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Abstract. The development of multi-stable structural forms has attracted considerable attention in the 

design of architected multi-materials, metamaterials, and morphing structures, as a result of some 

unusual properties such as negative stiffness and, possibly, negative Poisson’s ratio. Multi-stability is 

achieved through a morphological change of shape upon loading, and in doing so multi-stable structures 

undergo transitions from one equilibrium state to another. 

This paper investigates the structural performance of the negative stiffness honeycomb (NSH) 

metamaterials made of double curved beams which are emerging in various applications such as 

sensors, actuators, and lightweight impact protective structures with structural tunability and 

recoverability. An analytical treatment is pursued using the Euler-Lagrange theorem and the stability 

of the honeycomb has been studied. Based on a static analysis of the nonlinear elastic system, the 

developed tangent stiffness matrix and ensuing deformation curve were assessed through multiple 

phases of deformation. The closed-form solution was in good agreement with the numerical finite 

element model at different bistability ratios. It was shown that the bistability ratio had a pronounced 

effect on the overall response of the honeycomb and the desired negativity in the stiffness matrix could 
be achieved with high bistability ratios. 
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Nomenclature 

Latin upper-case Latin lower-case Greek upper- and lower-case 

�� 
Displacement field 
amplitude of the jth mode, 
[1]  

� Beam width, [�] Ω 
Excitation frequency, 
[���]  

� Closed surface Area, [��] � 
Deformation of mid-span, 
[�]  

� 
Vector form of the mid-
point displacement of the 
curved beam, [�] 

� 
Amplitude of displacement; 
[L] 

� 
Axial compression load, 
[�����] 

Δ 
Dimensionless mid-point 
displacement of the curved 
beam, [�] 

�  
Young’s Modulus, 
[�������] 

ℎ 
Midpoint displacement of 
straight beam, [�] 

Δ� 
Total dimensionless 
displacement of the 
structure, [�] 

�(�) 
Harmonic excitation load, 
[�����] 

ℎ�   Bistability ratio, [1] �� Eigenvalues, [1] 

� Second moment of area, [��] �� 
Stiffness of the ith 
member, [���� ] 

��  Modal frequency, [1] 

� 
Tangent stiffness matrix, 
[����] 

�� Beam span, [�] � Section thickness, [�] 

��  
Characteristic length of the 
structure, [�] 

� � 
Inertia mass of the curved 
beam, [�] � ̅

Damping coefficient, 
[����] 

� 
Equivalent concentrated 
lateral load, [�����] 

�� 
Load per unit length, 
[����] 

 
 

�� 
Dimensionless concentrated 
lateral load, [�����] 

� Membrane force, [�����]  
 

�� 
Bending strain energy, 
[������] 

� 
Length of the curved beam 
after deformation, [�] 

 
 

��  
Membrane strain energy, 
[������] 

�� 
Initial length of the curved 
beam, [�] 

  

�� 
Elastic potential energy, 
[������] 

� Radius of gyration, [�] 
  

� �  
Original configuration of the 
curved beam, [�] 

� ̂ Scaled time, [�] 
  

� �  
Transverse displacement of 
the straight beam, [�] 

��� 
Dimensionless displacement 
field of the jth mode; [1] 

  
 

  �  
Vector array form of the 
beam mid-span 
displacement, [�] 

  

  ��� 
Dimensionless vector form 
of the beam mid-span 
displacement, [�] 
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1 Introduction 

The development of multi-stable structural forms and manufacturing techniques, alongside a better 

understanding of fundamental nonlinear theories of continuum mechanics, have allowed the fabrication 

of lightweight structures composed of slender structural elements with high load-bearing capacity. 

These adaptive forms undergo shape change while providing appreciably high strength, thus offering a 

basis for the design of morphing structures. Various methods exist to render multi-stability in structural 

elements feasible, such as applying pre-stress [1], thermal effects [2], and curvature [3].  

With recent advancements in additive manufacturing technologies, there has been a lot of interest in the 

structural mechanics of honeycomb structures, owing, not only to their relatively high stiffness and 

strength, but also to their efficient specific energy absorption during accidental impacts [4], [5]. These 

structures feature a large constant plateau in their stress-deformation path between the initial yield and 

the densification point. Although the relative density is a prime factor [5]–[7] in the mechanical 

performance of lattice/honeycomb structures, other factors such as cell wall angle, loading conditions, 

cell structure, and geometry also play important roles. For instance, hexagonal honeycomb structures 

subjected to compressive loading exhibit different buckling modes depending on the loading condition. 

In uniaxial compression, two kinds of cell collapse appear and alternate in the loading direction as a 

result of cell wall buckling, while in biaxial compression the buckled cell pattern entails two orthogonal 

axes of symmetry [8]. 

In previous studies in this area, Zheng et al [9] presented a finite element model for the dynamic 

crushing of the hexagonal honeycomb structures. Hu et al. [10], [11] investigated the same problem, 

experimentally as well as computationally, but with the influence of the cell wall angle and impact 

velocity on the crushing behaviour included. By assuming the beam element behaviour for the members, 

they showed that in honeycombs experiencing high-velocity impacts, a localised crushing band occurs 

at the loading band normal to the impact direction, which propagates layer by layer to the supporting 

ends, while the honeycombs with increased cell wall angles, at impact velocities above 40m/s, undergo 

deformation modes similar to that of high-velocity impacts, regardless of the initial impact velocity.  

A range of analytical [8], [12], experimental [13], [14], and numerical [13], [15] investigations were 

carried out on the mechanical behaviour of hexagonal honeycomb structures in the past. Ouyang et al. 

[16] studied the stress concentration in defective octagonal honeycombs (with missing cell walls along 

a row) subject to uniaxial tension. They found that the stresses in cell walls decrease exponentially with 

distance from the centre of the defect.  

Previous studies [17], [18] analysed the static post-buckling response and dynamic vibration of buckled 

clamped-clamped beams subject to harmonic excitations theoretically and experimentally. Using the 

multi-mode Galerkin discretisation, the period-doubling bifurcation, snap-through and quasi-periodic 

motions were determined. The effective nonlinearity, or the quotient of the functional of the 

displacement field over a closed surface to the vibrational frequency, remained negative below the 

critical buckling level (buckled displacement at mid-span). The latter work determined exact solutions 

to the post-buckling of the beams with different boundary conditions. Li et al. [19] investigated the 

vibration of a thermally buckled beam with geometric nonlinearity effects considered in post-buckling 

analyses.  
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From the load-displacement curve viewpoint, the snap-through instability phenomenon is associated 

with a sudden jump in the displacement in the load-control curve. A counterpart phenomenon called 

snap-back, however, occurs in the displacement-control curve when the load reduces suddenly even 

without an increase in the prescribed displacement [20], [21]. Mechanical systems that do not dissipate 

energy undergo a loading-unloading cycle, thus achieving hysteresis usually in a displacement 

controlled way. References [20], [22] examined the instability of an RVE (representative volume 

element) mechanical system comprising two or more cosine-shaped, curved beams paired vertically in 

series, wherein the top beam is thinner than the bottom one. The hysteresis of the structure was 

examined under displacement-control loading and the difference with the load-control case was 

elucidated. Upon stretching at the edges, the curvature of the top slim beam changed while the bottom 

beam curvature remained relatively constant. For a lattice made of such an RVE, curvature reversing 

was observed in the middle beams which were shorter than the top and bottom ones. The slim beams 

exhibited snap-back buckling while the curvature of the bottom beam remained unchanged for various 

loading scenarios. In a similar study [23], the snap-back phenomenon of the thick hyperelastic columns 

was observed where both the force and displacement reduced after the onset of loading.    

Mechanical systems that exhibit bistability are ideal candidates for some applications in areas such as 

robotics [24]–[26] and product design [27]–[29]. Experimental evidence demonstrated that the desired 

bistability in the double curved beams provides two distinct stable configurations. The transition of the 

buckled beam from one stable position to another is accompanied by the reduction of the force which 

results in the release of the absorbed energy [30], [31].  

Bistable beam structures could be integrated into mechanical systems that absorb energy elastically to 

provide impact resistance, enabling them to recover from an initial impact and respond to subsequent 

impacts. Examples of such systems are negative stiffness honeycomb (NSH) metamaterials, which 

when subjected to lateral unidirectional loads, exhibit zero Poisson’s ratio and Negative Stiffness as 

salient features. The terminology NSH refers to a decrease in load following an increase in displacement 

in the honeycomb structure. While the response of the NSH unit cell investigated by [32] was similar 

to the hexagonal honeycomb structure, the NSH structure (composed of an array of NSH cells) featured 

considerably higher recoverability (i.e., negligible plastic deformation) than the conventional hexagonal 

honeycomb structure. In the circumstances of frequent collisions, a structure made of these cells can be 

a viable choice. Pre-strain below the point of instability in NSH structures enables the tunability of bulk 

elastic wave propagation [33]. The authors examined Bloch wave solutions in the NSH at pre-strain 

values of 0, 0.0101, 0.0207, and 0.0252, and showed that the size and magnitude of the band gaps 

frequency range decreased with the increase in pre-strain.  

Another structural system of interest pertains to acoustic metamaterials, because their sub-wavelength 

structure permits controllable wave dispersion. Vangbo [34] and Qiu and Lang [35], [36] proposed an 

analytical model for mechanically-bistable curved beams with a prefabricated geometric profile similar 

to that of a conventional beam deformed into the first Euler’s buckling mode when subjected to an 

external concentrated force (actuation) at its mid-span. Analytical investigations were validated by 

microscale experimental models using an actuator. Cazottes et al. [30] studied the same problem for a 

single curved beam with the force applied at different locations. Camescasse [31] investigated the static 

actuation of an arch with initial constant curvature.  
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Despite the interesting studies mentioned above, research on NSH metamaterials is still in its infancy, 

given most studies have focused on negative stiffness honeycombs as lattice structures in rectangular 

patterns. This work proposes an analytical model to describe the structural mechanics of NSH 

metamaterials with potential application to the design of recoverable protective systems.  

This paper is organised into five sections. Following this introduction, a mathematical model for the 

quasi-static loading of the bistable curved beam is developed. In Section 3, an analytical solution is 

sought for a transversely-loaded honeycomb structure, which is designed from the modular pattern of 

the clamped double curved beams, while local and global deformations are investigated accordingly. 

Section 4 examines the validity of the analytical model using numerical finite element models. Finally, 

Section 55 presents the conclusions of the study.  

 

2 Governing Equations 

The honeycomb model assessed herein, depicted in Figure 1a, is similar to the design proposed and 

examined by Correa et al. [32], [33]. The structure is architected with four pairs of double curved beams 

along the direction of the load and an arbitrary number of cells normal to this direction. It is stipulated 

that the model is restrained at either side with axisymmetric boundary conditions, while a case with 

unrestrained boundaries is discussed later in the context of the problem. The beams are connected with 

a series of horizontal and vertical stiffeners of identical thickness.  

The structure is subject to a static, uniformly-distributed compressive load q0 [force/length], which is 

exerted laterally, replicating a unidirectional compression. However, as the upper row of double curved 

beams remains undeformed before the full axial squashing and snap-through of the double curved 

beams on the lower rows, the equivalent point load exerted at the mid-spans of the double curved beams 

may be considered in the study. It is further assumed that the structure remains purely elastic throughout 

the loading process.  

The deformation of the NSH model, following the experimental and numerical evidence, occurs in four 

stages, namely (i) the downward motion resulting in the axial compression of the structure struts, (ii) 

the snap-through in the inverted beams of the top row, (iii) further axial compression, and finally (iv) 

the snap-through of the roof-shaped curved beams in the lower row. Throughout the motion, the 

kinematic admissibility of the displacement field and the stress state are ensured so that there are no 

‘jumps’ in the deformation. 

The curved beams, as fabricated, have a sinusoidal profile, which mimics a monolithic beam buckled 

into its first Euler buckling mode (see Figure 1b). Upon the application of loads, the double curved 

beams exhibit bistability [36], i.e., the system jumps abruptly from mode 1 to 3 without going through 

mode 2 (see Figure 1c). Thus, the deformation of the double curved beams may be assumed to be 

homogeneous with no relative displacements of the top beam to that of the bottom. Hence, the pairing 

of the beams ensures that mode 2 is constrained, and the influence of this mode can be ignored. 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Applied Mechanics. Received December 21, 2020;
Accepted manuscript posted January 25, 2021. doi:10.1115/1.4049954
Copyright © 2021 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/doi/10.1115/1.4049954/6625547/jam
-20-1671.pdf by U

niversity of Liverpool user on 28 January 2021



6 
 

 

Figure 1. (a) NSH model for analytical study. (b) Buckling modes of the single curved beam with axisymmetric 
boundary conditions. (c) Buckling modes of the double curved beams with axisymmetric boundary conditions. 
(d) Deformation of the curved beam subject to a concentrated transverse load. 
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2.1 Buckling of the curved beam 

Consider an initially flat beam with a rectangular cross-section of thickness �, width �, and length ��, 

which is made of an isotropic, ductile material, with clamped edges and subjected to a static axial load 

of magnitude �. The deformation response of the beam, when subjected to damped dynamic excitation 

is evaluated from the partial differential equation 

� �

��� �

���
+ �

��� �

���
+ ��

��� �

���
+ �

�� �

��
−
��

2��

��� �

���
� �

�� �

��
�
�

��
��

�

= �(�)���Ω�, (1) 

 

where �� represents the damping coefficient, and �(�) and Ω denote the excitation load and frequency, 

respectively. The prescribed initial and Dirichlet boundary conditions for a clamped-clamped beam 

are  � �(�,� = 0)= �
�� �

��
�
���

= 0 and � �(0,�)= � �(�� ,�)= �
�� �

��
�
���

= �
�� �

��
�
����

= 0, respectively. 

For convenience and generalisation, the following dimensionless parameters are introduced 

� =̅
�

��
,    � �
���� =

� �

ℎ
 ,   � =̂

�

��
� �

��

� �
,    ��= �

��
�

��
,     ��=

���
�

�� ���
 ,     ��(�)= �

��
�

��
,       

 Ω� = � ��
��

��

� �
, and      Γ =

ℎ�

2��
�  � �

����′���,̅
�

�

 

(2a-h) 

where � = � �/�  is the radius of gyration, while noting that the integral on the left-hand side of Eq. (1) 

is constant. The partial differential equation of Eq. (1) boils down to a fourth-order differential equation 

as 

��
..

� + ���− Γ����
��+ ���

�� + ����
.

� = �����Ω�� .̂ (3) 

 

As a convention, the overdot accounts for differentiation with respect to scaled time �,̂ while the prime 

represents differentiation with respect to a scaled coordinate �.̅ Provided that the temporal terms are 

eliminated, the two types of the solution to Eq. (3) are subsequently determined as 

� �
����(�)̅= �(1 − cos(��� ̅)), (4) 

and     � �
����(�)̅= �(1 − 2� ̅− cos(��� ̅)+ 2sin(�� � ̅)/��), (5) 

where the Dirichlet boundary conditions � �
����(0)= � �

����(1)= (���
�)��= 0 = (���

�)��= 1 = 0 are applied, whilst 

�� = � ��− Γ  represents the critical buckling load. These boundary conditions result in four 

simultaneous equations, which, when cast in the matrix form, and dictating its determinant to be zero, 

yield the real solution. Subsequently, a restriction on �� is imposed as 

sin�
��

2
� �tan�

��

2
� −

��

2
� = 0, (6) 
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giving eigenvalues �� = 2�,2.86�,…  , and critical buckling loads �� = 4��,8.18��, …  . Substituting 

Eqs. (4) and (5) into Eq. (2g) and making use of Eq. (6) gives constant � = ± � ��/��
� − 1. Thus, C can 

be determined from a given axial load for any required Eigenmodes [18]. 

Eqs. (1) and (4) represent the first and second buckling modes; the latter never occurs due to higher 

energy demand [30]. Hence, the original configuration of the fabricated beam in the study has a profile 

similar to the first Euler’s buckling mode (�� = 2�):  

� � =
ℎ

2
�1 − cos�

2��

��
�� , (7) 

where ℎ is the rise of the beam. The respective profiles of the beam in its original and deformed 

configurations are illustrated in Figure 1d.  

The foregoing analysis establishes a basis for the mathematical treatment of bucking in the honeycomb 

systems made of such curved beams. Similar to [36], a mode superposition analysis is performed to 

investigate the deformation of the curved beam. To this end, the system may be regarded as a discrete 

elastic system of n degrees of freedom depending on the number of cells. The buckling modes of 

deformation form an orthogonal set, which, having the same boundary conditions, collectively 

characterise the deflection of the beam when mode superposition is implemented. The deflection of the 

beam truncates as a linear combination of the modes as  

�� = ℎ� �� �1 − ����
���

��
��,

�

�� �

    (8) 

where modal frequencies ��  are expressed as 

  �� = (� + 1)�,              � = 1,3,5,… . (9) 

The frequencies of even subscripts are determined by the solution to Eq. (6). The lateral displacement 

at the mid-span of the beam is denoted as � = � � �
��

�
� − � �

��

�
�. The bending strain energy ��, the 

membrane strain energy �� , and the total elastic potential energy �� of the system are expressed, 

respectively, as 

�� = � �
��� �

���
−
���

���
�

�

��
��

�

, (10) 

�� = − � ���,
��

�

 (11) 

and  �� =
�

�
� ��� , (12) 
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where �  represents the vector array form of the mid-span deformation �. Notably, by assuming the 

vertical struts to be inextensible, the transverse displacement of the curved beam mid-span in the bottom 

layer is identical to the axial deformation of the vertical struts in the top layer.  

To evaluate Eq. (11), using the approximation �� = ��� 1 + �
��

��
�
�

≅ 1 +
�

�
�
��

��
�
�

, the new length of 

the curved beam after deformation can be written as 

� = � 1 +
1

2
�
��

��
�
�

��.
��

�

 (13) 

The initial length of the beam, ��, is therefore recovered by replacing �  with � � in Eq. (13). The 

membrane force induced by the change of beam length is expressed as 

� = ��� �1 −
�

��
 �. (14) 

Eqs. (8), (10), (11), and (14) construct the basis of the mathematical procedure to verify the buckling 

response of the curved beam. The overall lateral deformation of the structure is evaluated using Eq. 

(12). For brevity in the mathematical procedure, it is presumed that the local curved beam buckling at 

the onset of snap-through (or snap-back) and the global lateral deformation of the structure are 

independent, i.e. they do not occur simultaneously. In practice, the variation of the force at different 

phases is the algebraic sum of that of the local buckling together with that due to the global lateral 

deformations.  

The following dimensionless parameters are utilised in this work 

��� =
��

ℎ
, � =̅

��
ℎ
, ℎ� =

ℎ

�
, ��� =

����
�

��ℎ�
, ��� =

�� ��
�

��ℎ�
, �� =

���
�

��ℎ
, 

(15a-k) 

� =̅
�

��
, Δ =

�

ℎ
, � =̅

���
ℎ�

, �� =
��
�

��
�,     and     � =̅

���
�

��
 . 

The displacement profile is thus furnished as 

��� = � ���1 − ��������̅�.

�

���

    (16) 

Substituting Eqs. (15) and (16) into Eqs. (10)-(14), the dimensionless parameters of Eqs. (15a-k) are 

calculated as follows 

Δ = 1 − 2 � ��
���,�,�,..

, (17) 

� =̅ ���̅ + �
��
���

�

4

�

���

�, (18) 
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� =̅
3ℎ��

���
�
��
�

4
 −  � ��

���
�

�

���

�, (19) 

and     ��̅ =
��
�

16��̅
 + 1. (20) 

It is assumed that the fabricated curved beam is stress-free at Δ = 0; therefore, the leading-order terms 

of Eqs. (10)-(12) are expressed as 

��� =
��
�

4
��� −

1

2
�
�

+ �
��
���

�

4

�

���

 , (21) 

��� =
12��

�

��
��  ̅−

8�̅�

��
�  + 16��̅)

�, (22) 

and    ��� =
1

2
� �����

���� �����, (23) 

where � ����� is determined by substituting � in place of � , where � is the vector array form of Δ. 

Utilising the Lagrange-Dirichlet theorem reduces the analysis to the test of positive definiteness of 

potential energy Π(��) as a function of a set of modes where the equilibrium condition for the system 

is obtained using �Π ���
� = 0. Applying the principle of conservation of energy, the variation of the 

total potential energy of the system at the new equilibrium state is expressed as  

�(Π�)= �
(��

� − ��̅�
�)

2
�� + 2�� −

��
�

4
����  + �

��
� − ��̅�

�

4

�

���,�,�,�,�

����
��

+ � �
��
� − ��̅�

�

2
�� + 2���

�

���,�,��,…

�����. 

(24) 

It follows that the coefficients of ����� terms with � = 1,5,9,.. in Eq. (31) should be zero to satisfy the 

equilibrium condition. Thus  

�� =
��
� − 8��

2��
� − 2��̅�

�. 
(25) 

In a similar fashion, the higher modes with � = 5,9,13,…  are delineated as 

�� =
−4��

��
� − ��̅�

�. (26) 
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The stability of the system is contingent upon the positive definiteness of Π. The equilibrium state is 

stable, according to the Lagrange-Dirichlet theorem [37], provided that 

��(Π�)

���
�     = � 2

��
� − ��̅�

�

4

�

�� �,�,�,�,�,..

��     + � �
��
� − ��̅�

�

2
+ 2�� −

��
�

4
�

�

�� �,�,�,��,…

  >   0.  (27) 

In the case of a double curved beam, the second mode is mechanically-constrained without any effect 

of the other modes, which indicates that � can take a value as high as 3. Thus, from Eqs. (17), (19), (24), 

and (25), the first kind of solution is  

��  =
��Δ ��12(Δ − 1)(Δ − 2)ℎ�� + 16� + 4��/��̅�

8��̅
, 

(28) 

which is similar to the results in [36]. The force-displacement curve with higher-order terms may get 

delineated iteratively. The second (�� = 0,� = 3,4,6,7,8,… ) and third ��� = 0,� = 2,4,6,7,8,… � kinds 

of solution, achieved using Eqs. (19), (24), and (25), yield loads �� = ��(4.18 − 2.18Δ) and �� =

��(8 − 6Δ), respectively, that are independent of the bistability ratios. In the sequel, the global response 

of the structure is assessed by the breakdown of the deformation into its four phases. 

 

3 Deformation of the NSH structural system 

A finite element method is employed to compile the tangent stiffness matrix of the system from the 

principal minor matrices of the ith member in Eq. (29) 

�̅� = �
�� − ��
− �� ��

�. (29) 

Evidently, except for the double curved beams, all the horizontal stiffeners and vertical struts are in 

series and the tangent stiffness matrix is symmetric. The symmetricity of the tangential stiffness matrix, 

however, may be violated when friction or damage emanate, leading to energy dissipation. Such a case 

could occur in circumstances when material exhibits plastic behaviour due to the contact between the 

horizontal stiffeners with the buckled beam pairs, or the overall compression of the system. The tangent 

stiffness matrix would consist of a symmetric part and an asymmetric part, whereby the stability is 

determined from the former. For non-symmetric matrices, the condition of stability limit (critical state) 

is only satisfied if ��� = �, i.e. the case of neutral equilibrium, where � is the stiffness matrix and �� 

designates the variation of the generalised coordinate vector � [37]. Given that they remain undeformed 

throughout the motion, the horizontal stiffeners do not contribute to the overall stiffness of the structure, 

but they restrain the model against shearing deformations and tie the unit cells together. It is assumed 

that the loading conditions would not impose full compression which would otherwise result in the 

emergence of frictional forces. Hence, the total axial deformation of the system in the vertical direction 

is evaluated using Hook’s law. 

In axial compression, the dimensionless stiffness of each strut is simply expressed as �� = ���
�/���  with 

�� being the length of the strut. Thus, the tangent stiffness of the curved beams, when neglecting the 

higher modes, is recovered from Eq. (29) and expressed as 
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�� =
��4 + 3(3Δ� − 6Δ + 2)ℎ�����̅ + ��� ��

2��̅��̅
 (30) 

As illustrated in Figure 2a, the most substantial case of the negative stiffness phenomenon pertains to 

the bistability ratio in the range of 2.4 – 6. Further increase in ℎ� beyond 6, however, does not render 

such a phenomenon for the beam. The absolute magnitude of stiffness also decreases as the quotient of 

the beam length to its height increases (see Figure 2b). Along the vertical axes of symmetry, the system 

is composed of a series of interconnected spring elements with notations given in Figure 2c. 

 

   (a) (c) 

   

  

  (b)  

 

 
 
 
 
 
 
 

 

Figure 2 (a) Interaction of the bistability and deformation on the beam tangent stiffness. (b) Influence of the 
beam length on the curved beam tangent stiffness. (c) Designation of the stiffness of the curved beam in the 
model. 

It is assumed that the stiffness of upright and inverted curved beams, respectively �� and ��, are 

identical. The resultant stiffness matrix of the system, using the designation in Figure 2c, is expressed 

as 

� = 2

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
�� − �� 0 0 0 0 0 0
−�� �� + �� −�� 0 0 0 0 0
0 −�� �� + �� −�� 0 0 0 0
0 0 −�� �� + �� −�� 0 0 0
0 0 0 −�� �� + �� −�� 0 0
0 0 0 0 −�� �� + �� −�� 0
0 0 0 0 0 −�� �� + �� −��
0 0 0 0 0 0 −�� �� + 1/2��⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (31) 

k1 

(×103) 

k1 (Δ=1) 

k1 (Δ=0) 

k1 

(×104) 
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Depending on the number of unit cells along the direction of loading, the deformation of the honeycomb 

structure is split into various phases each of which is associated with the consecutive buckling of the 

curved beams. The NSH metamaterial assessed herein is made of two modular cells (see Figure 2c and 

Figure 3) which may be visualised as two lumped masses �� and �� connected with springs, associated 

with which are the two displacement fields. The response of each unit cell is attributed to two main 

phases of deformation. The first phase corresponds to the small initial transverse deformation, while 

during the second phase the snap-through (snap-back) occurs. It transpires that the overall deformation 

is composed of four phases outlined as follows: 

 

Phase 0 
(Initial configuration) 

Phase 1 Phase 2 Phase 3 Phase 4 

Figure 3 The presumed response of the NSH lattice at different phases of deformation according to [38]  
 

Phase 1: Due to the evolution of normal stresses from the external load, both the inverted curved 

beams in the first (top) layer and the top curved beam in the lower layer experience simultaneous 

transverse displacements, following path OA (see Figure 4). It should be stressed that while the 

curved beam never reaches point A and remains at a point along the trajectory, the inverted beam 

continues to the point of zero stiffness. Points at �′  and �′ correspond respectively to the 

maximum and minimum loads determined by the static response of the curved beam [36] 

provided the higher modes are retained in the theoretical treatment, i.e. with � = ��(8 − 6Δ). 

The magnitude of the force at �′ diminishes below � as the bistability ratio increases beyond 

2.7. 

 

 

 

 

 

 

 

 

 

Figure 4 Simplification of the curved beam stiffness using the 
higher mode estimates (� = 2) for �� and Δ from [36] at A' and B'  

Phase 2: This phase triggers the onset of snap-through buckling in the inverted beam. The 

accumulated stress in the struts below the beam exerts a force of ��/2 upward. At this point, the 

second phase initiates with a jump (snap-through) in the beam, following path ABC from zero 

A 

A' 

B' 

B 

C 

O 
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curvature. The experimental results indicate that initially the �� elements reach a new 

equilibrium state following the snap buckling, before further downward motion commences, 

which highlights a curve BC in the force-displacement path. 

Phase 3: Further loading is accompanied by a gradual rise in the deformation of the top curved 

beam in the lower level without snap-through buckling. 

Phase 4: Note that Eq. (30) still holds for the calculation of the stiffness of the curved beam, 

with the value of Δ corresponding to the associated point C (see Figure 4) on the force-

displacement curve of the inverted curved beam after the jump occurs (see Phase 3 in Figure 3) 

The structure continues to be compressed with the force-displacement curve reaching a plateau. 

Continuous loading leads to the snap-through of the top curved beam at the lower level. Thus, 

the  ��� − ��� components of the tangent stiffness matrix of the structure, corresponding to the 

buckled curved beam, are evaluated from Eq. (30) with Δ = 0. 

Following the work of [39] and numerical studies hereunder, it is assumed that the snap-through 

bucking in the lumped masses occurs consecutively as follows. At the transition point between each of 

the two phases, the displacement and resultant stresses are kinematically admissible. 

 

4 Numerical analysis 

4.1 Finite element model and results 

A number of two-dimensional finite element (FE) models were set up in the software ABAQUS®14 

for paramedic studies, for the purpose of investigating the bistability response of the structure by 

varying ℎ� = ℎ/� and the validations of the analytical model. The FE models were discretised with a 

mesh of 27791 CPS4R plane stress elements, with 3 elements per curved beam thickness, reduced 

integration, and hourglass control, as depicted in Figure 5a. The out-of-plane width of the models was 

assumed to be 15mm to replicate the physical model. The NSH structure was bounded between two 

rigid surfaces, each discretised with 1200 R2D2 linear discrete rigid elements of characteristic length 

of 600mm. The model was made of Polyamide 11, which, with a Young’s modulus of 1582MPa, a 

Poisson’s ratio of 0.33, and a mass density of 1.04 g.cm-3, is classified as a lightweight, isotropic, 

ductile, and highly flexible material. The models here were assumed to be perfectly elastic with 

prescribed geometric nonlinearities.  

A Quasi-static loading condition was set up and the top surface was prescribed with a velocity of 0.01 

mm/s for a period of 3000 seconds, while the bottom surface acted as a rigid boundary. A penalty 

contact with a coefficient of friction of 0.3 was assumed for each pair of the beams in contact. The 

geometry of the model is presented in Table 1 and Figure 5b. 

The overall response of the NSH model to contact forces is similar to that of the unit cells experimented 

by [32], [38], whilst the local snap-through phenomenon occurred with the upper curved beams of the 

first level, compared to the experimental results which showed snap-through initially occurring in the 

top beams. Although there was relative displacement in some of the double curved beams, the overall 

deformed shape remained axially symmetric.  
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 (a)     (b) 
 

 

 

 (c)  (d) 
 

 

Figure 5 (a) Finite element mesh model for a typical NSH structure. (b) Geometric model of a typical NSH 
structure. (c) Comparison of our analytical and numerical models with the experimental results in [38] with ℎ� =
4. (d) Comparison of our analytical and numerical models with ℎ� = 3.5. 

 

Table 1 Characteristic dimensions of the NSH model 

Parameter Magnitude (mm) Parameter Magnitude (mm) 

�� 16.5 �� 57 

�� 24 �� 16.5 

�� 3 � 2 

ℎ 6,7,8,10,12 ��� 1.75 

ℎ�� 3 �� 2 

ℎ� 12 �� 3 

 

The validation of the analytical model is conducted using the numerical outputs and the correlation of 

the results is plotted in Figure 5c-d when the influence of the higher modes (� = 5,9,… ) is ignored in 

the analyses. For comparison, the experimental results of [38] are normalised and plotted in Figure 5c. 

The difference between the experimental and analytical results is mainly due to the loading rate, 

accounting for the lag in the occurrence of the negative slopes. Furthermore, contrary to the numerical 
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models, no relative displacements between the beams was observed in the experiments. It should further 

be noted that, when having unrestrained edges at either side, there exists a horizontal component of the 

displacement field the magnitude of which was nearly 10% of the vertical one, in contrast to the 

experimental work by [38] with no discernible Poisson’s ratio. The relative local horizontal 

deformations occurred between the springs and the vertical joints in all models (with restrained and 

unrestrained edges - as seen in Figure 6). While the analytical model fails to capture the local horizontal 

deformations occurring at the roof-shaped curved beams of the lower level, it estimates the force-

displacement curve reasonably, with a slight shift in the occurrence of peaks. However, both the number 

of peaks in the FE model and the magnitude of the force at each peak corroborate with those of the 

analytical model. The highest shift in the deformation path is 12.6% which pertains to the models with 

ℎ� = 4, while the general predicted trends of the state variables, i.e. deformation and force, in Table 2 

are in good agreement. 

Figure 6 compares the schematics of the deformation phases of the lattice and the force-displacement 

plots of the models with high bistability ratios. Clearly, the honeycomb models with values of ℎ� greater 

than 2 exhibit pronounced snap-through phenomenon, with considerable force reduction as the 

bistability ratio increases. However, the negative stiffness becomes less discernible with the bistability 

ratio of 5 and 6, as well as ℎ� < 3, in accordance with the analytical prediction (Figure 2a).  

As can be seen from Table 2, the maximum force captured from the numerical model at the onset of 

snap-through buckling compares favourably to the analytical counterparts, with less than 8% variations. 

A lower precision is observed when comparing the displacements at which the snap-through occurs. 

This is due to the discrepancies in the estimation of the deformation in the first phase of motion, 

characterised by a linear force-deformation path. It should also be noted that while the influence of the 

higher modes was neglected in the study, introducing a more sophisticated model by including higher 

modes would be at the expense of higher levels of mathematical complexity and simulation time, while 

having a minor impact on improving the accuracy of the results, which renders the analyses 

unnecessarily complicated. As such, provided the energy is dissipated by friction at the contact interface 

of the beams, the symmetry of the tangent stiffness matrix would be violated and thus the value of 

displacement is only an estimate in such a case. 

A distinctive attribute observed in Figure 5 is the snap-back phenomenon occurring at Δ� ≅ 1.5 and Δ� ≅

3.3, with the significant reduction in the force at constant displacement levels. While the analytical 

results predicted a smooth variation of the force in the vicinity of snap-back, the numerical counterpart 

encountered discontinuity, which can be elucidated as follows. First, at the former value of abscissa, 

there exists a symmetry breakdown in the buckling of the curved beams, e.g. while the beams at the 

bottom layer in the left unit cell of the lattice underwent a snap-back maintaining curvature symmetry, 

the curvature change in the adjacent beams on the right was not symmetric. Furthermore, the vertical 

and horizontal struts in this layer encountered some rotation, and the variation of the force at this point 

was not monotonic. Similarly, at Δ� ≅ 3.3, the shape of the double curve beams transitioned from a 

symmetric to a non-symmetric state, with some rotations in the horizontal beams, while such rotation 

was ignored in the analytical model for brevity. However, no such discontinuity was observed with ℎ� <

3.5 (Figure 6b).  
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Figure 6 (a) Mises stresses of the NSH unit cell under uniaxial compression load. (b) Force-deformation plot for 
models with low bistability ratios. (c) Force-deformation plot for models with high bistability ratios (with and 
without horizontal stiffeners).  

 

A salient feature of the NSH models without the stiffeners and unconstrained boundaries on either side 

(Figure 6b) is the higher force due to linear lateral deformation followed by a broad peak as the curved 

beams buckle. The shear stresses accumulated at the joints due to the lack of interconnecting horizontal 

stiffeners would result in pitch moments and thus instability in the unconstrained structure. 

 

 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Applied Mechanics. Received December 21, 2020;
Accepted manuscript posted January 25, 2021. doi:10.1115/1.4049954
Copyright © 2021 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/doi/10.1115/1.4049954/6625547/jam
-20-1671.pdf by U

niversity of Liverpool user on 28 January 2021



18 
 

Table 2 Comparison of the load and displacement values in the numerical and analytical models 

ℎ� 
Maximum �� Δ� at Maximum �� 

Numerical Analytical Difference Numerical Analytical Difference 

3 885.08 882.3997 0.30% 1.87 1.85 1.19% 

3.5 1039.70 964.18 7.26% 1.66 1.49 10.13% 

4 1127.36 1124.66 0.24% 1.32 1.48 12.06% 

5 1089.17 1168.00 7.24% 0.91 0.86 5.41% 

6 1078.04 1159.51 7.56% 0.62 0.54 12.41% 

 

5 Concluding remarks 

This work studied the stability of a lattice metamaterial referred to as the negative stiffness honeycomb 

(NHS) model upon transverse static loading. The honeycomb metamaterial structure was constructed 

with a pattern of double curved beams fabricated from Polyamide 11, which is a flexible, isotropic 

material with high ductility.  

Given the structure remains entirely nonlinear elastic upon a compressive static load while constraining 

the mode 2 of deformation, an analytical model was developed based on such simplifying assumptions 

whereby the relevant differential equation (mathematical model) was derived. The developed 

mathematical model was utilised to solve the problem and its features were compared with the 

parametric FE numerical models which were set up and run in the commercial FE code ABAQUS ®14, 

with a strong agreement between the two models. A salient feature of the model was the pronounced 

snap-back buckling response as well as the significance of the negative slope in the force-displacement 

curves at increased bistability ratios. Another feature was the fluctuation in the force-displacement 

curves, which was more pronounced at higher bistability ratios while the range of  ℎ� < 3 rendered a 

plateau and loss of the desired negative stiffness feature.  

The analytical model was thus able to capture the force-deformation path of the system whereby the 

force is reduced at the expense of the morphed shape of the curved beams. With a slight shift throughout 

the deformation, the analytical model favourably captured the stiffness degradation, nevertheless the 

consistency in the quantity ���/�Δ  in the two models was maintained throughout the motion.  

It was shown that, while in the double curved beams, mode 2 is constrained and the beam would 

experience bistability with the associated transition from mode 1 to 3, the overall response of the 

honeycomb structure made of such beams becomes more complex, as relative displacements of the 

beams may occur which correspond to higher deformation modes. Furthermore, estimating the exact 

response of the NSH structure is difficult since in practice the buckling phases are interspersed with the 

global axial deformation of the struts. Snap-through and snap-back may thus occur when the mid-span 

of the curved beam has travelled downward relative to the interconnecting struts.  
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