# Thermal Stability of FGM Sandwich Plates Under Various Through-the-Thickness Temperature Distributions 

F. A. Fazzolari ${ }^{*} \dagger 1$ and E. Carrera ${ }^{\ddagger 2}$<br>${ }^{1}$ City University London, Northampton Square, London EC1V 0HB, United Kingdom., ${ }^{2}$ Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Torino, Italy.

Submitted to : Journal of Thermal Stresses


#### Abstract

A thermal stability analysis of functionally graded material (FGM) isotropic and sandwich plates is carried out by virtue of refined quasi-3D Equivalent Single Layer (ESL) and Zig Zag (ZZ) plate models developed within the framework of the Carrera Unified Formulation (CUF) and implemented within the Hierarchical Trigonometric Ritz Formulation (HTRF). The Principle of Virtual Displacements (PVD) is used both to derive the thermal stability differential equations with natural boundary conditions and to develop the HTRF. Uniform, linear and non-linear temperature rises through-the-thickness direction are taken into account. The non-linear temperature distribution is, further, given in different forms: 1) Functionally graded; 2) Solution of the one-dimensional Fourier heat conduction equation; 3) Sinusoidal. Several FGM sandwich plate configurations are investigated. Parametric studies are carried out in order to evaluate the effects of significant parameters, such as volume fraction index, length-to-thickness ratio, boundary conditions, aspect ratio, sandwich plate type and temperature distribution through-thethickness direction, on the critical buckling temperatures.


Keywords: Advanced hierarchical plate theories, FGM isotropic and sandwich plates, Trigonometric Ritz formulation, Thermal buckling, Non-linear temperature distribution.

[^0]
## 1 Introduction

Aerospace structures often experience severe loading conditions. During their operations life aerospace structures are subjected contemporaneously both to aerodynamics loads, which depend on aerodynamic pressure distributions and viscous forces, and aero-thermal effects which take into account surface heating-rate and inner temperature distributions. The rise of temperature due to aerodynamics heating, strongly decrease the structural load-bearing capacity affecting the buckling phenomena. It becomes mandatory for design engineers to carry out their thermal stability analysis to prevent failures. Thermal buckling phenomenon has been thoroughly investigate during the past decades.

A comprehensive literature review concerning the thermal buckling phenomenon has been given by Thorhton [1] and Thauchert [2, where thermal effects upon flexure, buckling and vibration of plates and shells was presented. Gray and Mei 3] investigated the thermal post-buckling behavior and free vibration of thermally buckled composite plates using the Finite Element Method (FEM). Probably the first analyses of thermal buckling of shear deformable laminated plates are included in the work of Tauchert 4. He used a First order Shear Deformation Theory (FSDT) to analyze simply supported plates of antisymmetric angle-ply construction subjected to a uniform temperature rise. Yang and Sheih 5] employed the Galerkin method to investigate thermal buckling of initially stressed antisymmetric cross-ply plates. Chen et al. [6] considered both uniform and nonuniform temperature distributions using the FEM. Noor and Jeanne 7 used predictor-corrector procedures for thermal buckling analysis. Prabhu and Dhanaraj [8] considered symmetrically laminated plates with different boundary conditions in the thermal buckling analysis using FEM. A three-dimensional solution for composite and sandwich plates was provided by Noor [9, 10]. Kant and Babu [11] dealt with the same problem by employing shear deformable finite element models. Other contributions which are referred to pure mechanical or pure thermal loadings can be found in [12, 13, 14, 15, 16, 17, 18. Recently, Fazzolari and Carrera [19, 20, provided advanced Ritz, Galerkin and Generalized Galerkin formulations based on the use of quasi-3D hierarchical plate models to carry out thermo-mechanical buckling analysis of laminated composite and sandwich plates.

In order to deal with ultrahigh temperature applications a relatevely new class of materials referred to as Functionally Graded Materials (FGMs) was introduced. More specifically, FGMs represent a class of heterogeneous composite materials made up of a mixture of ceramics and metals that are characterized by the smooth and continuous variation in properties from the bottom to the top of the considered structural element. The material properties of FGMs are controlled by the variation of the volume fraction of the constituent materials. Being ultrahigh temperature-resistant materials, they are suitable for aerospace applications, such as aircraft, space vehicles, barrier coating and propulsion systems. Thus, with their potential applications, FGMs are steadfastly making headway in aerospace design. Moreover, they have lot of advantages over other types of advanced materials like fibre-reinforced composites, indeed, problems like delamination, fibre failure, adverse hygroscopic effects due to moisture content etc
are effectively eliminated or non-existent.
Since the main applications of FGMs have been in high-temperature environments, most of the research is oriented towards thermal stress analysis. Many works are devoted to investigate the static and dynamic thermal response of FGM structures. Zenkour and Sobhy 21 studied the thermal buckling of various types of FGM sandwich plates. Zhao et al. 22] carried out a mechanical and thermal buckling analysis of functionally graded ceramic-metal plates using the FSDT in conjunction with the element-free kp-Ritz. Thermal buckling of a simply supported moderately thick rectangular FGM plate was investigate by Lanhe [23. Shen 24 dealt with the thermal postbuckling behavior of shear deformable FGM plates with temperature-dependent properties. Uymaz and Aydogdu 25 provided a three-dimensional shear buckling solution for FG plates with various boundary conditions. A three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method has been given by Malekzadeh [26. The buckling of thick functionally graded plates under mechanical and thermal loads were studied by Shariat and Eslami [27. Both uniform and non-linear temperature rises through-the-thickness were considered and the equilibrium and stability equations were derived using the Third order Shear Deformation plate Theory (TSDT). The same authors [28] investigated the thermal buckling analysis of rectangular functionally graded plates (FGPs) with geometrical imperfections by using the Classical Lamination plate Theory (CLT). Matsunaga [29] used a two-dimensional global Higher-order Shear Deformation Theory (HSDT) for the thermal buckling analysis of FGM plates and the solution was given by using the method of power series expansion of displacement components.

In the present article the Hierarchical Trigonometric Ritz Formulation (HTRF), extensively employed in the analysis of laminated composite plates and shells [19, 20, 30, 31, 32, 33, 34, has been extended to the thermal stability of FGM sandwich plates. Advanced Equivalent Single Layer (ESL) and Zig Zag (ZZ) plate models with hierarchical capabilities have been employed and assessed by comparison with other results available in literature. The accuracy of the proposed formulation has been thoroughly examined. Uniform, linear and non-linear temperature rises through-the-thickness direction have been taken into account. Several FGM sandwich plate configurations have been investigated. Results have been presented in terms of critical buckling temperatures. The effects of significant parameters, such as volume fraction index, length-to-thickness ratio, aspect ratio, boundary conditions, temperature distribution and FGM sandwich plate-type have been discussed.

## 2 Geometric and Constitutive relations in thermo-mechanical problems

The geometrical characteristics of the FGM isotropic and sandwich plates are shown in Fig. [1. During the development of the proposed formulation some symbols have been introduced. In particular, the integer $k$, used as superscript or subscript, denotes the layer number which starts from the bottom of the plate. The layer geometry is denoted by the same symbols as those used for the whole FGM sandwich plate and vice-versa. The plate middle surface $\Omega_{k}$ coordinates are indicated by $x$ and $y ; \Gamma_{k}$ is the layer boundary on $\Omega_{k} ; z$ and $z_{k}$ are the plate and layer thickness coordinates; $h$ and $h_{k}$ denote the plate and layer thicknesses, respectively; $\zeta_{k}=2 z_{k} / h_{k}$ is the dimensionless local layer-coordinate; $A_{k}$ denotes the $k$-layer thickness domain $\left(A_{k} \in\left[z_{k}, z_{k+1}\right]\right)$. Symbols without the $k$ subscript/superscripts refer to the whole plate. The notation for the displacement vector is:

$$
\mathbf{u}=\left[\begin{array}{lll}
u_{x} & u_{y} & u_{z} \tag{1}
\end{array}\right]^{T}
$$

Superscript $T$ represents the transposition operator. The stresses, $\boldsymbol{\sigma}$, and the strains, $\boldsymbol{\varepsilon}$, are expressed as follows:

$$
\begin{align*}
& \boldsymbol{\sigma}_{p H}^{k}=\left[\begin{array}{ccc}
\sigma_{x x}^{k} & \sigma_{y y}^{k} & \tau_{x y}^{k}
\end{array}\right]^{T}, \quad \varepsilon_{p G}^{k}=\left[\begin{array}{lll}
\varepsilon_{x x}^{k} & \varepsilon_{y y}^{k} & \gamma_{x y}^{k}
\end{array}\right]^{T}  \tag{2}\\
& \boldsymbol{\sigma}_{n H}^{k}=\left[\begin{array}{lll}
\tau_{x z}^{k} & \tau_{y z}^{k} & \sigma_{z z}^{k}
\end{array}\right]^{T}, \quad \varepsilon_{n G}^{k}=\left[\begin{array}{lll}
\gamma_{x z}^{k} & \gamma_{y z}^{k} & \varepsilon_{z z}^{k}
\end{array}\right]^{T}
\end{align*}
$$

The subscripts $n$ and $p$ denote transverse (out-of-plane) and in-plane components, respectively, whilst the subscripts $H$ and $G$ state that Hooke's law and geometric relations are used. The strain-displacement relations are:

$$
\left\{\begin{array}{l}
\varepsilon_{p G}^{k}=\mathbf{D}_{p} \mathbf{u}^{k}  \tag{3}\\
\varepsilon_{p_{n l}}^{k}=\mathbf{D}_{p_{n l}} \mathbf{u}^{k} \\
\varepsilon_{n G}^{k}=\mathbf{D}_{n} \mathbf{u}^{k}=\left(\mathbf{D}_{n p}+\mathbf{D}_{n z}\right) \mathbf{u}^{k}
\end{array}\right.
$$

where $\mathbf{D}_{p}, \mathbf{D}_{n}, \mathbf{D}_{n p}$ and $\mathbf{D}_{n z}$ are differential matrix operators following defined:

$$
\begin{array}{ll}
\mathbf{D}_{p}=\left[\begin{array}{ccc}
\frac{\partial}{\partial x} & 0 & 0 \\
0 & \frac{\partial}{\partial y} & 0 \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & 0
\end{array}\right], & \mathbf{D}_{n}=\left[\begin{array}{ccc}
\frac{\partial}{\partial z} & 0 & \frac{\partial}{\partial x} \\
0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial y} \\
0 & 0 & \frac{\partial}{\partial z}
\end{array}\right], \\
\mathbf{D}_{n p}=\left[\begin{array}{ccc}
0 & 0 & \frac{\partial}{\partial x} \\
0 & 0 & \frac{\partial}{\partial y} \\
0 & 0 & 0
\end{array}\right], & \mathbf{D}_{n z}=\left[\begin{array}{ccc}
\frac{\partial}{\partial z} & 0 & 0 \\
0 & \frac{\partial}{\partial z} & 0 \\
0 & 0 & \frac{\partial}{\partial z}
\end{array}\right], \tag{4}
\end{array}
$$

The 3D costitutive equations according to Hooke's law are given as:

$$
\begin{equation*}
\boldsymbol{\sigma}^{k}=\mathbf{C}^{k} \varepsilon^{k} \tag{5}
\end{equation*}
$$

By using Eq. (2), the previous equation becomes:

$$
\begin{align*}
\boldsymbol{\sigma}_{p H}^{k} & =\tilde{\mathbf{C}}_{p p}^{k}(z) \varepsilon_{p G}^{k}+\tilde{\mathbf{C}}_{p n}^{k}(z) \varepsilon_{n G}^{k} \\
\boldsymbol{\sigma}_{n H}^{k} & =\tilde{\mathbf{C}}_{n p}^{k}(z) \varepsilon_{p G}^{k}+\tilde{\mathbf{C}}_{n n}^{k}(z) \varepsilon_{n G}^{k} \tag{6}
\end{align*}
$$

where matrices $\tilde{\mathbf{C}}_{p p}^{k}(z), \tilde{\mathbf{C}}_{n n}^{k}(z), \tilde{\mathbf{C}}_{p n}^{k}(z)$ and $\tilde{\mathbf{C}}_{n p}^{k}(z)$ are:

$$
\begin{align*}
& \tilde{\mathbf{C}}_{p p}^{k}(z)=\left[\begin{array}{ccc}
\tilde{C}_{11}(z) & \tilde{C}_{12}(z) & 0 \\
\tilde{C}_{12}(z) & \tilde{C}_{22}(z) & 0 \\
0 & 0 & \tilde{C}_{66}(z)
\end{array}\right]^{k}, \quad \tilde{\mathbf{C}}_{n n}^{k}(z)=\left[\begin{array}{ccc}
\tilde{C}_{55}(z) & 0 & 0 \\
0 & \tilde{C}_{44}(z) & 0 \\
0 & 0 & \tilde{C}_{33}(z)
\end{array}\right]^{k}, \\
& \tilde{\mathbf{C}}_{p n}^{k}(z)=\left[\begin{array}{ccc}
0 & 0 & \tilde{C}_{13}(z) \\
0 & 0 & \tilde{C}_{23}(z) \\
0 & 0 & 0
\end{array}\right]^{k}, \quad \tilde{\mathbf{C}}_{n p}^{k}(z)=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\tilde{C}_{13}(z) & \tilde{C}_{23}(z) & 0
\end{array}\right]^{k} \tag{7}
\end{align*}
$$

In Eq. (7) the computation of the elastic coefficients $\tilde{C}_{i j}$, is independent of the FGM structures considered and it follows three steps:

1. Computation of volume fraction of ceramic and metal phases.
2. Computation of elastic properties, Young's modulus $\mathrm{E}^{k}$ and Poisson's coefficient $\nu^{k}$.
3. Computation of elastic coefficients $\tilde{C}_{i j}$.

Only the computation of the volume fraction depends on the analyzed FGM structure. In the present investigation the following cases are examined:

1. FGM isotropic plates, the bottom skin is metal and the top skin is ceramic (see Fig. 1 (a)), the volume fraction of the ceramic phase is defined according to the following power-law:

$$
\begin{equation*}
V_{c}^{k}(z)=\left(\frac{z}{h}+\frac{1}{2}\right)^{p} \quad z \in[-h / 2, h / 2] \tag{8}
\end{equation*}
$$

and it trends against the dimensionless thickness coordinate $z / h$ is shown in Fig. 2.
2. FGM sandwich plates, the core is fully ceramic and the top and bottom skins are FGM across the thickness direction (see Fig.
to the following power-law:

$$
\begin{cases}V_{c}^{k}(z)=\left(\frac{z-h_{1}}{h_{2}-h_{1}}\right)^{p} & z \in\left[h_{1}, h_{2}\right]  \tag{9}\\ V_{c}^{k}(z)=1 & z \in\left[h_{2}, h_{3}\right] \\ V_{c}^{k}(z)=\left(\frac{z-h_{4}}{h_{4}-h_{3}}\right)^{p} & z \in\left[h_{3}, h_{4}\right]\end{cases}
$$

and some trends, of several FGM sandwich plates, against the dimensionless thickness coordinate $z / h$, are shown in Fig. 3

In Eqs. (8) and (9), $p$ indicates the volume fraction index indicating the material variation through-thethickness direction. The volume fraction of the metal phase is give as $V_{m}^{k}(z)=1-V_{c}^{k}(z)$. The Poisson's coefficient $\nu^{k}$ is constant through thickness direction, Young's modulus $E^{k}(z)$ and thermal expansion coefficient $\alpha^{k}(z)$ are computed by the following law-of-mixtures:

$$
\left\{\begin{array}{l}
E^{k}(z)=\left(E_{c}-E_{m}\right) V_{c}^{k}(z)+E_{m}  \tag{10}\\
\alpha^{k}(z)=\left(\alpha_{c}-\alpha_{m}\right) V_{c}^{k}(z)+\alpha_{m} \\
\nu^{k}(z)=\nu_{0}
\end{array}\right.
$$

Finally the elastic coefficients $\tilde{C}_{i j}$ are give as:

$$
\left\{\begin{array}{l}
\tilde{C}_{11}^{k}(z)=\tilde{C}_{22}^{k}(z)=\tilde{C}_{33}^{k}(z)=\frac{E^{k}(z)\left[1-\left(\nu^{k}(z)\right)^{2}\right]}{1-3\left(\nu^{k}(z)\right)^{2}-2\left(\nu^{k}(z)\right)^{3}}  \tag{11}\\
\tilde{C}_{12}^{k}(z)=\tilde{C}_{12}^{k}(z)=\tilde{C}_{23}^{k}(z)=\frac{E^{k}(z)\left[\nu^{k}(z)-\left(\nu^{k}(z)\right)^{2}\right]}{1-3\left(\nu^{k}(z)\right)^{2}-2\left(\nu^{k}(z)\right)^{3}} \\
\tilde{C}_{44}^{k}(z)=\tilde{C}_{55}^{k}(z)=\tilde{C}_{66}^{k}(z)=\frac{E^{k}(z)}{2\left(1+\nu^{k}(z)\right)}
\end{array}\right.
$$

Thermo-mechanical coupling coefficients expressed in the laminate reference system are:

$$
\begin{align*}
\lambda_{p}^{k}(z) & =\tilde{\mathbf{C}}_{p p}^{k}(z) \tilde{\boldsymbol{\alpha}}_{p}^{k}(z)+\tilde{\mathbf{C}}_{p n}^{k}(z) \tilde{\boldsymbol{\alpha}}_{n}^{k}(z) \\
\lambda_{n}^{k}(z) & =\tilde{\mathbf{C}}_{n p}^{k}(z) \tilde{\boldsymbol{\alpha}}_{p}^{k}(z)+\tilde{\mathbf{C}}_{n n}^{k}(z) \tilde{\boldsymbol{\alpha}}_{n}^{k}(z) \tag{12}
\end{align*}
$$

where

$$
\tilde{\boldsymbol{\alpha}}_{p}^{k}=\left[\begin{array}{c}
\alpha(z)  \tag{13}\\
\alpha(z) \\
0
\end{array}\right]^{k}, \quad \tilde{\boldsymbol{\alpha}}_{n}^{k}=\left[\begin{array}{c}
0 \\
0 \\
\alpha(z)
\end{array}\right]^{k}
$$

are the thermal expansion coefficients split in in-plane and out-of-plane components. In the explicit vectorial form, the thermo-mechanical coupling coefficients, are:

$$
\boldsymbol{\lambda}_{p}^{k}=\left[\begin{array}{c}
\lambda(z)  \tag{14}\\
\lambda(z) \\
0
\end{array}\right]^{k}, \quad \boldsymbol{\lambda}_{n}^{k}=\left[\begin{array}{c}
0 \\
0 \\
\lambda(z)
\end{array}\right]^{k}
$$

The initial thermal stresses can be defined as:

$$
\begin{equation*}
\sigma_{x x_{0}}^{\vartheta^{k}}=\lambda^{k} \Delta T ; \quad \sigma_{y y_{0}}^{\vartheta^{k}}=\lambda^{k} \Delta T ; \quad \sigma_{z z_{0}}^{\vartheta^{k}}=\lambda^{k} \Delta T \tag{15}
\end{equation*}
$$

Where $\Delta T$ is the temperature rise through-the-thickness direction and $\lambda$ is the coefficient relating thermal stresses to temperature variation. After imposing the plane stress assumptions, the initial thermal stresses assume the following form

$$
\begin{equation*}
\tilde{\sigma}_{x x_{0}}^{\vartheta^{k}}=\tilde{\lambda}^{k} \Delta T ; \quad \tilde{\sigma}_{y y_{0}}^{\vartheta^{k}}=\tilde{\lambda}^{k} \Delta T \tag{16}
\end{equation*}
$$

A comprehensive discussion on the initial thermal stresses with the explicit expression of the transformed thermo-mechanical coupling coefficients $\tilde{\lambda}^{k}$, can be found in 33.

## 3 Uniform, linear and non-linear temperature rises through-the-thickness direction

In order to accurately describe the effect of the temperature rise through-the-thickness different temperature distributions (see Fig. 4) are taken into account in the present analysis. In particular, uniform, linear and non-linear temperature distributions are accounted for in the proposed investigation. In the non-linear case, the temperature rise is given as: i) functionally graded, encompassing therefore uniform and linear distributions, ii) the solution of the one-dimensional Fourier equation of heat conduction and iii) sinusoidal. Each case is accurately described in the following subsections.

### 3.1 Uniform temperature rise

The plate initial temperature is assumed to be $T_{i}$. The temperature is uniformly raised to a final value $T_{f}$ in which the plate buckles. The temperature change is give by:

$$
\begin{equation*}
\Delta T=T_{f}-T_{i} \tag{17}
\end{equation*}
$$

### 3.2 Linear temperature rise

The temperature of the top surface is $T_{t}$ and it is considered to vary linearly from $T_{t}$ to the bottom surface temperature $T_{b}$. Therefore, the temperature rise through-the-thickness is given by:

$$
\begin{equation*}
T(z)=\Delta T\left(\frac{z}{h}+\frac{1}{2}\right)+T_{t} \tag{18}
\end{equation*}
$$

where $\Delta T=T_{b}-T_{t}$.

### 3.3 Non-linear temperature rise

In this case, the temperature distribution through-the-thickness has been given according to the following three approaches:

1. In the first case, the temperature of the top surface is $T_{t}$ and it is considered to vary from $T_{t}$ to $T_{b}$ in which the plate buckles, according to the power law variation through-the-thickness, to the bottom surface temperature $T_{b}$ in which the plate buckles. Therefore, the temperature rise through-the-thickness is given by:

$$
\begin{equation*}
T(z)=\Delta T\left(\frac{z}{h}+\frac{1}{2}\right)^{\chi}+T_{t} \tag{19}
\end{equation*}
$$

where $\chi$ is the temperature index $0<\chi<\infty$. The linear temperature rise is obtained as a particular case by setting $\chi=1$.
2. In the second case, the one-dimensional Fourier equation of heat conduction,

$$
\left\{\begin{array}{lr}
\frac{\mathrm{d}}{\mathrm{~d} z}\left[K(z) \frac{\mathrm{d} T}{\mathrm{~d} z}\right]=0 & -h / 2<z<h / 2  \tag{20}\\
T=T_{c} & z=h / 2 \\
T=T_{m} & z=-h / 2
\end{array}\right.
$$

is solved. $K(z)$ is the coefficient of thermal conduction, $T_{c}$ and $T_{m}$ denote the temperature changes at the ceramic side and the metal side, respectively. Similar to the coefficients of elastic moduli and thermal expansion, the coefficient of heat conduction is also assumed as a power form of coordinate variable $z$ as:

$$
\begin{equation*}
K(z)=\left(K_{c}-K_{m}\right) V_{c}^{k}+K_{m} \tag{21}
\end{equation*}
$$

Equation (20) can be solved by using a polynomial power series expansion given as:

$$
\begin{equation*}
T(z)=T_{m}+\frac{\left(T_{c}-T_{m}\right)}{C}\left(\frac{z}{h}+\frac{1}{2}\right) \sum_{i=0}^{N_{T}}\left[(-1)^{i} \frac{\left(\frac{z}{h}+\frac{1}{2}\right)^{i p}\left(K_{c}-K_{m}\right)^{i}}{(i p+1) K_{m}}\right] \tag{22}
\end{equation*}
$$

where $N_{T}$ is the number of series' terms, which for the case of non-uniform temperature rise is obtained from a convergence study. C is defined as follows:

$$
\begin{equation*}
C=\sum_{i=0}^{N_{T}}\left[(-1)^{i} \frac{\left(K_{c}-K_{m}\right)^{i}}{(i p+1) K_{m}}\right] \tag{23}
\end{equation*}
$$

3. In the third case, the temperature distribution across the thickness direction follows a sinusoidal law as:

$$
\begin{equation*}
T(z)=\left\{1-\cos \left[\frac{\pi}{2}\left(\frac{z}{h}+\frac{1}{2}\right)\right]\right\}+T_{t} \tag{24}
\end{equation*}
$$

As can be seen from Fig. 4 this distribution is encompassed in the envelope built between the Fourier's non-linear distribution and the parabolic functional graded distribution. It should be borne in mind that for thick FGM isotropic and sandwich plates the critical temperature is higher then the melting point of the single constituents, hence, the thermal stability analysis can be restricted from thin-to-moderately thick FGM isotropic and sandwich plates.

## 4 Hierarchical plate models

In the analysis of metallic and composite pates and shells the 3D elastic problem is generally reduced to a 2 D one by exploiting the use of axiomatic assumptions coming from some pioneering insights due to eminent scientists and researchers. The simplest plate/shell theory is based on the Kirchhoff/Love's hypothesis and it is usually referred to as Classical Lamination Theory (CLT) 355, 36. Both transverse shear strains and transverse normal strain are discarded, being in usual applications negligible with respect to the in-plane ones,

$$
\left\{\begin{array}{l}
u_{x}(x, y, z)=u_{x 0}(x, y)-z \frac{\partial u_{z 0}(x, y)}{\partial x}  \tag{25}\\
u_{y}(x, y, z)=u_{y 0}(x, y)-z \frac{\partial u_{z 0}(x, y)}{\partial y} \\
u_{z}(x, y, z)=u_{z 0}(x, y)
\end{array}\right.
$$

The inclusion of transverse shear strains, in the theory mentioned above, leads to Reissner-Mindlin Theory even known as First order Shear Deformation Theory (FSDT) 37, 38,

$$
\left\{\begin{array}{l}
u_{x}(x, y, z)=u_{x 0}(x, y)+z u_{x 1}(x, y)  \tag{26}\\
u_{y}(x, y, z)=u_{y 0}(x, y)+z u_{y 1}(x, y) \\
u_{z}(x, y, z)=u_{z 0}(x, y)
\end{array}\right.
$$

However these theories, due to their inconsistency in discarding the transverse normal stress in the material constitutive equations, are no longer valid when 3D local effects appear. To remove the inconsistency
completely, higher-order expansion of the unknown with respect to the $z$ coordinate are needed. According to the above considerations CUF, well known in the static and dynamics analysis of layered beams, plates and shells, overcomes the drawback generating a large variety of 2 D and quasi-3D hierarchical plate/shell models using a unified approach. Its accuracy has been proved in many applications ranging from multifield to aeroelastic problems and it turned out to be a powerful tool to deal with metallic and composite laminated beams, plates and shells. The capability to expand each displacement variable in the displacement field at any desired order independently from the others and regarding to the accuracy and the computational cost has been introduced. Such artifice permits to treat each variable independently form the others and this becomes extremely useful when multifield problems are investigated such as thermoelastic and piezoelectric applications [31, 39]. Thereby, following this approach the displacement field can be written as:

$$
\begin{cases}u_{x}(x, y, z)=F_{\tau_{u_{x}}}(z) u_{x \tau_{u_{x}}}(x, y), & \tau_{u_{x}}=0,1, \cdots, N_{u_{x}}  \tag{27}\\ u_{y}(x, y, z)=F_{\tau_{u_{y}}}(z) u_{y \tau_{u_{y}}}(x, y), & \tau_{u_{y}}=0,1, \cdots, N_{u_{y}} \\ u_{z}(x, y, z)=F_{\tau_{u_{z}}}(z) u_{z \tau_{u_{z}}}(x, y), & \tau_{u_{z}}=0,1, \cdots, N_{u_{z}}\end{cases}
$$

and in compact form:

$$
\begin{equation*}
\mathbf{u}=\mathbf{F}_{\tau} \mathbf{u}_{\tau}, \quad \tau=\tau_{u_{x}}, \tau_{u_{y}}, \tau_{u_{z}} \tag{28}
\end{equation*}
$$

where

$$
\mathbf{F}_{\tau}=\left[\begin{array}{ccc}
F_{\tau_{u_{x}}} & 0 & 0  \tag{29}\\
0 & F_{\tau_{u_{y}}} & 0 \\
0 & 0 & F_{\tau_{u_{z}}}
\end{array}\right], \quad \mathbf{u}_{\tau}=\left\{\begin{array}{c}
u_{x \tau_{u_{x}}} \\
u_{y \tau_{u_{y}}} \\
u_{z \tau_{u_{z}}}
\end{array}\right\}
$$

$u_{x \tau_{u_{x}}}, u_{y \tau_{u_{y}}}, u_{z \tau_{u_{z}}}$ are the displacement vector components and $N_{u_{x}}, N_{u_{y}}$ and $N_{u_{z}}$ are the orders of expansion. According to Einstein's notation, the repeated subscripts $\tau_{u_{x}}, \tau_{u_{y}}, \tau_{u_{z}}$ indicate summation. An example of a possible ESL displacement field according to the unified formulation in Eq. (27) is given below, the expansion indexes are $N_{u_{x}}=6, N_{u_{y}}=2, N_{u_{z}}=4$ :

$$
\left\{\begin{array}{l}
u_{x}=u_{x_{0}}+z u_{x 1}+z^{2} u_{x 2}+z^{3} u_{x 3}+z^{4} u_{x 4}+z^{5} u_{x 5}+z^{6} u_{x 6}  \tag{30}\\
u_{y}=u_{y_{0}}+z u_{y 1}+z^{2} u_{y 2} \\
u_{z}=u_{z_{0}}+z u_{z 1}+z^{2} u_{z 2}+z^{3} u_{z 3}+z^{4} u_{z 4}
\end{array}\right.
$$

An exhaustive and comprehensive coverage along with some clarifying illustrations about the ESL, ZZ as well as LW (Layer Wise) assembly procedure from layer to multilayer is available in 32 .

Classical models violate interlaminar equilibrium of the transverse stresses. Further they do not describe the ZZ form of the displacement field in the plate thickness direction. Such a limitation could somehow
be overcome by referring to Murakami's idea. Murakami 40 proposed adding a ZZ function to Eq. (27),

$$
\begin{cases}u_{x}=u_{x_{0}}+z^{r_{u_{x}}} u_{x r_{u_{x}}}+u_{Z_{u_{x}}}(-1)^{k} \zeta_{k}, & r_{u_{x}}=1,2, \cdots, N_{u_{x}}-1  \tag{31}\\ u_{y}=u_{y_{0}}+z^{r_{u_{y}}} u_{y r_{u_{y}}}+u_{Z_{u_{y}}}(-1)^{k} \zeta_{k}, & r_{u_{y}}=1,2, \cdots, N_{u_{y}}-1 \\ u_{z}=u_{z_{0}}+z^{r_{u_{z}}} u_{z r_{u_{z}}}+u_{Z_{u_{z}}}(-1)^{k} \zeta_{k}, & r_{u_{z}}=1,2, \cdots, N_{u_{z}}-1\end{cases}
$$

Subscript Z refers to the introduced ZZ term. Murakami's ZZ function (MZZF) is defined as $M(z)=$ $(-1)^{k} \zeta_{k}$. Such a function permits one to reproduce the discontinuity of the first derivate of the displacement variables in the $z$-direction which physically comes from the intrinsic transverse anisotropy of multilayer structures.

## 5 Theoretical Formulation

In the derivation of what follows the Principle of Virtual Displacements (PVD) is employed both to derive the thermal stability differential equations with related natural boundary conditions and to develop the Hierarchical Trigonometric Ritz Formulation (HTRF). The PVD variational statement, in case of thermal stability analysis, at multilayer level can be written as:

$$
\begin{equation*}
\sum_{k=1}^{N_{l}} \int_{\Omega^{k}} \int_{A^{k}}\left(\delta \varepsilon_{p G}^{k} \boldsymbol{\sigma}_{p C}^{k}+\delta \varepsilon_{n G}^{k^{T}} \boldsymbol{\sigma}_{n C}^{k}\right) \mathrm{d} \Omega^{k} \mathrm{~d} z=\sum_{k=1}^{N_{l}} \delta L_{\text {est }}^{k} \tag{32}
\end{equation*}
$$

The HTRF herein proposed for thermal buckling analysis of FGM isotropic and sandwich plates, is based on the so-called Ritz fundamental primary and secondary nuclei, which can be developed in a systematic manner following some steps proposed by the author in [34. In particular, in the Ritz method the displacement amplitude vector components $u_{x_{\tau_{u_{x}}}}, u_{y_{\tau_{u_{y}}}}$ and $u_{\tau_{\tau_{u_{z}}}}$ are expressed in series expansion as follows:

$$
\begin{equation*}
u_{x_{u_{u_{x}}}}=\sum_{i}^{\mathcal{N}} U_{x \tau_{u_{x} i} i}^{k} \psi_{x_{i}}, \quad u_{y_{\tau_{u_{y}}}}=\sum_{i}^{\mathcal{N}} U_{y \tau_{u_{y} i}}^{k} \psi_{y_{i}}, \quad u_{z_{\tau_{u_{z}}}}=\sum_{i}^{\mathcal{N}} U_{z \tau_{u_{z}} i}^{k} \psi_{z_{i}} \tag{33}
\end{equation*}
$$

where $\mathcal{N}$ indicates the order of expansion in the approximation. $U_{x \tau_{u_{x}} i}, U_{y \tau_{u_{y}} i}, U_{z \tau_{u_{z}} i}$ are the unknown coefficients, $\psi_{x_{i}}, \psi_{y_{i}}, \psi_{z_{i}}$ are the Ritz functions appropriately selected making reference to the features of the analyzed problem. Convergence to the exact solution is guaranteed if the basis functions are admissible functions in the used variational principle [19, 41, 42]. The displacement field is then given as:

$$
\begin{equation*}
u_{x}=\sum_{i}^{\mathcal{N}} F_{\tau_{u_{x}}} U_{x \tau_{u_{x}} i} \psi_{x_{i}}, \quad u_{y}=\sum_{i}^{\mathcal{N}} F_{\tau_{u_{y}}} U_{y \tau_{u_{y}} i} \psi_{y_{i}}, \quad u_{z}=\sum_{i}^{\mathcal{N}} F_{\tau_{u_{z}}} U_{z \tau_{u_{z}} i} \psi_{z_{i}} \tag{34}
\end{equation*}
$$

or in compact form:

$$
\begin{equation*}
\mathbf{u}^{k}=\mathbf{F}_{\tau} \mathbf{U}_{\tau i} \boldsymbol{\Psi}_{i} \tag{35}
\end{equation*}
$$

where

$$
\mathbf{U}_{\tau i}^{k}=\left[\begin{array}{c}
U_{x \tau_{u_{x}} i}^{k}  \tag{36}\\
U_{y \tau_{u_{y} i}}^{k} \\
U_{z \tau_{u_{z}} i}^{k}
\end{array}\right], \quad \mathbf{\Psi}_{i}=\left[\begin{array}{ccc}
\psi_{x_{i}} & 0 & 0 \\
0 & \psi_{y_{i}} & 0 \\
0 & 0 & \psi_{z_{i}}
\end{array}\right], \quad \mathbf{F}_{\tau}=\left[\begin{array}{ccc}
F_{\tau_{u_{x}}} & 0 & 0 \\
0 & F_{\tau_{u_{y}}} & 0 \\
0 & 0 & F_{\tau_{u_{z}}}
\end{array}\right]
$$

By writing stresses and strains in terms of displacement components given in Eq. (3) and substituting them in Eq. (32) the explicit expressions of the internal virtual work and the virtual work done by the external forces in terms of Ritz functions and unknown coefficients are obtained:

$$
\begin{align*}
\delta L_{i n t}^{k}= & \int_{\Omega^{k}} \int_{A^{k}} \delta \mathbf{U}_{\tau i}^{T}\left(\left[\mathbf{D}_{p}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)\right]+\right. \\
& +\left[\mathbf{D}_{n p}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)\right]+ \\
& \left.+\left[\mathbf{D}_{n z}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)\right]\right) \mathbf{U}_{s j}^{k} \mathrm{~d} \Omega^{k} \mathrm{~d} z \\
\delta L_{e x t}^{k}= & \int_{\Omega^{k}} \int_{A^{k}} \delta \mathbf{U}_{\tau i}^{T}\left[\left(\mathbf{F}_{\tau} \mathbf{F}_{s}\right)^{T} \boldsymbol{\Phi}\right] \mathbf{U}_{s j} \mathrm{~d} \Omega^{k} \mathrm{~d} z \tag{37}
\end{align*}
$$

The matrix $\boldsymbol{\Phi}=\operatorname{diag}\left(\Phi_{11}, \Phi_{22}, \Phi_{33}\right)$, where

$$
\left\{\begin{array}{l}
\Phi_{11}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \psi_{x_{i}, x} \psi_{x_{j}, x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \psi_{x_{i}, y} \psi_{x_{j}, y}  \tag{38}\\
\Phi_{22}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \psi_{y_{i}, x} \psi_{y_{j}, x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \psi_{y_{i}, y} \psi_{y_{j}, y} \\
\Phi_{33}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \psi_{z_{i}, x} \psi_{z_{j}, x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \psi_{z_{i}, y} \psi_{z_{j}, y}
\end{array}\right.
$$

The quadratic forms in Eqs. (37) lead to the Ritz fundamental primary stiffness and initial stress nuclei:

$$
\begin{align*}
\mathbf{K}^{k \tau s i j} & =\int_{\Omega^{k}} \int_{A^{k}}\left(\left[\mathbf{D}_{p}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)\right]+\right. \\
& +\left[\mathbf{D}_{n p}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \mathbf{\Psi}_{j}\right)\right]+  \tag{39}\\
& \left.+\left[\mathbf{D}_{n z}\left(\mathbf{F}_{\tau} \boldsymbol{\Psi}_{i}\right)\right]^{T}\left[\tilde{\boldsymbol{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)+\tilde{\boldsymbol{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{s} \boldsymbol{\Psi}_{j}\right)\right]\right) \mathrm{d} \Omega^{k} \mathrm{~d} z \\
\mathbf{K}_{\sigma}^{k \tau s i j} & =\int_{\Omega^{k}} \int_{A^{k}}\left[\left(\mathbf{F}_{\tau} \mathbf{F}_{s}\right)^{T} \boldsymbol{\Phi}\right] \mathrm{d} \Omega^{k} \mathrm{~d} z
\end{align*}
$$

At this stage it is useful to introduce the following thickness and in-plane integrals in order to write in a concise manner the explicit form of the Ritz fundamental secondary nuclei,

$$
\begin{align*}
J^{k \tau s} & =\int_{A^{k}} F_{\tau} F_{s} \mathrm{~d} z, & J^{k \tau_{z} s}=\int_{A^{k}} \frac{\partial F_{\tau}}{\partial z} F_{s} \mathrm{~d} z \\
J^{k \tau s_{z}} & =\int_{A^{k}} F_{\tau} \frac{\partial F_{s}}{\partial z} \mathrm{~d} z, & J^{k \tau_{z} s_{z}}=\int_{A^{k}} \frac{\partial F_{\tau}}{\partial z} \frac{\partial F_{s}}{\partial z} \mathrm{~d} z \tag{40}
\end{align*}
$$

where $\tau=\tau_{u_{x}}, \tau_{u_{y}}, \tau_{u_{z}}$ and $s=s_{u_{x}}, s_{u_{y}}, s_{u_{z}}$. Concerning the in-plane integrals it is convenient to rewrite the trial functions $\psi_{x_{i}}, \psi_{y_{i}}, \psi_{z_{i}}$ as:

$$
\left\{\begin{array}{l}
\psi_{x_{i}}(x, y)=\sum_{m} \sum_{n} \phi_{m}^{u_{x}}(x) \phi_{n}^{u_{x}}(y)  \tag{41}\\
\psi_{y_{i}}(x, y)=\sum_{m} \sum_{n} \phi_{m}^{u_{y}}(x) \phi_{n}^{u_{y}}(y) \\
\psi_{z_{i}}(x, y)=\sum_{m} \sum_{n} \phi_{m}^{u_{z}}(x) \phi_{n}^{u_{z}}(y)
\end{array}\right.
$$

by exploiting the use of Eq. (41) the general in-plane integrals can be written as:

$$
\begin{array}{ll}
{ }_{j}^{i} I_{m p}^{\xi \zeta}=\int_{0}^{a} \frac{\mathrm{~d}^{\xi} \phi_{m}^{i}(x)}{\mathrm{d} x^{\xi}} \frac{\mathrm{d}^{\zeta} \phi_{p}^{j}(x)}{\mathrm{d} x^{\zeta}} \mathrm{d} x & m=\cdots, M, \quad p=1, \cdots, P \\
{ }_{j}^{i} I_{n q}^{\xi \zeta}=\int_{0}^{b} \frac{\mathrm{~d}^{\xi} \phi_{n}^{i}(y)}{\mathrm{d} y^{\xi}} \frac{\mathrm{d}^{\zeta} \phi_{q}^{j}(y)}{\mathrm{d} y^{\zeta}} \mathrm{d} y & n=\cdots, N, \quad q=1, \cdots, Q \tag{42}
\end{array}
$$

where $i, j=u_{x}, u_{y}, u_{z}$ and $\xi, \zeta$ are differentiation orders. The trial functions in Eq. (41) are chosen to satisfy the simply supported and fully clamped boundary conditions. Therefore, considering Eqs. (40) and (42), the explicit forms of the Ritz secondary fundamental stiffness and mass nuclei are following reported:

$$
\begin{aligned}
& K_{u_{x} u_{x}}^{\tau_{u_{x}} s_{u_{x}}}=\tilde{C}_{11}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} I_{m p}^{11}{ }_{u_{x}}^{u_{x}} I_{n q}^{00}+\tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} I_{m p}^{10} u_{u_{x}}^{u_{x}} I_{n q}^{01}+\tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} \begin{array}{lll}
u_{m p} & u_{x} \\
u_{x}
\end{array} I_{n q}^{10}+ \\
& \tilde{C}_{66}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} I_{m p}^{00} u_{u_{x}}^{u_{x}} I_{n q}^{11}+\tilde{C}_{55}^{k} J^{k \tau_{u_{x, z}}} \begin{array}{lll}
s_{u_{x, z}} & u_{u_{x}} \\
u_{x}
\end{array} I_{m p}^{00} u_{x}^{u_{x}} I_{n q}^{00}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{C}_{26}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}{ }_{\substack{u_{x} \\
u_{y}}} I_{m p}^{00} u_{x} u_{y} I_{n q}^{11}+\tilde{C}_{45}^{k} J^{k \tau_{u_{x, z}} s_{u_{y, z}}} \begin{array}{lll}
u_{x} \\
u_{y}
\end{array} I_{m p}^{00} u_{y}^{u_{x}} I_{n q}^{00} \\
& K_{u_{x} u_{z}}^{\tau_{u_{x}} s_{u_{z}}}=\tilde{C}_{55}^{k} J^{k \tau_{u_{x, z}} s_{u_{z}}}{ }_{u_{z}}^{u_{x}} I_{m p}^{01} u_{u_{z}}^{u_{x}} I_{n q}^{10}+\tilde{C}_{45}^{k} J^{k \tau_{u_{x, z}} s_{u_{z}}}{\underset{u}{x}}_{u_{x}}^{u_{z}} I_{m p}^{00}{ }_{u_{z}}^{u_{x}} I_{n q}^{01}+\tilde{C}_{13}^{k} J^{k \tau_{u_{x}} s_{u_{z, z}}}{ }_{u_{z}}^{u_{x}} I_{m p}^{10} u_{u_{z}}^{u_{x}} I_{n q}^{00}+ \\
& \tilde{C}_{36}^{k} J^{k \tau_{u_{x}} s_{u_{z}, z}}{ }_{u_{u_{z}}}^{u_{x}} I_{m p}^{00} u_{u_{z}}^{u_{x}} I_{n q}^{10} \\
& K_{u_{y} u_{x}}^{\tau_{u_{y}} s_{u_{x}}}=\tilde{C}_{16}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}{ }_{u_{x}}^{u_{y}} I_{m p}^{11}{\underset{u}{x}}_{u_{y}}^{u_{x}} I_{n q}^{00}+\tilde{C}_{12}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}{ }_{u_{x}}^{u_{y}} I_{m p}^{01} u_{u_{x}}^{u_{y}} I_{n q}^{10}+\tilde{C}_{66}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}{ }_{u_{x}}^{u_{y}} I_{m p}^{10} u_{u_{x}}^{u_{y}} I_{n q}^{01}+ \\
& \tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}{ }_{u_{x}}^{u_{y}} I_{m p}^{00} u_{x}^{u_{y}} I_{n q}^{11}+\tilde{C}_{45}^{k} J^{k \tau_{u_{y, z}} s_{u_{x, z}}}{ }_{u_{x}}^{u_{y}} I_{m p}^{00} u_{x}^{u_{y}} I_{n q}^{00}
\end{aligned}
$$

$$
\begin{align*}
& \tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{y}}} \begin{array}{llll}
u_{y} & u_{y} \\
u_{y}
\end{array} I_{m p}^{00} u_{y} u_{y} I_{n q}^{11}+\tilde{C}_{44}^{k} J^{k \tau_{u_{y, z}} s_{u_{y, z}}} u_{u_{y}}^{u_{y}} I_{m p}^{00} u_{y} u_{y} I_{n q}^{00} \tag{43}
\end{align*}
$$

$$
\begin{aligned}
& \tilde{C}_{23}^{k} J^{k \tau_{u_{y}} s_{u_{z, z}}}{\underset{u}{z}}_{u_{z}}^{u_{m p}^{00}} I_{u_{z}}^{00} u_{u_{y}}^{10}
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{C}_{36}^{k} J^{k \tau_{u_{z}, z} s_{u_{x}}} \begin{array}{lll}
u_{z} & u_{z} \\
u_{x} & 00 & u_{z} \\
u_{z} & I_{n q}^{10}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& K_{u_{z} u_{z}}^{\tau_{u_{z}} s_{u_{z}}}=\tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}{ }_{u_{z}}^{u_{z}} I_{m p}^{01} u_{u_{z}}^{01} I_{n q}^{10}+\tilde{C}_{44}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}{ }_{u_{z}}^{u_{z}} I_{m p}^{00} u_{z}^{u_{z}} I_{n q}^{11}+\tilde{C}_{55}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}{ }_{u_{z}}^{u_{z}} I_{m p}^{11} u_{u_{z}}^{11} u_{n q}^{00}+ \\
& \tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}{ }_{u_{z}}^{u_{z}} I_{m p}^{10} u_{u_{z}}^{u_{z}} I_{n q}^{01}+\tilde{C}_{33}^{k} J^{k \tau_{u_{z}, z} s_{u_{z}, z}}{ }_{u_{z}}^{u_{z}} I_{m p}^{00} u_{z}^{u_{z}} I_{n q}^{00} \\
& K_{\sigma_{u_{x}} u_{x}}^{\tau_{u_{x}} s_{u_{x}}}=\sigma_{x x_{0}}^{\vartheta} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} I_{m p}^{11} u_{u_{x}}^{u_{x}} I_{n q}^{00}+\sigma_{y y_{0}}^{\vartheta} J^{k \tau_{u_{x}} s_{u_{x}}}{ }_{u_{x}}^{u_{x}} I_{m p}^{00} u_{u_{x}}^{00} I_{n q}^{11} \\
& K_{\sigma_{u_{y}} u_{y}}^{\tau_{u_{y}} s_{u_{y}}}=\sigma_{x x_{0}}^{\vartheta} J^{k \tau_{u_{y}} s_{u_{y}}}{ }_{u_{y}}^{u_{y}} I_{m p}^{11} u_{u_{y}}^{11} I_{n q}^{00}+\sigma_{y y_{0}}^{\vartheta} J^{k \tau_{u_{y}} s_{u_{y}}}{ }_{u_{y}}^{u_{y}} I_{m p}^{00} u_{u_{y}}^{00} I_{n q}^{11}
\end{aligned}
$$

For elastic systems subjected to a conservative forces the PVD can be identified with the principle of minimum total potential energy. In particular it is possible to write:

$$
\begin{equation*}
\delta L_{i n t}^{k}=\delta U^{k}, \quad \delta L_{e x t}^{k}=-\delta V^{k} \tag{44}
\end{equation*}
$$

where $\delta U$ is the virtual potential strain energy and $\delta V$ is the virtual potential energy related to the external forces. Then Eq. (32) can be written as:

$$
\begin{equation*}
\delta U^{k}+\delta V^{k}=0 \tag{45}
\end{equation*}
$$

being

$$
\begin{equation*}
\Pi^{k}=U^{k}+V^{k} \tag{46}
\end{equation*}
$$

the total potential energy functional, then Eq. (32) correspond to a minimization of the functional

$$
\begin{equation*}
\delta \Pi^{k}=0 \tag{47}
\end{equation*}
$$

The minimization is respect to the unknown coefficients of linear combination introduced in Eq. (35). In particular, $\Pi^{k}$ is a function of $U_{x \tau_{u_{x}} i}^{k}, U_{y \tau_{u_{y}} i}^{k}, U_{z \tau_{u_{z} i}}^{k}$ and the condition given in Eq. (47) can be alternatively written in the following form:

$$
\left.\begin{array}{rlrl}
\frac{\partial \Pi^{k}}{\partial U_{x \tau_{u_{x}} i}^{k}}=0 & \text { with } & i=1, \ldots, \mathcal{N} ; & \tau_{u_{x}}=b_{u_{x}}, r_{u_{x}}, t_{u_{x}}
\end{array} \quad r_{u_{x}}=1,2,3, \ldots ., N_{u_{x}}-1\right)
$$

The minimization of the total potential energy of the system leads to the discrete form of the governing differential equations in terms of fundamental primary nuclei:

$$
\begin{equation*}
\delta \mathbf{U}_{\tau i}^{k^{T}}: \quad\left[\mathbf{K}^{k \tau s i j}+\lambda_{i j} \mathbf{K}_{\sigma}^{k \tau s i j}\right] \mathbf{U}_{s j}^{k}=0 \tag{49}
\end{equation*}
$$

The thermal buckling analysis leads to the following eigenvalues problem:

$$
\begin{equation*}
\left\|\mathbf{K}^{k \tau s i j}+\lambda_{i j} \mathbf{K}_{\sigma}^{k \tau s i j}\right\|=0 \tag{50}
\end{equation*}
$$

the double bars denote determinant.

## 6 Thermal stability governing differential equations

In order to derive the governing differential equations and natural boundary conditions the Gauss theorem is applied:

$$
\begin{align*}
& \int_{\Omega_{k}}\left(\left(\mathbf{D}_{p}\right) \delta \mathbf{a}^{k}\right)^{T} \mathbf{a}^{k} \mathrm{~d} \Omega_{k}=-\int_{\Omega_{k}} \delta \mathbf{a}^{k}\left(\left(\mathbf{D}_{p}\right)^{T} \delta \mathbf{a}^{k}\right) \mathrm{d} \Omega_{k}+\int_{\Gamma^{k}} \delta \mathbf{a}^{k}\left(\left(\mathbf{I}_{p}\right)^{T} \delta \mathbf{a}^{k}\right) \mathrm{d} \Gamma^{k}  \tag{51}\\
& \int_{\Omega_{k}}\left(\left(\mathbf{D}_{\Omega}\right) \delta \mathbf{a}^{k}\right)^{T} \mathbf{a}^{k} \mathrm{~d} \Omega_{k}=-\int_{\Omega_{k}} \delta \mathbf{a}^{k}\left(\left(\mathbf{D}_{\Omega}\right)^{T} \delta \mathbf{a}^{k}\right) \mathrm{d} \Omega_{k}+\int_{\Gamma^{k}} \delta \mathbf{a}^{k}\left(\left(\mathbf{I}_{\Omega}\right)^{T} \delta \mathbf{a}^{k}\right) \mathrm{d} \Gamma^{k}
\end{align*}
$$

where a can be displacement or stress variables and the introduced $\mathbf{I}_{p}$ and $\mathbf{I}_{\Omega}$ arrays are

$$
\mathbf{I}_{p}=\left[\begin{array}{ccc}
n_{x} & 0 & 0  \tag{52}\\
0 & n_{y} & 0 \\
n_{y} & n_{x} & 0
\end{array}\right], \quad \mathbf{I}_{\Omega}=\left[\begin{array}{ccc}
0 & 0 & n_{x} \\
0 & 0 & n_{y} \\
0 & 0 & 0
\end{array}\right]
$$

The normal to the boundary of domain $\Omega_{k}$ is:

$$
\hat{\mathbf{n}}=\left[\begin{array}{l}
n_{x}  \tag{53}\\
n_{y}
\end{array}\right]=\left[\begin{array}{c}
\cos \left(\varphi_{x}\right) \\
\cos \left(\varphi_{y}\right)
\end{array}\right]
$$

where $\varphi_{x}$ and $\varphi_{y}$ are the direction cosines, namely, the angles between the normal $\hat{\mathbf{n}}$ and the directions $x$ and $y$, respectively. The governing differential equations and natural boundary conditions (Neumanntype) on $\Gamma_{k}^{m}$, for a FGM isotropic and sandwich plates at multilayer level can be written as:

$$
\begin{align*}
& \sum_{k=1}^{N_{l}} \int_{\Omega_{k}} \int_{A^{k}} \delta \mathbf{u}_{\tau}\left(-\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]-\right. \\
& \left.\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{n p}\right)^{T}+\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{n z}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]\right) \mathbf{u}_{s} d \Omega_{k} d z+ \\
& \sum_{k=1}^{N_{l}} \int_{\Gamma_{k}} \int_{A^{k}} \delta \mathbf{u}_{\tau}\left(\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\boldsymbol{I}_{p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]+\right.  \tag{54}\\
& \left.\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\boldsymbol{I}_{n p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]\right) \mathbf{u}_{s} d \Omega_{k} d z= \\
& \sum_{k=1}^{N_{l}} \int_{\Omega_{k}} \int_{A^{k}} \delta \mathbf{u}_{\tau}\left(\left(\mathbf{F}_{\tau} \mathbf{F}_{s}\right)^{T} \tilde{\mathbf{\Phi}}\right) \ddot{\mathbf{u}}_{s} d \Omega_{k} d z
\end{align*}
$$

and in compact form are:

$$
\begin{align*}
\delta \mathbf{u}_{\tau}: & \mathbf{K}^{k \tau s} \mathbf{u}_{s}=\mathbf{K}_{\sigma}^{k \tau s} \mathbf{u}_{s} \\
\Gamma_{k}^{m}: & \boldsymbol{\Pi}^{k \tau s} \mathbf{u}_{s}=\boldsymbol{\Pi}^{k \tau s} \overline{\mathbf{u}}_{s} \quad \Gamma_{k}^{g}: \mathbf{u}_{s}=\overline{\mathbf{u}}_{s} \tag{55}
\end{align*}
$$

where

$$
\begin{align*}
& \mathbf{K}^{k \tau s}=\int_{A^{k}}\left(-\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]-\right. \\
& \left.\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{n p}\right)^{T}+\left(\mathbf{F}_{\tau}\right)^{T}\left(\mathbf{D}_{n z}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]\right) d z \\
& \boldsymbol{\Pi}^{k \tau s}=\int_{A^{k}}\left(\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\boldsymbol{I}_{p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{p p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{p n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]\right.  \tag{56}\\
& \left.\left[\left(\mathbf{F}_{\tau}\right)^{T}\left(\boldsymbol{I}_{n p}\right)^{T}\right]\left[\tilde{\mathbf{C}}_{n p}^{k} \mathbf{D}_{p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n p}\left(\mathbf{F}_{\tau}\right)+\tilde{\mathbf{C}}_{n n}^{k} \mathbf{D}_{n z}\left(\mathbf{F}_{\tau}\right)\right]\right) d z \\
& \mathbf{K}_{\sigma}^{k \tau s}=\int_{A^{k}}\left(\left(\mathbf{F}_{\tau} \mathbf{F}_{s}\right)^{T} \tilde{\mathbf{\Phi}}\right) d z
\end{align*}
$$

The matrix $\tilde{\boldsymbol{\Phi}}=\operatorname{diag}\left(\tilde{\Phi}_{11}, \tilde{\Phi}_{22}, \tilde{\Phi}_{33}\right)$, where

$$
\left\{\begin{array}{l}
\tilde{\Phi}_{11}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y}  \tag{57}\\
\tilde{\Phi}_{22}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y} \\
\tilde{\Phi}_{33}=\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y}
\end{array}\right.
$$

The nine components of the fundamental primary differential nucleus $\mathbf{K}$ are given as:

$$
\begin{aligned}
& K_{u u}^{k} \tau_{u_{x}} s_{u_{x}}=-\tilde{C}_{11}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{x}}}-\tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}} \\
& -\tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{x}}}-\tilde{C}_{66}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{x}}} \\
& +\tilde{C}_{55}^{k} J^{k \tau_{u_{x_{z}}} s_{u_{x_{z}}}} \\
& K_{u u}^{k \tau_{u_{x}} s_{u_{y}}}=-\tilde{C}_{12}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}-\tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{y}}} \\
& -\tilde{C}_{26}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{x}}}-\tilde{C}_{66}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{x}}} \\
& +\tilde{C}_{45}^{k} J^{k \tau_{u_{x_{z}}} s_{u_{y_{z}}}} \\
& K_{u u}^{k \tau_{u_{x}} s_{u_{z}}}=-\tilde{C}_{13}^{k} J^{k \tau_{u_{x}} s_{u_{z_{z}}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{x}}}-\tilde{C}_{36}^{k} J^{k \tau_{u_{x}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{x}}}+\tilde{C}_{45}^{k} J^{k \tau_{u_{x_{z}}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}} \\
& +\tilde{C}_{55}^{k} J^{k \tau_{u_{x_{z}}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}} \\
& K_{u u}^{k \tau_{u_{y}} s_{u_{x}}}=-\tilde{C}_{12}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{y}}}-\tilde{C}_{16}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{y}}} \\
& -\tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{y}}}-\tilde{C}_{66}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}} \\
& +\tilde{C}_{45}^{k} J^{k \tau_{u_{y_{z}}} s_{u_{x_{z}}}} \\
& K_{u u}^{k \tau_{u_{y}} s_{u_{y}}}=-\tilde{C}_{22}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{y}}}-\tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{y}}} \\
& -\tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}-\tilde{C}_{66}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{y}}} \\
& +\tilde{C}_{44}^{k} J^{k \tau_{u_{y z}} s_{u_{y_{z}}}} \\
& K_{u u}^{k \tau_{u_{y}} s_{u_{z}}}=-\tilde{C}_{23}^{k} J^{k \tau_{u_{y}} s_{u_{z_{z}}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{y}}}-\tilde{C}_{36}^{k} J^{k \tau_{u_{y}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{x}}}+\tilde{C}_{45}^{k} J^{k \tau_{u_{y_{z}}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}} \\
& +\tilde{C}_{44}^{k} J^{k \tau_{u_{y_{z}}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}} \\
& K_{u u}^{k \tau_{u_{z}} s_{u_{x}}}=+\tilde{C}_{13}^{k} J^{k \tau_{u_{z}}} s_{u_{x}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}+\tilde{C}_{36}^{k} J^{k \tau_{u_{z_{z}}} s_{u_{x_{z}}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}}-\tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{x_{z}}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{z}}} \\
& -\tilde{C}_{55}^{k} J^{k \tau_{u_{z}} s_{u_{x_{z}}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{z}}}
\end{aligned}
$$

$$
\begin{align*}
& K_{u u}^{k} \tau_{u z} s_{u_{y}}=+\tilde{C}_{23}^{k} J^{k \tau_{u_{z}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}+\tilde{C}_{36}^{k} J^{k \tau_{u_{z}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}-\tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{y_{z}}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{z}}} \\
&-\tilde{C}_{44}^{k} J^{k \tau_{u_{z}} s_{u_{u_{z}}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{z}}} \\
& K_{u u}^{k \tau_{u z} s_{u_{z}}=} \tilde{C}_{33}^{k} J^{k \tau_{u_{z}} s_{u_{z z}}}-\tilde{C}_{44}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{z}}}-\tilde{C}_{55}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{z}}}  \tag{58}\\
&-\tilde{C}_{45}^{k} J^{k \tau_{u_{z} z} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{\tau_{u_{z}}}-\tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{\tau_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}}
\end{align*}
$$

The nine components of the primary fundamental boundary nucleus $\boldsymbol{\Pi}$ can be written as:

$$
\begin{aligned}
& \Pi_{u u}^{k} \tau_{u_{x}} s_{u_{x}}=n_{x} \tilde{C}_{11}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}+n_{y} \tilde{C}_{66}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}}+n_{y} \tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}} \\
& +n_{x} \tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}} \\
& \Pi_{u u}^{k \tau_{u_{x}} s_{u_{y}}}=n_{x} \tilde{C}_{16}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}+n_{y} \tilde{C}_{26}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}+n_{y} \tilde{C}_{66}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}} \\
& +n_{x} \tilde{C}_{12}^{k} J^{k \tau_{u_{x}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}} \\
& \Pi_{u u}^{k \tau_{u_{x}} s_{u_{z}}}=n_{x} \tilde{C}_{13}^{k} J^{k \tau_{u_{x}} s_{u_{z}}}+n_{y} \tilde{C}_{36}^{k} J^{k \tau_{u_{x}} s_{u_{z z}}} \\
& \Pi_{u u}^{k \tau_{u_{y}} s_{u_{x}}}=n_{x} \tilde{C}_{16}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}}+n_{y} \tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}}+n_{y} \tilde{C}_{12}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{x}}} \\
& +n_{x} \tilde{C}_{66}^{k} J^{k \tau_{u_{y}} s_{u_{x}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{x}}} \\
& \Pi_{u u}^{k \tau_{u_{y}} s_{u_{y}}}=n_{x} \tilde{C}_{66}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}}+n_{y} \tilde{C}_{22}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}}+n_{y} \tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{y}}} \\
& +n_{x} \tilde{C}_{26}^{k} J^{k \tau_{u_{y}} s_{u_{y}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{y}}} \\
& \Pi_{u u}^{k \tau_{u y} s_{u_{z}}}=n_{x} \tilde{C}_{36}^{k} J^{k \tau_{u_{y}} s_{u_{z z}}}+n_{y} \tilde{C}_{23}^{k} J^{k \tau_{u_{y}} s_{u_{z z}}} \\
& \Pi_{u u}^{k \tau_{u_{z}} s_{u_{x}}}=n_{x} \tilde{C}_{55}^{k} J^{k \tau_{u_{x}} s_{u_{x_{z}}}}+n_{y} \tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{x z}}}
\end{aligned}
$$

$$
\begin{aligned}
\Pi_{u u}^{k \tau_{u}} s_{u_{y}} & =n_{x} \tilde{C}_{45}^{k} J^{k \tau_{u_{x}} s_{u_{y_{z}}}}+n_{y} \tilde{C}_{44}^{k} J^{k \tau_{u_{z}} s_{u_{y}}} \\
\prod_{u u}^{k \tau_{u_{z}} s_{u_{z}}} & =n_{x} \tilde{C}_{55}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}}+n_{y} \tilde{C}_{44}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}}+n_{y} \tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial x}\right)_{s_{u_{z}}} \\
& +n_{x} \tilde{C}_{45}^{k} J^{k \tau_{u_{z}} s_{u_{z}}}\left(\frac{\partial}{\partial y}\right)_{s_{u_{z}}}
\end{aligned}
$$

The three components of the fundamental primary differential initial stress nucleus $\mathbf{K}_{\sigma}^{k \tau s}$ are following reported:

$$
\begin{align*}
& K_{\sigma_{u u}}^{k \tau_{u_{u}} s_{u_{x}}}=J^{k \tau_{u_{x}} s_{u_{x}}}\left[\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y}\right] \\
& K_{\sigma_{u x}}^{k \tau_{u_{u}} s_{u_{y}}}=J^{k \tau_{u_{y}} s_{u_{y}}}\left[\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y}\right]  \tag{60}\\
& K_{\sigma_{u u}}^{k \tau_{u_{z}} s_{u_{z}}}=J^{k \tau_{u_{z}} s_{u z}}\left[\tilde{\sigma}_{x x_{0}}^{\vartheta} \frac{\partial}{\partial x} \frac{\partial}{\partial x}+\tilde{\sigma}_{y y_{0}}^{\vartheta} \frac{\partial}{\partial y} \frac{\partial}{\partial y}\right]
\end{align*}
$$

## 7 Numerical results and discussion

The Ritz functions in Eq. (41) are chosen to satisfy the simply supported and fully clamped boundary conditions, following indicated, respectively:

$$
\begin{array}{ll}
\psi_{x_{m n}}^{S S}(x, y)=\sum_{m} \sum_{n} \cos \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) & \psi_{x_{m n}}^{C}(x, y)=\sum_{m} \sum_{n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) \\
\psi_{y_{m n}}^{S S}(x, y)=\sum_{m} \sum_{n} \sin \left(\frac{m \pi x}{a}\right) \cos \left(\frac{n \pi y}{b}\right) & \psi_{y_{m n}}^{C}(x, y)=\sum_{m} \sum_{n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)  \tag{61}\\
\psi_{z_{m n}}^{S S}(x, y)=\sum_{m} \sum_{n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right) & \psi_{z_{m n}}^{C}(x, y)=\sum_{m} \sum_{n} \sin \left(\frac{m \pi x}{a}\right) \sin \left(\frac{n \pi y}{b}\right)
\end{array}
$$

Different FGM isotropic and sandwich plates are investigated. The results are given using the usual acronyms system used in the CUF [32, 43]. Therefore, the ESL theories are indicated as $E D_{N_{u_{\alpha}} N_{u_{\beta}} N_{u_{z}}}$ where E means the equivalent single layer approach, D means that the Principle of Virtual Displacements has been employed and $N_{u_{\alpha}}, N_{u_{\beta}}, N_{u_{z}}$ are the three expansion orders used in the displacement field. Similarly, the acronym used to describe the ZZ theories is $E D Z_{N_{u_{\alpha}} N_{u_{\beta}} N_{u_{z}}}$, where Z states that MZZF has been introduced.

### 7.1 Thermal buckling of FGM isotropic plates

A preliminary validation of the developed theories is shown in Tables 3and 4 In particular, the material used is the Alluminium/Allumina, which properties are given in Table 1. In Tables 3 and 4. results, for simply supported and fully clamped boundary conditions, respectively, are compared against those proposed by Nguyen et. al 44 using the edge-smoothed finite element method. As can be seen the results in terms of critical temperature, for different values of the volume fraction index, are in excellent agreement, for both the boundary conditions taken into account. Two different thickness-to-length ratio have been examined $a / h=50$ and $a / h=100$. As can be observed the critical temperature decreases both when increasing the volume fraction index $(p)$ and when increasing the thickness-to-length ratio $(a / h)$. As expected the fully clamped (CCCC) boundary condition leads to higher critical temperatures than those computed by using the simply supported (SSSS) one. In the case of CCCC boundary condition the convergence has been reached by using $M=N=16$ as half-wave numbers.

In Table 5 a deep assessment of the developed ESL and ZZ plate theories is carried out comparing the results with the analytical solutions based on a CLPT and a HSDT, provided by Javaheri and Eslami [45]. The proposed results represent the critical temperature of Alluminium/Alluminia FGM isotropic plates (Material-1, see Table 1), when subjected under a uniform temperature rise through-the-thickness direction. Results match very well from moderately thick $(a / h=10)$ to thin $(a / h=100)$ FGM isotropic plates. The proposed higher order ESL and ZZ theories making use of a higher number of degrees of freedom (DOFs) lead to a more refined results. It is interesting to note that the proposed $\mathrm{ED}_{222}$ plate model, especially for thin FGM isotropic plates, leads exactly to the same results of the HSDT given by Javaheri and Eslami [45. The trends of the critical temperature, as already observed in Tables 3 and 4, decreases when increasing both the volume fraction index and the thickness-to-length ratio. In Tables 6 and 7 the critical temperatures are computed accounting for a linear and a non-linear temperature rises through-the-thickness of the FGM isotropic plate, respectively, and considering $T_{m}=5{ }^{\circ} \mathrm{C}$. As can be seen in Tables 6 and 7 , the critical temperatures of a FGM isotropic plate, when subjected to a linear temperature distribution through-the-thickness, are higher than those evaluated considering a uniform temperature rise through-the-thickness but lower than those computed when accounting for a non-linear temperature distribution through-the-thickness. In Table 7 the non-linear temperature rise through-the-thickness is computed by solving the one-dimensional Fourier heat conduction equation. In Table 8 the critical temperatures of FGM plates are evaluated accounting for several non-linear temperature rises through-the-thickness. Most notably, when the temperature rise through-the-thickness is considered functionally graded, then the critical temperature increases when increasing the temperature index $\chi$, for example in Table $\quad \chi=2,3,4,5$. The lower critical temperature is obtained when considering the Fourier non-linear temperature distribution. Tacking into account the sinusoidal temperature distribution, the critical temperature is comparable to the one obtained using $\chi=2$, this is quite understandable, indeed
looking at Fig. 4 the two temperature distributions are similar.

### 7.2 Thermal buckling of FGM sandwich plates

Several FGM sandwich plates made up of $\mathrm{ZrO}_{2} / \mathrm{Ti} 6 \mathrm{Al} 4 \mathrm{~V}$ (Material-2, see Table 2), from Table 9 to Table 14 are examined. In particular, different FGM sandwich plate configurations, which are depicted in Fig. 3, are subjected to various temperature distributions through-the-thickness direction. The FGM sandwich plates are composed of FGM face sheets and a ceramic core (see Fig. 1 (b)). In the present investigation for the linear and non-linear temperature rises, $T_{t}=25^{\circ} \mathrm{C}$. Results, in terms of critical buckling temperatures, are compared with those proposed by Zenkour and Sobhy [21]. In particular, the latter were obtained by using first-order shear deformation plat theory (FPT), higher-order shear deformation plat theory (HPT) and sinusoidal shear deformation plate theory (SDT). In Tables 9 and 10 the critical temperatures are computed for different values of the thickness-to-length ratio and different values of the volume fraction index, more specifically, $p=0.5$ in Table 9 and $p=2$ in Table 10 the temperature rise through-the-thickness is considered uniform. As expected independently of the values assumed by the volume fraction index the critical temperature decreases when increasing the thickness-to-length ratio. The highest critical temperature is reached with the FGM sandwich plate configuration 1-0-1 (see Fig. 3(a). The same analysis is carried out in Tables 11 and 12 considering a linear temperature distribution through-the-thickness and in Tables 13 and 14 tacking into account a non-linear temperature distribution $(\chi=5)$ (see Fig. (4). It is interesting to note that for uniform and linear temperature rises through-the-thickness the critical temperatures computed with $p=0.5$ are higher than those computed with $p=2$. In sharp contrast, when a non-linear temperature rise through-the-thickness is considered, $p=2$ leads to the highest values of critical buckling temperatures.

## 8 Conclusions

A thermal buckling analysis of functionally graded material (FGM) isotropic and sandwich plates is carried out by means of refined quasi-3D Equivalent Single Layer (ESL) and Zig Zag (ZZ) plate theories developed within the framework of the Carrera Unified Formulation (CUF). Both the thermal stability differential equations with natural boundary conditions and the Hierarchical Trigonometric Ritz Formulation (HTRF) have been derived by exploiting th use of the Principle of Virtual Displacements (PVD). Uniform, linear, non-linear temperature rises through-the-thickness direction have been considered. The effects of significant parameters such as volume fraction index, length-to-thickness ratio, boundary conditions, aspect ratio, sandwich plate type and temperature distribution through-the-thickness direction on the critical temperatures have been examined. From the analysis carried out the following important conclusions can be drawn:

1. The developed advanced quasi-3D ESL and ZZ plate theories lead to more accurate results, in terms of critical temperature, when compared with CLPT, FSDT and HSDT.
2. For FGM isotropic and sandwich plates the critical temperatures decrease when increasing the thickness-to-length ratio $(a / h)$.
3. For FGM sandwich plates the critical temperatures decrease when increasing the volume fraction index $p$ if uniform or linear temperature rises through-the-thickness are taken into account, and increase when increasing the volume fraction index $p$ if non-linear temperature rises through-thethickness is accounted for.
4. The fully clamp boundary condition leads to higher critical temperatures then those obtained by using the simply-supported one.
5. The critical temperature increases when increasing the temperature index $\chi$.
6. From all of the considered non-linear temperature distributions through-the-thickness direction, the one obtained solving the the one-dimensional Fourier heat conduction equation leads to the lowest critical buckling temperature.
7. From all of the considered FGM sandwich plate configurations, the 1-0-1 leads to the highest values of critical buckling temperatures.

## References

[1] E. A. Thornton. Thermal buckling of plates and shells. ASME - Applied Mechanics Reviews, 46(10):485-506, 1993.
[2] T. R. Tauchert. Thermally induced flexure, buckling, and vibration of plates. ASME - Applied Mechanics Reviews, 44(8):347-360, 1991.
[3] C. C. Grey and C. Mai. Finite element analysis of thermal post-buckling and vibrations of thermally buckled composite plates. AIAA Journal, 1239-CP:2996-3007, 1991.
[4] T. R. Tauchert. Thermal buckling of thick antisymmetric angle-ply laminates. Journal of Thermal Stresses, 10:113-124, 1987.
[5] I. H. Yang and J. A. Sheih. Generic Thermal Buckling of Initially Stressed Antisymmetric Cross-ply Thick Laminates. International Journal of Solids and Structures, 24:1059-1070, 1988.
[6] W. J. Cheng, P. D. Lin, and L. W. Chen. Thermal Buckling Behaviour of Thick Composite Laminated Plates under Nonuniform Temperature Distribution. Computers \& Structures, 41:637-645, 1991.
[7] A. K. Noor and W. S. Jeanne. Predictor Corrector Procedures for Thermal Buckling Analysis of Multilayered Composite Plates. Computers \& Structures, 40:1071-1084, 1991.
[8] M. R. Prabhu and R. C. Dhanaraj. Thermal Buckling of Laminated Composite Plates. Computers \& Structures, 53(5):1193-1204, 1994.
[9] A. K. Noor, J. M. Peters, and W. S. Burton. Three-dimensional solutions for initially stressed structural sandwiches. ASCE Journal of Engineering Mechanics, 120:284-303, 1994.
[10] A. K. Noor and W. S. Burton. Three-dimensional solutions for thermal buckling multilayered anisotropic plates. ASCE Journal of Engineering Mechanics, 118:638-701, 1992.
[11] T. Kant and C. S. Babu. Refined high order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 23:111-130, 2000.
[12] E. Carrera. Temperature profile influence on layered plates response considering classical and advanced theories. AIAA Journal, 40(9):1885-1896, 2002.
[13] E. Carrera. Transverse normal strain effects on thermal stress analysis of homogeneous and layered plates. AIAA Journal, 43(10):2232-2242, 2005.
[14] E. Carrera. An assessment of mixed and classical theories for the thermal stress analysis of orthotropic multilayered plates. Journal of Thermal Stresses, 23:797-831, 2000.
[15] E. Carrera and A. Ciuffreda. Closed-form solutions to assess multilayered-plate theories for various thermal stress problems. Journal of Thermal Stresses, 27:1001-1031, 2004.
[16] H. Matsunaga. Thermal buckling of angle-ply laminated composite and sandwich plates according to high-order deformation theory. Composite Structures, 72:177-192, 2006.
[17] A. K. Noor and W. S. Burton. Three-dimensional solutions for thermal buckling and sensitivity derivatives of temperature-sensitive multilayered angle-ply plates. Journal of Applied Mechanics, 59:848-856, 1992.
[18] S. Le-Chung, K. Shih-Yao, and C. Chen-Yuan. Thermal Buckling Behaviour of Laminated Composite Plates. Composite Structures, 92(2):508-514, 2010.
[19] F. A. Fazzolari and E. Carrera. Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of laminated composite plates. Composite Structures, 94(1):50-67, 2011.
[20] F. A. Fazzolari and E. Carrera. Thermo-mechanical buckling analysis of anisotropic multilayered composite and sandwich plates by using refined variable-kinematics theories. Journal of Thermal Stresses,, 36(4):321-350, 2012.
[21] A. M. Zenkour and M. Sobhy. Thermal buckling of various types of fgm sandwich plates. Composite Structures, 93(1):93-112, 2010.
[22] X. Zhao, Y. Y. Lee, and K. M. Liew. Mechanical and thermal buckling analysis of functionally graded plates. Composite Structures, 90(2):161-171, 2009.
[23] W. Lanhe. Thermal buckling of a simply supported moderately thick rectangular fgm plate. Composite Structures, 64(2):211-218, 2004.
[24] Hui-Shen Shen. Thermal post-buckling analysis of imperfect laminated plates using a higher-order shear deformation theory. International Journal of Non-Linear Mechanics, 32(6):1035-1050, 1997.
[25] B. Uymaz and M. Aydogdu. Three dimensional shear buckling of fg plates with various boundary conditions. Composite Structures, 96(10):670-682, 2013.
[26] P. Malekzadeh. Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method. Composite Structures, 93(4):1246-1254, 2011.
[27] B.A. Samsam Shariat and M. R. Eslami. Buckling of thick functionally graded plates under mechanical and thermal loads. Composite Structures, 78(3):433-439, 2007.
[28] B.A. Samsam Shariat and M. R. Eslami. Thermal buckling of imperfect functionally graded platess. International Journal of Solids and Structures, 43(14-15):4082-4096, 2006.
[29] H. Matsunaga. Thermal buckling of functionally graded plates according to a 2 d higher-order deformation theory. Composite Structures, 90(1):76-86, 2009.
[30] F. A. Fazzolari. Fully coupled thermo-mechanical effect in free vibration analysis of anisotropic multilayered plates by combining hierarchical plates models and a trigonometric Ritz formulation. In Mechanics of Nano, Micro and Macro Composite Structures Politecnico di Torino, 18-20 June, 2012.
[31] F. A. Fazzolari and E. Carrera. Accurate free vibration analysis of thermo-mechanically pre/postbuckled anisotropic multilayered plates based on a refined hierarchical trigonometric Ritz formulation. Composite Structures, 95:381-402, 2013.
[32] F. A. Fazzolari and E. Carrera. Coupled thermoelastic effect in free vibration analysis of anisotropic multilayered plates by using an advanced variable-kinematics Ritz formulation. European Journal of Mechanics Solid/A,, 44:157-174, 2014.
[33] F. A. Fazzolari and E. Carrera. Free vibration analysis of sandwich plates with anisotropic face sheets in thermal environment by using the hierarchical trigonometric Ritz formulation. Composites Part B: Engineering, 50:67-81, 2013.
[34] F. A. Fazzolari and E. Carrera. Advances in the Ritz formulation for free vibration response of doubly-curved anisotropic laminated composite shallow and deep shells. Composite Structures, 101:111-128, 2013.
[35] A. E. H. Love. The small free vibrations and deformations of a thin elastic shell. Phil. Trans. Roy. Soc. (London), ser. A(179):491-549, 1888.
[36] G. R. Kirchhoff. Über das Gleichgewicht und die Bewegung einer elastischen Sheibe. (About the equilibrium and motion of elastic bodies.). Journal für die Reine und Angewandte Mathematik, 40:51-88, 1850.
[37] E. Reissner. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 67:A67-A77, 1945.
[38] R.D. Mindlin. Influence of rotary inertia and shear on flexural motions of isotropic elastic plates. Journal of Applied Mechanics, 18(10):31-38, 1951.
[39] E. Carrera and P. Nali. Multilayered plate elements for the analysis of multifield problems. Finite Elements in Analysis and Design, 46:732-742, 2010.
[40] H. Murakami. Laminated composite plate theory with improved in-plane response. Journal of Applied Mechanics, Technomic Stanford(53):601-666, 1986.
[41] W. Ritz. Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. (About a new method for the solution of certain variational problems of mathematical physics.). Journal für die Reine und Angewandte Mathematik, 135:1-61, 1909.
[42] J. N. Reddy. Energy Princiles and Variational Methods in Applied Mechanics. John Wiley \& Sons, Inc., Hoboken, New Jersey, $2^{\text {nd }}$ edition, 2002.
[43] E. Carrera. Theories and finite elements for multilayered plates and shells: a unified compact formulation with numerical assessment and benchmarking. Archives of Computational Methods in Engineering, 10(3):216-296, 2003.
[44] H. Nguyen-Xuan, Loc. V. Tran, T. Nguyen-Thoi, and H. C. Vu-Do. Composite Structures, 93:30193039, 2011.
[45] R. Javaheri and M. R. Elsami. Thermal buckling of functionally graded plates based on higher order theory. Journal of Thermal Stresses, 25:603-625, 2002.

## Tables

Table 1: Material-1

| Alumina |  |  |  |
| :--- | :---: | :---: | :---: |
| $\mathrm{E}_{c}[\mathrm{GPa}]$ $\alpha_{c}\left[\frac{1}{\mathrm{C}^{0}}\right]$ $\nu_{c}$ $\kappa_{c}\left[\frac{\mathrm{~W}}{\mathrm{Mk}}\right]$ <br> 380 $7.4 \times 10^{-6}$ 0.3 10.4 <br> Aluminium    <br> $\mathrm{E}_{m}[\mathrm{GPa}]$ $\alpha_{m}\left[\frac{1}{\mathrm{C}^{0}}\right]$ $\nu_{m}$ $\kappa_{m}\left[\frac{\mathrm{~W}}{\mathrm{Mk}}\right]$ <br> 70 $23 \times 10^{-6}$ 0.3 204 |  |  |  |

Table 2: Material-2

| $\mathrm{ZrO}_{2}$ |  |  |
| :--- | :---: | :---: |
| $\mathrm{E}_{c}[\mathrm{GPa}]$ $\alpha_{c}\left[\frac{1}{\mathrm{C}^{0}}\right]$ $\nu_{c}$ <br> 244.27 $12.766 \times 10^{-6}$ 0.3 <br> Ti 6 Al 4 V   <br> $\mathrm{E}_{m}[\mathrm{GPa}]$ $\alpha_{m}\left[\frac{1}{\mathrm{C}^{0}}\right]$ $\nu_{m}$ <br> 66.2 $10.3 \times 10^{-6}$ 0.3 |  |  |

Table 3: Critical temperatures of simply supported (SSSS) square FGM isotropic plates.

| a/h | Theory | $\Delta T_{c r}$ |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | $n=0$ | $n=0.5$ | $n=1$ | $n=2$ | $n=5$ |
| 50 | ES-FEM 44 | 70.6998 | 39.4860 | 32.2723 | 28.5288 | 29.3283 |
|  | ED $_{444}$ | 68.2055 | 38.6553 | 31.6979 | 28.0962 | 28.9625 |
| 100 | ES-FEM 44 | 17.7187 | 9.8946 | 8.0867 | 7.1492 | 7.3515 |
|  | ED $_{444}$ | 17.0871 | 9.6821 | 7.9389 | 7.0379 | 7.2594 |

Table 4: Critical temperature of fully clamped (CCCC) square FGM isotropic plates.

| a/h | Theory | $\Delta T_{c r}$ |  |  |  |  |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | $n=0$ | $n=0.5$ | $n=1$ | $n=2$ | $n=5$ |
| 50 | ES-FEM44 | 188.2834 | 105.2699 | 86.0739 | 76.0781 | 78.0599 |
|  | ED $_{222}$ | 185.8634 | 105.5901 | 86.6282 | 76.7304 | 78.8096 |
| 100 | ES-FEM 44 | 47.4967 | 26.5411 | 21.6980 | 19.1804 | 19.7017 |
|  | ED $_{222}$ | 48.0005 | 27.2915 | 22.4017 | 19.8472 | 20.3664 |

Table 5: Critical temperatures of different FGM isotropic square plates under uniform temperature rise.

| P | Theory | $a / h$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 20 | 40 | 60 | 80 | 100 |
| 0 | CLPT 45 | 1709.911 | 427.477 | 106.869 | 47.497 | 26.717 | 17.099 |
|  | HSDT 45 | 1617.484 | 421.516 | 106.492 | 47.424 | 26.693 | 17.088 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1599.294 | 420.146 | 106.404 | 47.405 | 26.688 | 17.087 |
|  | $\mathrm{EDZ}_{333}$ | 1599.322 | 420.146 | 106.404 | 47.410 | 26.691 | 17.087 |
|  | ED999 | 1599.293 | 420.146 | 106.404 | 47.405 | 26.688 | 17.087 |
|  | $\mathrm{ED}_{444}$ | 1599.294 | 420.146 | 106.404 | 47.405 | 26.688 | 17.087 |
|  | $\mathrm{ED}_{222}$ | 1609.305 | 420.844 | 106.449 | 47.414 | 26.691 | 17.088 |
| 1 | CLPT | 794.377 | 198.594 | 49.648 | 22.066 | 12.412 | 7.943 |
|  | HSDT | 757.891 | 196.257 | 49.500 | 22.037 | 12.402 | 7.939 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 749.261 | 195.623 | 49.461 | 22.029 | 12.400 | 7.939 |
|  | $\mathrm{EDZ}_{333}$ | 749.288 | 195.625 | 49.461 | 22.030 | 12.401 | 7.939 |
|  | ED999 | 749.261 | 195.623 | 49.460 | 22.029 | 12.400 | 7.939 |
|  | ED 444 | 749.265 | 195.623 | 49.460 | 22.029 | 12.400 | 7.939 |
|  | $\mathrm{ED}_{222}$ | 752.037 | 195.814 | 49.473 | 22.031 | 12.401 | 7.939 |
| 5 | CLPT | 726.571 | 181.642 | 45.410 | 20.182 | 11.352 | 7.265 |
|  | HSDT | 678.926 | 178.528 | 45.213 | 20.144 | 11.340 | 7.260 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 669.396 | 177.803 | 45.166 | 20.135 | 11.339 | 7.256 |
|  | $\mathrm{EDZ}_{333}$ | 669.817 | 177.833 | 45.167 | 20.135 | 11.337 | 7.262 |
|  | ED999 | 669.396 | 177.803 | 45.166 | 20.134 | 11.337 | 7.259 |
|  | $\mathrm{ED}_{444}$ | 669.545 | 177.814 | 45.167 | 20.134 | 11.337 | 7.259 |
|  | $\mathrm{ED}_{222}$ | 677.859 | 178.404 | 45.205 | 20.142 | 11.340 | 7.260 |
| 10 | CLPT | 746.927 | 186.731 | 46.682 | 20.747 | 11.670 | 7.469 |
|  | HSDT | 692.519 | 183.141 | 46.455 | 20.703 | 11.657 | 7.462 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 683.199 | 182.428 | 46.408 | 20.693 | 11.654 | 7.460 |
|  | $\mathrm{EDZ}_{333}$ | 683.457 | 182.445 | 46.409 | 20.693 | 11.652 | 7.461 |
|  | ED999 | 683.196 | 182.428 | 46.408 | 20.693 | 11.653 | 7.462 |
|  | $\mathrm{ED}_{44}$ | 683.368 | 182.440 | 46.408 | 20.693 | 11.653 | 7.462 |
|  | $\mathrm{ED}_{222}$ | 694.277 | 183.220 | 46.459 | 20.703 | 11.656 | 7.463 |

Table 6: Critical temperatures of different FGM isotropic square plates under linear temperature rise.

| P | Theory | $a / h$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 20 | 40 | 60 | 80 | 100 |
| 0 | CLPT45 | 3409.821 | 844.955 | 203.738 | 84.995 | 43.434 | 24.198 |
|  | HSDT 45 | 3224.968 | 833.032 | 202.984 | 84.848 | 43.387 | 24.177 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 3188.250 | 830.287 | 202.808 | 84.812 | 43.377 | 24.172 |
|  | $\mathrm{EDZ}_{333}$ | 3188.308 | 830.287 | 202.808 | 84.810 | 43.375 | 24.172 |
|  | ED999 | 3188.250 | 830.286 | 202.808 | 84.811 | 43.376 | 24.174 |
|  | ED 444 | 3188.250 | 830.286 | 202.808 | 84.811 | 43.376 | 24.174 |
|  | $\mathrm{ED}_{222}$ | 3208.314 | 831.684 | 202.898 | 84.829 | 43.382 | 24.177 |
| 1 | CLPT | 1480.450 | 363.079 | 83.736 | 32.006 | 13.901 | 5.520 |
|  | HSDT | 1412.023 | 358.696 | 83.459 | 31.952 | 13.882 | 5.513 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1399.442 | 357.768 | 83.400 | 31.940 | 13.880 | 5.512 |
|  | $\mathrm{EDZ}_{333}$ | 1399.495 | 357.771 | 83.399 | 31.940 | 13.881 | 5.513 |
|  | ED999 | 1399.442 | 357.768 | 83.400 | 31.940 | 13.880 | 5.512 |
|  | ED 444 | 1399.450 | 357.768 | 83.400 | 31.940 | 13.880 | 5.512 |
|  | $\mathrm{ED}_{222}$ | 1404.683 | 358.127 | 83.423 | 31.944 | 13.881 | 5.513 |
| 5 | CLPT | 1242.035 | 304.054 | 69.558 | 26.133 | 10.934 | 3.899 |
|  | HSDT | 1160.024 | 298.693 | 69.219 | 26.067 | 10.913 | 3.891 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1147.338 | 297.737 | 69.155 | 26.053 | 10.909 | 3.889 |
|  | $\mathrm{EDZ}_{333}$ | 1148.089 | 297.789 | 69.158 | 26.053 | 10.908 | 3.892 |
|  | $\mathrm{ED}_{999}$ | 1147.337 | 297.737 | 69.155 | 26.053 | 10.909 |  |
|  | ED 444 | 1147.595 | 297.756 | 69.156 | 26.053 | 10.909 | 3.889 |
|  | $\mathrm{ED}_{222}$ | 1162.138 | 298.776 | 69.222 | 26.066 | 10.913 | 3.891 |
| 10 | CLPT | 1314.743 | 322.040 | 73.864 | 27.906 | 11.820 | 4.375 |
|  | HSDT | 1218.328 | 315.677 | 73.461 | 27.826 | 11.797 | 4.364 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1204.948 | 314.663 | 73.392 | 27.811 | 11.791 | 4.363 |
|  | $\mathrm{EDZ}_{333}$ | 1205.388 | 314.693 | 73.394 | 27.811 | 11.790 | 4.361 |
|  | ED999 | 1204.943 | 314.663 | 73.392 | 27.812 | 11.791 | 4.363 |
|  | $\mathrm{ED}_{444}$ | 1205.248 | 314.685 | 73.394 | 27.812 | 11.791 | 4.363 |
|  | $\mathrm{ED}_{222}$ | 1224.778 | 316.071 | 73.483 | 27.830 | 11.796 | 4.365 |

Table 7: Critical temperatures of different FGM isotropic square plates under non-linear Fourier temperature rise.

| P | Theory | $a / h$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 20 | 40 | 60 | 80 | 100 |
| 0 | CLPT 45 | 3409.821 | 844.955 | 203.738 | 84.995 | 43.434 | 24.198 |
|  | HSDT 45 | 3224.968 | 833.032 | 202.984 | 84.848 | 43.387 | 24.177 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 3188.250 | 830.286 | 202.808 | 84.811 | 43.371 | 24.172 |
|  | $\mathrm{EDZ}_{333}$ | 3188.308 | 830.287 | 202.808 | 84.810 | 43.375 | 24.172 |
|  | ED999 | 3188.250 | 830.286 | 202.808 | 84.811 | 43.376 | 24.174 |
|  | $\mathrm{ED}_{444}$ | 3188.250 | 830.286 | 202.808 | 84.811 | 43.376 | 24.174 |
|  | $\mathrm{ED}_{222}$ | 3208.314 | 831.684 | 202.898 | 84.829 | 43.382 | 24.177 |
| 1 | CLPT | 2055.001 | 503.987 | 116.234 | 44.428 | 19.296 | 7.663 |
|  | HSDT | 1960.018 | 497.903 | 115.849 | 44.352 | 19.270 | 7.652 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1942.064 | 496.586 | 115.765 | 44.335 | 19.266 | 7.651 |
|  | $\mathrm{EDZ}_{333}$ | 1942.143 | 496.590 | 115.765 | 44.337 | 19.269 | 7.654 |
|  | ED999 | 1942.065 | 496.586 | 115.765 | 44.335 | 19.266 | 7.651 |
|  | $\mathrm{ED}_{444}$ | 1942.075 | 496.587 | 115.765 | 44.335 | 19.266 | 7.651 |
|  | $\mathrm{ED}_{222}$ | 1949.370 | 497.085 | 115.797 | 44.341 | 19.268 | 7.652 |
| 5 | CLPT | 1553.336 | 380.261 | 86.999 | 32.683 | 13.675 | 4.877 |
|  | HSDT | 1450.769 | 373.557 | 86.568 | 32.600 | 13.648 | 4.866 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1434.646 | 372.345 | 86.487 | 32.582 | 13.643 | 4.864 |
|  | $\mathrm{EDZ}_{333}$ | 1435.591 | 372.411 | 86.491 | 32.584 | 13.643 | 4.871 |
|  | ED999 | 1434.646 | 372.345 | 86.487 | 32.583 | 13.643 | 4.864 |
|  | $\mathrm{ED}_{444}$ | 1434.969 | 372.369 | 86.488 | 32.582 | 13.643 | 4.864 |
|  | $\mathrm{ED}_{222}$ | 1453.172 | 373.645 | 86.571 | 32.599 | 13.648 | 4.866 |
| 10 | CLPT | 1519.568 | 372.211 | 85.372 | 32.254 | 13.662 | 5.057 |
|  | HSDT | 1408.132 | 364.857 | 84.905 | 32.162 | 13.634 | 5.044 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 1392.477 | 363.672 | 84.825 | 32.144 | 13.627 | 5.042 |
|  | $\mathrm{EDZ}_{333}$ | 1392.989 | 363.707 | 84.827 | 32.144 | 13.628 | 5.043 |
|  | ED999 | 1392.473 | 363.672 | 84.825 | 32.145 | 13.627 | 5.043 |
|  | ED 444 | 1392.825 | 363.698 | 84.827 | 32.145 | 13.628 | 5.043 |
|  | $\mathrm{ED}_{222}$ | 1415.401 | 365.300 | 84.931 | 32.165 | 13.634 | 5.045 |

Table 8: Critical temperatures of different FGM isotropic square plates under several non-linear temperature rise and using the $\mathrm{ED}_{444}$ kinematics model.

| P | Theory | $a / h$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 | 20 | 40 | 60 | 80 | 100 |
| 0 | $\chi=2$ | 4773.881 | 1244.855 | 304.177 | 127.210 | 65.063 | 36.261 |
|  | $\chi=3$ | 6354.050 | 1659.044 | 405.523 | 169.604 | 86.748 | 48.347 |
|  | $\chi=4$ | 7930.729 | 2072.991 | 506.853 | 211.996 | 108.433 | 60.433 |
|  | $\chi=5$ | 9505.089 | 2486.778 | 608.175 | 254.386 | 130.117 | 72.517 |
|  | Fourier | 3188.250 | 830.286 | 202.808 | 84.811 | 43.376 | 24.174 |
|  | Sinusoidal | 4380.916 | 1142.044 | 279.033 | 116.692 | 59.683 | 33.263 |
| 1 | $\chi=2$ | 2086.412 | 533.415 | 124.344 | 47.620 | 20.694 | 8.218 |
|  | $\chi=3$ | 2797.880 | 715.644 | 166.842 | 63.897 | 27.767 | 11.027 |
|  | $\chi=4$ | 3526.619 | 902.533 | 210.442 | 80.597 | 35.025 | 13.910 |
|  | $\chi=5$ | 4267.737 | 1092.772 | 254.834 | 97.601 | 42.415 | 16.844 |
|  | Fourier | 1942.075 | 496.587 | 115.765 | 44.335 | 19.266 | 7.651 |
|  | Sinusoidal | 1910.606 | 488.409 | 113.849 | 43.600 | 18.947 | 7.524 |
| 5 | $\chi=2$ | 1578.690 | 409.571 | 95.120 | 35.834 | 15.004 | 5.349 |
|  | $\chi=3$ | 1993.152 | 517.248 | 120.135 | 45.258 | 18.950 | 6.756 |
|  | $\chi=4$ | 2403.480 | 623.951 | 144.930 | 54.600 | 22.862 | 8.151 |
|  | $\chi=5$ | 2814.801 | 730.979 | 169.805 | 63.972 | 26.787 | 9.550 |
|  | Fourier | 1434.969 | 372.369 | 86.488 | 32.582 | 13.643 | 4.864 |
|  | Sinusoidal | 1465.910 | 380.280 | 88.316 | 33.270 | 13.931 | 4.967 |
| 10 | $\chi=2$ | 1658.214 | 433.043 | 100.100 | 38.273 | 16.226 | 6.004 |
|  | $\chi=3$ | 2072.792 | 541.569 | 126.326 | 47.872 | 20.295 | 7.510 |
|  | $\chi=4$ | 2466.180 | 644.653 | 150.390 | 56.992 | 24.162 | 8.941 |
|  | $\chi=5$ | 2847.556 | 744.649 | 173.736 | 65.840 | 27.913 | 10.330 |
|  | Fourier | 1392.825 | 363.698 | 84.827 | 32.145 | 13.628 | 5.043 |
|  | Sinusoidal | 1544.676 | 403.339 | 94.069 | 35.647 | 15.112 | 5.592 |

Table 9: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under uniform temperature rise and volume fraction index $p=0.5$.

| Lamination scheme | Theory | $a / h$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 2.87276 | 0.80328 | 0.36504 | 0.13294 | 0.03340 |
|  | HPT 21 | 2.87073 | 0.80313 | 0.36501 | 0.13294 | 0.03340 |
|  | FPT 21 | 2.83506 | 0.80036 | 0.36444 | 0.13286 | 0.03339 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.78102 | 0.79510 | 0.36332 | 0.13272 | 0.03339 |
|  | $\mathrm{EDZ}_{333}$ | 2.78167 | 0.79568 | 0.36485 | 0.12938 | 0.03340 |
|  | ED999 | 2.78100 | 0.79510 | 0.36332 | 0.13272 | 0.03339 |
|  | $\mathrm{ED}_{444}$ | 2.78149 | 0.79514 | 0.36332 | 0.13272 | 0.03339 |
|  | ED 111 | 3.34160 | 0.96851 | 0.44391 | 0.16243 | 0.04089 |
| $2-1-2$ | SPT | 2.83194 | 0.79232 | 0.36010 | 0.13116 | 0.03295 |
|  | HPT | 2.83029 | 0.79220 | 0.36007 | 0.13115 | 0.03295 |
|  | FPT | 2.79675 | 0.78959 | 0.35954 | 0.13108 | 0.03295 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.74262 | 0.78433 | 0.35841 | 0.13093 | 0.03294 |
|  | $\mathrm{EDZ}_{333}$ | 2.74299 | 0.78434 | 0.35842 | 0.13093 | 0.03294 |
|  | ED999 | 2.74262 | 0.78433 | 0.35841 | 0.13093 | 0.03294 |
|  | $\mathrm{ED}_{444}$ | 2.74280 | 0.78434 | 0.35842 | 0.13093 | 0.03294 |
|  | $\mathrm{ED}_{111}$ | 3.29644 | 0.95547 | 0.43793 | 0.16024 | 0.04034 |
| $1-1-1$ | SPT | 2.83331 | 0.79463 | 0.36134 | 0.13164 | 0.03308 |
|  | HPT | 2.83224 | 0.79456 | 0.36132 | 0.13164 | 0.03308 |
|  | FPT | 2.80230 | 0.79223 | 0.36084 | 0.13157 | 0.03307 |
| Present plate models |  | 2.74476 | 0.78663 | 0.35964 | 0.13142 | 0.03307 |
|  | $\mathrm{EDZ}_{333}$ | 2.74503 | 0.78664 | 0.35964 | 0.13142 | $0.03307$ |
|  | $\mathrm{ED}_{999}$ | 2.74473 | 0.78663 | 0.35964 | 0.13142 | 0.03307 |
|  | $\mathrm{ED}_{444}$ | 2.74482 | 0.78663 | 0.35964 | 0.13142 | 0.03307 |
|  | $\mathrm{ED}_{111}$ | 3.30155 | 0.95848 | 0.43948 | 0.16084 | 0.04050 |
| $1-2-1$ | SPT | 2.86992 | 0.80925 | 0.36841 | 0.13430 | 0.03376 |
|  | HPT | $2.86971$ | 0.80925 | 0.36841 | 0.13430 | 0.03376 |
|  | FPT | 2.84659 | 0.80745 | 0.36804 | 0.13425 | 0.03375 |
| Present plate models |  | 2.78032 | 0.80099 | 0.36665 | 0.13407 |  |
|  | $\mathrm{EDZ}_{333}$ | 2.78085 | 0.80102 | 0.36666 | 0.13407 | 0.03374 |
|  | ED999 | 2.78032 | 0.80099 | 0.36665 | 0.13407 | 0.03374 |
|  | $\mathrm{ED}_{444}$ | 2.78057 | 0.80101 | 0.36666 | 0.13407 | 0.03374 |
|  | $E D_{111}$ | 3.35012 | 0.97647 | 0.44815 | 0.16410 | 0.04132 |

Table 10: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under uniform temperature rise and volume fraction index $p=2$.

| Lamination scheme | Theory | $a / h$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 2.63459 | 0.71815 | 0.32462 | 0.11789 | 0.02958 |
|  | HPT 21 | 2.63018 | 0.71783 | 0.32455 | 0.11788 | 0.02958 |
|  | FPT 21 | 2.57355 | 0.71357 | 0.32368 | 0.11776 | 0.02957 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.53838 | 0.71029 | 0.32298 | 0.11768 | 0.02957 |
|  | $\mathrm{EDZ}_{333}$ | 2.54581 | 0.71088 | 0.32311 | 0.11770 | 0.02960 |
|  | $\mathrm{ED}_{999}$ | 2.53828 | 0.71028 | 0.32298 | 0.11768 | 0.02957 |
|  | $\mathrm{ED}_{444}$ | 2.54580 | 0.71088 | 0.32311 | 0.11769 | 0.02957 |
|  | $\mathrm{ED}_{111}$ | 3.04976 | 0.86525 | 0.39464 | 0.14402 | 0.03621 |
| $2-1-2$ | SPT | 2.39953 | 0.65098 | 0.29396 | 0.10671 | 0.02677 |
|  | HPT | 2.39637 | 0.65075 | 0.29392 | 0.10670 | 0.02676 |
|  | FPT | 2.34733 | 0.64710 | 0.29317 | 0.10660 | 0.02676 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.32049 | 0.64461 | 0.29265 | 0.10653 | 0.02676 |
|  | $\mathrm{EDZ}_{333}$ | 2.32393 | 0.64488 | 0.29270 | 0.10654 | 0.02676 |
|  | ED999 | 2.32049 | 0.64461 | 0.29265 | 0.10653 | 0.02676 |
|  | $\mathrm{ED}_{444}$ | 2.32393 | 0.64488 | 0.29270 | 0.10654 | 0.02676 |
|  | $\mathrm{ED}_{111}$ | 2.78709 | 0.78520 | 0.35757 | 0.13038 | 0.03277 |
| 1-1-1 | SPT | 2.36195 | 0.64253 | 0.29031 | 0.10541 | 0.02645 |
|  | HPT | 2.35999 | 0.64238 | 0.29028 | 0.10540 | 0.02645 |
|  | FPT | 2.31737 | 0.63921 | 0.28963 | 0.10532 | 0.02644 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.29107 | 0.63675 | 0.28911 | 0.10525 | 0.02644 |
|  | $\mathrm{EDZ}_{333}$ | 2.29231 | 0.63684 | 0.28913 | 0.10525 | 0.02644 |
|  | $\mathrm{ED}_{999}$ | 2.29075 | 0.63672 | 0.28911 | 0.10525 | 0.02644 |
|  | $\mathrm{ED}_{444}$ | 2.29229 | 0.63684 | 0.28913 | 0.10525 | 0.02644 |
|  | $\mathrm{ED}_{111}$ | 2.75073 | 0.77555 | 0.35323 | 0.12881 | 0.03237 |
| $1-2-1$ | SPT | 2.42899 | 0.66689 | 0.30189 | 0.10972 | 0.02754 |
|  | HPT | 2.42873 | 0.66687 | 0.30189 | 0.10972 | 0.02754 |
|  | FPT | 2.39541 | 0.66436 | 0.30138 | 0.10966 | 0.02754 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 2.35962 | 0.66102 | 0.30066 | 0.10956 | 0.02753 |
|  | $\mathrm{EDZ}_{333}$ | 2.36129 | 0.66116 | 0.30069 | 0.10956 | 0.02753 |
|  | ED999 | 2.35962 | 0.66102 | 0.30066 | 0.10956 | 0.02753 |
|  | $\mathrm{ED}_{444}$ | 2.36123 | 0.66115 | 0.30069 | 0.10956 | 0.02753 |
|  | $\mathrm{ED}_{111}$ | 2.83790 | 0.80550 | 0.36743 | 0.13409 | 0.03372 |

Table 11: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under linear temperature rise $(\chi=1)$ and volume fraction index $p=0.5$.

| Lamination scheme | Theory | $a / h$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 5.69553 | 1.55657 | 0.68008 | 0.21589 | 0.01680 |
|  | HPT 21 | 5.69147 | 1.55627 | 0.68002 | 0.21588 | 0.01680 |
|  | FPT 21 | 5.62013 | 1.55073 | 0.67888 | 0.21573 | 0.01679 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 5.50856 | 1.54014 | 0.67663 | 0.21544 | 0.01678 |
|  | $\mathrm{EDZ}_{333}$ | 5.50992 | 1.54022 | 0.67664 | 0.21544 | 0.01678 |
|  | ED999 | 5.50852 | 1.54013 | 0.67663 | 0.21544 | 0.01678 |
|  | $\mathrm{ED}_{444}$ | 5.50951 | 1.54021 | 0.67664 | 0.21544 | 0.01678 |
|  | ED 111 | 6.62896 | 1.88692 | 0.83780 | 0.27485 | 0.03178 |
| $2-1-2$ | SPT | 5.61388 | 1.53464 | 0.67020 | 0.21231 | 0.01590 |
|  | HPT | 5.61059 | 1.53440 | 0.67015 | 0.21231 | 0.01590 |
|  | FPT | 5.54350 | 1.52919 | 0.66908 | 0.21216 | 0.01589 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 5.43183 | 1.51858 | 0.66682 | 0.21186 | 0.01587 |
|  | $\mathrm{EDZ}_{333}$ | 5.43261 | 1.51862 | 0.66683 | 0.21187 | 0.01588 |
|  | ED999 | 5.43183 | 1.51858 | 0.66682 | 0.21186 | 0.01588 |
|  | $\mathrm{ED}_{444}$ | 5.43220 | 1.51861 | 0.66682 | 0.21187 | 0.01588 |
|  | $\mathrm{ED}_{111}$ | 6.53874 | 1.86084 | 0.82586 | 0.27048 | 0.03068 |
| $1-1-1$ | SPT | 5.61662 | 1.53926 | 0.67268 | 0.21329 | 0.01615 |
|  | HPT | 5.61448 | 1.53912 | 0.67265 | 0.21328 | 0.01615 |
|  | FPT | 5.55460 | 1.53446 | 0.67169 | 0.21315 | 0.01614 |
| Present plate models |  | 5.43604 | 1.52318 | 0.66928 | 0.21283 | 0.01613 |
|  | $\mathrm{EDZ}_{333}$ | $5.43663$ | 1.52320 | 0.66928 | 0.21283 | $0.01613$ |
|  | $\mathrm{ED}_{999}$ | 5.43599 | 1.52318 | 0.66928 | 0.21283 | 0.01613 |
|  | $\mathrm{ED}_{444}$ | $5.43616$ | $1.52319$ | 0.66928 | 0.21283 | $0.01613$ |
|  | $E D_{111}$ | 6.54888 | 1.86687 | 0.82895 | 0.27168 | 0.03099 |
| $1-2-1$ |  |  | 1.56851 | 0.68682 | 0.21860 | 0.01751 |
|  | HPT | $5.68943$ | $1.56850$ | $0.68682$ | $0.21860$ | $0.01751$ |
|  | FPT | 5.64318 | 1.56490 | 0.68608 | 0.21850 | 0.01750 |
| Present plate models |  | 5.50698 | 1.55190 | 0.68329 | 0.21813 | 0.01748 |
|  | $\mathrm{EDZ}_{333}$ | $5.50808$ | $1.55196$ | $0.68331$ | $0.21813$ | $0.01748$ |
|  | ED999 | 5.50698 | 1.55190 | 0.68329 | 0.21813 | 0.01748 |
|  | $\mathrm{ED}_{444}$ | 5.50748 | 1.55194 | 0.68330 | 0.21813 | 0.01748 |
|  | ED 111 | 6.64582 | 1.90283 | 0.84629 | 0.27819 | 0.03265 |

Table 12: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under linear temperature rise $(\chi=1)$ and volume fraction index $p=2$.

| Lamination scheme | Theory | a/h |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 5.21919 | 1.38631 | 0.59924 | 0.18578 | 0.00916 |
|  | HPT 21 | 5.21036 | 1.38566 | 0.59911 | 0.18576 | 0.00917 |
|  | FPT 21 | 5.09710 | 1.37714 | 0.59736 | 0.18553 | 0.00915 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 5.02496 | 1.37054 | 0.59596 | 0.18535 | 0.00914 |
|  | $\mathrm{EDZ}_{333}$ | 5.03986 | 1.37172 | 0.59621 | 0.18538 | 0.00921 |
|  | ED999 | 5.02475 | 1.37052 | 0.59596 | 0.18535 | 0.00914 |
|  | $\mathrm{ED}_{444}$ | 5.03982 | 1.37172 | 0.59621 | 0.18538 | 0.00914 |
|  | $\mathrm{ED}_{111}$ | 6.04724 | 1.68045 | 0.73928 | 0.23803 | 0.02243 |
| $2-1-2$ | SPT | 4.74906 | 1.25196 | 0.53793 | 0.16341 | 0.00354 |
|  | HPT | 4.74274 | 1.25150 | 0.53784 | 0.16340 | 0.00354 |
|  | FPT | 4.64467 | 1.24420 | 0.53635 | 0.16320 | 0.00353 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 4.58978 | 1.23919 | 0.53529 | 0.16306 | 0.00352 |
|  | $\mathrm{EDZ}_{333}$ | 4.59657 | 1.23972 | 0.53540 | 0.16308 | 0.00352 |
|  | ED999 | 4.58966 | 1.23919 | 0.53529 | 0.16306 | 0.00352 |
|  | $\mathrm{ED}_{444}$ | 4.59654 | 1.23973 | 0.53540 | 0.16308 | 0.00352 |
|  | ED 111 | 5.52250 | 1.52037 | 0.66513 | 0.21075 | 0.01554 |
| $1-1-1$ | SPT | 4.67391 | 1.23506 | 0.53063 | 0.16082 | 0.00289 |
|  | HPT | 4.66999 | 1.23477 | 0.53057 | 0.16081 | 0.00289 |
|  | FPT | 4.58474 | 1.22842 | 0.52927 | 0.16064 | 0.00288 |
| Present plate models |  | $4.53086$ | 1.22347 | 0.52822 | 0.16050 | 0.00288 |
|  | $\mathrm{EDZ}_{333}$ | $4.53336$ | $1.22366$ | 0.52826 | $0.16051$ | $0.00288$ |
|  | $\mathrm{ED}_{999}$ | 4.53023 | 1.22342 | 0.52821 | 0.16050 | $0.00288$ |
|  | $\mathrm{ED}_{444}$ | $4.53331$ | $1.22366$ | $0.52826$ | $0.16051$ | $0.00288$ |
|  | $E D_{111}$ | 5.44983 | 1.50107 | 0.65646 | 0.20761 | 0.01476 |
| $1-2-1$ | SPT | 4.80799 | 1.28377 | 0.55379 | 0.16944 | 0.00508 |
|  | HPT | $4.80746$ | 1.28375 | 0.55378 | 0.16944 | $0.00508$ |
|  | FPT | 4.74083 | 1.27872 | 0.55275 | 0.16931 | 0.00507 |
| Present plate models |  | 4.66775 | 1.27202 | 0.55133 | 0.16912 | $0.00506$ |
|  | $\mathrm{EDZ}_{333}$ | $4.67111$ | $1.27228$ | 0.55137 | 0.16913 | $0.00506$ |
|  | ED999 | 4.66775 | 1.27202 | 0.55133 | 0.16912 | 0.00506 |
|  | $\mathrm{ED}_{444}$ | 4.67097 | 1.27228 | 0.55138 | 0.16913 | 0.00507 |
|  | ED 111 | 5.62392 | 1.56096 | 0.68485 | 0.21819 | 0.01744 |

Table 13: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under non-linear temperature rise $(\chi=5)$ and volume fraction index $p=0.5$.

| Lamination scheme | Theory | 崖 $a / h$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 21.62877 | 5.91108 | 2.58262 | 0.81985 | 0.06380 |
|  | HPT 21 | 21.61337 | 5.90995 | 2.58239 | 0.81982 | 0.06380 |
|  | FPT 21 | 21.34245 | 5.88890 | 2.57804 | 0.81924 | 0.06376 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 20.48376 | 5.81323 | 2.56225 | 0.81725 | 0.06369 |
|  | $\mathrm{EDZ}_{333}$ | 20.49316 | 5.81362 | 2.56232 | 0.81725 | 0.06369 |
|  | $\mathrm{ED}_{999}$ | 20.48360 | 5.81321 | 2.56225 | 0.81725 | 0.06369 |
|  | $\mathrm{ED}_{444}$ | 20.48612 | 5.81348 | 2.56231 | 0.81726 | 0.06369 |
|  | $\mathrm{ED}_{111}$ | 24.32680 | 7.09122 | 3.16612 | 1.04185 | 0.12062 |
| $2-1-2$ | SPT | 21.35073 | 5.83656 | 2.54893 | 0.80746 | 0.06048 |
|  | HPT | 21.33821 | 5.83566 | 2.54875 | 0.80744 | 0.06048 |
|  | FPT | 21.08306 | 5.81584 | 2.54466 | 0.80689 | 0.06044 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 20.27537 | 5.75306 | 2.53437 | 0.80661 | 0.06053 |
|  | $\mathrm{EDZ}_{333}$ | 20.28301 | 5.75328 | 2.53440 | 0.80663 | 0.06050 |
|  | ED999 | 20.27537 | 5.75306 | 2.53437 | 0.80663 | 0.06054 |
|  | $\mathrm{ED}_{444}$ | 20.27610 | 5.75315 | 2.53439 | 0.80663 | 0.06050 |
|  | ED 111 | 24.09096 | 7.01939 | 3.13249 | 1.02904 | 0.11688 |
| 1-1-1 | SPT | 21.13243 | 5.79146 | 2.53095 | 0.80248 | 0.06078 |
|  | HPT | 21.12437 | 5.79091 | 2.53084 | 0.80247 | 0.06078 |
|  | FPT | 20.89907 | 5.77339 | 2.52722 | 0.80199 | 0.06075 |
| Present plate models |  | 20.23122 | 5.75312 | 2.53600 | 0.80784 | 0.06120 |
|  | $\mathrm{EDZ}_{333}$ | $20.23894$ | 5.75329 | 2.53603 | 0.80786 | $0.06127$ |
|  | $\mathrm{ED}_{999}$ | 20.23102 | 5.75309 | 2.53600 | 0.80786 | $0.06121$ |
|  | $\mathrm{ED}_{444}$ | $20.23183$ | $5.75315$ | $2.53601$ | $0.80785$ | $0.06127$ |
|  | $E D_{111}$ | 24.06194 | 7.02122 | 3.13474 | 1.03046 | 0.11770 |
| $1-2-1$ | SPT | 20.80527 | 5.73535 | 2.51143 | 0.79933 | 0.06402 |
|  | HPT | $20.80375$ | $5.73532$ | $2.51144$ | 0.79933 | $0.06402$ |
|  | FPT | 20.63465 | 5.72216 | 2.50871 | 0.79897 | 0.06400 |
| Present plate models |  | $20.41141$ | $5.83674$ | 2.57804 | $0.82440$ | $0.06612$ |
|  | $\mathrm{EDZ}_{333}$ | $20.42205$ | $5.83710$ | $2.57804$ | 0.82440 | 0.06612 |
|  | ED999 | 20.41140 | 5.83675 | 2.57803 | 0.82440 | 0.06612 |
|  | ED444 | 20.41447 | 5.83694 | 2.57807 | 0.82440 | 0.06612 |
|  | ED 111 | 24.32828 | 7.12676 | 3.18670 | 1.05062 | 0.12345 |

Table 14: Critical temperatures $T_{c r}=10^{-3} \Delta T_{c r}$ of different sandwich square plates under non-linear temperature rise $(\chi=5)$ and volume fraction index $p=2$.

| Lamination scheme | Theory | $a / h$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 5 | 10 | 15 | 25 | 50 |
| $1-0-1$ | SPT 21 | 23.06830 | 6.12734 | 2.64858 | 0.82115 | 0.04051 |
|  | HPT 21 | 23.02926 | 6.12449 | 2.64800 | 0.82107 | 0.04052 |
|  | FPT 21 | 22.52869 | 6.08684 | 2.64029 | 0.82005 | 0.04044 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 21.70772 | 6.01748 | 2.62604 | 0.81831 | 0.04040 |
|  | $\mathrm{EDZ}_{333}$ | 21.76775 | 6.02255 | 2.62712 | 0.81847 | 0.04028 |
|  | $\mathrm{ED}_{999}$ | 21.70677 | 6.01741 | 2.62603 | 0.81831 | 0.04038 |
|  | $\mathrm{ED}_{444}$ | 21.76380 | 6.02248 | 2.62711 | 0.81845 | 0.04039 |
|  | $\mathrm{ED}_{111}$ | 25.71472 | 7.34202 | 3.25013 | 1.05003 | 0.09908 |
| $2-1-2$ | SPT | 22.38252 | 5.90053 | 2.53532 | 0.77017 | 0.01668 |
|  | HPT | 22.35275 | 5.89838 | 2.53488 | 0.77011 | 0.01668 |
|  | FPT | 21.89054 | 5.86398 | 2.52785 | 0.76918 | 0.01662 |
| Present plate models | $\mathrm{EDZ}_{888}$ | 21.24283 | 5.82465 | 2.52460 | 0.77048 | 0.01639 |
|  | $\mathrm{EDZ}_{333}$ | 21.27146 | 5.82705 | 2.52511 | 0.77052 | 0.01664 |
|  | ED999 | 21.24229 | 5.82461 | 2.52460 | 0.77045 | 0.01664 |
|  | $\mathrm{ED}_{444}$ | 21.26902 | 5.82701 | 2.52511 | 0.77052 | 0.01664 |
|  | ED 111 | 25.17843 | 7.11324 | 3.13025 | 0.99501 | 0.07349 |
| 1-1-1 | SPT | 22.00152 | 5.81379 | 2.49783 | 0.75703 | 0.01363 |
|  | HPT | 21.98303 | 5.81247 | 2.49756 | 0.75699 | 0.01363 |
|  | FPT | 21.58175 | 5.78254 | 2.49144 | 0.75619 | 0.01358 |
| Present plate models |  | 21.22219 | 5.81520 | 2.51878 | 0.76668 | 0.01375 |
|  | $\mathrm{EDZ}_{333}$ | $21.23387$ | 5.81632 | 2.51897 | $0.76667$ | $0.01375$ |
|  | $\mathrm{ED}_{999}$ | 21.21930 | 5.81520 | 2.51873 | 0.76668 | 0.01375 |
|  | $\mathrm{ED}_{444}$ | $21.23175$ | $5.81629$ | 2.51896 | $0.76667$ | $0.01375$ |
|  | $E D_{111}$ | 25.17488 | 7.10418 |  | 0.99097 | 0.07054 |
| $1-2-1$ | SPT | 21.54917 | 5.75380 | 2.48205 | 0.75946 | 0.02279 |
|  | HPT | 21.54679 | $5.75368$ | $2.48202$ | $0.75946$ | 0.02279 |
|  | FPT | 21.24818 | 5.73116 | 2.47740 | 0.75885 | 0.02275 |
| Present plate models |  |  | $5.95798$ | 2.58983 | 0.79567 |  |
|  | $\mathrm{EDZ}_{333}$ | $21.58801$ | $5.95927$ | $2.59009$ | $0.79570$ | $0.02385$ |
|  | ED999 | 21.56978 | 5.95798 | 2.58983 | 0.79567 | 0.02384 |
|  | ED444 | 21.58557 | 5.95922 | 2.59009 | 0.79570 | 0.02385 |
|  | ED 111 | 25.67606 | 7.28319 | 3.21127 | 1.02583 | 0.08209 |

## Figures



Figure 1: FGM isotropic and sandwich plates.


Figure 2: Volume fraction $\left(V_{c}\right)$ distribution through-the-thickness plate direction for different values of the volume fraction index $(p)$.


Figure 3: Volume fraction $\left(V_{c}\right)$ distribution through-the-thickness plate direction for different values of the volume fraction index $(p)$ and several FGM sandwich plate configurations.


Figure 4: Temperature distributions through-the-thickness direction.


[^0]:    *Corresponding author: Tel: $+44(0) 2070408483$, Fax: $+44(0) 2070408566$, E-mail: Fiorenzo.Fazzolari.1@city.ac.uk
    $\dagger$ School of Engineering and Mathematical Sciences.
    ${ }^{\ddagger}$ Department of Mechanical and Aerospace Engineering.

