross-section of the fluid-filled portion of the unit cell

allows for deployment of stents in the simulations. Figure 4.3a shows an artery where the

cross-sectional area of the channel of flow has been reduced to 40%, the plaque occupies

55% of the channel, and the remaining 5% is arterial wall. A stent is attached to the

inner wall of the channel, as shown in Figure 4.3b. This case is described as the shifted

plaque case.
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(a) (b) (c)

Figure 4.6: Modes corresponding to different percentage of plaque obstruction. (a) arterial mode
at 10.7 Hz when the cross-sectional area is reduced by 31%,(b) arterial mode at 9.4 Hz when the
cross-sectional area is reduced by 64%,(c) arterial mode at 16.0 Hz when the cross-sectional area
is reduced by 85%.

An alternative geometry, for which the cross-sectional area has also been reduced to

40%, is illustrated in Figures 4.3c 4.3d, where the plaque occupies 30% of the channel

of flow and is in two distinct sections. As many researchers have noted, the geometries

of atherosclerotic plaques are highly variable [113]. Plaque may rupture, as reported by

many authors including Falk [33], so it is possible for a configuration like that shown in

Figure 4.3c to occur. This is labelled here as the two-piece plaque case.

The dispersion diagrams for the unstented and stented arteries (both with plaque)

are shown in Figure 4.7, with parts (b) and (d) showing the stented system in both

cases. The shifted plaque case is illustrated in Figures 4.7a- 4.7b, and a comparison of

Figure 4.7a and 4.7b indicates that a stop band opens at around 1kHz upon the stent

deployment. The partial stop band is fairly wide at the end of the Brillouin zone, covering

a range of approximately 80Hz. The dispersion curves are similar in shape to the cases

with more than 60% plaque shown in Figures 4.5c- 4.5d, and in their distribution over

the frequency range. A comparison with the unblocked artery shown in Figure 4.5a once

again shows that the presence of the plaque causes the bands to move up the frequency

spectrum.

A similar observation may be made for the case of the two-piece plaque in Figures 4.7c-

4.7d, although there are clearly more pass bands than for the shifted plaque case over the

same range of frequencies, since there is only 30% plaque compared with 55%. Another

difference is that the partial stop band opened at the end of the Brillouin zone upon stent

deployment in Figure 4.7d is much narrower, covering less than 20Hz. Once again, flatter

sections of dispersion curves have been moved to higher frequencies in the presence of

plaque, when compared with the healthy artery. The two-piece plaque configuration also

appears to show some local narrow band opening at around 1.2kHz in the centre of the

Brillouin zone, when comparing the curves in Figures 4.7c and 4.7d.

A study on the effect of plaque for the Bloch-Floquet analysis of the stented artery

problem has been presented here. The model shows that the plaque significantly affects

the wave propagation in blood vessels, and the introduction of stents has an impact at

high frequencies. The high variability of material parameters, mechanical properties and
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(a) Unstented artery.
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(b) Stented artery.
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(c) Unstented artery.
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(d) Stented artery.

Figure 4.7: Dispersion curves for the cases of (a), (b) shifted plaque, and (c), (d) two-piece plaque.

geometries of plaques, indicates that the models may be refined in the future to provide

more insight for clinically relevant cases and for medical practitioners.



Chapter 5

Semi-analytical approximations

for waves in a stented artery

A preliminary one-dimensional approach to model wave propagation through a stented

artery was developed in [96]. The paper by Papathanasiou et al. [96] presented an

analytical model that takes into account the fluid-solid interaction in the framework of a

transmission problem for a pulsating flow through a stented blood vessel. In the current

chapter, based on the paper by Frecentese et al. [37], a new study based on Bloch-Floquet

analysis is presented, which includes:

(i) calibration against the three-dimensional results of Chapter 3 and [36];

(ii) the modelling of stents with sparse structure;

(iii) the Bloch-Floquet analysis of waves in stented vascular systems.

A big attraction of a one-dimensional analytical model is the capability to quickly identify

frequency regimes of interests, which can then be investigated in more detail using

the three-dimensional model of Chapter 3, for instance. Techniques explained in the

introductory theoretical background Chapter 2 are utilised in what follows, and will be

referred to accordingly.

The structure of the chapter is as follows. Section 5.1 presents the one-dimensional

model for a stented artery. Section 5.2 includes the calibration procedure for the one-

dimensional model versus the three-dimensional blood vessel. The dispersion properties

of the waves in stented systems for the one-dimensional model are also presented. The

transmission problems for sparse stents are analysed in Section 5.3, with the comparison

being made to the dispersion properties discussed in Section 5.2. The proposed model is

employed in Section 5.4 extending the analysis to the case of two overlapping stents in

an artery.

79
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5.1 Governing equations for blood flow in stented arteries

Referring to the study presented in [96], a low Mach number is assumed and nonlinear

effects are neglected. A flat velocity profile within each circular cross-section ensures

that the pressure p(x, t), and the velocity u(x, t), are assumed to be constant over the

cross-sectional area A of the blood vessel.

In the simplified approach, an inviscid fluid interacting with a linear cylindrical shell

is considered. The linearised one-dimensional wave propagation model incorporates the

mass and momentum conservation equations (see Chapter 2, Section 2.2 for more details),

as follows:

∂p

∂t
+ c2 ρ

A

∂q

∂x
= 0 , (5.1a)

∂q

∂t
+
A

ρ

∂p

∂x
= 0 . (5.1b)

Here x is the axial coordinate along the vessel, t is the time, A is the cross-sectional area,

q = Au is the volumetric flow, c is the speed of propagation of the pulse wave, and ρ is

the fluid density, approximately constant for a nearly incompressible fluid.

The system (5.1a)- (5.1b) is reduced to the wave equation

∂2q

∂t2
− ∂

∂x

(
c2 ∂q

∂x

)
= 0 , (5.2)

where c is constant in the homogeneous unstented artery, and c = c(x) is variable in

the stented region. In particular, for a cylindrical homogeneous artery, the value c0 of

the wave speed can be approximated (see, for example, the book by Tullis [115] and the

paper by Tijsseling and Anderson [112]) as

c2
0 ≈

Eh

2Rρψ
, (5.3)

where E is the Young’s modulus of the artery, h is the thickness of the arterial wall, R is

the internal radius of the artery and ψ is a constant depending on the artery constraint.

For the stented region, alternative material properties must be considered. An

additional wall stiffness due to the stent and the plaque is included in the model.

Referring to (5.3), E, h and A are subject to variation. Assuming a reference wave speed

c0 for the healthy (unstented) artery, the wave speed c(x) in the stented region is taken

to be

c(x) = c0 + cA + cBf(x) , (5.4)

as proposed in [96]. Here cA, cB are constants, and f(x) is a periodic function of period

L:

f(x+ L) = f(x) , 0 ≤ f(x) ≤ 1 . (5.5)
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Figure 5.1: Examples of velocity profiles in a stented artery for different values of the exponent s
in (5.6) and (5.7): (a) s = 1, (b) s = 20.

The constant cA is the minimum variation from the healthy region value due to the

stent and/or plaque, and cB is associated with the maximum deviation, measured from

the state c0 + cA, which occurs in the elementary cell.

Following the model proposed in [96], c(x) is assumed to be either

c(x) = c0 + cA + cB sin2s
(πx
L

)
, (5.6)

or

c(x) = c0 + cA + cB cos2s
(πx
L

)
, (5.7)

which are illustrated in Figure 5.1 for two values of s. The exponent s ∈ N is a new

feature of the model and characterises the sparse structure of the stent; it is considered

for the first time here.

The non-dimensional variables are introduced as follows:

ξ =
x

L
, η =

c0t

L
, Q =

q

q0
, (5.8)

where L is the length of the periodic cell and q0 is the reference value of the volumetric

flow. Equation (5.2) becomes

∂2Q

∂η2
− ∂

∂ξ

((
c

c0

)2 ∂Q

∂ξ

)
= 0 . (5.9)
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Using equations (5.6) and (5.7), in the stented area we have that

c(ξ)

c0
=


1, ξ ∈ (−∞, 0)

1 +A2 +B2 sin2s(πξ) or 1 +A2 +B2 cos2s(πξ), ξ ∈ (0, n)

1, ξ ∈ (n,+∞),

(5.10)

where A2 = cA/c0, B2 = cB/c0, and n is the number of periodic cells constituting the

stent.

The solution of equation (5.9) is sought in the form Q = y(ξ)e−iωη, where the function

y(ξ) and the angular frequency ω satisfy the equation

d

dξ

([
1 +A2 +B2f(ξ)

]2 dy
dξ

)
+ ω2y = 0 . (5.11)

Introducing Y such that

Y =
[
1 +A2 +B2f(ξ)

]2 dy
dξ
, (5.12)

equation (5.11) can be rearranged as follows:

d2Y

dξ2
+

[
ω

1 +A2 +B2f(ξ)

]2

Y = 0 . (5.13)

For the stented region, the mean non-dimensional speed C in the unit cell can be evaluated

as

C =

∫ 1

0

c(ξ)

c0
dξ =

∫ 1

0

(
1 +A2 +B2f(ξ)

)
dξ = 1 +A2 +

Γ
(

1
2 + s

)
√
πΓ (1 + s)

B2 , (5.14)

for both choices f(ξ) = sin2s(πξ) or f(ξ) = cos2s(πξ).

5.2 Dispersion curves and stop-bands

In this section, the dispersion properties of the Bloch-Floquet waves propagating along

the walls of the stented blood vessel are presented. Equation (5.11) is solved numerically

using the Galerkin method with Finite Element discretisation (see Chapter 2, Section 2.5

for more details on the background of this technique) together with the following Bloch-

Floquet conditions applied at the ends of the unit cell ξ = 0 and ξ = 1:

y(1) = y(0)eiK , (5.15a)

djy

dξj

∣∣∣∣
ξ=1

=
djy

dξj

∣∣∣∣
ξ=0

eiK , (5.15b)

where K is the one-dimensional Bloch-Floquet parameter, and only j = 1 is required in

the derivations below.
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Figure 5.2: Dispersion curves for the unit cell without stent. The dashed line represents the
dispersion curves obtained using the 3D model of Chapter 3 and [36], while the solid line represents
the results of the 1D model presented in this chapter.

5.2.1 Effective wave speed

The dispersion curves are plotted in the first Brillouin zone, specifically in the interval

[0, π], in Figure 5.2. A comparison of the dispersion curves for an artery without stent

(C = 1) corresponding to the one-dimensional model presented here and in [37], and

the three-dimensional model of Chapter 3 and [36], is provided by Figure 5.2. Note the

difference in frequencies between the one-dimensional and three-dimensional models that

arises due to the lower dimensional assumptions. The actual frequency vd (in Hz) in the

three-dimensional model is related to the non-dimensional frequency ω according to

vd =
ωc0

2πL
. (5.16)

The reference pulse wave speed c0 is obtained from the dispersion diagram of the three-

dimensional model of Chapter 3 for an unstented artery. Specifically c0 is the group

velocity c0 = ω/K calculated near K = 0.

As shown in Figure 5.2, the one-dimensional model provides an upper bound (see

the region in the neighbourhoods of K = π or K = 0) for the stop-band frequencies.

This applies both to the first and second stop-bands. It is also noted that the one-

dimensional model correctly reflects important features, including, for example, the

growth in the magnitude of the group velocity along the acoustic band. The mean value

of the normalised wave speed in the stented artery is evaluated using equation (5.14).

The parameters A2, B2, and s are calibrated such that the group velocity near the

origin for the one-dimensional model matches the group velocity of the axisymmetric

mode in the three-dimensional model of Chapter 3. For the types of stents considered in

Chapter 3, the mean non-dimensional speed in each unit cell is C ' 1.12. In Figure 5.3a,

the surface (5.14) is plotted for this value of C for A2 ∈ [0, 0.13] , B2 ∈ [0, 1.3] , s ∈ [0, 30].

Figures 5.3b-5.3d describe the behaviour of the three parameters used in the definition

of the mean non-dimensional velocity. For fixed A2 it can be noted that B2 increases
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Figure 5.3: The effect of the parameters A2 , B2, and s in (5.14) on the mean non-dimensional
speed for a stented unit cell. Here C = 1.12. Part (a): implicit solution of equation (5.14) for
A2 ∈ [0, 0.13] , B2 ∈ [0, 1.3] , s ∈ [0, 30]. Part (b): contour plot for A2 = 0. Part (c): contour plot
for s = 25. Part (d): contour plot for B2 = 0.5.

with s (see Figure 5.3b). For fixed s, if B2 increases then A2 decreases (see Figure 5.3c).

Finally, for fixed B2, s increases with A2 (see Figure 5.3d).

5.2.2 Stop-bands for waves in structured arteries

Here, the case of A2 = 0, which corresponds to an artery without a plaque, is considered.

The choices s = 1, s = 2, s = 5, s = 10, s = 15, s = 20 and s = 30 are substituted into

equation (5.11) to obtain the position and width of the stop-bands for the dispersion

curves at K = 0 and K = π for the stented case. The results are illustrated in Figure 5.4a.

The width of the stop-band is considered to be an important parameter when comparing

the one-dimensional approximation with the full three-dimensional model of Chapter 3

and [36].

A better approximation is to be expected for the first stop-band at K = π, since it

is in the low frequency regime. It is noted that, in general, higher values of s (s > 15)

produce better results, with the best result in Figure 5.4a being for s = 20, B2 = 0.97

(shown in Figure 5.4b). There is extremely good correspondence at K = π between
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Figure 5.4: The first two stop-bands for the one-dimensional model discussed in Section 5.1 and
the three-dimensional simulation of the pulsating wave. Part (a) shows the boundaries of the
first two stop-bands (for K = 0 and K = π) as functions of s for the one-dimensional model.
Here A2 = 0, and f(ξ) = sin2s(πξ). B2 varies with s according to (5.11) (see also Figure 5.3b).
Part (b) illustrates the dispersion curves for A2 = 0, B2 = 0.97, f(ξ) = sin40(πξ). The dashed
line represents the three-dimensional model of Chapter 3, while the solid line corresponds to the
one-dimensional model.

the stop-band widths, with 0.36 for both the one-dimensional (solid line) and three-

dimensional (dashed line) models. For the higher value of s = 30, there again appears

to be a good correspondence between the stop-bands, with the one-dimensional model

predicting a somewhat smaller band-width compared to the three-dimensional model.

Interestingly, the extreme case of small parameter values (s = 1, A2 = 0, B2 = 0.24)

in Figure 5.4a results in a narrower stop-band for the one-dimensional model. The

overlapping of the second stop-bands (illustrated by the cross-hatched areas in Figure 5.4b)

does not occur for s = 1. The new model proposed here allows for higher values of s to

be incorporated into the analysis showing a significant improvement in agreement for

sufficiently large s.
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(a)

(b)

Figure 5.5: Part (a) illustrates the axisymmetric mode obtained using the three-dimensional
model of Chapter 3 and [36]. Part (b) shows reflected and transmitted waves in a stented artery.

5.3 Transmission problem

In this section the transmission problem for a stented blood vessel is considered. The

volumetric flow rates in the reflection region, stented region, and transmission region are

assumed to be of the form

QR = qR(ξ)e−iωη , −∞ < ξ < 0 , (5.17a)

Q = y(ξ)e−iωη , 0 < ξ < n , (5.17b)

QT = qT (ξ)e−iωη , n < ξ <∞ , (5.17c)

respectively, where ω is the angular frequency.

A diagram for the reflection-transmission problem is shown in Figure 5.5b. The flow

rate in the reflection region consists of the original incoming wave, with unit amplitude,

and the reflected wave which has amplitude R,

qR(ξ) = eiωξ +Re−iωξ . (5.18)

In the transmission region, the outgoing wave is of amplitude T ,

qT (ξ) = Teiωξ . (5.19)

The four interface conditions are
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qR(0) = y(0) and
dqR
dξ

∣∣∣∣
ξ=0

= Y (0) , (5.20a)

qT (n) = y(n) and
dqT
dξ

∣∣∣∣
ξ=n

= Y (n) , (5.20b)

where y(ξ) and Y (ξ) are defined in (5.11) and (5.12). Equation (5.11) is solved numerically

using the Galerkin method with Finite Element discretisation (see Section 2.5) together

with the interface conditions (5.20).

5.3.1 Reduction to the Mathieu equation for the case s = 1

When s is chosen to be 1, the mean non-dimensional speed in each cell is given by

C = 1 +A2 +
B2

2
, (5.21)

for both functions f(ξ) = sin2(πξ) and f(ξ) = cos2(πξ). Furthermore, using the formulae

2 sin2(ξ) = 1− cos(2ξ) and 2 cos2(ξ) = 1 + cos(2ξ), and calling

ε =
B2

2C
=

B2

2 + 2A2 +B2
< 1 , (5.22)

leads to the equation
d2Y

dξ2
+

ω2

C2 (1∓ ε cos (2πξ))2Y = 0 , (5.23)

where the minus sign corresponds to the choice f(ξ) = sin2 (πξ) and the plus sign to

f(ξ) = cos2 (πξ) . Assuming now ε� 1 and noticing that | cos(2πξ)| ≤ 1, the expansion

(1∓ ε cos(2πξ))−2 = 1± 2ε cos(2πξ) +O(ε2) ≈ 1± 2ε cos(2πξ) , (5.24)

can be used. Substituting (5.24) into (5.23) and using the change of variable πξ = z we

obtain the following standard Mathieu equation

d2Y

dz2
+ [a± 2q cos(2z)]Y = 0 , (5.25)

with

a =
( ω

πC

)2
, (5.26a)

q = ε
( ω

πC

)2
= εa . (5.26b)

The general solution for the Mathieu equation (see Chapter 2, Section 2.6 and also the

book by McLachlan [77]) is given by

Y (ξ) = C1MS (a,−q, πξ) + C2MC (a,−q, πξ) , (5.27)
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Figure 5.6: Part (a) shows the dispersion curves for the Mathieu equation. Part (b) illustrates the
corresponding transmission problem for the Mathieu equation with n = 24 cells. The parameters
defining the velocity are chosen to be A2 = 0 , B2 = 0.24 , f(ξ) = sin2(πξ), so that C = 1.12.

for f(ξ) = sin2(πξ), and

Y (ξ) = C1MS (a, q, πξ) + C2MC (a, q, πξ) , (5.28)

for f(ξ) = cos2(πξ), where MS and MC are the Mathieu functions, linearly independent

solutions of (5.25) with the property that MS(a, q, 0) = 0 and M
′
C(a, q, 0) = 0. In what

follows, the case f(ξ) = sin2(πξ), which corresponds to a periodic cell that is more

compliant at its edges, is considered. Applying the Bloch-Floquet conditions (5.15) to

the Mathieu equation the following dispersion relation is obtained:[
MC (a,−q, π)M

′
S (a,−q, 0) +MC (a,−q, 0)M

′
S (a,−q, π)

]
eiK

+MS (a,−q, π)M
′
C (a,−q, π) = M

′
S (a,−q, π)MC (a,−q, π)

+MC (a,−q, 0)M
′
S (a,−q, 0) e2iK .

(5.29)

The choice of parameters A2 and B2 is determined by the effective wave speed, as

explained in Section 5.2.1.

As expected, the reflection at frequencies corresponding to the stop band is high,

as illustrated in Figure 5.6b, which shows the reflection and transmission coefficients

|R|2 and |T |2 versus the frequency of the incident wave. We also note a relatively high

reflection within the first pass-band region, especially in the neighbourhood of the stop-

band boundary. Such reflection can be altered by changing the rate of localisation within

the structured stent. Note that in Figure 5.6b, the second stop-band is not visible as it

requires more cells to be considered.

5.3.2 Transmission for the higher-order sparse stent structure

At higher values of the exponent s characterising the sparse stent structure, the transmis-

sion diagrams are shown in Figures 5.7b, 5.7d. The choice of parameters is the same as
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Figure 5.7: Dispersion curves (a), (c) and corresponding reflection-transmission diagrams (b), (d)
for a stented artery, with f(ξ) = sin40(πξ) and A2, B2 defined from (5.14) for C = 1.12. Part (a):
dispersion curves for A2 = 0 , B2 = 0.97. Part (c): dispersion curves for A2 = 0.05 , B2 = 0.58.
Part (b): transmission-reflection diagram for A2 = 0 , B2 = 0.97 , n = 12. Part (d): transmission-
reflection diagram for A2 = 0.05 , B2 = 0.58 , n = 12.

in the dispersion diagrams of Figures 5.7a, 5.7c. In Figure 5.7b the shaded areas match

the hatched areas in Figure 5.7a, as expected. Accordingly, the stop-bands correspond to

the high reflection of the incident wave.

The reflection at frequencies corresponding to the first pass-band appears to be smaller

for highly localised structured stents compared with the case of s = 1. Also, the secondary

stop-band in diagrams 5.7a and 5.7c corresponds to a higher reflection, if the frequency

of the incident wave includes higher-order harmonics, this is likely to be the case in the

transition regimes or abnormalities leading to an irregular heart beat.

Transmission diagrams for the case of s = 20 are shown in Figures 5.7b, 5.7d for the

value of C = 1.12; they correspond to different values of A2 and B2 evaluated using (5.14),

which represent an alteration in the stiffness of the artery and of the stent. This is shown

to have an effect on reflection in the second pass-band, while the reflection in the first

pass-band remains low.
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Figure 5.8: Scheme representing an artery with two overlapping stents.

5.4 Dispersion curves and transmission problem for over-

lapping stents

Stent overlapping is a common procedure in vascular surgery, especially in the femoral

artery where two or three overlapping stents may be needed to cover the whole area

affected by stenosis. Some references include the work by Raber et al. [100], Leybovitch et

al. [70], Lee et al. [68], Xu et al. [123] and Rikhtegar et al. [102]. However, this procedure

is often associated with increased risk in the clinical outcome.

In this section, the Bloch-Floquet analysis and the trasmission problem for a stented

artery with overlapping stents will be discussed. The problem is represented in Figure 5.8.

The non-dimensional velocity in the artery is assumed to be

c(ξ)

c0
=



1, ξ ∈ (−∞, 0)

1 +A2 +B2 sin2s(πξ) or 1 +A2 +B2 cos2s(πξ), ξ ∈ (0, n)
√

2(1 +A2 +B2 sin2s(πξ)) or
√

2(1 +A2 +B2 cos2s(πξ)), ξ ∈ (n,m)

1 +A2 +B2 sin2s(πξ) or 1 +A2 +B2 cos2s(πξ), ξ ∈ (m, d)

1, ξ ∈ (d,+∞),

(5.30)

where n is the number of stent coils constituting the first stent excluding the overlapping

region, m is the number of stent coils in the overlapping region, and d is the number of

stent coils constituting the second stent excluding the overlapping region.

Assuming that the solution of equation (5.9) is of the form Qi = yi(ξ)e
−iωη, where ω

is the angular frequency and i = 1, 2, 3, the functions yi(ξ) then satisfies the equation

d

dξ

([
λ(ξ)(1 +A2 +B2f(ξ))

]2 dyi
dξ

)
+ ω2yi = 0 , (5.31)

λ(ξ) is the piecewise constant function, which is equal to 1 in the stented region without

overlapping, and it is equal to
√

2 in the overlapping region. We also introduce the
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following notation

Y1 =
[
1 +A2 +B2f(ξ)

]2 dy1

dξ
, (5.32a)

Y2 =
√

2
[
1 +A2 +B2f(ξ)

]2 dy2

dξ
, (5.32b)

Y3 =
[
1 +A2 +B2f(ξ)

]2 dy3

dξ
. (5.32c)

5.4.1 Stop-bands and reflected energy

The Bloch-Floquet analysis and the transmission problem for a stented artery with an

overlapping region is discussed in this section. The total length of the unit periodic cell for

the stented artery with an overlapping region is given by N = n+m+ d. Equation (5.31)

is solved numerically using the Galerkin method together with the following Bloch-Floquet

conditions applied at the end parts of the unit cell ξ = 0 and ξ = N :

y(N) = y(0)eiKN , (5.33a)

yξ(N) = yξ(0)eiKN , (5.33b)

where K, as before, is the one-dimensional Bloch-Floquet parameter. Continuity of the

solution between the different regions of the stented artery is also imposed.

For the transmission problem, the volumetric flow rate in the reflected region, stented

regions, overlapping region and transmission region are of the form

QR = qR(ξ)e−iωη , −∞ < ξ < 0 , (5.34a)

Q1 = y1(ξ)e−iωη , 0 < ξ < n , (5.34b)

Q2 = y2(ξ)e−iωη , n < ξ < n+m, (5.34c)

Q3 = y3(ξ)e−iωη , n+m < ξ < n+m+ d , (5.34d)

QT = qT (ξ)e−iωη , n+m+ d < ξ <∞ . (5.34e)

The flow rate qR in the reflected region and qT in the transmitted region are defined

in the same way as the case of a stented artery without overlapping (see (5.18), (5.19)).

Recalling (5.31), in the stented region the following equations are valid

yi = − 1

ω2

dYi
dξ

, i = 1, 2, 3 . (5.35)

Consequently, the eight interface conditions are
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qR(0) = y1(0) and
dqR
dξ

∣∣∣∣
ξ=0

= Y1(0) , (5.36a)

y2(n) = y1(n) and
dy2

dξ

∣∣∣∣
ξ=n

= Y1(n) , (5.36b)

y2(n+m) = y3(n+m) and
dy2

dξ

∣∣∣∣
ξ=n+m

= Y3(n+m) , (5.36c)

qT (n+m+ d) = y3(n+m+ d) and
dqT
dξ

∣∣∣∣
ξ=n+m+d

= Y3(n+m+ d) . (5.36d)

The dispersion curves resulting from the Bloch-Floquet analysis are plotted in Fig-

ure 5.9a. The analysis is representative for the case of two stents composed of 8 coils

each, and an overlapping area composed of 4 coils. Observing the dispersion curves in

Figure 5.9a it is possible to note that the range of frequencies in the low frequency regime

corresponding to pass-band in Figure 5.4b (that is where the wave propagates), now

contains a number of stop-bands (where the wave does not propagate). Figures 5.9b- 5.9d

represent the reflection-transmission diagrams for a different number of periodic cells.

It can be noted that as more periodic cells are considered (that is stents with multiple

overlapping regions), the reflection in the range of frequencies corresponding to the

stop-bands becomes higher. Figure 5.10 shows the comparison between a long stent

composed of 24 periodic cells and two examples of overlapping stents. The first shown

in 5.10b is composed of two stents with 16 periodic cells each with an overlapping region

composed of 8 periodic cells. The second shown in 5.10c is composed of two stents with

13 periodic cells each with an overlapping region of 2 periodic cells. It can be observed

that in the low frequency regime, the energy reflected is higher for both cases when the

stents overlap, which may increase the risk of restenosis if overlapping stents are used.

The connection between dispersion properties and transmission-reflection of waves

for a range of stenting parameter values was analysed using a simplified one-dimensional

model. An appealing feature of this approach (for both biomechanical researchers

and medical practitioners) is that it enables one to quickly obtain approximate values

for stenting parameters that may result in the formation of high wave reflection and

transmission regimes. Once the ball park ranges have been identified, more detailed

investigations may be carried out using more precise and time-consuming simulation

tools.
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Figure 5.9: Dispersion curves (a) and reflection-transmission diagrams (b), (c), (d) for the problem
of overlapping stents. The parameters for the mean non-dimensional speed are chosen to be A2 = 0,
B2 = 0.97, f(ξ) = sin40(πξ), m = n = d = 4. Part (a): dispersion curves. The dashed area
represents the stop-band regions. Part (b): reflection-transmission diagram with 2 periodic cells.
Part (c): reflection-transmission diagram with 4 periodic cells. Part (d): reflection-transmission
diagram with 5 periodic cells. In (b)-(d) the shaded areas correspond to the stop-band regions.
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Figure 5.10: Reflection-transmission diagrams for (a) long stent composed of 24 periodic cells
with no overlapping region (n = 24 ,m = d = 0), (b) two stents composed of 16 periodic cells each
with an overlapping region of 8 cells (n = m = d = 8) and (c) two stents composed of 13 periodic
cells each with an overlapping region of 2 cells (n = d = 11,m = 2). The parameters for the mean
non-dimensional speed used in the calculations are A2 = 0, B2 = 0.97, f(ξ) = sin40(πξ).



Chapter 6

Conclusions and future work

This thesis has presented novel modelling approaches to investigate the dynamics of

fluid-structure interaction associated with a stented artery. The main mathematical

techniques used are:

• Bloch-Floquet analysis for periodic systems (for both three-dimensional and one-

dimensional models);

• Transmission-reflection methods in the frequency domain;

• Transient modelling for three-dimensional case in the time domain.

The main outcome of the research is a capability to describe frequency regimes and

deformations of blood vessels, which may have a detrimental effect on transmission of

the blood flow. Axisymmetric and non-axisymmetric deformations have been identified,

including those that may be associated with so-called stop-bands. Trapped modes are

given attention for clusters of stents, separated by a finite distance, and asymptotic

approximations have been derived for predictive analysis of the associated waveforms.

The work has led to three publications [36, 37, 120], which are listed at the beginning of

the thesis, as well as several conference presentations.

Several of this work’s outputs have potential benefits for medical practitioners. In

particular,

• an approximate one-dimensional model that is capable of rapid identification of

frequency ranges for which strong pulse wave reflections may occur;

• overlapping stents appear to carry more risk (stop-bands arise at lower frequencies)

than a single stent of the same length;

• links between coils (made of the same material rather than a soft fabric such

as nylon) push the stop-band frequencies to lower regimes, so it appears to be

preferable to use non-metallic connections;

• standing wave modes are observed for multi-stented regions, which may lead to

localisation of energy;

95
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• location, geometry and density of atherosclerotic plaque affect dispersion properties,

altering stop-band frequency regimes.

The Bloch–Floquet wave theory is shown to be effective as a framework for time-

harmonic modelling of waves in stented blood vessels. The approach proposed here

enables one to evaluate, qualitatively and quantitatively, wave reflections from stents. In

particular, it was demonstrated that waves of certain frequencies can be blocked by stents

placed in arteries. The geometry proved to be an important factor that influences the

location of the first stop-band, which is critical for medical practitioners in cardiovascular

applications. Specific geometrical factors, such as cross-linking of coils within the stent,

leads to the formation of additional stop-bands and may increase the stop-band width. A

very recent paper by Sorokin et al. [110] implemented Floquet analysis to investigate the

case of a periodic fluid-filled shell subject to heavy fluid loading and pre-tension, with

attention focused on the axisymmetric wave motion.

The additional transient analysis in the time domain in Chapter 3, involving two-way

fluid–structure interaction, was implemented for a stented blood vessel. A comparison

with the unstented blood vessel was analysed in terms of blood flow. The improved

understanding of the effects of stent design on fluid–solid interaction provides researchers

and clinicians with additional insights for the dynamic system. This new modelling

capability begins to explain why certain arteries respond well to stenting, while others

have less successful outcomes.

One of the major factors leading to stent deployment is the build up of atherosclerotic

plaque, which is a complicated biological material consisting of a host of infiltrates such

as lipids, calcium, collagen, cellular waste, fibrin and cholesterol [113]. The inclusion of

plaque in the modelling here in Chapter 4 shows that it has a major effect on the coupled

system’s dispersion properties, both before and after the stent deployment. A variety of

realistic geometries were analysed, and their dispersion properties illustrated with mode

pictures and dispersion diagrams.

In this study, the plaque was assumed to be a linearly elastic isotropic homogeneous

material. However, medical studies have shown that the elastic stiffness is highly variable.

Several models in the literature incorporate arterial and plaque material properties,

including those of Gleason et al. [44, 45] and Holfzapfel and co-workers [50, 52, 53].

Compressive stiffness depends on the type of plaque, with non-fibrous (atheromatous)

plaques being the least stiff [113], followed by fibrous and then calcified plaques being the

stiffest as reported by Topoleski et al. [114] and Maher et al. [75]. The case of calcified

plaque was modelled in Chapter 4 here, but future work may incorporate other classes

such as the fibrous and non-fibrous types and more realistic, non-linear assumptions for

the plaque.

The simplicity of the one-dimensional model in Chapter 5 and [37] makes it appealing

to both researchers and medical practitioners, since it enables one to obtain ballpark

ranges for values of stenting parameters that may lead to formation of high wave reflection

in the transitional regimes. Practical consequences are secondary vascular blockages
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and formation of standing waves in the blood vessels. In particular, the connection

between dispersion properties and transmission–reflection of waves for different values of

the stenting parameters has been analysed in detail here, and provided valuable material

for assessment of the performance of stents in different transitional regimes. The special

case of overlapping stents was analysed, where elastic stiffness increases in the regions

of overlap; it was demonstrated that such configurations may lead to additional wave

reflection and formation of stop-bands in the dispersion diagram.

Areas where the work of this thesis may be built upon on in the future include the

analysis of more stent designs:

• vary the number of links and density of coils in the unit cell;

• variation of the size of stent;

• different material parameters for the stents;

• different types of connection between the crowns (e.g. zigzags in place of straight

beams).

It is also important to broaden the range of plaques investigated, taking into account

the other major classes such as cellular and hypocellular, as well as the stiffer, calcified

types considered here. It is clear that the nature of the plaque affects the dispersion

properties of the coupled stented artery system. The transmission-reflection methods

utilised for the arteries with no plaque, can also be implemented for the atherosclerotic

models. Other extensions may feature the inclusion of overlapping stents and radial

displacements within the approximate one-dimensional model, for which some of the

analysis in [110] may be useful.
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