
Efficient Truthful Scheduling and Resource Allocation through Monitoring

Dimitris Fotakis, 1 Piotr Krysta, 2 Carmine Ventre 3

1 National Technical University of Athens, Greece
2 University of Liverpool, UK
3 King’s College London, UK

fotakis@cs.ntua.gr, pkrysta@liverpool.ac.uk, carmine.ventre@kcl.ac.uk

Abstract

We study the power and limitations of the Vickrey-Clarke-
Groves mechanism with monitoring (VCGmon) for cost min-
imization problems with objective functions that are more
general than the social cost. We identify a simple and nat-
ural sufficient condition for VCGmon to be truthful for gen-
eral objectives. As a consequence, we obtain that for any
cost minimization problem with non-decreasing objective µ,
VCGmon is truthful, if the allocation is Maximal-in-Range
and µ is 1-Lipschitz (e.g., µ can be the Lp-norm of the
agents’ costs, for any p ≥ 1 or p = ∞). We apply
VCGmon to scheduling on restricted-related machines and ob-
tain a polynomial-time truthful-in-expectation 2-approximate
(resp. O(1)-approximate) mechanism for makespan (resp. Lp-
norm) minimization. Moreover, applying VCGmon, we obtain
polynomial-time truthful O(1)-approximate mechanisms for
some fundamental bottleneck network optimization problems
with single-parameter agents. On the negative side, we provide
strong evidence that VCGmon could not lead to computation-
ally efficient truthful mechanisms with reasonable approxi-
mation ratios for binary covering social cost minimization
problems. However, we show that VCGmon results in com-
putationally efficient approximately truthful mechanisms for
binary covering problems.

Introduction
The effective use of resources is an important goal of any
digital system. For example, operating systems allocate the
hardware (e.g., RAM memory, CPU time, etc.) to the pro-
cesses under execution to guarantee “good” performance.
However, there are cases in which the hardware is not di-
rectly available. Consider, for example, a cloud computing
service provider P . Ideally, P would like to allocate cus-
tomer tasks to the cloud resources so as to provide the “best”
possible service. Relevant scenarios include the allocation
of programs (a.k.a., jobs) to machines; of packets to routers
or, more generally, the selection of a subset of resources
that would complete the customer’s task. The definition of
“best” service might vary and range from interactivity (i.e.,
the maximum completion time of customers’ tasks is mini-
mized) to batch performance (i.e., the total completion time is
minimized). The aforementioned optimization problems are
known as machine scheduling, bottleneck network optimiza-
tion and total (a.k.a. social) cost optimization, respectively;

typically, the objective for the first two is interactivity, whilst
the third is an example of batch optimization.

The question of how P should allocate resources optimally
in these (and other similar) contexts is fundamental and has
received significant attention by multiple research commu-
nities, see, e.g., (Liao 2014; Leyton-Brown 2003; Lombardi
and Milano 2012) and the references therein. In modern digi-
tal infrastructure, dominated by outsourcing and distributed
resource allocation, a notable additional obstacle for P is the
fact that the resources are often controlled by self-interested
entities, a.k.a. selfish agents, operating them according to
their own goals (e.g., to avoid resource overloading), not
necessarily aligned with P ’s objective. This is the standard
setting of Algorithmic Mechanism Design (Nisan et al. 2007),
where we seek incentive-compatibility, in addition to the al-
gorithmic objectives of computational efficiency and optimal
resource allocation. Specifically, we aim at truthful mecha-
nisms, that run in polynomial-time and approximate as well
as possible the objective function at hand. A truthful mecha-
nism guarantees that it is in each agent’s interest to report to
the mechanism her own private information (i.e., the features
of the hardware they control), commonly termed type. In our
examples above, a type could be the speed of a machine for a
particular job to execute; the latency of a router, and, more
generally, the hardware cost to execute a customer’s task.

Unfortunately, for none of the problems of interest it is
known how to design such mechanisms. The renown Vickrey-
Clarke-Groves (VCG) mechanisms, see, e.g., (Nisan et al.
2007, Chapter 9), are about the only general technique known
to obtain truthfulness. They require the computation of the
optimum social cost solution, implying obvious limitations
for their use. More specifically, for NP-hard social cost opti-
mization problems, VCG does not run in polynomial-time,
unless P = NP (when, as in our case, there is no suitable
“Maximal-in-Range” approximation). Moreover, even when
they can be implemented in a computationally efficient way,
VCG mechanisms can return bad approximations to the min-
max objective of machine scheduling and bottleneck network
optimization (Nisan and Ronen 2001), because their truthful-
ness crucially depends on social cost optimization.

In this work, we investigate to which extent we can over-
come these limitations of VCG mechanisms through moni-
toring (Kovács, Meyer, and Ventre 2015; Koutsoupias 2014).
The idea is to let the mechanism designer (a.k.a. the princi-



pal) exert some control on the agents during the execution
of the mechanism. Already in their seminal paper, (Nisan
and Ronen 2001) considered a model wherein agents over-
bidding their cost could be monitored and forced to pay as
much. This assumption is reasonable, when the principal
has the power to appropriately decrease the agents’ utility,
if during the execution of the mechanism, she realizes that
some agents have over-reported their cost. This is exactly the
situation in which P is; if, for example, an agent exaggerates
the time her machine takes to execute a certain job, then P
can keep the machine busy that long by, e.g., charging the
difference to the agent. Unlike (Nisan and Ronen 2001) (see
also compensation-and-penalty mechanisms in (Shoham and
Leyton-Brown 2009, Sec. 10.6.1)), we do not assume any
punishment for underbidding and do not compute payments
based on the actual costs incurred by the agents during the
implementation of the chosen outcome; our only assumption
is that the principal is able to monitor over-reported costs.

Monitoring is by now well-established in Algorithmic
Mechanism Design. The difference between monitoring and
the so-called verification is discussed by (Penna and Ventre
2014). Kovács, Meyer, and Ventre (2015) study mechanisms
with monitoring where the principal is the operating system
and the agents are computational processes. Different pay-
ment schemes for mechanisms with monitoring are studied in
(Serafino, Ventre, and Vidali 2020). The monitoring paradigm
is also studied in absence of transfers in (Koutsoupias 2014;
Giannakopoulos, Koutsoupias, and Kyropoulou 2016), and
in the context of truthfulness with bounded rationality in
(Ferraioli and Ventre 2017; Kyropoulou and Ventre 2019).
Our Contributions. Motivated by applications of mecha-
nism design to scheduling and resource allocation problems,
where monitoring of over-reported costs is natural and easy
to implement, we investigate the power and the limitations
of the Vickrey-Clarke-Groves mechanism with monitoring
(VCGmon) for cost minimization problems with objective
functions that are more general than the social cost.

We start with identifying two natural algorithmic proper-
ties, cf. (2) and (3) below, which together provide a simple
sufficient condition for VCGmon to be truthful for any ob-
jective function µ (i.e., µ is not necessarily the social cost).
At the conceptual level, conditions (2) and (3) are subtle
extensions of the classic monotonicity property, which has
been extensively studied in the context of truthful mecha-
nisms (Saks and Yu 2005; Nisan et al. 2007), and impose an
additional continuity property on the algorithm. As a nice
analogue of the VCG theorem, in our context, we prove that
Maximal-in-Range (MIR) algorithms satisfy these conditions
if the objective function µ is 1-Lipschitz (e.g., µ can be the
Lp-norm of the agent costs, for any p ≥ 1 or p =∞).

To establish the generality of our approach, we apply our
truthful VCG mechanisms with monitoring to three broad
classes of minimization problems: scheduling on unrelated
machines, bottleneck network optimization and binary cover-
ing problems with social cost. For each of these classes, we
prove essentially tight positive and corresponding negative
results on the approximate optimality of such mechanisms.
Our positive results are polynomial-time truthful approximate
mechanisms with monitoring, and the matching negative re-

sults are either by known computational lower bounds or by
our new unconditional impossibility results.

The makespan minimization for scheduling on unrelated
machines is one of the flagship problems in Algorithmic
Mechanism Design. Its approximability by (deterministic or
randomized) truthful mechanisms has received significant at-
tention. Finding a truthful mechanism with sublinear approx-
imation ratio for this problem is a long-standing open prob-
lem, since the seminal work of (Nisan and Ronen 2001). The
major complication is the multi-parameter agents-machines:
their private information are the processing times for each
job. Truthful mechanisms were only obtained with ratios of
O(n), where n is the number of machines (Nisan and Ronen
2001; Lu and Yu 2008b,a). Lower bounds of Ω(n) on the
approximation ratio of certain classes of truthful mechanisms
were shown in (Nisan and Ronen 2001; Saks and Yu 2005;
Ashlagi, Dobzinski, and Lavi 2012). Christodoulou, Kout-
soupias, and Kovács (2020) proved a lower bound of Ω(

√
n)

for the more general case where the machine costs are sub-
modular. These lower bounds only assume truthfulness and
hold even for exponential time mechanisms (i.e., even if ex-
ponential time was available, VCG could not achieve any
nontrivial approximation ratio for makespan minimization
on unrelated machines!). If we drop truthfulness, a classical
2-approximation algorithm is known (Shmoys and Tardos
1993). We apply our VCGmon mechanisms to scheduling
on unrelated machines, and investigate their power and lim-
itations. We emphasize that monitoring for over-reported
processing times is a natural and common assumption in
mechanism design for scheduling problems (see e.g., the
weak execution model in (Angel, Bampis, and Pascual 2006;
Angel et al. 2009)). We show that VCGmon is not truthful for
the fractional solution of the linear program (LP) used by
(Shmoys and Tardos 1993), due to the parameter pruning step.
Given that all known O(1)-approximation algorithms for this
problem are based on either the LP of (Shmoys and Tardos
1993) or the so-called configuration LP (which also applies
parameter pruning), an interesting open question is whether
there exists a truthful (in expectation) O(1)-approximate
mechanism with monitoring for makespan minimization on
unrelated machines. On the positive side, we focus on the
special case of makespan minimization on restricted-related
machines, where each machine i has a private speed si and a
private subset of jobs Ji that the machine can process (so, ma-
chine types are still multi-dimensional). We show that there
is a truthful-in-expectation 2-approximate mechanism with
monitoring. Moreover, our approach generalizes to Lp-norm
minimization with O(1) approximation. Azar et al. (2017)
gave a truthful-in-expectation 2-approximation mechanism
for makespan minimization on restricted-related machines,
but under the assumption that sets Ji are public (which makes
machine types single-dimensional). Our mechanism remains
2-approximate wrt. the makespan objective, if actual money
transfers from the mechanism to the machines are not pos-
sible (e.g., imagine load balancing in volunteering) and the
payments required for truthfulness are implemented by artifi-
cial delays in the schedule of each machine (i.e., in the money
burning framework of (Hartline and Roughgarden 2008)).

In a bottleneck network optimization problem, we are



given a network with edge costs and seek a certain feasi-
ble minimum-cost subnetwork where the cost of its costliest
edge is minimized. For each of the bottleneck network op-
timization problems in Hochbaum and Shmoys (1986), we
apply VCGmon and show that there exists a deterministic ap-
proximation mechanism that is truthful with monitoring for
single-dimensional agents, i.e., they own a single edge. Their
approximation ratios are the same as those in (Hochbaum
and Shmoys 1986) and are, for many of those problems, best
polynomial-time approximations. We achieve this by prov-
ing that the generic bottleneck algorithm of Hochbaum and
Shmoys (1986) possesses the required conditions (2) and
(3), needed for truthfulness of VCGmon. These mechanisms
cannot be extended to multi-dimensional agents for these
problems without violating these conditions. We note that the
bottleneck algorithm from (Hochbaum and Shmoys 1986) is
monotone for single-dimensional agents, and therefore truth-
ful in the standard sense, without monitoring. Our conditions
(2) and (3), however, are more demanding and yield more
flexible payment functions (cf. discussion in the next section
about an equal-cost interpretation of VCGmon and connec-
tions to money burning) – as opposed to the “threshold pay-
ment scheme” for standard truthfulness (see e.g., (Nisan et al.
2007, Sec. 13.1)). Moreover, VCGmon payments have a more
explicit/direct definition, which helps their computation and
simplicity of the mechanism (i.e., how easy it is for humans
to understand how to behave). For more detailed motivation,
see also the second paragraph in the section on bottleneck
network problems. Leucci, Mamageishvili, and Penna (2018)
prove that no deterministic (standard) truthful mechanism
with money can achieve an n-approximation for the bot-
tleneck s-t-shortest path problem with multi-dimensional
agents (each agent owns many edges), where n is the number
of agents. This problem is solvable in polynomial time, if
we do not insist on truthfulness. Interestingly, by applying
monitoring along each dimension separately, we can show
that VCGmon with the optimal polynomial-time algorithm is
truthful for this problem with multi-dimensional agents. We
defer the details of this result to the full paper.

For binary covering problems with social cost objective,
we interestingly connect approximation with truthfulness of
our mechanisms. We first prove that no algorithm with a
bounded approximation ratio is continuous, even for single-
dimensional agents, thus implying that the only truthful mech-
anisms are either optimal (by using an optimal MIR algo-
rithm) or have an approximation guarantee that is arbitrar-
ily close to 1, i.e., (Fully) Polynomial-Time Approximation
Schemes. This result, which might be of independent interest,
is very general and applies to multiple covering problems and
corresponding deterministic approximation algorithms1. The
situation seems quite similar to VCG without monitoring,
where if the algorithm is not optimal, or not MIR, we lose
truthfulness, see, e.g., (Nisan et al. 2007). The parallel with

1To name a few, the minimum cost set cover (SC) problem and
the primal-dual, deterministic LP rounding and Chvatal’s greedy
algorithms for SC; MST-based algorithm for metric Steiner Tree;
primal-dual algorithm for Steiner Forest and Jain’s iterative round-
ing algorithm for Steiner Network; see (Vazirani 2001) for an
overview of these approximation algorithms.

VCG, and with classical truthfulness, is even more striking
for binary covering problems; we, in fact, extend a result from
(Dughmi and Roughgarden 2014) to prove that any MIR al-
gorithm for a large class of objective functions is actually
optimal. These are, to our best knowledge, the first results
showing the limits of mechanisms with monitoring, where
the principal is able to monitor the agent costs at runtime and
to mildly penalize over-reported costs (see e.g., (Caragiannis
et al. 2012; Fotakis and Zampetakis 2015) for lower bounds
for the weaker notion of symmetric verification). Truthfulness
is very fragile here and any kind of fixed approximation guar-
antee, no matter how good, leads to manipulability. On the
positive side, we show that every deterministic approximation
algorithm for any binary covering problem with social cost
provides an approximately truthful mechanism with monitor-
ing. Examples of such algorithms and problems include all of
those mentioned in Footnote 1. This result complements our
impossibility result and is especially interesting for problems
with PTASs/FPTASs, e.g., minimum cost spanning tree with
budget constraint and multi-unit reverse auctions (Grandoni
et al. 2014). In such cases we can control the truthfulness
factor to any desired accuracy by simply allowing for higher
running time. Interestingly, for many of these problems and
algorithms, there exist instances, where the “truthfulness gap”
actually reaches the best possible approximation ratio, and
thus, our approximate truthfulness results are tight for those
algorithms and problems. For instance, the tight example
of the greedy algorithm for minimum cost set cover prob-
lem, see (Vazirani 2001, Example 2.5), shows that VCGmon

can only be Ω(log(n))-truthful (see Def. 3 of approximate
truthfulness).

VCG with Monitoring for General Objectives
Let Π be an optimization problem with n agents and O the
set of outcomes, i.e., feasible solutions, to problem Π. Each
agent i has a cost function, called type, ti : O → R>0. For
x ∈ O, ti(x) is the cost paid by agent i to implement x.
The type ti is private knowledge of agent i. The set of all
legal cost functions ti, denoted byDi, is called the domain of
agent i. After each agent has reported or bid a (true or false)
cost function bi ∈ Di, a mechanism determines an outcome
x ∈ O and a payment pi to each agent i. In summary, by
letting D = D1× . . .×Dn, a mechanismM is a pair (f, p),
where f : D → O is an algorithm (a.k.a. social choice
function) that maps agents’ costs to a feasible solution in
O; and p : D → Rn maps cost vectors to payments to
each agent i. For mechanism M = (f, p), let ui(bi,b−i)
denote the utility of agent i for the output computed byM
on input (bi,b−i) and evaluated by ti. Since the type ti is
private knowledge of agent i, she might find it profitable
to bid bi 6= ti. We are interested in mechanisms for which
truthtelling is a dominant strategy for each agent.

Definition 1 (Truthful mechanisms). A mechanism M =
(f, p) is truthful if for any i, and for all bids b−i =
(b1, . . . , bi−1, bi+1, . . . , bn) of the agents other than i, and
any bi ∈ Di, ui(ti,b−i) ≥ ui(bi,b−i).

Often, ui is equal to the payments pi(b) received from the
mechanism minus the true cost ti(f(b)) paid by agent i for



the mechanism’s outcome f(b). We focus on the mechanism
design paradigm of mechanisms with monitoring, where this
quasi-linear definition is retained, but costs paid by the agents
for the allocated solution are tied to their bids. Intuitively,
monitoring means that agents with over-reported cost for the
chosen outcome, i.e., if bi(f(b)) > ti(f(b)), have to “work”
up to cost bi(f(b)) instead of the true cost ti(f(b)).

Definition 2 (Mechanism with monitoring). In a mechanism
with monitoringMmon = (f, p), the bid bi is a lower bound
on agent i’s cost of using fi(bi,b−i). So, agent i is allowed to
have a real cost higher than bi(f(b)), but not lower. Formally,
ui(bi,b−i) := pi(b)−max{ti(f(b)), bi(f(b))}.
The VCGmon

µ mechanism. Let f be an algorithm for prob-
lem Π and µ : O × D → R≥0 be the objective function
of Π mapping outcomes and bid vectors to non-negative
reals. The second argument of µ specifies the bids used
to calculate the value of a solution (first argument of µ).
A VCGmon

µ mechanism (f, p) pays agent i an amount of
pi(bi,b−i) = hi(b−i)−µ(f(b),b) + bi(f(b)). Hence, if i
bids truthfully, i’s utility becomes ui(ti,b−i) = hi(b−i)−
µ(f(ti,b−i), (ti,b−i)) + ti(f(ti,b−i))− ti(f(ti,b−i)) =
hi(b−i) − µ(f(ti,b−i), (ti,b−i)), for some function
hi(b−i) not depending on i’s bid. Since truthfulness is in-
dependent of the choice of hi(b−i), as in the case without
monitoring, we omit hi(b−i) for sake of brevity and simplic-
ity. This mechanism is a simple extension of VCG, where the
generic cost function µ plays the role of the social cost. Then,
truthfulness of VCGmon

µ is equivalent to: for all i,b−i, ti, bi,

µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b),b)

− bi(f(b)) + max{ti(f(b)), bi(f(b))}. (1)

In fact, (1) is equivalent to the following: for all i,b−i, ti, bi,

ti(f(b)) ≤ bi(f(b)) =⇒
µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b),b);

(2)

ti(f(b)) > bi(f(b)) =⇒ µ(f(ti,b−i), (ti,b−i))

≤ µ(f(b),b)− bi(f(b)) + ti(f(b)).
(3)

(2) requires that µ (and f ) should be monotone in the agent
bids. Furthermore, (3) requires that µ (and f ) should be con-
tinuous, in the sense that a change δ in an agent’s bid should
change the µ-value of f ’s outcome by at most δ.

We now discuss the role of hi(b−i). Standard VCG uses
the “Clarke tax” to ensure individual rationality, i.e., the util-
ity of truthtelling agents being non-negative. However, the
payment’s flexibility can be leveraged to explore different
properties of VCGmon

µ mechanisms. By setting hi(b−i) = 0,
for all i and b−i, we obtain an equal-cost mechanism, where
all agents have the same utility (defined as in Def. 2) equal to
µ(f(ti,b−i), (ti,b−i)). Such mechanisms were introduced
in context of facility location in (Fotakis and Tzamos 2014)
and are particularly useful when there are no monetary tran-
fers and payments should be implemented as, e.g., waiting
times (an agent is delayed by amount “equal” to the payments
imposed by the mechanism). This is the interpretation used
in (Kovács, Meyer, and Ventre 2015). Since the transfers
required to equalize agents’ utilities take a form of wasted

resources in this case, it is reasonable to consider money
burning objectives and include payments in the objective
value. One can see that such a variant of VCGmon

µ provides
approximation guarantees in this (more demanding) money
burning setting that are not far from the ratio to the optimum
cost alone. We defer these details to the full paper.

VCGmon
µ and Maximal-in-Range Mechanisms

Let Π be an optimization problem with an objective function
µ to be minimized. A deterministic Maximal-in-Range (MIR)
mechanism for Π with a rangeR ⊆ O of feasible solutions
uses the following MIR algorithm f : given the bids b, it
computes a minimizer of the objective value µ(x,b) over all
x ∈ R. Note that rangeR is independent of the bids b. Based
on (2) and (3), we next show that if f is Maximal-in-Range,
(sub)linearity of µ suffices for truthfulness of VCGmon

µ .
If f is an MIR algorithm for µ, its range is R = {f(b) :

b ∈ D}. An MIR algorithm f for µ satisfies

µ(f(ti,b−i), (ti,b−i)) ≤ µ(f(b), (ti,b−i)) (4)

for all ti, bi,b−i. A non-decreasing function µ (i.e., ti(x) >
bi(x) implies µ(x, (ti,b−i)) ≥ µ(x,b)) is 1-Lipschitz in
dimension i if for any x ∈ O, b ∈ D and ti ∈ Di,

ti(x) ≥ bi(x) =⇒ µ(x, (ti,b−i))−µ(x,b) ≤ ti(x)−bi(x).

This means that µ grows at most linearly in dimension i, and
if it is differentiable, ∂µ(x,b)∂bi(x)

≤ 1. If µ is 1-Lipschitz in every
dimension i = 1, . . . , n, then we omit the dimensions.
Theorem 1. Let µ be a non-decreasing 1-Lipschitz function
and f be MIR for µ. Then VCGmon

µ using f is truthful.

Proof. f is MIR for µ, so by (4) truthfulness is implied by

µ(f(b), t) ≤ µ(f(b),b)

− bi(f(b)) + max {ti(f(b)), bi(f(b))} , (5)

where t = (ti,b−i). If max {ti(f(b)), bi(f(b))} =
bi(f(b)) then (5) simply requires µ to be non-decreasing.
Otherwise, if we have that max {ti(f(b)), bi(f(b))} =
ti(f(b)), then (5) follows by 1-Lipschitzness.

Notably, Theorem 1 applies to objectives µ that minimize
the maximum agent cost, the Lp-norm of agent costs, and the
social cost (i.e., the L1-norm of agent costs).

Scheduling on Unrelated Machines
Next, we present a randomized truthful-in-expectation mecha-
nism with monitoring for makespan minimization. In schedul-
ing on unrelated machines, we seek a balanced schedule of
set J of n jobs to a set M of m selfish machines. Each ma-
chine i has a vector pi = (pij)j∈J , where pij ∈ N ∪ {∞}
denotes the processing time of job j on machine i. pij =∞
means that job j cannot be processed by machine i. Wlog.,
we assume that for each job j, there are at least two machines
with finite processing time for j (otherwise, scheduling j is
trivial; in our mechanism with monitoring, falsely declaring a
finite processing time as infinite, or vice versa, is dominated
by truthful reporting). An assignment J = (J1, . . . , Jm) is a



partition J1, . . . , Jm of J , where jobs Ji are processed by ma-
chine i. The load `i of machine i in J is `i(J ) =

∑
j∈Ji pij .

The standard objective µ is the makespan, i.e., compute an
assignment J that minimizes maxi∈M{`i(J )}. The vector
pi = (pij)j∈J of job processing times on machine i is i’s
private type. Each machine i aims to maximize her utility
(expected utility, for randomized mechanisms), defined as i’s
payment for assignment J minus i’s load in J .

We consider the special case of restricted-related machines
(Azar et al. 2017), where each job has a publicly known pro-
cessing time pj . The private type of each machine i consists
of the subset J i ⊆ J of jobs that i can process and of i’s
speed si ∈ N∗. Hence, pij = pj/si, if j ∈ J i and pij =∞,
if j 6∈ J i. The load `i of machine i in assignment J is
`i(J ) =

∑
j∈Ji pj/si, if Ji ⊆ J i, and `i(J ) = ∞, other-

wise. (In (Azar et al. 2017), only the speeds si are private).
We study properties of the following randomized version

of VCGmon
µ for scheduling on unrelated machines.

Fractional Solution. We compute the minimum value of T
for which the following linear program is feasible:∑

i∈M
xij = 1 ∀j ∈ J∑

j∈J
xijpij ≤ T ∀i ∈M

xij ≥ 0 , pij > T ⇒ xij = 0 ∀i ∈M, j ∈ J

We refer to this system as LP(T ). Let T ∗ be the min-
imum value of T for which LP(T ) is feasible and let
(x∗ij)i∈M,i∈J be a basic feasible solution (bfs) of LP(T ∗).

Randomized Rounding. We obtain an integral assignment
by applying randomized rounding of Kumar et al. (2009);
Lavi and Swamy (2009) to a bfs (x∗ij)i∈M,j∈J of LP(T ∗).
Let Xij be indicator random variables denoting that job j
is assigned to machine i. The randomized rounding proce-
dure ensures that for all i ∈M and j ∈ J , E[Xij ] = x∗ij ,
and for any machine i, the following holds with cer-
tainty (see also (Lavi and Swamy 2009, Lemma 4.2)):∑
j∈J Xijpij ≤

∑
j∈J x

∗
ijpij + maxj:x∗ij>0{pij}.

Payments. Machine i receives payment
∑
j∈J x

∗
ijpij − T ∗

from the mechanism (recall that we omit the hi term from
the payments, because truthfulness does not depend on it).

Approximation Guarantee. Lavi and Swamy (2009,
Lemma 4.2) proved that the above algorithm is 2-approximate
for makespan minimization on unrelated machines (and also
on restricted-related machines). In fact, (Lavi and Swamy
2009, Lemma 4.2) implies that the load of each machine i is
at most T ∗ + maxj:x∗ij>0{pij} ≤ 2T ∗, with certainty2.

2We can extend the proof of Theorem 2 to show that the random-
ized rounding algorithm in (Kumar et al. 2009, Sec. 4) is truthful
with payments (6). The second case in the proof of Theorem 2 can
deal with (Kumar et al. 2009, constraints (18)) by convexity of (18),
giving a randomized truthful-in-expectation O(1)-approximation
for minimizing the Lp-norm of machine loads, for any p ≥ 1.

Truthfulness of VCGmon
µ . The expected utility of machine i

with monitoring is

∑
j∈J

x∗ijp
′
ij−T ∗−E

max

∑
j∈J

Xijpij ,
∑
j∈J

Xijp
′
ij


 (6)

where pij (resp. p′ij) is the true (resp. reported) processing
time of each job j on machine i (recall that the solution x∗ij
is computed wrt. the reported processing rimes). The last
term in (6) corresponds to −max{ti(f(b)), bi(f(b))} in
Definition 2, and the first term corresponds to bi(f(b)) in the
definition of VCGmon

µ payments (we use expected values here,
because the mechanism is randomized). For truthfulness-in-
expectation, we compute the payments using the optimal frac-
tional value T ∗ of LP(T ), instead of the expected makespan
E [µ(f(b),b)] of the integral assignment obtained by ran-
domized rounding (which may not satisfy the equivalent of
(2) and (3)). Since T ∗ is an upper bound on the expected
machine load, we can use −T ∗, instead of −E [µ(f(b),b)]
for the payments of VCGmon

µ and i’s expected utility in (6).
The randomized version of VCGmon

µ above is not truthful
for the general setting of scheduling on unrelated machines,
due to the parameter pruning step in 3rd line of LP(T ∗). So,
we focus on restricted-related machines. We consider nontriv-
ial instances, where each job j belongs to at least two sets J i.
Then, (6) becomes

(
1
s′i
−max

{
1
si
, 1
s′i

})∑
j∈J x

∗
ijpj−T ∗,

provided all jobs with x∗ij > 0 belong to the true set of ad-
missible jobs of machine i. Otherwise, the expected utility of
machine i is −∞.

Theorem 2. The randomized version of VCGmon
µ is truthful-

in-expectation for scheduling on restricted-related machines
(note that types are multidimensional).

If monetary transfers are infeasible, we can set hi = 0 and
implement the payments as a delay of T ∗ −

∑
j∈J x

∗
ijpij , in-

troduced before machine i starts processing jobs. Thm. 2
applies and the mechanism is truthful-in-expectation for
restricted-related machines. An approximation ratio of 2 for
makespan (resp. of 2n1/p for Lp-norm minimization) follows
from (Lavi and Swamy 2009, Lemma 4.2) (resp. from (Ku-
mar et al. 2009, Sec. 4)), even in the money burning setting.

Bottleneck Network Optimization Problems
The bottleneck traveling salesperson (BTSP) is the follow-
ing problem. Given a weighted complete graph, with edge
weights obeying triangle inequality, find a Hamiltonian cycle
in this graph where the most costly edge is as cheap as pos-
sible. We prove here that the 2-approximation algorithm of
Hochbaum and Shmoys (1986) for BTSP implies a truthful
VCGmon

µ mechanism for single-dimensional agents, where
µ corresponds to the above objective. This implies truthful
mechanisms with monitoring for all bottleneck network opti-
mization problems in (Hochbaum and Shmoys 1986), with
the same approximation guarantees as the algorithms therein.

To further motivate the results in this section, we look
at the equal-cost implementation of VCGmon

µ and money
burning. Agent i’s payment in mechanism VCGmon

µ (f, p)



is pi(bi,b−i) = hi(b−i)− µ(f(b),b) + bi(f(b)). To com-
pute all the pi’s, one only needs to run algorithm f(b) once,
and, possibly, again when computing hi(b−i)’s. But if we
used the “threshold” payment, following from monotonicity
of f in the standard sense, we would need to use binary search
for each agent, that requires more time. Importantly, if, for
instance, hi(b−i) = 0, for all i and b−i, VCGmon

µ would be
an equal cost mechanism, where payments can be interpreted
as, e.g., waiting times imposed by the mechanism. In this
case, our mechanisms below maintain the same approxima-
tion factor also for the money burning objective accounting
for the payments as well as the maximum cost. Finally, our
mechanism is a simple example of continuous mechanism,
i.e., obeying (2)-(3), with an easy-to-follow proof.
The Mechanism. To model bottleneck network optimization
problems, suppose that GC = (V,EC) is the complete input
graph with edge costs ce1 ≤ ce2 ≤ · · · ≤ cem , |V | = n and
|EC | = m =

(
n
2

)
. We assume that costs obey the triangle

inequality (this assumption is only needed for the approxima-
tion guarantees but not for truthfulness). We will define these
problems using BTSP as a running example.

Let G be the set of all feasible solutions to the problem on
graph GC . For instance, G contains all subgraphs (V,E′) ⊆
GC that are Hamiltonian cycles. Given any positive c ≥ 0, we
define the bottleneck subgraph as bottleneckG(c) = (V,E′),
where E′ = {e ∈ EC : ce ≤ c}. Let G = (V,E′) be an
arbitrary subgraph of GC , then let max(G) = maxe∈E′ ce.

Algorithm 1 is a generic approximation algorithm for solv-
ing bottleneck problems, with t > 0 a fixed, usually small, in-
teger. It either returns as test′ a certificate of failure or returns
a feasible solution to the bottleneck problem in the t-th power
(Gi)

t of the graph Gi = (V,E′), where (Gi)
t = (V, (E′)t)

and (E′)t = {(v0, v`) : ∃v1, v2, . . . , v`−1 s.t. (vs−1, vs) ∈
E′, s = 1, 2, . . . , `, ` ≤ t}. Note, for all the problems in
(Hochbaum and Shmoys 1986), finding a feasible solution
to the problem in mind in Gi is NP-complete, e.g., finding a
Hamiltonian cycle. That is why they relax the problem and
find a feasible solution in the graph (Gi)

t with t ≥ 2 instead.
Hochbaum and Shmoys (1986) prove that if procedure test

is a poly-time algorithm outputting a certificate of failure if
there is no feasible solution to the problem in Gi and outputs
a feasible solution in (Gi)

t otherwise, then Algorithm 1 is a
poly-time t-approximation to the given bottleneck problem.
Given the output solution test′ of Algorithm 1, the cost of
this solution is cei , where i is the last value of the variable
i. For BTSP problem there is a poly-time test procedure for
t = 2, Algorithm 2 (Hochbaum and Shmoys 1986).

Algorithm 1: The generic bottleneck algorithm.
1 procedure bottleneck(G, GC , t)
2 i := 0
3 repeat
4 i := i+ 1; Gi := bottleneckG(cei)
5 test′ := test(G, Gi, t)
6 until test′ is not a certificate of failure
7 return test′

Algorithm 2: The test procedure.
1 procedure test(G, G, 2)
2 if graph G is not biconnected then
3 return certificate of failure
4 else
5 return a Hamilton cycle in G2

A generic network bottleneck mechanism design problem
has m single-dimensional agents, each owns an edge e ∈ EC
and has cost ce as private data. Let b, t ∈ R|EC |

≥0 be the vector
of the declared costs and agents’ true costs, respectively. We
assume that the declared costs obey the triangle inequality.
Let (f, p) be the VCGmon

µ mechanism for the bottleneck prob-
lem. For instance, for BTSP, f is Algorithm 1 with t = 2, and
p is the VCGmon

µ payment with respect to cost function µ de-
fined as follows. We run Algorithm 1 with the declared costs
b and the cost of f(b) is the cost bei of the returned solution
test′, i.e., µ(f(b)) = bei . Algorithm 1 is 2-approximate for
the BTSP. We can prove the following:

Theorem 3. Let the procedure test(G, G, t) run in deter-
ministic polynomial time and correctly output a certificate
of failure in Gi or a feasible solution in (Gi)

t for a given
bottleneck network optimization problem. Then, the VCGmon

µ
mechanism for the bottleneck problem is truthful for single-
dimensional agents, and provides the following approxima-
tions, given in {}, to these bottleneck problems: k-clustering∗
{2}, k-switching network {3}, (k,G)-partition with diame-
ter d {2d}, k-center∗ {2}, weighted k-center {3}, weighted
k-center with at most ` centers {3}, m-weighted k-center
{9m− 6}, wandering salesperson and BTSP∗ {2}, repeated
city TSP∗ {2}, k-supplier∗ {3}, k-path vehicle routing∗ {2},
single depot k-vehicle routing∗ {2}.

Mechanism VCGmon
µ has best approximation guarantees

possible in polynomial time for many problems in Theorem 3,
indicated by “∗”, see (Hochbaum and Shmoys 1986). We can
also show that Algorithm 1 is not truthful for 2-dimensional
agents, i.e., owning 2 edges.

Social Cost Optimization Problems
Let us define a binary covering minimization problem, see,
e.g., (Dughmi and Roughgarden 2014). Let U be a finite set,
universe, |U | = m, and b = (be)e∈U ∈ Rm≥0 be a vector
of costs. The agents here are again single-dimensional. An
instance I ∈ Π of a binary covering minimization problem
Π is defined by a family of feasible solutions F(I) ⊆ 2U ,
such that, if S ∈ F(I) is a feasible solution then for any
superset S′ ∈ U of S, S ⊆ S′, S′ is also feasible, S′ ∈ F(I).
That is, given any feasible solution to problem Π if we add
any other element of U to this solution, we again obtain a
feasible solution. We usually assume that vector b is part of
the instance of Π, but formally, the set F(I) contains only
all combinatorial feasible solutions on instance I ∈ Π. Thus,
formally, the full instance of problem Π is (I,b).

We define now an objective function of Π abstractly, as a
function µ : F(I) −→ R≥0 depending on the costs, i.e.,



given a feasible solution S ∈ F(I) and vector (be)e∈U ,
µ(S,b) = µ((be)e∈S) = µ(be1 , . . . , bel), where S =
{e1, . . . , el}. The value of µ depends only on the costs of
elements from set S, but sometimes we will write µ((be)e∈S)
as µ(b), i.e., specifying all elements of b.

In this section we will be interested in functions µ which
are strictly all-monotone, that is, for any vector b ∈ Rm≥0
and any single element e ∈ S with b′e > be, we have that
µ((be,b−e)) < µ((b′e,b−e)). In words, if we strictly in-
crease any of the arguments of function µ, its value increases
by a strictly positive amount, which might be tiny. Note, that
the social cost function µ((be)e∈S) =

∑
e∈S be is strictly

all-monotone. Also, the Lp norm with any fixed p ≥ 1 is
strictly all-monotone but not the Lp norm with p = +∞.
Impossibility Result. Let Π be an NP-hard binary covering
minimization problem with a strictly all-monotone objective
µ. Let f be a deterministic polynomial time α-approximation
algorithm for Π. Our first goal in this section is to prove that
no such algorithm f can fulfill condition (2) if α > 1 and
F(I) is finite for any I ∈ Π, which is obviously true for our
class of problems. This result will imply that none of these
algorithms can be used by a truthful VCGmon

µ mechanism.
To prove that f violates condition (2), we will show that it

is discontinuous, that is, there always exists an instance of Π,
vector b and value ti such that ti = ti(f(b)) < bi(f(b)) =
bi and µ(f(ti,b−i), (ti,b−i)) > µ(f(b),b).

Theorem 4. Let Π be a binary covering minimization prob-
lem with a strictly all-monotone objective µ, and f be a de-
terministic α-approximation algorithm for Π, with α > 1+ε
for some ε > 0. Then there exists an instance of Π on which
algorithm f is discontinuous, i.e., does not fulfill condition
(2). This means that no truthful VCGmon

µ mechanism for Π
can use f as algorithm, even for single-dimensional agents.

Proof. (Sketch) Let α > 1 be the worst-case approximation
ratio of f . Then there exists an instance I ∈ Π, vector b ∈
Rm≥0, and two feasible solutions S0, S1 ∈ F(I) s.t.

S0 = opt(I, b), S1 = f(I, b),

c0 = µ(S0, b) < µ(S1, b) = α · c0 = c1,

with µ(S, b) = µ((be)e∈S) for any S ∈ F(I). S0 is the
optimal solution on instance (I, b) minimizing µ with cost
vector b; S1 shows tightness of the approximation ratio α.

Given the solutions (S0, b), (S1, b), we will construct
a sequence of pairwise distinct feasible solutions S0, S1,
. . . , Sk ∈ F(I) output by f and corresponding cost vectors
b = b1, b2, . . . , bk, where bk is obtained from bk−1 by in-
creasing a single coordinate (the first vector b1 is the same
for S0 and S1), and α · c0 = µ(S1, b

1) = µ(S2, b
2) =

· · · = µ(Sk, b
k). We will prove that algorithm f is either

discontinuous when “switching” from solution (Sk−1, b
k−1)

to solution (Sk, b
k), or if f “switches” continuously be-

tween these two solutions (i.e., (2) holds with equality,
µ(Sk−1, b

k−1) = µ(Sk, b
k)) then we will show how to ex-

tend this sequence with a new solution (Sk+1, b
k+1), distinct

from all previous S1, . . . , Sk. Because F(I) is finite, this
process must eventually end with S` = S0 for some `, show-
ing that f is discontinuous when “switching” from solution

(S`−1, b
`−1) to (S`, b

`), because α · c0 = µ(S`−1, b
`−1) >

µ(S`, b
`) = c0.

Corollary 1. Let Π be a binary covering minimization prob-
lem with a strictly all-monotone objective µ, and f be any
deterministic α-approximation algorithm for Π with α ≥ 1.
If f fulfils (2) on any instance of Π, then ∀ε > 0 : α ≤ 1 + ε.
That is, if f is the algorithm used by a truthful VCGmon

µ mech-
anism for Π then f must be optimal or have arbitrarily good
approximation ratio, even for single-dimensional agents.

Remark 1. We believe that Theorem 4 and Corollary 1 can
be extended to certain classes of randomized approximation
algorithms. Moreover, we believe that the assumption of Π
being a binary covering problem can also be relaxed.

Approximate Truthfulness. Let A be any α-approximation
algorithm for a binary covering minimization problem with
a social cost objective function. We will show that any such
algorithmA fulfills (2) and (3) up to a multiplicative factor of
α. This will imply an α-approximate truthfulness with moni-
toring. These results together with the above impossibility re-
sults provide a characterization of approximate mechanisms
which are truthful with monitoring for the class of binary
covering minimization problems with social cost objectives.

Definition 3 (α-truthful mechanisms). A mechanismM is
α-truthful, for some α > 1, if for any i, any bids b−i, and
any bi ∈ Di: ui(ti,b−i) ≥ α · ui(bi,b−i).

Thus to prove that VCGmon
µ is α-truthful it suffices to prove

the relaxed variants of conditions (2) and (3).

Theorem 5. Let Π be a binary covering minimization prob-
lem with the social cost objective function µ, and f be any
deterministic α-approximation algorithm for Π. Then f ful-
fils the relaxed conditions (2) and (3), implying an α-truthful
VCGmon

µ mechanism for Π with single-dimensional agents.

Conclusions
We have studied a generalization of VCG mechanisms in
the setting in which the designer can monitor the agents at
work, and enforce that higher reported costs are actually
paid by lying agents. We have shown how this assumption
allows to generalize the incentive-compatibility guarantee
from utilitarian to a large class of optimization functions. We
have also established the power, in terms of approximation
guarantee, of these mechanisms for three important and rich
classes of optimization problems studied in computer science
and algorithmic game theory.

Our work represents a first example of formal study of
general payment functions for mechanisms with monitoring.
The authors of (Serafino, Ventre, and Vidali 2020) study first-
price payments shifted by a bid-independent functions and
observe that, differently from the classical model, monitor-
ing makes bid-dependent shifts compatible with incentive
compatibility. We believe that characterizing the payments of
truthful mechanisms with monitoring is a worthy direction for
future research; generally speaking, we would like to find the
“best” payments for a given algorithm/problem. Finally, we
wonder if better approximations are possible using different
payments.



Acknowledgments. Dimitris Fotakis is supported by the
Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to sup-
port Faculty members and Researchers’ and the procurement
of high-cost research equipment grant”, project BALSAM,
HFRI-FM17-1424. Piotr Krysta is supported by the Network
Sciences and Technologies (NeST) initiative of the School of
EEECS at the University of Liverpool. Carmine Ventre is sup-
ported by EPSRC grant EP/V00784X/1 “UKRI Trustworthy
Autonomous Systems Hub”.

References
Angel, E.; Bampis, E.; and Pascual, F. 2006. Truthful al-
gorithms for scheduling selfish tasks on parallel machines.
Theoretical Computer Science 369(1-3): 157–168.
Angel, E.; Bampis, E.; Pascual, F.; and Tchetgnia, A. 2009.
On truthfulness and approximation for scheduling selfish
tasks. Journal of Scheduling 12(5): 437–445.
Ashlagi, I.; Dobzinski, S.; and Lavi, R. 2012. Optimal Lower
Bounds for Anonymous Scheduling Mechanisms. Math.
Oper. Res. 37(2): 244–258.
Azar, Y.; Hoefer, M.; Maor, I.; Reiffenhäuser, R.; and
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