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Abstract 1 

 2 

Animals often need to invest significantly in mating behaviour in order to successfully mate. 3 

However, the expression of mating behaviour can be costly, especially in unfavourable 4 

environments, so animals are expected to adjust their behaviour in a context-dependent 5 

way to mitigate these costs. I systematically searched the literature for studies measuring 6 

animal mating behaviour (sexual signalling, response to sexual signals, or the strength of 7 

mate choice) in more than one environment, and used a phylogenetically-controlled meta-8 

analysis to identify environmental factors influencing these behaviours. Across 222 studies, 9 

the strength of mate choice was significantly context-dependent, and most strongly 10 

influenced by population density, population sex ratio, and predation risk. However, the 11 

average effect sizes were typically small. The amount of sexual signalling and the strength of 12 

response to sexual signals were not significantly related to the environment. Overall, this 13 

suggests that the evidence for context-dependent mating behaviour across animals is 14 

surprisingly weak. 15 
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Introduction 16 

 17 

For sexual animals, reproduction requires successfully mating with an individual of the 18 

opposite sex. In order to achieve this, individuals may need to signal or display to potential 19 

partners in order to attract and court them, or respond to the signals or displays of others. 20 

Additionally, some individuals make better mates than others. Therefore, animals may gain 21 

considerable benefits from choosing only to mate with partners of the highest quality, 22 

leading to the expression of mate choice (Andersson 1994; Kokko et al. 2003; Rosenthal, 23 

2017). However, both sexual signalling, and responding to sexual signals, can be expensive 24 

in terms of time and energy (Andersson 1994; Kotiaho 2001). There are also costs associated 25 

with mate choice, such as the energy and time needed to sample mates effectively (Sullivan 26 

1994; Vitousek et al. 2007), or the risk of failing to mate if individuals are overly choosy 27 

(Barry & Kokko 2010; Greenway et al. 2015). Therefore, the expression of these mating 28 

behaviours should be influenced by the balance of these costs and benefits: a behaviour 29 

should only be expressed when the benefits outweigh the costs. 30 

 31 

Importantly, the costs and benefits of investing in mating behaviour are inherently linked to 32 

the social, biological or physical environment. For example, at high predator density the cost 33 

of mate searching or sexual signalling is increased when these behaviours make signallers or 34 

searchers more conspicuous (Magnhagen 1991; Zuk & Kolluru 1998). In these conditions 35 

animals may benefit from investing less into searching and signalling, at least in the short-36 

term. Importantly, the natural environment is complex, fluctuating, and unpredictable, both 37 

spatially and temporally (Miller & Svensson 2014). Therefore animals will maximise their 38 
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fitness by identifying situations in which mate searching and choice are beneficial or costly, 39 

and changing their behaviour accordingly. Indeed, evidence from a wide range of species 40 

shows that individuals often alter their mating behaviour over the short-term, in response 41 

to a wide range of social, biological, or physical factors (Jennions & Petrie 1997; Ah-King & 42 

Gowaty 2016; Kelly 2018). For example, many species respond to an increased predation 43 

risk by reducing signalling (e.g. Endler 1987; Fuller & Berglund 1996) or exhibiting weaker 44 

mate choice (e.g. Hedrick & Dill 1993; Gong & Gibson 1996; Hughes et al. 2012).  45 

 46 

These empirical examples show that the environment can be an important determinant of 47 

mating behaviour in some species. Importantly, by identifying these effects in laboratory 48 

studies, we may be able to better predict the expression of mating behaviour in the natural 49 

environment, which is complex and highly dynamic (Miller & Svensson 2014). Further, mate 50 

choice is a key component of sexual selection, which can influence population fitness and 51 

drive the evolution of novel phenotypes, the action of which may in turn be influenced by 52 

the expression of sexual signals (Andersson 1994). Therefore understanding the extent to 53 

which both signalling and mate choice are context-dependent will help us to predict the 54 

strength of sexual selection, and the resulting evolutionary change, in natural populations. 55 

However, such predictions will only be possible if environmental effects are generally 56 

consistent across species, and there is evidence that this may not be the case. For example, 57 

many studies fail to find any significant effect of the environment on mating behaviour (e.g. 58 

in relation to predation risk: Briggs et al. 1996; Billing et al. 2007). Other studies do detect 59 

significant effects, but in contrasting directions (e.g. Beckers & Wagner 2018), suggesting 60 

that environmental effects on mating behaviour may not be as clear as previously thought. 61 

Importantly, to date there has been no quantitative synthesis of these data.   62 
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 63 

To address this problem, I systematically searched for studies reporting animal mating 64 

behaviour in relation to seven environmental factors that are predicted to influence the 65 

costs and benefits of expressing these behaviours. In order to estimate the degree of 66 

context-dependence, I selected studies that reported mating behaviour in more than one 67 

environmental context. I focused on three mating behaviours: a) the amount of sexual 68 

signalling, the strength of response to mates or sexual stimuli (responsiveness), and the 69 

strength of mate choice (choosiness). I examined these behaviours in relation to seven 70 

social, biological or physical environmental factors: population density, adult sex ratio, 71 

operational sex ratio (OSR), predation risk, travel cost, time cost, and variation in mate 72 

quality. All of these factors potentially influence the costs and benefits of sexual signalling, 73 

mate searching or mate choice. They do this by altering several key components of the 74 

mating system: the number of potential mating opportunities, the cost of signalling, the cost 75 

of sampling, and the benefits of choice (Table 1). Importantly, as much as possible I avoided 76 

environmental factors which are likely to influence individual condition, because this is 77 

predicted to influence mating behaviour independently of the external environment (Cotton 78 

et al. 2006). This approach rules out other physical factors such as temperature or resource 79 

availability, which have the potential to influence both individual condition and some of the 80 

mating system components mentioned above. 81 

 82 

Using this dataset I performed multiple phylogenetically-controlled meta-analyses 83 

quantifying the difference in animal mating behaviour across environmental contexts. 84 

Importantly, because I was interested in examining the overall effect of the environment on 85 

the expression of mating behaviour, I combined all seven environmental factors into a single 86 
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analysis. However I performed separate analyses for each of the three behaviours, as they 87 

are predicted to be influenced by the environment in different ways (see Predictions). I used 88 

this analysis to ask three questions. First, does sexual signalling, responsiveness and 89 

choosiness significantly differ across the animal kingdom in relation to the environment? Do 90 

animals respond in a consistent way, as would be expected from sexual selection theory? 91 

Second, does the magnitude of this difference depend on which aspect of the environment 92 

is varied? Finally, are there any other aspects of the species tested, or experimental design 93 

used, that influence the direction or magnitude of this difference?  94 

 95 

Methods 96 

 97 

LITERATURE SEARCHES 98 

I searched for relevant papers in two ways. First, I obtained all papers cited by a recent 99 

review of behavioural plasticity in mating behaviour by Ah-King & Gowaty (2016). Second, I 100 

performed literature searches using the online databases Web of Science & Scopus on the 101 

29th October 2018 (Table S1). The literature screening process is summarised in Figure 1. 102 

After removing duplicate results, I screened all titles to remove obviously irrelevant studies 103 

(e.g. studies on humans, other subject areas, review articles). I next imported all relevant 104 

abstracts into the screening software Rayyan (Ouzzani et al. 2016), and excluded those that 105 

did not appear relevant. This resulted in 701 relevant studies. I then read the full text of 106 

these 701 studies to determine if they fit the inclusion criteria listed in the next section. 107 

 108 

 109 
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Figure 1. PRISMA diagram showing the literature search and selection process used to 
create the dataset. 
 110 

 111 

CRITERIA FOR INCLUSION 112 

I had several main criteria for including a study in the next stage of the analysis. Studies 113 

were included that: a) measured one of the three mating behaviours listed above, b) 114 

recorded this behaviour in more than one environmental context, in relation to one of the 115 

seven environmental factors listed above, and c) provided sufficient statistical information 116 

for an effect size to be calculated (see Effect size extraction and coding). I considered studies 117 

examining all animal species, with the exception of humans. I included studies testing the 118 

same subjects in multiple contexts, or different subjects in different contexts. I included 119 



Dougherty, 2021 Ecology Letters 

Page 8 of 42 
 

data on both males and females, and studies in which the environment varied naturally or 120 

experimentally. I excluded studies if more than one environmental factor clearly differed 121 

between contexts. I did not include cases for which mating behaviour was inferred from 122 

mating outcomes (such as studies reporting metrics of sexual selection or mating frequency 123 

using paternity tests), or in which behaviour could not be attributed to a single individual 124 

(studies for which rivals or mates have some control over mating outcomes). I included 125 

studies in which subjects experienced a variable environment before or during the 126 

behavioural test. In the former case, the environment typically varied in the short term 127 

(hours or days before the trial), and so any responses seen can be considered to represent 128 

short-term behavioural plasticity. In a minority of cases, the environment was varied over a 129 

longer time period. For example, subjects may have been reared under different 130 

experimental conditions in the lab for several weeks, or compared the behaviour of wild-131 

caught subjects from populations that differed naturally in environmental conditions.  132 

 133 

MATING BEHAVIOURS AND ENVIRONMENTAL FACTORS 134 

Here, I briefly outline the inclusion criteria and predictions associated with the three 135 

behaviours and seven environmental factors included in the analysis. For a more detailed 136 

description of inclusion criteria and category definitions please see the supplementary 137 

methods. 138 

 139 

I focused on three mating behaviours: sexual signalling, response to sexual signals 140 

(responsiveness), and the strength of mate choice (choosiness). In the sexual signalling 141 

category I included any signalling behaviours that the authors suggest function to advertise 142 

to or attract mates. I included both long-range attraction signals (such as song produced 143 



Dougherty, 2021 Ecology Letters 

Page 9 of 42 
 

when mates are not immediately present), and close-range courtship behaviours that are 144 

expressed exclusively during mating interactions. I focused on signalling behaviours that 145 

reflect the motivation to signal, or the energetic investment in signalling. I included acoustic, 146 

chemical, tactile, and visual signals. For chemical signalling, I only included data on the time 147 

spent signalling, or the likelihood of signalling, rather than the amount or composition of the 148 

signals themselves. Importantly, signalling behaviour was instead classed as choosiness if it 149 

was shown to be preferentially directed towards specific mates or phenotypes. I excluded 150 

non-behavioural signals (e.g morphology or colouration), or cases where it was unclear 151 

whether a signal had an exclusive sexual function (for example, male contest signals that are 152 

also used by females to assess males).  153 

 154 

Responsiveness can be defined broadly as the motivation to mate, or more strictly as the 155 

average response to potential mates or sexual signals (Brooks & Endler, 2001; Edward, 156 

2015). A highly responsive individual is one that shows the strongest behavioural response 157 

across all presented mates or sexual stimuli. In other words, responsiveness is a measure of 158 

the overall motivation to interact with potential mates or sexual stimuli, ignoring differences 159 

between options. In this category I included any mating behaviour (with the exception of 160 

sexual signalling, see above) summed or averaged across all options presented during a test. 161 

When such behaviours could be shown to be directed towards any specific mate, or type of 162 

mate, they were instead classed as choosiness (see supplementary methods for more 163 

details).  164 

 165 

Choosiness is a measure of the strength of mate choice, which I define following Reinhold & 166 

Schielzeth (2015) as “the change in mating propensity in response to alternative stimuli”. In 167 
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other words, the larger the difference in response to different stimuli, the choosier an 168 

individual is. In this category I included any mating behaviour for which the difference in 169 

response was compared between choice options. The greater the difference in response to 170 

sexual stimuli, the choosier the focal individual. The choosiness category included any 171 

behavioural measure that can be interpreted as reflecting the strength of a mating 172 

preference. Preferences may be linked explicitly to a trait (either a specific stimulus or a 173 

mate phenotype), but this was not required for inclusion. 174 

 175 

I focused on seven environmental factors: population density, adult sex ratio, operational 176 

sex ratio (OSR), predation risk, travel cost, time cost, and variation in mate quality (Table 1). 177 

The three social factors (density of conspecifics, adult sex ratio and OSR of the population) 178 

all provide information on the number of available mating opportunities (Kvarnemo & 179 

Ahnesjo 1996; Kokko & Rankin 2006). The OSR is the ratio of reproductively active males to 180 

females in a population (Kvarnemo & Ahnesjo 1996), and so is the most salient piece of 181 

demographic information regarding current mating opportunities. In contrast, both the 182 

population density and adult sex ratio are imperfect measures of reproductive competition, 183 

but are much easier to assess. These three social factors also influence the amount of 184 

intrasexual competition, which could influence the payoffs associated with different mating 185 

tactics (Gross 1996; Weir et al. 2011). Finally, population density may also indirectly 186 

influence individual predation risk (Krause & Ruxton 2002). The population density category 187 

consisted of studies comparing mating behaviour at different population densities, while 188 

controlling for the sex ratio perceived by subjects. In most cases, the sex ratio was equal 189 

(1:1). Importantly, I did not include cases in which population density could influence the 190 
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amount of resources available to subjects, as this could potentially influence individual 191 

condition (Cotton et al. 2006). 192 

 193 

 194 

Table 1. Outline of the key ways in which the seven environmental factors included in the 
meta-analysis have the potential to influence the expression of mating behaviour.  
 

Environmental factor 

Environment potentially influences: 

Mating 

opportunities 

Cost of 

searching 

Cost of 

signalling 

Benefits 

of choice 

Population density ✓ ✓ ✓  

Adult sex ratio ✓ ✓ ✓  

Operational sex ratio ✓ ✓ ✓  

Predation risk ✓ ✓ ✓  

Travel cost ✓ ✓   

Time cost ✓ ✓   

Variation in mate quality    ✓ 

 

 195 

 196 

I included one factor related to the biological environment: predation risk. The risk of 197 

predation could influence the cost of conspicuous signalling and of searching for and 198 

sampling mates (Magnhagen 1991; Jennions & Petrie 1997; Zuk & Kolluru 1998). The level of 199 

predation may also influence the expected number of future mating opportunities via its 200 

effect on the density of conspecifics and average expected lifespan (Hubbell & Johnson 201 

1987; Ah-King & Gowaty 2016). I considered studies which tested both direct and indirect 202 

risk factors. Parasitoids can be considered ecologically similar to predators because they 203 
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lead to the death of the host, and so I also included studies examining the risk of parasitism 204 

by parasitoids in this category (but not studies examining other forms of parasitism). 205 

 206 

I also included two factors relating to the physical environment: travel cost and time cost. 207 

The travel cost is the energetic cost (but not mortality cost) associated with movement, 208 

which should influence the cost of searching for and sampling mates (Real 1990: Jennions & 209 

Petrie 1997). The time cost is the amount of time remaining in the current breeding bout or 210 

mating season (Sullivan 1994), which influences the number of future mating opportunities 211 

for the current season (Jennions & Petrie 1997). There is also the potential for other aspects 212 

of the environment to vary according to the season (such as population density or sex ratio), 213 

and so I only included studies in this category if the time of year was not explicitly linked to 214 

any other relevant environmental factors. I only included studies examining short-term time 215 

costs, rather than long-term changes associated with animal age, as this time cost may be 216 

confounded with other state-dependent effects when comparing individuals of different 217 

ages (Cotton et al. 2006). 218 

 219 

Lastly, variation in mate quality is the variation in mate phenotype experienced by the 220 

chooser, which is assumed to reflect variation in the direct or indirect benefits that will be 221 

received from mating with those individuals. Theory suggests that the benefits of being 222 

choosy are higher when mates vary greatly in quality (Parker 1983; Real 1990). For the 223 

variation in mate quality category, I excluded studies that did not control for the average 224 

mate quality experienced by subjects. This category only applies to choosiness and 225 

responsiveness.  226 

 227 
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There are other environmental factors that may influence mating behaviour in systematic 228 

ways that I did not consider, because they do not influence the costs and benefits of 229 

expressing mating behaviour. For example, differences in noise or light levels instead reduce 230 

the ability of animals to detect or discriminate between signals (e.g. Seehausen et al. 1997; 231 

Swaddle & Page 2007; Candolin 2019). Additionally, other environmental stressors such as 232 

temperature could influence the costs and benefits of expressing mating behaviour 233 

(Candolin 2019), but are also likely to influence individual state. For example, in high-stress 234 

environments, individuals may have less energy reserves to spend on costly mating 235 

behaviours (Coomes et al. 2019). I chose to exclude these types of stressors from the 236 

analysis, as there is no way of determining whether any behavioural change is driven by a 237 

context or state-dependent effect. I also excluded studies examining social-experience 238 

effects that do not clearly influence the costs and benefits of choice, such as mate choices 239 

influenced by the phenotypes of parents or opposite-sex individuals encountered during 240 

development. 241 

 242 

PREDICTIONS 243 

I predicted that choosiness should be highest, and so individuals should mate least 244 

randomly, when mating opportunities are common and the cost of sampling mates is low 245 

(low costs of choice), and when there is large variation in mate quality (high benefits of 246 

choice). Because of how I coded effect sizes (see Effect size extraction and coding), these 247 

predictions will result in a positive average effect for choosiness for all environmental 248 

factors (Figure 2). The predictions for sexual signalling and responsiveness are less clear, 249 

because several processes could select for contrasting behavioural responses (Table 1). If 250 

mate availability is most important for determining signalling and responsiveness, then 251 
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sexual signalling and responsiveness should be highest when mating opportunities are rare 252 

and the cost of mate sampling is high, because in these situations each mating opportunity 253 

is potentially more valuable. This type of response is analogous to the ‘terminal investment’ 254 

observed in old or poor-condition individuals (Duffield et al. 2017). Alternatively, if signalling 255 

and mate searching are moderately costly, then individuals could conserve energy by 256 

reducing investment into these behaviours when the chances of securing a mate are low. 257 

Further, because signalling and mate searching generally increase predation risk, the 258 

expression of these behaviours may be greatest at a low predation risk (low cost of choice), 259 

as with choosiness (Zuk & Kolluru 1998). Finally, plasticity in sexual signalling and 260 

responsiveness could depend on the behaviour of chooser. If the more discriminating sex 261 

becomes choosier when mate availability is high, then courters will need to invest more into 262 

signalling and searching in these contexts in order to ensure a mating. Therefore, depending 263 

on which processes are most important, the average effect size for sexual signalling and 264 

responsiveness could be negative (if mate availability is most important) or positive (if 265 

conserving available energy reserves or responding to choosers is most important) (Figure 266 

2). 267 

 268 

EFFECT SIZE EXTRACTION AND CODING 269 

I used the correlation coefficient r as the measure of effect size. In this analysis, the effect 270 

size represents the difference or change in a behaviour due to the environment. Larger 271 

values therefore represent a greater difference in behaviour across contexts, and an effect 272 

size of zero indicates no difference in behaviour across contexts. For all analyses, I used 273 

Fisher’s Z transform of the correlation coefficient (Zr), as r is constrained within ± 1 and so 274 

does not adhere to a Gaussian distribution (Koricheva et al. 2013). The associated variance 275 
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for Zr (var Z) was calculated as 1/(n - 3) (Borenstein et al. 2009), with n being the total 276 

number of animals used in the test.  277 

 278 

 279 

 

Figure 2. Diagram illustrating how differences in mating behaviour were assigned a positive 
or negative direction (in terms of the correlation coefficient r) in relation to environmental 
conditions. Positive effect sizes were assigned when mating behaviour was stronger under 
conditions of high mate availability, low costs of sampling mates and high benefits of mate 
choice. Negative effect sizes were assigned when mating behaviour was stronger under 
conditions of low mate availability, high costs of sampling mates and low benefits of mate 
choice. In all cases, ‘high’ and ‘low’ are relative terms, because environmental conditions 
were not standardised across studies.  

 280 

 281 

I extracted all relevant effect sizes from each study. In many cases this resulted in multiple 282 

effect sizes per study, because studies often report results from multiple experiments, or 283 

compare several behaviours from the same experiment. The potential non-independence 284 

arising from using multiple effect sizes per study is controlled for in the statistical analysis 285 

(see Statistical Analyses). In many cases I obtained measurements for more than one 286 
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behavioural category from a single study (though I ran separate analyses for each category). 287 

When statistical information was available, I obtained effect sizes directly, or using summary 288 

data or the results of statistical tests, using a range of conversion equations (Lipsey & Wilson 289 

2001; Koricheva et al. 2013). I used two approaches to obtain effect sizes when appropriate 290 

statistics were missing. First, where possible I performed my own analyses using reported 291 

summary statistics or raw data presented in the text, in tables and figures, or in available 292 

supplementary results or data. I used the online tool WebPlotDigitizer v4 (Rohatgi 2019) to 293 

extract raw data from scatter plots, and means and standard deviations from bar plots. 294 

Second, I contacted authors directly and asked for either summary statistics or raw data. I 295 

obtained data this way for 17 studies (Berglund 1994; Evans & Magurran 1999; Evans et al. 296 

2002; Velez & Brockmann 2006; Wong & Svensson 2009; Young et al. 2009; Ziege et al. 297 

2009; Lafaille et al. 2010; Makowicz et al. 2010; Willis et al. 2012; Pilakouta & Alonzo 2013; 298 

Franklin et al. 2014; Wilgers et al. 2014; Breedveld & Fitze 2015; Pompilio et al. 2016; Filice 299 

& Long 2017; Pilakouta et al. 2017). Information on methods for these calculations are 300 

presented in Table S2. 301 

 302 

The original direction of the extracted effect sizes is not meaningful, as it depends on the 303 

type of data used (for example: association time is positively related to preference, whereas 304 

approach latency is negatively related to preference), or which treatment is classed as the 305 

control. I therefore manually assigned a direction to all effect sizes, in relation to the 306 

environmental context under which behaviours were more strongly expressed. I assigned 307 

directions based on the hypothesised costs of mate searching and mate choice (but not 308 

sexual signalling). I assigned a positive direction to conditions in which the cost of expressing 309 

mate searching and mate choice is expected to be low. This is associated with high mate 310 
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availability and low energetic or mortality costs of mate sampling. Conversely, I assigned a 311 

negative direction to conditions in which the cost of mate searching and mate choice is 312 

expected to be high, so that each mating encounter is more valuable. Therefore, the effect 313 

size was assigned a positive direction when sexual signalling, responsiveness or choosiness 314 

was highest when: the population density is high, the adult sex ratio or OSR is biased 315 

towards the other sex, the predation risk is low, the travel and time costs are low, and there 316 

is large variation in mate quality (Figure 2). Conversely, the effect size was assigned a 317 

negative direction when sexual signalling, responsiveness or choosiness was highest when: 318 

the population density is low, the adult sex ratio or OSR is biased towards the same sex, the 319 

predation risk is high, the travel and time costs are high, and there is small variation in mate 320 

quality (Figure 2). I note also that the terms ‘high’ and ‘low’ in this case are relative, because 321 

the actual environmental conditions are not standardised across studies. So for example the 322 

phrase ‘high predation risk’ is shorthand for ‘the context in which predation risk in highest’. 323 

 324 

In several cases, studies presented tests statistics that were non-significant, but provided no 325 

descriptive or statistical information that allowed me to determine the direction of an effect 326 

(for example, chi-squared statistics do not encode which cells have the highest frequencies). 327 

These effect sizes would traditionally not be included in a meta-analysis in which effect size 328 

direction is important. However, this systematically biases the dataset against non-329 

significant results (Harts et al. 2016), as such information is almost always available for 330 

significant results. As a form of sensitivity analysis I assumed that these effect sizes were 331 

equally likely to be weakly positive or negative, and assigned them a value of zero. I then ran 332 

the analyses with and without including these directionless data points. This process 333 
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resulted in six separate datasets: a zeros included dataset and a zeros excluded dataset for 334 

each behaviour category. 335 

 336 

PHYLOGENETIC TREES 337 

In order to control for the potential non-independence of effect sizes due to shared 338 

evolutionary history (Hadfield & Nakagawa 2010; Koricheva et al. 2013) I created a 339 

phylogeny of the species included in each of the six datasets. Given the broad range of 340 

species included in each sample, no single published phylogeny was available that included 341 

all species. I therefore constructed a phylogenetic supertree for each of the six datasets 342 

using the Open Tree of Life (OTL) database (Hinchliff et al. 2015) and the rotl R package 343 

(Michonneau et al. 2019). Given the absence of accurate branch length data for these trees, 344 

all branch lengths were first set to one and then made ultrametric using Grafen’s method 345 

(Grafen 1989), using the R package ape v5.3 (Paradis et al. 2014). In cases where the OTL 346 

database resulted in a polytomy, I manually searched for published phylogenies that could 347 

resolve them (see supplementary methods for details). The final ultrametric trees for the 348 

three full datasets (zeroes included) can be seen in the supplementary material (Figures S1-349 

S3). 350 

 351 

MODERATORS 352 

I tested for the effect of 10 categorical moderator variables (eight for each behaviour) on 353 

the size or direction of context-dependent plasticity. For all three behaviours I examined the 354 

effect of: environmental factor, focal sex, taxonomic class, environmental factor timing 355 

(whether the environment was varied before or during behavioural trials), environmental 356 

factor variation (whether the environmental varied naturally or experimentally), and animal 357 
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origin (whether subjects were lab-reared, wild-caught or wild). For sexual signalling I also 358 

examined the effect of signalling modality (visual, acoustic, chemical, tactile, or mixed 359 

signalling) and signalling type (close- or long-range signalling). For responsiveness and 360 

choosiness I also examined the effect of preference measure (whether the study recorded 361 

mating or a behavioural measure of mating preference) and stimuli type (whether subjects 362 

were presented with conspecific signals only, or could choose between conspecific and 363 

heterospecific signals). See the supplementary methods for details and predictions relating 364 

to each moderator. 365 

 366 

STATISTICAL ANALYSES 367 

All statistical analyses were performed using R v3.6 (R development Core Team 2019). Meta-368 

analyses were performed using the package Metafor v2.1 (Viechtbauer 2010). In order to 369 

determine the overall mean effect size for each dataset, I ran a multilevel random-effects 370 

model using the rma.mv function, with study, species, and phylogeny as random factors 371 

(Nakagawa & Santos 2012). Phylogeny was incorporated into the model using a variance-372 

covariance matrix, assuming that traits evolve via Brownian motion. The Fisher’s Z 373 

transformation was used as the effect size in all models, and model results were then 374 

converted back to r for presentation. The mean effect size was considered to be significantly 375 

different from zero if the 95% confidence intervals did not overlap zero. I ran these overall 376 

models separately for each of the three behaviours. For each behaviour, I ran models with 377 

and without the inclusion of directionless effect sizes.  378 

 379 

I used I2 as a measure of heterogeneity of effect sizes (Higgins et al. 2003). I2 values of 25, 50 380 

and 75% are considered low, moderate and high respectively (Higgins et al. 2003). I 381 
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calculated I2 across all effect sizes, and also partitioned at different levels of the model using 382 

the method of Nakagawa & Santos (2012). This allowed me to quantify the amount of 383 

variation in effect size that could be attributed to differences in study, species, and 384 

phylogenetic history. 385 

 386 

I investigated potential moderators of the effect size using the full (zeroes included) dataset 387 

for each behaviour. To test for the effect of moderators I ran meta-regression models, which 388 

were identical to the above models except for the inclusion of categorical or continuous 389 

fixed factors. For this I used two approaches. First, I ran a separate model for each fixed 390 

effect. Second, I ran a full model including all fixed factors. I considered a moderator to 391 

significantly influence the mean effect size by examining the QM statistic, which performs an 392 

omnibus test of all model coefficients. For the full model, I specified which category levels to 393 

compare using the anova function in R. For each behaviour I tested the effect of nine 394 

moderators: eight categorical and one continuous (study year). I tested the effect of 395 

different moderator variables depending on the behaviour examined. I used the method of 396 

Nakagawa & Schielzeth (2013) to calculate marginal R2 values for each fixed factor. In order 397 

to estimate the average effect size for each level of a categorical factor I ran meta-398 

regressions including a single fixed factor, but excluding the model intercept. For sexual 399 

signalling and responsiveness the number of effect sizes for some environmental factor 400 

categories were small. Therefore, in order to check the sensitivity of the meta-regressions 401 

testing the effect of environmental factor, I ran each of these tests first including all factors, 402 

and second after removing any categories with 6 or less effect sizes (this does not apply to 403 

the choosiness dataset). 404 

 405 
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Finally, I searched for signs of two types of publication bias using the full dataset for each 406 

behaviour. I first searched for signs of time-lag bias, which arises when earlier published 407 

studies have larger effect sizes than later published studies, which may indicate bias against 408 

publishing studies of small effect in young research fields (Koricheva et al. 2013). To test for 409 

any change in effect size over time, I ran a meta-regression with study year as a fixed effect. 410 

Second, I searched for signs of publication bias against studies with small sample sizes or 411 

non-significant results (Koricheva et al. 2013), by looking for funnel plot asymmetry using a 412 

trim-and-fill test (Duval & Tweedie 2000) and Egger’s regression (regression of Zr against 413 

inverse standard error; Egger et al. 1997).  414 

 415 

All data, R code, and supplementary materials are available at Dougherty (2020b). 416 

 417 

Results 418 

 419 

SEXUAL SIGNALLING 420 

I obtained 260 effect sizes examining context-dependent sexual signalling, from 114 studies 421 

and 68 species. I obtained data from seven taxonomic groups, though the majority of 422 

studies focused on insects and fish (Figure 3a). Male signalling was much more common 423 

than female signalling (males: k= 230; females: k= 24; no sex specified: k= 6).  424 

 425 

Overall, sexual signalling behaviour did not consistently differ across contexts, either using 426 

the full dataset (k= 260, mean= 0.07, 95% CI= -0.11- 0.24; Figure 3b) or the reduced dataset 427 

(k= 209, mean= 0.095, 95% CI= -0.12- 0.18). The full dataset shows very high heterogeneity 428 
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across effect sizes (Total I2= 93.4%), with 36.4% being attributable to between-study 429 

differences, <1% to between-species differences, 11.24% to phylogenetic history, and 45.8% 430 

to residual variance.  431 

 432 

 433 

 

Figure 3. Summary results for context-dependent sexual signalling. a) Histogram showing 
the number of species included in relation to taxonomic grouping. b) Funnel plot showing 
the relationship between effect size (r) and sample size (inverse standard error). The dotted 
line shows the mean effect size for the full model. c) Forest plot showing the average effect 
size for each environmental factor separately. In all cases diamonds represent the mean 
effect size estimate, and the bars represent the 95% confidence interval. The mean effect 
size obtained from the full model, across all effect sizes, is shown in blue for comparison. k is 
the number of effect sizes in each category. d) Bubble plot showing the relationship 
between effect size (Zr) and publication year. The points are scaled by the sample size of 
each estimate. The broken line shows the predicted regression line from a meta-regression, 
and the dotted lines are the 95% confidence intervals. 
 434 

 435 
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The strength or direction of the signalling response did not differ for the five environmental 436 

factors tested (Table 2; Figure 3c): for all environmental factors signalling was greatest 437 

when the cost of choice was low (positive effect size), however the mean effect size did not 438 

differ from zero for any environmental factor individually. This result remained after 439 

removing the two environmental factors with 6 effect sizes or fewer (OSR and travel cost, 440 

QM 2= 2.33, P= 0.31, k= 256). The average signalling response did not differ according to any 441 

of the other moderators tested, including taxonomic class or focal sex, either when factors 442 

were tested separately (Table 2; Table S4), or all factors were tested in a single model 443 

(Table S3). The total variance explained by the fixed factors (marginal R2) in the multiple 444 

meta-regression model was 0.07. 445 

 446 

Significant funnel plot asymmetry was detected for sexual signalling, with 24 ‘missing’ 447 

negative effect sizes (Figure S4). The overall mean was still not significantly different from 448 

zero after included these missing effect sizes (k= 284, mean= 0.03, 95% CI= -0.02- 0.07). A 449 

regression test did not detect any significant relationship between effect size and study 450 

variance for sexual signalling (F 1, 258 = 0.41, P= 0.52; Figure S5). 451 

 452 

RESPONSIVENESS 453 

I obtained 176 effect sizes examining context-dependent differences in responsiveness, 454 

from 86 studies and 53 species. I obtained data from eight taxonomic groups, though the 455 

majority of studies focused on insects and fish (Figure 4a). I obtained an approximately 456 

equal number of responsiveness effect sizes from both sexes (males: k= 78; females: k= 80; 457 

no sex specified: k= 18). 458 

 459 
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Table 2. Meta-regression results for all three behaviours. Significance was determined using 
a QM test for both categorical and continuous fixed effects. Marginal R2 is the amount of 
variance explained by each fixed factor. Each factor was tested using a separate mixed-
effects model, with a single fixed factor and four random factors (Study ID, species, 
phylogeny and observation ID). Significant factors are highlighted in grey. 
 

Fixed effect 
Signalling Responsiveness Choosiness 

QM P R2 QM P   R2 QM P R2 

Environmental factor 2.44 0.66 0.014 9.50 0.09 0.09 8.89 0.18 0.04 

Focal sex 1.08 0.58 0.005 0.85 0.65 0.01 5.40 0.07 0.02 

Taxonomic class 2.19 0.9 0.036 2.44 0.93 0.02 3.33 0.85 0.04 

Factor timing (Before vs 
during test) 

2.78 0.25 0.02 3.48 0.18 0.04 0.39 0.82 <0.001 

Factor variation 
(Manipulated vs natural) 

1.09 0.3 0.005 0.01 0.93 <0.001 0.01 0.93 <0.001 

Animal origin (Wild vs lab-
reared) 

0.42 0.81 0.004 3.64 0.16 0.04 1.81 0.61 0.02 

Signalling modality 2.74 0.6 0.022 - - - - - - 

Signalling type (Short vs 
long range) 

0.04 0.84 <0.001 - - - - - - 

Preference measure 
(Matings vs proxy) 

- - - 0.20 0.66 <0.001 0.14 0.70 0.01 

Stimuli type (Mate-quality 
vs species recognition) 

- - - 0.07 0.79 0.03 1.37 0.24 0.01 

Study year 0.78 0.38 0.005 0.001 0.98 <0.001 8.78 0.003 0.08 

 460 

 461 

Overall responsiveness did not consistently differ across contexts, either using the full 462 

dataset (k= 176, mean= -0.003, 95% CI= -0.082- 0.08; Figure 4b) or the reduced dataset (k= 463 

146, mean= -0.001, 95% CI= -0.1- 0.1). The full dataset shows very high heterogeneity across 464 

effect sizes (Total I2= 91.6%), with 67.5% being attributable to between-study differences, 465 

<1% to between-species differences or phylogenetic history, and 24.1% to residual variance.  466 

 467 

 468 
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Figure 4. Summary results for context-dependent responsiveness. a) Histogram showing the 
number of species included in relation to taxonomic grouping. b) Funnel plot showing the 
relationship between effect size (r) and sample size (inverse standard error). The dotted line 
shows the mean effect size for the full model. c) Forest plot showing the average effect size 
for each environmental factor separately. In all cases diamonds represent the mean effect 
size estimate, and the bars represent the 95% confidence interval. The mean effect size 
obtained from the full model, across all effect sizes, is shown in green for comparison. k is 
the number of effect sizes in each category. d) Bubble plot showing the relationship 
between effect size (Zr) and publication year. The points are scaled by the sample size of 
each estimate. The broken line shows the predicted regression line from a meta-regression, 
and the dotted lines are the 95% confidence intervals. 
 469 

 470 

The difference in responsiveness was not significantly influenced by environmental factor 471 

(Table 2). There was a tendency for a positive effect size for predation risk, population 472 

density and OSR and a negative effect size for adult sex ratio, travel cost and variation in 473 

quality (Figure 4c). However, only one of the factors, travel cost, resulted in an average 474 

estimate that differed significantly from zero. The non-significant effect of environmental 475 
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factor remained after removing the three environmental factors with 6 effect sizes or fewer 476 

(OSR, travel cost and variation in mate quality, QM 2= 4.51, P= 0.11, k= 164). The average 477 

difference in responsiveness was not significantly influenced by any of the other moderators 478 

tested, either when factors were tested separately (Table 2; Table S5), or all factors were 479 

tested in a single model (Table S3). The total variance explained by the fixed factors 480 

(marginal R2) in the multiple meta-regression model was 0.17. 481 

 482 

Significant funnel plot asymmetry was detected for responsiveness, with 28 ‘missing’ 483 

negative effect sizes (Figure S4). Inclusion of these effect sizes resulted in a significantly 484 

negative effect size for responsiveness (k= 204, mean= -0.07, 95% CI= -0.12 -0.02). A 485 

regression test did not detect any significant relationship between effect size and study 486 

variance for responsiveness (F 1, 174= 0.19, P= 0.67; Figure S5). 487 

 488 

CHOOSINESS 489 

I obtained 261 effect sizes examining context-dependent differences in choosiness, from 490 

105 studies and 61 species. I obtained data from eight taxonomic groups, though the 491 

majority of studies focused on insects and fish (Figure 5a). Female choice is more common 492 

than male choice in the choosiness dataset (female choice: k= 159; male choice: k= 96; no 493 

sex specified: k= 6). 494 

 495 

Overall, choosiness was significantly higher when the costs of mate choice were low (k= 261, 496 

mean= 0.098, 95% CI= 0.043- 0.16; Figure 5b). This result was the same after removing the 497 

65 directionless effect sizes (k= 196, mean= 0.12, 95% CI= 0.05- 0.19). However, the overall 498 

effect size is small (Cohen 1992). The full dataset shows very high heterogeneity (Total I2= 499 
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81.2%), with 40.9% being attributable to between-study differences, 17.9% to between-500 

species differences, <1% to phylogenetic history, and 22.4% to residual variance. 501 

 502 

 503 

 

Figure 5. Summary results for context-dependent choosiness. a) Histogram showing the 
number of species included in relation to taxonomic grouping. b) Funnel plot showing the 
relationship between effect size (r) and sample size (inverse standard error). The dotted line 
shows the mean effect size for the full model. c) Forest plot showing the average effect size 
for each environmental factor separately. In all cases diamonds represent the mean effect 
size estimate, and the bars represent the 95% confidence interval. The mean effect size 
obtained from the full model, across all effect sizes, is shown in orange for comparison. k is 
the number of effect sizes in each category. Estimates that differ significantly from zero are 
marked with asterisks (*, P< 0.05; **, P< 0.01; ***, P < 0.001). Bubble plot showing the 
relationship between effect size (Zr) and publication year. The points are scaled by the 
sample size of each estimate. The broken line shows the predicted regression line from a 
meta-regression, and the dotted lines are the 95% confidence intervals. 
 504 

 505 
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The difference in choosiness across contexts was not significantly affected by environmental 506 

factor (Table 2); the average estimate was positive for all factors, but significantly differed 507 

from zero for predation risk, population density, and adult sex ratio (Figure 5c). The average 508 

estimates for operational sex ratio, travel cost, time cost and variation in mate quality did 509 

not differ significantly from zero, however all four categories consisted of a small number of 510 

effect sizes (k <20), so this lack of an effect should be interpreted with caution. The average 511 

choosiness response was not significantly influenced by any of the other categorical 512 

moderators tested, either when factors were tested separately (Table 2; Table S6), or all 513 

factors were in a single model (Table S3). However, the average choosiness response 514 

decreased significantly over time (Table 2; Figure 5d). The total variance explained by the 515 

fixed factors (marginal R2) in the multiple meta-regression model was 0.15. 516 

 517 

A trim-and-fill test did not detect any ‘missing’ effect sizes for choosiness. However, a 518 

regression test revealed a significant negative relationship between effect size and inverse 519 

standard error (F 1, 259= 4.87, P= 0.028; Figure S5). This latter effect seems to be driven by a 520 

lack of negative effect sizes of low power, which is suggestive of publication bias. 521 

 522 

Discussion 523 

 524 

Investment in mating behaviour is often costly, and the fitness payoffs of this investment 525 

can vary across contexts. Therefore, animals are expected to alter their mating behaviour 526 

depending on the current context, in order to minimise the amount of investment needed 527 

to secure matings, and maximise fitness outcomes. By synthesising the results of 222 studies 528 
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and 697 effect sizes examining animal mating behaviour across multiple contexts, I found 529 

that choosiness (the strength of mate choice) differed significantly across environments. 530 

Choosiness was significantly stronger in contexts where the cost of mate choice is low, such 531 

as when mating opportunities are frequent and the perceived risk of predation is low. 532 

However, the average effect of each factor alone was much weaker than expected, and 533 

there was some evidence for a decrease in effect size over time. Neither sexual signalling 534 

nor responsiveness differed across contexts in a consistent way, either across the whole 535 

dataset or when each environmental factor was considered individually. Taken together, 536 

these results suggest that the expression of mate choice is more context-dependent than 537 

either sexual signalling or responsiveness, but that overall the evidence for context-538 

dependent mating behaviour across animals is currently surprisingly weak. The common 539 

assumption that animal mating behaviour shows context-dependent expression may need 540 

to be reassessed in light of these findings.  541 

 542 

Why might mate choice be more consistently sensitive to the environment than sexual 543 

signalling or responsiveness? One explanation is that the environmental factors examined 544 

here are predicted to influence choosiness in the same way: when conditions become 545 

unfavourable, choosiness should decrease. In contrast, there may be conflicting selection 546 

pressures acting on signalling and responsiveness which cause the direction of plasticity to 547 

differ across species or contexts. For example, when mate availability is low, the potential 548 

value of each mate encounter is higher, but the cost of searching and signalling is also 549 

higher. Here other factors, such as the severity of the environment or the age of the 550 

individuals (Duffield et al. 2017), may be most important in determining whether individuals 551 

increase or decrease expression of mate searching and signalling. An alternative explanation 552 
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relates to the relative importance of each behaviour for reproductive fitness. While 553 

choosing the right partner can often provide strong fitness benefits to choosers (Andersson 554 

1994; Kokko et al. 2003), even a total lack of choosiness still leads to mating, just with a 555 

random partner. However, reduced signalling or mate searching may often lead to a 556 

complete failure to mate, resulting in a fitness of zero. In many contexts gaining any mate, 557 

which may require investment in mate searching and/or sexual signalling, may be more 558 

important than gaining a high-quality mate. One consequence of this could be high 559 

investment in sexual signalling and mate searching under most conditions, which will result 560 

in reduced context-dependence.  561 

 562 

All three datasets were characterised by very high heterogeneity in both the strength and 563 

direction of the effect size. Sexual signalling and responsiveness in particular showed an 564 

approximately equal number of positive and negative effect sizes. Partitioning of the model 565 

variances suggested that little heterogeneity could be explained by species differences or 566 

phylogenetic relatedness. I therefore tested whether a range of biological and 567 

methodological moderating factors could explain this variation. Importantly, environmental 568 

factor, sex or taxonomic group did not significantly explain the variation in any behaviour 569 

(while choosiness was significantly context-dependent, this effect did not differ according to 570 

which environmental factor was examined). In fact, for sexual signalling and responsiveness, 571 

the mean effect size for each environmental factor considered alone did not differ 572 

significantly from zero. Choosiness was highest when the costs of choice were lower for all 573 

of the seven factors tested, though the mean effect size was significantly different from zero 574 

only for population density, adult sex ratio, and predation risk. However, the lack of a 575 

significant effect for travel cost, time cost and variation in mate quality are likely driven by 576 
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the small sample sizes for these groups, and so any conclusions relating to these factors 577 

should be interpreted with caution. Interestingly, choosiness was more sensitive to 578 

differences in population density than to differences in sex ratio, even though the latter is a 579 

more accurate measure of the number of available mating opportunities. Individuals may be 580 

more likely to respond to changes in overall population density if it is easier to assess 581 

accurately. Alternatively, this effect could be driven by the fact that population density 582 

tends to vary more than sex ratio in an absolute sense in this sample. Across all studies 583 

included in the three datasets that measured or manipulated population density (N= 22), 584 

the median number of conspecifics was 4 (±6.8) at low density and 20.5 (±56.3) at high 585 

density. Assuming a 1:1 sex ratio, this corresponds to 2 and 10 ‘available’ mates in these 586 

studies. In comparison, for studies that measured or manipulated sex ratio across all three 587 

datasets (N= 98), the median number of mates per focal individual is 0.5 (±1.4) at low mate 588 

availability and 2 (±8.3) at high mate availability. 589 

 590 

Importantly, the majority of heterogeneity in all three datasets remained unexplained after 591 

testing the effects of ten moderating factors (the total amount of variance explained by all 592 

fixed factors was 0.17 or less). It is unclear whether such heterogeneity represents real, 593 

biological variation or stems from some other source. Some of this variation could be 594 

explained by methodological limitations. For example, the effect size used here is only able 595 

to detect linear effects. This means that significant quadratic effects, such as peak signalling 596 

at intermediate densities (Kokko & Rankin 2006), will not be captured here. Alternatively, 597 

the large variation observed may be the result of methodological differences between 598 

studies that have not been accounted for (Dougherty & Shuker 2015; Rosenthal 2017; 599 

Dougherty 2020a). For example, studies typically assume animals can accurately assess the 600 
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costs of expressing a behaviour in a given environment, but this may not always be the case. 601 

Therefore, differences in the extent to which studies successfully manipulate these 602 

perceived costs may lead to significant variation in context-dependent behavioural 603 

responses. Experimental studies may also often use subjects that are especially eager to 604 

mate, for example because they are virgin or have been isolated from members of the 605 

opposite sex, and such individuals are predicted to show lower levels of context-dependent 606 

behaviour than experienced individuals (Ah-King & Gowaty 2016; Kelly 2018). Finally, the 607 

observed heterogeneity may stem from biological differences that are difficult assess for all 608 

of the species sampled, for example in relation to mating system, life-history or the 609 

energetic costs of signalling. Importantly, one key factor that is currently unaccounted for is 610 

the cost of expressing mating behaviour in a given environment: plasticity should be largest 611 

where behaviours are compared across environments that differ greatly in the costs and 612 

benefits of expression. This is important, because the included studies differ in terms of the 613 

range of environmental conditions subjects are tested in. Because these environmental 614 

differences are not standardised, studies will differ also in the range of any environment-615 

induced costs. Unfortunately, we simply do not have accurate data on what these costs are, 616 

even for a small number of behaviours or contexts. This is likely to be the case for some 617 

time, given the difficulty in measuring fitness in ecologically relevant contexts. However, 618 

without this data we also cannot rule out the possibility that experiments simply do not 619 

present subjects with a sufficiently variable range of contexts to detect adaptive context-620 

dependent behaviour.  621 

 622 

In conclusion, this study suggests that the evidence that animal mating behaviour varies in a 623 

consistent way across different environments is currently quite limited. Across species, 624 
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sexual signalling and responsiveness do not appear to consistently respond to any of the 625 

environmental differences tested. Choosiness did show consistent, significant differences in 626 

relation to predation risk, population density and adult sex ratio, but the effect sizes are 627 

generally weaker than expected. This is despite plenty of good empirical examples of 628 

context-dependent mating behaviour as predicted by sexual selection theory, and narrative 629 

reviews consisting almost entirely of affirmatory examples (e.g. Ah-King & Gowaty 2016; 630 

Kelly 2018). Importantly, the datasets for all three behaviours were characterised by very 631 

high heterogeneity in effect size which remains mostly unexplained. It therefore remains 632 

unclear whether environmental variability is a less important driver of behavioural plasticity 633 

than predicted, or whether the lack of a strong effect is due to unaccounted biological or 634 

ecological variability across species. The best way to try to tease apart these alternatives in 635 

the future will be to perform careful, well-designed studies. This work is needed if we are to 636 

understand the expression of animal mating behaviour, and evolutionary forces driven by 637 

mate choice and intrasexual competition, in complex and rapidly-changing natural 638 

environments. Further, human-induced changes in the natural environment have the 639 

potential to influence most of the factors considered here (e.g. population density, predator 640 

density, travel cost, time cost). Therefore, understanding how mating behaviour and 641 

population fitness respond to these increasingly challenging natural conditions will help us 642 

to predict whether natural populations will be able to adapt and persist in the wild. 643 
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