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Abstract

The present article deals with the free vibration analysis of three-dimensional metallic and

functionally graded beams with arbitrary boundary conditions. The investigation is carried

out by using refined variable-kinematics quasi-3D beam theories. The latter are hierarchically

generated by using the method of power series expansion of displacement components. In

this respect, each displacement variable, in the displacement field, can be expanded at any

desired order, independently from the others and regarding to the results accuracy and the

computational cost. The weak-form of the governing equations is derived via the Principle

of the Virtual Displacements (PVD), while the Ritz method is used as solution technique.

Algebraic Ritz functions, orthogonalised by using the Gram-Schmidt process, are employed

in the analysis. Convergence and accuracy of the proposed formulation have been thoroughly

examined and commented. A comprehensive assessment of the developed beam models is also

provided. The effect of significant parameters such as length-to-thickness ratio (slenderness

ratio), volume fraction index, materials and boundary conditions, on the natural frequencies

and mode shapes, is discussed.
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1. Introduction

Due to their high versatility beam structures are extensively used in aerospace, civil, ship

and mechanical applications, amongst others. In particular, the beam structural element

allows the modelling of crucial structural components such as aircraft wing spars, helicopter

rotor blades, robot harms as well as concrete and metal/composite constructions in civil and

ship engineering, respectively.

During the century many efforts have been focused on the development of axiomatic and

asymptotic beam models able to accurately describe the kinematics, and more generally, the

mechanical behaviour of beam structures, some of them can be found in Refs. [1–8]. Recently

some interesting beam formulations have been provided by Yu, Hodges and co-authors [9–

11]. They proposed the variational asymptotic method which led to the computer program

variational asymptotic beam sectional analysis (VABS), which has been successfully used for

several structural problems. Advanced hierarchical beam models have been developed by

Carrera [12], within the framework of Carrera’s Unified Formulation (CUF), and are usually

referred to as 1D CUF models. The radial basis function (RBF)-pseudospectral method has

been employed by Ferreira and Fasshauer [13] for the computation of natural frequencies of

shear deformable beams and plates. Exact beam formulations based on the dynamic stiffness

method (DSM) have been proposed by Banerjee and co-authors [14–16].

The enhancement in the development of the structural beam models went hand-in-hand with

the improvement in the mechanical as well as thermal performances of new advanced ma-

terials. Amongst the latter, the Functionally Graded Materials (FGMs) have raised a lot

of interest in the research community in the last decade. They showed some outstanding

properties, which, in several applications, make them more attractive than classical fibre-

reinforced composites. They have turned out to be more advantageous, indeed problems

such as delamination, fibre failure, adverse hygroscopic effects etc, are effectively eliminated

or non-existent. Thus, due to their potential application in several fields, there is the need

to fully understand their mechanical and thermal behaviour.

In this respect, many scientific articles have been recently published on the static and dy-

namic analysis of FG beams. In particular, Vo et al. [17] coped with the static and vibration

analysis of FG beams using refined shear deformation theories. Thai and Vo [18] dealt with

bending and free vibration analysis of FG beams considering various boundary conditions

and shear deformation beam theories. Fundamental frequencies of FG beams using different
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high-order beam theories have been provided by Sismek [19]. The same author [20] studied

the free and forced vibration behaviour of bi-directional functionally graded materials (BD-

FGMs) of Timoshenko beams with various boundary conditions. Chunhua and Wang [21]

provided and accurate free vibration analysis of Euler-type FG beams by using the weak-

form quadrature element method. Wang et al. [22] analysed the free vibration behaviour

of two-directional FG beams. Lü et al. [23] proposed semi-analytical elasticity solutions

for bi-directional functionally graded beams. Alshorbagy et al. [24] studied the free vibra-

tion characteristics of a functionally graded beam by using FEM formulation. Maganti and

Nullari [25] investigated the free vibration analysis of pre-twisted rotating FG beams by using

Rayleigh–Ritz method. The same authors [26] studied the flapwise bending vibration analy-

sis of functionally graded rotating double-tapered beams. Free vibration of FG Timoshenko

beams with through-width delamination have been investigated by Li and Fan [27]. Ke et al.

[28] coped with the non-linear vibration of edged cracked FG beams using differential quadra-

ture method and Timoshenko beam model. Vibration characteristics of stepped beams made

of FGM using differential transformation method were analysed by Wattanasakulpong and

Charoensuk [29]. The same authors [30] proposed the study of flexural vibration of imperfect

FG beams based on Timoshenko beam theory and Chebyshev collocation method. Shegokar

and Lal [31] coped with a stochastic finite element non-linear free vibration analysis of piezo-

electric FG beams subjected to thermo-piezoelectric loadings with material uncertainties.

Nonlinear forced vibration analysis of clamped functionally graded beams have been anal-

ysed by Shooshtari and Rafiee [32]. A combined Fourier series – Galerkin method for the

analysis of FG beams have been proposed by Zhu and Sankar [33]. Azadi [34] dealt with

the free and forced vibration analysis of FG beam considering temperature dependency of

material properties. Pradhan and Chackraverty [35] investigated the effects of different shear

deformation theories on the free vibration of functionally graded beams. Librescu et al. [36]

investigated the free vibration and stability behaviour of thin walled beams made of FGMs

and operating in high temperature environment. Giunta et al. [37] proposed hierarchical

beam theories for an accurate free vibration analysis of functionally graded beams. The

same authors [38] coped with a thermo-mechanical analysis of FG beams via hierarchical

modelling. Su and Benerjee [15] proposed a development of dynamic stiffness method for the

free vibration analysis of FG Timoshenko beams. Ziane et al. [39] coped with tree vibra-

tion analysis of thin and thick-walled FGM box beams by using an exact dynamic stiffness
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matrix on the basis of first-order shear deformation theory. Xu et al. [40] investigated the

stochastic dynamic characteristics of FGM beams with random material properties. Eroglu

[41] proposed a study on in-plane free vibrations of circular beams made of FGM in thermal

environment. Roque and Martins [42] used the RBF numerical method combined with the

differential evolution for optimization of FG beams. Free vibrations of FG spatial curved

beams have been analysed by Yousefi and Rastgoo [43]. FGM structures have been widely

analysed for free vibration problems by Tornabene et al. [44–46]. In the latter the attention

has been primarily focused on FGM doubly-curved shells with variable radii of curvature.

An extensive contribution in the thermo-mechanical analysis of FG beams has been provided

by Batra et al. [47, 48].

In the present article the Hierarchical Ritz Formulation (HRF), extensively employed in the

analysis of laminated composite plates and shells [49–59] has been extended to the free vi-

bration analysis of metallic and FG beams with general boundary conditions. Advanced

and refined beam models with hierarchical capabilities have been employed and assessed by

comparison with 3D FEM solutions provided by using commercial FEM software such as

ABAQUS [60] and ANSYS [61], as well as other results available in literature. The proposed

formulation has an intrinsic capability of dealing with more general structural configurations.

Then, although the analysis has been restricted to FG beams with rectangular cross-section,

more complex geometries accounting for various cross-sections or tapered shapes, can be in-

vestigated with no substantial changes in the theoretical development.

Moreover, the developed formulation represents a particular case of what in a more general

sense is known as axiomatic/asymptotic method (AAM), and is here based on 1×1 secondary

fundamental nuclei. More specifically, the complete 3 × 3 primary fundamental nucleus is

composed by nine secondary nuclei six of which are independent. Each single secondary nu-

cleus is expanded independently from the others and according to the selected beam theory.

Once all of the secondary nuclei have been expanded separately, they are then assembled in

the final primary nucleus. The conceptual procedure is essentially the same for plates and

shells. More information about the assembly procedure can be found in a previous author’s

article [55]. For the sake of completeness it must be said that the formulation based on

1× 1 nuclei was first developed for plate and named Generalized Unified Formulation (GUF)

[62–64].

The analysis is performed by using algebraic Ritz functions orthogonalized via the Gram-
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Smidth process. Convergence and accuracy of the presented formulation have been exten-

sively examined in two proposed case-studies. Results have been presented in terms of natural

frequencies and mode shapes. The effect of significant parameters such as length-to-thickness

ratio (slenderness ratio), volume fraction index, materials and boundary conditions, has been

discussed.

2. Geometric and Constitutive relations

The geometrical features of the beam structures studied in this article are shown in Fig.

1. In particular, the cross-section area lying in the plane (xy) is named Ω and the axial

coordinate z is referred to as reference line of the beam. In the case of FG beams (see Fig.

2), the gradation is considered in the beam-thickness direction. The symbols b and h denote

the beam width and thickness, respectively. According to the reference system the notation

for the displacement vector is:

u (x, y, z, t) =
[

ux (x, y, z, t) uy (x, y, z, t) uz (x, y, z, t)
]T

(1)

Superscript T represents the transposition operator. The stresses, σ, and the strains, ε, are

grouped as follows:

σpH =



















σxx

σyy

τxy



















, σnH =



















τxz

τyz

σzz



















, εpG =



















εxx

εyy

γxy



















, εnG =



















γxz

γyz

εzz



















(2)

The subscripts n and p denote out-of-plane and in-plane components, respectively, whilst

the subscript H and G state that Hooke’s law and geometric relations are used. The strain-

displacement relations are

εpG = Dpu

εnG = Dnu = (Dnp +Dnz)u
(3)

where Dp, Dn, Dnp and Dnz are differential matrix operators defined as follows

Dp =













∂
∂x

0 0

0 ∂
∂y

0

∂
∂y

∂
∂x

0













, Dn =













∂
∂z

0 ∂
∂x

0 ∂
∂z

∂
∂y

0 0 ∂
∂z













,

Dnp =













0 0 ∂
∂x

0 0 ∂
∂y

0 0 0













, Dnz =













∂
∂z

0 0

0 ∂
∂z

0

0 0 ∂
∂z













(4)
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The 3D constitutive equations according to Hooke’s law are given as

σ = Cε (5)

By using Eq. (2), the previous equation becomes

σpH = Cpp εpG +Cpn εnG

σnH = Cnp εpG +Cnn εnG

(6)

where matrices Cpp, Cnn, Cpn and Cnp are:

Cpp =











C11 C12 C16

C12 C22 C26

C16 C26 C66











, Cnn =











C55 C45 0

C45 C44 0

0 0 C33











,

Cpn =











0 0 C13

0 0 C23

0 0 C36











, Cnp =











0 0 0

0 0 0

C13 C23 C36











(7)

In the case of metallic beams the elastic coefficients Cij become



































C11 = C22 = C33 =
(1− ν)E

(1 + ν) (1− 2 ν)
= λ+ 2G

C12 = C13 = C23 =
ν E

(1 + ν) (1− 2 ν)
= λ

C44 = C55 = C66 =
E

2 (1 + ν)
= µ = G

(8)

where λ and µ are the Lamé coefficients, and G is the shear modulus.

2.1. One-directional functionally graded beams

In the case of one-directional FG beams, the 3D constitutive equations are given as

σ = C (x) ε (9)

being x the beam-thickness coordinate. By using Eq. (2), the previous equation becomes

σpH = Cpp (x) εpG +Cpn (x) εnG

σnH = Cnp (x) εpG +Cnn (x) εnG
(10)
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where matrices Cpp (x), Cnn (x), Cpn (x) and Cnp (x) are:

Cpp (x) =











C11 (x) C12 (x) 0

C12 (x) C22 (x) 0

0 0 C66 (x)











, Cnn (x) =











C55 (x) 0 0

0 C44 (x) 0

0 0 C33 (x)











,

Cpn (x) =











0 0 C13 (x)

0 0 C23 (x)

0 0 0











, Cnp (x) =











0 0 0

0 0 0

C13 (x) C23 (x) 0











(11)

The volume fraction of the ceramic phase is defined according to the following power-law (see

Fig. 3)

Vc (x) =

(

1

2
+
x

h

)p

x ∈
[

−h
2
,
h

2

]

(12)

where h is the thickness of the beam and the exponent p is the volume fraction index indicating

the material variation through the thickness direction. The volume fraction of the metal phase

is give as Vm (x) = 1− Vc (x). Young’s modulus E, Poisson’s coefficient ν and density ρ are

computed by the law-of-mixtures























E (x) = (Ec − Em) Vc (x) + Em

ν (x) = (νc − νm) Vc (x) + νm

ρ (x) = (ρc − ρm) Vc (x) + ρm

(13)

Finally the effective FG material coefficients Cij (x), derived after careful considerations based

on micro-mechanical approaches, are given as follows







































C11 (x) = C22 (x) = C33 (x) =
E (x)

{

1− [ν (x)]2
}

1− 3 [ν (x)]2 − 2 [ν (x)]3

C12 (x) = C13 (x) = C23 (x) =
E (x)

{

ν (x)− [ν (x)]2
}

1− 3 [ν (x)]2 − 2 [ν (x)]3

C44 (x) = C55 (x) = C66 (x) =
E (x)

2 [1 + ν (x)]

(14)

3. Variable-Kinematics beam theories

The proposed hierarchical beam theories are generated on the basis of axiomatic assump-

tions. The latter are focused on the reduction of the 3D elastic problem in 2D (plate/shell

structures) or 1D (beam structures). This simplification reduces significantly the complexity
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of the studied problems while retaining all the most important physical features which charac-

terize the phenomenon itself. The simplest beam theory based on axiomatic assumptions was

proposed by Euler [1] and it is usually referred to as Euler-Bernoulli beam theory (EBBT).

The displacement field associated with the hypothesis of the EBBT is given as follows

ux = ux1

uy = uy1

uz = uz1 + x
∂uy1
∂x

+ y
∂uz1
∂y

(15)

In this theory, both transverse shear strains and transverse normal strain are discarded,

being in classical applications negligible with respect to the in-plane ones. The inclusion of

transverse shear strains, in the above-mentioned beam model, leads to Timoshenko beam

theory (TBT) [2]

ux = ux1

uy = uy1

uz = uz1 + x θ + y φ

(16)

The development of higher order beam theories allows more generally a more accurate de-

scription of the beam kinematics, which is needed above all in unconventional structural

mechanics applications such as static and dynamic analysis of beams subjected to multifield

loadings. The complications which rise when dealing with these problems make meaningless

the use of classical beam theories, EBBT and TBT.

Moreover, the employment of higher order beam theories yields a more accurate modelling

of classical beam problems which involve both in and out-of-plane cross-section deformation,

torsional mechanics and eventually coupling of the spatial directions. The proposed advanced

computational technique is able to generate a class of beam theories in a systematic way. In

particular, each displacement variable in the displacement field is expanded at any desired

order independently from the others and regarding to the results accuracy and the computa-

tional cost. Such artifice becomes extremely useful when multi-field/multi-physics problems,

such as thermoelastic and piezoelectric applications [52, 65], are investigated . Thereby, the

most general displacement field can be written as follows

ux (x, y, z, t) = Fτux (x, y) uxτux (z, t) , τux
= 0, 1, · · · , Nux

uy (x, y, z, t) = Fτuy (x, y) uyτuy (z, t) , τuy
= 0, 1, · · · , Nuy

uz (x, y, z, t) = Fτuz (x, y) uzτuz (z, t) , τuz
= 0, 1, · · · , Nuz

(17)
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or in compact form

u (x, y, z, t) = Fτ (x, y)uτ (z, t) (18)

where

uτ (z, t) =



















uxτux (z, t)

uyτuy (z, t)

uzτuz (z, t)



















, Fτ (x, y) =











Fτux (x, y) 0 0

0 Fτuy (x, y) 0

0 0 Fτuz (x, y)











(19)

Fτux , Fτuy , Fτuz are the cross-section functions; uxτux , uyτuy , uzτuz are the displacement vector

components and Nux
, Nuy

and Nuz
are the orders of expansion. According to Einstein’s

notation, the repeated subscripts τux
, τuy

, τuz
indicate summation.

When the cross-section functions are chosen to be Taylor’s series expansion then Eq. (17)

can be rewritten as

ux (x, y, z, t) =

Nux
∑

nux=0





nux
∑

n∗
ux

=0

x(nux−n∗
ux)yn

∗
uxux

Ñux
(z, t)





uy (x, y, z, t) =

Nuy
∑

nuy=0





nuy
∑

n∗
uy

=0

x(nuy−n∗
uy)yn

∗
uyuy

Ñuy
(z, t)





uz (x, y, z, t) =

Nuz
∑

nuz=0





nuz
∑

n∗
uz

=0

x(nuz−n∗
uz)yn

∗
uzuz

Ñuz
(z, t)





(20)

where Ñu = [nu(nu+1)+2(n∗
u+1)]

2
. Equation (20) can alternatively be formulated as follows

ux = ux1 + xux2 + yux3 + · · ·+ xNuxux (N2
ux+Nux+2)

2

+ · · ·+ yNuxuxN∗
ux

uy = uy1 + xuy2 + yuy3 + · · ·+ xNuyuy
(N2

uy+Nuy+2)
2

+ · · ·+ yNuyuyN∗
uy

uz = uz1 + xuz2 + yuz3 + · · ·+ xNuzuz (N2
uz+Nuz+2)

2

+ · · ·+ yNuzuzN∗
uz

(21)

the total number of unknowns for each displacement component is indicated asN∗
u . The latter

along with the cross-section functions Fτ are related to Nu by means of the Pascal’s triangle,

which is provided in Tab. 1. The orders Nux
, Nuy

and Nuz
of the expansion are arbitrary

and represent an analysis input. An example of a possible displacement field according to

the present approach and by using expansion orders Nux
= 2, Nuy

= 3 and Nuz
= 1 is given

in Eq. (22) as follows

ux = ux1 + xux2 + yux3 + x2ux4 + xyux5 + y2ux6

uy = uy1 + xuy2 + yuy3 + x2uy4 + xyuy5 + y2uy6 + x3uy7 + x2yuy8 + xy2uy9 + y3uy10

uz = uz1 + xuz2 + yuz3

(22)
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4. Theoretical Formulation

In the derivation of what follows the Principle of Virtual Displacements (PVD) is employed

to derive the Hierarchical Ritz Formulation (HRF). The PVD variational statement can be

written in its classical form as

δLint = δLext − δLine (23)

where δLint, δLext and δLine are the virtual internal work, the virtual external work and the

virtual inertial work, respectively. Equation (23) can also be written in a more convenient

way as
∫

Ω

∫

l

(

δεTpG σpC + δεTnG σnC

)

dΩdz = δLext −
∫

Ω

∫

l

ρ δu ü dΩdz (24)

When dealing with dynamics problems, Hamilton’s principle can also be alternatively used.

The latter can be expressed as
∫ t2

t1

δL dt = 0 (25)

where t1 and t2 are the initial and the generic instant of time; L is the Lagrangian which

assumes the following form

L = T − Π, with Π = U + V (26)

T is the kinetic energy and Π is the total potential energy of the system; U and V are the

potential strain energy and the potential energy due to the external forces, respectively. The

PVD can easily be derived by Hamilton’s principle (for more details refer to Section 4.1 of

Ref. [52]), and indeed the following relations hold

δLint = δU, δLext = −δV, δLine = −δT (27)

4.1. The Hierarchical Ritz Formulation

In the Ritz method the displacement amplitude vector components uxτux
, uyτuy and uzτuz

are expressed in series expansion as follows

uxτux
(z, t) =

N
∑

i

Uxτux i ψxi
(z) eı ωij t

uyτuy (z, t) =
N
∑

i

Uyτuy i ψyi (z) e
ı ωij t

uzτuz (z, t) =
N
∑

i

Uzτuz i ψzi (z) e
ı ωij t

(28)
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where ı =
√
−1, t is the time and ωij the circular frequency; N indicates the order of

expansion in the approximation; Uxτux i, Uyτuy i, Uzτuz i are the unknown coefficients and ψxi
,

ψyi , ψzi are the Ritz functions appropriately selected with respect to the features of the

problem under investigation. Convergence to the exact solution is guaranteed if the Ritz

functions (also known as basis functions) are admissible functions in the used variational

principle [49, 50, 66, 67]. The displacement field is then given as

ux (x, y, z, t) =
N
∑

i

Uxτux i Fτux (x, y) ψxi
(z) eı ωij t

uy (x, y, z, t) =
N
∑

i

Uyτuy i Fτuy (x, y) ψyi (z) e
ı ωij t

uz (x, y, z, t) =
N
∑

i

Uzτuz i Fτuz (x, y) ψzi (z) e
ı ωij t

(29)

and in compact form

u = Fτ UτiΨi (30)

where

Uτi (t) =



















Uxτux i e
ı ωij t

Uyτuy i e
ı ωij t

Uzτuz i e
ı ωij t



















, Ψi (z) =











ψxi
(z) 0 0

0 ψyi (z) 0

0 0 ψzi(z)











(31)

The combination of Eqs. (3) and (30) leads to geometrical relations written in terms of Ritz

functions

εpG = Dp (Fτ Ψi) Uτi

εnG = Dnp (Fτ Ψi) Uτi +Dnz (Fτ Ψi) Uτi

(32)

By substituting the previous expression in Eq. (24) the explicit expressions of the internal

work, split in its fourth contributions, and the inertial work are obtained, and assume the

following form

δ (Lint)pp =

∫

Ω

∫

l

δεTpGCpp εpG dΩdz

= δUT
τi

(

∫

Ω

∫

l

[Dp (Fτ Ψi)]
T
Cpp Dp (Fs Ψj) dΩdz

)

Usj
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δ (Lint)pn =

∫

Ω

∫

l

δεTpGCpn εnG dΩdz

= δUT
τi

(

∫

Ω

∫

l

[Dp (Fτ Ψi)]
T
CpnDnp (Fs Ψj) +

[Dp (Fτ Ψi)]
T
CpnDnz (Fs Ψj) dΩdz

)

Usj

δ (Lint)np =

∫

Ω

∫

l

δεTnG Cnp εpG dΩdz

= δUT
τi

(

∫

Ω

∫

l

[Dnp (Fτ Ψi)]
T
Cnp Dp (Fs Ψj)+

[Dnz (Fτ Ψi)]
T
Cnp Dp (Fs Ψj) dΩdz

)

Usj

δ (Lint)nn =

∫

Ω

∫

l

δεTnG Cnn εnG dΩdz

= δUT
τi

(

∫

Ω

∫

l

[Dnp (Fτ Ψi)]
T
CnnDnp (Fs Ψj)+

[Dnp (Fτ Ψi)]
T
CnnDnz (Fs Ψj)+

[Dnz (Fτ Ψi)]
T
Cnn Dnp (Fs Ψj)+

[Dnz (Fτ Ψi)]
T
Cnn Dnz (FsΨj) dΩdz

)

Usj

δLFin
= δUT

τi

[

∫

Ω

∫

l

ρ
(

FτΨi

)T(

FsΨj

)

dΩdz
]

Üsj

(33)

The internal and inertial virtual works can be written as

δLint = δ (Lint)pp + δ (Lint)pn + δ (Lint)np + δ (Lint)nn

= δUT
τi

(

Kτsij
pp +Kτsij

pn +Kτsij
np +Kτsij

nn

)

Usj

= δUT
τi K

τsij Usj

δLFin
= δUT

τi M
τsij Üsj

(34)

Then by comparing Eqs.(33) and (34), the Ritz fundamental primary stiffness and mass

nuclei are obtained

Kτsij
pp =

(

[Dp (Fτ Ψi)]
T
CppDp (Fs Ψj)

)
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Kτsij
pn =

(

[Dp (Fτ Ψi)]
T
CpnDnp (Fs Ψj) + [Dp (Fτ Ψi)]

T
CpnDnz (Fs Ψj)

)

Kτsij
np =

(

[Dnp (Fτ Ψi)]
T
CnpDp (Fs Ψj) + [Dnz (Fτ Ψi)]

T
CnpDp (Fs Ψj)

)

Kτsij
nn =

(

[Dnp (Fτ Ψi)]
T
CnnDnp (Fs Ψj) + [Dnp (Fτ Ψi)]

T
CnnDnz (Fs Ψj)

+ [Dnz (Fτ Ψi)]
T
CnnDnp (FsΨj) + [Dnz (Fτ Ψi)]

T
CnnDnz (Fs Ψj)

)

(35)

Summing the different contributions the final form of the primary stiffness nucleus is

Kτsij = Kτsij
pp +Kτsij

pn +Kτsij
np +Kτsij

nn (36)

and the its explicit form along with the one of the primary mass nucleus are following given

Kτsij =

∫

Ω

∫

l

(

[Dp (Fτ Ψi)]
T [CppDp (FsΨj) +CpnDnp (FsΨj) +CpnDnz (Fs Ψj)]

+ [Dnp (Fτ Ψi)]
T [CnpDp (FsΨj) +CnnDnp (Fs Ψj) +CnnDnz (Fs Ψj)]

+ [Dnz (Fτ Ψi)]
T [CnpDp (Fs Ψj) +CnnDnp (Fs Ψj) +CnnDnz (Fs Ψj)]

)

dΩdz

Mτsij =

∫

Ω

∫

l

(

ρ
[

(FτΨi)
T (FsΨj)

])

dΩdz

(37)

After performing the matrix calculus in Eq. (37) the nine secondary stiffness nuclei are

obtained

Kτuxsux
uxux

= C11

∫

Ω

Fτux,x
Fsux,x

dΩ

∫

l

ψxi
ψxj

dz + C16

∫

Ω

Fτux,y
Fsux,x

dΩ

∫

l

ψxi
ψxj

dz

+ C16

∫

Ω

Fτux,x
Fsux,y

dΩ

∫

l

ψxi
ψxj

dz + C66

∫

Ω

Fτux,y
Fsux,y

dΩ

∫

l

ψxi
ψxj

dz

+ C55

∫

Ω

Fτux FsuxdΩ

∫

l

ψxi,z
ψxj,z

dz

K
τuxsuy
uxuy = C12

∫

Ω

Fτux,x
Fsuy,y

dΩ

∫

l

ψxi
ψyjdz + C26

∫

Ω

Fτux,y
Fsuy,y

dΩ

∫

l

ψxi
ψyjdz

+ C16

∫

Ω

Fτux,x
Fsuy,x

dΩ

∫

l

ψxi
ψyjdz + C66

∫

Ω

Fτux,y
Fsuy,x

dΩ

∫

l

ψxi
ψyjdz

+ C45

∫

Ω

Fτux FsuydΩ

∫

l

ψxi,z
ψyj,z

dz
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Kτuxsuz
uxuz

= C13

∫

Ω

Fτux,x
FsuzdΩ

∫

l

ψxi
ψzj,z

dz + C36

∫

Ω

Fτux,y
FsuzdΩ

∫

l

ψxi
ψzj,z

dz

+ C55

∫

Ω

Fτux Fsuz,x
dΩ

∫

l

ψxi,z
ψzjdz + C45

∫

Ω

Fτux Fsuz,y
dΩ

∫

l

ψxi,z
ψzjdz

K
τuy sux
uyux = C12

∫

Ω

Fτuy,y
Fsux,x

dΩ

∫

l

ψyi ψxj
dz + C16

∫

Ω

Fτuy,x
Fsux,x

dΩ

∫

l

ψyi ψxj
dz

+ C26

∫

Ω

Fτuy,y
Fsux,y

dΩ

∫

l

ψyi ψxj
dz + C66

∫

Ω

Fτuy,x
Fsux,y

dΩ

∫

l

ψyi ψxj
dz

+ C45

∫

Ω

Fτuy FsuxdΩ

∫

l

ψyi,z
ψxj,z

dz

K
τuy suy
uyuy = C22

∫

Ω

Fτuy,y
Fsuy,y

dΩ

∫

l

ψyi ψyjdz + C26

∫

Ω

Fτuy,x
Fsuy,y

dΩ

∫

l

ψyi ψyjdz

+ C26

∫

Ω

Fτuy,y
Fsuy,x

dΩ

∫

l

ψyi ψyjdz + C66

∫

Ω

Fτuy,x
Fsuy,x

dΩ

∫

l

ψyi ψyjdz

+ C44

∫

Ω

Fτuy FsuydΩ

∫

l

ψyi,z
ψyj,z

dz

K
τuy suz
uyuz = C23

∫

Ω

Fτuy,y
FsuzdΩ

∫

l

ψyi ψzj,z
dz + C36

∫

Ω

Fτuy,x
FsuzdΩ

∫

l

ψyi ψzj,z
dz

+ C45

∫

Ω

Fτuy Fsuz,x
dΩ

∫

l

ψyi,z
ψzjdz + C44

∫

Ω

Fτuy Fsuz,y
dΩ

∫

l

ψyi,z
ψzjdz

Kτuz sux
uzux

= C55

∫

Ω

Fτuz,x
FsuxdΩ

∫

l

ψzi ψxj,z
dz + C45

∫

Ω

Fτuz,y
FsuxdΩ

∫

l

ψzi ψxj,z
dz

+ C13

∫

Ω

Fτuz Fsux,x
dΩ

∫

l

ψzi,z
ψxj

dz + C36

∫

Ω

Fτuz Fsux,y
dΩ

∫

l

ψzi,z
ψxj

dz

K
τuz suy
uzuy = C45

∫

Ω

Fτuz,x
FsuydΩ

∫

l

ψzi ψyj,z
dz + C44

∫

Ω

Fτuz,y
FsuydΩ

∫

l

ψzi ψyj,z
dz

+ C23

∫

Ω

Fτuz Fsuy,y
dΩ

∫

l

ψzi,z
ψyjdz + C36

∫

Ω

Fτuz Fsuy,x
dΩ

∫

l

ψzi,z
ψyjdz

Kτuz suz
uzuz

= C55

∫

Ω

Fτuz,x
Fsuz,x

dΩ

∫

l

ψzi ψzjdz + C45

∫

Ω

Fτuz,y
Fsuz,x

dΩ

∫

l

ψzi ψzjdz

+ C45

∫

Ω

Fτuz,x
Fsuz,y

dΩ

∫

l

ψzi ψzjdz + C44

∫

Ω

Fτuz,y
Fsuz,y

dΩ

∫

l

ψzi ψzjdz

+ C33

∫

Ω

Fτuz FsuzdΩ

∫

l

ψzi,z
ψzj,z

dz

(38)
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It should be noted that in the case of the FG beams the elastic coefficients must be integrated

along with the cross-section functions. In order to write the nine primary nucleus components

in a more concise way, a compact notation, for both line and surface integrals, is introduced.

In particular, as regard the surface integrals the following expression is used

Jτ,ζs,η =

∫

Ω

Fτ,ζFs,ηdΩ τ = τux
, τuy

, τuz
; s = sux

, suy
, suz

; (39)

where , ζ and , η represent differentiation with respect to that variable. The line integrals are

instead contracted as follows

Iχξpq =

∫ l

0

dχψpi (z)

dzχ
dξψqj (z)

dzξ
dz i = 1, · · · ,M; j = 1, · · · ,N ; (40)

where p, q = ux, uy, uz; χ and ξ indicate differentiation orders; and M and N represent the

Ritz expansion orders. Substituting Eqs. (39) and (40) in Eq. (38) the compact form of the

primary stiffness nucleus components is obtained as follows

Kτuxsux
uxux

= C11J
τux,x sux,x I00uxux

+ C16J
τux,y sux,x I00uxux

+ C16J
τux,x sux,y I00uxux

+ C66J
τux,y sux,y I00uxux

+ C55J
τuxsuxI11uxux

K
τuxsuy
uxuy = C12J

τux,x suy,y I00uxuy
+ C26J

τux,y suy,y I00uxuy
+ C16J

τux,x suy,x I00uxuy

+ C66J
τux,y suy,x I00uxuy

+ C45J
τuxsuy I11uxuy

Kτuxsuz
uxuz

= C13J
τux,x suz I01uxuz

+ C36J
τux,y suz I01uxuz

+ C55J
τuxsuz,x I10uxuz

+ C45J
τuxsuz,y I10uxuz

K
τuy sux
uyux = C12J

τuy,y sux,x I00uyux
+ C16J

τuy,x sux,x I00uyux
+ C26J

τuy,y sux,y I00uyux

+ C66J
τuy,x sux,y I00uyux

+ C45J
τuy suxI11uyux

K
τuy suy
uyuy = C22J

τuy,y suy,y I00uyuy
+ C26J

τuy,x suy,y I00uyuy
+ C26J

τuy,y suy,x I00uyuy

+ C66J
τuy,x suy,x I00uyuy

+ C44J
τuy suy I11uyuy

K
τuy suz
uyuz = C23J

τuy,y suz I01uyuz
+ C36J

τuy,x suz I01uyuz
+ C45J

τuy suz,x I10uyuz

+ C44J
τuy suz,y I10uyuz

(41)
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Kτuz sux
uzux

= C55J
τuz,x suxI01uzux

+ C45J
τuz,y suxI01uzux

+ C13J
τuz sux,x I10uzux

+ C36J
τuz sux,y I10uzux

K
τuz suy
uzuy = C45J

τuz,x suxI01uzuy
+ C44J

τuz,y suy I01uzuy
+ C23J

τuz suy,y I10uzuy

+ C36J
τuz suy,x I10uzuy

Kτuz suz
uzuz

= C55J
τuz,x suz,x I00uzuz

+ C45J
τuz,y suz,x I00uzuz

+ C45J
τuz,x suz,y I00uzuz

+ C44J
τuz,y suz,y I00uzuz

+ C33J
τuz suz I11uzuz

Following a similar approach, the nine primary mass nucleus components, in their unabridged

form, are given as follows

M
τuxsux
uxux = ρ Jτux suxI00uxux

M
τuxsuy
uxuy = 0 M

τuxsuz
uxuz = 0

M
τuy sux
uyux = 0 M

τuy suy
uyuy = ρ Jτuy suy I00uyuy

M
τuy suz
uyuz = 0

M
τuz sux
uzux = 0 M

τuz suy
uzuy = 0 M

τuz suz
uzuz = ρ Jτuz suz I00uzuz

(42)

4.2. Algebraic Ritz Functions and Gram-Schmidt process

The Ritz functions used in the present article are a set of algebraic functions which satisfy

the geometric boundary conditions. In particular, they assume the following form

ψxi
(z) = zpx (l − z)qx zi−1 i = 1, 2, 3, · · · ,N

ψyi (z) = zpy (l − z)qy zi−1 i = 1, 2, 3, · · · ,N

ψzi (z) = zpz (l − z)qz zi−1 i = 1, 2, 3, · · · ,N

(43)

Where N is the expansion order in the Ritz approximation, l is the length of the beam, pk

and qk, with k = x, y, z, assume the values 0, 1, 2 for free (F), simply supported (SS) and

clamped (C) boundary conditions, respectively.

In order to enhance significantly the computational stability, the Ritz functions have been

orthogonalized in the domain (z ∈ [0, l]) via the Gram-Smith process [68]. The first member

of the orthogonal polynomial set ψx1 (z) is chosen as the simplest polynomial of the least

order that satisfies both the geometrical and the natural boundary conditions of the beam.

The other members of the orthogonal set in the interval 0 ≤ z ≤ l are generated by using
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the Gram-Schmidt process as follows

ψx2 (z) = (z − B2)ψx1 (z) ,

ψx3 (z) = (z − B3)ψx2 (z)− C3 ψx1 (z) ,

...

ψxi
(z) = (z − Bi)ψxi−1

(z)− Ci ψxi−2
(z)

...

ψxN
(z) = (z − BN )ψxN−1

(z)− CN ψxN−2
(z)

(44)

where

Bi =

[

∫ l

0
w (z) z ψ2

xi−1
(z) dz

]

[

∫ l

0
w (z) ψ2

xi−1
(z) dz

] (45)

and

Ci =

[

∫ l

0
w (z) z ψxi−1

(z) ψxi−2
(z) dz

]

[

∫ l

0
w (z) ψ2

xi−2
(z) dz

] (46)

The polynomials ψxi
satisfy the orthogonality condition

∫ l

0

w (z) ψxi
(z) ψxj

(z) dz = δij (47)

where δij is kroneker’s delta and w (z) is the weight function. In the particular case of uniform

beams w (z) = 1. The same process has been applied for the orthogonalization of the Ritz

functions ψyi (z) and ψzi (z) with i = 1, 2, 3, · · · ,N .

5. Numerical results and discussion

In the present section the developed refined and advanced quasi-3D beam models are val-

idated and assessed by using both results obtained via commercial FEM software (ABAQUS

and ANSYS) and results available in the literature. In particular, two case-studies, concern-

ing with the free vibration analysis of metallic and FG beams, are proposed.

1. case study

The analysis is focused on the computation of eigenfrequencies of a metallic beam with

various boundary conditions (see Table 2) made up of aluminium alloy, with Young’s

modulus E = 69GPa, Poisson’s ratio ν = 0.33 and density ρ = 2700Kg/m3. The

geometrical characteristics are h = 0.1m, b = 1m and l = 10m.
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2. case study

The analysis is devoted to the calculation of eigenfrequencies of FG beams with various

boundary conditions. The FG beam is made up of stainless steal (SUS304) as metal

and alumina (Al2O3) as ceramic. The material properties of the stainless steal are

Em = 210GPa, νm = 0.31, and ρm = 7800Kg/m3, and those of the alumina are

Em = 390GPa, νc = 0.25, and ρc = 3960Kg/m3 [37].

The results are given using the acronym TENuxNuyNuz
where TE states that Taylor’s series

expansion is used to describe the displacement field over the beam cross-section and Nux
,

Nuy
and Nuz

are the three independent expansion orders used in the beam model.

In the proposed analysis, the discrepancy between the results obtained by using the developed

beam models (fp) and those computed using FEM software and/or selected from the literature

(fo), is evaluated as follows

Rel. Diff (%) =
‖fp − fo‖

‖fo‖
× 100 (48)

5.1. Convergence analysis

A comprehensive convergence analysis of the algebraic Ritz functions used in the analysis

has been carried out for a cantilever rectangular beam (CF) with material and geometrical

characteristics equal to those provided in the case study 1. The expansion indexes i and

j in the Ritz functions are progressively increased from 2 to 18, namely till convergence is

reached, and the results of the analysis have been proposed in Table 3. Nine different beam

theories accounting for distinct expansion orders have been tested for both lower (f1) and

higher (f7) modes. The analysis showed some interesting results. The rate of convergence

is higher for higher modes and is also slightly affected by the selected beam theory. Higher-

order beam models are mandatory for accurately describe mode shapes which involve torsion,

distortion and warping of the beam cross-section. An example is the torsional mode f7,

indeed, in this case the addition of degrees of freedom (DOFs) over the beam cross-section

leads to a remarkable enhancement in the results accuracy while any refinement in the Ritz

approximation does not affect significantly the results accuracy. In sharp contrast, bending

modes are instead accurately described by lower-order beam models and further significant

improvements can only be achieved by increasing the number of DOFs in the Ritz expansion.

These conclusions can be drawn by comparing the beam model TE333 and TE999 with the 3D

FEM solutions. More specifically, in the computation of the fundamental frequency, related
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to a bending mode in the xz−plane, the discrepancies of the beam theories with respect

to the 3D FEM is 0.56% and 0.43%, respectively. Namely, they lead to the same level of

accuracy then the use of the more expensive TE999 beam theory can be avoided. On the

contrary, the use of the later becomes instead mandatory when the torsional mode (f7) is

computed, indeed the difference between the two discrepancies become remarkable, that is,

1.98% and 0.26%, respectively.

5.2. Effectiveness of higher-order beam models

An example of study of the effectiveness of the higher-order terms in the beam models is

provided in Table 4. The beam under investigation has the same geometrical and material

characteristics of that studied in the convergence analysis. In this case the first ten natural

frequencies have been computed using different beam models and the results have been

compared with those evaluated by using ABAQUS and ANSYS. The use of distinct expansion

orders permits to evaluate the effectiveness of certain DOFs. In particular, the refinement of

the beam cross-section displacement components ux and uy, in a separate way, (see the beam

theory TE422 and TE242) does not produce any improvement in the results accuracy, on the

contrary the latter is significantly affect by refining the axial displacement uz (see the TE223

and TE224 beam theory). By means of this approach several DOFs can be saved reducing

significantly the computational cost. In this respect, it is interesting to observe in Table 4

that, for i = j = 18 in the Ritz expansion, the TE223 beam theory (396 DOFs) leads to the

same level of accuracy of the TE333 beam theory (540 DOFs). A further article exclusively

focused on this aspect will be proposed in the future. However, in the case of static analysis,

results based on the Axiomatic/Asymptotic Method (AAM) using a different approach have

been given in Ref. [12].

5.3. Eigenfrequencies and mode shapes of metallic beams

In the case study 1 the first ten natural frequencies of rectangular metallic beams are

computed for different boundary conditions and the related mode shapes are showed in Fig.

4. In particular, from Table 5 to 9 the CC, CS, SS, SF and FF boundary conditions are

investigated, respectively. The developed beam theories are assessed towards the 3D FEM

results obtained by using ABAQUS. More specifically, the brick element C3DR20 with 20

nodes has been used and a mesh of 5 × 5 × 50 has been applied, with a total number of

37593 DOFs. The most refined beam model involved in the present analysis is the TE999 and
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associated with i = j = 18 in the Ritz expansion, involves a total of 2970 DOFs. Despite the

huge discrepancy in the number of the DOFs used in the analysis the proposed sets of results

are in an excellent agreement. In all of the cases addressed the average difference percentage

never exceed the 1% in the lower-order beam theory TE333 and becomes almost zero in the

higher-order theory TE999.

5.4. Eigenfrequencies and mode shapes of FG beams

As mentioned before in the case study 2 the modal characteristics of FG beams are

investigated. If not differently stated the results are proposed in terms of dimensionless

circular frequency parameters ω̂ = ω l2

a

√

ρm
Em

. A first validation has been proposed in Table 10.

The results, in terms of the first four dimensionless circular frequency parameters, obtained by

using the present Ritz formulation for the case of SS boundary condition and volume fraction

index p = 1, are compared with the analytical solution given in Ref. [37]. In particular, the

results make reference to a FG beam with a square cross section. In the analytical solution the

half-wave number has been set to be one. Of the first four dimensionless circular frequency

parameters proposed, the first two are related to bending modes, in the yz and xz planes,

respectively; the third mode is a torsional mode and the fourth is an axial mode. The results

showed a perfect match for all of the slenderness ratio values (l/h = 5, 10, 100) taken into

account.

In the Table 11 the first six dimensionless circular frequency parameters of short FG square

beams (l/h = 5) are computed by using the present TE999 beam model with i = j = 18 (2970

DOFs) and ABAQUS. In the latter case the brick element C3DR20 with 20 nodes has been

used and a mesh of 10 × 10 × 50 has been applied (70323 DOFs). The results compared

for both CF and FF boundary conditions are found to be in an excellent agreement. The

average difference percentages are 1.06% and 1.62%, respectively. It should be noted that

the FEM accuracy is significantly affected by the FGM implementation in the FEM software.

The mode shapes related to the first six dimensionless circular frequency parameters for CF

and FF boundary conditions are depicted in Figs. 5 and 6, respectively.

The first five dimensionless circular frequency parameters for both short (l/h = 5) and slender

(l/h = 20) beams, and for CF, CC and CS boundary conditions are given in Tables 12, 13

and 14, respectively. The results obtained by using the present TE333 beam theory have been

compared with those proposed in Ref. [15] and computed by using the TBT combined with

the dynamic stiffness method (DSM). The two sets of results are in an excellent agreement,
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for all of the different values of the volume fraction index p taken into account and indeed

in all of the studied cases the average relative difference percentage is significantly below the

1% and the maximum relative difference percentage does not exceed the 1.5%. It can be

observed in the same tables that dimensionless circular frequency parameters decrease when

increasing the volume fraction index p and increase when increasing the slenderness ratio l/h.

6. Conclusions

The free vibration characteristics of metallic and FG short and slender beams with arbi-

trary boundary conditions have been investigated. The analysis has been carried out by using

advanced and refined quasi-3D beam models developed by using a Taylor series expansion.

The governing equations have been derived in their week-from by virtue of the Principle of

the Virtual Displacements (PVD) and the Ritz method has been used as solution technique.

Algebraic Ritz functions, orthogonalised by using the Gram-Schmidt process, have been em-

ployed in the approximation. The effect of significant parameters such length-to-thickness

ratio, volume fraction index, materials and boundary conditions, have been commented.

The results showed that the rate of convergence is higher for higher modes and is also slightly

affected by the selected beam theory. Higher-order beam models are mandatory for accurately

describe mode shapes which involve torsion, distortion and warping of the beam cross-section.

Moreover, in the latter case any refinement in the Ritz approximation does not affect signif-

icantly the results accuracy while the addition of DOFs over the beam cross-section leads to

a remarkable enhancement in the results accuracy. In sharp contrast, a further improvement

in the description of bending modes can only be achieved by increasing the number of DOFs

in the Ritz expansion.

The possibility to refine separately the displacement components permits to evaluate the

effectiveness of certain DOFs leading to a significant reduction of the computational cost.

When dealing with both three-dimensional metallic and FG beams, the proposed quasi-3D

beam models leads to the same level of accuracy of complex, cumbersome and computation-

ally expensive 3D FEM models.

The proposed results showed also that the dimensionless circular frequency parameters de-

crease when increasing the p and increase when increasing l/h.
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Tables

Table 1: Taylor’s series expansion via Pascal’s triangle

Nu N∗
u Fτ , τ = τx, τy , τz

0 1 F1 = 1

1 3 F2 = x, F3 = y

2 6 F4 = x2, F5 = x y, F6 = y2

3 10 F7 = x3, F8 = x2 y, F9 = x y2, F10 = y3

.

..
.
..

.

..

N
(N+1)(N+2)

2
F (N2+N+2)

2

= xN , F (N2+N+4)
2

= xN−1 y, · · · FN(N+3)
2

= x yN−1, F (N+1)(N+2)
2

= yN

Table 2: Kinematic boundary conditions at the beam ends (z = 0, l)

Simply supported (SS) ux = 0, uy = 0 and ∂uz

∂z
= 0

Clamped (C) ux = 0, uy = 0, uz = 0 and ∂uz

∂z
= 0

Free (F) ux 6= 0, uy 6= 0 and uz 6= 0

29



Table 3: Convergence analysis of the first and seventh natural frequency (Hz) of a cantilever (CF) rectangular

metallic beam with h = 0.1m, b = 1m and l = 10m.

Hierarchical Beam Theories

Mode (i, j) TE222 TE223 TE224 TE422 TE242 TE333 TE444 TE777 TE999

f1 4 0.8840 0.8815 0.8815 0.8840 0.8827 0.8815 0.8792 0.8788 0.8788

6 0.8579 0.8539 0.8539 0.8579 0.8571 0.8539 0.8526 0.8522 0.8522

8 0.8468 0.8414 0.8414 0.8468 0.8462 0.8415 0.8407 0.8403 0.8403

10 0.8412 0.8352 0.8352 0.8411 0.8406 0.8352 0.8345 0.8342 0.8342

12 0.8379 0.8317 0.8317 0.8378 0.8374 0.8317 0.8311 0.8308 0.8308

14 0.8358 0.8297 0.8297 0.8358 0.8354 0.8297 0.8290 0.8287 0.8287

16 0.8344 0.8284 0.8284 0.8343 0.8340 0.8284 0.8277 0.8274 0.8274

18 0.8334 0.8275 0.8275 0.8333 0.8330 0.8275 0.8267 0.8264 0.8264

f7 4 51.353 51.061 51.061 51.353 51.353 51.061 51.060 51.057 50.985

6 48.171 48.171 47.648 48.058 48.145 48.030 47.515 47.007 46.799

8 47.833 47.833 47.315 47.726 47.805 47.698 47.186 46.681 46.476

10 47.750 47.403 47.232 47.637 47.719 47.403 47.097 46.593 46.388

12 47.733 47.287 47.216 47.607 47.700 47.287 47.067 46.561 46.357

14 47.729 47.196 47.196 47.585 47.694 47.196 47.045 46.538 46.333

16 47.726 47.133 47.133 47.566 47.689 47.133 47.026 46.518 46.312

18 47.725 47.087 47.087 47.549 47.686 47.087 47.010 46.501 46.297

30



Table 4: Comparison of the first ten natural frequencies (Hz) of a cantilever (CF) rectangular metallic beam

with h = 0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 0.8229 5.1530 8.1179 14.428 15.309 28.286 46.175 46.787 48.665 69.929

ANSYS‡ 0.8229 5.1530 8.1179 14.428 15.309 28.286 46.175 46.787 48.665 69.929 (0.00)

TE999 0.8264 5.1748 8.1386 14.489 15.349 28.402 46.297 46.976 48.714 70.205 (0.34)

TE888 0.8264 5.1750 8.1406 14.490 15.349 28.405 46.297 46.981 48.786 70.215 (0.36)

TE777 0.8264 5.1751 8.1406 14.490 15.418 28.405 46.501 46.981 48.786 70.215 (0.45)

TE666 0.8265 5.1758 8.1408 14.492 15.418 28.413 46.503 46.999 48.790 70.250 (0.46)

TE555 0.8266 5.1760 8.1408 14.493 15.580 28.414 46.982 47.002 48.790 70.255 (0.68)

TE444 0.8267 5.1769 8.1413 14.497 15.586 28.423 47.010 47.021 48.794 70.286 (0.71)

TE333 0.8275 5.1817 8.1430 14.511 15.758 28.455 47.087 47.522 48.810 70.416 (1.01)

TE242 0.8330 5.2170 8.1500 14.655 15.787 28.848 47.686 47.872 49.054 71.704 (1.85)

TE422 0.8333 5.2193 8.1507 14.663 15.764 28.866 47.549 47.910 49.059 71.774 (1.84)

TE224 0.8275 5.1817 8.1430 14.511 15.622 28.455 47.087 47.206 48.810 70.416 (0.85)

TE223 0.8275 5.1817 8.1430 14.511 15.795 28.455 47.087 47.725 48.810 70.416 (1.07)

TE222 0.8334 5.2197 8.1507 14.664 15.795 28.870 47.725 47.919 49.059 71.791 (1.91)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50

‡ 3D FEM, brick element Solid186 with 20 nodes, mesh 5× 10× 50

∗ FEM - TE4 (Ref. [69]), f1 = 0.8255, f2 = 5.1702, f3 = 8.1443, f4 = 14.479

Table 5: Comparison of the first ten natural frequencies (Hz) of a CC rectangular metallic beam with

h = 0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 5.2669 14.504 28.420 31.470 46.973 48.906 63.481 70.162 96.553 97.972

TE999 5.3055 14.598 28.622 31.593 47.270 49.009 63.716 70.642 96.940 98.567 (0.54)

TE888 5.3058 14.600 28.625 31.593 47.276 49.118 63.716 70.653 96.941 98.585 (0.57)

TE777 5.3059 14.600 28.625 31.731 47.276 49.118 63.990 70.654 97.348 98.587 (0.70)

TE666 5.3071 14.604 28.635 31.732 47.297 49.126 63.993 70.691 97.354 98.647 (0.73)

TE555 5.3074 14.605 28.637 32.052 47.301 49.126 64.620 70.698 98.264 98.659 (1.03)

TE444 5.3091 14.609 28.648 32.078 47.321 49.136 64.693 70.730 98.425 98.704 (1.09)

TE333 5.3190 14.637 28.704 32.424 47.424 49.165 65.368 70.909 99.001 99.404 (1.55)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50
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Table 6: Comparison of the first ten natural frequencies (Hz) of a CS rectangular metallic beam with

h = 0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 3.6068 8.1179 11.689 24.399 30.579 41.754 48.665 61.690 63.759 90.403

TE999 3.6207 8.1369 11.733 24.491 30.676 41.908 48.706 61.884 63.989 90.722 (0.32)

TE888 3.6209 8.1389 11.734 24.493 30.676 41.913 48.777 61.884 63.999 90.739 (0.34)

TE777 3.6209 8.1390 11.734 24.493 30.812 41.913 48.777 62.154 63.999 90.739 (0.43)

TE666 3.6213 8.1392 11.736 24.500 30.813 41.930 48.781 62.156 64.032 90.795 (0.45)

TE555 3.6215 8.1392 11.736 24.501 31.132 41.932 48.782 62.783 64.035 90.801 (0.66)

TE444 3.6222 8.1397 11.739 24.509 31.146 41.950 48.786 62.833 64.066 90.845 (0.70)

TE333 3.6255 8.1413 11.751 24.536 31.487 42.007 48.801 63.498 64.182 91.062 (1.01)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50

Table 7: Comparison of the first ten natural frequencies (Hz) of a SS rectangular metallic beam with h =

0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 2.2932 9.1821 20.690 29.737 36.843 50.202 57.656 59.993 83.126 91.271

TE999 2.2931 9.1823 20.691 29.817 36.844 50.175 57.658 60.141 83.127 91.506 (0.08)

TE888 2.2932 9.1825 20.692 29.817 36.848 50.201 57.666 60.142 83.141 91.507 (0.08)

TE777 2.2932 9.1825 20.692 29.951 36.848 50.201 57.666 60.409 83.142 91.906 (0.22)

TE666 2.2932 9.1835 20.697 29.952 36.861 50.202 57.694 60.410 83.191 91.908 (0.24)

TE555 2.2932 9.1835 20.697 30.270 36.861 50.202 57.694 61.035 83.192 92.818 (0.55)

TE444 2.2934 9.1850 20.703 30.274 36.877 50.202 57.723 61.063 83.236 92.909 (0.58)

TE333 2.2934 9.1854 20.707 30.610 36.896 50.203 57.783 61.718 83.378 93.854 (0.94)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50
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Table 8: Comparison of the first ten natural frequencies (Hz) of a SF rectangular metallic beam with h =

0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 3.5823 11.621 14.886 24.279 41.582 44.902 50.202 63.537 75.639 90.138

TE999 3.5823 11.621 14.914 24.280 41.582 44.985 50.175 63.538 75.776 90.138 (0.06)

TE888 3.5823 11.621 14.914 24.281 41.587 44.985 50.201 63.547 75.776 90.153 (0.06)

TE777 3.5824 11.621 14.981 24.281 41.587 45.187 50.201 63.547 76.112 90.153 (0.20)

TE666 3.5825 11.622 14.981 24.287 41.601 45.187 50.202 63.577 76.113 90.206 (0.21)

TE555 3.5825 11.622 15.143 24.287 41.601 45.665 50.202 63.577 76.889 90.207 (0.53)

TE444 3.5827 11.624 15.143 24.294 41.618 45.677 50.202 63.607 76.944 90.251 (0.56)

TE333 3.5827 11.625 15.313 24.300 41.643 46.181 50.203 63.678 77.764 90.412 (0.93)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50

Table 9: Comparison of the first ten natural frequencies (Hz) of a FF rectangular metallic beam with

h = 0.1m, b = 1m and l = 10m.

Natural Frequencies Average

Theory f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 Rel. Diff(%)

ABAQUS† 5.1979 14.342 28.153 29.930 46.602 50.202 60.310 69.696 91.570 97.422

TE999 5.1979 14.342 28.153 29.961 46.602 50.175 60.372 69.695 91.667 97.419 (0.04)

TE888 5.1980 14.343 28.155 29.961 46.606 50.201 60.372 69.705 91.667 97.436 (0.04)

TE777 5.1980 14.343 28.155 30.096 46.606 50.201 60.642 69.705 92.070 97.436 (0.17)

TE666 5.1981 14.345 28.162 30.096 46.623 50.202 60.643 69.737 92.072 97.491 (0.19)

TE555 5.1981 14.345 28.162 30.420 46.623 50.202 61.277 69.738 92.991 97.492 (0.50)

TE444 5.1984 14.347 28.170 30.424 46.641 50.202 61.306 69.768 93.087 97.537 (0.54)

TE333 5.1985 14.348 28.178 30.764 46.672 50.203 61.980 69.852 94.083 97.717 (0.91)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 5× 10× 50
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Table 10: First four dimensionless circular frequency parameters of a FG beam with SS boundary condition

and volume fraction index p = 1.

Analytical solution, Ref. [37] Present 3D beam Ritz models

l/h Mode N = 5 N = 4 N = 3 N = 2 TE555 TE444 TE333 TE222

5 ω̂1 14.562 14.563 14.564 14.648 14.562 14.563 14.564 14.648

ω̂2 14.726 14.726 14.735 14.827 14.726 14.726 14.735 14.827

ω̂3 49.856 49.873 54.117 54.251 49.856 49.873 54.117 54.251

ω̂4 85.819 85.819 85.822 85.912 85.819 85.819 85.822 85.912

Ave. Diff. (%) (0.00) (0.00) (0.00) (0.00)

10 ω̂1 3.8026 3.8027 3.8027 3.8099 3.8026 3.8027 3.8027 3.8099

ω̂2 3.8568 3.8569 3.8574 3.8656 3.8568 3.8569 3.8574 3.8656

ω̂3 24.889 2.4892 27.023 27.091 24.889 2.4892 27.023 27.091

ω̂4 43.163 43.163 43.163 43.174 43.163 43.163 43.163 43.174

Ave. Diff. (%) (0.00) (0.00) (0.00) (0.00)

100 ω̂1 × 102 3.8623 3.8624 3.8624 3.8639 3.8623 3.8624 3.8624 3.8639

ω̂2 × 102 3.9214 3.9214 3.9214 3.9235 3.9214 3.9214 3.9214 3.9235

ω̂3 2.4876 2.4877 2.7011 2.7080 2.4876 2.4877 2.7011 2.7080

ω̂4 4.3247 4.3247 4.3247 4.3247 4.3247 4.3247 4.3247 4.3247

Ave. Diff. (%) (0.00) (0.00) (0.00) (0.00)

Table 11: Comparison of the first six dimensionless circular frequency parameters of a FG square beam with

volume fraction index p = 1 and l/h = 5.

Boundary Natural Frequencies Average

condition Theory ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 ω̂6 Rel. Diff(%)

CF ABAQUS† 4.1108 4.1147 18.605 22.131 22.228 32.713

TE999 4.0555 4.0868 18.572 21.628 21.869 32.806 (1.06)

FF ABAQUS† 7.8757 7.8892 12.313 18.439 18.522 21.570

TE999 7.7285 7.7594 12.327 17.695 18.174 21.530 (1.62)

† 3D FEM, brick element C3DR20 with 20 nodes, mesh 10× 10× 50
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Table 12: First five dimensionless circular frequency parameters of a FG beam with CF boundary condition

and l/h = 5, 20.

l/h p Dimensionless frequency parameters Ave. Max.

Theory ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 Diff(%) Diff(%)

5 0.1 TBT-DSM[15] 1.7574 9.5011 14.095 22.682 37.747

TE333-Ritz 1.7563 9.5203 13.961 22.587 37.563 (0.42) (0.95)

0.2 TBT-DSM 1.6638 8.9969 13.390 21.482 35.754

TE333-Ritz 1.6486 8.9369 13.344 21.431 35.773 (0.44) (0.91)

0.5 TBT-DSM 1.4911 8.0609 12.012 19.243 32.022

TE333-Ritz 1.4869 8.0470 12.071 19.190 32.190 (0.35) (0.52)

1 TBT-DSM 1.3557 7.3164 10.811 17.441 28.989

TE333-Ritz 1.3490 7.2760 10.905 17.430 29.024 (0.42) (0.87)

2 TBT-DSM 1.2471 6.7053 9.7403 15.937 26.428

TE333-Ritz 1.2389 6.6425 9.8351 15.847 26.312 (0.71) (0.97)

5 TBT-DSM 1.1446 6.1274 8.7633 14.516 24.009

TE333-Ritz 1.1467 6.1104 8.8486 14.490 23.975 (0.35) (0.97)

10 TBT-DSM 1.0867 5.8159 8.3430 13.776 22.783

TE333-Ritz 1.0989 5.8613 8.4308 13.890 22.990 (0.94) (1.12)

20 0.1 TBT-DSM[15] 1.8070 11.196 30.800 56.379 58.897

TE333-Ritz 1.7971 11.135 30.630 55.644 58.579 (0.70) (1.30)

0.2 TBT-DSM 1.7107 10.600 29.161 53.562 55.762

TE333-Ritz 1.6859 10.448 28.759 53.139 55.932 (1.07) (1.50)

0.5 TBT-DSM 1.5332 9.4992 26.130 48.048 49.962

TE333-Ritz 1.5202 9.4205 25.928 47.967 49.692 (0.63) (0.85)

1 TBT-DSM 1.3945 8.6383 23.755 43.246 45.402

TE333-Ritz 1.3995 8.6656 23.812 43.268 45.505 (0.24) (0.36)

2 TBT-DSM 1.2839 7.9501 21.851 38.961 41.733

TE333-Ritz 1.2682 7.8529 21.586 39.032 41.299 (0.98) (1.22)

5 TBT-DSM 1.1795 7.3014 20.057 35.053 38.278

TE333-Ritz 1.1754 7.2729 19.971 35.182 38.124 (0.39) (0.43)

10 TBT-DSM 1.1199 6.9324 19.043 33.372 36.345

TE333-Ritz 1.1261 6.9685 19.136 33.557 36.520 (0.52) (0.55)
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Table 13: First five dimensionless circular frequency parameters of a FG beam with CC boundary condition

and l/h = 5, 20.

l/h p Dimensionless frequency parameters Ave. Max.

Theory ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 Diff(%) Diff(%)

5 0.1 TBT-DSM[15] 9.3380 21.455 28.189 35.825 51.248

TE333-Ritz 9.3109 21.475 27.985 35.839 51.173 (0.26) (0.72)

0.2 TBT-DSM 8.8467 20.331 26.780 33.952 48.571

TE333-Ritz 8.8841 20.449 26.721 34.034 48.475 (0.33) (0.58)

0.5 TBT-DSM 7.9241 18.206 24.022 30.399 43.484

TE333-Ritz 8.0119 18.295 24.106 30.317 42.955 (0.69) (1.22)

1 TBT-DSM 7.1772 16.459 21.621 27.456 39.251

TE333-Ritz 7.2046 16.392 21.728 27.549 39.777 (0.59) (1.34)

2 TBT-DSM 6.5543 14.974 19.479 24.932 35.603

TE333-Ritz 6.5857 15.044 19.594 25.108 35.871 (0.60) (0.75)

5 TBT-DSM 5.9699 13.585 17.526 22.573 32.193

TE333-Ritz 6.0163 13.662 17.694 22.742 32.466 (0.78) (0.96)

10 TBT-DSM 5.6680 12.896 16.686 21.428 30.559

TE333-Ritz 5.6431 12.904 16.904 21.493 30.684 (0.50) (1.31)

20 0.1 TBT-DSM[15] 11.334 30.602 58.430 93.607 112.76

TE333-Ritz 11.299 30.498 58.220 93.264 111.46 (0.51) (1.15)

0.2 TBT-DSM 10.731 28.974 55.324 88.635 107.12

TE333-Ritz 10.614 28.669 55.574 87.888 106.47 (0.81) (1.09)

0.5 TBT-DSM 9.6159 25.961 49.565 79.395 96.090

TE333-Ritz 9.5725 25.853 49.423 79.233 96.177 (0.29) (0.45)

1 TBT-DSM 8.7425 23.593 45.019 72.072 86.486

TE333-Ritz 8.6856 23.445 45.156 72.273 86.783 (0.44) (0.65)

2 TBT-DSM 8.0431 21.688 41.347 66.128 77.917

TE333-Ritz 7.9780 21.509 41.040 65.651 78.255 (0.71) (0.83)

5 TBT-DSM 7.3844 19.896 37.898 60.554 70.104

TE333-Ritz 7.3849 19.880 37.867 60.464 70.507 (0.18) (0.57)

10 TBT-DSM 7.0116 18.892 35.987 57.504 66.743

TE333-Ritz 7.0761 19.048 36.283 57.935 67.247 (0.81) (0.92)
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Table 14: First five dimensionless circular frequency parameters of a FG beam with CS boundary condition

and l/h = 5, 20.

l/h p Dimensionless frequency parameters Ave. Max.

Theory ω̂1 ω̂2 ω̂3 ω̂4 ω̂5 Diff(%) Diff(%)

5 0.1 TBT-DSM[15] 6.9523 19.153 28.189 33.951 49.968

TE333-Ritz 6.9422 19.130 27.985 33.829 49.938 (0.28) (0.72)

0.2 TBT-DSM 6.5845 18.144 26.780 32.169 47.351

TE333-Ritz 6.5494 18.132 26.721 32.052 47.095 (0.34) (0.54)

0.5 TBT-DSM 5.8992 16.252 24.022 28.807 42.396

TE333-Ritz 5.9046 16.339 24.106 28.582 42.836 (0.56) (1.04)

1 TBT-DSM 5.3522 14.717 21.621 26.051 38.300

TE333-Ritz 5.3439 14.752 21.728 26.182 38.567 (0.42) (0.70)

2 TBT-DSM 4.9032 13.431 19.479 23.711 34.791

TE333-Ritz 4.8783 13.393 19.594 23.688 34.829 (0.32) (0.59)

5 TBT-DSM 4.4805 12.222 17.526 21.514 31.503

TE333-Ritz 4.4800 12.214 17.694 21.518 31.565 (0.25) (0.96)

10 TBT-DSM 4.2537 11.602 16.686 20.422 29.903

TE333-Ritz 4.2923 11.515 16.904 20.298 29.837 (0.76) (1.31)

20 0.1 TBT-DSM[15] 7.8636 25.073 51.128 84.981 112.76

TE333-Ritz 7.8192 24.931 50.838 84.511 111.46 (0.68) (1.15)

0.2 TBT-DSM 7.4449 23.739 48.408 80.462 107.12

TE333-Ritz 7.4688 23.810 48.540 80.674 106.47 (0.35) (0.61)

0.5 TBT-DSM 6.6719 21.272 43.373 72.083 96.090

TE333-Ritz 6.6156 21.106 43.073 71.669 96.177 (0.60) (0.84)

1 TBT-DSM 6.0672 19.337 39.412 65.467 86.486

TE333-Ritz 6.0863 19.389 39.485 65.568 86.783 (0.25) (0.34)

2 TBT-DSM 5.5838 17.787 36.223 60.118 77.917

TE333-Ritz 5.5151 17.572 35.802 59.459 78.255 (1.03) (1.23)

5 TBT-DSM 5.1283 16.326 33.224 55.092 70.104

TE333-Ritz 5.1078 16.256 33.072 54.833 70.507 (0.47) (0.57)

10 TBT-DSM 4.8692 15.502 31.547 52.314 66.743

TE333-Ritz 4.8937 15.574 31.688 52.537 67.247 (0.52) (0.76)
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Figure 1: Beam structure and coordinate system.

x

z

Metal

Ceramic

x

y

l

h

b

Figure 2: FG beam structure.

Figure 3: Volume fraction of the ceramic constituent.
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(a) f1, Bending mode (xz) (b) f2, Bending mode (xz) (c) f3, Bending mode (yz)

(d) f4, Bending mode (xz) (e) f5, Torsional mode (f) f6, Bending mode (xz)

(g) f7, Torsional mode (h) f8, Bending mode (xz) (i) f9, Bending mode (yz)

(j) f10, Bending mode (xz)

Figure 4: First 10 mode shapes of a rectangular metal beam with CF boundary condition, l/b = 10 and

b/h = 10.
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(a) ω̂1, Bending mode (yz) (b) ω̂2, Bending mode (xz) (c) ω̂3, Torsional mode

(d) ω̂4, Bending mode (yz) (e) ω̂5, Bending mode (xz) (f) ω̂6, Axial mode

Figure 5: The first 6 mode shapes of a square FG beam with CF boundary condition and l/h = 5.

(a) ω̂1, Bending mode (yz) (b) ω̂2, Bending mode (xz) (c) ω̂3, Torsional mode

(d) ω̂4, Bending mode (yz) (e) ω̂5, Bending mode (xz) (f) ω̂6, Axial mode

Figure 6: The first 6 mode shapes of a square FG beam with FF boundary condition and l/h = 5.
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