
SATELLITE AND QUANTUM INVARIANTS

H. R. MORTON

1. Algebras and knot polynomials

One of the most exciting and fruitful features of the burgeoning of
ideas released by the discovery of the invariant known as the Jones
polynomial is the extent of the different strands which have come to be
drawn together in the course of explorations. These include algebraic,
combinatoric and geometric aspects, and the involvement of quantum
groups originating from theoretical physics.
A key strand from early times has been the appearance of the Hecke

algebras (initially those of type A), and their role in both defining the
Jones, and subsequently the Homfly polynomials [7], while at the same
time their algebraic involvement with the quantum groups of the A

series, and their very satisfactory modelling by pieces of knot diagrams
[18].
From this standpoint the Hecke algebras Hn of type A are best de-

fined as linear combinations of n-braids, in the sense of Artin, in which
the elementary Artin braids {σi} with

σi =

i i+ 1

each satisfy a quadratic relation in addition to the braid relations.
Up to isomorphism the quadratic relation can take the form

σ2 − zσ − 1 = 0

for a parameter z, or equally

(σ − s)(σ + s−1) = 0,

where z = s− s−1.
Replacing σ by x−1σ gives an isomorphic algebra with the relation

x−1σ − xσ−1 = z, so that any other quadratic relation can be used
instead. The 2-parameter version lies at the heart of the Homfly poly-
nomial.
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In algebraic literature the letters gi or Ti often replace σi, and the
quadratic relation (gi−q)(gi+1) = 0 translates to x = s, q = s2 above,
while the notation x = α or x = v occurs at an early stage in the work
of Kauffman or Morton [11].
As an aside, the cases v = sN , z = s − s−1 showed up very early in

the Hecke algebra explorations of Jones, [7], and relate closely to the
basic invariants from the quantum groups slq(N), with q = s2. The
original Jones polynomial fits readily here with the case N = 2.
From the knot-theoretic viewpoint the most useful approach is to

work with linear combinations of knot diagrams, using a ground ring Λ
which is often Z[v±1, s±1] or some variant with Laurent polynomials in
two independent parameters, and possibly some allowed denominators,
such as sr − s−r.
At a crossing in the diagram impose the linear relation

− = z

between diagrams which only differ as shown. This is a direct coun-
terpart to the quadratic relation σi − σ−1

i = z Id and gives the basic
version of the Hecke algebra Hn, when using braids on n strings as
diagrams.
The more general case with

x−1 − x = z

corresponds to using the quadratic with roots xs,−xs−1 and z = s −
s−1. This approach is developed in [12, 1] and [10].
The relation

l + l−1 +m = 0,

which is the form adopted by Lickorish and Millett for their initial
diagram-based construction of the Homfly polynomial, corresponds to
l = ix−1, m = iz.

Remark 1.1. The version using x and s adapts more readily to quan-
tum group invariants, and also to finite type invariants, and is now gen-
erally adopted, up to the letters chosen for the parameters, in favour
of the equivalent l, m form.

The parameter x can be sidelined quite a bit in calculations by work-
ing with framed (or ‘banded’) diagrams, which carry a specified ribbon
neighbourhood for every curve. This is often given implicitly as the
‘blackboard framing’ in which the band lies parallel to the curve as
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drawn in the diagram. Then use of Reidemeister moves RII and RIII

on diagrams preserve the implicit bands, and the basic relation

− = z

can be used, along with a parameter v to handle the effect of RI on a
diagram, which introduces a twist in the implicit band. This shows up
as the additional relation

= = v−1 , = = v .

Banded diagrams can be adapted to incorporate a parameter x by
simply multiplying any diagramD by xwr(D), where wr(D) is the ‘writhe’
of the diagram, in other words the number of positive crossings minus
the number of negative crossings. In this adaptation the relations be-
come

x−1 − x = z

and

= xv−1 , = x−1v .

This allows for any adjustment of the quadratic relation that may be
wanted when comparing invariants.
Early Hecke algebra calculations of the Homfly polynomial [16] made

use of the case x = 1 to simplify the work with braids, so that only the
parameter z was needed for a great part of the calculations, and the
second parameter v was only incorporated in the closing stages. The
general method of working with framed diagrams followed Kauffman’s
similar approach to the second variable in his construction of the 2-
variable Kauffman polynomial.

2. Satellite invariants

Framed (banded) knots and links form the natural setting for the
use of satellites in developing extra invariants based on the Homfly
polynomial.
Calculations in [16] showed at an early stage that, unlike the special

case of the Alexander polynomial, there were potential further invari-
ants available for a knot K by the simple device of calculating the
Homfly polynomial of chosen satellites of K. For example, to compare
K and K ′ we could look at the 2-cable of each (with the same number
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of twists). If K and K ′ are equivalent knots then so are the corre-
sponding 2-cables, and hence the cables will have the same Homfly
polynomials. However it can happen that cables have different polyno-
mials even when the original knots K,K ′ have the same polynomial,
showing that the polynomial of the chosen cable is an invariant which
can carry information that is independent from the polynomial of the
knot itself [16, 19].
To give a systematic account of satellites we start with a banded

knot K, and ‘decorate’ K with a ‘pattern’ Q.
For example, when

K =

and Q is the simple 2-cable pattern

Q =

then the resulting satellite is

K ∗Q =

In general a pattern is a framed diagram Q ⊂ A × I lying in the
standard thickened annulus A × I. Placing the annulus around the
chosen band neighbourhood of K carries Q to the satellite K ∗Q.
For each choice of Q we can then regard the Homfly polynomial

P (K ∗Q) as an invariant of the banded knot K, written P (K : Q).
While very many choices of Q are available, giving potentially a

large number of different invariants for K, it is possible to spot rela-
tions between these, where the choices for pattern are closely related as
diagrams within A× I. If for example we restrict attention to patterns
formed from closed m-string braids in A × I then these will result in
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at most p(m) linearly independent resulting invariants, where p(m) is
the number of partitions of the positive integer m.
A partition of m is often displayed as a Young diagram with m cells.

For example the partition of 8 into three parts 8 = 4 + 2 + 2 can be
visualised as a diagram

with 3 rows.

Organising satellite invariants. There are a number of ways to
organise satellite invariants in terms of linear combinations of framed
diagrams in the annulus, modulo skein relations. Among these are
some particularly useful combinations Qλ, one for each partition of m.
The resulting invariants P (K : Qλ) span all the p(m) invariants aris-

ing from closed m-braid patterns. They have good integrality proper-
ties in the variables v, s, and change by a scalar multiple depending only
on the partition λ when the twist of the band around K is changed.
The elements Qλ can be constructed in a number of equivalent ways.

The original method was as the closure of suitably chosen idempotents
in the Hecke algebra Hm, [4, 1, 2, 22]. Later they appeared as the
analogue of the Schur functions sλ when the possible decorating ele-
ments in the annulus are interpreted as symmetric polynomials in a
large number of variables, [9]. More recently they have been identified
with eigenvectors of a simple operation on linear combinations of dia-
grams in the annulus, [10]. An extension of this approach can be found
in [5] and the consequent integrality results in [13], while an account
of all the different approaches can be found in [15, 14].

3. Quantum group invariants

One unexpected development, which emerged closely after the knot
polynomial discoveries, was the use of quantum groups in constructing
1-parameter invariants of framed knots and links. The initial work by
Kirillov and Reshetikhin [8] on invariants derived from the quantum
group slq(2) was followed by a more systematic general approach by
Reshetikhin and Turaev [20] based on the properties of the universal
R-matrix in the algebraic formulations of quantum groups arising from
work of Jimbo [6] and Drinfeld [3].
Connections between these invariants and knot polynomials were

established at a very early stage [17, 12], although the exact details
and general consequences were the subject of much subsequent work.
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Quantum groups. Quantum groups are algebras G over the formal
power series ring Q[[h]] = Λ, They are typically a deformed version of
a classical semi-simple Lie algebra, which shows up in the limit when
h → 0.
Knot invariants are constructed from finite dimensional G-modules,

making use of crucial features of the algebra G. The major proper-
ties are that the tensor product V ⊗ W of two G-modules is again a
G-module, and that there is an invertible G-module homomorphism
RV,W : V ⊗W → W ⊗ V , determined by the universal R-matrix in G.
In addition there is a dual module V ∗ for each V , and homomorphisms
V ⊗ V ∗ → Λ and Λ → V ⊗ V ∗, where the ground ring Λ acts as the
trivial G-module.

Colouring tangles. Any oriented diagram consisting of closed curves
and arcs connecting points at the top and bottom, as shown,

can be coloured by making a choice of G-module for each component.

U

V

W

The resulting coloured tangle T determines a module homomorphism

J(T ) : Tbottom → Ttop,

where Tbottom is the tensor product of the outgoing string colours at
the bottom of T , using the dual colour for any incoming string, and
Ttop is the tensor product of the incoming strings at the top of T , with
again the dual colour for any outgoing strings.
So the example T above yields J(T ) : W → W ⊗ V ⊗ V ∗, while the

coloured tangle
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S =

U

V
W

W ⊗ U ⊗ U∗

W ⊗ V ⊗ V ∗

↑J(S)

gives J(S) : W ⊗ V ⊗ V ∗ → W ⊗ U ⊗ U∗.
Set Ttop = Λ when no strings of T meet the top, and equally Tbottom =

Λ when there are no strings at the bottom.
Placing consistently coloured tangles S and T one above the other

results in the composite J(S)J(T ) of the homomorphisms J(S) and
J(T ),

U
V

W

U

W ⊗ U ⊗ U∗

W

↑J(S)

↑J(T )

while placing them alongside each other

represents their tensor product J(S)⊗ J(T ).
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Construction of homomorphisms. To construct J(T ) for a general
coloured tangle T dissect the tangle into elementary pieces

, , ,

and build up the homomorphism J(T ) from a definition on these pieces.
Combine the homomorphisms for the elementary pieces, by taking their
tensor product when they lie side by side, and composing them when
consistently coloured pieces are placed one on top of the other.

Use RV,W or its inverse on a simple crossing of strands coloured

V and W , alongside the homomorphisms Λ → V ⊗V ∗ and V ⊗V ∗ → Λ
for the cup and cap and the identity 1V for a single strand

coloured by V . Where a string orientation is reversed use the dual

module in the homomorphism.
The key feature of this construction is that the resulting homomor-

phism J(T ) can be shown, using algebraic properties of a quantum
group, to be unaltered when the tangle T is changed by Reidemeister
moves RII and RIII on the strings inside it.

Knot invariants. Any knot diagram K when coloured by a module
W can be regarded as a coloured tangle with no strings at the bottom
or top.
The resulting homomorphism J(K) is then a map from the trivial

module Λ = Q[[h]] to itself. This is simply multiplication by a scalar,
which we write as J(K : W ) ∈ Q[[h]].
The scalar J(K : W ) depends only onW and the banded knotK, and

gives the 1-parameter quantum group invariant of K for the G-module
W . The construction similarly provides an invariant of a banded link
depending on a choice of module for each oriented component.
The invariant J(K) is additive under direct sum of modules,

J(K : W ) = J(K : W1) + J(K : W2)

when W = W1 ⊕W2. It is usual to look at the case where G is semi-
simple, so that W decomposes as the sum of irreducible modules. Then
we need only consider colourings by irreducible modules. These have
the added property that introducing a twist in the band around K mul-
tiplies J(K : W ) by a scalar fW which depends only on the irreducible
module W .

Dependence on h. While the quantum invariant J(K : W ) lies in
the power series ring Q[[h]] it can generally be written as a multiple,
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depending only on W and the amount of twisting in the band around
K, of a Laurent polynomial in Z[q±1], where q = eh.
The Lie algebras {sl(N)} of theA series have corresponding quantum

groups {sl(N)q}. The knot invariants derived from these have a close
relationship with the Homfly satellite invariants discussed above.
For eachN there is a ‘fundamental’N -dimensional irreducible sl(N)q-

module V
(N)
�

. Formulae derived from the universal R-matrix show [9]
that the homomorphism

R = R
V

(N)
�

,V
(N)
�

: V
(N)
�

⊗ V
(N)
�

→ V
(N)
�

⊗ V
(N)
�

satisfies the quadratic equation

e
h

2N R− e−
h

2N R−1 = (e
h

2 − e−
h

2 )Id.

The invariant where all components of a link are coloured by V
(N)
�

then satisfies the equation

x−1 − x = (s− s−1) ,

with s = e
h

2 and x = e−
h

2N = s−
1
N .

Calculations for the module endomorphism of V
(N)
�

given by show

[9] that J

( )

= xv−1 with v = s−N , x = s−
1
N . The consequence is

that for a banded knot K we have

J(K : V
(N)
�

) = xwr(K)P (K)

where P (K) is the framed Homfly polynomial of K in v and s, nor-
malised to take the value 1 on the empty knot, and v, s, x are given as
above in terms of h.

Remark 3.1. The classical Jones polynomial of a link is given from
the Homfly polynomial by setting v = t = s2. With v = s−2 we get the
Jones polynomial up to a sign depending on the number of components
of the link.
In the quantum group case with N = 2 the modules are all self-dual,

and so string orientation in the tangles can be omitted.

For the fundamental irreducible 2-dimensional module V
(2)
�

we then
have the relation

x−1 − x = (s− s−1)
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and also

x−1 − x = (s− s−1) ,

with s = e
h

2 , x = e−
h

4 . These give

(x−2 − x2) = (s− s−1)

(

x−1 + x

)

so, since x2 = s−1 we get

= x−1 + x .

The relations here are very close to the classical Kauffman bracket re-

lations with A = x−
1
2 . Sikora [21] looks at the skein theory J(K : V

(N)
�

)
and its extension to links, and notes that when N = 2 it coincides with
the normalised Kauffman bracket up to a sign depending on the number
of crossings and link components.

Dependence among invariants. In the light of the huge array of
available knot invariants arising from the use of satellites and quantum
groups the questions of their interrelations and independence become
important. There is, for example, no point in trying to distinguish
pairs of knots by use of an invariant which depends on invariants that
are already known to agree on the knots in question.
We have noted above that the 2-variable Homfly polynomial P (K)

of a knot specialises to the family of 1-variable quantum invariants

{J(K : V
(N)
�

}. Conversely if we know enough of these quantum invari-
ants then we can recover the whole Homfly polynomial.
There is a much wider result about the whole collection of invariants

arising from the A-series of quantum groups {sl(N)q}, showing that
these quantum invariants of a knot are collectively equivalent to its
Homfly satellite invariants.
The relations between the invariants come in a very attractive form,

linking up the irreducible quantum group modules in a nice way with
the natural set of satellite invariants {P (K : Qλ)} discussed earlier.

Quantum and satellite invariants. The most striking correspon-
dence comes when we use the irreducible {sl(N)q}-modules to colour
a knot or link. As for the classical case of sl(N) there is an irreducible

sl(N)q-module V
(N)
λ for every partition λ of an integer into at most

N − 1 parts. The 1-variable quantum invariants J(K : V
(N)
λ ) are all
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special cases of the 2-variable Homfly satellite invariant P (K : Qλ) cor-
responding to the same partition λ. The following explicit result, due
essentially to Wenzl [22], is carefully discussed in chapter 11 of [9].

Theorem 3.2. For a partition λ of m into at most N − 1 parts

J(K : V
(N)
λ ) = xm2wr(K)P (K : Qλ)

with s = e
h

2 , v = s−N = e−
Nh

2 , x = s−
1
N = e−

h

2N replacing the variables

x, s and v on the right-hand side, and wr(K) is the sum of the crossings

in K, counted with sign.

From this theorem, and its natural extension to links, we can recover
any of the quantum invariants once we know sufficiently many satel-
lite invariants. Conversely we can find the satellite invariants from a
knowledge of the quantum invariants for sufficiently many N . More
detailed comments about the exact requirements can be found in [14].

Other quantum invariants. Wenzl goes on in [23] to study the quan-
tum invariants arising from the quantum groups of the B,C and D

series of classical Lie algebras, and relates them to satellite invariants
based on the Kauffman 2-variable polynomial for unoriented banded
knots and links. The connection in these cases comes from the Birman-
Wenzl-Murakami algebras, in place of the Hecke algebras.
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