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Abstract
This paper presents the failure analysis of layered clayey slopes with emphasis on the combined effect of the clay’s

weakening behavior and the seismic loading using the particle finite element method (PFEM). Diverse failure mechanisms

have been disclosed via the PFEM modelling when the strain-weakening behavior of clay is concerned. In contrast to a

single layered slope exhibiting either a shallow or a deep failure mode, a layered slope may undergo both failure modes

with a time interval in between. Seismic loadings also enlarge the scale of slope failure in clays with weakening behavior.

The failure of a real layered slope (i.e. the 1988 Saint-Adelphe landslide, Canada) triggered by the Saguenay earthquake is

also studied in this paper. The simulation results reveal that the choice of the strain-softening value controls the slip surface

of the landslide and the amplification effect is important in the triggering of the landslide.

Keywords Layered clayey slopes � Natural hazards � Particle finite element analysis � Seismic landslides

1 Introduction

Stability analysis of slopes in earthquakes has long been

recognized as a challenging problem in geotechnical

engineering. The simplest way to estimate the slope sta-

bility in earthquakes might be the limit-equilibrium method

in which the seismic loading is introduced as a permanent

body force. Known as pseudo-static analysis, this approach

provides a factor of safety (FOS) to indicate if the slope is

stable or not [34]. Despite its wide application in practice,

the choice of seismic coefficient is empirical. Alternatively,

a so-called permanent-displacement analysis method [26]

can be adopted to compute the deformation of slopes

during an earthquake. Notwithstanding its simplicity, the

model can fairly predict the deformation of the slope if the

geometry, soil properties and earthquake motions are

reasonably predefined [39]. With the continuing develop-

ment of numerical techniques, particularly the finite ele-

ment method (FEM), sophisticated soil constitutive models

capturing pronounced feature of soil behaviors can be

applied in the simulations to predict the evolution of slopes

subjected to seismic loadings [13].

Among soil features, the weakening feature of clays

plays as a significant role in slope failure. As indicated in

[5, 37, 48], if the weakening is not considered in the sim-

ulation an unstable slope may reach a new state of equi-

librium after experiencing just a very limited movement,

which does not agree with observations in many practical

cases. Additionally, the failure surfaces obtained from

analysis with and without the weakening behavior might

also differ [36].

Despite numerous contributions to slope stability in

earthquakes, most efforts were devoted to investigating the

failure process [13] which is, to a large extent, owing to the

limitation of the traditional FEM. Indeed, a large magni-

tude of change in geometry usually occurs in the post-

failure process of a slope for which the traditional FEM

cannot handle because of the severe mesh distortions and

free-surface evolutions. More recent development of

numerical techniques for large deformation analysis in

& Xue Zhang

xue.zhang2@liverpool.ac.uk

1 Dipartimento di Fisica e Astronomia (DIFA), Settore di
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geotechnics provides the possibility of simulating both the

failure and post-failure stages. Representative numerical

approaches of this capability include, but are not limited to,

the Arbitrary Lagrangian–Eulerian (ALE) technique [8],

the Coupled Eulerian–Lagrangian (CEL) method [12, 30],

the Material Point Method (MPM) [32], the Particle Finite

Element Method (PFEM) [27, 46, 48], and the Smooth

Particle Hydrodynamics (SPH) [9, 23, 28, 38, 44, 45].

Recently, the CEL method has been adopted to investigate

the large deformation behavior of clayey slopes under

seismic loading with the weakening of clays being con-

cerned [12].

In this paper, we focus on investigating the slope failure

in layered clay of strain softening subjected to seismic

loading. Owing to the low permeability of clays, the effects

of the dissipation of pore water pressure are limited and

thus the total stress analysis is performed which is in line

with the studies for landslides in clays in [7, 12]. For

comparison purpose, a two-layer slopes with and without

strain softening are studied using static analysis to deter-

mine the corresponding FOS. Dynamic analysis of these

slopes with the reduced strength is also carried out using

the PFEM to predict the complete failure and post-failure

evolutions. Additionally, the failure modes of the two-layer

slope subjected to seismic loadings are studied and com-

pared to the results from the strength reduction method.

Finally, a case study of a landslide occurred in 1988

Saguenay earthquake is carried out.

The objectives of this study are four-fold which are:

(i) presenting the failure pattern captured by static and

dynamic analyses; (ii) investigating the role of strain-

weakening in failure patterns; (iii) studying the effects of

seismic loading acting on slope failures; and (iv) recon-

structing a real clayey landslide controlled by seismic-

weakening effects.

2 Particle finite element method based
on mathematical programming

In the finite element analysis, computational domains are

discretized using meshes in which shape functions are

adopted for the interpolation of physical variables. Meshes

of high quality are important to the accuracy and conver-

gence of the finite element analysis. However, when

modelling large deformation geotechnical problems using

the traditional FEM, a large change of geometry inevitably

leads to mesh distortions and severe free-surface evolu-

tions. To circumvent these issues, a Lagrangian approach

called the particle finite element method (PFEM) was

proposed which treats mesh nodes as free particles that

may separate from the domain they originally belong to

[27]. To date, the PFEM or its variants [42, 48] have been

applied to analyze a variety of large deformation problems

in geotechnics such as free-surface flows [18], fluid–

structure interaction [11], granular flows [6, 46], ground

excavation [3], penetration problems [25], etc. Owing to its

capability in treating arbitrarily large deformations, the

PFEM has also been used for studying landslides with

focuses on their final run-out distance [4, 31, 47]. Both

failure and post-failure analyses can be conducted in the

framework of the PFEM when using appropriate soil

constitutive models. Applications of the PFEM to failure

and post-failure analyses of homogeneous conceptual slope

model can be found in [37, 48]. Its possibility for mod-

elling more complicated cases, such as practical landslides

in clays of high sensitivity [43, 49] and submarine land-

slides [50], has also been explored.

2.1 Governing equations

In this section, the equations governing the rate-indepen-

dent elastoplastic plane-strain problem for slope instability

analysis are presented. These equations include the

momentum equilibrium equations, the strain–displacement

relation, the constitutive equations and the boundary con-

ditions, which are

(a) Momentum equilibrium equations

rTrþ b ¼ q _v ð1Þ

(b) Strain–displacement relation

e ¼ ru ð2Þ

(c) Boundary conditions

Nr ¼ t ð3aÞ
u ¼ up ð3bÞ

(d) Constitutive equations

De ¼ Dee þ Dep

Dee ¼ CDr;Dep ¼ DkrF rð Þ
k� 0;DkF ¼ 0

ð4aÞ

Tresca yield criterion:

FðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxx � ryy

� �2þ4r2
xy

q

� 2c� 0 ð4bÞ

where r is the stress; b is the body force; q is the density; v

is the velocity; e is the strain consisting of the elastic

component ee and the plastic component ep; u is the dis-

placement; N ¼ nx; 0; 0; ny; 0; ny; 0; nx

� �

is the outward unit

vector of the boundary; t is the prescribed traction; up is the

prescribed displacement; FðrÞ is the yield function; C is

the elastic compliance matrix; k is the plastic multiplier; r
is the nabla operator; and D represents increment; c is the

undrained cohesion.
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2.2 Discretization and mathematical
programming problem

The h-method is introduced for the time integration of

Eq. (1) that is:

rT h1rnþ1 þ 1 � h1ð Þrn½ � þ b ¼ q
vnþ1 � vn

Dt
ð5aÞ

h2vnþ1 þ 1 � h2ð Þvn ¼ unþ1 � un

Dt
ð5bÞ

where h1 and h2 are coefficients and subscripts n and n ? 1

represent the known and unknown states, respectively.

Substituting Eq. (5b) into (5a) leads to:

rTrnþ1 þ
1 � h1ð Þ
h1

rTrn þ ~b ¼ cnþ1 ð6aÞ

in which

~q ¼ q
h1h2

; ~b ¼ 1

h1

bþ ~q
vn

Dt
; cnþ1 ¼ ~q

Du
Dt2

ð6bÞ

The boundary condition in (3a) is discretized in the

same manner which is

Nrnþ1 þ
1 � h1

h1

Nrn ¼ ~t with ~t ¼ 1

h1

t ð7Þ

Both h1 and h2 are set to be 1 in our simulation implying

the Backward Euler scheme.

The mixed triangular element (see Fig. 1) is utilized for

the space discretization of the stress r, the displacement u

and the inertial force c:

r � Nrr̂; u � Nuû; c � Ncĉ ð8Þ

in which Nr, Nu and Nc are the matrices consisting of the

corresponding shape functions. The displacement and

stress fields are interpolated using quadratic and linear

shape functions, respectively. Hence the proposed mixed

element dose not suffer from volumetric locking when

modelling incompressible materials which has been

demonstrated in [50].

According to [46], after discretized using the approxi-

mation in (8) the governing equations can be reformulated

as an equivalent mathematical programming problem:

max
r̂;ĉð Þnþ1

� 1

2
Dr̂TCDr̂� 1

2
Dt2ĉT

nþ1Dĉnþ1 ð9aÞ

subject to F r̂nþ1ð Þ� 0 ð9bÞ

BT r̂nþ1 þ AT ĉnþ1 ¼ ~f ð9cÞ

where

B ¼ r
V

NT
rBudV;Bu ¼ rNu ð10aÞ

C ¼ r
V

NT
rCNrdV ð10bÞ

D ¼ r
V

NT
c ~q

�1NcdV ð10cÞ

A ¼ r
V

NT
cNudV ð10dÞ

~f ¼ r
V

NT
u
~bdV þ r

S

NT
u
~tdS � 1 � h1ð Þ

h1

BT r̂n ð10eÞ

The above maximization problem is submitted to

available optimization engines for solutions following [37].

Such a solution strategy is called the finite element method

in mathematical programming. A typical advantage of this

solution strategy as indicated in [16] is the natural treat-

ment of some typical failure criteria with singularity. For

example, the Mohr–Coulomb yield function for plane-

strain problems can be casted as a standard cone and dealt

with straightforward in second-order cone programming

[16]. The general 3D Mohr–Coulomb yield function can

also be handled without difficulties by solving the problem

in semidefinite programming following [24]. This is in

contrast to the treatment of such yield criteria in the tra-

ditional Newton–Raphson based FEM in which a special

treatment at the singular point of the yield function is

required.

2.3 Particle finite element technique

The PFEM used in this study is the one developed in [46]

in which the operations of re-meshing and variable map-

ping have to be performed due to the history-dependency

of the concerned geomaterials. In a given time interval

tn; tnþ1½ �, the basic steps of the PFEM are summarized as

follows (see also Fig. 2):

1. Update the coordinates of mesh nodes using the solved

incremental displacement and obtain a cloud of

particles, Cnþ1 (Fig. 2a, b);

Fig. 1 The mixed isotropic triangular element utilized in the simu-

lation [17]
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2. Apply the a-shape method to recognize the new

computational domain Xnþ1 based on the position of

particles Cnþ1 (Fig. 2c);

3. Use Delaunay triangulation to discretize Xnþ1 and

obtain a new mesh Mnþ1 (Fig. 2d);

4. Map the history variables from the old mesh Mn to the

new mesh Mnþ1 using the Unique Element Method;

5. Conduct the incremental finite element analysis on the

new mesh Mnþ1 and loop the above process for all time

steps.

Although the governing equations applied in the pre-

sented PFEM is based on infinitesimal strain theory,

numerous studies have shown the possibility of using a

series of incremental analyses based on the infinitesimal

strain theory for analyzing problems with large deforma-

tions. A typical example is the sequential limit analysis that

has been used successfully for modelling truss systems,

metal materials and pipe-soil interactions with large

changes in geometry [15, 20, 41]. This idea has also been

adopted in the development of the so-called Remeshing

and Interpolation Technique with Small Strain (RITSS)

with successes in various large deformation geotechnical

problems [35]. The PFEM technique used in this study has

also been applied to numerous challenging large defor-

mation problems such as the breakage of a water dam, the

granular column collapse, the underwater granular flow and

induced waves [50] for which good agreements between

the simulation results and the lab testing data are obtained.

3 Conceptual model

A two-layer slope in purely cohesive soils is a simplified

conceptual model for widely found natural clayey slopes

[12]. Previous studies on layered clayey slopes were car-

ried out with major focuses on their stability [10, 29] where

influences of control parameters such as geometries, soil

properties, strength ratios on its stability condition and

failure mechanisms are investigated. In this paper, the

PFEM is adopted to investigate the slope failures in layered

clay with special attentions paid on the effects of the ratio

of material strengths and the material weakening on the

failure mechanism and evolution process of layered clayey

slopes subjected to seismic loadings (Fig. 3).

3.1 Static stability analysis (Static analysis)

Firstly, the static stability analysis is performed through the

static module of the code, in which the shear strength

reduction method and binary algorithm are implemented to

approach the critical state [37]. By means of the static finite

element analysis, the transition from a deep failure pattern

to a shallow failure pattern is obtained from our simula-

tions by increasing the strength ratio of the two layers (c2/

c1). Figure 4 shows the corresponding failure mechanism

for each case where the factor of safety (FOS) are also

illustrated.

For the homogeneous case shown in Fig. 4a, a clear

deep rotational slip surface is generated which is similar to

the slip surface in case of c2/c1 = 1.2 in Fig. 4b. With the

increase of c2/c1, the plastic strain accumulates at the

interface between two layers, leading to an incomplete

potential shallow slip surface in Fig. 4c. When c2/c1 is

further increased to 1.6 and 2, the shallow failure pattern

dominates and the FOS tends to be independent of the

strength of the lower clay layer. According to these

observations, it can be concluded that in a two-layer

undrained clayey slope two distinct potential slip surfaces,

controlled by the strength ratio, may form during the ini-

tiation stage which coincides with the findings in [10].

Fig. 2 Basic steps of the particle finite element method
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3.2 Large deformation analysis (PFEM analysis)

Although numerous efforts have been devoted to investi-

gating the failure of two-layer clayey slopes, they are

limited to the small-deformation analysis under quasi-static

conditions. For slopes in clay with strain-softening

behavior or subjected to seismic loading, the failure

mechanism is more complicated and the slip surface

obtained from static analysis cannot reflect the entire sce-

nario. For example, a series of slope failure may occur in

slopes in sensitive clay leading to unexpected retrogression

distance as shown in [21], which cannot be captured in

small-deformation static analysis.

In this part, the PFEM is adopted for large-deformation

dynamic failure analysis of the two-layer clayey slope. To

trigger the failure, the shear strength is reduced by a

Reduction Factor (RF) such that the reduced cohesion is

c’ = c/RF. Cases for clay with and without strain-softening

are considered in this part and the adaptive time step is

used to ensure that the maximum incremental displacement

is smaller than the edge length of the element.

3.2.1 Without strain-softening

Figure 5 illustrates the failure patterns for the two-layer

slope in clay without strain softening. The run-out distance

of the slope failure is relatively small at critical state

(Fig. 5a, c). Although the increase of RF contributes to its

mobility (Fig. 5 (b, d)), the magnitude of displacement is

still very limited. For the case c2/c1 = 1.4, the deep failure

pattern is observed and the slide moves along the deep slip

surface identified by the static analysis (Fig. 5 (e, f)). For

c2/c1 = 1.6, the shallow slip surface obtained from the

dynamic analysis agrees with that from the static analysis.

However, a deep movement is also observed (Fig. 5c).

From Fig. 5g, it can be seen that the deep slip surface is not

fully developed. However, this deep movement causes a

deep failure mode when RF increases as shown in Fig. 5d,

h.

With strain-softening

It is known that the degradation from peak to residual

strength induces the progressive failure in sensitive clays,

and contributes to the high mobility of large landslides

[21]. This progressive failure has been successfully cap-

tured through large deformation analysis with the inclusion

of a strain-softening model [7]. In this part, numerical

simulations are carried out to investigate the influence of

the strain-softening on the failure of the two-layer slope.

To this end, a strain-softening model where the cohesion

drops with the increase of the accumulated deviatoric

plastic strain in a linear form [36] shown in Fig. 6 is

implemented and applied to both clay layers in the PFEM

framework.

Case 1 c2/c1 = 1.4

Figure 7 shows the failure mode of the two-layer slope

with c2/c1 = 1.4. When clay sensitivity is considered, the

slope first fails in a mode of deep rotation which is similar

to that from static analysis without considering strain-

softening behavior. Afterward, a small retrogressive failure

occurs when the clay involved in the first failure propagates

forward. It is clear, although the static analysis captures the

Fig. 3 An undrained slope model discretized using 10,013 triangular elements with geometry being H = 18 m, D = 2H and tan b = 0.5 and

material parameters being elastic modulus E = 100 MPa, Poisson’s ratio t = 0.3, density q = 2000 kg/m3 and c1 = 60 kPa that are in line with

those in [10]. In lateral boundaries only vertical displacements are allowed and the bottom is fully fixed

Fig. 4 Identified slip surfaces through normalized equivalent plastic

strain (normalized with respect to the maximum value and values

greater than 1% are plotted) for five cases: a c2/c1 = 1; b c2/c1 = 1.2;

c c2/c1 = 1.4; d c2/c1 = 1.6; e c2/c1 = 2
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first deep rotational failure mechanism, it cannot predict

this sequential retrogressive failure pattern.

Case 2 c2/c1 = 1.6

The failure depicted in Fig. 8 is in a shallow pattern

which is in contrast to the deep rotational failure observed

for c2/c1 = 1.4 (Fig. 7). Nevertheless, in this case the initial

failure is also followed by a retrogressive failure as in the

case of c2/c1 = 1.4. Notably, an incomplete deep slip sur-

face is generated (Fig. 8a), which however, does not evolve

into a global failure as shown in Fig. 8c–d.

Increasing RF from FOS to 1.15 FOS, the incomplete

deep failure shown in Figs. 8a and 9a evolves into a deep

failure mode. It is clear that the shallow slide moves faster

than the deep one in Fig. 9b, c and they further merge and

move as a whole as displayed in Fig. 9d.

Compared with the cases without the strain-softening

behavior, a progressive failure with higher mobility is

observed for all cases with the strain-softening behavior

leading to complex failure modes. Obviously, the classical

static analysis fails in capturing these failures, though it can

predict the first failure. Apart from the retrogressive

behavior in softening clays, the dynamic analysis also

shows that a mixture of shallow and deep failure mecha-

nisms may co-exist in a clayey slope, which is also indi-

cated in [10].

4 Seismic loading

The direct action on a slope by an earthquake consists of

the stresses caused by the seismic ground motion. It has

been acknowledged that the dynamic response of a slope to

seismic motion is controlled by various factors that can

amplify and de-amplify signals, including the excitation

signal, local topography, material property, and disconti-

nuities [40]. The accurate wave propagation modelling

requires high quality mesh, efficient artificial boundary

conditions, smaller time step and suitable wave in-put

methods. For the landside modelling composed of pre-

&post-failure processes, it is hard to implement the true

wave propagation due to the existence of discontinuities. A

practical way is to treat the seismic loading as an inertial

force to the slope. More specifically, body forces are added

by two terms bx and by, in which bx = qax, by = qay, and ax

and ay are prescribed accelerations in horizontal and

Fig. 5 Final slope profiles with the distributions of displacement and the normalized equivalent plastic strain: a–d displacement; e–h equivalent

plastic strain normalized with respect to the maximum value. Black and red dash lines are the identified deep and shallow slip surfaces through

static analysis, respectively

Fig. 6 Variation of cohesion c with deviatoric plastic strain k.

Subscripts p and r represent peak and residual states respectively.

k ¼ r _kdt. _k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5 _ep
ij _e

p
ij

q

and _ep
ij is the rate of deviatoric plastic strain

tensor given by _ep
ij ¼ _ep

ij � 1
3
_ep
kkdij, in which dij is Kronecker’s delta

and _ep
ij is the rate of the plastic strain tensor (kp = 0.1, kr = 1 and cp/

cr = 5 in this section)
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Fig. 7 Contours at four time instants for c2/c1 = 1.4 and RF = FOS with the strain-softening model: a–d velocity; e–h equivalent plastic strain.

Dash lines are the identified deep slip surfaces through static analysis

Fig. 8 Contours at four time instants for c2/c1 = 1.6 and RF = FOS with the strain-softening model: a—d velocity; e–h equivalent plastic strain.

Dash lines are the identified shallow slip surfaces through static analysis

Fig. 9 Contours at four time instants for c2/c1 = 1.6 and RF = 1.15 FOS with the strain-softening model: a–d velocity; e–h equivalent plastic

strain. Black and red dash lines are the identified slip surfaces for deep and shallow failure modes through static analysis, respectively

Acta Geotechnica

123



vertical directions for two-dimensional cases. To investi-

gate the two-layer slope subjected to seismic loadings, the

seismic signal of the 1940 El Centro earthquake obtained

from COSMOS virtual data center [2] shown in Fig. 10 is

used. A hyperbolic distribution of seismic coefficient is

introduced to consider the amplification from the base to

the ground [14]:

ah ¼ a 1 þ 2 h=Dð Þ2
� �

ð11Þ

where ah is the coefficient at height h measured from base,

a is the prescribed acceleration, and D is the total height of

the model.

The EI Centro signal is treated as horizontal body force

in this section and boundary condition is set the same as

that in Sect. 3. The used time step is Dt = 0.02 s in line

with the time interval of the used EI Centro signal.

Case 1 c2/c1 = 1.05

Because the slope is unstable when c2 = c1 = 60 kPa,

the case with a small strength ratio c2/c1 = 1.05 (FOS =

1.01) is adopted here. Subjected to the seismic loading, the

failure is still in a deep mode (Fig. 11), however the slip

surface does not coincide with the one predicted by the

static analysis. Failure occurs first at the bottom of the

slope (Fig. 11a) and then propagates towards the ground

(Fig. 11b) forming a global failure eventually (Fig. 11c).

Due to the complexity in seismic loading and strain-soft-

ening behavior, the progressive failure in seismic clayey

slope is more complex, leading to the formation of several

blocks. The deposit shown in Fig. 11c is not the final

profile of the landslide. The sequential failure process after

t = 8.0 s is similar to that discussed in [49]. For instance,

the newly formed back scarp resulting from the previous

collapse may fail as well with the disturbed geomaterials

migrating forward until a stable back scarp is formed which

is termed as the retrogressive landslide.

Case 2 c2/c1 = 1.4

The progressive failure for c2/c1 = 1.4 shown in Fig. 12

is similar to the one depicted in Fig. 11. From Fig. 12b, the

deep failure is also larger than the predicted one by static

analysis. The global failure appears at t = 9 s in this case,

which is later than in the case of c2/c1 = 1.05 (t = 8 s).

Afterward, several new blocks form near the global deep

failure, as shown in Fig. 12c.

Case 3 c2/c1 = 1.6

As for the case c2/c1 = 1.6, a mixture of shallow and

deep failure mechanisms is observed when subjected to

seismic loading (Fig. 13). It is notable that an apparent

time delay between the first shallow failure (Fig. 13a) and

the subsequent deep failure (Fig. 13c) is observed in the

simulation. The shallow failure is first observed, coinciding

with the predicted critical failure mode by static analysis.

After more than 10 s, the deep movement (as shown in

Fig. 5c, d, Figs. 8a and 9a) forms a large deep failure, due

to the impact of the seismic loading and the softening. This

indicates that a huge landslide may take place after a series

of shallow failures for a slope of large strength ratios in an

earthquake event. The combination of seismic loadings and

strain-softening leads to a considerable change in the scale

and evolution of the slope failure.

5 Case study: 1988 Saint-Adelphe landslide

Based on the numerical investigations on the conceptual

slope model, it has been found that weakening effects play

a critical role in both the failure patterns and scales. With

additional seismic loadings, the failure initiates from the

vulnerable section and propagates to the ground, leading to

global slip surfaces. In this section, the Saint-Adelphe

landslide, Canada, occurred on November 25th, 1988, after

the Saguenay earthquake with magnitude of 5.9, is studied

using the present modelling technique. It was speculated

that the landslide was caused by an undrained failure with

the strength loss in the cohesive soils involved in the slide

[33]. Geotechnical tests and numerical studies indicated

that the implementation of strain-weakening model may

result in a reasonable back analysis of the progressive

failure of the slope [1].

In this study the analysis is performed on the A–A

section of the slope as shown in Fig. 14, which is the same

section analyzed in [1]. Differing from numerical analyses

in [1], the strain-weakening behavior is considered here in

conjunction with dynamic analysis to highlight the role of

weakening effects under seismic loadings.

The whole model is composed of 6554 elements (the

length of the model is 300 m, that is the lateral extension of

Fig. 14), and the boundary condition is in line with the one

in Sect. 4. The cohesion of clay decreases from 50 kPa atFig. 10 1940 EI Centro seismic signal (data from COSMOS [2])
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Fig. 11 Failure surfaces depicted by the equivalent plastic strain at three instants for c2/c1 = 1.05. Black dash lines are the deep failure surfaces

predicted by static analysis

Fig. 12 Failure surfaces depicted by equivalent plastic strain at three instants for c2/c1 = 1.4. Black dash lines are the deep failure surfaces

predicted by static analysis

Fig. 13 Failure surfaces depicted by the equivalent plastic strain at three instants for c2/c1 = 1.6. Red dash lines are the shallow failure surfaces

predicted by static analysis
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the top of stiff layer to 18 kPa at the top of soft clay layer,

and then gradually increases with the depth by 3 kPa/m in

the soft clay layer. The cohesion of silty sand layer is set as

100 kPa. Other material parameters are: density is

1700 kg/m3, elastic modulus is 20 MPa, and Poisson’s

ratio is 0.487 [1].

The EI Centro seismic waveform is used to represent

inertial effects since the ground motion near the position of

the landslide was not monitored during the 1988 Saguenay

earthquake. The amplitude of the EI Centro signal in

Fig. 10 is re-scaled by a factor of Ap = 1/3 to fit the esti-

mated peak acceleration 0.1 g in [1]. The seismic loading is

excited as horizontal and vertical body force terms (vertical

is set as half of horizontal force), distributed as Eq. (11).

Numerical simulations are conducted to study the response

of the slope under 50 s excitation and the time step is set as

0.02 s.

(1) Degradation of cohesion: Dcp

To account for the strain-softening behavior the cohe-

sion is degraded with plastic shear strain (ep
xy) in soft clay

layer which is computed at each time step

cr ¼ cp � ep
xyDcp ð12Þ

where cp and cr are peak and residual values of the cohe-

sion, respectively.

According to experimental tests the measured value of

Dcp is 0.5 kPa/%, while the value from back-analysis is

usually shown more brittle than that from the shear tests

[1, 22]. Three values of Dcp (Dcp = 0.6 kPa/%, 0.8 kPa/%,

and 1 kPa/%) are adopted here to investigate the influence

of Dcp on the slip surface.

From Fig. 15, it appears that the case with Dcp = 1 kPa/

% provides a reasonable slip surface compared to the

observed data. As can be seen in Fig. 15a, for Dcp-

= 0.6 kPa/% a small magnitude of the plastic strain

accumulates near the toe of the slope, while no clear slip

surface is generated. The slip surface becomes clearer with

the increase of Dcp. Other predicted slip surfaces are from

[1], where static drained analysis, dynamic undrained

analysis, and post-seismic analysis with strain-softening

model (Dcp = 0.8 kPa/%) were performed. The slip surface

from our simulation agrees well with the observed one as

shown in Fig. 15c, suggesting that both the seismic loading

and the strain-weakening contribute to the initiation of the

landslide.

(2) Amplitude of signal: Ap = 1

Another simulation is conducted to investigate the slip

surface with a larger amplitude, since the slip surface in

Fig. 15a is incomplete. The factor of amplitude Ap is set as

1 here, instead of 1/3 as in the previous simulations. As

shown in Fig. 16, the increase of amplitude causes a larger

plastic zone. It is notable that the slip surface still cannot be

observed for Dcp = 0.6 kPa/ indicating that the failure of

the landslide is significantly controlled by weakening

effects.

(3) Back analysis for run-out distance (Ap = 1/3)

The generation of slip surface is properly captured with

the assumption that the value of Dcp is slightly higher than

the experimental value. The slip surface forms from the

accumulated plastic strain at toe to the crest and finally

leads to the failure of landslide with 1 m runout distance

(Fig. 17a), which is smaller than the reported value

(8–10 m) [19]. Increasing the value of Dcp to 2 kPa/%, the

runout distance reaches to 3 m, which indicates that the

mobility of the failed mass is controlled by strain-softening

behavior. It can be inferred that the real material during

seismic shaking might be even weaker, or additional fac-

tors after earthquake activate its mobility.

(4) Amplification effects

The distribution of acceleration in Eq. (11) was pro-

posed in [14] to improve the performance of the pseudo-

static approach applied to seismic stability analysis of

slopes, and it is used here to include the amplification

effects in the simulations. An investigation is conducted to

present the failure mechanism without this hyperbolic

distribution (acceleration is uniformly distributed and Ap-

= 1/3).

As can be seen in Fig. 18, two large values of Dcp are

used and a small scale local failure has been captured with

maximum displacement being 0.1 and 4 m, respectively.

The failure is different from the observed one, and this

Fig. 14 A-A section of the Saint-Adelphe landslide: upper from [1];

lower is the discretized finite elements with colorful polygons

representing the layers. This is the central part of the model adopted

in numerical simulation, which is 300 m long
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indicates that the amplification of the acceleration is

important to the failure mechanism in this landslide.

Fig. 15 Contour of equivalent plastic strain from dynamic analysis compared with the observed slip surface and numerical results from [1] for

three cases: Dcp = 0.6, 0.8 and 1 kPa/%

Fig. 16 Contour of the equivalent plastic strain from dynamic analysis compared with the observed slip surface and numerical results from [1]

for two cases: Dcp = 0.6 and 1 kPa/%

Fig. 17 Final profile of landslide with displacement distribution for Dcp = 1 kPa/% and Dcp = 2 kPa/%
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6 Conclusion

Failures of clayey slopes are usually complicated and are

significantly controlled by the change of strength. As a

representative model, the study of layered clayey slopes

has attracted great attention from researchers, but most

studies were conducted under the assumption of limited

deformation. A particle finite element code is used in this

paper to investigate the inertial-weakening effects on the

failure mechanisms of clayey slopes where large defor-

mations are expected to occur. The conclusions drawn from

this study are as follows:

(i) The failure of a two-layer clayey slope can transit

from a deep to a shallow mode as predicted by static

analysis and the failure pattern is sensitive to the strength

ratio of the two layers.

(ii) According to the dynamic analysis without strain-

softening, the slide mainly moves along the slip surface

identified by static analysis. For the case that is predicted as

a shallow failure in static analysis, a sliding movement

along deep slip surface is also observed. This indicates that

a complete deep failure may form during dynamic evolu-

tion of the slope.

(iii) The inclusion of strain-softening behavior leads to

the progressive failure in clays and retrogressive failure is

observed in all cases. The mass involved in the first failure

in all cases moves along the identified slip surface from the

static analysis. A mixture mechanism of shallow and deep

failure patterns is observed for the case c2/c1 = 1.6, when

material is reduced by a value larger than the FOS.

(iv) With additional seismic loadings, it is found that the

first failure is nearly in line with the one provided by the

static analysis. The combination of seismic loadings and

strain softening enlarges the scale of failure and causes the

formation of more sliding blocks. A time delay between the

shallow failure and the deep failure has been observed

indicating that a huge catastrophic landslide in a deep

failure pattern may occur after a shallow failure in

earthquakes.

(v) A case study on the 1988 Saint-Adelphe landslide

shows that the choice of strain-softening parameter affects

the slip surface, though the same rotational mechanism is

found. The amplification is important when generating the

seismic loadings and the inclusion of a simplified hyper-

bolic form of acceleration distribution provides a more

reasonable failure surface.

(vi) The transition from failure to post-failure in real

landslides is complex, and current numerical simulations

are incapable to well describe it. More efforts including

field surveys and experimental tests should be conducted to

understand the physical process. For the studied 1988

Saint-Adelphe landslide, the displacement and post-failure

behavior are not well described though slip surface is well

reproduced.

The present study on the simplified layered clayey

slopes shows that the use of the classical static analysis is

not able to predict failure types well. The dynamic analysis

using the PFEM is more suitable for assessing the evolu-

tion of slope failure when the clay has strain softening

behavior in an earthquake. Nevertheless, it should also be

stressed that more efforts are required for reasonable con-

siderations of the seismic wave propagation and the soil

behaviors.
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