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Abstract. Recently, successful approaches have been made to exploit good-for-

MDPs automata—Büchi automata with a restricted form of nondeterminism—

for model free reinforcement learning, a class of automata that subsumes good

for games automata and the most widespread class of limit deterministic au-

tomata [3]. The foundation of using these Büchi automata is that the Büchi con-

dition can, for good-for-MDP automata, be translated to reachability [2].

The drawback of this translation is that the rewards are, on average, reaped very

late, which requires long episodes during the learning process. We devise a new

reward shaping approach that overcomes this issue. We show that the resulting a

model is equivalent to a discounted payoff objective with a biased discount that

simplifies and improves on [1].

1 Preliminaries

A nondeterministic Büchi automaton is a tuple A = 〈Σ,Q, q0, ∆, Γ 〉, where Σ is a

finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ ×Q

are transitions, and Γ ⊆ Q×Σ ×Q is the transition-based acceptance condition.

A run r of A onw ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q×Σ)ω such that r0 =
q0 and, for i > 0, it is (ri−1, wi−1, ri) ∈ ∆. We write inf(r) for the set of transitions

that appear infinitely often in the run r. A run r of A is accepting if inf(r) ∩ Γ 6= ∅.

The language,LA, of A (or, recognized by A) is the subset of words in Σω that have

accepting runs in A. A language is ω-regular if it is accepted by a Büchi automaton. An

automaton A = 〈Σ,Q,Q0, ∆, Γ 〉 is deterministic if (q, σ, q′), (q, σ, q′′) ∈ ∆ implies

q′ = q′′. A is complete if, for all σ ∈ Σ and all q ∈ Q, there is a transition (q, σ, q′) ∈
∆. A word in Σω has exactly one run in a deterministic, complete automaton.

A Markov decision process (MDP) M is a tuple (S,A, T,Σ, L) where S is a finite

set of states, A is a finite set of actions, T : S × A → D(S), where D(S) is the

set of probability distributions over S, is the probabilistic transition function, Σ is an

alphabet, and L : S ×A×S → Σ is the labelling function of the set of transitions. For

a state s ∈ S, A(s) denotes the set of actions available in s. For states s, s′ ∈ S and

a ∈ A(s), we have that T (s, a)(s′) equals Pr (s′|s, a).
A run of M is an ω-word s0, a1, . . . ∈ S×(A×S)ω such that Pr (si+1|si, ai+1) >

0 for all i ≥ 0. A finite run is a finite such sequence. For a run r = s0, a1, s1, . . .
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we define the corresponding labelled run as L(r) = L(s0, a1, s1), L(s1, a2, s2), . . . ∈
Σω. We write Ω(M) (Paths(M)) for the set of runs (finite runs) of M and Ωs(M)
(Pathss(M)) for the set of runs (finite runs) of M starting from state s. When the MDP

is clear from the context we drop the argument M.

A strategy in M is a function µ : Paths → D(A) that for all finite runs r we have

supp(µ(r)) ⊆ A(last(r)), where supp(d) is the support of d and last(r) is the last

state of r. Let Ωµ
s (M) denote the subset of runs Ωs(M) that correspond to strategy µ

and initial state s. Let ΣM be the set of all strategies. We say that a strategy µ is pure

if µ(r) is a point distribution for all runs r ∈ Paths and we say that µ is positional if

last(r) = last(r′) implies µ(r) = µ(r′) for all runs r, r′ ∈ Paths.
The behaviour of an MDP M under a strategy µ with starting state s is defined

on a probability space (Ωµ
s ,F

µ
s ,Pr

µ
s ) over the set of infinite runs of µ from s. Given

a random variable over the set of infinite runs f : Ω → R, we write E
µ
s {f} for the

expectation of f over the runs of M from state s that follow strategy µ.

Given an MDP M and an automaton A = 〈Σ,Q, q0, ∆, Γ 〉, we want to compute

an optimal strategy satisfying the objective that the run of M is in the language of A.

We define the semantic satisfaction probability for A and a strategy µ from state s as:

PSemM

A (s, µ) = Pr µs {r∈Ω
µ
s : L(r)∈LA} and PSemM

A (s) = sup
µ

(

PSemM

A (s, µ)
)

.

When using automata for the analysis of MDPs, we need a syntactic variant of the

acceptance condition. Given an MDP M = (S,A, T,Σ, L) with initial state s0 ∈ S

and an automaton A = 〈Σ,Q, q0, ∆, Γ 〉, the product M×A = (S ×Q, (s0, q0), A×
Q, T×, Γ×) is an MDP augmented with an initial state (s0, q0) and accepting transitions

Γ×. The function T× : (S ×Q)× (A×Q) −⇁ D(S ×Q) is defined by

T×((s, q), (a, q′))((s′, q′)) =

{

T (s, a)(s′) if (q, L(s, a, s′), q′) ∈ ∆

0 otherwise.

Finally, Γ× ⊆ (S×Q)×(A×Q)×(S×Q) is defined by ((s, q), (a, q′), (s′, q′)) ∈ Γ×

if, and only if, (q, L(s, a, s′), q′) ∈ Γ and T (s, a)(s′) > 0. A strategy µ on the MDP

defines a strategy µ× on the product, and vice versa. We define the syntactic satisfaction

probabilities as

PSynMA ((s, q), µ×) = Pr µs {r ∈ Ω
µ×

(s,q)(M×A) : inf(r) ∩ Γ× 6= ∅} , and

PSynMA (s) = sup
µ×

(

PSynMA ((s, q0), µ
×)

)

.

Note that PSynMA (s) = PSemM

A (s) holds for a deterministic A. In general, PSynMA (s)
≤ PSemM

A (s) holds, but equality is not guaranteed because the optimal resolution of

nondeterministic choices may require access to future events.

Definition 1 (GFM automata [3]). An automatonA is good for MDPs if, for all MDPs

M, PSynMA (s0) = PSemM

A (s0) holds, where s0 is the initial state of M.

For an automaton to match PSemM

A (s0), its nondeterminism is restricted not to rely

heavily on the future; rather, it must be possible to resolve the nondeterminism on-the-

fly.



2 Undiscounted Reward Shaping

We build on the reduction from [2,3] that reduces maximising the chance to realise an

ω-regular objective given by a good-for-MDPs Büchi automaton A for an MDP M to

maximising the chance to meet the reachability objective in the augmented MDP Mζ

(for ζ ∈]0, 1[) obtained from M×A by

– adding a new target state t (either as a sink with a self-loop or as a point where the

computation stops; we choose here the latter view) and

– by making the target t a destination of each accepting transition τ of M×A with

probability 1− ζ and

multiplying the original probabilities of all other destinations of an accepting tran-

sition τ by ζ.

Let

PSynM
ζ

t ((s, q), µ) = Pr µs {r ∈ Ω
µ

(s,q)(M
ζ) : r reaches t} , and

PSynM
ζ

t (s) = sup
µ

(

PSynM
ζ

t ((s, q0), µ)
)

.

Theorem 1 ([2,3]). The following holds:

1. Mζ (for ζ ∈]0, 1[) and M×A have the same set of strategies.

2. For a strategy µ, the chance of reaching the target t in Mζ
µ is 1 if, and only if, the

chance of satisfying the Büchi objective in (M×A)µ is 1:

PSynM
ζ

t ((s0, q0), µ) = 1 ⇔ PSynMA (s0, q0), µ) = 1
3. There is a ζ0 ∈]0, 1[ such that, for all ζ ∈ [ζ0, 1[, an optimal reachability strategy

µ for Mζ is an optimal strategy for satisfying the Büchi objective in M×A:

PSynM
ζ

t ((s0, q0), µ) = PSynM
ζ

t (s0) ⇒ PSynMA (s0, q0), µ) = PSynMA (s0)).

This allows for analysing the much simpler reachability objective in Mζ
µ instead of

the Büchi objective in M×A, and is open to implementation in model free reinforce-

ment learning.

However, it has the drawback that rewards occur late when ζ is close to 1. We amend

that by the following observation:

We build, for a good-for-MDPs Büchi automatonA and an MDP M, the augmented

MDP M
ζ

(for ζ ∈]0, 1[) obtained from M×A in the same way as Mζ , i.e. by

– adding a new sink state t (as a sink where the computation stops) and

– by making the sink t a destination of each accepting transition τ of M × A with

probability 1− ζ and

multiplying the original probabilities of all other destinations of an accepting tran-

sition τ by ζ.

Different to Mζ , M
ζ

has an undiscounted reward objective, where taking an accepting

(in M × A) transition τ provides a reward of 1, regardless of whether it leads to the

sink t or stays in the state-space of M×A.



Let, for a run r of Mζ that contains n ∈ N0 ∪ {∞} accepting transitions, the total

reward be Total(r) = n, and let

ETotalM
ζ

((s, q), µ) = E
µ
s {Total(r) : r ∈ Ω

µ

(s,q)(M
ζ
)} , and

ETotalM
ζ

(s) = sup
µ

(

ETotalM
ζ

((s, q0), µ)
)

.

Note that the set of runs with Total(r) = ∞ has probability 0 in Ω
µ

(s,q)(M
ζ
): they

are the runs that infinitely often do not move to t on an accepting transition, where the

chance that this happens at least n times is (1− ζ)n for all n ∈ N0.

Theorem 2. The following holds:

1. M
ζ

(for ζ ∈]0, 1[), Mζ (for ζ ∈]0, 1[), and M×A have the same set of strategies.

2. For a strategy µ, the expected reward for M
ζ

µ is r if, and only if, the chance of

reaching the target t in Mζ
µ is r

1−ζ
:

PSynM
ζ

t ((s0, q0), µ) = (1− ζ)ETotalM
ζ

((s0, q0), µ).

3. The expected reward for M
ζ

µ is in [0, 1
1−ζ

].

4. The chance of satisfying the Büchi objective in (M ×A)µ is 1 if, and only if, the

expected reward for M
ζ

µ is 1
1−ζ

.

5. There is a ζ0 ∈]0, 1[ such that, for all ζ ∈ [ζ0, 1[, a strategy µ that maximises the

reward for M
ζ

is an optimal strategy for satisfying the Büchi objective in M×A.

Proof. (1) Obvious, because all the states and their actions are the same apart from the

sink state t for which the strategy can be left undefined.

(2) The sink state t can only be visited once along any run, so the expected number

of times a run starting at (s0, q0) is going to visit t while using strategy µ is the same as

its probability of visiting t, i.e., PSynM
ζ

t ((s0, q0), µ). The only way t can be reached is

by traversing an accepting transition and this always happens with the same probability

(1 − ζ). So the expected number of visits to t is the expected number of times an

accepting transition is used, i.e., ETotalM
ζ

((s0, q0), µ), multiplied by (1− ζ).

(3) follows from (2), because PSynM
ζ

t ((s0, q0), µ) cannot be greater than 1.

(4) follows from (2) and Theorem 1 (2).

(5) follows from (2) and Theorem 1 (3).

3 Discounted Reward Shaping

The expected undiscounted reward for M
ζ

µ can be viewed as a discounted reward for

(M×A)µ, by giving a reward ζi to when passing through an accepting transition when

i accepting transitions have been passed before. We call this reward ζ-biased.



Let, for a run r of M× A that contains n ∈ N0 ∪ {∞} accepting transitions, the

ζ-biased discounted reward be Disctζ(r) =
∑n−1

i=0 ζi, and let

EDisctM×A

ζ ((s, q), µ) = E
µ
s {r ∈ Ω

µ

(s,q)(M×A) : Disctζ(r)} , and

EDisctM×A

ζ (s) = sup
µ

(

EDisctM×A

ζ ((s, q0), µ)
)

.

Theorem 3. For every strategy µ, the expected reward for M
ζ

µ is equal to the expected

ζ-biased reward for (M×A)µ: EDisctM×A

ζ ((s, q), µ) = ETotalM
ζ

((s, q), µ).

This is simply because the discounted reward for each transition is equal to the

chance of not having reached t before (and thus still seeing this transition) in M
ζ

µ.

This improves over [1] because it only uses one discount parameter, ζ, instead of

two (called γ and γB in [1]) parameters (that are not independent). It is also simpler

and more intuitive: discount whenever you have earned a reward.
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