
 

 

Mathematical modelling of oxygen gradients in stem cell-derived liver tissue 1 

Joseph A. Leedale1*, Baltasar Lucendo-Villarin2, Jose Meseguer-Ripolles2, Alvile Kasarinaite2, Steven D. 2 

Webb3,4, David C. Hay2*  3 

1Dept. of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK 4 
2MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4UU, UK 5 
3Dept. of Applied Mathematics, Liverpool John Moores University, Liverpool, L3 3AF, UK 6 
4Current address: Syngenta, Early Stage Research, Product Safety, Jealott’s Hill, Bracknell, Berkshire, 7 
RG42 6EY, UK 8 

 9 

Email addresses of co-authors: 10 

Joseph A. Leedale (j.leedale@liverpool.ac.uk) 11 

Baltasar Lucendo-Villarin (balta.lucendo@gmail.com) 12 

Jose Meseguer-Ripolles (jmesegue@exseed.ed.ac.uk) 13 

Alvile Kasarinaite (s1604447@sms.ed.ac.uk) 14 

David C. Hay (davehay@talktalk.net) 15 

Steven D. Webb (Steven.Webb@syngenta.com) 16 

 17 

*Corresponding authors: 18 

Dr Joseph A. Leedale 19 
Dept. of Mathematical Sciences 20 
University of Liverpool 21 
Liverpool L69 7ZL 22 
United Kingdom 23 
Tel: +44 (0)151 794 4049 24 

Email: j.leedale@liverpool.ac.uk 25 

Prof David C. Hay 26 
Centre for Regenerative Medicine 27 
University of Edinburgh 28 
5 Little France Drive 29 
Edinburgh EH16 4UU 30 
United Kingdom 31 
Tel: +44 (0)131 6519500 32 
 33 
Email: davehay@talktalk.net  34 



   

1 

Abstract 35 

A major bottleneck in the study of human liver physiology is the provision of stable liver tissue in sufficient 36 

quantity. As a result, current approaches to modelling human drug efficacy and toxicity rely heavily on 37 

immortalized human and animal cell lines. These models are informative but do possess significant 38 

drawbacks. To address the issues presented by those models, researchers have turned to pluripotent stem 39 

cells (PSCs). PSCs can be generated from defined genetic backgrounds, are scalable, and capable of 40 

differentiation to all the cell types found in the human body, representing an attractive source of somatic 41 

cells for in vitro and in vivo endeavours. Although unlimited numbers of somatic cell types can be generated 42 

in vitro, their maturation still remains problematic. In order to develop high fidelity PSC-derived liver 43 

tissue, it is necessary to better understand the cell microenvironment in vitro including key elements of liver 44 

physiology.  45 

In vivo a major driver of zonated liver function is the oxygen gradient that exists from periportal to 46 

pericentral regions. In this paper, we demonstrate how cell culture conditions for PSC-derived liver sphere 47 

systems can be optimised to recapitulate physiologically relevant oxygen gradients by using mathematical 48 

modelling. The mathematical model incorporates some often-understated features and mechanisms of 49 

traditional spheroid systems such as cell-specific oxygen uptake, media volume, spheroid size, and well 50 

dimensions that can lead to a spatially heterogeneous distribution of oxygen. This mathematical modelling 51 

approach allows for the calibration and identification of culture conditions required to generate 52 

physiologically realistic function within the microtissue through recapitulation of the in vivo 53 

microenvironment. 54 

 55 

Keywords: Mathematical modelling; Oxygen gradients; Pluripotent stem cells; Liver; Spheroid; 56 

Optimisation.  57 
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1 Introduction 58 

The optimisation of the in vitro niche for cell culture and tissue engineering is critically important [1]. Cell 59 

culture protocols are becoming increasingly scrutinised to determine if the reported methodologies deliver 60 

experimental consistency and reproducibility [2]. This is an important consideration as irreproducibility 61 

undermines the validity and utility of the in vitro model when extrapolating to human physiology. 62 

It is often the case in cell culture that in vitro data are used to infer properties about the cells of interest that 63 

can be translated into understanding of the system in vivo [3]. In order to assert such extrapolative 64 

interpretations, one must fully acknowledge and account for the intrinsic differences between in vitro and 65 

in vivo environments. Important in vitro factors to consider include whether the cells are arranged in 2D or 66 

3D, and the effects of the local microenvironment. The supply of nutrients such as oxygen can be more 67 

easily controlled for 2D cell culture but the use of more physiologically relevant 3D cultures results in 68 

spatially varying nutrient gradients [4]. Therefore the delivery of functional and phenotypically stable liver 69 

tissue requires precise control of the size of 3D liver spheroids [5, 6]. It can be difficult, and costly, to 70 

investigate the impact of cell culture protocol on the establishment of 3D nutrient gradients and thus it can 71 

be a somewhat overlooked feature when preparing optimised experimental conditions.  72 

Mathematical models and in silico simulations can provide estimates of difficult-to-measure system 73 

properties, such as oxygen gradients, by describing system processes and mechanisms explicitly and 74 

performing virtual experiments computationally. This methodology allows the researcher to investigate and 75 

optimise various cell culture conditions in order to determine relevant cell culture protocols as well as 76 

gaining a deeper mechanistic insight into the system. This enhanced mechanistic understanding can assist 77 

the researcher when interpreting experimental data acquired and how it relates to fundamental properties 78 

of the cells as well as speculations on in vivo extrapolation. 79 

The generation of human tissues from renewable sources of somatic cells with a defined genetic background 80 

has enormous potential for modern medicine [7]. However, these processes require optimised cell culture 81 

to ensure the delivery of unlimited quantities of human cells and tissues at large scales. Current sources 82 
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from which liver cells can be obtained include primary adult human hepatocytes, hepatic progenitor cells, 83 

cancer cell lines and animal hepatocytes. While these cell sources are enabling, they also possess some 84 

drawbacks, which limit their routine use. These drawbacks include incomplete hepatocyte phenotype, 85 

genomic instability, variable function and species differences [8].  PSCs represent a source of cells that can 86 

give rise to all somatic cell types found in the human body with self-renewal and differentiation properties 87 

that make them the ideal candidate to cope with the current demands of liver models [9]. The employment 88 

of mathematical modelling to optimise PSC-derived liver tissue may result in improved current culture 89 

conditions that can recapitulate liver biology more faithfully and improve the likelihood of technology 90 

translation. 91 

The methodology described in this article and used to build the in silico framework herein builds upon 92 

previous work, primarily that of Leedale et al. [10]. The application of mathematical modelling for 93 

describing oxygen gradients within cellular spheroids has a relatively rich body of literature from which to 94 

build upon [11-16]. These studies originally focused largely on the emergence of hypoxia within tumour 95 

spheroids but have since expanded to study the spatiotemporal dynamics of many environmental signals 96 

within 3D cellular systems. The methodology presented here details how specific properties of the 97 

microenvironment such as: well-geometry; media volume; size of cell-structure; cell position; and oxygen 98 

gradients impact on PSC-derived liver spheres. This methodology should be considered appropriate for any 99 

researcher working within cell culture whose aim is to improve the relevance of their experiments via 100 

mechanistic analysis and understanding. The methodology described provides a relatively quick, 101 

transparent and economical way to determine if prolonged, complex and expensive experiments are 102 

physiologically relevant. 103 

  104 
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2 Materials and Methods 105 

2.1 Governing equations 106 

The mathematical model describing the spatiotemporal dynamics of oxygen in cell culture is governed by 107 

the following partial differential equation,  108 

𝜕𝐶
𝜕𝑡

= 𝐷!"#∇$𝐶 −
𝑉%&'𝐶
𝐶 + 𝐾%

, (1) 

which estimates intracellular oxygen concentration, 𝐶, in mol/m3. This equation assumes that intra-109 

spheroidal oxygen dynamics are governed by diffusion and consumption processes only. The intra-110 

spheroidal diffusion rate is given by 𝐷!"# (m2/s) and oxygen metabolism assumes Michaelis-Menten 111 

kinetics with maximal oxygen consumption rate 𝑉%&' (mol/m3/s) and Michaelis constant 𝐾% (mol/m3). 112 

Oxygen dynamics within the media surrounding the cellular spheroids are assumed to be governed by 113 

diffusion only, i.e.,   114 

𝜕𝐶
𝜕𝑡

= 𝐷%()∇$𝐶, (2) 

where 𝐷%() is the diffusion rate (m2/s) of oxygen within the media. The mathematical model is inherently 115 

an abstract representation of the in vitro environment and as such, some simplifying assumptions are made. 116 

These include the assumption that cell density is uniform throughout the spheroid such that local oxygen 117 

consumption is only a property of position and oxygen concentration (i.e., 𝑉%&' is a constant, independent 118 

of space) and that the entire spheroid consists of cells such that there are no necrotic cores of empty, non-119 

respiring space. 120 

2.2 Model geometry 121 

Boundary conditions for the mathematical model in equations (1)-(2) are dependent on the model geometry, 122 

i.e., the shape and volume of media and the source of oxygen. A Corning Costar 6-well plate is used to 123 

culture the PSC-derived liver spheres of interest. Wells within this plate are cylindrical in shape with a 124 
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diameter of 34.8 mm and 3 ml of media is added [17]. Based on this information the domain for the 125 

computational model could be constructed (a cylinder of radius 17.4 mm and height 3.1541 mm). A 126 

schematic of the model geometry can be seen in Figure 1. 127 

 128 

Figure 1: Model geometry. Model schematic for a single spheroid within an individual well of a Corning Costar 6-129 
well plate. Well/media radius = mr = 17.4 mm; media depth = md = 3.1541 mm. Atmospheric oxygen is supplied to 130 
the media surface and diffuses through the media. 131 

Oxygen is supplied to the well via the upper media surface from the surrounding air, and thus we assume 132 

the following boundary condition: 133 

𝐶 = 𝐶*, (3) 

at the air/media interface where 𝐶* represents the atmospheric oxygen concentration in a normoxic 134 

incubator of 140 mmHg (~0.181 mmol/L O2), assuming an incubator temperature of 37°C and approximate 135 

sea-level altitude [18]. Zero-flux boundary conditions are assumed at all other wall-surfaces of the well 136 

such that 137 

∇𝐶 ⋅ 𝐧 = 0, (4) 

where 𝐧 is the outward-pointing unit normal vector. At the interface between the media and the liver sphere 138 

boundary continuity and equal flux is assumed such that 139 

𝐶!"# = 𝐶%() , (5) 
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and 140 

𝐷!"#∇𝐶!"# = 𝐷%()∇𝐶%() , (6) 

on the boundary 𝛿Ω where Ω represents the liver sphere domain. 141 

2.3 Parameterisation 142 

Model parameters were identified from the literature and incorporated into the model as previously 143 

described and summarised by Leedale et al. [10]. Briefly, internal and external diffusion coefficients were 144 

defined as previously for the spheroid/oxygen system [12], as was the Michaelis constant 𝐾% [19]. For this 145 

novel stem cell application, oxygen consumption rates for hepatocyte-like cells differentiated from human-146 

induced pluripotent stem cells were used to parameterise 𝑉%&' [20]. Model parameters are summarised in 147 

the supplementary material alongside a summary of the model equations. 148 

2.4 Simulation 149 

Model simulations are performed using COMSOL Multiphysics software to determine the steady-state 150 

spatial distribution of oxygen concentration. A simplification of the mathematical model can be 151 

implemented in order to study the characteristics of a single spheroid within this system by exploiting 152 

cylindrical symmetric assumptions. For a single spheroid located along the central vertical axis of the well, 153 

we assume that the model geometry is symmetric about this “z-axis” and can be represented by a 2D plane 154 

that is rotated to visualise the 3-dimensional results. The results of an illustrative simulation of this 155 

simplified version of the model can be seen in Figure 2 showing the steady-state distribution of oxygen 156 

concentration throughout the well and spheroid. The spheroid is assumed to have a radius of 200 µm and 157 

is located at the bottom of the well. We observe that oxygen concentration is relatively uniform and close 158 

to atmospheric levels throughout most of the well. However, near to the spheroid boundary, oxygen 159 

concentration is depleted and inside the liver sphere there is less oxygen due to cellular consumption. We 160 

notice a slight radial asymmetry in the oxygen distribution as the upper portion of the spheroid is relatively 161 
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better-supplied with oxygen than the lower boundary of the spheroid resting on the well bottom. This feature 162 

is described in more detail by Leedale et al. [10]. 163 

 164 

Figure 2: Model simulation. Illustrative 3D model simulation of oxygen distribution (mmol/L) for single spheroid 165 
(large, 200 µm radius) positioned at the bottom and centre of the well in a symmetric model. 166 

2.5 Optimisation 167 

In order to maximise the in vivo-like relevance of hepatic spheroids cultured in vitro, it is desirable to 168 

replicate the oxygen gradient observed along the liver sinusoid within the spheroid [10]. The liver sinusoid 169 

is a fundamental architectural sub-unit of the liver that encompasses a range of oxygen concentrations along 170 

its length, due to the delivery of oxygenated blood from the hepatic arteriole and portal vein which flows 171 

along the sinusoid and is drained at the central vein. This gradient corresponds to a zonation within the 172 

sinusoid such that oxygen tensions range from approximately 65 mmHg (~8.5%, 0.084 mmol/L) in the 173 

periportal region (closest to the portal vein) to 35 mmHg (~4.6%, 0.045 mmol/L) in the pericentral region 174 

(closest to the central vein) [21, 22]. This gradient can impact upon hepatocyte characteristics and 175 

functionality along the sinusoid and so it is important that in vitro testing of 3D hepatocyte culture includes 176 

these environmental properties to ensure relevance of resulting experimental data [23]. 177 
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Properties of the model were analysed in order to identify optimal operating conditions that would provide 178 

the desired oxygen gradient within a single PSC-derived liver spheroid. In this study these properties 179 

included spheroid size and suspension height within the well, two features that have been observed to vary 180 

within the development and culture of these particular liver spheres (visual observation at Prof. David Hay’s 181 

laboratory, Edinburgh). This analysis involves repeated model simulations such that the features of interest 182 

are investigated via a range of suitable parameter perturbations (see supplementary Figure S1 for an 183 

illustrative example of oxygen distributions being affected by spheroid height). Quantification of minimum 184 

and maximum oxygen concentrations within the spheroid, as well as the average value around the spheroid 185 

boundary, are calculated and can be compared with reference values for in vivo periportal and pericentral 186 

liver oxygen tensions. In order to determine the optimal combination of analysed properties (in this case, 187 

spheroid radius and height within the well) that exhibit the closest representation of the in vivo gradient, an 188 

error function is defined such that relative differences between the simulated and reference oxygen values 189 

can be calculated: 190 

Combined	%	error =
1
2
>
|𝐶%&' − 𝐶+,|

𝐶+,
+
|𝐶%-. − 𝐶/,|

𝐶/,
@ × 100, (7) 

where 𝐶%-. and 𝐶%&' represent minimum and maximum concentrations, respectively; 𝐶+, represents in 191 

vivo oxygen concentrations at the portal vein (0.084 mmol/L); and 𝐶/, represents in vivo oxygen 192 

concentrations at the central vein (0.045 mmol/L). The parameter combination (e.g., particular spheroid 193 

radius and height) that minimises this function can be said to best coincide with the in vivo reference oxygen 194 

concentrations of interest.  195 

2.6 Maintenance of human PSCs 196 

A hiPSC line (P106) were cultured on Laminin 521 (Biolamina) coated plates in serum-free mTeSR™ 197 

(STEMCELL Technologies) in a humidified 37°C, 5% CO2 incubator as previously described [24]. Cells 198 

were passaged routinely using Gentle Cell Dissociation reagent (STEMCELL Technologies) and seeded as 199 
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small colonies of cells at a dilution of 1:6 to 1:10. hPSC were cultured in an antibiotic free medium and 200 

regularly tested for mycoplasma infection.   201 

2.7 Hepatic differentiation 202 

For hepatic differentiation, hiPSCs were dissociated using Gentle Cell Dissociation reagent (STEMCELL 203 

technologies) and seeded onto pre-coated wells with Laminin 521 (BioLamina) in mTeSR1™ 204 

supplemented with 10 μM Y-27632 (Biotech) at a density of 40,000 cells/cm2. Differentiation was initiated 205 

24 h post seeding once cell confluency reached 40% by replacing stem cell medium with endoderm 206 

differentiation medium [RPMI 1640 containing 1x B27 (Life Technologies), 100 ng/mL Activin A 207 

(Biotech) and 50 ng/mL Wnat3a (Biotech)]. The medium was changed every 24 h for 3 days. On day 4, 208 

endoderm differentiation medium was replaced with hepatic progenitor differentiation medium, and this 209 

was renewed every second day for a further 5 days. The medium consisted of knockout (KO)-DMEM (Life 210 

Technologies), Serum replacement (Life Technologies), 0.5% Glutamax (Life Technologies), 1% non-211 

essential amino acids (Life Technologies), 0.2% 2-mercaptoethanol (Life Technologies), and 1% DMSO 212 

(Sigma). On day 9, differentiating cells were cultured in the hepatocyte maturation medium which 213 

comprised of Hepato-ZYME (Life Technologies) containing 1% Glutamax (Life Technologies), 214 

supplemented with 10 ng/ml hepatocyte growth factor (PeproTech) and 20 ng/ml oncostatin m (PeproTech) 215 

as described previously [24]. 216 

2.8 Production stem cell-derived hepatospheres 217 

Following hPSC hepatic progenitor differentiation, cells were collected as single cells using TrypLE 218 

(Thermofisher). cells were counted and resuspended at a final density of 4 x 106 live cells/mL in liver sphere 219 

medium consisted of William’s E media with 10% Serum replacement (ThermoFisher), 1% Glutamax and 220 

1% penicillin- streptomycin (ThermoFisher). The cell pellet was resuspended in liver sphere medium, 221 

supplemented with 10 µM Y-27632 (Biotech), 10 ng/mL EGF (Biotech), 10 ng/mL FGF (Peptrotech), 10 222 

ng/mL HGF (Peprotech), 20 ng/mL OSM (Peprotech) and 50 ng/mL VEGF (Biotech). 190 µL of cell 223 
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suspension was dispensed in an agarose mold with 256-microwells of 400 µm using the 3D Petri Dish 224 

mould (Sigma Aldrich) as previously described [6]. 225 

2.9 Protein secretion 226 

To measure alpha-fetoprotein and albumin secretion, liver spheres were maintained in supplemented liver 227 

sphere medium without SFM-Endothelial media and in the presence of 10 μM hydrocortisone 21-228 

hemisuccinate sodium salt (HCC). Culture media was collected after 24 h and quantified using 229 

commercially available ELISA kits (Alpha Diagnostic International). Data were normalised by total protein 230 

content measured using bicinchoninic acid (BCA) assay (Thermo Fisher).  231 

2.10 Cytochrome P450 activity 232 

To measure Cyp3A and Cyp1A2 activity, 50 μM of Luciferin-PFBE substrate (Promega) or 100 μM of 233 

Luciferin-ME (Promega) were incubated with liver spheres maintained in liver sphere medium. 234 

Cytochrome P450 activity was measured 24 h later using the P450-Glo assay kit (Promega) according to 235 

manufacturer’s instructions. Data were normalised by total protein content measured using bicinchoninic 236 

acid (BCA) assay (Thermo Fisher).  237 

2.11 Histological staining 238 

Liver spheres were fixed for at least 1 h in 4% neutral buffered formalin solution (pH 7.4) at 4°C and 239 

washed twice with PBS at room temperature before embedding in agarose. Agarose-embedded liver spheres 240 

were then embedded in paraffin and sectioned at 4 μm and stained for hematoxylin and eosin. Images were 241 

taken using a Nikon Eclipse e600 microscope equipped with a Retiga 2000R camera (Q-Imaging) and 242 

Image-Pro Premier software. 243 

  244 
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3 Results 245 

3.1 Impact of spheroid properties on oxygen distribution 246 

Minimum, maximum and mean-boundary steady state oxygen concentrations were calculated for a range 247 

of PSC-derived liver spheres cultured within a well (Figure 3). The spheroid properties that were varied 248 

were spheroid size (radius of 50 to 200 µm) and spheroid height (range encompassing the height of the 249 

(3ml) media). Figure 3 indicates the optimal parameter pair for simulating the in vivo oxygen concentrations 250 

(0.084 mmol/L for maximum/mean and 0.045 mmol/L for minimum) as well as a hypoxic threshold, 251 

assumed to be 10 mmHg (0.013 mmol/L) [25]. The model suggests that, in order to exhibit approximate 252 

periportal oxygen conditions at the boundary, the in vitro liver spheres must be relatively large and 253 

positioned towards the bottom of the well (see white contour in Figure 3B). In order to exhibit 254 

physiologically relevant minimum values (pericentral), spheroids just need to be relatively large (see solid 255 

white contour in Figure 3C). This size varies depending on the location within the well, but ranges from a 256 

radius of approximately 130 µm at the bottom of the well to 160 µm at the top. Cells within spheroids 257 

positioned higher in the well are located nearer to the source of oxygen and so are capable of being 258 

sufficiently oxygenated at larger sizes. However, in order to avoid hypoxia, spheroids must be no larger 259 

than approximately 155 µm at the bottom and 185 µm at the top of the media (see dashed white contour in 260 

Figure 3C). 261 

 262 

Figure 3: Impact of varying spheroid properties. Maximum (A), average boundary (B) and minimum (C) oxygen 263 
concentrations for a range of model parameter combinations varying spheroid radius and position (height along z-264 
axis) within the well. Contours represent optimal in vivo conditions (white, solid) or hypoxia (defined as 10 mmHg, 265 
white, dashed). 266 
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The optimal conditions providing the most physiologically relevant oxygen ranges within the PSC-derived 267 

liver spheres were determined by minimising the combined % error (given in equation (7)) for each 268 

combination of spheroid radius and height (Figure 4A). Our analysis indicates that, for this cell type, the 269 

optimal parameter pair that minimises the combined error corresponds to a spheroid of radius 140 µm 270 

suspended 0.332 mm from the bottom of the well. A 1D representative plot through the axis of symmetry 271 

(z-axis through the centre of the well) is plotted for this optimised model parameterisation in Figure 4B. 272 

The minimal oxygen concentrations occur towards the centre of the spheroid and share the same value as 273 

those in the pericentral region of the liver sinusoid. Spheroid boundary oxygen concentrations are slightly 274 

higher than periportal regions, but this scenario prevents hypoxia and still encompasses the physiologically 275 

relevant in vivo range. The suspension of the spheroid above the well-bottom alleviates potential asymmetry 276 

in the oxygen profile as the oxygen supply in the surrounding media is relatively homogenous (e.g., for 277 

contrast, see asymmetric profiles for liver cell-line spheroids in Leedale et al. [10]). These oxygen levels 278 

allow for oxygen consumption rates close to the maximum value (given by 𝑉%&') throughout the spheroid 279 

(Figure 4C). 280 
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 281 

Figure 4: Optimising spheroid properties. Optimal model parameterisations (spheroid radius and height) are 282 
identified by calculating a combined error between model output and in vivo oxygen measurements (A). The minimum 283 
error (red circle) indicates the most in-vivo-like representation of the sinusoidal oxygen gradient. The blue contour 284 
represents parameter combinations that simulates pericentral oxygen values for the minimal spheroid concentration 285 
whereas the red contour indicates hypoxia (defined as 10 mmHg). A 1D plot is provided for the optimal model 286 
parameterisation indicating the oxygen profile along the central axis of symmetry through the well (B). The minimal 287 
value corresponds to the in vivo central vein value (black dashed line). The in vivo portal vein value (black solid line) 288 
and hypoxic threshold (red dashed line) are also indicated. The green dashed line indicates the centre of the spheroid 289 
while blue dashed lines indicate the spheroid boundary. The mean boundary concentration is represented by the red 290 
dot. The corresponding oxygen consumption rate, expressed as a percentage of the maximal rate (𝑉!"#), is also shown 291 
for this 1D cross-section (C). 292 

The sensitivity of the model outputs to variations in spheroid radius and height within the well can also be 293 

determined computationally (Figure 5). We observe that the spheroid radius is a relatively more sensitive 294 

parameter with a ±20% change in radius (112 to 168 µm) leading to average errors of +60 and -50% (Figure 295 

5A). By contrast, the average errors for the spheroid suspension height within the well range from -20% to 296 

+50% for the entire range of heights from well-bottom to media surface (Figure 5B). Importantly, the model 297 

predicts that an increase in radius of just 23 µm (from 140 to 163 µm) will lead to the onset of hypoxia in 298 

the centre of the spheroid (Figure 5A). 299 
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 300 

Figure 5: Sensitivity analysis of the optimised parameters. The % error for both minimum (red) and maximum 301 
(blue) oxygen concentrations within the spheroid are plotted for variations in spheroid radius (A) and height within 302 
the well (B). White lines indicate averaged % error; black lines indicate the optimal conditions; and the red line 303 
indicates the hypoxic threshold. 304 

3.2 Impact of multiple spheroids within a single well 305 

Stem cell derived hepatospheres were produced as previously described [26] (Figure 6A). The average 306 

sphere size was 129.72 µm (+/- 22.85 µm) (Figure 6B) and displayed non-necrotic centres (Figure 6C). 307 

Hepatospheres exhibited Cyp1A2 and Cyp3A activity (Figure 6D, E) and secreted AFP and albumin over 308 

a 4-week period (Figure 6F, G). When cultured in 3D, the cell phenotype is more stable and metabolically 309 

active (Figure 6D, E) compared to previous 2D work [27]. The improved maturation of cells in 3D is 310 

evidenced by a significant decrease in AFP secretion over time (Figure 6F). Following their formation, it 311 

is common to grow multiple spheroids within a single well, which may impact upon oxygen availability. 312 

In order to model this scenario, symmetric properties are neglected and the full 3D model is simulated in 313 

COMSOL.  314 
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 315 

Figure 6: Liver sphere functional characterisation. (A) hPSC-derived spheres phase contrast image at day 7, scale 316 
bar 100 µm. (B) Radius distribution of liver spheres (mean ± SD, n = 100) (C) Hematoxylin and eosin (H&E) staining 317 
of hPSC-derived spheres sectioning at day 14, scale bar 50 µm. (D) Cytochrome P450 1A2 and (E) Cytochrome P450 318 
3A activity were analysed at different time points during culture (mean ± SD, n = 7). Secretion of the serum proteins 319 
(F) alpha-fetoprotein and (G) albumin, were measured by ELISA at the denoted times (mean ± SD, n = 7). Data was 320 
analysed using the 2-way analysis of variance (ANOVA) and Turkey’s multiple comparison test (α=.05). 321 

In order to predict the effects of approximately 1,000 spheroids consuming oxygen within this well 322 

geometry and media volume, multiple spheroids are generated in silico and distributed throughout the well 323 

in an array (for an example of the modelling geometry/mesh of multiple spheroids per well, see 324 

supplementary Figure S2). Three spheroid arrays are considered: “regular”; “random”; and “random with 325 

size variance”. “Regular” spheroid arrays are geometrically idealised distributions consisting of 993 evenly 326 

distributed spheroids in 3 stacked circular x-y arrays (see Figure 7A). Each spheroid has radius 130 µm. 327 

“Random” arrays consist of 1,000 spheroids (of radius 130 µm) assigned locations randomly within the 328 

well such that they do not overlap and are contained within the well geometry (Figure 8A). The “random 329 

with size variance” array also consists of 1,000 randomly distributed spheroids. However, their size is 330 

determined by their height such that 1,000 radii are drawn from a normal distribution 331 

(𝑟~𝑁(129.72, 22.85$)) and assigned to a spheroid in an ordered way such that the largest spheroid 332 

corresponds with the highest position in the well (see Figure 9A and supplementary Figure S3). This 333 

corresponds with an experimentally observed phenomenon whereby larger PSC-derived liver spheres 334 
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appear to be located within the upper portion of the media and smaller spheroids within the distribution are 335 

found towards the lower portion of the media. 336 

The steady state distribution of oxygen concentration throughout the spheroid arrays and media are plotted 337 

in Figure 7B, 8B, and 9B with the quantitative metrics summarised in Table 1 and Table 2. In Figure 7B it 338 

is clear that there is less oxygen available to the spheroids when multiple spheroids are cultured within the 339 

same volume of media. Furthermore, spheroids located towards the bottom of the well are relatively 340 

hypoxic. The randomised array of spheroids in Figure 8B highlights the potential for localised pockets of 341 

hypoxia that may exist within wells where multiple spheroids share the same relatively small amount of 342 

space (see heterogeneity in oxygen concentration and dark blue patches). The distribution of spheroid sizes 343 

with bigger spheroids positioned towards the upper portion of the media in Figure 9B appears to result in 344 

less oxygen depletion within the media (compare colour-coordinated concentrations of Figure 7B/Figure 345 

8B). This calibration of smaller spheroids located towards the bottom and larger spheroids towards the top 346 

corresponds with the non-linear nature of the oxygen gradients for these parameters as indicated by the 347 

parameter sensitivity analysis conducted for a single spheroid (Figure 3). It follows that larger spheroids 348 

are better suited to be positioned towards the oxygen source (media surface) to prevent hypoxia. 349 
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 350 

Figure 7: Multiple spheroids per well: regular array. Model simulation of multiple spheroids per well arranged in 351 
a regular array (A) and the consequent impact upon local oxygen concentrations at steady state (B). The radius is fixed 352 
at 130 µm for all 993 spheroids. Spheroids towards the bottom of the well have less oxygen. 353 
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 354 

Figure 8: Multiple spheroids per well: random array. Model simulation of multiple spheroids per well arranged in 355 
a randomised array with assumed uniform distribution (A) and the consequent impact upon local oxygen 356 
concentrations at steady state (B). The radius is fixed at 130 µm for all 1,000 spheroids. The random distribution of 357 
spheroids allows for localised pockets of low oxygen concentrations within the well. 358 
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 359 

Figure 9: Multiple spheroids per well: random array with ordered size distribution. Model simulation of multiple 360 
spheroids per well arranged in a randomised array with assumed uniform spatial distribution and ordered size 361 
distribution (A) and the consequent impact upon local oxygen concentrations at steady state (B). A normal distribution 362 
of spheroid radii are assumed (mean 129.71 µm, SD = 22.85 µm) and are positively correlated with spheroid height, 363 
i.e. the spheroids at the top are the largest and the spheroids at the bottom are the smallest. This format appears to 364 
reduce the overall global depletion of oxygen within the well compared to Figs 7 & 8. 365 
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SPHEROID ARRAY 
 Average O2  Maximum O2 Minimum O2 
 mmol/L mmHg ~% mmol/L mmHg ~% mmol/L mmHg ~% 

Regular 0.036 28 3.68 0.098 75.49 9.91 1.37×10-4 0.11 0.014 
Random 0.041 31.94 4.19 0.118 91.27 12 1.29×10-4 0.10 0.013 
Random with 
size variance 0.043 33.03 4.34 0.107 82.76 10.9 1.53×10-7 1.18×10-4 1.6×10-5 

Table 1: Quantitative oxygen metrics (mmol/L, mmHg and %) for concentrations within the spheroid array. 366 

MEDIA 
 Average O2  Maximum O2 Minimum O2 
 mmol/L mmHg ~% mmol/L mmHg ~% mmol/L mmHg ~% 

Regular 0.104 80.44 10.56 0.181 140 18.4 0.0052 4.02 0.53 
Random 0.106 82.00 10.76 0.181 140 18.4 0.0253 19.57 2.57 
Random with size 
variance 0.109 84.31 11.07 0.181 140 18.4 0.0373 28.85 3.79 

Table 2: Quantitative oxygen metrics (mmol/L, mmHg and %) for concentrations within the media. 367 

From Table 1 and Table 2 it is clear that oxygen levels in the media are very different to intra-spheroidal 368 

oxygen levels and therefore should not be used as a proxy measurement. The “random with size variance” 369 

is not only the most accurate representation of the observed in vitro scenario, but also appears to be the 370 

most physiologically relevant for in vivo interpretation and extrapolation as the average spheroid 371 

concentration appears to be closest to average oxygen concentration within the liver sinusoid. Furthermore, 372 

all spheroid arrays predict significant hypoxia in at least some of the spheroids, particularly larger spheroids 373 

towards the bottom of the well, due to the number of spheroids and consequent low oxygen supply available 374 

locally. The problem of hypoxic media is identified within the regular array but is not found for the 375 

randomised arrays (see the minimum oxygen media concentrations).  376 

 377 

4 Discussion 378 

The in silico framework described here was developed by incorporating in vitro cell culture information 379 

into a mathematical modelling approach. This modelling framework allows for the virtual simulation, 380 
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investigation and optimisation of experimental conditions in a relatively quick, transparent and economical 381 

manner.  382 

The representative results highlight the application of this approach to a novel PSC-derived liver sphere 383 

scenario with a tiered modelling system comprising four models (single spheroid within a well; multiple 384 

spheroids in regular array; multiple spheroids in randomised array; and multiple spheroids in randomised 385 

array with height correlated to size). This stem cell application has vital implications for scaled production 386 

of high fidelity and viable liver tissue for further research and transplantation. At each stage of the modelling 387 

pathway, from simple to complex tiers, it is possible to gain mechanistic insight into the nature of the system 388 

in vitro. 389 

By accounting for mechanistic processes within the system explicitly, the researcher can explore the impact 390 

of parameters and variables within the system. This can allow for more carefully calibrated experiments 391 

and provide more meaningful and physiologically relevant in vitro data. 392 

 393 

394 
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