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Abstract 
 

Elevated intracellular calcium ion concentration ([Ca2+]i) is a key event in the 

development of a cytotoxic response in hepatocytes. One molecule that appears to 

interfere with the calcium ion (Ca2+)-mediated cell damage is Cyclic guanosine 3',5'-

monophosphate (cGMP). Agents that elevate cellular cGMP have been reported to 

reduce [Ca2+]i and protect hepatocytes against Ca2+-mediated cell death. There is 

evidence of vitamin C (Vit C) elevating cGMP in certain cell types, however, whether 

this can be achieved in human hepatocytes has not been investigated. In addition, 

the underlying mechanism is still not clear, but there are some indications of the 

involvement of cell surface protein disulphide isomerase (csPDI). PDI was 

traditionally thought to be an ER-resident protein, however, studies suggest that it is 

expressed on the surface of certain cell types where it colocalizes with and modulates 

the action of the membrane associated particulate guanylyl cyclase (pGC).  

In this study, whether Vit C has the ability, like atrial natriuretic peptide (ANP) and 

sodium nitroprusside (SNP), to elevate cGMP, decrease [Ca2+]i and protect human 

hepatocytes against the damage induced by harmful [Ca2+]i elevations was 

investigated using the human liver cancer cell line HepG2 and where possible primary 

human hepatocytes (PHHs). Using human embryonic kidney 293 (HEK293) cells as 

a non-hepatic model cell line, the ability of Vit C to elevate cGMP and decrease [Ca2+]i 

in non-hepatic cells was also confirmed. Finally, the functional involvement of PDI in 

these mechanisms, its cellular presence and localization/colocalization with the 

natriuretic peptide receptor type A (NPRA), as well as its externalization route in 

human hepatocytes was investigated.  

Vit C, like ANP and SNP elevated cGMP and attenuated thapsigargin (Tg)-induced 

[Ca2+]i elevations in HepG2 cells. The Vit C and ANP, but not SNP-mediated cGMP 

elevations and attenuation of [Ca2+]i  signal was downregulated by the inhibition of 

PDI with the PDI inhibitor bacitracin (Bac) and the anti-PDI monoclonal antibody 

RL90. The ability of Vit C to elevate cGMP and attenuate [Ca2+]i signal was also 

observed in HEK293 cells, and the mechanisms appeared to be regulated by PDI. 

Using immunofluorescence, we found that HepG2 and HEK293 cells expressed 

membrane PDI and NPRA and cytoplasmic localized (most likely ER) PDI and NPRA. 

In HepG2 cells, the two membrane proteins were observed to colocalize. Importantly, 

the presence of PDI and its colocalization on the cell membrane with NPRA was also 

observed in PHHs. In both HepG2 and PHHs, obstruction of the endoplasmic 

reticulum (ER)-golgi protein translocation route inhibited PDI externalization. Finally, 
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Vit C, like ANP and SNP was observed to protect HepG2 cells and PHHs against Tg-

induced cell death. The Vit C-mediated protection was attenuated by the cGMP-

dependent protein kinase (PKG) inhibitor 8-bromo-guanosine cyclic 3',5'-[(R)-

(hydrogen phosphorothioate)] (Rp-8-Br-cGMP) and modulated by PDI as 

demonstrated with RL90 and Bac.  

These findings suggest that Vit C, like other cGMP elevators, stimulates cGMP 

generation, reduces [Ca2+]i and through PKG protects hepatocytes against Tg-

induced cell death. The data is consistent with Vit C and ANP mediating their effects 

via the same route since their actions appeared to be modulated by PDI, unlike the 

actions of SNP which was unaffected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

Acknowledgements  
 

Firstly, I want to thank my supervisors Dr Alec Simpson and Prof Chris 

Goldring for giving me the opportunity to undertake this PhD. Especially to 

Alec, I want to say special thanks to you for all the support. Indeed, you have 

been more than just a supervisor. I am eternally grateful to you and I will greatly 

miss you. Special thanks also go to Jill Bubb for her support.  I would also like 

to thank all my colleagues in the lab. In Particular, I would like to say a big 

thank you to Dr Monday Ogese who was not only academically helpful but also 

a source of motivation. To Dr Mingming Yang, Dr Joseph Zeguer, Dr Jing 

Zhou, Dr Will Talbot, Saajid Purohoo and everyone in the department that 

made my PhD enjoyable, I say big thanks to you all.   

To the friends I made outside the University, especially my wonderful flatmates 

Dr Matthew Agwae and Augustine Amakiri and to the wonderful friends and 

brothers I met in church, especially uncle Gift, I appreciate you all for being 

there for me. To my friends and brothers Kenneth Amadi (Kento) and Paul 

Akanji (Pablo), I can never thank you enough. Thank you for being true friends.  

Special thanks to Total E and P Nigeria (TEPNG) Ltd who partly funded this 

project. Without your support, this dream would never have become a reality. 

Harold Orisa, John Amadi and Chidi Anthony, who also contributed immensely 

in their own ways to make this come through, I cannot thank you all enough. 

I reserve special thanks to my family for all the love they have shown me. To 

my late father and mother, I want to say special thanks to them for setting me 

on the right path. I must additionally thank my big brother Barr. John Kennedy 

Enyindah and my late brother-in-law Sam Egbua, both of whom took up the 



12 
 

fatherly role after the death of my father and executed it perfectly. To my 

wonderful sisters Flora, Grace, Ngozi, Chimele, my aunty Ihuoma, my brother 

Henry and my brother-in-law Chinedu who became more than a biological 

brother, without whom my life story would never be complete, I wish I had the 

right words to express my deep and sincere gratitude for your support and 

care.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Abbreviations 
 

ANP  Atrial natriuretic peptide 

ATP  Adenosine triphosphate 

Bac  Bacitracin 

BFA  Brefeldin A 

BNP  B-type natriuretic peptide 

Ca2+  Ionised calcium 

[Ca2+]c  Cytosolic Ca2+ 

[Ca2+]i   Intracellular Ca2+ 

CNP  C-type natriuretic peptide 

DEX  Dexamethasone 

DNA   Deoxyribonucleic acid  

DMEM  Dulbecco’s modified Eagle medium  

DMSO  Dimethyl sulfoxide  

EC  Endothelial cell 

EDTA  Ethylenediaminetetraacetic acid 

EGTA  Ethylene glycol tetraacetic acid 

ER   Endoplasmic reticulum  

EGFP  Enhanced green fluorescent protein 

EtOH  Ethanol 



14 
 

FBS     Foetal bovine serum 

FlincG  Fluorescent indicator for cGMP  

GC  Guanylyl cyclase  

GECI   Genetically encoded Ca2+ indicator  

GFP   Green fluorescent protein  

GPCR  G-protein-coupled receptor   

HBS   HEPES buffered saline  

HEK293 Human embryonic kidney 293 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

hrs  Hours 

Ion   Ionomycin  

IP3  Inositol triphosphate 

IP3R  Inositol triphosphate receptor  

L-glut  L-glutamine 

NAPQI N-acetyl-4-benzoquinone imine 

NO  Nitric oxide 

NP  Natriuretic peptide 

NPR  Natriuretic peptide receptor 

NPRA  A-type natriuretic peptide receptor 

NPRB  B-type natriuretic peptide receptor 



15 
 

PBS  Phosphate buffered saline 

PDE   Phosphodiesterase  

PDI  Protein disulphide isomerase  

Pen-Strep penicillin-streptomycin 

PFA  Paraformaldehyde  

pGC  Particulate guanylyl cyclase 

PHH  Primary human hepatocytes  

PIP2  Phosphatidylinositol 4,5-bisphosphate 

PKG  cGMP-dependent protein kinase  

PMCA  Plasma membrane Ca2+ ATPase 

RT  Room temperature 

S  Second 

SERCA Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 

sGC  soluble guanylyl cyclase 

SNP  Sodium nitroprusside  

Tg  Thapsigargin 

Vit C  Vitamin C 

VSMC  Vascular smooth muscle cell 

 

 



16 
 

 

 

 

 

 

 

 

 

Chapter 1 

General introduction 
 

 

 

 

 

 

 

 

 



17 
 

1.1 The Liver  

 

1.1.1 Brief Introduction to the Liver 

The liver is the largest internal organ in the human body with  several important 

functions that includes metabolism of fats, carbohydrates and proteins, 

digestion, detoxification, immunity, breakdown of old red blood cells, excretion 

of bilirubin, cholesterol, hormones and drugs, synthesis of plasma proteins and 

as an important store for several vitamins (1-3). The human liver weighs about 

1500 g and makes up about 2 % of the adult body weight (4, 5). The building 

block of the liver is the hepatic lobule. It is hexagonal in shape and consist of 

a portal triad (a branch of the hepatic artery, portal vein and bile ducts), a 

central vein and hepatocytes.  

1.1.2 Cell composition of the liver 

The liver is made up of parenchymal and non-parenchymal cells. The 

parenchymal cells consist of the hepatocytes, while the non-parenchymal cells 

consist of the stellate fat storing cells, Kupffer, sinusoidal endothelial cells and 

intrahepatic lymphocytes (3, 6, 7). The cell composition of the liver is 

diagrammatically represented in Figure 1 below. 
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Figure 1.1. Cellular composition of the liver. Adapted from (3). 

1.1.2.1 Hepatocytes 

Hepatocytes are cells of the main liver parenchyma tissue and they make up 

70 to 80 % of the liver cytoplasmic mass (8) and 60-80% of the total cell 

population (3). Hepatocytes are cuboidal epithelial cells and like other 

epithelial cells, they have a well organised polarity, with two distinct domains; 

a basolateral membrane and an apical membrane (9). The basolateral 

membrane is involved in cell-cell communication and cell-extracellular matrix 

interaction (10). In hepatocytes, the basal part of the basolateral membrane 

faces liver sinusoidal endothelial cells, while the apical membrane contributes 

to the formation of the bile canalicular together with the apical membrane of 

opposite hepatocytes (9-11) (Figure 1.2). The apical and basolateral domains 

of hepatocytes separate their internal from external environment and permits 

a directional absorption and secretion of proteins and other molecules (9). A 

functional membrane polarity is therefore important for the functions of 
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hepatocytes such as apical secretion of bile into the bile canaliculi and basal 

secretion of serum proteins into the sinusoidal blood and this polarity is lost in 

many liver diseases such as cholestasis (11). Figure 1 below shows the 

complex anatomy of the liver with the important blood vessels. 
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Figure 1.2. Complex anatomy of the liver. (A) Gross anatomy of the liver 

showing the lobes and major blood vessels. (B) Pictorial representation of a 

portion of liver lobule. White arrows indicate direction of blood flow. Image A 

was taking from (12) and image B was taking from (13).  

1.1.2.2 Non-hepatocyte cells of the liver 

Lymphocytes: Scattered in the parenchyma and the portal tracts of the liver 

are lymphocytes. There are about 10 billion (1010) of them in an average 

human liver, which includes conventional and non-conventional populations of 

the innate (NK and NKT) and adaptive (B and T) immune systems (14, 15).   

Conventional T lymphocytes includes the CD4+ T lymphocytes and CD8+ T 

lymphocytes expressing the CD4 or CD8 receptors respectively (16). These 

(CD4+ and CD8+) population of lymphocytes also express αβ T cell receptor 

(TCR) that recognises antigen in the context of MHC class II and I molecules 

respectively (16). Typically, there are more CD8+ T cells than CD4+ T cells in 

the liver.   

Unconventional T cells are divided into two subpopulations. First are those 

that express a γẟ TCR whose function include recognition of infections and 

cancerous cells and regulation of inflammatory responses. They constitute 

about 15% to 25% of all intrahepatic cells, making the liver one of the most 

robust sources of γẟ T cells in the body (3).  

The second subpopulation of unconventional T lymphocytes are the natural 

killer T (NKT) cells. They display the phenotype and function of conventional 

T cells, as well as the properties of natural killer cells (cytolytic activity); they 
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express NK cell markers such as CD94 and CD161, as well as T-cell receptor 

(TCR)-αβ chains, which distinguishes them from typical NK cells that does 

not display TCR (17). They recognise glycolipid antigens presented in the 

context of CD1d, a non-classical MHC class I molecule, unlike conventional 

T lymphocytes which recognises peptide antigens presented in the context 

of the classical MHC class I and II molecules (3, 18). Because of their ability 

to generate an array of cytokines upon activation, they not only function in 

the regulation of innate immunity but also act as a bridging system between 

innate and adaptive immunity. NKT cells modulates liver inflammation, 

damage, fibrosis and regeneration, thus, acting as important regulators of 

the pathogenesis of liver diseases (19). NKT cells account for ≈30% of the 

intrahepatic lymphocytes (3). 

Scattered in the liver are also several forms of antigen-presenting cells 

(APCs) that capture antigens that enters the liver, or those that are released 

when hepatocytes that are infected with pathogens die. The resident APCs 

include the Kupffer cells (KCs), liver sinusoidal endothelial cells (LSECs), 

hepatic stellate cells (HSCs) and hepatic dendritic cells (HDCs).  

Kupffer cells are members of the reticuloendothelial system. They were first 

described as “sternzellen” (stellate or star cells) in 1876 by Karl Wilhelm von 

Kupffer in 1876 and represent the largest group of resident tissue 

macrophages in the body; they account for 20% of non-parenchymal cells in 

the liver (3).  KCs were first considered part of the endothelium of the hepatic 

blood vessels until 1898 when Tadeusz Browiecz identified them as hepatic 

macrophages (20). Developmentally, KCs are derived from circulating 
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monocytes that originate from bone marrow precursor cells. These monocytes 

in peripheral circulation enter the liver and differentiate into hepatic 

macrophages (KCs). Like other macrophages, the differentiation of KCs is 

regulated by several growth factors, but predominantly by the macrophage 

colony stimulating factor. In the liver, the KCs are located within the sinusoidal 

space where they lie in close contact with the parenchymal and non-

parenchymal cells of the liver. This location supports their function to get rid of 

endotoxins from the sinusoidal blood and phagocytose dead pathogen-

infected hepatocyte debris and microorganisms (3). 

Liver sinusoidal endothelial cells (LSECs) constitute the most abundant 

non-parenchymal cells in the liver (≈50%). They form fenestrated endothelium 

that line the liver sinusoids. Together with KCs, they constitute one of the 

strongest scavenger systems in the body; an activity that has been attributed 

to the presence of fenestrae between LSECs, lack of classical basement 

membrane and  their expression of various molecules that promote antigen 

uptake, including mannose and scavenger receptors, as well as molecules 

that enhance antigen presentation such as MHC class I and II and other 

costimulatory molecules such as CD40, CD80 and CD86 (21, 22).  

Hepatic dendritic cells are a population of bone marrow-derived antigen-

presenting cells that that are involved in antigen presentation to lymphocytes 

and in the modulation of hepatic immune responses. They are mainly located 

within the portal tracts and around the central veins (23). In healthy livers, 

HDCs exist mainly in their immature forms with low ability to endocytose 

antigens and to stimulate T lymphocytes. These properties of DCs, together 
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with the constitutive expression of anti-inflammatory cytokines IL-10 and TGF-

β by KCs and LSECs  which subverts DC maturation and T lymphocyte 

stimulatory function, significantly contributes to the tolerogenic 

microenvironment that characterizes healthy liver (24-26). Upon hepatic injury 

and exposure to inflammatory signals such as microbial products and pro-

inflammatory cytokines (including IL-1, GM-CSF and TNF-α), DCs undergo 

maturation and become efficient antigen presenting cells and migrate via the 

Space of Disse to the lymphatics in the portal tracts and eventually to the T 

lymphocyte area of the extrahepatic lymph nodes and spleen (27-29). 

1.1.3 Functions of the liver  

Hepatocytes being the chief cellular component of the liver are responsible for 

most of the liver functions including digestion, metabolism, detoxification, 

storage of nutrients, production of vital plasma proteins. 

1.1.3.1 Digestive role of the liver 

Hepatocytes play an important role in digestion through the production of bile. 

They secrete bile from their apical membrane into the bile canaliculi from 

where the bile is collected into the bile ductules and then into bile ducts. The 

bile ducts unite to form the right and left hepatic ducts which in turn merge and 

exit the liver as the common hepatic ducts which eventually channels the bile 

to the gall bladder for storage. Bile is a mixture of water, bile salts, cholesterol 

and bilirubin. Mammalian liver synthesizes mainly two primary bile salts: cholic 

acid (CA), a trihydroxyl acid and chenodeoxycholic acid (CDCA), a dihydroxyl 

acid (1). The primary bile acids can then be subsequently converted into 
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secondary bile acids by intestinal bacteria. Cholic acid is converted to 

deoxycholic acid, a dihydroxyl acid, while CDCA is converted to lithocholic 

acid, a monohydroxyl acid (1). On arrival of a fatty meal in the duodenum, the 

cells of the duodenum secret the hormone cholecystokinin (CCK) which 

stimulates the gall bladder to release bile.  The bile in the duodenum helps to 

emulsify fats, breaking large clumps of fats into smaller fragments with 

increased surface area that can then be easily digested by the body.  

1.1.3.2 Metabolism of digestive products 

As all the blood that leaves the digestive system goes directly to the liver 

through the hepatic portal vein, hepatocytes are tasked with the responsibility 

of metabolizing all the digestive products of carbohydrates, lipids and proteins 

into forms that are useful to the body.  

1.1.3.2.1 Liver and carbohydrate metabolism 

The blood the liver receives from the gastrointestinal tract through the hepatic 

portal vein is rich in glucose and other nutrients. In the postprandial state, 

glucose molecules are taken up by hepatocytes via glucose transporter 2 

(GLUT2) where they are phosphorylated by the enzyme glucokinase to 

generate glucose-6-phosphate (G6P) (30). The resulting G6P has several 

fates including serving as a precursor for glycogen synthesis, undergoing 

metabolism to generate pyruvate via glycolysis (31). Pyruvate is subsequently 

transported across the inner mitochondrial membrane into the mitochondrial 

matrix where it is utilized to generate ATP through the tricarboxylic acid (TCA) 

cycle and oxidative phosphorylation (31). The G6P can also be channelled 

through the phosphate pentose pathway to produce NADPH (32). In the fasted 
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state, glycogen is hydrolysed into glucose by the enzyme glycogen 

phosphorylase through the process of glycogenolysis with glucose-1-

phosphate (G1P) and G6P as intermediate products (30). The G6P can 

allosterically inhibit glycogen phosphorylase with a concomitant allosteric 

activation of glycogen synthase, consequently further increasing liver 

glycogen level (33, 34).  In the postprandial state, insulin is secreted by 

pancreatic β cells in response to raised blood glucose, amino acids and fatty 

acids. Insulin promotes glucokinase (GK) expression which converts glucose 

to G6P which in turn promotes glycogenesis and inhibits glycogenolysis (30, 

35). Insulin also potentiates glycogenesis and inhibit glycogenolysis by 

promoting the phosphorylation and inactivation of glycogen synthase kinase 3 

(GSK-3) and concomitant dephosphorylation and inhibition of glycogen 

phosphorylase respectively (36). On the other hand, in the fasted state, the 

secretion of insulin by the pancreatic β cells is down regulated, also, the 

secretion of fibroblast growth factor 15/19 (FGF15/19; an activator of glycogen 

synthesis) is downregulated (30), with a resultant increase in glycogen 

hydrolysis to release glucose.  

Following a prolonged period of fasting, glycogen level depletes, and 

hepatocytes generates glucose through the process of gluconeogenesis from 

substrates such as glycerol, certain amino acids (alanine and glutamine), 

pyruvate and lactate. Gluconeogenesis occurs in the liver and kidneys and is 

stimulated by diabetogenic hormones such as glucagon, cortisol, epinephrine 

and growth hormone (37). The process of gluconeogenesis is however an 

expensive one from an energy standpoint as the complete conversion of two 

moles of pyruvate to two moles of 1,3-bisphosphoglycerate requires six moles 
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of ATP. The detailed process is diagrammed in Figure 1.3 below. In brief, 

cytoplasmic lactate is converted to pyruvate by lactate dehydrogenase. 

Pyruvate is then transported across the inner mitochondrial membrane to the 

mitochondrial matrix where it is converted to oxaloacetate by the enzyme 

pyruvate carboxylase. The mitochondrial oxaloacetate is then acted upon by 

mitochondrial malate dehydrogenase that reduces it to malate which is then 

exported to the cytoplasm. In the cytoplasm, the cytoplasmic malate 

dehydrogenase oxidizes it to regenerate cytoplasmic oxaloacetate which 

subsequently undergoes series of reactions to give rise to G6P which is then 

transported to the ER where it is dephosphorylated by glucose-6 phosphatase 

to yield glucose.  
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Figure 1.3. Process of gluconeogenesis. Glucose is generated from non-

carbohydrate sources such as pyruvate, lactate, glycerol, and certain amino 

acids. The enzymes of gluconeogenesis are located in the cytosol except the 

pyruvate carboxylase (present in the mitochondria) and glucose 6-

phosphatase (membrane bound in the endoplasmic reticulum).  
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1.1.3.2.2 Liver and lipid metabolism 

Digestion of lipids into fatty acids and glycerol occurs in the small intestine. 

Fatty acids in the blood that reach the liver enter hepatocytes by two distinct 

pathways; passive diffusion for short and medium-chain fatty acids and 

transporter-mediated uptake (by the fatty acid transport protein and fatty acid 

translocase) for long-chain fatty acid (38, 39).  Intracellular fatty acids can be 

stored as triacylglycerol (TAG) or cholesterol esters in lipid droplets in 

conditions of excess energy. In conditions of insufficient energy, such as after 

a long period of fast, TAG stored in adipose tissues are broken down to release 

fatty acids into circulation, which are subsequently transported to the liver 

where they undergo oxidation reactions to generate ketone bodies (40, 41). 

Within the hepatocytes, fatty acids are first activated by the enzyme fatty-

acetyl CoA synthetases (ACS) to generate fatty acyl-CoA, which are then 

carried to intracellular organelles where they are metabolized or to the nucleus 

where they interact with transcription factors (Figure 1.4). Excess 

carbohydrates and proteins are also converted into fatty acids and triglyceride 

which are then exported to and stored in adipocytes (42). Hepatocytes 

synthesizes large quantities of cholesterol, phospholipids and lipoproteins 

which are made available to other tissues in the body. Most of the cholesterol 

produced by hepatocytes are excreted as components of the bile. The 

pathways for the hepatic metabolism of fatty acids are summarised in Figure 

1.4. 
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Figure 1.4. Pathways for hepatic fatty acid metabolism. Fatty acids enter 

the hepatocytes via FATP and FAT and subsequently undergoes a series of 

chemical reactions. Adapted from (39). FAT: fatty acid translocase. FATP: fatty 

acid transport protein. 

1.1.3.2.3 Liver and protein metabolism 

The key roles of the liver in protein metabolism includes synthesis, 

transamination and deamination of amino acids, as well as synthesis of urea 

(39). In fact, the liver is the only organ in the body that has the function of 

removing the nitrogen present in amino acids via urea synthesis. Amino acids 

that reach the liver via the hepatic portal vein are taken up by hepatocytes via 



31 
 

specialised transporters which are designed for the transport of the various 

classes of amino acids. Energetically, these transporters can be classified into 

two groups. The first group are sodium-dependent transporters whose 

activation depends upon sodium chemical gradient and membrane electrical 

potential to stimulate hepatocyte uptake of amino acids against a 

concentration gradient. The second group of transporters are sodium-

independent amino acid facilitated diffusion system that depends on 

concentration gradient to achieve hepatocyte amino acid uptake (39). Once 

taken up by hepatocytes, amino acids have different fates. They can serve as 

a precursor for hepatic protein synthesis; including proteins that are required 

in the liver and those transported to extrahepatic tissues such as albumin. In 

the liver, amino acids can also undergo transamination, a process catalysed 

by aminotransferases or transaminases (43). Transamination involves the 

removal and transfer of an amino group from an amino acid to a 2-oxoacid, 

resulting in the formation of a new amino acid and a new 2-oxoacid. The 

resulting 2-oxoacid can be converted to acetyl-CoA which is then 

subsequently channelled through ketogenesis or lipogenesis to yield ketone 

bodies and fatty acids respectively or the 2-oxoacid can be converted to 

pyruvate which can then go through the process of gluconeogenesis to yield 

glucose (39, 44). Also, the product of transamination such as glutamate 

(formed by the transfer of an amino group to 2-oxoglutarate) can undergo 

oxidative deamination, catalysed by glutamate dehydrogenase to yield 

ammonium ion (NH4
+) which is subsequently channelled through urea cycle to 

produce urea which can then be excreted through by the kidney. The process 
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of hepatic amino acid metabolism is schematically represented in Figure 1.5 

below.  

 

Figure 1.5. Pathways for hepatic amino acid metabolism. Amino acids are 

taken up by hepatocytes via specialised transporters and subsequently 

undergoes transamination or are utilized for hepatic protein synthesis. 

Adapted from (39). 

1.1.4 Xenobiotic/drug metabolism and detoxification 

Another important role the liver plays in the body is detoxification of 

xenobiotics. The human body is exposed to millions of foreign compounds that 

are taken into the body either deliberately in water and food or even in form of 

chemical compositions such as drugs or unconsciously in the air we breathe. 

Some of these substances are cytotoxic and are highly lipophilic and therefore 

have the tendency to stay in the body for long period of times with undesirable 

effect on the body. Fortunately, the body is equipped with enzymes (most of 
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which exist in their highest amount in the liver) and mechanisms that converts 

the lipophilic xenobiotics into hydrophilic forms that can then be easily excreted 

in the urine, the so-called xenobiotic biotransformation.   

Xenobiotic detoxification involves xenobiotic biotransformation and excretion. 

Xenobiotic biotransformation can be divided into 2 phases of enzymatic 

reactions, referred to as phase I and phase II reactions. The phase I reactions 

are generally classed as functionalization reactions that involve interchanging 

or exposing of already existing polar functional groups or introduce new polar 

functional groups to the xenobiotic through oxidation, reduction or hydrolytic 

reactions (45). This consequently increases the hydrophilicity of the substance 

or prepares it for the phase II reactions. Phase I reactions are mediated by 

different classes of enzymes including cytochrome P450 (CYP), flavine-

containing monooxygenase (FMO), esterases and amidases (45). The phase 

II reactions are conjugation reactions that include sulfation, glucuronidation 

and methylation of the xenobiotic metabolites; here, small endogenous polar 

moieties are conjugated to the functional groups that were introduced/exposed 

in phase I (45-47). This consequently increases the hydrophilicity and 

excretability of the xenobiotic metabolite. Phase II reactions are mediated by 

enzymes such as sulfotransferase, glucuronosyltransferase and N-

acetyltransferase.  

It is however important to point out that though xenobiotic biotransformation is 

an integral part of detoxification, the end point of drug/xenobiotic 

biotransformation is not always detoxification. In fact, the main aim of 

xenobiotic biotransformation is to convert lipophilic molecules into hydrophiles 



34 
 

that can then easily be excreted in the urine. It is therefore by the excretion of 

these resultant hydrophiles that detoxification is achieved. At times 

xenobiotic/drug biotransformation can accidentally lead to an undesirable 

increase in chemical cytotoxicity by resulting in the formation of electrophilic 

metabolites which have the potential to bind covalently with cellular 

macromolecules, consequently, leading to genetic mutation and/or cell death 

(48, 49).  

1.1.5 Liver and immunity 

Although the primary functions of the liver are not traditionally considered to 

be immunological, the liver performs many essential immune tasks; it plays 

several important functions in both innate and adaptive immunity. For 

example, 80-90% of the circulating innate immune proteins in the body are 

produced by the hepatocytes of the liver (50). In addition, there are immune 

cells resident in the liver, including lymphocytes and Kupffer cells (discussed 

earlier as part of the cellular composition of the liver). For these reasons, the 

liver is considered as an immunological and a lymphoid organ.  

1.2 Ca2+ signalling in normal liver physiology 

1.2.1 Mechanisms of Ca2+ signalling 

Several of the functions of the liver are controlled by Ca2+. These include 

vesicular trafficking and canalicular contraction that controls the secretion of 

bile (51, 52), glucose and energy metabolism that occur through the 

modulatory action of Ca2+ on the several enzymatic activities involved (53, 54) 

and control of cell cycle that involves the modulation of transcription and pro 
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and anti-apoptotic proteins that regulate cell proliferation. These different 

functions require different Ca2+ signals, so, in order to control these functions 

simultaneously, intracellular Ca2+ signals are highly organised in space, 

frequency and amplitude.  

Just like in other tissues and cell types, in hepatocytes, [Ca2+]c signal arises 

from two sources; the internal stores or the extracellular medium (55, 56). The 

former involves release of Ca2+ from internal stores upon the binding of special 

intracellular messengers to their receptors (56). A typical example of one of 

such messengers is Inositol-1,4,5-triphosphate (IP3) which binds to its receptor 

IP3 receptor (IP3R) and causes the release of Ca2+ from the endoplasmic 

reticulum (ER) (57, 58). Other studies have suggested that IP3 can also 

stimulate Ca2+ release from golgi apparatus into the cytosol (59), nucleus (60-

62) and secretory vesicles (63).  Also, Ca2+ and cyclic ADP ribose (cADPR) 

can trigger Ca2+ signal through their direct interaction with ryanodine receptors 

(RyRs) (55), so also do nicotinic acid adenine dinucleotide phosphate 

(NAADP) through their activation of two-pore channels (TPCs) localized in 

endo-lysosomal compartments (64-68).  

IP3-mediated [Ca2+]c signal is triggered by the binding of Ca2+-mobilizing 

hormones and neurotransmitters or growth factors to G-protein coupled 

receptors (GPCRs) (64, 69, 70) or receptor tyrosine kinases (RTKs) (64, 69, 

71) respectively, localized on the plasma membrane. GPCRs are a group of 

membrane receptors found in eukaryotes. They consist of seven hydrophobic 

transmembrane α-helical domains separated by alternating extracellular and 

intracellular loop regions (72). They have an extracellular amino terminus and 
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an intracellular carboxyl terminus (73), as well as a cytosolic G-protein binding 

site (55, 74). G proteins are specialised proteins which binds guanosine 

triphosphate (GTP) and guanosine diphosphate (GDP). GPCR-associated G 

proteins are heterotrimeric, consisting of three subunits; an α, β and γ subunits 

(70, 75). The α and γ subunits are attached to the cell membrane by lipid 

anchors (76). In the inactive state, the α subunit binds a GDP molecule which 

is replaced with a GTP molecule upon activation. Upon the binding of Ca2+-

mobilizing hormones or neurotransmitter to a GPCR, the GPCR undergoes a 

conformational change, resulting in the exchange of the GDP molecule for a 

GTP molecule by the α subunit (77). This results in the dissociation of the α 

subunit from the β-γ dimer (78). The later interacts and activates the 

membrane bound phospholipase C (PLC). There are different subtypes and 

isoforms of PLC (79, 80); in particular, PLCβ1 and PLCβ2 are activated by 

GPCR, while PLCϒ is activated by RTKs (79, 81). Activated PLCβ1 and 

PLCβ2 in turn catalyses the hydrolysis of membrane bound 

phosphatidylinositol 4,5-bisphosphate (PIP2) into IP3 and diacylglycerol (DAG) 

(82). IP3 diffuses through the cytosol to the endoplasmic reticulum (ER) where 

it binds to and activates the IP3 receptor (IP3R), resulting in the release of Ca2+ 

from the ER into the cytosol. DAG remains membrane bound where it interacts 

with and activates protein kinase C (PKC) which phosphorylates target 

proteins, thereby mediating several signal transductions (83, 84). 

RTKs are another group of specialised membrane receptor that are 

characterised by an extracellular ligand-binding domain, a single 

transmembrane domain and an intracellular tyrosine kinase domain. They 

exist as inactive monomers which then undergoes dimerization upon the 
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binding of a signalling molecule or as pre-formed inactive dimers prior to ligand 

binding, which then becomes activated upon ligand binding (85, 86).  Switch 

on of kinase activity requires both receptor dimerization and 

transphosphorylation of tyrosine residues in the activation loop of the catalytic 

domain of the receptor (55). The phosphorylated tyrosine residue in activated 

RTKs then recruits adaptor proteins containing SH2 (Src homology domain 2), 

SH3 (Src homology domain 3), or PTB (phosphotyrosine binding domain) that 

in turn triggers signal transduction pathways, leading to cellular responses 

(55).  

Binding of Ca2+-mobilizing growth factors to RTKs is thought to stimulate 

PLCϒ-mediated breakdown of cell membrane-localized PIP2 (81). However, 

other studies suggest that RTK can translocate to the nucleus where it brings 

about local activation of PLC, hence alternatively resulting in selective 

breakdown of nuclear PIP2, with a consequent generation of nuclear IP3-

dependent Ca2+ signals (87, 88).  
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Figure 1.6. Mechanism of Ca2+ signal formation in hepatocytes. 

Recruitment of Ca2+ from intracellular stores may arise by the binding of Ca2+ 

mobilizing hormones to GPCRs or growth factors to RTKs which in turn lead 

to the activation of PLC; PLCβ for GPCRs and PLCϒ for RTKs. Activated PLC 

hydrolyzes PIP2 into IP3 and DAG. DAG remains in the plasma membrane, 

while IP3 diffuses to the ER where it stimulates Ca2+ release into the cytosol. 

RTKs may translocate to the nuclear membrane where it brings about 

selective activation of nuclear membrane PLC, hydrolysis of nuclear 

membrane PIP2 and release of Ca2+ from the nucleoplasmic reticulum into the 

nucleoplasm.  Adapted from (55) 
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1.2.2 Physiological functions of Ca2+ signals 

1.2.2.1 Ca2+ and bile secretion  

Bile secretion depends on the regulatory action of Ca2+ in hepatocytes which 

are responsible for the primary formation and initial secretion of bile into the 

bile canaliculi, and cholangiocytes which line the biliary tree and modify the 

canalicular bile through a series of secretory and reabsorptive processes as it 

travels along the biliary tree. In this section, we shall divide bile secretion into 

two stages which include canalicular secretion (secretion from hepatocytes 

into bile canaliculi) and ductular secretion (performed by cholangiocytes into 

the biliary tree), both of which are regulated by Ca2+.  

1.2.2.1.1 Canalicular secretion 

An important feature of epithelial polarity is the concentration of IP3R on the 

apical region, with different isoforms of IP3R observed in different cell types 

(89-92). Particularly, IP3R-2 has been shown to concentrate on the apical or 

pericanalicular ER of hepatocytes. This pericanalicular localization of IP3R has 

been suspected to allow epithelial cells to achieve micromolar apical [Ca2+]c 

which is a particularly important for Ca2+-induced exocytosis. Studies suggest 

that the pericanalicular concentration of IP3R-2 in hepatocytes and the 

consequent Ca2+ release from these receptors is important for the insertion of 

the transporter multidrug resistance-associated protein 2 (MRP2) into the 

hepatocyte apical membrane. MRP2 is the chief transporter of organic anions 

including bilirubin and GSH from hepatocytes into the canaliculus (93).  The 

apical concentration of IP3R-2 is also important in maintaining bile acid 

secretion through the regulation of the bile salt export pump (BSEP) which is 
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the major transporter of bile acid from hepatocytes into the bile canaliculi. 

Several lines of evidence support these roles of Ca2+ in canalicular secretion. 

Knockout (KO) of IP3R-2 in hepatocytes and treatment of wildtype hepatocytes 

with BAPTA (a selective Ca2+ chelator) almost completely abrogated 

canalicular secretion of the fluorescent organic anion 5- 

chloromethylfluorescein diacetate, consistent with inhibition of the MRP2 (94). 

Also, Knockdown (KD) of IP3R-2 in hepatocytes and treatment of wildtype 

hepatocytes with BAPTA or with the IP3R inhibitor xestospongin C inhibited 

apical secretion of bile acid via the BSEP (95). Together, these studies provide 

evidence that Ca2+ is important for canalicular insertion of MRP2 and BSEP, 

hence important for hepatocyte organic anions and bile acid secretion. This 

means that sustained significant variation of [Ca2+] in the liver would result in 

pathophysiological liver conditions. A typical example is cholestasis which is 

associated with both elevated [Ca2+]c in hepatocytes and decreased [Ca2+]c in 

cholangiocytes (56).  

1.2.2.1.2 Ductular secretion 

While hepatocytes secrete the canalicular bile, cholangiocytes are important 

for modifying the primary bile by hormonal regulated events as they flow along 

the biliary tree (96, 97). Cholangiocytes perform this function by secreting fluid 

and bicarbonate (HCO3
-) into the primary bile (98). In physiological conditions, 

the most widely studied and most characterised archetypal mechanism of 

cholangiocyte HCO3
- secretion is the secretin-stimulated pathway. The binding 

of secretin to the secretin receptors found on the basolateral membrane of 

cholangiocytes triggers the synthesis of 3',5'-cyclic adenosine monophosphate 

(cAMP) by adenylyl cyclase (AC) (99). The synthesized cAMP activates 
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cAMP-dependent protein kinase (PKA), which in turn activates the cystic 

fibrosis transmembrane conductance regulator (CFTR). Activation of CFTR 

leads to the extrusion of chloride ion (Cl-) into the ductular lumen which is 

subsequently exchanged with HCO3
- through the Cl-/ HCO3

- exchange, with 

passive efflux of water (100, 101). This is driven by the Cl- gradient across the 

cholangiocyte apical membrane (99) and the HCO3
- alkalinizes the primary bile 

and form a protective HCO3
- layer over the apical membrane of cholangiocytes 

(102, 103). The intracellular HCO3
- is generated by the hydration of carbon 

dioxide; a reaction that is catalysed by carbonic anhydrides, giving rise to 

HCO3
- and hydrogen. Besides the secretin-stimulated mechanism, an 

alternative HCO3
- secretory mechanism involves the respective acetylcholine 

(ACh) and ATP stimulation of their receptors; muscarinic acetylcholine 

receptor M3 and P2Y receptors present on cholangiocyte membrane, resulting 

in IP3-dependent [Ca2+]c elevations and consequent apical Cl-/HCO3
- secretion 

(104, 105). Recent studies show that Ach potentiates secretin stimulation of 

the Cl-/HCO3
- exchanger (106). This suggest a possible interplay between the 

two HCO3
- secretory pathways even though they were initially thought to be 

independent of each other.    

Though Ca2+ have stimulatory effect on apical organic anion and bile salt 

secretion, exogenous agonists that elevate [Ca2+]c either from the extracellular 

space or from the internal stores in isolated hepatocytes were reported to 

inhibit net bile secretion (107). The calcium ionophore A23187 which elevates 

[Ca2+]c by increasing the influx of extracellular Ca2+ (eCa2+) inhibited bile flow 

in perfused liver (107). Also, vasopressin which elevates [Ca2+]c through IP3 

release of Ca2+ from the ER and through influx of eCa2+ also inhibited bile flow 
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(107).  This has been suggested to be as a result of increased paracellular 

permeability (55) due to compromised tight junctions caused by elevated 

[Ca2+]c and reduced extracellular calcium concentration [Ca2+]e which has been 

reported by some experimental studies (107, 108). This results in the reflux of 

bile contents into the sinusoidal blood, thus reduced canalicular bile flow (109). 

Also, because tight junctions give rise to osmotic gradients within the bile 

canaliculi that is necessary for bile formation (110, 111), reduced or loss of the 

tight junction barrier/increased paracellular permeability would  dissipate the 

osmotic gradient and result in net reduced bile formation and flow along the 

canaliculus. Together, these studies buttress the point that maintaining the 

right [Ca2+]; both intracellular and extracellular concentrations is important for 

both bile formation and bile flow.  

1.2.2.2 Ca2+ and glucose homeostasis in the liver 

Intracellular Ca2+ signal plays a vital role in regulating glucose metabolism in 

the liver by modulating the phosphorylation and dephosphorylation, hence the 

activity of the regulatory enzymes of glycogenesis (glycogen synthase) and 

glycogenolysis (glycogen phosphorylase) (53, 112). Ca2+ also regulates the 

key enzymes of gluconeogenesis (113). Previous studies have shown that 

Ca2+ mobilizing hormones modulate these processes (114)  in a Ca2+-

dependent manner (115, 116). For example, vasopressin, angiotensin II and 

α-adrenergic agonists trigger PLC-mediated IP3 generation, leading to IP3-

mediated Ca2+ release from the ER, resulting in the phosphorylation of 

glycogen phosphorylase, attenuates glycogen synthase activity and 

glycogenolysis (117, 118). Nucleotides such as ATP and UTP that elevates 
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[Ca2+]i via their action on P2Y receptors, stimulate glycogen phosphorylase in 

human hepatocytes (119). So does another P2Y agonist 2-

methylthioadenosine 5’-diphosphate 2-MeSADP in rat hepatocytes (120). 

Also, the Ca2+ ionophore A23187 stimulates the action of glycogen 

phosphorylase and inhibits that of glycogen synthase (121). These studies 

provide further evidence that Ca2+ plays an important role in the mobilization 

of glucose from glycogen in the process of glycogenolysis in the liver. 

1.2.2.3 Ca2+ and hepatocyte proliferation / liver regeneration 

Although hepatocytes rarely replicate under physiological condition in adult 

liver, however, following conditions such as partial hepatectomy, ischaemic 

liver and acute liver damage due to exposure to certain compounds, 

hepatocytes are able to re-enter the cell cycle and proliferate (122, 123). Like 

in other cell types, Ca2+ plays a vital role in hepatocyte proliferation (124, 125). 

Ca2+ signal regulates the various stages of cell cycle; from the activation of 

several immediate-early genes to regulation of the various phases of mitosis 

(124). The pro-cell proliferative action of Ca2+ have been shown to be 

dependent upon the spatiotemporal dynamics of Ca2+ signal, i.e., the ability of 

Ca2+ to mediate the various stages of cell proliferation depends upon the 

magnitude, amplitude and frequency of Ca2+ signal in the subcellular 

compartments (55). Several lines of evidence show that Ca2+ is important for 

liver regeneration (126). A rise in liver and plasma level of Ca2+ mobilizing 

growth factors have been reported as an early event following partial 

hepatectomy (PH) (127). For example, the level of hepatocyte growth factor 

(HGF) and epidermal growth factor (EGF) increases in both the liver and 
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plasma following partial hepatectomy (PH), and these factors have been 

shown to stimulate cytosolic Ca2+ oscillations in hepatocyte (128), suggesting 

a possible connection between rise in [Ca2+]c and liver regeneration. Also, 

other agonists that elevate [Ca2+]c such as ATP, noradrenaline and arginine 

vasopressin have been reported to play important roles in the early stages of 

liver regeneration (129). Parvalbumin (PV); a calcium-binding protein that is 

selectively expressed in muscle and neuronal cells, but absent in the liver 

(130) has been widely used to study the involvement of Ca2+ in liver 

regeneration. Rodrigues and colleagues utilized PV variants targeted 

selectively to the nucleus and cytoplasm of hepatoma cell lines to determine 

the relative importance of nuclear and cytoplasmic Ca2+ in cell proliferation. It 

was reported that nuclear Ca2+ oscillations was essential for cell proliferation 

in the hepatoma cell lines and also necessary for cell division to progress 

through the early stage of prophase (131). In LX-2 immortalized human 

hepatic stellate cells (HSCs) and primary rat hepatic stellate cells, both nuclear 

and cytosolic Ca2+ were reported to enhance proliferation (132). Lastly, 

Lagoudakis and colleagues reported that by inducing hepatocytes both in vitro 

and in vivo in whole liver, to selectively express PV in the cytosol, they were 

able to investigate the role of Ca2+ in hepatocyte proliferation and liver 

regeneration. It was reported that agonist-induced cytosolic Ca2+ oscillations 

was attenuated in PV- expressing primary hepatocytes, this was accompanied 

by reduced proliferation (125). Also, whole liver regeneration post PH was 

significantly delayed in PV-expressing rats, suggesting that optimum [Ca2+]c is 

necessary for hepatocyte proliferation and liver regeneration (125).  
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From the findings of the studies highlighted above amongst others, it is 

apparent that in addition to cytosolic Ca2+, nuclear Ca2+ is also important for 

cell (hepatocyte) proliferation and liver regeneration. The importance of 

nuclear and cytosolic Ca2+ for hepatocyte proliferation is dependent upon the 

action of the various Ca2+-sensitive transcription activators/factors and 

enzymes which includes cAMP response element binding protein (CREB), 

ETS Like-1 (Elk1), calcium/calmodulin-dependent protein kinase type 4 

(CaMK-IV) and nuclear factor kappa-light-chain-enhancer of activated B cells 

(NF-κB).  

1.2.2.4 Ca2+ and cell death 

The resting [Ca2+]c is usually maintained around 100 nM compared to the 

extracellular concentration that ranges between 1-2 mM (133-136). To 

maintain this low [Ca2+]c, Ca2+ is actively pumped from the cytosol to the 

extracellular space, or extruded via the Na+/Ca2+ exchangers or sequestered 

into the ER (136), golgi apparatus (137) and to a certain extent in the lysosome 

(138). In addition, mitochondria might buffer cytosolic Ca2+ (139) as do 

cytosolic proteins (140). Though coordinated spatiotemporal increases in 

[Ca2+] in the cytoplasm, nucleus and mitochondria mediates several cellular 

physiological signals, prolonged elevations in [Ca2+]i resulting from either the 

extracellular space or from the intracellular stores triggers a series of cascades 

that culminate in cell death (136, 141). There are different forms of Ca2+-

dependent cell death which includes apoptosis, autophagy, and regulated 

necrosis (necroptosis). 

 



46 
 

1.2.2.4.1 Apoptosis 

The mechanisms of apoptosis have been classified into two pathways; the 

intrinsic (mitochondrial) and the extrinsic (death receptor) pathways. There is 

a third pathway called the perforin/granzyme pathway that is employed by T-

cells in eliminating viral-infected or transformed cells (142).  The three 

pathways eventually converge on the same execution pathway (activation of 

caspases) (142). The intrinsic pathway involves diverse array of stimuli such 

as biochemical stress, DNA damage and lack of growth factors that result in 

intracellular stress signals on the mitochondria and consequent formation of 

mitochondrial permeability transition pore (mPTP) on the inner mitochondrial 

membrane and eventual release of pro-apoptotic factors from the 

mitochondria (143, 144). The extrinsic pathway is triggered by the binding of 

a ligand to a death receptor which are members of the tumour necrosis factor 

(TNF) receptor gene superfamily such as TNFR1 and FAS receptor (FASR) 

(142, 145). Previous studies have however reported that Bid mediates the 

release of cytochrome C from isolated mitochondria. Bid is a proapoptotic 

protein known to be activated by caspase 8; a protease involved in the 

extrinsic apoptotic pathway. This suggests that the extrinsic apoptotic pathway 

could also be mediated by the mitochondria (146). 

BCL family of proteins, Ca2+ and apoptosis 

Members of the BCL family of protein play vital roles in the regulation of 

apoptosis (147). They mediate pro and anti-apoptotic effects. The pro-

apoptotic members of the protein family include the pro-apoptotic pore formers 

(BAK, BOK and BAX) and the pro-apoptotic BH3-only proteins (BAD, BID, 

NOXA, HRK, PUMA and BIK). While the anti-apoptotic BCL proteins include 
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BCL-2, BCL-XL, BCL-W, BFL-1/A1 and MCL-1) (148, 149). The BCL proteins 

modulates the mitochondrial apoptotic pathway by regulating the release of 

apoptotic factors from the mitochondria. BCL-2 inhibits apoptosis by lowering 

ER calcium load (150), while BCL-XL inhibits apoptosis by inhibiting IP3-R 

expression on the ER, thereby attenuating IP3R-mediated Ca2+ release from 

the ER (151, 152). This way, BCL-2 and BCL-XL collectively reduces that 

amount of Ca2+ released from the ER into the cytosol, consequently reducing 

the amount of Ca2+ that transmits from the cytosol to the mitochondria, thus 

preventing mitochondrial Ca2+ overload, thereby inhibiting the release of pro-

apoptotic factors from the mitochondria. On the other hand, pro-apoptotic BCL 

family members such as BAK and BAX promotes mitochondrial Ca2+ uptake 

by regulating IP3R phosphorylation and promoting Ca2+ release from the ER 

(153).  

1.2.2.4.2 Autophagy 

Autophagy is a cellular process that involves the degradation and recycling of 

cellular materials such as long-lived proteins, lipids, complete organelles and 

other macromolecules, as well as maintenance of cell function (154). The 

degradation/recycling processes rely on lysosomal hydrolases and acid 

lipases. The process of autophagy is activated under stressed conditions such 

as prolonged fasting (nutrient deprivation), abnormally high temperatures, 

cytosolic Ca2+ overload, oxidative stress and accumulation of damaged 

organelles, whereas under well-fed conditions, autophagy is maintained at low 

basal level (155, 156).  Activation of autophagy in the former conditions plays 

a vital role in sustaining cellular homeostasis and maintaining energy 

requirements and dysregulation of autophagic flux has been implicated in 
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several diseases such as cancer, cardiovascular and neurodegenerative 

diseases (157, 158). Autophagy can be classified into three different types, 

namely macroautophagy, microautophagy and chaperone-dependent 

autophagy, depending on the mode of material delivery to the lysosomes 

(159). Of the three, macroautophagy (hereafter called autophagy) is the most 

common type. It involves the sequestration of the substrates into cytosolic 

double-membrane vesicles called autophagosomes which subsequently fuses 

with lysosomes to form autolysosomes, resulting in the degradation and 

recycling of the enclosed materials (160).  The molecular mechanism of 

autophagy is complex and orthologs of more than 30 autophagy-regulating 

(ATG) proteins have been implicated in the process. Of these, the mammalian 

ortholog of ATG6 Beclin 1, which has been suggested to intersect with several 

calcium signalling pathways, is the key protein involved in the initial formation 

of autophagosomes (161-163).   

Ca2+ and autophagy 

Ca2+ plays a key role in the regulation of autophagy (164). Previous studies 

have suggested a stimulatory role for Ca2+ in the initiation and execution 

stages of autophagy (165-167). However, other studies have proposed that 

intracellular Ca2+ signalling suppresses autophagy (168-171), suggesting a 

dual role for Ca2+; as both a positive and negative regulator of the autophagic 

process. Increased [Ca2+]c can positively regulate autophagy by various 

mechanisms. Elevated [Ca2+]c can activate Calcium/calmodulin-dependent 

protein kinase beta (CaMKKβ) with a consequent stimulation of 5' adenosine 

monophosphate-activated protein kinase (AMPK) and inhibition of the 
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mammalian target of rapamycin (mTOR) signalling (172). mTOR negatively 

regulates autophagy, hence, its inhibition results in the upregulation of the 

autophagic process (173, 174). ER-localised Bcl-2 has been suggested to 

downregulate this process by lowering [Ca2+]ER and attenuating agonist-

stimulated intracellular Ca2+ signalling (172). On the other hand, other 

experimental studies have shown that IP3R-mediated Ca2+ release suppresses 

autophagy. Release of Ca2+ from the ER via the IP3R results in the transfer of 

Ca2+ to the mitochondria which can subsequently result in increased ATP 

production and downregulation of AMPK with a consequent inhibition of 

autophagy (172). Experimental evidence showed that abrogation of the IP3R-

mediated Ca2+ release in triple knockout (TKO) cells attenuated mitochondrial 

Ca2+ uptake, resulting in reduced oxygen consumption, decreased ATP 

production and activation of AMPK which consequently promoted autophagy 

(175).  

1.2.2.4.3 Necroptosis 

Necroptosis or regulated necrosis is a caspase-8-independent form of 

programmed cell death. The necroptotic mechanism is thought to be induced 

by apoptotic stimuli such as members of tumour necrosis factor receptor 

(TNFR) superfamily, toll-like receptors 3 and 4 (TLR3 and TLR4) and 

interferon receptors (176, 177). Necroptosis can be grouped into three types 

based on the nature of the stimuli. They include: TNFα-stimulated extrinsic 

necroptosis, reactive oxygen species (ROS)-stimulated intrinsic necroptosis 

and ischemia-stimulated intrinsic necroptosis (177). Although necroptosis can 

be initiated by various stimuli, the extrinsic necroptosis mediated by TNFα is 

the most studied and most understood. The binding of the ligand to its receptor 
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leads to the generation of short-lived high molecular weight membrane 

signalling complex, known as complex I, consisting of tumour necrosis factor 

receptor type 1-associated death domain (TRADD) protein, Fas-associated 

protein with death domain (FADD), Receptor-interacting protein kinase 1 

(RIPK1), TNFR-associated factor 2 (TRAF2), TNFR-associated factor 

5 (TRAF5), Cellular Inhibitor of Apoptosis Protein 1/2 (cIAP1/cIAP2) and linear 

ubiquitin chain assembly complex (LUBAC) (178). TRADD is first recruited to 

the TNFR1, this is followed by the recruitment of TRAF2/5 and RIPK1. The 

TRAF proteins then recruits the E3 ubiquitin ligases cIAP1/2 and LUBAC to 

RIPK1.  

The transition of complex I to the death-inducing signalling complex II is 

regulated through the polyubiquitination profile of RIPK1. Removal of ubiquitin 

from RIPK1 by the deubiquitinating enzymes cylindromatosis (CYLD) and A20 

results in the formation of complex II which consists of TRADD, FADD, RIPK1, 

and caspase-8 (179).  Complex II exits in two forms (complex IIa and complex 

IIb) depending on the protein composition and activity and both forms are 

capable of inducing apoptosis and necroptosis depending on the cellular 

environment (180-182). In the absence of active caspase-8, both complexes 

(IIa and IIb) induce necroptotic cell death by the recruitment of RIPK3 and 

subsequent formation of microfilament-like complex called the necrosome, 

consisting of RIPK1 and RIPK3 which subsequently leads to the activation the 

pseudoprotein mixed lineage kinase domain-like (MLKL) (181, 183). This is 

followed by the rupture of the plasma membrane and release of cellular 

materials into the extracellular space.  
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Experimental evidence has shown that Ca2+ modulates the necroptotic 

process at various stages. For example, in human neuroblastoma cells, 

elevation of [Ca2+ ]c have been shown to trigger the necroptotic process by 

activating  calcium-calmodulin kinase (CaMK) which subsequently mediates 

RIPK1 phosphorylation (176). Also, in human colon cancer cells, [Ca2+ ]c 

elevation has been reported to mediate necroptosis through the activation of 

c-Jun N-terminal kinase (JNK) which regulates necroptosis by their kinase 

activity (184). In both studies, chelation of Ca2+ with BAPTA-AM reportedly 

rescued the cells from necroptosis (176, 184). 

1.2.3 Ca2+ and liver injury 

Ca2+ plays an important role in the mediation of most of the functions of the 

liver, and as a result, long-term dysregulated hepatic Ca2+ signal have been 

implicated in a vast number of abnormal liver conditions such as non-alcohol 

fatty liver disease (NAFLD) and cholestasis (185). In order to cope with the 

hepatic injuries that results from the plethora of insults the liver is exposed to, 

the liver has developed a unique ability to regenerate, an ability which is 

lacking in most other vital organs of the body. The ability of the liver to 

regenerate makes it possible for the liver to recover from most acute and non-

frequentative insults. However, the liver loses this regenerative ability when 

exposed to multiple long-term insults. The inability of the liver to regenerate 

would in turn result in chronic liver damage such as liver cirrhosis.  

In this section, we highlight the role of Ca2+ in certain liver injury conditions, 

with focus on drug induced liver injury (DILI). 
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1.2.3.1 Ca2+ and cholestasis 

Production and secretion of bile is one of the main functions of the liver (56). 

The secreted bile contains bile acids which helps in the breakdown of large fat 

droplets through the process of emulsification (186). Waste products such as 

bilirubin are also excreted through the bile into the intestine and eventually 

eliminated in faeces and urine (187). Disruption in the process of bile secretion 

leads to cholestasis. As discussed earlier, Ca2+ plays a crucial role in the 

process of bile secretion and this is made even more evident by the apical 

concentration of IP3Rs in both hepatocytes and cholangiocytes (89, 90) which 

have been shown to be vital in bile secretion (93, 188). As a result, 

dysregulation of Ca2+ signal and/or decreased IP3Rs expression, particularly 

IP3R2 in hepatocytes and IP3R3 in cholangiocytes leads to defective bile 

secretion (cholestasis). For example, IP3R type III expression is significantly 

downregulated or completely lacking in patients with cholestasis (189). In line 

with this, animal studies have also showed a selective loss of IP3R from biliary 

epithelia following bile duct ligation or endotoxin treatment, which are both 

accepted forms of in vitro inducible cholestasis, with a consequent loss of Ca2+ 

signalling and Ca2+-mediated HCO3
- secretion  (189). These findings make 

clear the importance of tightly controlled Ca2+ signalling in bile secretion. 

1.2.3.2 Ca2+ and hepatic ischaemia-reperfusion injury (IRI) 

Hepatic-ischaemia reperfusion injury is an underlying pathophysiological 

complication that occurs in clinical conditions such as post liver resection or 

transplantation. In hepatic IRI, the body’s metabolic processes shift from 

aerobic to anaerobic, there is accumulation of products of anaerobic glycolysis 
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including lactic acid and ketone bodies and there is depletion of intracellular 

ATP and ATP-dependent cellular processes gradually ceases (190). Also, 

hepatic IRI results in hepatic hypoxia which would in turn result in 

mitochondrial dysfunction, decreased ATP production and increased 

formation of reactive oxygen species (ROS). Increased ROS in turn leads to 

ER stress (191) which consequently results in increased Ca2+ release from the 

ER into the cytosol, leading to elevated [Ca2+]c (192). The resulting increased 

[Ca2+]c leads to increased mitochondrial Ca2+ uptake and perturbation of 

mitochondrial Ca2+. This in turn leads to opening of mPTP and release of 

apoptotic factors and eventually results in apoptosis (193, 194). 

1.2.3.3 Ca2+ and drug induced liver injury 

Drug induced liver injury (DILI) is a common consequence of adverse drug 

reaction that could sometimes lead to drug withdrawal from the market, 

hospitalization and even in severe cases liver transplantation (195). DILI is 

responsible for about 5% of all hospital cases and more than half of all cases 

of acute liver failure (ALF) (196). In fact, more than two-thirds of idiosyncratic 

adverse drug reactions result in liver transplantation or death (196). Over 900 

different drugs and therapeutic agents have been implicated in hepatotoxicity 

with new cases being reported each month (197) and of all the widely studied 

hepatotoxic drugs, acetaminophen (APAP) overdose is the most implicated 

(198).  

Sustained perturbation of intracellular Ca2+ signal have been implicated in 

some mechanisms of DILI, however, this is dependent upon certain factors 

such as the affected hepatic cell type, the molecular target and the 
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dependency of metabolic activation or the involvement of the immune system 

(185). Our focus in this project is on Ca2+-mediated drug and other agent-

induced hepatotoxicity. However, there are other mechanisms via which drugs 

can induce liver damage that are independent of disruption of intracellular Ca2+ 

signal which are outside the scope of this study (199-201). Ca2+-mediated liver 

damage involves perturbation of intracellular Ca2+ homeostasis due to drug-

induced ER stress and mitochondrial depolarization.  

An archetype of DILI is APAP-induced hepatotoxicity. In normal liver 

physiology, therapeutic doses of APAP are non-toxic as a good percentage is 

readily converted into non-toxic compounds by glucuronidation and sulphation 

(202), while only a small amount is converted into the reactive intermediate 

metabolite N-acetyl-p-benzoquinone imine (NAPQI) by hepatic cytochrome 

P450 (cyp)-dependent mixed function oxidases (203). The concentration of 

NAPQI generated by therapeutic doses of APAP is rapidly conjugated with 

glutathione and subsequently converted to non-toxic forms (202, 204). 

However, in APAP overdose, a significantly higher concentration of NAPQI is 

generated and hepatic glutathione is depleted, resulting in the accumulation 

of toxic amounts of NAPQI in the liver (203). NAPQI induces hepatic necrosis 

by covalently binding to cellular proteins (205), leading to the formation of 

reactive oxygen and nitrogen species (ROS and RNS), perturbation of 

intracellular Ca2+ regulation and elevated [Ca2+]i, consequently leading to 

mitochondrial oxidative stress and formation of mPTP (206, 207). NAPQI also 

results in ER stress by directly binding to ER proteins such as glutathione-S-

transferases, calreticulin, protein disulphide isomerases and 

sarco/endoplasmic reticulum calcium ATPase (SERCA) (208, 209). Covalent 
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binding of NAPQI to PDI and calreticulin inhibits protein folding and stimulates 

ER stress and the unfolded protein response (UPR) (185). 

Another widely studied agent that induces Ca2+-mediated cell death which we 

have extensively investigated in this current study is thapsigargin (Tg). Tg is a 

sesquiterpene lactone that induces ER stress by irreversibly inhibiting SERCA, 

thereby preventing sequestration of Ca2+ into the ER, depleting ER Ca2+ and 

elevating [Ca2+]c calcium concentration (210). The resultant ER stress and the 

consequent downstream events triggers cell death. In addition, prolonged 

elevated free cytosolic Ca2+ leads to mitochondrial Ca2+ uptake, which results 

in mitochondrial Ca2+ overload and consequent release of pro-apoptotic 

agents from the mitochondria.  

1.3 Measurement of intracellular Ca2+ concentration 

To our knowledge, the first reliable measurement of Ca2+ was performed by 

Ridgeway and Ashley where they injected the photoprotein aequorin into the 

giant muscle fibre of the barnacle (211). Since then, several methods of 

measuring Ca2+ have been developed each with associated advantages and 

pitfalls. These encompass Ca2+ selective microelectrodes, absorbance 

indicators (212), and the several currently used fluorescent Ca2+-sensitive 

dyes and genetically encoded fluorescent Ca2+ indicators. However, 

absorbance dyes did not become widely adopted as a tool for measuring Ca2+ 

because of their low sensitivity to [Ca2+]c, hence unable to be used in 

measuring [Ca2+]c in monolayers or individual cells (213).   
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1.3.1 Chemical fluorescent Ca2+ indicators  

The use of chemical fluorescent Ca2+ indicators was introduced by Tsien and 

colleagues in the 1980s when they synthesized Quin2 and its successors and 

this was indeed a breakthrough in the measurement of intracellular Ca2+ and 

in the study of intracellular Ca2+-related events (214-216).  The fluorescent 

Ca2+ indicators can be classified into various groups based on different criteria. 

Firstly, they can be classified based on their excitation and emission spectra; 

those that are excited by near ultraviolet wavelengths (330-380 nm) and those 

that are excited by visible light (at ≥ 450 nm). Members of the former class 

include quin-2, fura indicators, indo-1 and their derivatives, while the later class 

consists of the fluo indicators, calcium green and rhod-2). Secondly, Ca2+ 

indicators can be grouped based on whether they are ratiometric (dual 

excitation) or nonratiometric (single excitation) indicators. The former includes 

fura-2, fura-4 and indo-1, while the latter includes quin-2, fluo indicators, 

calcium green and rhod-2) (213, 217). Just like other indicators, chemical Ca2+ 

indicators have advantages and disadvantages.  

One major advantage of chemical Ca2+ indicators is their vast commercial 

availability with a broad range of Ca2+ affinities. Another advantage is the ease 

with which they can be loaded into cells with available well optimised cell 

loading protocols that does not require cell transfection (217, 218). However, 

there are also disadvantages associated with chemical indicators. Firstly, their 

cellular localization cannot be controlled, i.e., they cannot be selectively 

targeted to a specific subcellular location. Another disadvantage of chemical 

Ca2+ indicators is their Ca2+-buffering effect. Lastly, when loaded into cells, 

they tend to become compartmentalized and can easily leak out of cells during 
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experiments. By way of circumventing some of these problems, most 

commonly used chemical indicators are now available as dextran conjugates. 

The dextran-conjugated indicators do not become compartmentalized, but 

remain cytosolic, they also do not leak out of cells, hence can be used for 

longer recording experiments. Also, dextran indicators do not spontaneously 

bind to proteins when introduced into cells, but can be selectively linked to 

peptides, hence allowing specific targeting by peptide signalling motifs (213). 

The major limitation of dextran indicators is that due to their hydrophilic nature, 

they do not easily load and would generally need to be directly introduced into 

cells by injection (218). Most carboxylic acid-based Ca2+ dyes are also 

available as acetoxymethyl (AM) esters. AM dyes are easier to load into cells 

due to their hydrophobic nature. When inside the cells, the AM moiety is 

cleaved by endogenous esterases, trapping and concentrating the dye inside 

the cells.  

1.3.2 Bioluminescent Ca2+ protein indicators  

Bioluminescent Ca2+ protein indicators are photoproteins that emits light upon 

Ca2+ binding. Several luminescent Ca2+ proteins have been described, they 

include aequorin, obelin, mitrocomin and clytin, (217, 219), amongst which the 

most common is aequorin. Bioluminescent indicators have several 

advantages which include a large signal-to-noise ratio (S/N), selective 

subcellular distribution, wide dynamic range, low intracellular Ca2+-buffering 

effect and the simplicity they offer in terms of instrumentation. They emit visible 

bioluminescence from intramolecular interaction upon Ca2+ binding with no 

exciting light needed (213).  The absence of exciting light also means that 
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photobleaching due to excitation illumination is not an issue and there is no 

cell and reagent autofluorescence. However, there are also the downsides of 

these probes, the most serious of which include the methods required to load 

them into cells; the cells must be amenable to be transfected with the construct 

(220). Another problem associated with bioluminescent proteins is low light 

emission (217, 220). For example, one aequorin molecule gives off one photon 

upon Ca2+ binding, in comparison to a molecule of fluorescent dye that can 

emit up to 104 photons (217, 220).  

1.3.3 Fluorescent protein-based Ca2+ indicators 

There now exists several fluorescent protein-based Ca2+ indicators generally 

referred to as genetically encoded Ca2+ indicators (GECI). The first step in the 

development of GECI was the discovery of green fluorescent protein (221) and 

then the discovery that fluorescence resonance energy transfer (FRET) can 

take place between two colour-emitting variants of a GFP (222). Genetically 

encoded indicators (GEIs) have several advantages over the use of dyes as 

imaging tools. They can be targeted to specific cell types, thus allowing 

activities to be monitored among a genetically defined subset of cells. They 

can also be targeted to a specific subcellular location, hence Ca2+ dynamics 

in a defined subcellular compartment can be studied. Lastly, they allow a 

relatively non-invasive long-term in vivo calcium imaging (223). There are two 

main important classes of GECIs which include the non-FRET-based 

(GCaMP)-type and the FRET-based GECIs (cameleon). The FRET-based 

indicators typically consist of a calcium response element flanked on either 

side by a fluorescent protein, while the GCaMPs consists of a circularly 
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permuted fluorescent protein (cpFP) fused to calmodulin (CaM) and 

calmodulin binding region of chicken myosin light chain kinase (M13) (224). 

One exception of the GCaMP type is the Camgaroo family of indicators which 

consists of two halves of a green fluorescent protein (GFP), bound to the C 

and N terminal of a calmodulin fragment.  

In this study, we measured real time changes in Ca2+ signal using fluo-4, a 

chemical fluorescent Ca2+ indicator and REX-GECO1, a GECI.  

1.3.3.1 Fluo-4 is a nonratiometric Ca2+ dye with excitation peak at ~490 nm 

and emission peak at ~520 nm. Fluo-4 is loaded into the cells in its AM ester 

form (Fluo-4AM) and once inside the cell, it is readily hydrolysed by 

endogenous esterases to give free, fluorescent Fluo-4 which then binds Ca2+.  

1.3.3.2 REX-GECO1 is a GCaMP-type, non-fret-based GECI (Figure 1.7).  

REX-GECO1 has several advantages. First, it can be used either as an 

intensiometric (480 nm excitation) or a ratiometric (585 nm excitation/480 nm 

excitation) Ca2+ indicator.  Secondly, it can be excited with one photon (480 

nm) or with two-photons (910-940 nm). Thirdly, because REX-GECO1 has a 

Ca2+-bound excitation peak of 480 nm and an emission peak of 585 nm, it can 

be used for dual-colour imaging with other GFPs as demonstrated by the 

originator laboratory  (224).  
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Figure 1.7. Schematic representation of the mechanism of REX-GECO1 

function. Binding of Ca2+ to CaM induces an interaction of the CaM with M13 

which in turn causes a change in the fluorescence emission intensity of the 

fused cpFP. 

1.4 Cyclic guanosine 3',5'-monophosphate (cGMP) 

 

Studies clearly shows that elevated [Ca2+]c play a major role in liver injuries, 

including DILI and other chemical/xenobiotic-induced liver injuries, hepatic IRI 

and metabolic liver diseases (55, 185). One molecule that appears to modulate 

cytosolic intracellular Ca2+ and Ca2+-mediated liver damage is cGMP (225). 

cGMP is a second messenger molecule that acts as a regulatory agent in 

several cellular processes such as regulation of ion channel conductance, 

vision and vascular tone, modulation of cell growth and differentiation and 

inhibition of mitochondrial permeability transition pore.  
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1.4.1 cGMP generation 

cGMP is synthesized from cytoplasmic guanosine triphosphate (GTP) by the 

action of two classes of guanylyl cyclases (GCs); particulate GC (pGC) and 

soluble GC (sGC). Mammals express seven isoforms of the pGC which 

include guanylyl cyclase A (GC-A), guanylyl cyclase B (GC-B), guanylyl 

cyclase C (GC-C), guanylyl cyclase D (GC-D), guanylyl cyclase E (GC-E), 

guanylyl cyclase F (GC-F) and guanylyl cyclase G (GC-G), however, GC-D 

and GC-G are only pseudogenes in humans (226). The isoforms expressed in 

the liver include GC-A also called natriuretic peptide receptor type A (NPRA), 

GC-B also called natriuretic peptide receptor B (NPR-B) and GC-C also known 

as natriuretic peptide receptor type C (NPR-C) (226-228). GC-A is activated 

by atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), GC-B is 

activated by type C natriuretic peptide (CNP), while GC-C is activated by 

guanylin, uroguanylin and bacterial heat stable enterotoxin (226). 

There are two subunits of the sGC in mammals; soluble guanylyl cyclase alpha 

(sGC-α) and soluble guanylyl cyclase beta (sGC-β) with two isoforms of the 

different subunits (226). The isoforms include soluble guanylyl cyclase alpha 

1 (sGC-α1), soluble guanylyl cyclase alpha 2 (sGC-α2), soluble guanylyl 

cyclase beta 1 (sGC-β1) and soluble guanylyl cyclase beta 2 (sGC-β2) (226). 

The expression of the different isoforms is tissue specific, with the α1 and β1 

isoforms being the dominant isoforms in most tissues (229). In particular, the 

β1 isoform have been reported in rat liver  (226, 230). In the basal state, sGC 

exits as a heterodimer consisting of different combinations of the α and β 

subunits (229) and is activated mainly by nitric oxide (NO) and to a certain 

degree by carbon monoxide (CO) (231, 232).  
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 1.4.2 cGMP downstream effector components  

Once synthesized, cGMP mediates cellular processes via its downstream 

effector components which include cGMP-dependent protein kinase (PKG), 

cyclic nucleotide gated (CNG) channels and cGMP-hydrolysing PDEs and 

(233) (Figure 1.7).  

 

Figure 1.8. cGMP generation and its downstream components. Natriuretic 

peptides and NO activates pGC and sGC respectively, which in turn converts 

GTP to cGMP. cGMP mediates several downstream signalling events 

including regulation of cyclic nucleotide gated channels, phosphorylation of 

PKG and act on cGMP-dependent phosphodiesterases.  

1.4.2.1 cGMP-dependent protein kinase G (PKG) 

The principal cGMP downstream effector is PKG; a serine/threonine protein 

kinase (234). There are two families of PKG encoded by two separate genes 

prkg1 and prkg2 (235). The cytosolic protein kinase G I (PKGI) consisting of 

two isoforms (PKGIα and PKGIβ) and the membrane bound protein kinase G 

II (PKGII) respectively. The three PKGs all exists as homodimers (236). The 
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expression of PKGI and/or PKGII appear to be cell type-dependent. Over a 

decade ago, our group reported the expression of PKGIα and PKGIβ with no 

detectable PKGII in primary rat hepatocytes (225). Since then, to our 

knowledge, the presence of PKGII has not been reported in any species’ 

hepatocytes, whereas, it is expressed in other cell/tissue types such as 

epithelial cells of mice intestine (237), different regions of rat brain such as the 

olfactory bulb and thalamus (238), juxtaglomerular (JG) cells, the ascending 

thin limb (ATL), and the brush border of proximal tubules of rat kidney  (239) 

and rat chondrocytes (240). A typical PKG (both PkGI and II) consists of three 

different domains: an amino terminus, a regulatory domain containing cGMP 

binding site and a C-terminal catalytic domain for ATP binding which is 

responsible for catalysing the transfer of phosphate residues to 

serine/threonine motif (234). Upon binding of cGMP to the cGMP binding site 

in the regulatory domain, the inhibition of the catalytic domain induced by the 

N-terminal autoinhibitory domain is released, resulting in PKG activation (241). 

Full activation of one PKG monomer requires binding of two molecules of 

cGMP. Once activated, the protein then brings about the phosphorylation of 

downstream target proteins.  

1.4.2.2 Cyclic nucleotide gated channels (CNGCs) 

CNGCs are members of the voltage-gated ion channels superfamily, although 

their activity shows minimal voltage-dependence (242). They are non-

selective cation channels that were first identified in the photoreceptor cells of 

the retina and olfactory sensory neurons (OSNs), but since then, CNGCs have 

been reportedly detected in non-neuronal tissues such as the heart, adrenal 
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gland, pancreas, kidney, liver, testis, skeletal muscle and colon (242, 243). 

Though CNGCs pass both monovalent (Na+ and K+) and divalent (Ca2+) 

cations, and are said to be non-selective, they select divalent over monovalent 

cations (244, 245). They are directly activated by cyclic nucleotides (cAMP 

and cGMP) upon the binding of the latter to the cyclic nucleotide binding site 

present on the channel protein (246, 247). In general, a functional CNG 

channel is made up of four subunits, with each subunit consisting of six 

transmembrane segments (248). The binding of a single ligand to one of the 

subunits increases the chances of CNG channel opening, but to cause the 

channel to open, at least three of the four subunits must be occupied and to 

achieve full activation, four ligands are required (249, 250). Once activated, 

CNGCs allow the influx of Na+ and Ca2+. Unlike ligand-gated ion channels 

(LGCs), prolonged or repetitive binding of CNs to CNGCs does not cause any 

desensitization of the channel. However, their activity is regulated by two 

physiological mechanisms; by direct binding of Ca2+-calmodulin (Ca2+-CaM) 

complex to the channel and by phosphorylation (242). Although CNG channels 

respond to both cAMP and cGMP, they are generally more sensitive to cGMP 

than cAMP (244, 251), but with some degree of variability. For example, the 

CNG channels in rods and cones discriminate between cAMP and cGMP and 

are more sensitive to cGMP, whereas those of OSNs have almost equal 

sensitivity to both ligands (242, 252).      
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1.4.2.3 cGMP-hydrolysing phosphodiesterases (PDEs) 

The cellular level of the cyclic nucleotide (CN) second messengers; cGMP and 

cAMP is regulated by members of the PDE superfamily of enzymes (253). 

PDE catalyses the hydrolysis of the phosphate bonds in the CNs to yield 5’-

AMP and 5’-GMP (254). The mammalian PDE superfamily consists of eleven 

enzymes denoted as PDE1 – PDE11. PDE4, PDE7 and PDE8 are specific to 

cAMP, PDE5, PDE6 and PDE9 are specific to cGMP, while PDE1, PDE2, 

PDE3, PDE10 and PDE11 are dual substrate specific to both cAMP and cGMP 

(255, 256).  The most characterised of the cGMP-specific PDEs is PDE5, but 

to our knowledge, till date, no study has investigated its expression in the liver, 

however, some in vitro studies suggest functional evidence of its presence in 

rat liver (257). cGMP-specific PDE that are reportedly expressed in the liver 

includes PDE9 (258) as well as some  of the dual-specific PDEs: PDE2 (259), 

PDE3 (260) and PDE11 (261, 262).  

The PDE9 family catalyses the hydrolysis of cGMP with the highest affinity for 

cGMP amongst all the members of the PDE superfamily and is resistant to 

majority of the PDE inhibitors including 1-methyl-3-isobutylxanthine (IBMX) 

(258, 263). Azevedo and colleagues (264) proposed that the insensitivity of 

PDE9 family to most of the reference PDE inhibitors could be due to the low 

amino acid sequence homology between their catalytic domain and that of 

other PDEs (258, 263, 265).  

PDE 2, 3 and 5 are particularly relevant in the regulation of cGMP degradation 

because of their propensity to be activated or inhibited by cGMP and they alter 

cGMP or cAMP levels (241).  
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PDE2 degrades both cAMP and cGMP, however, this is cell-type dependent 

(264). It has a higher binding affinity for cGMP than cAMP (266). PDE2 family 

members are also called cGMP-stimulated cAMP PDEs (241, 264). Upon the 

binding of cGMP to the GAF-B domain present in their N-terminal regulatory 

region, their catalytic activities are allosterically stimulated, resulting in 

increased cAMP hydrolysis, thus reduction of cellular cAMP level (253, 267). 

Hence, PDE2 is said to induce a negative cross talk between cGMP and 

cAMP-dependent processes (253).  

PDE3 catalyses the hydrolysis of both cGMP and cAMP with about 10-fold 

greater rate of cAMP hydrolysis over cGMP hydrolysis, however, the binding 

affinity for cGMP is higher than that of cAMP, hence cGMP is said to 

competitively inhibit PDE3 hydrolysis of cAMP (268). cGMP competitively 

inhibit the cAMP hydrolysing effect of PDE3, thereby maintaining an increased 

cAMP level (268). Hence PDE3 can also be referred to as cGMP-inhibited 

cAMP PDEs. In addition to the direct inhibitory action of cGMP on the cAMP 

hydrolysing ability of PDE3, there are evidence of a putative PKG 

phosphorylation site  in the N-terminal regulatory region of PDE3 family 

members which can become phosphorylated by PKG, suggestive of an 

indirect modulation of  PDE3 catalytic activity by cGMP (241, 269). Hence, 

PDE3 provides an additional crosstalk between cAMP and cGMP signalling 

pathways. 

PDE5 is another cGMP-specific PDE. It catalyses the hydrolysis of cGMP and 

is also referred to as cGMP-stimulated cGMP PDE. PDE5 contain two N-

terminal tandem GAF domains: GAFA and GAFB. Allosteric binding of cGMP 
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to the GAF-A domain enhances the phosphorylation of the enzyme, increasing 

its binding affinity for cGMP as well as promoting its catalytic activity for cGMP 

hydrolysis (270, 271).  

PDE11 is the most recently discovered member of the PDE superfamily (261) 

and hydrolyses both cAMP and cGMP with varying affinities depending on the 

isoform (264). In humans, there are four isoforms of PDE11 that are encoded 

by the same PDE11A gene, they include PDE11A1, PDE11A2, PDE11A3 and 

PDE11A4 (264). Of all the isoforms, only PDE11A4 has two complete GAF 

domains, although the exact function of PDE11’s GAF domain is still 

unestablished (272). PDE11 is said to have a catalytic domain similar to that 

of PDE5 than that of its immediate predecessor PDE10 (261) which provides 

a possible explanation for the reported inhibition of PDE11 activity by tadalafil, 

a PDE5 specific inhibitor.  
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Figure 1.9. Mammalian PDEs according to substrate specificity. PDEs 4, 

7 and 8 are cAMP-specific, PDEs 5, 6 and 9 are cGMP-specific, and PDEs 1, 

2, 3, 10 and 11 are dual substrate-specific.  

1.4.3 cGMP and modulation of intracellular Ca2+ 

Studies clearly show that cGMP modulates intracellular Ca2+ signal in several 

cell types (273-281), including guinea-pig hepatocytes (282) and rat 

hepatocytes (225, 283-285). As discussed earlier, cells generate cGMP via 

two known pathways; the NO/sGC pathway and the NP/pGC pathway. 

Different studies have in the past reported conflicting observations on the 

effect of cGMP (applied directly as cGMP analogues or stimulated by NO and 

ANP) on hepatocyte Ca2+ signalling. In these studies, cGMP was reported to 

attenuate (225, 283, 285, 286), potentiate (284, 287) or unalter (288) Ca2+ 

signalling in rat hepatocytes. The   reason for these contradicting observations 

remains unclear, they however point to one thing; that the mechanism of 

cGMP modulation of hepatocyte Ca2+ signal remains an area that requires 

further studies.  Milbourne and Bygrave (275) proposed that the mechanism 

is cGMP concentration-dependent; at low concentrations, cGMP stimulate 

Ca2+ ion influx, thus resulting in elevations in [Ca2+]c, while at high 

concentrations, it inhibits  Ca2+ influx (275).  

The mechanism of cGMP modulation of intracellular Ca2+ signalling is a 

complex system that goes beyond just stimulation and inhibition of Ca2+ influx, 

but a multifaceted process, involving both direct and indirect actions of cGMP. 

In this thesis, we will classify the mechanism of cGMP modulation of 

intracellular Ca2+ into three pathways: one direct pathway and two indirect 
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pathways. The direct pathway involves the stimulation of cyclic nucleotide 

gated ion channels (CNGCs) by the direct binding of cGMP to the channel 

protein and consequently resulting in the influx of extracellular Ca2+ (refer to 

the section cGMP downstream effector components) (246, 247, 289). The 

second pathway (the first indirect pathway) is mediated by two classes of 

PDEs: cGMP-stimulated and cGMP-inhibited cAMP PDEs.  Binding of cGMP 

to the GAF domain of cGMP-stimulated cAMP PDE (PDE2), results in 

increased degradation of cAMP, with a consequent reduction of cellular cAMP 

and inhibition Ca2+ influx via the cAMP-stimulated L-type Ca2+ channels (253, 

267, 290). On the other hand, binding of cGMP to cGMP-inhibited cAMP PDE 

(PDE3) inhibits the hydrolysis of cAMP, resulting in an increased cAMP level, 

which can activate cAMP-stimulated L-type Ca2+ channels and consequent 

influx of Ca2+. The third pathway (the second indirect pathway) involves the 

activation of endogenous PKG which in turn phosphorylates target proteins 

and channels (291) that eventually culminate in reduction in [Ca2+]c. The PKG 

pathway appears to be the main pathway via which cGMP modulates 

intracellular Ca2+.  

Activated PKG can modulate intracellular Ca2+ via multiple possible ways that 

includes: 

1) Phosphorylation of G-protein activated phospholipase C-β3 (PLC-β3) 

at two phosphorylation sites (Ser26 and Ser1105), thereby inhibiting the 

hydrolysis of PIP2 and subsequent IP3 generation and consequent IP3-

mediated Ca2+ release (292). Mutation at the two PKG phosphorylation 
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sites abolishes the PKG-induced phosphorylation, thereby blocking the 

ability of PKG to phosphorylate the protein (292). 

2) Direct phosphorylation of IP3R at two possible sites (Ser1589 and Ser1756) 

(293), thereby inhibiting IP3-mediated Ca2+ release from internal stores. 

3) Phosphorylation/activation of plasma membrane Ca2+ ATPase which in 

turn results in Ca2+ efflux (294). This has been particularly reported in 

primary rat hepatocytes and was shown to be mediated by ANP and 

not SNP-induced cGMP elevations  (225, 283). 

4) Phosphorylation/activation of large conductance Ca2+-activated 

potassium ion (K+) channels (BK channels) which results in efflux of 

intracellular K+, thereby causing hyperpolarization of the plasma 

membrane and consequent inhibition of Ca2+ via the L-type Ca2+ 

channels (295-299). 

5) Phosphorylation of phospholamban (PLN), thereby relieving its 

inhibitory action on SERCA pump and allowing sequestration of 

cytosolic Ca2+ into the ER/SR with a net decrease of [Ca2+]c. However, 

this is only applicable to cells that express phospholamban (PLN) such 

as smooth and cardiac muscle cells.  

1.4.4 cGMP and hepatoprotection 

Several studies have shown that cGMP protects hepatocytes against cell 

damage. In isolated rat hepatocytes, it was reported that ANP through PKG 

attenuates ATP-induced elevation in [Ca2+]c and protects hepatocytes from 

ATP and TLC-induced cell death (225). Also, data from another group 

revealed that ANP and cGMP analogue 8-Br-cGMP through protein kinase G 
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protects rat hepatocytes against hypoxic injury (300). 8-Br-cGMP through PKG 

and NO through the stimulation of sGC have also been shown to protect rat 

hepatocytes against TNFα-induced apoptosis and caspase 3-like activity 

(301). The endogenous precursor of NO, L-arginine (302, 303) and 8-Br-cGMP 

(303) were also reported to protect against hepatic ischaemia reperfusion 

injury in rat liver.  

1.5 Measurement of cellular cGMP 

Several methods have been used in the past to measure cGMP in cells. Firstly, 

the cellular cGMP level has been measured by radioimmunoassays (RIAs). 

This involves generation of cGMP antibodies and radioactively labelling 

cGMP. cGMP has also been measured by cGMP enzyme-linked 

immunoassays (ELISAs). Though the above-mentioned techniques are quite 

sensitive and specific, they involve homogenization of cells or tissues, hence, 

only mean cGMP content of all cells can be measured, not cGMP content of 

individual cells. Similarly, with these methods of cGMP measurement, real-

time spatiotemporal dynamics of cGMP cannot be monitored (304). To 

overcome the limitations of antibody-based cGMP measurement assays, 

researchers designed cGMP indicators that allow for continuous monitoring of 

cGMP signal in living cells. In recent years, several FRET-based cGMP 

indicators have been developed and used to monitor spatiotemporal dynamics 

of intracellular cGMP and have significantly advanced our understanding of 

cGMP dynamics in various cell types (305-310). However, FRET-based cGMP 

biosensors have limitations. For example, they require a technically laborious 

dual emission detection system and generally express minimal cyan/yellow 



72 
 

emission ratio changes in whole cells (311). Also, FRET-based cGMP 

indicators are limited in their sensitivity to cGMP, hence have limited ability to 

measure small cGMP signal induced by low (nanomolar) physiological NO 

concentrations (305). However, recent studies have revealed that NO 

concentrations in the low nanomolar range (≤10 nM) are enough to activate 

soluble guanylyl cyclase (312, 313). To get around these disadvantages, non-

FRET-based cGMP biosensors called Fluorescent indicators of cGMP 

(FlincG) were developed to allow for monitoring intracellular cGMP 

spatiotemporal dynamics induced by low concentrations of guanylyl cyclase 

stimulators. 

Three variants of FlincG indicators, namely α-, β-, and δ-FlincG were first 

generated by the originator laboratory (311). α-, β-, and δ-FlincGs respectively 

consist of the regulatory domains of PKG I α, PKG Iβ and N-terminal deletion 

mutant of PKG I α fused to the N terminus of circularly permuted enhanced 

green fluorescent protein (cpEGFP) (311) (Figure 1.). It was reported that δ-

FlincG has dual excitation maxima at 410 nm and 491 nm, while α- and β-

FlincGs have single excitation maximum at 491 nm (311). Unlike FRET-based 

cGMP biosensors, FlincG indicators were engineered to have minimal 

interactions with endogenous proteins and to give high fluorescent intensity 

changes in living cells. Particularly, δ-FlincG was reported to have no 

interaction with wildtype PKG due to the absence of the N-terminal 

dimerization domain and maintained maximal fluorescence intensity change 

in living cells when compared to that observed under cell-free conditions (311). 

On the other hand, α- and β-FlincGs displayed some interactions with wildtype 

PKG and showed reduced change in fluorescence intensity in living cells 
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compared to observations made in cell-free conditions, thus, reportedly 

making δ-FlincG the best choice of the variants for studying cellular cGMP 

dynamics (311). Also, according to the originator laboratory δ-FlincG is 

resistant to small changes in pH because of its low pKa value of 6.1 (311). 

However, subsequent studies by another group refuted this report, and rather 

submitted that δ-FlincG has a pKa of 7.5 and is pH sensitive (314). Also the 

authors stated that the C-terminal tail present in δ-FlincG have a major impact 

on its cGMP biosensing (314), contrary to the submission of the originator 

laboratory that the c-terminal tail have no impact on the change in fluorescence 

intensity of the indicator (311).  

Further optimizations lead to the generation of improved versions of δ-FlincG 

(FlincG2 and FlincG3). FlincG2 retained the sequence of the original δ-FlincG, 

but with a divergent C-terminal tail and gave moderate basal fluorescence and 

cGMP response amplitude. FlincG3 (also called H6-FGAM) on the other hand 

has the same C-terminal tail as δ-FlincG, but contains an M335K substitution 

in the cpEGFP region and an N-terminal enzyme-cleavable hexahistidine (His) 

tag and was reportedly superior to FlincG2 and δ-FlincG in terms of basal 

fluorescence intensity and cGMP biosensing, but with a loss of the ratiometric 

response characteristic of δ-FlincG (314).  
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Figure1.10. Illustration of FlincG variants. (A) Schematic diagram 

illustrating the general formation and mechanism of FlincG function: binding of 

cGMP to the cGMP binding sites of PKG1 fragments induces change in 

fluorescence emission intensity of fused cpEGFP. (B) Schematic illustration of 

α-, β-, and δ-FlincG domain structures designed from the fusion of cpEGFP to 

PKG1 fragments. (C) Domain architecture of FlincG3 with N-terminal His tag 

and M335K substitution in the cpEGFP domain.  Adapted from (311, 314).  

1.6 Vitamin C (Vit C) 

Vitamin C (referred to in this thesis as Vit C), also known as L-ascorbic acid 

(L-AA) or ascorbic acid (AA) or L-ascorbate or just ascorbate, is a six carbon 

lactone which is synthesized from glucose in the liver of some mammals but 

not by some mammalian species including humans, non-human primates and 

guinea pigs. This is due to the lack of the L-gulonolactone oxidase (L which is 

the terminal enzyme involved in the biosynthesis of Vit C. Hence, humans and 

the other species lacking the L-gulonolactone oxidase must ingest the 

necessary amount of Vit C they need either in diets or by other forms. In vivo, 

Vit C is important for normal growth and development and serves as an 
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enzyme co-factor for several enzymes such as those involved in carnitine 

biosynthesis, post-translational hydroxylation of collagen, amidation of 

peptides and tyrosine metabolism (315).  

1.6.1 Vit C as an antioxidant 

Free radicals and oxidants when released in excess leads to the generation of 

the deleterious process of oxidative stress, that can cause severe damage to 

the cell plasma membrane and other cellular structures including proteins, 

lipids and deoxyribonucleic acid (DNA). Oxidative stress is simply a result of 

an imbalance between formation of free radicals and the protection against 

them, which can consequently lead to cellular damage and even chronic and 

degenerative diseases such as cancer, autoimmune diseases, cardiovascular 

diseases, neurodegenerative diseases, liver diseases and hepatic fibrosis. 

The deleterious effects of free radicals and oxidants are prevented by 

enzymatic and non-enzymatic antioxidants by their ability to scavenge these 

free radicals and ROS. Enzymatic antioxidants include glutathione peroxidase, 

glutathione reductase, catalase, superoxide dismutase, while examples of 

non-enzymatic antioxidants include glutathione, and Vit C and vitamin E (315). 

Chemically, Vit C is a potent antioxidant because of its ability to donate 

electrons to oxidised species/free radicals, resulting in the reduction of these 

species and consequently quenching their reactivity and concomitantly 

forming a relatively stable ascorbyl-free radical (316). It forms part of the first 

line antioxidant defence, protecting lipid membranes and proteins against the 

effect of oxidative stress (315). Vitamin C is a potent scavenger against 

reactive oxygen and nitrogen species (ROS and RNS) including H2O2, singlet 
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oxygen, superoxides and hydroxyl radical, sulphur radicals, hypochlorous 

acid, nitrosamines, and other nitrosating compounds, nitrous acid related 

compounds and ozone. This way, Vit C protects cells against free radical-

mediated toxicity.       

1.6.2 Vit C as a pro-oxidant  

Though by donating electrons to oxidised species, Vit C brings about the 

reduction of these species, however, referring to Vit C as antioxidant can be 

misleading in certain instances as Vit C can also lead to the formation of 

reactive oxygen species (ROS). This is however outside the scope of this 

study. In brief, Vit C can interact and reduce redox active transition metallic 

ions such as copper (II) ion to Copper (I) ion (Cu2+ to Cu+) and iron (III) to iron 

(II) ion (Fe3+ to Fe2+). The reduced metallic ions then interact with oxygen (O2) 

to form superoxides which can in turn undergo dismutation to form hydrogen 

peroxides (H2O2). The resulting H2O2 can then interact with another transition 

metal to give rise to reactive oxygen species (ROS). This however occurs 

mainly in the extracellular fluid, but not in the blood, because in the latter, the 

H2O2 is readily acted upon by catalase and glutathione peroxidase (GPx) and 

is converted to water and oxygen.  

1.6.3 Vit C generation of cGMP and hepatoprotection 

Studies suggest that Vit C is hepatoprotective. Vit C protects rat liver against 

hepatic injury induced by various drugs such as acetaminophen (317), 

artemether (318) and 5-fluorouracil-induced hepatotoxicity (319). Vit C also 

protects liver against various toxin-induced hepatotoxicity such as ethanol-
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induced liver injury (320, 321),  cypermethrin-induced hepatotoxicity in rat 

(322), styrene-induced rat liver damage (at organ level) (323) and triptolide-

induced mice liver injury (324). In human chronic hepatitis C (CHC) patients, 

plasma Vit C level negatively correlates with hepatic portal/periportal 

inflammation and fibrosis (325) and aspartate aminotransferase (326). These 

hepatoprotective effect of Vit C have traditionally been attributed to its direct 

antioxidant property and ability to scavenge free radicals and prevent cellular 

oxidative stress, however, acetaminophen and ethanol-induced liver damage 

is not entirely free-radical mediated. Studies have reportedly implicated 

perturbed [Ca2+]i in acetaminophen (327) and ethanol (328) induced 

hepatotoxicity. This suggests that in addition to its direct free radical 

scavenging ability, Vit C could be mediating hepatoprotection via other 

molecular pathways involving regulation of intracellular Ca2+ homeostasis. 

Interestingly, evidence show that Vit C modulates cellular cGMP in certain cell 

types such as pheochromocytoma 12 (PC 12) cells (329) and human umbilical 

vein endothelial cells (HUVECs) (330). Also, in humans, Vit C have been 

shown to modulate cGMP in vivo (331). We have discussed earlier about the 

different ways via which cGMP can modulate intracellular Ca2+ including 

experimental evidences that show that cGMP added directly to cells as cGMP 

analogue 8-Br-cGMP or stimulated by cGMP elevators such as ANP and 

SNP/NO modulates intracellular Ca2+ and protects rat hepatocytes against 

Ca2+-mediated toxicity. Similar to the actions of cGMP and cGMP elevating 

agents (SNP/NO and ANP), Vit C has been reported to decrease [Ca2+]i in 

human lymphoid cells (332) and bovine aortic endothelial cells (331), but the 

studies did not investigate whether the action of the vitamin was cGMP-
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mediated. Our group have also recently observed that Vit C elevates cGMP in 

primary rat hepatocytes (PRH) and via PKG, reduces [Ca2+]c, consequently 

protecting PRH against Ca2+-mediated hepatotoxicity (unpublished data). The 

cGMP elevation action of Vit C has also been demonstrated in PC12 cells 

(329). Taken together, these studies demonstrate that Vit C elevates cGMP in 

various cell types and has the potential to reduce [Ca2+]c and protect rat 

hepatocytes from Ca2+-mediated injury. However, the exact mechanism via 

which the vitamin is mediating the cGMP elevating action is still not clear and 

whether this cGMP stimulation action of Vit C and consequent [Ca2+]c 

reduction and hepatoprotection can be achieved in human hepatocytes remain 

unelucidated. Chen and colleagues proposed that the vitamin mediates the 

cGMP generation action via the ANP/pGC route in PC12 cells (329). We agree 

with their submission, but in addition, we speculate a possible involvement of 

cell surface protein disulphide isomerase (csPDI) in the mechanism.  

1.6.4 Protein disulphide isomerase (PDI) and modulation of 

cGMP generation 

PDI is a multifunctional protein that functions as a molecular chaperone. It is 

a dithiol-disulphide oxidoreductase, having the ability to reduce, oxidize or 

isomerize disulphide bonds (333). PDI was traditionally considered to be an 

ER-resident protein due to the presence of the C-terminal KDEL (lysine, 

aspartic acid, glutamic acid and leucine) sequence. However, recent studies 

show that the isomerase also exists as membrane-bound enzyme in certain 

cell types including vascular smooth muscle cells (VSMCs), endothelial cells 

(ECs), human mesangial cells (HMCs) and rat hepatocytes (333-336). When 

present on the membrane, PDI is generally referred to as cell surface PDI 
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(csPDI) because it is believed to be attached to the extracellular surface of the 

cell membrane by lipid, glycan and integral membrane protein anchors (336, 

337). csPDI has been shown to colocalize and modulate the action of 

neighbouring membrane proteins. It catalyzes thiol-disulfide exchange on cell 

surface proteins and mediates integrin-dependent cell migration and adhesion 

(338). PDI has also been implicated in the entry of viruses into host cells by 

altering the arrangement of the disulphide bonds on the viral envelop, thereby 

causing fusion of the viral envelop to the membrane of the host cell and 

consequent viral entry into the host cell (339, 340). PDI therefore has been 

shown to be highly involved in the alteration of disulphide bond arrangement 

on membrane proteins, including cell surface receptors, thereby, modulating 

downstream peptide signalling. Particularly, csPDI was shown to colocalize 

with and modulate the cGMP generation action of membrane-bound guanylyl 

cyclase-linked receptors type A (GCA/NPRA) and B (GCB/NPRAB) in 

response to natriuretic peptides (NPs) in HUVECs and HMCs (333). The 

authors suggested that membrane PDI physically interacts with both 

natriuretic peptides (NPs) and their receptors (NPRs), consequently 

functioning as an allosteric modulator of NPs-induced pGC generation of 

cGMP (333). Considering that Chen and colleagues (329) had earlier 

suggested that Vit C mediates its cGMP generation action, like ANP, by 

activating the membrane-bound guanylyl cyclase, we therefore speculate that 

csPDI would modulate Vit C generation of cGMP similar to the observation 

reported for ANP-induced generation of cGMP by Pan and group (333).  
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1.7 Aims of the study 

We aim to test the following hypotheses in this study: 

1. Vit C elevates cGMP in human liver cells, using HepG2 cells as our 

model hepatocyte cell line. 

2. csPDI modulates Vit C elevation of cGMP in HepG2 cells  

3. Vit C reduces [Ca2+]i in HepG2 cells and this is modulated by csPDI 

4. The cGMP elevation and [Ca2+]i reduction actions of Vit C can be 

achieved in other cell types, using HEK293 cells as non-hepatocyte 

model. 

5. Human hepatocytes (HepG2 cells and PHHs) express membrane PDI 

and the isomerase colocalizes with membrane-bound guanylyl cyclase-

linked receptor (NPRA) 

6. Vit C protects hepatocytes against Ca2+-mediated damage, and this 

protection is mediated by cGMP/PKG  

7. csPDI modulates the hepatoprotective effect of Vit C against Ca2+-

mediated damage 

To test these hypotheses, we utilized a recombinant real-time reporter of 

cGMP (FlincG3) to measure Vit C-induced cGMP signal in HepG2 cells and in 

HEK293 cells which served as our non-hepatocyte model. We also 

investigated the involvement of csPDI in the mechanism by inhibiting it using 

bacitracin (Bac), a hydrophilic, poorly cell permeant polypeptide that is widely 

used as an inhibitor of PDI and other thiol isomerases of the PDI family (333, 

341) and RL90, an anti-PDI monoclonal antibody. We utilized the monoclonal 

antibody in this study to inhibit csPDI since the intact membrane of living cells 
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are generally impermeable to large polypeptides including antibodies (342, 

343). To investigate whether Vit C reduces [Ca2+]i, we utilized Fluo-4 AM and 

REX-GECO1 (a genetically encoded Ca2+ reporter) to measure real-time 

changes in Ca2+ signal in HepG2 and HEK293 cells upon thapsigargin (Tg) 

treatment, in the presence and absence of Vit C. The involvement of csPDI in 

the Vit C modulation of intracellular Ca2+ was also investigated using Bac and 

RL90. 

We then investigated the expression of csPDI and its colocalization with NPRA 

in hepatocytes (HepG2 cells and PHHs) by immunofluorescence. The 

membrane expression of these proteins was also investigated in HEK293 cells 

by immunofluorescence. Finally, we investigated whether Vit C would protect 

hepatocytes against Ca2+-mediated hepatocyte damage via a cGMP/PKG-

dependent pathway. To do this, Tg was used as hepatotoxin and Rp-8-Br-

cGMP was used to inhibit PKG. 
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Chapter 2 
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2.1 Materials  

2.1.1 Reagents, drugs and chemicals 

Ethylenediaminetetraacetic acid (EDTA, 8741092) used to chelate calcium 

during cell culture was purchased from sigma-Aldrich (Dorset, UK) 

Trypsin/EDTA (15400-054) used for dissociation and disaggregation of 

adherent cells was purchased from Thermo Scientific (Loughborough, UK). 

Dulbecco’s Modified Eagles Media (DMEM, 31966-021) was purchased from 

Thermo Scientific (Loughborough, UK). Fetal bovine serum (FBS, 10270-106) 

was purchased from Thermo Scientific (Loughborough, UK). Dulbecco’s 

Phosphate Buffered Saline (DPBS, 14190-144) was purchased and Penicillin-

streptomycin (Pen-strep, 15140-122) were purchased from Thermo Scientific 

(Loughborough, UK). L-glutamine (L-glut, G3126) was purchased from Sigma-

Aldrich (Dorset, UK). Insulin transferrin selenium (ITS, 41400045) was 

purchased from Thermo Scientific (Loughborough, UK) and dexamethasone 

(Dex, D4902) was purchased from Sigma-Aldrich (Dorset, UK). 

Startub reagent reservoir (E2310-1010) was purchased from Starlab (Milton 

Keynes, UK). Corning T75 flask (BC301) was purchased from Sigma-Aldrich 

(Dorset, UK). 12 well plates (665180) were purchased from Greiner Bio-one 

(Stonehouse, UK). Corning 48 well plates (BC014) were purchased from 

Appleton woods Ltd (Birmingham, UK). Corning black clear bottom 96 well 

plates (CLS3603-48EA) were purchased from Sigma Aldrich (Dorset, UK), 

Corning collagen I-coated 96 well plates (354407) were purchased from 

Thermo Scientific (Loughborough, UK). 13 mm cover slips (0111530) were 
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purchased from Paul Marienfeld GmbH & Co.KG (Lauda-Königshofen, 

Germany).  

2.1.2 Buffers and solutions 

Tris-Borate-EDTA (TBE): 45 mM Tris-Borate (54 g Tris Base and 27.5 g Boric 

acid), 1 mM EDTA (4.6875 g disodium EDTA)  

Tris base, boric acid and EDTA were dissolved in 800 mL of deionised water. 

Once dissolved, solution was adjusted to pH 8.3 before addition of more 

deionised water to a total volume of 1 L. TBE was used at 1 X concentration 

Hepes buffered saline (HBS) 

10 mM Hepes (2.383 g), 145 mM NaCl (8.474 g), 5 mM KCl (0.373 g), 1 mM 

MgSO4 (0.246 g), 1 mM Na2HPO4 (0.138 g).  

Hepes, NaCl, KCl, MgSO4 and Na2HPO4 were dissolved in 800 mL of 

deionised water. Once dissolved, the pH was adjusted to 7.4 at room 

temperature (RT) and the final volume was made up to 1 L with deionised 

water. 

Paraformaldehyde (PFA) for fixation 

4 % PFA (20 g), PBS (500 mL)  

PFA powder was heated to 37 °C and regularly stirred and the pH was raised 

by the addition of NaOH dropwise until the solution turned clear. The pH was 

adjusted to 7.4 at RT and aliquotted into 50 mL falcons and stored at -20oC.   
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2.1.3 Cells used in the study 

HepG2 cells were obtained from Chris Goldring’s team (pharmacology 

department, Institute of Translational Medicine, University of Liverpool), at 

passage 12 (P12) and was expanded and frozen down at P14. 

HEK293 cells were obtained from John Quayle’s team (physiology 

department, Institute of Translational Medicine, University of Liverpool) at 

passage 6. 

Primary human hepatocytes were isolated from liver specimen obtained from 

the Aintree university teaching hospital. Details of isolation procedure is 

detailed in the section ‘’primary human hepatocyte isolation’’.  

2.1.4 Plasmid DNAs and biosensors  

pTriEx4-H6-FGAm (FlincG3, 49202) and CMV-REX-GECO1 (REX-GECO1, 

61246) were purchased from Addgene (Teddington, UK).  

2.1.5 FlincG3 and REX-GECO1 preparation reagents 

LB Broth (L322-250G) and LB Agar (52062) were purchased from Sigma-

Aldrich (Dorset, UK). Soc medium (15544-034) and Ultrapure agarose gel 

(16500-500) were purchased from Thermo Scientific (Loughborough, UK). 

Qiagen miniprep Kit (27104) and maxiprep kit were purchased from Qiagen 

(Manchester, UK). Ampicillin (A9518) and Glycerol (200-289-5) were 

purchased from Sigma-Aldrich (Dorset, UK). NeBuffer 2.1 (B7202S) was 

purchased from New England Biolabs (Hitchin, UK). Ethidium bromide 

(A25645) was purchased from Thermo Scientific (Loughborough, UK). 
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Cutsmart buffer (B72045) was purchased from New England Biolabs (Hitchin, 

UK). Bovine Serum albumin (BSA, R396D) was purchased from Promega 

(Southhampton, UK). G418 (04727878001) was purchased from Roche 

(Burgess Hill, UK). Gel loading dye (B7025S) was purchased from New 

England Biolabs (Hitchin, UK). 1Kb DNA ladder (N0552S) was purchased from 

New England Biolabs (Hitchin, UK). T4 DNA Ligase (B0202S) was purchased 

from New England Biolabs (Hitchin, UK). Nhe1HF (RS131S) was purchased 

from New England Biolabs (Hitchin, UK). BamH1HF was purchased from New 

England Biolabs (Hitchin, UK). 

Table 2.1. Summary of Restriction Enzymes used in the Study 
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Table 2.2. Summary of transfection reagents used in the study 

 

2.1.6 Drugs and reagents for real time cGMP and Ca2+ 

measurement experiments 

Sodium nitroprusside (SNP, S0501), atrial natriuretic peptide (ANP, A1663-

.1MG), +(-)Sodium L-ascorbate (Vit C, A7631-25G), Adenosine triphosphate 

(ATP, A9272-100MG), ionomycin (10634-1MG), pluronic F-127 (P2443), 

Bacitracin (Bac, 11702-5G) and Bovine serum albumin (BSA, A2153-50G) 

were purchased from Sigma Aldrich (Dorset, UK), Thapsigargin (Tg, 1138) 

was purchased from Tocris Bioscience (Bristol, UK), Fluo-4 AM (F14201) was 

purchased from Thermo Scientific. Sulfinpyrazone (SPzn; S2159000) was 

purchased from Sigma-Aldrich (Dorset, UK).   

2.1.7 Immunofluorescence reagents 

Paraformaldehayde (PFA, P6148) for the fixation of cells was purchased from 

sigma Aldrich (Dorset, UK). Ammonium chloride (NH4Cl, 27149) for quenching 

of fixation was purchased from BDH chemicals (Poole, UK). Triton X-100 for 

cell permeabilization was purchased from Sigma Aldrich (Dorset, UK). Chick 
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serum (C5405) used for blocking of non-specific antibody binding was also 

purchased from Sigma Aldrich (Dorset, UK). Anti-NPRA antibody (NBP1-

31333) and anti-PDI antibody (RL90, NB300-519) used to tag both the 

cytoplasmic and cell surface NPRA and PDI respectively were purchased from 

Novus Biologicals (Cambridge, UK). Alexa Fluor 488 and 594 fluorescent 

conjugated secondary antibodies used for the detection of NPRA and PDI in 

immunofluorescence were purchased from Thermo Scientific (Loughborough, 

UK). 4′,6-diamidino-2-phenylindole (DAPI, D1306) used from staining cell 

nuclei was purchased from Thermo Scientific (Loughborough, UK). Prolong 

Gold (P36930) used to mount coverslips and prevent photobleaching was 

purchased from Thermo Scientific (Loughborough, UK). Nail varnish (113794) 

was purchased from Poundland (Liverpool, UK).  

2.2 Methods  

2.2.1 Preparation of ampicillin stock 

Stock of 100 mg/mL of ampicillin was dissolved in autoclaved deionised water 

(dH2O) and sterile-filtered using a 0.22 µm filter and stored at -20oC in 1 mL 

aliquots.  

2.2.2 Preparation of LB media solution 

20 g of LB broth was suspended in 1 L dH2O and autoclaved for 15 minutes 

at 121 oC. The LB media solution was then retrieved from the autoclave and 

allowed to cool down to RT and then stored at 4 oC till when needed. 
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2.2.3 Preparation of LB agar plates  

40 g of LB agar was dissolved in 1 L of dH2O and autoclaved for 15 minutes 

at 121 oC. The prepared LB agar was retrieved from the autoclave and allowed 

to cool to about 50oC in a water bath and ampicillin was added at a final 

concentration of 75 µg/mL. The solution was thoroughly mixed by vigorous 

shaking and immediately poured into petri dishes at 20 mL of agar per dish 

and allowed to set at RT. The dishes were stored at 4oC till when needed.  

2.2.4 Streaking bacterial on LB agar plate  

Using a sterile wire loop, an LB agar plate was inoculated as follows. First, the 

metal loop was flamed and held in the air around a Bunsen burner to cool 

down, then the loop was used to gently touch the bacterial growing in the stab 

culture. The loop with the bacteria was then used to make the first streak by 

drawing a set of three lines (#1 streak) over an area of the plate. The loop was 

then flamed again and held in the air to cool down and from the first set of 

streaks/lines, another set of three lines (#2 streak) were drawn across another 

area of the plate, the flaming of the loop was repeated and loop help in the air 

and another set of streak (#3 streak) by dragging #2 streak over another area 

of the plate. Loop was flamed again and held in the air to cool down and from 

#3 streak, a single zigzag line representing the 4th streak was drawn across 

the centre of the plate. The streaking pattern of the plate is diagrammatically 

represented in figure 2.1 below.  
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Figure 2.1. Schematic representation of the bacterial streaking pattern. 

Four sets of successive streaks were made in order to dilute the bacterial 

culture and allow for the selection of a single colony post incubation. The first 

streak to third streaks consists of three lines, while the last streak consists of 

one single zigzag line drawn to the centre of the plate.  

2.2.5 Plasmid DNA (FlincG3 and REX-GECO1) extraction 

(Miniprep) 

FlincG3 and REX-GECO1 plasmid DNAs were extracted using Qiagen 

plasmid miniprep kit, following the procedure provided by the supplier. In brief, 

using a sterile pipette tip, colonies were picked from freshly streaked LB agar 

plates. The pipette tips containing the colonies were dropped in 30 mL 

universal containers containing 5 mL LB medium supplemented with 75 µg/mL 

of ampicillin and incubated for 12 hrs at 37oC with shaking (225 rpm). 1.5 mL 
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of the culture was then transferred onto a 1.5 mL Eppendorf tube and spun at 

13,000 rpm for 3 minutes at RT. Pelleted bacterial was then resuspended in 

250 µL buffer P1, followed by the addition of 250 µL of buffer P2 and 

thoroughly mixed by 4-6 times inversion and incubated for 5 minutes. 350 µL 

buffer N3 was added and the resultant mixture was thoroughly mixed by 

inversion (4-6 times) and centrifuged for 10 minutes at 13,000 rpm. The 

supernatant was applied to a QIAprep 2.0 spin column by pipetting and was 

centrifuged for 60 seconds (S) at 13,000 rpm and the flow through was 

discarded. The QIAprep 2.0 spin column was then washed with 500 µL buffer 

PB and centrifuged for 60 S and the flow through was discarded. The QIAprep 

2.0 spin column was then washed again with 750 µL buffer PE and centrifuged 

for 60 S and the flow through was discarded. The QIAprep 2.0 spin column 

was then transferred to the collecting tube and spun for 1 minute to remove 

residual wash buffer. The QIAprep 2.0 spin column was placed in a clean 1.5 

mL Eppendorf tube. To elute DNA, 50 µL buffer EB was added and allowed to 

stand for 1 minute and then spun for 1 minute at 13,000 rpm. 

2.2.6 Restriction digest of FlincG3 and agarose gel 

electrophoresis 

The extracted FlincG3 DNA was then verified by restriction digest and agarose 

gel electrophoresis. The digest was performed with PVUII restriction enzyme 

(illustrated in Figure 2.2) and the typical digestion reaction set up was as 

shown in Table 2.1 below.  Following the digest, the digest product was run on 

a 0.8 % agarose gel electrophoresis as described below. 
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Table 2.3. Restriction digest reaction of FlincG3 DNA 
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Schematic representation of restriction enzyme digest of FlincG3 

plasmid DNA 

 

Figure 2.2 Schematic representation of restriction enzyme digest of 

FlincG3 plasmid DNA. (A) The restriction digest was carried out using PVUII 

enzyme.  

2.2.7 Preparation of 0.8% agarose gel  

To prepare a 0.8% agarose gel, 0.4 g of agarose was dissolved in 50 mL of 

1x TBE buffer and the mixture was heated in a microwave for 90 S in order to 

achieve a complete dissolution of the agarose. The mixture was allowed to 

cool to about 50oC and 0.2 µg/mL of ethidium bromide (EB) was added, and 

the agarose was poured into a gel tray with the comb in place. Gel was then 

kept at RT for 40 minutes until it has completely solidified.  
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2.2.8 Loading samples and running agarose gel 

electrophoresis 

Once the gel had completely solidified, it was placed in a gel box 

(electrophoresis unit) and was covered with 1x TBE containing 0.2 µg/mL EB. 

To load the samples, the digest product was supplemented with 1x DNA 

loading dye and mixed by pipetting. The samples and 1 kb DNA ladder were 

then loaded into the wells and the gel was run at 100 V for 1.5 hrs or until the 

dye line has migrated approximately 75% down the gel. The gel was then 

retrieved from the gel box, with the power turned off and the electrodes 

disconnected from the power source. The DNA fragments were then visualized 

using a gel documentation system and images were captured and saved. 

2.2.9 Restriction digest of REX-GECO1 and agarose gel 

electrophoresis 

Like in the case of FlincG3, the purified REX-GECO1 DNA was also verified 

by restriction digest and agarose gel electrophoresis. The digest was 

performed with BamHI and EcoRI restriction enzyme and the reaction 

components are shown in Table 2.2 below. Following the digest, the digest 

product was run on a 0.8 % agarose gel electrophoresis. 
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 Table 2.4. Restriction digest reaction of REX-GECO1 plasmid DNA 
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Schematic representation of restriction enzyme digest of REX-GECO1 

plasmid DNA 

 

Figure 2.3. Schematic representation of restriction digest of REX-GECO1 

plasmid DNA. (A) The Restriction digest was carried out using BamHI and 

EcoRI.  

2.2.10 Plasmid DNA (FlincG3 and REX-GECO1) extraction 

(Maxiprep) 

After verification of the plasmid DNAs (FlincG3 and REX-GECO1) that were 

extracted using miniprep kit, a maxiprep was then performed in order to obtain 

a higher amount (concentration and volume) of the DNAs. The extraction was 

performed using the Maxiprep protocol described in Qiagen handbook. In 

brief, A starter culture was inoculated as described previously. The starter 

culture was then diluted 1/500 in LB broth supplemented with 75 µg/mL of 

ampicillin and grown overnight at 37oC with shaking (225 rpm). The bacteria 

were then harvested by centrifugation at 6000 xg for 15 minutes at 4oC and 
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the supernatant was discarded, and the pellet was resuspended in 10 mL 

buffer P1. This was followed by the addition of 10 mL buffer P2 and thorough 

mixing. The resultant mixture was incubated at RT for 5 minutes. After the 5 

minutes incubation, 10 mL of pre-chilled buffer P3 was added and the mixture 

was thoroughly mixed by vigorous inversion (4-6 times) and incubated on ice 

for 20 minutes. The lysate was then centrifuged at 16,000 xg for 45 minutes at 

4oC, the DNA-containing supernatant was removed and centrifuged again at 

16,000 g for 30 minutes at 4oC. Finally, the DNA-containing supernatant was 

collected. The supernatant was applied to a QIAGEN tip and allowed to enter 

a 50 mL falcon tube by gravity flow. The QIAGEN-tip was then washed with 

10 mL buffer QC and DNA was eluted with 15 mL buffer QF. DNA was then 

precipitated by adding 10.5 mL RT molecular grade isopropanol and 

centrifuged at 16,000 xg for 30 minutes at 4oC and the supernatant was 

decanted. The DNA pellet was then washed with 5 mL RT 70 % molecular 

grade ethanol and centrifuged at 16,000 xg for 10 minutes at 4oC. The 

supernatant was decanted, and the DNA pellet was air dried for 10 minutes 

and re-dissolved in TE buffer. The concentration was determined using 

NanoDrop UV visible spectrophotometer. The average yield was 1 µg/µL in 

750 µL. 

2.2.11 Cell culture 

HepG2 and HEK293 cells were cultured in Dulbecco’s Modified Eagles Media 

(DMEM) supplemented with 10 % FBS and 1 % pen-strep. 

Primary human hepatocytes (PHHs) were cultured in complete hepatocyte 

culture medium. The complete culture medium consisted of William’s E 
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medium supplemented with 1% L-glutamine (L-glut), 1% pen-strep, 1 % insulin 

transferrin selenium (ITS), and 0.1 % dexamethasone (Dex).  

2.2.11.1 Routine passage of HepG2 cells 

All HepG2 cells used in this study were between passage numbers 12 to 25. 

HepG2 cells were grown in T75 cm2 flasks containing 20 mL complete culture 

medium (DMEM growth medium supplemented with 10 % FBS and 1 % pen-

strep) in a 5 % CO2 humidified incubator maintained at a temperature of 370C. 

Cells were routinely passaged every 3-4 days when reaching about 80-90% 

confluency. Old cell culture medium was aspirated, and cells were washed 

with 3 mL of DPBS thrice. Cells were then incubated in 0.05 mM EDTA for 5 

minutes in 5 % humidified incubator at temperature of 370C. EDTA was 

aspirated and cells were then trypsinised with 3 mL 0.05 % trypsin/EDTA 

solution for 5 minutes. This was followed by neutralization of trypsin/EDTA with 

10 mL of complete culture medium. Cells were then spun at 800 rpm for 5 

minutes. The supernatant was aspirated, and the cell pellets were re-

suspended in complete culture medium. Cells were counted and cultured in 

T75 cm2 flasks at 2.5X106 cells/flask in a final volume of 20 mL. 

2.2.11.2 Freezing of HepG2 cells 

Cells were grown to approximately 80-90 % confluency and then harvested 

following passaging procedure described above. Cells were then counted and 

resuspended in a freezing medium (complete culture medium supplemented 

with 5% (v/v) DMSO) at 1X106 cells/mL. 1 mL cell suspension was then 

aliquoted into a cryovial. Cryovials were then placed in a freezing container 
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(Mr. Frosty) containing isopropanol and stored in a freezer at -800C overnight. 

Next day cells were retrieved from the freezer and transferred to liquid nitrogen 

where they were kept for long-term storage. 

2.2.11.3 Resuscitation of HepG2 cells from liquid nitrogen 

20 mL of pre-warmed complete culture medium was added to a T75 cm2 flask. 

A cryovial containing the HepG2 cells was removed from the liquid nitrogen 

container and transported in dry ice. Cells were thawed in a 37o C water bath 

with gentle swirling for about 1.5 minutes or until ~95 % thawed. Cryovials 

were then cleaned with 70 % ethanol and transferred to the hood where cells 

were gently pipetted into the T75 cm2 flask containing the pre-warmed 

complete culture medium. Cells were incubated in a 5 % CO2 humidified 

incubator at a temperature of 37oC for 6 hrs after which the medium was 

replaced with fresh complete culture medium after cells had adhered to the 

flask. 

2.2.11.4 Passage of HEK293 cells 

All HEK293 cells used in this study were between passage numbers 6 and 15. 

HEK293 cells were grown in T75 cm2 flasks containing 15 mL complete culture 

medium (DMEM growth medium supplemented with 10 % FBS and 1 % pen-

strep) in a 5 % CO2 humidified incubator maintained at a temperature of 370C. 

Cells were routinely passaged every 2-3 days when reaching about 80-90% 

confluency. Old cell culture media was aspirated, and cells were washed with 

3 mL of DPBS thrice. Cells were then trypsinised with 1.5 mL 0.05 % 

trypsin/EDTA solution for 3 minutes. This was followed by neutralization of 
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trypsin/EDTA with 5 mL of complete culture medium. Cells were re-suspended 

in complete culture medium, counted and cultured in T75 cm2 flasks at 

2.0X106 cells/flask in a final volume of 15 mL. 

2.2.11.5 Freezing of HEK293 cells 

HEK293 Cells were grown to approximately 80-90 % confluency and then 

harvested following passaging procedure described above. Cells were then 

frozen following exactly the same protocol as that used in freezing down 

HepG2 cells. 

2.2.11.6 Resuscitation of HEK293 cells from liquid nitrogen 

HEK293 cells were resuscitated following the same protocol as that of the 

HepG2 cells. 

2.2.11.7 Primary human hepatocytes (PHHs) culture 

Human Liver specimens were obtained from Aintree University Teaching 

Hospital, Liverpool and the primary human hepatocytes were isolated from the 

specimen as described below. 

2.2.11.8 Isolation and culturing of PHHs 

With the aid of a peristaltic pump, human liver tissues were perfused 

intravenously with 1X Hepes Buffered Saline (HBS) maintained at 37oC, at 

flow rates between 15 and 30 mls/min for an average tissue size of 20 g to 50 

g depending on the size and capsule integrity, until the red coloured tissue 

turned blanched, indicating near complete removal of blood. The tissue was 
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then perfused with collagenase and CaCl2-containing HBS at the same flow 

rate as above for about 20/30 minutes or until tissue began to sag or change 

in colour/appearance. The perfused buffer was then removed and discarded, 

and tissue was covered in ice cold Williams E medium and cut apart using 

forceps and blunt ended scissors. As much tissue as possible were 

dissociated to ensure maximum cell release. The cell and Williams E medium 

mixture was then filtered through a mesh into a sterile beaker and transferred 

into 50 mL non-skirted falcon tubes and centrifuge at 80xg for 5 minutes at 

4oC. The supernatant was then carefully discarded without dislodging the 

pellet, with small amount of the supernatant left to aid in resuspension. This 

was followed by gentle rocking of the pellet back and forth to resuspend the 

pellet in the remaining medium. This was followed by the addition of ice-cold 

Williams medium E to the Falcon tube containing the cells up to the 50 mL 

mark. Cells were then recentrifuged at the same conditions (g, temp and time). 

Again, supernatant was discarded, and cells were resuspended in the 

complete culture medium (Williams E medium supplemented with 1% L-glut, 

1% pen-strep, 1 % ITS, and 0.1 % Dex). Where multiple tubes were used, cell 

suspensions in the various tubes were then added together in one falcon tube. 

Cells were then counted and plated on collagen-coated plates at the 

appropriate density required for the specific experiment. Cells were washed 

three hrs post seeding and incubated for subsequent treatment or 

experiments. Figure 2.1 below shows the diagrammatic representation of the 

process of PHH isolation. 
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Figure 2.4. Schematic representation of complete PHH isolation process 

from Liver specimen.  

2.2.12 Coating of cell culture plates and coverslips with 

collagen 

As HEK293 cells and PHHs are not very adherent cells and as such easily 

detach during experimental procedures, in order to enhance their adherence 

to plates and coverslips, culture plates and coverslips were coated with rat tail 

collagen type I using the manufacturers protocol. In brief, the rat tail type 1 

collagen was diluted to a final concentration of 50 µg/mL in 20 mM acetic acid 

and added to well plates with or without coverslips at 5 µg/cm2. The collagen-

containing plates were then incubated for 1 hour at RT. Following the 1-hour 

incubation, the collagen solution (in acetic acid) was aspirated and the wells 
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were washed three times with equal volumes of sterile 1X PBS in order to 

remove excess acetic acid. Coated plates were either used immediately or 

allowed to air dry, sealed with parafilm and stored at 4oC for not more than 2 

weeks.  

2.2.13 Transient HEK293 and HEPG2 cell transfection 

Transient transfection of HEK293 and HepG2 cells with FlincG3 and REX-

GECO1 was carried out using the different transfection reagents listed in Table 

2.2. Cells were seeded 24 hrs prior to transfection at 5.0X104 cells per well of 

48 well plate for HEK293 cells and 7.5X104 cells per well of a 48 well plate for 

HepG2 cells. Prior to seeding, the plates in which HEK293 cells were cultured 

were first coated with rat tail type 1 collagen as described above. On the day 

of transfection, cells were transfected following the protocols provided by the 

manufacturers. In cases where the transfection conditions were optimized, the 

optimizations carried out are detailed in the specific experimental chapters 

(chapters 3 and 4).  

2.2.14 Cloning of FlincG3 into pcDNA3.1+ vector 

We sought to attempt generation of HepG2 cells stably expressing the FlincG3 

protein. The FlincG3 insert was cloned into a pcDNA3.1+ vector containing a 

neomycin resistant gene. In brief, 5 µg of pcDNA3.1+ was digested with NheI 

enzyme for 4hrs at 37oC. Following the 4 hrs digestion, the digest product was 

purified using QIAquick® Gel PCR and Cleanup Kit following the protocol 

provided by the manufacturer. The cleaned-up product was then digested with 

XhoI and the product of XhoI digest was also cleaned up using the QIAquick® 
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PCR and Gel Cleanup Kit and the purified product was stored at -20oC until 

needed. 4 µg of FlincG3 was simultaneously digested with XbaI and XhoI for 

4 hrs at 37oC. The product of FlincG3 enzyme digest was then run on an 

agarose gel electrophoresis and the gel containing FlincG3 insert was excised 

using a sterile disposable scalpel. A small amount of the purified product of 

pcDNA3.1+ enzyme digest was also run on an agarose gel electrophoresis in 

order to confirm digestion (Figure 2.5). The FlincG3 insert was then extracted 

from the agarose gel using QIAquick® Gel PCR and Clean-up Kit. The FlincG3 

insert was then ligated to the pcDNA3.1+ vector at the ratio of 1:3 (vector to 

insert) using T4 DNA ligase. The restriction enzyme digest and the ligation 

reactions were set up as shown in Tables 2.3 to 2.6 below. Next, the ligation 

product was transformed into Thermo Scientific competent DH5α cells using 

the protocol provided by the manufacturer. In brief, DH5alpha cells were 

thawed on ice. 5 µL of the ligation product was applied to 50 µL of competent 

DH5alpha cells and incubated on ice for 30 minutes. The mixture was then 

heat shocked in a 42oC water bath for 45 S and incubated on ice for 2 minutes. 

This was followed by the addition of 250 µL of SOC medium and the resultant 

mixture was incubated at 37oC for 1.5 hrs in a shaking incubator at 250 

rpm. Following the 1.5 hr incubation, cells were then spread on a pre-warmed 

LB Agar plate and incubated overnight at 37oC. The following morning, several 

colonies were picked and 5 mL LB broth containing 75 µg/mL of ampicillin was 

inoculated and incubated for 12 hrs hrs at 37oC with shaking (225 rpm). After 

the 12 hrs incubation, the cloned plasmid DNAs were miniprepped using 

Qiagen plasmid miniprep kit with the protocol described previously. Restriction 

digest and agarose gel electrophoresis of the cloned DNA was performed 
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using XmaI restriction enzyme in order to confirm the size of the clone DNA. 

The reaction set up was as shown in Table 2.7. The cloned DNA (FlincG3 in 

pcDNA3.1+ vector) was subsequently sequenced for confirmation. 

 

 

Figure 2.5. Agarose gel electrophoresis of FlincG3 digested with XbaI 

and XhoI and pcDNA3.1+ digested with NheI and XhoI. (Lane A) DNA size 

marker which is the commercial 1 Kb DNA ladder.  (Lanes B and C) FlincG3 

DNA digested with XbaI and XhoI. (Lane D) pcDNA3.1+ digested with NheI 

and XhoI. (Lane E) undigested pcDNA3.1+. The direction of DNA migration is 

indicated by the direction of the arrowed line. 
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Table 2.5. Restriction enzyme digest of pcDNA3.1+ with NheI 

 

Table 2.6. Second restriction digest of pcDNA3.1+ (purified from the 

reaction above) with XhoI
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Table 2.7. Restriction enzyme digest of FlincG3 DNA with XbaI and XhoI 

  

Table 2.8. Ligation of Purified FlincG3 Insert with pcDNA3.1+ Vector 

The ligation was set up at the ratio of 1:3 (vector to insert) as shown in the 

table below.  
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pcDNA3.1+ and pTriEx4-H6-FGAm (FlincG3) Plasmid Maps  

 

Figure 2.6. Circular plasmid map of pcDNA3.1+, highlighting the 

restriction site for NheI and XhoI which were used for cloning the FlincG3 

insert into pcDNA3.1+ vector. Diagram was copied from Addgene website. 
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Figure 2.7. Circular plasmid map of FlincG3, highlighting the restriction 

site for XbaI and XhoI which were used for cloning the FlincG3 insert into 

pcDNA3.1+ vector. Diagram was copied from Addgene website. 
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Diagrammatic representation of the process of cloning FlincG3 insert 

into pcDNA3.1+ vector 

 

 

Figure 2.8. Diagrammatic representation of pcDNA3.1+ and FlincG3 

digestion and ligation. (A) Digestion of pcDNA3.1+ with NheI and XhoI. (B) 

Digestion of FlincG3 with XbaI and XhoI. (C) Ligation of FlincG3 insert to the 

pcDNA3.1+ Vector using T4 DNA ligase. NheI and XhoI give rise to compatible 

cohesive ends that upon ligation generates a new restriction site cleavable by 

BfaI.  
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Diagnostic digest of cloned FlincG3 in pcDNA3.1+ backbone 

(pcDNA3.1+FlincG3) 

 

2.2.15 Real time cGMP measurement 

Cellular cGMP was measured using FlincG3. Cells (HepG2 and HEK293) 

were seeded and transfected as described in the section ‘’transient cell 

transfection’’. The FlincG3 reporter protein expression and live cell imaging 

were performed 72 hrs post transfection using a Zeiss LSM 800 Airyscan 

confocal microscope. FlincG3-transfected cells were excited at 488 nm and 

emission collected at 509 nm. On the day of real time cGMP measurement 

experiments, old cell culture medium was aspirated from the FlincG3-

trasnfected cells and cells were washed with CaCl2 and glucose-

supplemented HBS and cells were left in 200 mL CaCl2 and glucose-

supplemented HBS and transferred to the confocal imaging stage and 

experiments were performed under 10 x dry objective at room temperature 

(RT). First, the experiment was allowed to run for 180 S (3 minutes) in order 
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to obtain a stable baseline. To induce cGMP signal, cells were stimulated by 

adding fresh HBS containing the agonist(s) and experiment run for a total of 

600 S. The agonists used in this study to induce cGMP signal were SNP and 

ANP which are established cGMP elevating agents. To investigate whether Vit 

C has the ability to elevate cGMP, like in the case of SNP and ANP, fresh HBS 

containing the appropriate concentration of Vit C was added at 180 S and the 

experiment was run for a total of 600 S. The HBS used in the experiments was 

supplemented with 1 mM CaCl2 and 10 mM glucose. To investigate the 

involvement of cell surface PDI in Vit C, ANP and SNP-induced cGMP 

elevation, cells were incubated in bacitracin (Bac; a widely used, PDI inhibitor) 

and RL90 (an anti-PDI monoclonal antibody) for 45 minutes at RT prior to 

addition of Vit C, ANP and SNP. 

2.2.16 Real time Ca2+ measurement with REX-GECO1 

Real time Ca2+ Imaging was carried out using the Ca2+-sensitive dye Fluo-4 

AM and the recombinant Ca2+ reporter REX-GECO1. When REX-GECO1 was 

used, the cells were transiently transfected with the REX-GECO1 DNA as 

described in the section ‘’transient cell transfection’’ above. Visualization of 

REX-GECO1 reporter protein expression was carried out using a Zeiss LSM 

800 Airyscan confocal microscope. REX-GECO1-transfected cells were 

excited at 488 nm and emission collected at 609 nm.  

For the real time Ca2+ measurement experiments, REX-GECO1-transfected 

cells were washed with CaCl2 and glucose-supplemented HBS and cells were 

left in 200 mL CaCl2 and glucose-supplemented HBS and transferred to the 

confocal imaging stage and experiments were performed under 10 x dry 
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objective at room temperature (RT). First, the experiment was allowed to run 

for 180 S (3 minutes) in order to obtain a stable baseline. To induce 

intracellular Ca2+ signal, REX-GECO1-transfected cells were stimulated with 

ionomycin or ATP, or Tg. To investigate the ability of cGMP elevating agents 

(Vit C, SNP and ANP) to reduce [Ca2+]i, cells were treated with Tg in 

combination with or without Vit C or ANP or SNP. The possible involvement of 

csPDI in the Vit C, ANP and SNP-mediated reduction of [Ca2+]i was 

investigated using Bac and RL90. The cells were pre-incubated in RL90 and 

Bac for 45 minutes at RT prior to Tg ± Vit/ANP/SNP addition.  

2.2.17 Loading of HEK293 and HepG2 Cells with Fluo-4 AM 

and measurement of Ca2+ with Fluo-4 AM 

HEK293 cells were seeded 24 hrs prior to Ca2+ imaging experiments at 

5.0X104 cells per well of a collagen-coated 48 well plate for HEK293 cells and 

7.5X104 cells per well of a 48 well plate for HepG2 cells. On the day of 

experiment, cells were washed 3 times with 1x HBS supplemented with 1 mM 

CaCl2 and 10 mM glucose, then loaded with 4 µM fluo-4 AM (dissolved in 

DMSO containing 10 % pluronic F127 and diluted in Fluo-4 AM loading buffer) 

and incubated in a 5 % CO2 humidified incubator maintained at a temperature 

of 37oC for 45 minutes. The Fluo-4 AM loading buffer consisted of 1x HBS 

supplemented with 1 mM CaCl2, 10 mM glucose, 0.01 % BSA and 200 µM 

sulfinpyrazone (SPzn). Cells were then retrieved from the incubator and the 

loading buffer was aspirated. Cells were then washed twice with HBS 

supplemented with CaCl2, glucose, BSA and SPzn to remove excess dye. 

Cells were left in 200 µL of HBS supplemented with CaCl2, glucose, BSA and 

SPzn and incubated at 37oC for 20 minutes for de-esterification. Cells were 
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imaged using a Zeiss LSM 800 Airyscan confocal microscope.  For the real 

time Ca2+ experiments, cells were treated with different agonists and 

antagonists as detailed above (in the section ‘’ Real time Ca2+ Imaging with 

REX-GECO1’’). 

2.2.18 Confocal immunofluorescence microscopy 

Cellular presence and colocalization of PDI and NPRA in HepG2 cells, PHHs 

and HEK293 cells was investigated by immunofluorescence. HEK393 cells, 

HepG2 cells and PHHs were respectively seeded at 2.0X105 cells/well, 

3.0X105 cells/well and 1.0X106 cells/well of a 12 well plate and grown overnight 

in a 5 % CO2 humidified incubator maintained at a temperature of 370C. Both 

HEK293 cells and PHHs were grown on collagen-coated 13 mm coverslips, 

while HepG2 cells were grown on uncoated coverslips. On the day of the 

experiment, cells were washed three times with 1x PBS and fixed with 4 % 

PFA at RT for 10 minutes, followed by incubation in 50 mM ammonium 

chloride (NH4Cl) chloride to quench fixation. Cells were then either 

permeabilized or Non-permeabilized with 0.1% triton X and blocked with 10 % 

chick serum for 30 minutes before incubation in primary antibodies. PDI was 

labelled with mouse anti-PDI monoclonal antibody (RL90; 1/100) and 

visualized with chicken anti-mouse antibody (1/500), while NPRA was labelled 

with rabbit anti-NPRA polyclonal antibody (1/100) and visualized with chicken 

anti-rabbit antibody (1/500). All primary antibody incubation was performed at 

4oC overnight, while secondary antibody incubation was performed at RT for 

1.5 hrs in the dark. Cell nuclei was stained with 5 µg/mL DAPI for 10 minutes 

at RT and then DAPI was washed off. Cells were then mounted on prolong 
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gold on microscope slides and visualized using a Zeiss LSM 800 Airyscan 

confocal microscope.  

The involvement of golgi-dependent route in the externalization of PDI in 

hepatocytes (HepG2 and PHHs) was investigated using brefeldin A (BFA). 

Cells were seeded and grown at the same density and conditions as described 

for normal immunofluorescence above. On the day of the experiment, cells 

were washed and treated with 5 µg/mL BFA for 4.5 hrs in a 5 % CO2 humidified 

incubator maintained at a temperature of 37oC. Controlled cells were only 

treated with 0.1% DMSO vector. Cells were then washed, and normal 

immunofluorescence was performed using the protocol highlighted above.  

2.2.19 CellTitre Glo luminescent cell viability assay 

HepG2 cells and freshly isolated PHHs were seeded at 4.0x104 cells/well and 

1.0x105 cells/well of a flat bottom 96 well plate (X2) and incubated overnight 

in a 5 % CO2 humidified incubator maintained at a temperature of 37oC. The 

following morning, cells were treated with appropriate concentration of drugs 

and incubated in 37oC 5% CO2 incubator for 24 and 48 hrs. On the day of the 

assay, CellTiter-Glo® Buffer and CellTiter-Glo® were thawed and equilibrated 

to room temperature. The CellTiter-Glo® Buffer was then transferred to the 

CellTiter-Glo® substrate bottle and the mixture was thoroughly mixed by gentle 

vortexing. Treated cells were then retrieved from the incubator and washed 

gently with PBS and 100 µL of fresh complete culture medium was added, 

followed by the addition of 20 µL CellTiter-Glo® reagent and shaken on a 

shaker at 700 RPM for 1 minute to lyse cells and then incubated for 5 minutes 
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in the dark. Plates were read using Varioskan microplate reader and data was 

expressed as percentage of control.  

2.2.20 Image, data and statistical analyses 

All immunofluorescence and live cell imaging were conducted with a Zeiss 

LSM 800 Airyscan confocal microscope. Image J was subsequently used for 

quantification of fluorescence and Excel software was used to generate all 

figures. Calculation of area under curves and statistical analyses were carried 

out using OriginLab software. Data are expressed as mean±standard error of 

mean (SEM). N numbers of all the experiments are given in the figure legends.  

Statistical significance was determined with a Student’s t-test (paired and un-

paired) or by using ANOVA with Tukey’s test for post hoc analysis, and for all 

data, significance level was set at p ≤ 0.05. Where necessary, differing 

significance level are indicated by varying number of asterisks as follows: *p ≤ 

0.05, **p ≤ 0.01, ***p < 0.001.  
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Chapter 3 

Investigating the ability of vitamin C to elevate cGMP 

in human hepatocyte cell line and HEK293 cells 
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3.1 Introduction 

cGMP is known to modulate intracellular Ca2+ signal in hepatocytes and 

indeed other cell types such as cultured human hepatic stellate cells (HSCs), 

pancreatic acinar cells, rat megakaryocytes and smooth muscle cells (279, 

280, 285, 344-347). In particular, ANP, an agent that elevates cellular cGMP 

by activating membrane-bound guanylyl cyclase, reduces intracellular Ca2+ 

concentration in primary rat hepatocytes by activating protein kinase G (PKG), 

consequently stimulating plasma membrane Ca2+ efflux and inhibiting Ca2+ 

influx (225, 283). Also, ANP blunts endothelin-induced elevations in 

intracellular Ca2+ concentration [Ca2+]i in cultured human HSCs (345). SNP, 

another agent which elevates cGMP via the soluble guanylyl cyclase (sGC) 

pathway has been shown to lower [Ca2+]i in isolated pillar cells of the guinea 

pig cochlea (348).   

There is evidence of vitamin C (Vit C) modulating cGMP in certain cell types, 

including primary rat hepatocytes (preliminary data from our group). Chen and 

his team also showed that Vit C elevates cellular cGMP level in 

pheochromocytoma 12 (PC12) cells (329). Also, in human umbilical vein 

endothelial cells (HUVECs), Vit C was shown to modulate cGMP (330). 

Though these studies clearly show that Vit C elevates cellular cGMP level in 

certain cell types, however, whether this can be achieved in human 

hepatocytes has never been investigated. In addition, the exact mechanism 

remains unclear, but there are some indications of the involvement of cell 

surface protein disulphide isomerase (csPDI).  
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Protein disulphide isomerase (PDI) was traditionally thought to be an ER-

resident protein, however, there is evidence to suggest that the protein is 

expressed on the surface of certain cell types where it colocalizes with and 

modulates the action of membrane associated particulate guanylyl cyclase. 

Pan and colleagues (333) reported that csPDI colocalizes with membrane 

associated guanylyl cyclase-linked receptors (GC-A and GC-B) in human 

umbilical vein endothelial cells (HUVECs) and human mesangial cells (HMCs) 

and modulates the cGMP generation action of their corresponding guanylyl 

cyclase (GCs) in response to natriuretic peptides (NPs). (333). Also, in pig 

kidney epithelial cells (LLC-PK1) which lack detectable PDI, it was reported 

that the addition of  purified PDI to LLC-PK1 cells significantly enhanced the 

cGMP elevation action of NPs (333), consistent with PDI modulation of the 

cGMP generation action of membrane associated particulate guanylyl cyclase 

(pGC).  

Interestingly, in PC12 cells, Chen and colleagues proposed that Vit C mediates 

its cGMP-elevating action via the ANP/pGC pathway and not via the Nitric 

oxide/soluble guanylyl cyclase (NO/sGC) pathway (329). Preliminary data 

from our group also suggest that Vit C elevation of cGMP in primary rat 

hepatocytes is mediated via the pGC pathway, in line with the submission of 

Chen and colleagues. Taking together with the observation that csPDI 

modulates NP elevation of cGMP (333), we therefore hypothesized that csPDI 

would likely also play a role in Vit C-induced generation of cGMP.  
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3.2 Chapter aims 

1) Since it is well established that ANP and SNP elevates cGMP in various 

cell types, we first aimed to confirm, using these agents, that the liver 

cell line (HepG2 cells) used in this study is able to generate cGMP upon 

stimuli.  

2) To determine whether Vit C elevates cGMP in human hepatocytes 

using HepG2 as a hepatocyte cell line model 

3) To investigate possible modulatory action of csPDI on Vit C-induced 

generation of cGMP in HepG2 cells. 

4) To investigate possible involvement of csPDI in SNP and ANP-

mediated generation of cGMP in order to confirm which pathway Vit C 

is mediating its action. 

5) To use non-hepatocyte cell line to examine if Vit C-induced elevation of 

cGMP is more generalised. This was carried out using HEK293 which 

is a well established cell line.  

The development of recombinant reporter system based on GFP and other 

fluorescent proteins has enabled the measurement of second messenger 

molecules such as Ca2+, cAMP and cGMP in real time. To achieve our 

objectives for this part of the study, we utilized a type of genetically encoded 

cGMP indicator based on recombinant fluorescent protein; FlincG3 

(fluorescent indicator of cGMP 3) to measure real time changes in cGMP in 

HepG2 and HEK293 cells upon stimulation.  

 

 



121 
 

3.3 Method and preliminary results 

3.3.1 Restriction enzyme digest of FlincG3 DNA with PVUII 

revealed the right expected band sizes 

To measure cellular cGMP in real time, we utilized FlincG3. First, we extracted 

the FlincG3 plasmid DNA using Qiagen DNA extraction kit and a diagnostic 

restriction digest was subsequently performed using PVUII as detailed in 

general methodology section. The agarose gel electrophoresis result revealed 

the two correct band sizes (1474 bp and 5294 bp) as expected with the PVUII 

restriction digest (Figure 3.1), indicating successful expansion of the plasmid.  
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Figure 3.1. Agarose gel verification of FlincG3. Product of FlincG3 DNA 

digested with PVUII was run on a 0.8 % agarose gel. The DNA size marker is 

the commercial 1 Kb DNA ladder. Digested and undigested FlincG3 

respectively represents the FlincG3 digested with PVUII and the undigested 

DNA. The direction of DNA migration is indicated by the direction of the 

arrowed line.  

 

 

 

 

 

 

 



123 
 

3.3.2 Cell Transfection with FlincG3 

FlincG3 was first tested in HEK293 cells in order to validate the expression of 

the probe. HEK293 Cells were transiently transfected with the FlincG3 DNA 

using different transfection reagents (Turbofect, Lipofectamine 2000 and 

Lipofectamine 3000)   and the GFP reporter expression was visualized using 

a Zeiss LSM 800 Airyscan confocal microscope at 24 hrs, 48 hrs and 72 hrs 

post transfection and images captured. The results revealed that the optimal 

maturation time for the FlincG3 protein was 72 hrs (Figure 4.2). Also, for the 

different transfection reagents used, the protein expression was about the 

same at 24 hrs and 72 hrs post transfection. However, cells transfected with 

Lipofectamine 3000 showed a better FlincG3 protein expression at 48 hrs post 

transfection (Figure 3.2). 
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Figure 3.2. HEK293 cells expressing FlincG3 protein. (ABC) FlincG3 

expression in HEK293 cells transfected with Turbofect reagent (DNA amount 

= 0.5 µg, DNA to reagent ratio = 1:2) at 24 hrs, 48 hrs and 72 hrs post 

transfection, respectively. (DEF) FlincG3 expression in HEK293 cells 

transfected with Lipofectamine 2000 reagent (DNA amount = 0.4 µg, DNA to 

reagent ratio = 1:2.5) at 24 hrs, 48 hrs and 72 hrs post transfection, 

respectively. (GHI) FlincG3 expression in HEK293 cells transfected with 

Lipofectamine 3000 reagent (DNA amount = 0.3125 µg, DNA to reagent ratio 

= 1:2.4) at 24 hrs, 48 hrs and 72 hrs post transfection, respectively. Cells were 

excited at 488 nm and emission collected at 509. Data are representative of 3 

experiments. Scale bar = 100 µm.  
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3.3.3 Validation of the functionality of the FlincG3 probe 

We then sought to validate the functionality of the FlincG3 probe. As before, 

HEK293 which is a well-established cell line was used to validate the 

functionality of the probe. HEK293 cells were transiently transfected with the 

FlincG3 DNA using Turbofect transfection reagent and at 72 hrs post 

transfection, real time cGMP signal was measured upon atrial natriuretic 

peptide (ANP) stimuli.  200 nM ANP rapidly elevated the fluorescence signal 

at 488 nm by 30 % above basal level as measured by the FlincG3 probe, 

indicative of cGMP elevation (Figure 3.3).  
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Figure 3.3. 200 nM ANP rapidly elevates cGMP in HEK293 cells. (A) Time 

course of average fluorescence change of HEK293 cells transfected with 

FlincG3. (B) Mean±SEM of FlincG3 fluorescence at basal level (just before 

ANP addition) and peak level (after ANP addition). (n=25 cells from 3 

experiments). Experiment was performed at RT in HBS supplemented with 10 

mM glucose and 1 mM CaCl2. Cells were excited at 488 nm and emission was 

collected at 509 nm. 
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3.3.4 Cloning of the FlincG3 construct into a pcDNA3.1+ 

vector 

As the original vector backbone (pTriEx4) did not have a mammalian antibiotic 

resistance gene, we sought to clone the FlincG3 construct into a vector 

containing a mammalian resistance gene in order to attempt to generate single 

HepG2 cell clones. We utilized pcDNA3.1+ which contains the neomycin 

resistance gene (NeoR). To do this, the FlincG3 construct was excised from 

the original pTriEx4 vector backbone into a pcDNA3.1+ as detailed in the 

general methodology section. A restriction enzyme digest was subsequently 

performed on the cloned DNA using XmaI and the digest product was run on 

an agarose gel to confirm band size of the cloned FlincG3 in pcDNA3.1+ vector 

(pcDNA3.1+FlincG3). The agarose gel electrophoresis revealed that the 

FlincG3 insert was successfully cloned into the pcDNA3.1+ vector as revealed 

by the observed band sizes (2820 bp and 4647 bp) which corresponds to the 

expected band sizes for the Xmal enzyme used (Figure 3.4). The cloned DNA 

was subsequently sent for sequencing and the result revealed the right 

expected sequence. 
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Figure 3.4. Agarose gel electrophoresis of the FlincG3 cloned into 

pcDNA3.1+ vector. The DNA size marker is the commercial 1 Kb DNA ladder. 

A and B represents the digested and undigested pcDNA3.1+FlincG3 cloned 

DNA, respectively. The direction of DNA migration is indicated by the direction 

of the arrowed line.  
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3.3.5 Verifying the expression of the cloned DNA 

(pcDNA3.1+FlincG3)  

We then went on to verify the expression of the cloned pcDNA3.1+FlincG3 

DNA in HEK293 cells. We transfected the original FlincG3 DNA and the cloned 

pcDNA3.1+FlincG3 DNA into HEK293 cells in order to compare the 

transfection efficiency of the cloned DNA to that of the original DNA. The result 

revealed a much lower transfection efficiency with the cloned 

pcDNA3.1+FlincG3 DNA (Figure 3.5B) compared to the original FlincG3 

(Figure 3.5A), possibly due to the difference in the size of the DNAs; 6768 bp 

for the original DNA as compared to 7467 bp for the cloned DNA. 
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Figure 3.5. HEK293 cells expressing the original FlincG3 protein and the 

cloned (pcDNA3.1+FlincG3) protein. (A) HEK293 cells transfected with the 

original FlincG3 DNA. (B) HEK293 cells transfected with the cloned 

(pcDNA3.1+FlincG3) DNA. Cells were transfected with Turbofect reagent 

(DNA amount = 0.5 µg, DNA to reagent ratio = 1:2) and images were captured 

72 hrs post transfection. Cells were excited at 488 nm and emission was 

collected at 509 nm. Scale bar = 100 µm. Data are representative of 3 

experiments.  
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3.3.6 Optimization of FlincG3 transfection in HepG2 

Having validated the expression and functionality of the FlincG3 protein in 

HEK293 cells, we then sought to measure real time cGMP signal in HepG2 

cells using the probe. First, we optimized the transient transfection of the 

FlincG3 DNA in HepG2 cells using different transfection reagents (Happyfect, 

Turbofect, Jetprime and Lipofectamine 3000). For all transfection reagent 

used, cells were incubated overnight in the medium containing the transfection 

reagent and DNA. The next day, the medium was aspirated and replaced with 

fresh medium. The reporter protein expression was observed 72 hrs post 

transfection and images were captured using a Zeiss LSM 800 Airyscan 

confocal microscope. The images collected shows that Lipofectamine 3000 

gave the optimal transfection (Figure 3.6). It was observed that Turbofect was 

toxic to the HepG2 cells when the cells were incubated in the medium 

containing the Turbofect reagent overnight (brightfield image not shown). 
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Figure 3.6. HepG2 cells expressing FlincG3 protein 72 hrs post-

transfection. The original FlincG3 DNA (in pTriEx4 backbone) was 

transfected into HepG2 cells using different transfection reagents. (A) Control 

(no DNA, no reagent). (B) HepG2 cells transfected with Happyfect reagent 

(DNA amount = 0.5 µg, DNA to reagent ratio = 1:2.5). (C) HepG2 cells 

transfected with Turbofect reagent (DNA amount = 0.5 µg, DNA to reagent 

ratio = 1:2). (D) HepG2 cells transfected with Jetprime reagent (DNA amount 

= 0.4 µg, DNA to reagent ratio = 1:2). (E) HepG2 cells transfected with 

Lipofectamine 3000 (DNA amount = 0.3125 µg, DNA to reagent ratio = 1:2.4). 

Images were captured 72 hrs post transfection. Cells were excited at 488 nm 

and emission collected at 509 nm. Scale bar= 100 µm. Data are representative 

of 3 experiments.  
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We then sought to investigate whether withdrawing the Turbofect-containing 

medium at an earlier time post transfection would confer any advantage over 

overnight incubation in terms of cell viability and possibly enhancing the 

transfection efficiency. The result revealed that replacing the Turbofect-

containing medium with fresh medium at 4 hrs post transfection prevented the 

Turbofect-induced cytotoxicity observed with overnight incubation (brightfield 

image not shown) and enhanced the FlincG3 reporter protein expression 

(Figure 3.7). 
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Figure 3.7. Shortening the incubation time of HepG2 cells in Turbofect-

containing medium slightly improved the transfection. (A) Negative 

control (no DNA, no Turbofect reagent) (B) HepG2 cells transfected with 

FlincG3 DNA and Turbofect-containing medium withdrawn and fresh medium 

added at 4 hrs post transfection. (C) FlincG3-transfected HepG2 cells and 

incubated overnight in Turbofect-containing medium. DNA amount = 0.5 µg, 

DNA to reagent ratio = 1:2. Images were captured at 72 hrs post transfection 

and cells were excited at 488 nm and emission was collected at 509 nm. Data 

are representative of 3 experiments. 
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3.3.7 Attempt to Transfect cloned pcDNA3.1+FlincG3 DNA 

into HepG2 cells was Unsuccessful 

As the purpose of cloning the FlincG3 DNA into pcDNA3.1+ vector was to 

enable us to generate stable HepG2 cell clones expressing the FlincG3 

protein, We then went on to transfect the cloned FlincG3 DNA (FlincG3 in 

pcDNA3.1+ vector) into HepG2 cells using the same transfection reagents that 

were earlier used to transfect the original FlincG3 DNA into the cells 

(Happyfect, Turbofect, Jetprime and Lipofectamine 3000). Unfortunately, the 

transfection was unsuccessful with almost no single cell expressing the 

FlincG3 protein even at 72 hrs post transfection (data not shown). Hence, we 

could not generate FlincG3-stably expressing HepG2 cells even though that 

was our initial purpose for cloning the construct into the pcDNA3.1+ vector. 

Hence, subsequent cGMP measurement experiments were carried out with 

transiently transfected cells using Lipofectamine 3000 reagent at the same 

DNA amount (0.3125 µg) and DNA to reagent ratio (1:2.4) used earlier.  
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3.4 Results 

3.4.1 SNP, ANP and Vit C elevates cGMP in HepG2 cells 

Here we sought to investigate whether vitamin C will elevate cGMP in human 

hepatocytes similar to the preliminary observation our group made in rat 

hepatocytes.  To do this, we first sought to confirm the cGMP-generation ability 

of the liver cell line used (HepG2 cells) by treating FlincG3-transfected HepG2 

cells with varying concentrations of established cGMP elevators; SNP (which 

dissociates in solution to yield NO; an activator of sGC) and ANP (an NP that 

activates pGC) before we then proceeded with the Vit C experiments. 

We show here that stimulating FlincG3-transfected HepG2 cells with different 

concentrations of SNP (100 µM and 200 µM) and ANP (25 nM, 50 nM and 100 

nM) rapidly elevated the FlincG3 fluorescent signal, indicative of cGMP 

elevation (Figure 3.8 and 3.9 respectively). Both the SNP and ANP-induced 

cGMP elevations were concentration-dependent. These results confirm that 

HepG2 cells can generate cGMP via both the SNP/sGC and ANP/pGC route. 

Our data also revealed that Vit C elevates cGMP in HepG2 cells. Upon 

stimulation of FlincG3-transfected HepG2 cells with Vit C, a concentration-

dependent, rapid increase in the FlincG3 fluorescence signal was observed, 

consistent with cGMP elevations (Figure 3.10).  
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Figure 3.8. SNP elevates cGMP in HepG2 cells. (A) Mean fractional 

fluorescence change of FlincG3-transfected HepG2 cells induced by 100 μM 

SNP (n=15 cells from 3 experiments). (B) Mean fractional fluorescence 

change of FlincG3-transfected HepG2 cells induced by 200 μM SNP (n=15 

cells from 3 experiments). (C) Area under curves A and B (AUCA and AUCB) 

presented as Mean±SEM (Black bar = AUCA, n= 15 cells from 3 experiments. 

Red bar = AUCB, n= 15 cells from 3 experiments). Experiments were 

performed at RT in HBS supplemented with 10 mM glucose and 1 mM CaCl2.  
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Figure 3.9. ANP elevates cGMP in HepG2 cells. (A) Mean fractional 

fluorescence change of FlincG3-transfected HepG2 cells induced by 25 nM 

ANP (n=15 cells from 3 experiments). (B) Mean fractional fluorescence 

change of FlincG3-transfected HepG2 cells induced by 50 nM ANP (n=12 cells 

from 2 experiments). Mean fractional fluorescence change of FlincG3-

transfected HepG2 cells induced by 100 nM ANP (n=13 cells from 2 

experiments). (D) Area under curves A, B and C (AUCA, AUCB and AUCC) 

presented as Mean±SEM (Black bar = AUCA, n= 15 cells from 3 experiments. 

Green bar = AUCB, n= 12 cells from 2 experiments, Red bar= AUCC. N= 13 

cells 2 experiments). Experiments were performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2. 
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Figure 3.10. Vit C generation of cGMP in HepG2 cells is concentration 

dependent.  (A) Mean fractional fluorescence change of FlincG3-transfected 

HepG2 cells induced by 625 µM Vit C (n=16 cells from 3 experiments). (B) 

Mean fractional fluorescence change of FlincG3-transfected HepG2 cells 

induced by 2.5 mM Vit C (n=10 cells from 2 experiments). (C) Mean fractional 

fluorescence change of FlincG3-transfected HepG2 cells induced by 10 mM 
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Vit C (n=14 cells from 3 experiments). (D) Mean fractional fluorescence 

change of FlincG3-transfected HepG2 cells induced by 40 mM Vit C (n=10 

cells from 2 experiments) (E) Area under curves A (black bar) (n=16 cells from 

3 experiments), B (green bar) (n=10 cells from 2 experiments), C (red bar) 

(n=14 cells from 3 experiments) and D (blue bar) (n=10 cells from 2 

experiments). Data represent Mean±SEM. Experiments were performed at RT 

in HBS supplemented with 10 mM glucose and 1 mM CaCl2. 

 

 

 

 

 

 

 

 

 

 

 

 

 



141 
 

3.4.2 The observed increase in FlincG3 fluorescence signal is 

not due to intracellular pH change induced by the weak 

acidic property of Vit C. 

To rule out the possibility that the observed change in FlincG3 fluorescent 

signal could be as a result of the intracellular pH changes induced by the weak 

acidic property of Vit C, we utilized sodium butyrate (NaB), a weak acid that 

have been widely used to induce intracellular pH changes (349). Addition of 

2.5 mM of NaB to FlincG3-transfected HepG2 cells produced no observable 

change in the FlincG3 fluorescence signal (Figure 3.11).  
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Figure 3.11. Sodium Butyrate (NaB) does not cause any change on the 

Fluorescence signal of FlincG3. Addition of 2.5 mM NaB to FlincG3-

transfected HepG2 cells had no effect on the FlincG3 fluorescence signal. (n= 

10 cells from 2 experiments). Experiments were performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2.  

 

 

 

 

 

 

 

 

 



143 
 

3.4.3 Cell surface PDI (csPDI) modulates Vit C generation of 

cGMP  

Previous studies carried out on pheochromocytoma 12 (PC12) cells 

suggested that Vit C elevation of cGMP is via the ANP/pGC route (329). In line 

with this, preliminary data from our group also suggested that Vit C elevation 

of cGMP in primary rat hepatocytes is via the same ANP/pGC route.  A 

separate study on HUVECs and HMCs had earlier demonstrated that ANP 

elevation of cGMP is modulated by csPDI (333). Having established that Vit C 

has the ability to elevate cGMP in HepG2 cells (Figure 3.10), we then sought 

to investigate whether csPDI would play any role in the mechanism. To do this, 

we used bacitracin (Bac; a widely used inhibitor of PDI and other thiol 

isomerases of the PDI superfamily) and RL90 (an anti-PDI monoclonal 

antibody) to inhibit the function of csPDI. Pre-incubation of HepG2 cells with 

20 µg/mL RL90 (Figure 3.12B) and Bac (0.5 mg/mL and 2.5 mg/mL) (Figures 

3.12C and D respectively) significantly attenuated Vit C-induced cGMP 

elevations as compared to the control (Figure 4.12A). The effect of bacitracin 

was concentration-dependent.  
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Figure 3.12. Cell surface protein disulphide isomerase inhibition 

attenuates Vit C-mediated generation of cGMP in HepG2 cells. (A) Vit C 

1.25 mM elevates cGMP in HepG2 cells (n=20 cells from 4 experiments). (B) 

RL90 20 µg/mL attenuates Vit C elevation of cGMP (n=20 cells from 4 

experiments). (C) Bac 0.5 mg/mL attenuates Vit C elevation of cGMP (n=15 
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cells from 3 experiments) (D) Bac 2.5 mg/mL attenuates Vit C elevation of 

cGMP (n=20 cells from 4 experiments). (E) Area under curves A, B, C and D. 

Data are presented as Mean±SEM. Experiments were performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 
 

3.4.4 csPDI modulates ANP, but not SNP-induced cGMP 

generation 

As vitamin C generation of cGMP has been reported to be mediated via the 

particulate guanylyl cyclase pathway but not the soluble guanylyl cyclase 

pathway in pheochromocytoma 12 (PC 12) cells (329) and in rat hepatocytes 

(our unpublished data). Similarly, csPDI was shown to modulate NPs 

activation of particulate guanylyl cyclase and consequent cGMP generation in 

human umbilical vein endothelial cells (HUVECS), human aortic smooth 

muscle cells (HASMCs) and human glomerular mesangial cells (HMCs) (333). 

We sought to investigate the involvement of csPDI in the two established 

cGMP elevation routes; NPs activation of particulate guanylyl cyclase and NO 

activation of soluble guanylyl cyclase. To do this, we treated FlincG3-

transfected HepG2 cells with ANP and SNP in the presence and absence PDI 

inhibitors (bacitracin and RL90). Our data showed that both PDI inhibitors 

significantly attenuated ANP stimulated cGMP generation (Figure 3.13) but 

had no effect on SNP-induced cGMP elevations (Figure 3.14). 
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Figure 3.13. PDI inhibition attenuates ANP-mediated particulate guanylyl 

cyclase generation of cGMP in HepG2 cells. (A) ANP 200 nM elevates 

cGMP in HepG2 cells (n=20 cells from 4 experiments). (B) RL90 20 µg/mL 

attenuates ANP-mediated cGMP synthesis in HepG2 cells (n=20 cells from 4 

experiments). (C) Bac 2.5 mg/mL attenuates ANP-mediated cGMP elevations 

in HepG2 cells (n=20 cells from 4 experiments). (D) Area under curves A, B 

and C. Data are presented as Mean±SEM. Experiments were performed at 

RT in HBS supplemented with 10 mM glucose and 1 mM CaCl2. 
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Figure 3.14. PDI inhibition has no effect on SNP-mediated soluble 

guanylyl cyclase generation of cGMP in HepG2 cells. (A) SNP 100 μM 

elevates cGMP in HepG2 cells (n=20 cells from 4 experiments). (B) RL90 20 

µg/mL had no effect on SNP-induced cGMP elevation in HepG2 cells (n=20 

cells from 4 experiments). (C) Bac 2.5 mg/mL had no effect on SNP-induced 

cGMP elevation in HepG2 cells (n=20 cells from 4 experiments). (D) Area 

under curves A, B and C. Data represent Mean±SEM. Experiments were 

performed at RT in HBS supplemented with 10 mM glucose and 1 mM CaCl2. 
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3.4.5 Vitamin C elevates cGMP in HEK293 cells 

It has been shown that Vit C activates particulate guanylyl cyclase and 

consequently elevates cGMP in PC12 cell (329). Preliminary data from our 

group also revealed that Vit C elevates cGMP in primary rat hepatocytes and 

in this chapter, we have shown that Vit C elevates cGMP in HepG2 cells 

(Figure 4.10). Our current data also suggest that csPDI modulates the Vit C-

induced generation of cGMP in HepG2 cells. We then sought to investigate 

whether the PDI-modulation of Vit C-induced cGMP elevation is hepatocyte-

specific. This was investigated using HEK293 cells. We first investigated 

whether Vit C elevates cGMP in HEK293 cells by treating FlincG3-transfected 

HEK293 cells with three different concentrations of Vit C (625 µM, 2.5 mM and 

10 mM). Our result showed that stimulating HEK293 cells with Vit C elevates 

cGMP in the cells (Figures 3.15A-D).  We then went on to investigate whether 

csPDI modulates the Vit C-mediated elevation of cGMP. Here, we used Bac 

and RL90 to inhibit the function of csPDI. Our data showed that inhibiting PDI 

with RL90 and Bac significantly attenuated Vit C-induced cGMP elevations 

(Figures 3.16A-D), in line with our observation in HepG2 cells. This data is 

consistent with the notion that csPDI-modulation of Vit C-induced cGMP 

generation is not hepatocyte-specific.  
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Figure 3.15. Vit C elevates cGMP in HEK293 cells in a concentration-

dependent manner. (A) Mean fractional fluorescence change of FlincG3-

transfected HEK293 cells induced by 625 µM Vit C (n=20 cells from 4 

experiments). (B) Mean fractional fluorescence change of FlincG3-transfected 

HEK293 cells induced by 2.5 mM Vit C (n=15 cells from 3 experiments). (C) 

Mean fractional fluorescence change of FlincG3-transfected HEK293 cells 

induced by 10 mM Vit C (n=15 cells from 3 experiments). (D) Area under 

curves A (black bar), B (green bar) and C (red bar). Data represent 

Mean±SEM. Experiments were performed at RT in HBS supplemented with 

10 mM glucose and 1 mM CaCl2.  
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Figure 3.16. PDI inhibition attenuates Vit C-mediated cGMP generation in 

HEK293 cells. (A) Vit C 1.25 mM elevates cGMP in HEK293 cells (n=20 cells 

from 4 experiments). (B) RL90 20 µg/mL attenuates Vit C-mediated cGMP 

generation in HEK293 cells (n=20 cells from 4 experiments). (C) Bac 2.5 

mg/mL attenuates ANP-mediated cGMP elevations in HEK293 cells (n=20 

cells from 4 experiments). (D) Area under curves A, B and C. Data represent 

Mean±SEM. Experiments were performed at RT in HBS supplemented with 

10 mM glucose and 1 mM CaCl2.  
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3.5 Discussion 

We show here for the first time that Vit C elevates cGMP in human hepatocytes 

using HepG2 cells as our hepatocyte model. We also show that ANP and Vit 

C, but not SNP-induced generation of cGMP in HepG2 cells was attenuated 

by RL90 (anti-PDI monoclonal antibody) and Bac (a widely used PDI inhibitor). 

This is consistent with csPDI-modulation of Vit C and ANP activation of 

particulate guanylyl cyclase (pGC), but not SNP activation of soluble guanylyl 

cyclase (sGC). The Vit C-induced elevation of cGMP and the inhibitory action 

of the PDI inhibitors (RL90 and Bac) were also observed in HEK293 cells.  

To assess whether vitamin C has the potential to elevate cGMP in human 

hepatocytes, we used HepG2 cells as our model hepatocyte cell line. We 

transfected HepG2 cells with the FlincG3 DNA to measure real time changes 

in cGMP signal. First, we confirmed the ability of HepG2 cells to generate 

cGMP via both the pGC and sGC-dependent route by treating the cells with 

established activators of these enzymes; ANP and SNP, respectively. In line 

with previous studies carried out in other cell types (350, 351), treatment of 

FlincG3-transfected HepG2 cells with 100 µM and 200 µM SNP rapidly 

increased the fluorescence signal of FlincG3 at 488 nm by about 2-fold and 3-

fold respectively (Figures 3.8 A and B), indicative of cGMP elevation. Similarly, 

Stimulating the cells with different concentrations of ANP (25 nM, 50 nM and 

100 nM) rapidly elevated the cellular cGMP level (Figure 3.9). Together, these 

data suggest the presence of functional sGC and pGC in the HepG2 cells and 

the ability of the cells to synthesize cGMP via the NO/sGC and ANP/pGC 

routes. 
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To establish whether Vit C elevates cGMP in HepG2 cells, we transfected 

HepG2 cells with FlincG3 DNA and then measured real time changes in cGMP 

signal upon treatment with different concentrations of Vit C. In agreement with 

previous studies on PC 12 cells (329) and primary rat hepatocytes 

(unpublished data from our group), the data revealed that Vit C elevates 

cellular cGMP level in HepG2 cells in a concentration-dependent manner 

(Figure 3.10). In stark comparison, treating the cells with the weak acid sodium 

butyrate did not cause any change in the FlincG3 fluorescent signal (Figure 

3.11). Together, these data militate against any assumption that the observed 

change in florescent signal induced by Vit C could be a result of intracellular 

pH changes induced by the weak acidic property of the vitamin. The data also 

support that the change in fluorescence signal of the probe observed upon Vit 

C stimuli represents an increase in cGMP signal.  

Previous studies have shown that Vit C stimulates cGMP generation by the 

activation of the pGC pathway (329). Also, ANP and other NPs-induced cGMP 

generation have been shown to be modulated by csPDI (333), but whether 

PDI modulates Vit C and SNP-mediated generation of cGMP has yet to be 

defined. Using RL90 and Bac, we investigated the involvement of csPDI in Vit 

C, ANP and SNP-induced generation of cGMP in HepG2 cells. Inhibition of 

csPDI with RL90 and Bac significantly attenuated Vit C (Figure 3.12) and ANP 

(Figure 3.13) induced generation of cGMP, but not the SNP-induced 

generation (Figure 3.14). RL90 like other antibodies is a large polypeptide and 

the intact membrane of living cells are generally impermeable to large proteins 

including antibodies (342, 343). Bac is a hydrophilic, poorly cell-permeant 

mixture of polypeptides that has been used in previous studies to demonstrate 
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the modulatory effect of csPDI on NP-mediated generation of cGMP (333, 

341). Our observation that RL90 and Bac inhibited the cGMP elevation action 

of Vit C and ANP, but not that of SNP is therefore consistent with csPDI-

modulation of Vit C and ANP activation of pGC, but not csPDI modulation of 

SNP/NO activation of sGC. The modulatory action of csPDI on the cGMP 

elevation action of ANP and other NPs has been suggested to be due to the 

colocalization of the isomerase with natriuretic peptide receptors (NPRs) on 

the cell membrane (333). Pan and colleagues suggested that the 

colocalization of PDI with NPRs on the cell membrane permits PDI to 

physically interact with the NPRs and NP ligands, allowing for modulation of 

their effects by the isomerase (333). Taking together with the submission of 

Chen and colleagues that Vit C mediates its cGMP generation action in PC12 

cells by activating pGC (329) and our observation that inhibition of csPDI 

attenuates Vit C and ANP-mediated elevation of cGMP in HepG2 cells, we 

propose that like ANP, Vit C elevates cGMP in HepG2 cells by activating pGC, 

and this effect is modulated by csPDI.  

Although the ability of Vit C to modulate cGMP has been investigated in a few 

cell types, there is still less data to on whether this action of Vit C is cell type 

specific. Therefore, using HEK293 cells as our non-hepatocyte model, we 

explored the ability of the vitamin to modulate cGMP in another cell type in 

addition to the already reported cell types such as PC12 cells (329), HUVECs 

(330) and hepatocytes (Figure 4.10 and unpublished data from our group). 

Consistent with what was observed in PC12 cells (329), HUVECs (330), 

HepG2 cells (Figure 3.10) and primary rat hepatocytes (preliminary data from 

our group), Vit C elevated cGMP in HEK293 cells in a concentration-
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dependent manner (Figure 3.15). Taking together, these data suggest that the 

Vit C-induced elevations of cellular cGMP is obtainable in a variety of cell 

types.  

We then sought to investigate the involvement of csPDI in the Vit C elevation 

of cGMP in HEK293 cells. In line with our observation in HepG2 cells, inhibition 

of PDI with RL90 and Bac significantly attenuated the ability of Vit C to elevate 

cGMP in HEK293 cells (Figure 3.16). This data is suggestive that the Vit C-

induced cGMP generation in HEK293 cells is also modulated by csPDI.  

One major limitation of this chapter was that the transfection efficiency of the 

FlincG3 DNA in HepG2 cells was low and attempts to generate a FlincG3-

stably expressing HepG2 cell line proved unsuccessful as the FlincG3 

construct which was successfully cloned into a pcDNA3.1+ backbone could 

not be transfected into HepG2 cells (nearly zero protein expression even at 72 

hrs post transfection). This could partly be due to the fact that the HepG2 is 

generally a difficult-to-transfect cell line and partly due to the larger size of the 

cloned pcDNA3.1+FlincG3 DNA (7464 bp) as compared to that of the original 

FlincG3 in pTriEx4 backbone (6768 bp). In order to improve FlincG3 

expression in HepG2 cells, it may be necessary to use a different plasmid 

backbone or switch to viral expressing vector or use a retro transposon system 

such as Sleeping Beauty.  

In summary, our study shows that like SNP and ANP, Vit C elevates cGMP in 

HepG2 cells. Inhibition of PDI with RL90 and Bac attenuated Vit C and ANP-

induced cGMP elevations, but not SNP-induced elevation. This is consistent 

with csPDI modulating both the ANP and Vit C-induced cGMP generation, but 
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not SNP-induced generation. The results of this study also show that the 

cGMP generation action of Vit C is also achievable in HEK293 cells. Together 

with the findings from previous studies, it could be asserted that Vit C elevation 

of cGMP can be achieved in a variety of cell types.    
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Chapter 4 

Investigating the ability of vitamin C to decrease 

intracellular Ca2+ concentration in human hepatocyte 

cell line and HEK293 
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4.1 Introduction 

Elevated [Ca2+]i and consequent activation of Ca2+ dependent enzymes is a 

prerequisite event in hepatocyte damage (352-355). Previous studies have 

implicated a sustained raised [Ca2+]i in several liver pathologies such as in 

ischemic reperfusion liver injury (IRI) (356),  drug induced liver injury (DILI) by 

acetaminophen (357), bile salts-induced liver damage (358) and damage by 

other agents such as  extracellular ATP(353) and tetrachloromethane (359).  

One molecule that appears to interfere with the Ca2+-mediated cell damage is 

cGMP. Studies show that cGMP added directly as cGMP analogues or 

stimulated by cGMP elevators such as NO and ANP, modulates intracellular 

Ca2+ signal in various cell types such as  supporting cells of the guinea pig 

cochlea, vascular smooth muscle cells and  primary rat hepatocytes  (283, 

360-362). However, there seem to be conflicting submissions from different 

groups on the effect of cGMP on intracellular Ca2+ signalling even in the same 

cell type of the same species. For example, in rat hepatocytes, different groups 

have reported different observations of cGMP either attenuating, potentiating 

or having no effect on Ca2+ signals (225, 283-285, 288). So, our first aim in this 

chapter was to investigate the effect of cGMP on intracellular Ca2+ signals in 

the cell lines used in this study. 

In chapter 3, we showed that like ANP and SNP, Vit C elevates cGMP in 

HepG2 cells and in HEK293 cells which was our non-hepatocyte control, in 

line with previous observations in PC12 cells (329) and in primary rat 

hepatocytes (unpublished data from our group). Interestingly, like ANP and 

SNP, Vit C has been reported to modulate [Ca2+]i in certain cell types. For 
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example, in human lymphoid cells, Vit C was shown to decrease A23187-

induced [Ca2+]i elevations (332). Also, unpublished data from our group 

revealed that Vit C attenuates ATP and TLC-induced Ca2+ oscillations in 

primary rat hepatocytes. However, whether the Vit C modulation of [Ca2+]i can 

be achieved in human hepatocytes remains unelucidated. 

Another important observation we made in chapter 3 was that Vit C and ANP, 

but not SNP-induced cGMP generation was downregulated by the inhibition of 

PDI with RL90 and Bac, consistent with csPDI modulation of the ability of Vit 

C and ANP, but not SNP to elevate cellular cGMP.  Since evidence have 

shown that cGMP modulates intracellular Ca2+ signal and our data from this 

study have revealed that csPDI modulates Vit C and ANP-induced cGMP 

elevation in HepG2 and HEK293 cells, we therefore predicted that csPDI 

would modulate the effect of Vit C and ANP on intracellular Ca2+ signal. 

4.2 Aims 

4.2.1 Main aims 

In this chapter, we aimed to investigate whether elevating cellular cGMP with 

Vit C would lower [Ca2+]i in hepatocytes, using HepG2 cells as our model 

hepatocyte cell line, which can then be a potential therapeutic intervention 

against drug-induced Ca2+-mediated damage. As our data in chapter 3 

showed that inhibition of PDI with RL90 and Bac modulates the Vit C-induced 

generation of cGMP, consistent with csPDI modulation of the ability of the 

vitamin to elevate cGMP. In this chapter, we also aimed to investigate whether 

csPDI would modulate Vit C lowering of [Ca2+]i. 
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4.2.2 Other aims 

We showed in chapter 3 that ANP and SNP elevates cGMP in HepG2 cells, in 

this chapter, we aimed to investigate the effect of these agents (ANP and SNP) 

on [Ca2+]i. Also, as our data in chapter 3 showed that inhibition of PDI with Bac 

and RL90 attenuated the ability of ANP to elevate cGMP, but not that of SNP, 

consistent with csPDI modulation of ANP-induced cGMP generation, in this 

chapter we sought to investigate the involvement of csPDI in the ANP and 

SNP-attenuated elevations in [Ca2+]i. 

In the experiments reported here, we used the fluorescent Ca2+ dye Fluo-4 AM 

and a genetically encoded Ca2+ indicator CMV-REX-GECO1 to measure the 

change in [Ca2+]i in HepG2 and HEK293 cells upon stimulation.   
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4.3 Results 

4.3.1 Measurement of [Ca2+]i with Fluo-4 AM. 

We first tried to measure real time changes Ca2+ signals in HepG2 and 

HEK293 cells using Fluo-4 AM. The initial experiments were first performed in 

HEK293 cells which we used all through this study as our non-hepatocyte 

control and for experimental optimizations. We first sought to confirm the 

fluorescence of the Fluo 4. To do this, HEK293 cells were loaded with Fluo-4 

AM using the protocol detailed in the general methodology section and 

visualized using a Zeiss LSM 800 Airyscan confocal microscope. Figure 4.1 

shows brightly fluorescent HEK293 cells loaded with Fluo-4 AM.  
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Figure 4.1: HEK293 cells loaded with Fluo-4 AM. Picture of HEK293 cells 

loaded with 4 µM Fluo-4 AM. Cells were excited at 488 nm and emission was 

collected at 509 nm. Scale bar = 100 µm. Data is a representative of at least 

3 experiments.  
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4.3.2 Confirming the Ability of Fluo-4 AM to measure 

Changes in [Ca2+]i 

Although, Fluo-4 AM is a widely used Ca2+ sensing dye, however, in this study, 

we still first sought to confirm its ability to detect and measure real time 

changes in [Ca2+]i before using it for our experiments. To do this, HEK293 cells 

loaded with Fluo-4 AM were treated with thapsigargin (Tg) and change in 

fluorescence signal was measured. The result shows that 500 nM Tg rapidly 

elevated the fluorescence signal by approximately 4-fold, an indication of the 

change in [Ca2+]i (Figure 4.2).  
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Figure 4.2. Measurement of real time changes in [Ca2+]i with Fluo-4 AM. 

HEK293 cells loaded with Fluo-4 AM were stimulated with 500 nM Tg. (A) Time 

course of fractional fluorescence change of HEK293 cells treated with 500 nM 

Tg. (B) Mean±SEM of Fluo-4 fluorescence at basal level (just before Tg 

addition) and peak level (after Tg addition) (n=30 cells from 3 experiments). 

Experiment was performed at RT in HBS supplemented with 10 mM glucose 

and 1 mM CaCl2. 
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4.3.3 Vit C attenuates Tg-induced elevations in [Ca2+]i in 

HEK293 cells 

Our data from chapter 3 revealed that Vit C elevates cellular cGMP in both 

HepG2 and HEK293 cells, and from previous studies, it has been reported that 

agents that elevate cGMP (ANP and NO) attenuates elevations in [Ca2+]i signal 

(225, 360, 363). Also, like ANP and NO donors, Vit C have been shown to 

reduce agonist (A23187)-induced elevations in [Ca2+]i in human T-lymphoid 

cell line (Molt-3 cells) (332). We therefore sought to investigate whether Vit C 

would attenuate agonist (Tg and ATP)-induced elevations in [Ca2+]i. As in 

previous experiments, these experiments were first performed in HEK293 

cells. As described initially, cells were loaded with Fluo-4 AM and 

subsequently stimulated with Tg or ATP in the presence and absence of Vit C 

(10 mM). The data revealed that 10 mM vitamin C significantly attenuated both 

Tg and ATP-induced elevations in [Ca2+]i (Figure 4.3 and 4.4 respectively).  
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Figure 4.3. Vit C attenuates Tg induced elevations in [Ca2+]i in HEK293 

cells. Curves show mean time course of fractional fluorescence change of 

HEK293 cells loaded with Fluo-4 AM, indicative of changes in [Ca2+]i. (A) 1 µM 

Tg elevates [Ca2+]i in HEK293 cells (n=25 cells from 3 experiments). (B) 10 

mM Vit C attenuates Tg-induced elevations in [Ca2+]i in HEK293 cells (n=25 

cells from 3 experiments). (C) Area under curves (AUC) A and B expressed 

as percentage of the Tg control. Data are presented as mean AUC±SEM. (**p 

value ≤0.01). Experiments were performed at RT in HBS supplemented with 

10 mM glucose and 1 mM CaCl2. 
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Figure 4.4. Vit C attenuates ATP induced elevations in [Ca2+]i in HEK293 

cells. Curves show mean time course of fractional fluorescence change of 

HEK293 cells loaded with Fluo-4 AM, indicative of changes in [Ca2+]i (A) ATP 

10 µM elevates [Ca2+]i (n=25 cells from 3 experiments). (B) Vit C 10 mM 

attenuates ATP-induced elevations in [Ca2+]i (n=25 cells from 3 experiments). 

(C) Mean± SEM of area under curves (AUC) A and B expressed as % of ATP 

control. (**p value ≤0.01). Experiments were carried out at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2. 
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4.3.4 Vit C attenuates elevations in [Ca2+]i post-Tg treatment 

in HEK293 cells 

As we have established that Vit C added together with Tg and ATP attenuates 

both Tg and ATP-induced [Ca2+]i elevations, we sought to investigate whether 

Vit C added post Tg-treatment would lower the already raised [Ca2+]i. To do 

this, we first treated Fluo-4 AM-loaded HEK293 cells with 1 µM Tg, this was 

followed by the addition of 10 mM Vit C. The data revealed that addition of Vit 

C post-Tg treatment decreased the Tg-induced elevations in [Ca2+]i (Figure 

4.5).  
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Figure 4.5 Vit C attenuates elevations in [Ca2+]i post-Tg treatment in HEK293 

cells. Addition of 10 mM Vit C post-Tg treatment decreases Tg-induced elevations in 

[Ca2+]i. Trace shows mean time course of fractional fluorescence change of 

HEK293 cells loaded with Fluo-4 AM (n=25 cells from 3 experiments). 

Experiments were performed at RT in HBS supplemented with 10 mM glucose 

and 1 mM CaCl2. 
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4.3.5 Loading Fluo-4 AM into HepG2 cells 

Having optimised the experimental conditions and performed the first set of 

experiments in HEK293 cells (our non-hepatocyte model), we then sought to 

carry out these experiments in hepatocytes which is our main interest. As in 

the previous chapter, HepG2 cells was used in this chapter as our model 

hepatocyte cell line. First, HepG2 cells were loaded with Fluo-4 AM and 

visualized under a a Zeiss LSM 800 Airyscan confocal microscope to confirm 

the uptake of the dye by the HepG2 cells. Figure 4.6 shows a brightly 

fluorescent Fluo4 AM-loaded HepG2 cells.  
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Figure 4.6: HepG2 cells loaded with Fluo-4 AM. Cells were imaged using a 

Zeiss LSM 800 Airyscan confocal microscope. Cells were excited at 488 nm 

and emission was collected at 509 nm. Scale bar = 100 µm. Data is a 

representative of at least 3 experiments.  
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4.3.6 Vit C attenuates Tg-Induced [Ca2+]i elevations in HepG2 

cells 

The ability of Vit C to attenuate agonist induced elevations in [Ca2+]i in HepG2 

cells was then investigated using Tg as the agonist. To do this, HepG2 cells 

loaded with Fluo-4 AM were treated with 1 µM Tg in combination with or 

without 10 mM Vit C. Addition of Tg alone rapidly elevated [Ca2+]i (Figure 4.7A) 

by approximately 3 folds. Preincubation of the cells in 10 mM Vit C significantly 

attenuated the Tg-induced [Ca2+]i elevations (Figure 4.7B).  
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Figure 4.7. Vit C attenuates Tg-induced elevations in [Ca2+]i in HepG2 

cells. Curves show mean time course of fractional fluorescence change of 

HepG2 cells loaded with Fluo-4 AM, indicative of changes in [Ca2+]i (A) 1 µM 

Tg elevates [Ca2+]i (n=25 cells from 3 experiments). (B) Vit C 10 mM attenuates 

Tg-induced [Ca2+]i elevations (n= 25 cells from 3 experiments). (C) mean area 

under the curves (AUC) from which A and C were averaged. Bars represent 

mean AUC± SEM (***p value ≤0.001). Experiments were performed at RT in 

HBS supplemented with 10 mM glucose and 1 mM CaCl2. 
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4.3.7 Measuring changes in [Ca2+]i
 using REX-GECO1. 

Having established that Vit C attenuates agonist-induced elevations in [Ca2+]i 

in HepG2 and HEK293 cells using Fluo-4 AM,  we then sought to carry out 

these experiments using fluorescent recombinant Ca2+ reporter in order to 

further validate the findings we made with Fluo-4 AM. To do this we purchased 

4 different Ca2+ biosensor plasmids in form of bacterial stabs from Addgene, 

namely; CMV-GEM-GECO1 (GEM-GECO1), CMV-GEX-GECO1 (GEX-

GECO1), CMV-CAR-GECO1 (CAR-GECO1) and CMV-REX-GECO1 (REX-

GECO1). First, we purified the plasmid DNAs from the stab cultures as 

detailed in the methodology section and a diagnostic restriction digest was 

performed using ECORI and BamHI as detailed in the methodology section. 

The agarose gel electrophoresis result revealed the two correct band sizes for 

all four DNAs; 1254 bp (insert) and 3200 bp (backbone) as expected for the 

enzymes used (Figure 4.8). The subsequent Ca2+ measurement experiments 

were carried out with REX-GECO1. 
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Figure 4.8. Agarose gel verification of REX-GECO1 DNAs. Product of the 

four CMV-GECO1 DNAs (GEM, GEX, CAR and REX-GECO1) digested with 

ECORI and BamHI was run on a 0.8 % agarose gel. (A) CMV-GEM-GECO1. 

(B) CMV-GEX-GECO1. (C) CMV-CAR-GECO1. (D) CMV-REX-GECO1. The 

DNA size marker is the commercial 1 Kb DNA ladder. The direction of DNA 

migration is indicated by the direction of the arrowed line. 
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4.3.8 Transient cell transfection with REX-GECO1 

REX-GECO1 was first tested in HEK 293 cells in order to validate the 

mammalian expression of the probe and to optimize the transfection 

conditions. To do this, HEK 293 cells were transiently transfected with the 

REX-GECO1 DNA using different transfection reagents (Turbofect, 

Lipofectamine 2000 and Lipofectamine 3000) and the reporter protein 

expression was visualized using a Zeiss LSM 800 Airyscan confocal 

microscope at 24, 48 and 72 hrs post transfection and images were captured. 

The data revealed that in general, Lipofectamine 3000 produced the best REX-

GECO1 protein expression, followed by Lipofectamine 2000, while Turbofect 

gave the lowest protein expression (Figure 4.9). The optimal maturation time 

for the REX-GECO1 protein was 48/72 hrs (Figure 4.9). As mentioned above, 

the subsequent Ca2+ measurement experiments were performed with cells 

that were transiently transfected with REX-GECO1 using Lipofectamine 3000 

reagent. 
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Figure 4.9. REX-GECO1 transfection optimization in HEK293 cells. (ABC) 

REX-GECO1 protein expression in HEK293 cells transfected with Turbofect 

reagent (DNA amount = 0.5 µg, DNA to reagent ratio = 1:2) at 24 hrs, 48 hrs 

and 72 hrs post transfection, respectively. (DEF) REX-GECO1 protein 

expression in HEK293 cells transfected with Lipofectamine 2000 reagent 

(DNA amount = 0.4 µg, DNA to reagent ratio = 1:2.5) at 24 hrs, 48 hrs and 72 

hrs post transfection, respectively. (GHI) REX-GECO1 protein expression in 

HEK293 cells transfected with Lipofectamine 3000 reagent (DNA amount = 

0.3125 µg, DNA to reagent ratio = 1:2.4) at 24 hrs, 48 hrs and 72 hrs post 

transfection, respectively. Cells were excited at 488 nm and emission collected 

at 609 nm. Scale bar = 100 µm. Data are representative of 3 experiments. 
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4.3.9 Validation of the functionality of the REX-GECO1 Probe 

We then sought to validate the functionality of the REX-GECO1 probe. This 

was first done in HEK293 cells. HEK293 cells were transiently transfected with 

the REX-GECO1 DNA using Lipofectamine 3000 transfection reagent and at 

72 hrs post transfection, real time changes in [Ca2+]i was measured upon 

stimulating the cells with 250 nM ionomycin. Addition of ionomycin rapidly 

elevated the fluorescent signal by 3-fold over basal level, indicative of 

elevation in [Ca2+]i (Figure 4.10). 
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Figure 4.10. Validating functionality of REX-GECO1 in HEK293 cells. 

Trace shows mean time course of ionomycin-induced fractional fluorescence 

change of HEK293 cells transfected with REX-GECO1, indicative of changes 

in [Ca2+]i. (n=25 cells from 3 experiments). Cells were excited at 488 nm and 

emission collected at 609 nm. Experiment was performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2. 

 

 

 

 

 

 

 

 



180 
 

4.3.10 Transfection of HepG2 cells with REX-GECO1  

Having validated the functionality of the REX-GECO1 probe in HEK293 cells, 

we then sort to measure real time changes in [Ca2+]i in HepG2 cells using the 

probe. To do this, we first sought to confirm the expression of the REX-GECO1 

protein in HepG2 cells. HepG2 cells were transiently transfected with the REX-

GECO1 DNA using Lipofectamine 3000 transfection reagent. The REX-

GECO1 reporter protein expression was visualized 72 hrs post transfection, 

and image was captured with a Zeiss LSM 800 Airyscan confocal microscope. 

The data revealed good, but not excellent REX-GECO1 protein expression by 

the HepG2 cells (Figure 4.11). 
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Figure 4.11. HepG2 cells transfected with REX-GECO1 DNA using 

Lipofectamine 3000 transfection reagent. Cells were excited at 488 nm and 

emission was collect at 605 nm. (DNA amount = 0.3125 µg, DNA to reagent 

ratio = 1:2.4. Scale bar = 200 µm. Data are representative of 3 experiments. 
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4.3.11 Measuring changes in [Ca2+]i
 in HepG2 cells using 

REX-GECO1 

Next we sought to measure real time changes in [Ca2+]i using REX-GECO1. 

This was done partly in order to confirm the results we obtained using Fluo-4 

AM and secondly because we were interested in measuring real time Ca2+ 

changes using a genetically encoded indicator due to the advantages they 

confer over the chemical indicators as discussed in the general introduction. 

Though we have established that the probe is able to measure real time 

changes in [Ca2+]i  in HEK293 cells, here we sought to also confirm that the 

probe is able to measure real time changes in [Ca2+]i in HepG2 cells by treating 

HepG2 cells with ionomycin, ATP and Tg after transfecting them with the REX-

GECO1 DNA. 

Our data showed that 250 nM ionomycin (Figure 4.12), 5 µM ATP (Figure 4.13 

A) and 10 µM ATP (Figure 4.13 B), 500 nM Tg (Figure 4.14 A) and 2 µM Tg 

(figure 4.14 B) rapidly elevated the REX-GECO1 fluorescent signal by 2.7 fold, 

4.7 fold, 7.8 fold, 3.3 fold and 5 fold respectively above basal level, indicative 

of elevations in [Ca2+]i. 
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Figure 4.12. Measuring real time changes in [Ca2+]i in HepG2 cells upon 

ionomycin stimuli using REX-GECO1. Trace shows mean time course of 

ionomycin-induced fractional fluorescence change of HepG2 cells transfected 

with REX-GECO1, indicative of changes in [Ca2+]i. (n=20 cells from 2 

experiments). Experiment was performed at RT in HBS supplemented with 10 

mM glucose and 1 mM CaCl2.  
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Figure 4.13. Measuring ATP-induced changes in [Ca2+]i in HepG2 cells 

using REX-GECO1. (A) Mean time course of 5 µM ATP-induced fractional 

fluorescence change of HepG2 cells transfected with REX-GECO1 (n=20 cells 

from 2 experiments). (B) Mean time course of 10 µM ATP-induced fractional 

fluorescence change of HepG2 cells transfected with REX-GECO1 (n=20 cells 

from 2 experiments). Experiments were performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2.  
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Figure 4.14. Measuring Tg-induced changes in [Ca2+]i in HepG2 cells 

using REX-GECO1. (A) Mean time course of 500 nM Tg-induced fractional 

fluorescence change of HepG2 cells transfected with REX-GECO1 (n=20 cells 

from 2 experiments). (B) Mean time course of 2 µM Tg-induced fractional 

fluorescence change of HepG2 cells transfected with REX-GECO1 (n=20 cells 

from 2 experiments). Experiments were performed at RT in HBS 

supplemented with 10 mM glucose and 1 mM CaCl2.  
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4.3.12 Inhibition of PDI modulates Vit C attenuation of Tg-

induced [Ca2+]i elevations in HepG2 cells 

In chapter 3, we showed that inhibition of PDI with Bac and RL90 modulates 

the cGMP elevation effect of Vit C and ANP but not that of SNP, consistent 

with csPDI regulation of the ability of Vit C and ANP to elevate cGMP, but not 

that of SNP. Here we sought to investigate whether the inhibition of csPDI with 

Bac and RL90 would have a corresponding modulatory action on the effect of 

these cGMP-elevating agents (Vit C, ANP and SNP) on Ca2+ signal.  To do 

this, we transfected HepG2 cells with REX-GECO1 and subsequently treated 

the transfected cells with Tg in combination with or without Vit C, ANP and 

SNP and inhibitors of PDI (RL90 and Bac). Bac is mixture of cyclic peptides 

that has been widely used to inhibit PDI function, while RL90 is an anti-PDI 

monoclonal antibody that has also been widely used to inhibit PDI function 

(333, 364, 365). The data revealed that 1.25 mM Vit C (Figure 4.15), 200 nM 

ANP (Figure 4.16) and 100 µM SNP (Figure 4.17) attenuated the [Ca2+]i-

elevating action of Tg. Importantly, the data revealed that pre-incubation of the 

cells with RL90 and Bac antagonised the attenuation effect of Vit C and ANP, 

but not that of SNP on the Tg-induced elevations in [Ca2+]i (Figure 4.15, 4.16 

and 4.17 respectively). By calculating and comparing the area under the 

curves (AUCs), the percentage attenuation effect of Vit C, ANP and SNP, as 

well as the effect of inhibiting PDI with RL90 and Bac on the Tg-induced [Ca2+]i 

elevations was quantified (expressed as percentage of Tg control). Figure 4.15 

shows that Vit C significantly reduced the Tg-induced [Ca2+]i elevations as 

revealed by the AUCs, and this effect of Vit C was significantly blunted when 

PDI was inhibited with RL90 and Bac (Figure 4.15 E). A similar trend was also 
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observed for the ANP attenuation of Tg-induced [Ca2+]i elevations (Figure 

4.16E), while figure 4.17D which represents the area under curves 4.17A to C 

shows that inhibiting PDI with Bac had no significant effect on the SNP 

attenuation of Tg-induced [Ca2+]i elevations in HepG2 cells. 
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Figure 4.15. Vit C attenuation of Tg-induced elevations in [Ca2+]i in HepG2 

cells is downregulated by Bac and RL90. Curves show mean time course 

of fractional fluorescence change of HepG2 cells transfected with REX-

GECO1, indicative of changes in [Ca2+]i (A) 1 µM Tg elevates [Ca2+]i in HepG2 

cells (n=25 cells from 3 experiments). (B) 1.25 mM Vit C attenuates Tg-
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induced elevations of [Ca2+]i in HepG2 cells (n=20 cells from 3 experiments). 

(C) Inhibition of csPDI with RL90 20 µg/mL downregulates Vit C attenuation of 

Tg-induced [Ca2+]i elevations (n=20 cells from 3 experiments). (D) Inhibition of 

csPDI with Bac 2.5 mg/mL downregulates Vit C attenuation of Tg-induced 

[Ca2+]i elevations (n=20 cells from 3 experiments).  (E) Mean±SEM of area 

under the curves from which A to D was averaged (expressed as % of Tg 

control). (*p value ≤0.05, **p value ≤0.01, ***p value ≤0.001).  
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Figure 4.16. ANP attenuation of Tg-induced elevations in [Ca2+]i in HepG2 

cells is downregulated by Bac and RL90. Curves show mean time course 

of fractional fluorescence change of HepG2 cells transfected with REX-

GECO1, indicative of changes in [Ca2+]i (A) 1 µM Tg elevates [Ca2+]i in HepG2 



191 
 

cells (n=24 cells from 3 experiments). (B) 200 nM ANP attenuates Tg-induced 

elevations in [Ca2+]i in HepG2 cells (n=31 cells from 4 experiments). (C) 

Inhibition of csPDI with RL90 20 µg/mL downregulates ANP attenuation of Tg-

induced [Ca2+]i elevations (n=30 cells from 4 experiments). (D) Inhibition of 

csPDI with Bac 2.5 mg/mL downregulates ANP attenuation of Tg-induced 

[Ca2+]i elevations (n=25 cells from 3 experiments).  (E) Mean±SEM of area 

under the curves from which A to D was averaged (expressed as % of Tg 

control). (***p value ≤0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

 



192 
 

 

Figure 4.17. SNP attenuation of Tg-induced elevations in [Ca2+]i in HepG2 

cells is not affected by the inhibition of PDI. Curves show mean time course 

of fractional fluorescence change of HepG2 cells transfected with REX-

GECO1, indicative of changes in [Ca2+]i (A) 1 µM Tg elevates [Ca2+]i in HepG2 

cells (n=20 cells from 3 experiments). (B) 100 µM SNP attenuates Tg-induced 

elevations in [Ca2+]i in HepG2 cells (n=20 cells from 3 experiments). (C) PDI 

inhibition by Bac 2.5 mg/mL does not significantly affect SNP attenuation of 

Tg-induced [Ca2+]i elevations (n=20 cells from 3 experiments).  (D) Mean±SEM 

of area under the curves from which A to C was averaged (expressed as % of 

Tg control). (**p value ≤0.01).  
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4.3.13 Vit C decreases [Ca2+]i elevations post-Tg stimulation 

As we have established that Vit C attenuates Tg -induced [Ca2+]i elevations 

(Figures 4.7  and 4.15) in HepG2 cells when the cells were co-stimulated with 

Tg and Vit C, we sought to investigate whether Vit C added post Tg-addition 

would decrease an already raised [Ca2+]i. The data revealed that 1.25 mM Vit 

C had only marginal effect on the already raised [Ca2+]i induced by Tg (Figure 

4.18B), whereas, 10 mM Vit C added post-Tg treatment rapidly decreased the 

Tg-induced elevations in [Ca2+]i (Figure 4.18C). Upon PDI inhibition with Bac, 

this Vit C attenuation of Tg-induced [Ca2+]i elevation was downregulated 

(Figure 4.18D). Figure 4.18E compares the rates of decline (ROD).  
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Figure 4.18. Vit C attenuation of [Ca2+]i post-Tg treatment in HepG2 cells 

is concentration-dependent and is partly downregulated by PDI 

inhibition by Bac. Curves show mean time course of fractional fluorescence 

change of HepG2 cells transfected with REX-GECO1, indicative of changes in 

[Ca2+]i. (A) 1 µM Tg elevates [Ca2+]i in HepG2 cells (n=22 cells from 3 

experiments). (B) addition of 1.25 mM Vit C post-Tg treatment had marginal 

effect on Tg-induced elevations in [Ca2+]i (n=22 cells from 3 experiments). (C) 
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Addition of 10 mM Vit C post-Tg treatment decreases Tg-induced elevations 

in [Ca2+]i (n=23 cells from 3 experiments). (D) PDI inhibition by Bac 2.5 mg/mL 

downregulates Vit C attenuation of Tg-induced [Ca2+]i elevations (n=20 cells 

from 3 experiments). (E) Mean±SEM of Vit C-induced rate of decline of 

elevated [Ca2+]i (expressed as % of Tg control). (**p value ≤0.01, ***p value 

≤0.001).  

.  
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4.3.14 Inhibition of PDI modulates Vit C attenuation of Tg-

induced [Ca2+]i elevations in HEK293 cells. 

We have shown that Vit C like other agents that elevates cellular cGMP (ANP 

and SNP) attenuates Tg-induced elevations in [Ca2+]i in HepG2 cells (Figures 

4.7 and 4.15B). We have also shown that this effect of Vit C was 

downregulated when csPDI was inhibited with RL90 and Bac (Figures 4.15C 

and D). The data from our preliminary experiments performed with Fluo-4 AM 

also revealed that 10 mM Vit C attenuated agonist (Tg and ATP)-induced 

elevations in [Ca2+]i in HEK293 cells (Figure 4.3 and 4.4 respectively), 

indicative that this effect of Vit C is not hepatocyte-specific. With the REX-

GECO1 recombinant probe, we then sought to repeat these experiments in 

HEK293 cells (even with lower concentration of Vit C; 1.25 mM) and to also 

determine whether inhibition of csPDI in HEK293 cells would have a similar 

inhibitory effect on the action of Vit C as was observed in HepG2 cells. To do 

this, we transfected HEK293 cells with the REX-GECO1 DNA and 

subsequently treated the transfected cells with Tg in combination with or 

without Vit C, and inhibitors of PDI (RL90 and Bac). The data showed that 1.25 

mM Vit C attenuated Tg-induced [Ca2+]i elevations (Figures 4.19B and E). 

Importantly, the data revealed that inhibition of csPDI with Bac and RL90 

downregulated the ability of Vit C to attenuate Tg-induced elevations in [Ca2+]i 

(Figure 4.19C, D and E), in line with what we observed in HepG2 cells. This 

suggests that the ability of Vit C to attenuate agonist-induced elevations in 

[Ca2+]i and the modulation of this mechanism by csPDI is not hepatocyte-

specific, but can be achieved in other cell types.         
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Figure 4.19. Vit C attenuation of Tg-induced elevations in [Ca2+]i in 

HEK293 cells is modulated by the inhibition of PDI with RL90 and Bac. 

Curves show mean time course of fractional fluorescence change of HEK293 
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cells transfected with REX-GECO1, indicative of changes in [Ca2+]i (A) 1 µM 

Tg elevates [Ca2+]i in HEK293 cells (n=25 cells from 3 experiments). (B) 1.25 

mM Vit C attenuates Tg-induced elevations of [Ca2+]i (n=25 cells from 3 

experiments). (C) Inhibition of csPDI with RL90 20 µg/mL downregulates Vit C 

attenuation of Tg-induced [Ca2+]i elevations (n=25 cells from 3 experiments). 

(D) Inhibition of csPDI with Bac 2.5 mg/mL downregulates Vit C attenuation of 

Tg-induced [Ca2+]i elevations (n=25 cells from 3 experiments).  (E) Mean±SEM 

of area under the curves (AUC) from which A to D were averaged (expressed 

as % of Tg control). (**p value ≤0.01, ***p value ≤0.001).  
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4.4 Discussion 

The data from this part of the study demonstrate that Vit C like other agents 

that elevates cellular cGMP (ANP and SNP) attenuates agonist-induced [Ca2+]i 

elevations in HepG2 cells. The data also reveal that Vit C and ANP, but not 

SNP-mediated attenuation of Tg-induced [Ca2+]i elevations in HepG2 cells is 

downregulated by the inhibition of PDI with RL90 and Bac. This is consistent 

with csPDI modulation of Vit C and ANP-mediated attenuation of Tg-induced 

elevations in [Ca2+]i, but not csPDI modulation of SNP-mediated attenuation. 

When we investigated whether the Vit C attenuation of agonist-induced [Ca2+]i 

elevations can be achieved in HEK293 cells, we observed that the vitamin 

attenuated Tg and ATP-induced [Ca2+]i elevations in the cells. The ability of Vit 

C to attenuate Tg-induced elevations in [Ca2+]i was also observed to be 

downregulated by Bac and RL90, in line with the observation in HepG2 cells. 

Importantly, the data rule out any non-specific effect of Vit C since both RL90 

and Bac opposed its effect. 

To access whether Vit C has the potential to attenuate [Ca2+]i elevations in 

human hepatocytes and other cell types, we utilized HepG2 cells as our model 

hepatocyte cell line and HEK293 cells as our non-hepatocyte comparator. As 

mentioned in the introduction, we performed these experiments with two 

different Ca2+ indicators; Fluo-4 AM (a green fluorescent calcium sensing dye) 

and REX-GECO1 (a genetically encoded fluorescent calcium probe) in order 

to improve the validity of the findings. Our results revealed that either of the 

two concentrations of Vit C used (10 mM; Figures 4.3 and 1.25 mM; Figures 

4.19B and E) when added in combination with Tg, attenuated Tg-induced 
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[Ca2+]i elevations in HEK293 cells. 10 mM Vit C also attenuated ATP-induced 

elevations in [Ca2+]i in HEK293 cells (Figure 4.4). On the HepG2 cells, our data 

showed that Vit C (10 mM; Figure 4.7 and 1.25 mM; Figure 4.15B and E), like 

ANP (Figure 4.16B and E) and SNP (Figure 4.17B and D) attenuated Tg-

induced elevations in [Ca2+]i. This is in line with previous studies from another 

group that reported that Vit C attenuates A23187-induced elevations in  [Ca2+]i 

in Molt-3 human lymphoblastoid cells (332), and unpublished data from our 

group on primary rat hepatocytes where it was observed that Vit C attenuates 

ATP-induced elevations in [Ca2+]i. Together, these data suggest that Vit C 

attenuates agonist-induced [Ca2+]i elevations and this effect of the vitamin is 

not hepatocyte-specific.  

The effects of sGC and pGC activation on Ca2+ signalling have been 

previously investigated by Green and colleagues in rat hepatocytes (225, 283). 

It was reported that ANP (an activator of pGC), but not SNP (NO 

donor/activator of sGC) through PKG stimulates plasma membrane Ca2+ efflux 

and inhibits Ca2+ influx  (225, 283).  However, ANP was found to have no effect 

on the release of Ca2+ from or re-uptake into intracellular stores (225).  The 

authors attributed the differing abilities of these agents to stimulate net plasma 

membrane Ca2+ efflux to the differing subcellular localization of their target 

guanylyl cyclases (GCs) and consequent cGMP compartmentation. They 

proposed that ANP through the activation of plasma membrane bound pGC 

could be mediating localized cGMP elevation, activation of membrane 

localized PKG and consequent stimulation of hepatocyte plasma membrane 

calcium ATPase (PMCA), thus resulting in Ca2+ efflux (225). According to the 

authors, SNP which mediates mainly cytosolic cGMP elevation may be 
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ineffective in stimulating PMCA (225). In this current study, we have not 

exclusively investigated the effect of the cGMP elevators (ANP, SNP and Vit 

C) on Ca2+ efflux, influx or release and re-uptake from intracellular stores, but 

our data clearly shows that all three agents; SNP, ANP and Vit C attenuated 

Tg-induced [Ca2+]i elevations in both HepG2 and HEK293 cells. In agreement 

with our findings, previous studies have reported that SNP, through PKG, 

attenuates ATP-induced [Ca2+]i elevations in supporting cells of the guinea pig 

cochlea (348, 363). Taking into account the submission by Green and 

colleagues that SNP neither stimulate Ca2+ efflux via PMCA nor inhibit Ca2+ 

influx (225, 283), it is therefore likely that SNP modulates [Ca2+]i signals via 

other pathways that does not involve plasma membrane Ca2+ fluxes. In 

addition to the stimulation of net plasma membrane Ca2+ efflux via the 

activation of PMCA and inhibition of Ca2+ influx via membrane Ca2+ channels, 

cGMP can modulate [Ca2+]i via other mechanisms. For example, cGMP 

through PKG, can modulate [Ca2+]i signals by the inhibition of Ca2+ release 

from intracellular stores. Interestingly, previous studies have inferred that SNP 

downregulates Ca2+ signal by cGMP dependent IP3R inhibition. For example, 

Dufour and colleagues suggested that SNP through cGMP elevation interferes 

with bile canalicular contraction by inhibiting IP3-dependent Ca2+ release 

(285). Also, Tertyshnikova and colleagues reported that SNP through PKG 

inhibits IP3-induced Ca2+ release but has no effect on Ca2+ extrusion in rat 

megarkaryocytes (280). Taking together, these data from previous studies and 

our findings from this study suggest that ANP and Vit C modulation of [Ca2+]i 

signals are mediated via same pathway, distinct from the SNP-mediated route. 

This notion is supported by our observation that Vit C and ANP, but not SNP-
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induced cGMP elevation (chapter 3) and reduction in [Ca2+]i appears to be 

mediated via the same pathway as the ANP and Vit C, but not SNP effects 

were observed to be attenuated by the inhibition of PDI with RL90 and Bac.  

Preliminary data from our group also further support this notion. The data 

revealed that Vit C through PKG attenuates ATP-induced [Ca2+]c elevations by 

stimulating net plasma membrane Ca2+ efflux, in line with the initial submission 

by Green and colleagues that ANP attenuates elevations in [Ca2+]c in rat 

hepatocytes via the same mechanism (225).   

In addition, our data from this current study suggest a possible involvement of 

the store-operated Ca2+ entry (SOCE) or capacitative Ca2+ entry (CCE) in the 

Vit C reduction of [Ca2+]i. Tg raises [Ca2+]i by inhibiting SERCA, thereby 

causing ER Ca2+ depletion. The store depletion activates the SOCE, a 

mechanism which involves Ca2+ influx from the extracellular fluid following 

intracellular depletion (366).  After the initial release of Ca2+ from intracellular 

stores, SOCE plays a key role in maintaining [Ca2+]i plateau and in 

replenishing the stores (367). Upon stimulation of the HEK293 and HepG2 

cells with Tg, our data revealed a typical Tg-induced biphasic Ca2+ response 

consisting of the initial increase in [Ca2+]i, followed by a sustained plateau 

which was abruptly reduced by the addition of Vit C (Figure 4.5 and 4.18E). 

This is consistent with Vit C inhibition of the SOCE pathway.  

An important observation made on the Vit C attenuation of Tg-induced 

elevations in [Ca2+]i in HepG2 cells was that though 1.25 mM Vit C when added 

together with Tg, attenuated the Tg-induced [Ca2+]i elevations, addition of this 

same concentration of Vit C (1.25 mM) to the cells post-Tg treatment had no 
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apparent effect on the already raised [Ca2+]i induced by Tg (Figures 4.18A and 

B). However, 10 mM Vit C added post-Tg treatment rapidly decreased the Tg-

induced elevated [Ca2+]i (Figure 4.18C). This is in line with our observation in 

HEK293 cells where 10 mM Vit C rapidly decreased Tg-induced elevated 

[Ca2+]i (Figure 4.5). Together, these data suggest that though co-treatment of 

Tg with 1.25 mM Vit C attenuates Tg-induced elevations in [Ca2+]i, a higher 

concentration of Vit C (10 mM in this case) is required to lower an already 

raised [Ca2+]i.  

PDI has been shown to colocalize with membrane guanylyl cyclase in HUVEC 

and HMC where it was also reported to modulate the cGMP-elevating action 

of Natriuretic peptides (ANP, BNP and CNP) (333). In chapter 3 we showed 

that Inhibition of PDI with RL90 and Bac downregulates the cGMP-elevating 

action of Vit C and ANP in HepG2 cells, but not that of SNP. Whether this PDI 

modulating action on the cGMP-elevating agents would result in a 

corresponding modulation of their effect on [Ca2+]i was yet to be defined. 

Therefore, utilizing the PDI inhibitors RL90 and Bac, we investigated the 

possible involvement of PDI in Vit C, ANP and SNP attenuation of [Ca2+]i 

elevations. Vit C (Figures 4.15 and 4.18) and ANP (Figure 4.16) attenuation of 

Tg-induced [Ca2+]i elevations in HepG2 cells was significantly downregulated 

upon PDI inhibition with RL90 and Bac, but SNP-mediated attenuation was 

unaffected (Figure 4.17). This is consistent with csPDI modulation of the cGMP 

elevating action of Vit C and ANP, and consequent modulation of their effect 

on Ca2+ signal, but not that of SNP. Importantly, a similar trend on the effect 

of RL90 and Bac on Vit C attenuation of [Ca2+]i elevations was observed in 

HEK293 cells. In these cells, inhibition of PDI with these agents (RL90 and 
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Bac) downregulated the ability of Vit C to attenuate Tg-induced [Ca2+]i 

elevations (Figure 4.19). Together, these data suggest that csPDI modulation 

of Vit C effect on [Ca2+]i is not hepatocyte specific. 

In conclusion, we have been able to show that Vit C attenuates Tg-induced 

elevations in [Ca2+]i in HepG2 cells. In HEK293 cells which we used as our 

non-hepatocyte model cell line to investigate whether the ability of Vit C to 

attenuate [Ca2+]i elevations is more general, we observed that Vit C attenuated 

Tg and ATP-induced [Ca2+]i elevations, in line with the observation in HepG2 

cells. Taking together with the previous study by Ozturk and colleagues that 

revealed that Vit C decreases A23187-induced [Ca2+]i elevations in Molt-3 

lymphoblastoid cells (332), it is therefore conceivable that the Vit C attenuation 

of agonist-induced [Ca2+]i elevations can be achieved in a variety of cell types.  

Upon inhibition of csPDI with Bac and RL90 in HepG2 and HEK293 cells, we 

observed that the Vit C-mediated attenuation of Tg-induced [Ca2+]i elevations 

was downregulated. A similar effect of the PDI inhibitors was also observed 

for ANP, but not SNP-mediated attenuation of Tg-induced [Ca2+]i elevations in 

HepG2 cells. Taking together, we propose that Vit C and ANP attenuation of 

[Ca2+]i elevations are likely via the same pathway, distinct from the SNP-

mediated pathway.  
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Chapter 5 

Presence and cellular localization of protein 

disulphide isomerase and natriuretic peptide 

receptor-A in human hepatocytes and HEK293 cells 
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5.1 Introduction 

Protein disulphide isomerase (PDI) has been reported to modulate the function 

of plasma membrane proteins in certain cell types, including the cGMP 

generation action of the guanylyl cyclase-linked receptors (natriuretic peptide 

receptors). For example, in human umbilical vein endothelial cells (HUVECs), 

human mesangial cells (HMCs), human aortic smooth muscle cells (HASMCs) 

and pig kidney epithelial cells (LLC-PK1), PDI was reported to regulate 

particulate guanylyl cyclase (pGC) generation of cGMP in response to 

natriuretic peptides (NPs) (333). In chapter 3 of this study, we showed that PDI 

inhibition by RL90 and Bac attenuates ANP and Vit C-induced cGMP 

generation in HepG2 cells. Also, in chapter 4, our data revealed that inhibition 

of PDI with RL90 and Bac downregulates ANP and Vit C-mediated reduction 

of [Ca2+]i in HepG2 cells. These inhibitory effects of RL90 and Bac were also 

observed in HEK293 cells. This is consistent with PDI modulation of the ability 

of Vit C and ANP to stimulate pGC and consequent cGMP elevation and 

reduction of [Ca2+]i. Pan and colleagues suggested that the PDI modulation of 

the pGC generation of cGMP is due to its colocalization with the guanylyl 

cyclase-linked receptors (natriuretic peptide receptors; NPR-A and NPR-B) on 

the plasma membrane of the various cell types (333). 

Though PDI has widely been thought to be an ER-resident protein due to the 

presence of the ER-retention signal; the C-terminal KDEL sequence, studies 

have identified it on the plasma membrane of certain cell types such 

as endothelial cells (ECs), lymphocytes, platelets, vascular smooth muscle 

cells (VSMCs), hepatocytes, exocrine pancreatic cells and some cancer cells 
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(335, 336, 368-371). In the cells where PDI has been identified on the plasma 

membrane, it is referred to as cell surface PDI (csPDI) as it is thought to be 

attached to the extracellular surface of the plasma membrane by lipid, glycan 

and integral membrane protein anchors (336, 337).  

The externalization route of PDI across distinct cell types including 

hepatocytes remains elusive, but it is well clear from previous studies on other 

cell types that it is cell type dependent. For example, csPDI externalization in 

VSMCs occurs entirely via an unconventional golgi-independent route, while 

in ECs, its externalization is partly via the classical golgi-dependent route and 

partly via an unconventional route (334, 335). Moreover, a clear 

characterization of the extracellular PDI pool and the mode of externalization 

in human hepatocytes remain unelucidated. 

5.2 Aims 

As our data in chapters 3 and 4 suggested that PDI modulates cGMP elevating 

action of ANP (in HepG2 cells) and Vit C (in HepG2 and HEK293 cells) and 

their consequent ability to attenuate [Ca2+]i signal in these cells, our aims in 

this chapter were to verify whether these cells (HepG2 and HEK293 cells) 

express PDI on their plasma membrane (csPDI). And if so, we aimed to 

investigate whether the csPDI colocalizes with the membrane NPRs. Also, if 

we verify the above on the HepG2 cells which we have used in this study as 

our model hepatocyte cell line, our next aim was to investigate the possible 

expression and colocalization of these proteins on the membrane of primary 

human hepatocytes (PHH) as this would then inform us whether csPDI can be 

a possible therapeutic target in Ca2+-mediated hepatocyte injury. Lastly, as 
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PDI externalization route in hepatocytes remain unelucidated, we aimed to 

investigate the involvement of the conventional golgi-dependent route in the 

externalization of the protein in human hepatocytes. 
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5.3 Results 

5.3.1 Investigating the presence and cellular localization of 

PDI and NPRA in HepG2 cells 

In order to distinguish membrane and cytoplasmic PDI and NPRA in HepG2 

cells, cells were labelled with anti-PDI antibody and anti-NPRA antibody either 

with or without triton permeabilization post fixation. The data from the 

permeabilized cells revealed a distribution of both the PDI (Figure 5.1) and 

NPRA (Figure 5.2) throughout the intracellular space, most likely the ER. 

Whereas, in the Non-permeabilized cells, both PDI (Figure 5.1) and NPRA 

(Figure 5.2) expression were restricted to the cell margin, consistent with 

plasma membrane localized PDI and NPRA. 
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Figure 5.1. HepG2 cells express both cytoplasmic and plasma membrane 

PDI. (A, B and C) Permeabilized HepG2 cell; cytoplasmic PDI was labelled 

with anti-PDI antibody (RL90) and detected with Alexa Fluor 488 secondary 

antibody and the nucleus was stained with DAPI. (D, E and F) Non-

permeabilized HepG2 cell; membrane PDI was labelled with anti-PDI antibody 

(RL90) and detected with Alexa Fluor 488. (G, H and I) Control IF (No anti-PDI 

antibody, only Alexa Fluor 488). Data is a representative of four independent 

experiments. Scale bar = 10 µm. 
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Figure 5.2. HepG2 cells express both cytoplasmic and plasma membrane 

NPRA. (A, B and C) Permeabilized HepG2 cells; cytoplasmic NPRA was 

labelled with anti-NPRA antibody and detected with Alexa Fluor 594 

secondary antibody and the nucleus was stained with DAPI. (D, E and F) Non-

permeabilized HepG2 cells; membrane NPRA was labelled with anti-NPRA 

antibody and detected with Alexa Fluor 594 secondary antibody. (G, H and I) 

Control IF (No anti-NPRA antibody, only Alexa Fluor 594). Data is a 

representative of three independent experiments. Scale bar = 10 µm. 
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5.3.2 Plasma membrane PDI colocalizes with membrane 

NPRA in HepG2 cells 

To determine whether the plasma membrane PDI colocalizes with NPRA in 

HepG2 cells, we co-labelled the membrane PDI and NPRA with mouse anti-

PDI antibody (RL90) and rabbit anti-NPRA antibody in non-permeabilized 

HepG2 cells. The confocal microscopy images (Figures 5.3A-E) showed that 

NPRA colocalizes with membrane PDI in HepG2 cells with a Pearson’s 

correlation coefficient of 0.743 (74.3%). This data is consistent with the notion 

that membrane PDI and NPRA can interact.  
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Figure 5.3. Plasma membrane PDI colocalized with NPRA in HepG2 cell. 

(A). PDI (green) in non-permeabilized HepG2 cell detected with Alexa Fluor 

488. (B) NPRA (red) in non-permeabilized HepG2 cell detected with Alexa 

Fluor 594. (C) nucleus (blue) stained with DAPI. (D) overlay of A, B and C. (E) 

Colocalization analysis of membrane PDI and NPRA (Pearson’s correlation 

coefficient =0.743). Data is a representative of three independent experiments. 

Scale bar= 5 µm.  
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5.3.3 Brefeldin A (BFA) Inhibits PDI Externalization in HepG2 

Cells 

As PDI externalization route has been reported to be cell type specific (334) 

and till date the externalization route in hepatocytes remain unclear, we sought 

to investigate whether PDI externalization in hepatocytes occurs via the 

classical ER-Golgi-dependent route. To do this, we used BFA, a fungal 

macrocyclic lactone that disrupts ER-to-golgi protein translocation, thereby 

inhibiting golgi-dependent protein externalization. The data revealed that 

incubation of HepG2 cells with 5 µg/mL BFA for 4.5 hrs inhibited PDI 

externalization as compared to the control (Figure 5.4), consistent with PDI 

externalization occurring partly via the golgi-dependent route in HepG2 cells. 
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Figure 5.4. BFA inhibits PDI externalization in HepG2 cells. (A, B and C) 

membrane PDI in non-permeabilized HepG2 cell labelled with anti-PDI 

antibody (RL90).  (D, E and F) Similar experiment post BFA (5 µg/mL) 

treatment. (G) membrane PDI expression level in both basal and BFA-treated 

conditions (expressed as percentage of the control). Control = 0.1 % DMSO 

vehicle. Data is a representative of three independent experiments. Scale bar 

= 5 µm. 
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5.3.4 HEK293 Cells Express Cytoplasmic and Membrane PDI 

and NPRA 

We have shown that HepG2 cells express plasma membrane PDI and NPRA 

and we have also shown that these proteins colocalize on the membrane of 

these cells, consistent with the notion that these proteins interact. This 

colocalization provides an explanation for our observation of PDI modulating 

natriuretic peptide (NP) and Vitamin C (Vit C) elevation of cGMP and reduction 

of [Ca2+]i in HepG2 cells in chapters 3 and 4. Since a similar observation of 

PDI modulating Vit C-mediated cGMP generation and [Ca2+]i reduction was 

also made in HEK293 cells, in this part of the study we sought to investigate 

whether HEK293 cells also express PDI and NPRA on their membrane. 

HEK293 cells were labelled with anti-PDI (RL90) and anti-NPRA antibodies 

either with or without triton permeabilization. The data reveal that PDI (Figure 

5.5) and NPRA (Figure 5.6) are expressed in both permeabilized and non-

permeabilized HEK293 cells. The data clearly shows PDI (Figures 5.5D, E and 

F) and NPRA (Figures 5.6D, E and F) expression on the margin of the cell and 

the cellular projections in the non-permeabilized HEK293 cells, consistent with 

plasma membrane PDI and NPRA.  
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Figure 5.5. HEK 293 cells express cytoplasmic and membrane PDI. (A, B 

and C) Permeabilized HEK293 cell; cytoplasmic PDI was labelled with anti-

PDI antibody (RL90) and detected with Alexa Fluor 488 secondary antibody 

and the nucleus was stained with DAPI. (D, E and F) Non-permeabilized 

HEK293 cell; membrane PDI was labelled with anti-PDI antibody (RL90) and 

detected with Alexa Fluor 488. (G, H and I) Control IF (No anti-PDI antibody, 

only Alexa Fluor 488). Data is a representative of two independent 

experiments. Scale bar = 5 µm. 
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Figure 5.6. HEK 293 cells express cytoplasmic and membrane NPRA. (A, 

B and C) Permeabilized HEK293 cells; cytoplasmic NPRA was labelled with 

anti-NPRA antibody and detected with Alexa Fluor 594 secondary antibody 

and the nucleus was stained with DAPI. (D, E and F) Non-permeabilized 

HEK293 cells; membrane NPRA was labelled with anti-NPRA antibody and 

detected with Alexa Fluor 594 secondary antibody. (G, H and I) Control IF (No 

anti-NPRA antibody, only Alexa Fluor 594). Data is a representative of two 

independent experiments. Scale bar = 5 µm. 
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5.3.5 Primary human hepatocytes express cytoplasmic and 

Membrane PDI and NPRA 

As our data revealed that HepG2 cells express cytoplasmic and membrane 

PDI and NPRA, we then sought to determine whether these proteins are also 

expressed in primary human hepatocytes (PHHs). PHHs were labelled with 

anti-PDI antibody (RL90) either with or without triton permeabilization. The 

data from the permeabilized PHHs revealed a distribution of both the PDI 

(Figure 5.7) and NPRA (Figure 5.8) throughout the intracellular space, most 

likely the ER. Whereas, in the Non-permeabilized cells, both PDI (Figure 5.7) 

and NPRA (Figure 5.8) expression were restricted to the cell margin, 

consistent with plasma membrane localized PDI and NPRA.   
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Figure 5.7. PHHs express cytoplasmic and membrane PDI. (A, B and C) 

Permeabilized PHH; cytoplasmic PDI was labelled with anti-PDI antibody 

(RL90) and detected with Alexa Fluor 488 secondary antibody and the nucleus 

was stained with DAPI. (D, E and F) Non-permeabilized PHH; membrane PDI 

was labelled with anti-PDI antibody (RL90) and detected with Alexa Fluor 488. 

(G, H and I) Control IF (No anti-PDI antibody, only Alexa Fluor 488). Data is a 

representative of four independent experiments. Scale bar = 10 µm. 
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Figure 5.8. PHHs express both cytoplasmic and plasma membrane 

NPRA. (A, B and C) Permeabilized PHH; cytoplasmic NPRA was labelled with 

anti-NPRA antibody and detected with Alexa Fluor 594 secondary antibody 

and the nucleus was stained with DAPI. (D, E and F) Non-permeabilized PHH; 

membrane NPRA was labelled with anti-NPRA antibody and detected with 

Alexa Fluor 594 secondary antibody. (G, H and I) Control IF (No anti-NPRA 

antibody, only Alexa Fluor 594). Data is a representative of three independent 

experiments. Scale bar = 10 µm. 
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5.3.6 Plasma membrane PDI colocalizes with NPRA in PHHs 

As primary cells represent more what is happening in vivo compared to cell 

lines, having confirmed that membrane PDI colocalizes with NPRA in HepG2 

cells, we sought to determine whether this is consistent in PHHs. We double-

labelled PHHs with mouse anti-PDI antibody (RL90) and rabbit anti-NPRA 

antibody. The data revealed that membrane PDI colocalizes with membrane 

NPRA in PHHs (Figure 5.9) with a Pearson’s correlation coefficient of 0.952 

(95.2%), in line with our observation in HepG2 cells. This data is consistent 

with the notion that membrane PDI and NPRA can interact in PHHs.  
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Figure 5.9. Membrane PDI colocalized with membrane NPRA in PHHs. (A) 

PDI (green) in non-permeabilized PHH detected with Alexa Fluor 488. (B) 

NPRA (red) in non-permeabilized PHH detected with Alexa Fluor 594. (C) 

nucleus (blue) detected with DAPI. (D) overlay of A, B and C. (E) 

Colocalization analysis of membrane PDI and NPRA (Pearson’s correlation 

coefficient =0.952). Data is a representative of three independent experiments. 

Scale bar = 5 µm. 
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5.3.7 BFA inhibits PDI externalization in PHHs 

As our data suggests that PDI externalization in HepG2 cells was inhibited by 

BFA, we then sought to investigate whether BFA treatment would have any 

effect on PDI externalization in PHHs. PHHs were incubated in BFA (5 µg/mL 

for 4.5 hrs) prior to membrane PDI labelling. The data revealed that BFA 

inhibited PDI externalization as compared to the control (Figures 5.10), 

consistent with the notion that ER-golgi protein translocation route is involved 

in PDI externalization in PHHs.  

 

 

 

 

 

 

 

 

 

 

 

 

.  



227 
 

 

Figure 5.10. BFA Inhibits PDI Externalization in PHHs. (A, B and C) 

membrane PDI in Non-permeabilized HepG2 cells labelled with anti-PDI 

antibody (RL90).  (D, E and F) Similar experiment post BFA (5 µg/mL) 

treatment. (G) membrane PDI expression level in both basal and BFA-treated 

conditions. Control = 0.1 % DMSO vehicle. Data is a representative of three 

independent experiments. Scale bar = 5 µm. 
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5.4 Discussion 

We show here that human hepatocytes; the human liver cancer cell line 

HepG2 cells and primary human hepatocytes (PHHs), as well as HEK293 cells 

express cytoplasmic and plasma membrane PDI and NPRA. We also show 

that the plasma membrane PDI colocalizes with membrane NPRA in HepG2 

cells and PHHs, consistent with the notion that the two proteins interact at the 

cell membrane. Using BFA, a widely used inhibitor of ER-golgi protein 

translocation, we have demonstrated the involvement of the golgi-dependent 

route in PDI externalization in both HepG2 cells and PHHs.  

PDI expression on the plasma membrane of various cell types including rat 

hepatocytes is becoming increasingly evident even though the protein had  

widely been thought to be ER-resident due to the presence of the C terminal 

ER retention KDEL sequence (333, 334, 336). Importantly, the membrane PDI 

is revealing vital roles in cGMP signalling in some of the cell types where it is 

expressed, including HUVECs, HASMCs and HMCs where plasma membrane 

localized PDI was reported to modulate natriuretic peptide (NP)-mediated 

generation of cGMP (333). In line with this, the data in chapters 3 and 4 

respectively were consistent with membrane PDI modulating ANP and Vit C 

elevation of cGMP and reduction of [Ca2+]i in HepG2 and HEK293 cells. Pan 

and colleagues had suggested that membrane PDI mediates this important 

role in cGMP signalling by colocalizing with the natriuretic peptide receptors 

type A and B (NPRA and NPRB) and by directly interacting with the NPRs and 

their ligands, consequently modulating their effects (333). Other studies have 

also demonstrated that PDI catalyses the isomerization of the disulphide 

bonds on cell surface proteins (372-375), and this interaction is thought to alter 
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the conformation of the proteins, consequently altering their functions (333). 

Taking together, we therefore hypothesized that our observation in chapters 3 

and 4 of PDI modulating ANP and Vit C effect on cGMP and Ca2+ signalling in 

HepG2 and HEK293 cells could be due to a possible expression and 

colocalization of PDI and NPRs on the membrane of these cells. We therefore 

sought to confirm the involvement of PDI in the ANP and Vit C-mediated 

generation of cGMP and attenuation of [Ca2+]i by investigating its presence 

and cellular localization/colocalization with NPRA (NPR type A) on the 

membrane of these cells. We also sought to investigate whether this applies 

to PHHs as this would then enable us to predict whether the PDI modulation 

of cellular cGMP and [Ca2+]i signal observed in HepG2 and HEK293 cells can 

be relevant to PHHs.  

Immunofluorescence was used to investigate the presence and cellular 

localization of PDI and NPRA in HepG2 cells, HEK293 cells and PHHs. The 

data revealed the expression of both cytoplasmic (in permeabilized cells) and 

membrane (in non-permeabilized cells) PDI and NPRA in HepG2 cells 

(Figures 5.1 and 5.2), HEK293 cells (Figures 5.5 and 5.6) and PHHs (Figures 

5.7 and 5.8). One important feature of the membrane PDI distribution pattern 

in HepG2 cells is its vesicular/patch-like appearance (Figure 5.1) compared to 

the majorly smooth ring-like distribution pattern of that of PHHs (Figure 5.7).  

In addition to the confirmation of the presence and cellular localization of PDI 

and NPRA in the three different cell types used in this study, 

immunofluorescence analysis also revealed that the two proteins colocalizes 

on the plasma membrane of HepG2 cells and PHHs (Figures 5.3 and 5.9 

respectively) with a Pearson correlation coefficient of 0.743 and 0.952 for 
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HepG2 and PHH respectively. This is in line with the previous studies 

mentioned earlier that reported a colocalization of membrane PDI and NPRA 

in HUVECs and PDI and NPRB in HMCs (333). However, we did not 

investigate the colocalization of the two proteins in HEK293 cells. The data 

confirms the PDI modulation of ANP and Vit C mediated cGMP elevation and 

[Ca2+]i reduction in HepG2 cells observed in chapters 3 and 4 respectively, in 

line with the submission of Pan and colleagues that the colocalization of 

membrane PDI and NPRs in HUVECs and HMCs allows the isomerase to 

physically interact with the NPRs and their NP ligands and thus to modulate 

their effects. One key observation made on the colocalization of these two 

proteins in HepG2 cells and PHHs was that the immunofluorescence data 

revealed a higher level of colocalization between the two proteins on PHH 

membrane compared to their colocalization on the HepG2 cell membrane as 

revealed by both the immunofluorescence image and the Zen colocalization 

analysis (Figure 5.3 Vs Figure 5.9). These data may suggest a higher degree 

of interaction between the membrane PDI and NPRA in PHHs compared to 

HepG2 cells. 

Despite the increasing evidence of membrane PDI expression in several cell 

types, its route of externalization is still not clear. Previous studies in other cell 

types, however, suggest that the externalization route is cell type dependent. 

In VSMCs, PDI externalization was shown to follow a non-classical golgi-

independent route, while in ECs, the externalization was reported to be partly 

via the golgi-dependent route and partly via a non-classical route (334, 335). 

Curiously, we sought to investigate whether PDI externalization in hepatocytes 

is supported by the classical ER-golgi translocation path using BFA. In line 
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with the observation in ECs (335), our data showed that incubation of HepG2 

cells and PHHs in BFA inhibited membrane PDI expression level in these cells. 

This is consistent with the notion that the ER-golgi protein translocation route 

is involved in PDI externalization in HepG2 cells and PHHs. However, we 

cannot ascertain how good a tool BFA alone is to make this distinction, hence, 

a further study with other agents that disrupts the ER-golgi protein 

translocation route such as monensin would help provide more information on 

the externalization route of PDI in hepatocytes. Unfortunately, resources did 

not let us explore this.  

In conclusion, we have been able to establish that HepG2 cells, HEK293 cells 

and PHHs express cytoplasmic and plasma membrane localized PDI and 

NPRA. We have also shown that membrane PDI at the level of 

immunofluorescence colocalizes with NPRA in HepG2 cells and PHHs, 

however, it would be useful to confirm the colocalization by co-

immunoprecipitation. PDI by colocalizing with NPRs, may physically interact 

with the receptors and their NP ligands, consequently modulating their cGMP 

generation effects (333). We believe that the PDI modulation of ANP effects in 

chapters 3 and 4 is due to its interaction with NPRA and ANP owing to its 

colocalization with NPRA in HepG2 cells. Since Vit C has been shown to 

elevate cGMP via the same pathway as ANP (329), we propose that the PDI 

modulation of Vit C effect on cGMP and Ca2+ signal observed in chapters 3 

and 4 respectively is likely due to its interaction with Vit C and with NPRA 

present on the HepG2 cell membrane. Investigation of the effect of BFA on 

PDI externalization revealed that BFA inhibits PDI externalization in HepG2 
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cells and PHHs, consistent with the notion that the ER-golgi protein 

translocation route is involved in PDI externalization in human hepatocytes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



233 
 

 

 

 

 

 

 

 

Chapter 6 

Exploring the hepatoprotective effect of vitamin C 

against Ca2+-mediated damage and the role of protein 

disulphide isomerase 
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6.1 Introduction 

Vitamin C (Vit C) is a potent antioxidant due to its ability to donate an electron 

to a substrate while itself becomes oxidised to a relatively stable ascorbyl 

radical. This way, Vit C reduces or scavenges 

physiologically/pathophysiologically relevant free radicals and reactive oxygen 

species (ROS). Studies have shown that Vit C protects liver and hepatocytes 

against heavy metals, drugs, insecticides, and other chemical-induced 

hepatotoxicity. Vit C protects rat hepatocytes against acetaminophen (317) 

and alcohol (320) induced toxicity, as well as rat liver against gasoline vapour-

induced damage (376). Vit C also protects mice liver against 5-fluorouracil-

induced hepatotoxicity (319). Traditionally, these hepatoprotective effects of 

Vit C have been attributed to its direct antioxidant power/free-radical 

scavenging ability, however, ER stress and perturbation of [Ca2+]i have 

emerged as important events in drug-induced liver injury (DILI) (203, 206, 

377). Acetaminophen induces liver damage through its reactive metabolite 

NAPQI which depletes glutathione present in cells and binds covalently to 

proteins, consequently leading to mitochondrial dysfunction, oxidative stress 

and hepatocyte death by necrosis (378). Diclofenac (DCLF) metabolism 

produces its reactive metabolite p-benzoquinoneimines, which can bind to ER 

proteins, resulting in ER stress and consequent elevation of [Ca2+]c (379-381). 

Interestingly, chelation of intracellular Ca2+ and inhibition of IP3R ameliorates 

DCLF-induced cytotoxicity in HepG2 cells (382). The points above suggest 

that, in addition to release of free radicals, Ca2+ perturbations are key events 

in drug-induced liver damage, suggesting that Vit C-mediated 
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hepatoprotection might not entirely be via its free radical-scavenging ability, 

but also by other mechanism(s) that involve attenuation of Ca2+ perturbations.   

Interestingly, evidence show that Vit C modulates cellular cGMP (329, 383) 

and Ca2+ (332) in a variety of cells and tissues and previous studies from our 

group have shown that elevated cellular cGMP protects rat hepatocytes 

against Ca2+-mediated damage (225). Unpublished data from our group also 

revealed that Vit C elevates cGMP, and through PKG, stimulates plasma 

membrane Ca2+ efflux, thereby decreasing [Ca2+]i and protecting rat 

hepatocytes against Ca2+-mediated cell death. In chapters 3 and 4 of this 

study, we showed that Vit C elevates cGMP in HepG2 cells and attenuates 

Tg-induced [Ca2+]i elevations.  

In addition to Vit C modulation of cellular cGMP and Ca2+ signal in HepG2 

cells, our data in chapters 3 and 4 also revealed that the mechanism was 

regulated by csPDI. Inhibition of PDI with Bac and RL90, which have 

previously been used to examine the function of csPDI (333), attenuated Vit 

C-induced elevations in cGMP (chapter 3) and reduction in [Ca2+]i (chapter 4). 

In confirmation of the above findings, our data in chapter 5 showed that PDI 

colocalizes with NPRA on the membrane of HepG2 cells and PHHs 
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6.2 Aims 

Since elevated cellular cGMP has been reported to protect rat hepatocytes 

against Ca2+-mediated cell death (225), in this chapter, we aimed to 

investigate whether the Vit C-induced elevations in cellular cGMP and 

reductions in [Ca2+]i observed in HepG2 cells (chapters 3 and 4) would result 

in the protection of the cells against the hepatotoxic actions of Ca2+ elevators. 

Also, our data in chapters 3, 4 and 5 were consistent with csPDI modulation 

of the cGMP elevation and [Ca2+]i reduction action of Vit C, demonstrated with 

the PDI inhibitors Bac and RL90. Therefore, in this chapter we aimed to 

investigate whether inhibiting PDI with these agents (Bac and RL90) would 

affect the cGMP-mediated hepatoprotective action of Vit C. In addition, we 

sought to see If the hepatoprotective actions of Vit C observed in HepG2 cells 

could be achieved in PHHs.  
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6.3 Results 

6.3.1 Determination of Tg Working Concentration on HepG2 

Cells 

To investigate whether Vit C protects hepatocytes against Ca2+-mediated cell 

death, we sought to treat HepG2 cells (our model hepatocyte cell line) with an 

agonist that elevates [Ca2+]c. We utilized Tg which elevates [Ca2+]c by 

irreversibly inhibiting the Sarco/endoplasmic reticulum Ca2+ ATPase 

(SERCA), thus inhibiting the sequestration of cytosolic Ca2+ into the ER. We 

first performed a concentration response experiment for Tg on the HepG2 cells 

in order to establish a concentration of Tg that would reduce the viability of 

HepG2 cells to less than 50% which we would then use as our working 

concentration. In order to do this, HepG2 cells were treated with different 

concentrations of Tg and incubated in a 5 % CO2 humidified incubator 

maintained at a temperature of 37oC for 24 hrs and 48 hrs. Following the 24 

and 48 hrs incubation, CellTitre Glo luminescent cell viability assay was 

performed on the Tg-treated cells. The assay determines the number of active 

viable cells based on quantitation of the ATP present, an indication of 

metabolically active cells. The data revealed that 4 µM Tg reduced the viability 

of HepG2 cells to 55.24 and 40.72 % at 24 hrs and 48 hrs respectively post 

Tg-treatment (Figure 6.1) which we then used as our Tg working concentration 

in the subsequent Tg-induced hepatotoxicity experiments.  
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Figure 6.1 Concentration-response of Tg on HepG2 cells. The bar graph 

summarises cell death induced by different concentrations of Tg on HepG2 

cells at 24 hrs (blue bars) and 48 hrs (red bars) post Tg-treatment. Data 

represent mean±SEM. n= 3 wells from one experiment performed in triplicate. 
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6.3.2 cGMP elevators (Vit C, ANP and SNP) abrogates Tg-

induced hepatotoxicity in HepG2 cells 

To determine whether Vit C protects hepatocytes from Tg-induced cell death, 

HepG2 cells were treated with 4 μM Tg in combination with or without Vit C 

(1.25 mM and 10 mM). Known cGMP elevators; ANP (200 nM and 600 nM) 

and SNP (100 µM and 200 µM) were used as positive controls. Following a 24 

hr and 48 hr incubation, a CellTitre-Glo luminescent cell viability assay was 

performed on the treated cells. The data revealed that 1.25 mM Vit C protected 

HepG2 cells against Tg-induced damage at the two different time points (24 

and 48 hrs), whereas 10 mM Vit C enhanced the hepatotoxic effect of Tg. SNP 

(100 µM and 200 µM) did not confer any protection on the HepG2 cells at the 

24-hr end point, but protection was observed at the 48-hr end point.  ANP (200 

nM and 600 nM) protected HepG2 cells from Tg-induced damage at the 24 hr 

end point, however, this protection was not observed at the 48 hr end point 

(Figure 6.2).  
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Figure 6.2. Vit C, ANP and SNP protects against Tg-induced HepG2 cell 

damage. (A) The bar graph summarises the hepatoprotective effect of 

different concentrations of Vit C, ANP and SNP against Tg-induced HepG2 

cell death at 24 hrs post treatment. (B) The bar graph summarises the 

hepatoprotective effect of different concentrations of Vit C, ANP and SNP 

against Tg-induced HepG2 cell death at 48 hrs post treatment. Control = 0.1 
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% DMSO vehicle. Data represent mean±SEM (n= 6 wells from 3 experiments 

performed in duplicate). (*p value ≤0.05, **p value ≤0.01). 
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6.3.3 Investigating the effect of Vit C, ANP and SNP on the 

viability of HepG2 cells 

Since we observed that 10 mM Vit C had additive hepatotoxic effect with Tg 

on HepG2 cells, we sought to investigate what the effect of treating the cells 

with Vit C, SNP and ANP alone (without Tg) would be. To do this, we treated 

HepG2 cells with the different concentrations of Vit C (1.25 mM and 10 mM), 

SNP (100 µM and 200 µM) and ANP (200 nM and 600 nM) that was used in 

the previous experiment. The data revealed that only 10 mM Vit C had a 

significant damaging effect on the HepG2 cells at the two endpoints, while the 

other agents had no significant effect on the cell viability (Figure 6.3).  
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Figure 6.3. The effect of Vit C, ANP and SNP on HepG2 cell viability. The 

bar graph summarises the effects of Vit C, ANP and SNP on HepG2 cell 

viability at 24 hrs (blue bars) and 48 hrs (red bars) post treatment. Data 

represent mean±SEM (n=6 wells from 3 experiments performed in duplicate). 

(**p value ≤0.01, ***p value ≤0.001). 
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6.3.4 Investigating the effect of lower concentrations of Vit C 

on the viability of HepG2 cells 

As we were keen on determining the lowest concentration of Vit C (as closest 

to the plasma Vit C concentration as possible) that would protect hepatocytes 

from Ca2+-mediated damage, we sought to investigate what effect lower 

concentrations of the vitamin would have on HepG2 cells and subsequently 

investigated whether these concentrations would confer any protection on the 

cells. We treated HepG2 cells with different concentrations of Vit C (from 0 nM 

to 1 mM) and then performed a CellTitre Glo luminescent cell viability assay 

at 24-hr and 48-hr endpoint. The data revealed that these concentrations of 

Vit C had no cytotoxic effect on HepG2 cells. Surprisingly, a higher viability 

was observed with the 250 µM Vit C-treated cells as compared to the control 

(Figure 6.4A). 

We then treated the HepG2 cells with Tg in combination with or without these 

lower Vit C concentrations. The data revealed that concentrations of Vit C from 

100 µM and above significantly protected HepG2 cells against the cytotoxic 

effect of Tg (Figure 6.4B).  
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Figure 6.4. The effect of various concentrations of Vit C on HepG2 cell 

viability (A) The bar graph summarises the effect of different concentrations 

of Vit C (50 µM to 1 mM) on basal HepG2 cell viability at 24 hrs (blue bars) 

and 48 hrs (red bars) post treatment. (B) The bar graph summarises the effect 

of the different concentrations of Vit C used in A (50 µM to 1 mM) on Tg-
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induced HepG2 cell damage at 24 hrs (blue bars) and 48 hrs (red bars) post 

treatment. DMSO control = 0.1 % DMSO vehicle. Data represent mean±SEM 

(n=6 wells from 3 experiments performed in duplicate). (*p value ≤0.05, **p 

value ≤0.01). 
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6.3.5 Vit C protection of HepG2 cell is cGMP-mediated 

We then sought to determine whether the Vit C-mediated protection against 

Tg-induced HepG2 cell damage was cGMP-mediated. To do this, we utilized 

Rp-8-br-cGMP; a cell permeant cGMP analogue that binds to cGMP-

dependent protein kinase (PKG) without activating it, thereby resulting in 

competitive inhibition of PKG and abrogating the PKG-dependent downstream 

effects of cGMP. The data revealed that Rp-8-Br-cGMP (50 µM) attenuated 

the cytoprotective effect of Vit C (1 mM) against Tg (4 µM)-induced HepG2 cell 

damage (Figure 6.5), consistent with the notion that the Vit C-mediated 

hepatoprotection against Tg-induced HepG2 cell damage is cGMP-mediated.  
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Figure 6.5. Vit C protection of HepG2 cells against Tg-induced cell 

damage is downregulated by the PKG inhibitor Rp-8-Br-cGMP.  The bar 

graph summarises the effect of Rp-8-Br-cGMP (50 µM) on Vit C-mediated 

protection of HepG2 cells against Tg-induced cell damage at 24 hrs (blue bars) 

and 48 hrs (red bars) post treatment. DMSO control = 0.1 % DMSO vehicle. 

Data represent mean±SEM (n=9 wells from 3 experiments performed in 

triplicate). (*p value ≤0.05, **p value ≤0.01). 
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6.3.6 Investigating the involvement of csPDI in the Vit C-

mediated HepG2 cell protection 

As our data in chapters 3 and 4 revealed that inhibition of PDI with RL90 and 

Bac attenuated Vit C-induced cGMP generation and reduction of [Ca2+]i, we 

sought to investigate the effect of PDI inhibition on Vit C-mediated HepG2 cell 

protection against Tg-induced cell death. We treated HepG2 cells with Tg in 

combination with or without Vit C ± Bac or RL90. In line with our hypothesis, 

Vit C-mediated HepG2 cell protection against Tg-induced hepatotoxicity was 

significantly inhibited with 20 µg/mL RL90. This data is consistent with the 

notion that inhibition of csPDI downregulates the hepatoprotective effect of Vit 

C against Tg-induced HepG2 cell damage. Surprisingly, Bac (2.5 mg/mL and 

5 mg/mL) enhanced Vit C-mediated HepG2 cell protection (Figure 6.6), 

contrary to our expectation. The effect of Bac was concentration-dependent. 
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Figure 6.6. Vit C protection of HepG2 cells is attenuated by RL90 but 

potentiated by Bac. (A) The bar graph summarises the effect of Bac (2.5 

mg/mL and 5 mg/mL) and RL90 (20 µg/mL) on the hepatoprotective action of 
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Vit C against Tg-induced HepG2 cell damage at 24 hrs post treatment. (B) The 

bar graph summarises the effect of Bac (2.5 mg/mL and 5 mg/mL) and RL90 

(20 µg/mL) on the hepatoprotective action of Vit C against Tg-induced HepG2 

cell damage at 48 hrs post treatment. Control = 0.1 % DMSO vehicle. Data 

represent mean±SEM (n=6 wells from 3 experiments performed in duplicate). 

(*p value ≤0.05, **p value ≤0.01). 
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6.3.7 Bac, but not RL90 protects HepG2 cells against Tg-

induced cell death 

Following our surprising observation that Bac potentiated the hepatoprotective 

effect of Vit C against Tg-induced HepG2 cell damage, while RL90 attenuated 

the protection, it became necessary to investigate the effect of these agents 

(Bac and RL90) alone on Tg-induced HepG2 cell damage. Interestingly, the 

data revealed that Bac (2.5 mg/mL and 5 mg/mL) protects HepG2 cells against 

Tg-induced cell damage, while RL90 (20 µg/mL) was of no apparent effect 

(Figure 6.7) 

 

 

 

 

 

 

 

 

 

 

 



253 
 

 

Figure 6.7. Effects of PDI inhibitors (Bac and RL90) on Tg-induced HepG2 

cell death. The bar graph summarises the effect of Bac (2.5 mg/mL and 5 

mg/mL) and RL90 (20 µg/mL) on Tg-induced HepG2 cell damage at 24 hrs 

(blue bars) and 48 hrs (red bars) post treatment. control = 0.1 % DMSO 

vehicle. Data represent mean±SEM (n=6 wells from 3 experiments performed 

in duplicate). (*p value ≤0.05, **p value ≤0.01). 
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6.3.8 Investigating whether the Vit C-mediated protection 

observed in HepG2 cells can be achieved in PHHs  

We have demonstrated that Vit C protects against Tg-induced HepG2 cell 

damage (Figures 6.2, 6.4B). Using Rp-8-Br-cGMP, RL90 and Bac, we have 

also investigated whether the protection is cGMP/PKG-mediated, as well as 

the role of PDI. The data obtained with Rp-8-Br-cGMP and RL90 is consistent 

with the notion that the observed Vit C-mediated HepG2 cell protection against 

Tg-induced damage is cGMP/PKG-mediated and is modulated by PDI, 

whereas Bac, another PDI inhibitor appeared to protect HepG2 cells 

independent of Vit C.   

Having made these observations in HepG2 cells, we then sought to investigate 

whether the Vit C-mediated protection against Tg-induced cell damage can be 

achieved in PHHs. To do this, we first performed a Tg concentration-response 

cytotoxicity assay on the PHHs. Our data revealed the concentration of Tg that 

reduced the viability of the cells to less than 50 % at the 2 different time points 

(24 and 48 hrs) as 4 µM (Figure 6.8), which we then used as our working 

concentration in our subsequent experiments. 
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Figure 6.8. Concentration-response effect of Tg on PHH viability. The bar 

graph summarises cell death induced by different concentrations of Tg on 

PHHs at 24 hrs (blue bars) and 48 hrs (red bars) post Tg-treatment. Control = 

0.1 % DMSO vehicle. Data represent mean±SEM (n=9 wells from 3 

experiments performed in triplicate). (*p value ≤0.05, **p value ≤0.01, ***p 

value ≤0.001). 
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6.3.9 Concentration-response effect of Vit C on PHHs 

Next, we sought to investigate whether Vit C would protect PHHs against Tg-

mediated cell death similar to what was observed in HepG2 cells. Since our 

data on HepG2 cells revealed that higher concentration of Vit C (10 mM) was 

toxic to the cells (Figures 6.2 and 6.3), here we examined the concentration-

response effect of Vit C on PHH survival. To do this, we treated the cells 

(PHHs) with different concentrations of Vit C (0 µM to 10 mM) and 

subsequently carried out a CellTitre Glo luminescent cell viability assay on the 

Vit C-treated cells at two different time points (24 and 48 hrs). The data 

revealed the safe concentration of Vit C that were not toxic to PHHs to be in 

the range of 50 µM to 500 µM. Concentrations of Vit C above 2 mM were toxic 

to PHHs at 24 and 48 hrs post treatment. At 24 hrs post treatment, 1 mM Vit 

C had no apparent cytotoxic effect on the cells, but at 48 hrs post-treatment, 

1 mM Vit C was hepatotoxic to the PHHs (Figure 6.9). 
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Figure 6.9. Concentration-response effect of Vit C on PHHs. The bar graph 

summarises the effect of different concentrations of Vit C on PHH viability at 

24 hrs (blue bars) and 48 hrs (red bars) post Vit C treatment. Data represent 

mean±SEM (n=9 wells from 3 experiments performed in triplicate). (*p value 

≤0.05, **p value ≤0.01, ***p value ≤0.001). 
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6.3.10 Vit C protects PHHs against Tg-induced cell damage 

We have demonstrated that vit C protects HepG2 cells against Tg-induced cell 

death. We have also provided evidence that the mechanism is cGMP-

mediated and is modulated by csPDI.  We then sought to determine whether 

a similar hepatoprotective action of Vit C can be achieved in PHHs as this 

would provide more relevant results that would give a better representation of 

what is happening in vivo. We treated PHHs with Tg in combination with or 

without varying Vit C concentrations (50 µM to 1 mM). The data revealed that 

these concentrations of Vit C attenuated Tg-induced hepatotoxicity on PHHs 

(Figure 6.10). The hepatoprotective effect of Vit C was concentration 

dependent.  
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Figure 6.10. Vit C protects PHHs against Tg-induced hepatotoxicity. (A) 

The bar graph summarises the hepatoprotective effect of various 

concentrations of Vit C (50 µM to 1 mM) on Tg-induced PHH death at 24 hrs 
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post treatment. (B) The bar graph summarises the hepatoprotective effect of 

various concentrations of Vit C (50 µM to 1 mM) on Tg-induced PHH death at 

48 hrs post treatment. Control = 0.1 % DMSO vehicle. Data represent 

mean±SEM (n=9 wells from 3 experiments performed in triplicate). (*p value 

≤0.05). 
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6.3.11 NAPQI concentration response effect on PHHs 

As acetaminophen is a major culprit in DILI and elevated  [Ca2+]i has been 

implicated in the acetaminophen-induced hepatotoxicity (203), we sought to 

investigate whether Vit C would atenuate acetaminophen-induced hepatocyte 

damage. In order to this this, we utilized N-acetyl-p-benzoquinone imine 

(NAPQI); a toxic metabolite released from the xenobiotic metabolism of 

acetaminophen. We first investigated the concentration-response for NAPQ-

induced toxicity on PHHs. Surprisingly, the data revealed that NAPQI even at 

a concentration of 200 µM had no toxic effect on PHHs (Figure 6.11). 

Unfortunately, We could not continue with the NAPQI experiments as time and 

resources did not let us investigate whether higher concentrations of NAPQI 

would be hepatotoxic.     
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Figure 6.11. Concentration-response for NAPQI-induced toxicity on 

PHHs. (A) The bar graph summarises the effect of various concentrations of 
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NAPQI on PHH viability at 24 hrs post treatment. (B) The bar graph 

summarises the effect of various concentrations of NAPQI on PHH viability at 

48 hrs post treatment. Control= 0.1 % DMSO. Data represent mean±SEM (n=9 

wells from 3 experiments performed in triplicate).  
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6.3.12 Vit C protects against ethanol (EtOH)-induced PHHs 

damage 

As alcohol is another major cause of liver damage, we curiously sought to 

investigate whether Vit C will confer any protection on human hepatocytes 

against alcohol-induced hepatotoxicity. To investigate this, we used ethanol 

(EtOH) to induce PHH damage. First, we performed a concentration-response 

experiment to determine the concentration of EtOH that would be toxic to 

PHHs. PHHs were treated with different concentrations of EtOH (0 mM to 800 

mM) and a CellTitre Glo luminescent cell viability assay was carried out at 24 

and 48 hrs post EtOH treatment. The data revealed that EtOH damaged PHHs 

in a concentration-dependent manner, and only 800 mM of EtOH was 

observed to reduce the viability of PHHs to less than 50 % (Figure 6.12). Upon 

treating PHHs with EtOH in combination with different concentrations of Vit C, 

the data showed that Vit C protected the cells against the hepatotoxic effect of 

EtOH and the effect of Vit C was concentration-dependent (Figure 6.13). 
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Figure 6.12. Concentration-response for EtOH-induced toxicity on PHHs. 

(A) The bar graph summarises cell death induced by different concentrations 

of EtOH on PHHs at 24 hrs post EtOH-treatment. (B) The bar graph 

summarises cell death induced by different concentrations of EtOH on PHHs 

at 48 hrs post EtOH-treatment. Data represent mean±SEM (n=9 wells from 3 

experiments performed in triplicate). (*p value ≤0.05, **p value ≤0.01, ***p 

value ≤0.001). 
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Figure 6.13. Vit C protects PHHs against EtOH-induced hepatotoxicity. 

(A) The bar graph summarises the hepatoprotective effect of various 
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concentrations of Vit C (50 µM to 1 mM) on EtOH-induced PHH damage at 24 

hrs post treatment. (B) The bar graph summarises the hepatoprotective effect 

of various concentrations of Vit C (50 µM to 1 mM) on EtOH-induced PHH 

damage at 48 hrs post treatment. Data represent mean±SEM (n=9 wells from 

3 experiments performed in triplicate). (*p value ≤0.05). 
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6.4 Discussion 

We present here that Vit C like ANP and SNP protects HepG2 cells against 

Tg-induced cell death, and this protection was cGMP/PKG-mediated. 

Importantly, this protection was also observed in PHHs. We also show for the 

first time in HepG2 cells that the Vit C-mediated hepatoprotection is 

downregulated in the presence of RL90 (an anti-PDI monoclonal antibody). 

Finally, we show in PHHs that Vit C protects against hepatotoxicity induced by 

high concentrations of EtOH.  

We assessed the ability of Vit C, ANP and SNP to protect human hepatocytes 

against Ca2+-mediated cell death by treating HepG2 cells with Tg alone and in 

combination with either Vit C or ANP or SNP. Tg elevates [Ca2+]c by blocking 

SERCA pumps, thereby inhibiting sequestration of Ca2+ into the ER and 

depleting ER [Ca2+] (210, 384). Our data revealed that Vit C, SNP and ANP 

protected HepG2 cells against Tg-induced cell death (Figure 6.2). This is in 

agreement with previous studies that investigated the hepatoprotective effect 

of ANP in rat hepatocytes (225). The authors demonstrated that ANP protects 

rat hepatocytes against Ca2+-mediated cell death by elevating cGMP, 

activating PKG and consequently lowering [Ca2+]i (225). Of note, though at 24 

hrs post treatment of HepG2 cells with Tg in combination with ANP, an 

apparent hepaprotective effect of ANP against the Tg-induced cytotoxicity was 

observed, this protection was however lost at 48 hrs post treatment (Figure 

6.2). The reason for this loss of ANP-mediated HepG2 cell protection at 48 hrs 

post treatment is not clear, but temperature-dependent degradation of the 

peptide is one likely explanation. Another likely explanation is proteolytic 
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degradation of ANP as natriuretic peptides including ANP can be degraded by 

extracellular proteases (385). SNP, on the other hand, had no apparent 

hepaprotective effect against Tg-induced HepG2 cell damage at the 24 hrs 

post treatment, but at 48 hrs post treatment, a significant protection was 

observed. 

An important observation made on the Vit C-mediated protection against Tg-

induced HepG2 cell damage was that, although concentrations of Vit C in the 

range of 100 µM to 1.25 mM protected HepG2 cells against Tg-induced 

cytotoxicity (Figures 6.2 and 6.5), higher concentration of Vit C (10 mM) had 

an additional cytotoxic action with Tg on the cells (Figure 6.2). Interestingly, 

on treating the HepG2 cells with different concentrations of Vit C alone in order 

to determine the Vit C concentration range beyond which undesirable 

hepatotoxic effects would result, our data showed that concentrations of Vit C 

less than or equal to (≤ ) 1.25 mM had no significant cytotoxic effect on HepG2 

cells (Figures 6.3 and 6.4), while 10 mM Vit C applied alone significantly 

damaged the HepG2 cells (Figure 6.3). The concentration of Vit C required to 

achieve HepG2 cell and PHH protection is consistent with the concentrations 

used in the previous studies that describe Vit C-mediated hepatocyte 

protection (322, 386).  

We also wanted to determine whether the Vit C protection of hepatocytes 

against Tg-induced cell death was linked to its cGMP elevation action and 

consequent activation of PKG and reduction of [Ca2+]i. To do this, we focused 

on obstructing the cGMP/PKG downstream mechanisms using the PKG 

inhibitor Rp-8-Br-cGMP. Previous studies have shown that ANP protection of 



271 
 

rat hepatocytes against Ca2+-mediated hepatotoxicity was cGMP/PKG-

mediated (225, 283). Unpublished data from our group also showed that Vit C 

mimics the hepatoprotective action of ANP by elevating cGMP, and through 

PKG, attenuates ATP and TLC-induced [Ca2+]i signal and consequently 

reducing ATP and TLC-induced cell death in rat hepatocytes. In line with this, 

our data revealed that the observed hepatoprotective effect of Vit C against 

Tg-induced cell death was abrogated by the PKG inhibitor Rp-8-Br-cGMP 

(Figure 6.5). Taking together, these data are consistent with the notion that Vit 

C-mediated protection of hepatocytes against the toxic effects of agents that 

elevates [Ca]i is mediated through the cGMP/PKG pathway, distinct from its 

direct free radical scavenging actions. The important similarities between our 

data on HepG2 cells and the previous unpublished data from our group on rat 

hepatocytes to some extent validate our findings.   

Next, we sought to examine whether the Vit C protection of HepG2 cells is 

modulated by csPDI. To do this, we utilized the PDI inhibitors RL90 and Bac, 

both of which have been used in previous studies to inhibit csPDI (333). We 

showed in chapter 3 that inhibition of csPDI with RL90 and Bac attenuated Vit 

C-induced elevation of cGMP, and in chapter 4 we showed that inhibition of 

csPDI with RL90 and Bac downregulated the ability of Vit C to attenuate [Ca2+]i 

signal. In the presence of RL90, the observed Vit C-mediated protection of 

HepG2 cells against Tg-induced cell damage was attenuated (Figure 6.6). This 

is consistent with inhibition of csPDI with RL90 attenuating Vit C elevation of 

cGMP, hence downregulating the ability of Vit C to reduce Tg-induced 

increases in [Ca2+]i and consequent Ca2+-mediated hepatotoxicity. 

Surprisingly, Bac had an opposite effect to that of RL90 on the HepG2 cells 
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viability. As our data from chapters 3 and 4 revealed that inhibition of csPDI 

with Bac downregulated the ability of Vit C to elevate cGMP and restored Tg-

induced elevations in [Ca2+]i even in the presence of Vit C, we therefore 

expected that Bac would attenuate the hepatoprotective effect of Vit C against 

Tg-induced cell damage. On the contrary, treating HepG2 cells with Tg, Vit C 

and Bac revealed that Bac potentiated the hepatoprotective effect of Vit C 

against the Tg-induced cell death (Figure 6.6). In quest of a possible 

explanation for the contradicting action of Bac on the cGMP, Ca2+ and HepG2 

cell viability experiments, especially the opposing action it mediated on the 

HepG2 cell viability experiments compared to that of RL90, we investigated 

the effect of Bac and RL90 alone on the Tg-induced hepatotoxicity. 

Interestingly, our data revealed that Bac alone protected HepG2 cells against 

Tg-induced cell death, while RL90 alone had no apparent effect on Tg-induced 

hepatotoxicity (Figure 6.7). Interestingly, Bac is known to inhibit proteases 

(387, 388), including caspases (389). Zhao and colleagues have previously 

reported that Bac inhibits the activity of caspase 3/7 and alleviates the 

apoptotic effects of different inducers of cell death in mouse embryonic 

fibroblasts (MEFs) (389). Though the authors attributed the cytoprotective 

effect of Bac to its inhibition of PDI catalytic activity, which in turn results in the 

inhibition of the Caspase 3/7 activity. Moreover, Bac is a mixture of 

polypeptides and a non-specific PDI inhibitor compared to RL90 which is a 

specific anti-PDI monoclonal antibody (390, 391), it is therefore conceivable 

that the RL90 results represent more reliable inhibition of csPDI.  

The observation that Bac protected HepG2 cells against Tg-induced damage, 

suggests a potential therapeutic role for it in hepatocyte/liver injury. However, 
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we must point out that the polypeptide antibiotic is toxic in some other 

tissues/organs. In particular, parenteral Bac application via intramuscular 

injection has been reported to be nephrotoxic (392).  

We have shown that Vit C through cGMP/PKG protects HepG2 cells against 

Tg-induced hepatotoxicity (Figures 6.2, 6.4B and 6.5). Also, preliminary data 

from our group revealed that Vit C through cGMP/PKG protects primary rat 

hepatocytes against ATP and TLC-induced hepatocyte damage. Whether this 

Vit C-mediated protection against the hepatotoxic effect of these Ca2+ 

elevating agents can be achieved in PHHs had not been determined. 

Therefore, we investigated this by treating PHHs with Tg in combination with 

or without Vit C. The data revealed that Vit C protects PHHs against Tg-

induced damage (Figure 6.10), in line with our observation in HepG2 cells. The 

consistency of the data in HepG2 cells and PHHs validates that Vit C have the 

ability to protect human hepatocytes against Tg-induced cell death. However, 

in the PHHs, we did not investigate whether the protection against Tg cytotoxic 

effect is cGMP/PKG-mediated.   

Since acetaminophen and alcohol constitute some of the major agents that 

can induce liver injury, we sought to investigate whether Vit C would protect 

against their hepatotoxic effects. To do this, we utilized NAPQI (the reactive 

metabolite of acetaminophen) and Ethanol (EtOH). First, a concentration 

response of both NAPQI and EtOH was performed on the PHHs. The data 

revealed that EtOH resulted in PHHs damage in a concentration-dependent 

fashion (Figure 6.12). Surprisingly, NAPQI had no apparent cytotoxic effect on 

PHHs even at a concentration of 200 µM and a prolonged incubation time of 
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48 hrs (Figure 6.11), though the same concentration of NAPQI had previously 

been demonstrated to induce some observable hepatotoxicity on PHHs (393). 

Human interindividual differences in susceptibility to drug toxicity (394) is a 

likely explanation for the dissimilarity in the hepatotoxicity potential of NAPQI. 

Our next plan was to investigate the effect of higher concentrations of NAPQI, 

in the range of 300 µM to 1 mM, on PHHs, unfortunately, time and resources 

did not permit us. On treating PHHs with EtOH in combination with or without 

Vit C, we observed that Vit C protected PHHs against EtOH-induced damage 

in a concentration-dependent manner (Figure 6.13). The Vit C protection 

against EtOH-induced hepatoxicity have been widely studied, and indeed 

most of the existing data support our observation that Vit C is hepatoprotective 

against EtOH effect (320, 321, 395). In addition, several lines of evidence also 

support the cytoprotective effect of Vit C against ethanol mediated cytotoxicity 

in various other cell types/organs such as in prenatal rat hippocampal neurons, 

postnatal rat brain and human brain glial cells (396-398), suggesting that the 

cytoprotective effect of Vit C against ethanol toxicity is not hepatocyte/liver 

specific.  

In conclusion, we have been able to show that Vit C is able to protect HepG2 

cells and PHHs against Tg-induced cell death. We have also shown that Vit C 

protects PHHs against EtOH-induced cell death. Though previous studies 

attribute the hepatoprotective action of Vit C to its direct antioxidant effect and 

ability to scavenge free radicals, in HepG2 cells, we have established that the 

Vit C protection against Tg-induced damage is mediated by cGMP/PKG. This 

suggests that the observed protection of Vit C against the hepatotoxic effect 

of Tg might be occurring via a mechanism dependent on reduction of [Ca2+]i 
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and distinct from its direct free radical scavenging ability. Finally, we were able 

to show that inhibition of PDI with RL90 attenuated Vit C protection of HepG2 

cells against Tg-induced cell death, consistent with csPDI modulating the 

ability of Vit C to protect hepatocytes against Tg-mediated damage. 
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Chapter 7 

General discussion and concluding remarks 
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I present here for the first time that Vitamin C (Vit C), like ANP and SNP 

stimulates cGMP generation (chapter 3) and attenuates elevations in [Ca2+]i 

(chapter 4) in HepG2 cells. Also, in HEK293 cells which we used as a non-

hepatocyte model, the data showed that Vit C elevates cGMP and reduces 

[Ca2+]i in HEK293 cells. Similar Vit C stimulation of cGMP and reduction of 

[Ca2+]i has been reported in PC12 cells (329) and Molt-3 human 

lymphoblastoid cells (332) respectively, and in primary rat hepatocytes 

(unpublished data from our group). Vit C and ANP, but not SNP-induced cGMP 

generation in HepG2 cells was attenuated by the PDI inhibitor bacitracin (Bac) 

and the anti-PDI specific monoclonal antibody RL90. These inhibitory effects 

of Bac and RL90 were also observed in HEK293 cells. These data suggest 

that inhibition of csPDI activity downregulates cGMP stimulation by ANP and 

Vit C and their consequent reduction of [Ca2+]i.  As a confirmation of these 

functional effects of csPDI, the immunofluorescence data revealed the 

presence of PDI on the plasma membrane of HepG2 and HEK293 cells, also 

called csPDI (chapter 5). Importantly, the csPDI is also expressed in PHHs, 

consistent with the notion that the PDI modulation of Vit C and ANP-induced 

cGMP generation can be achieved in PHHs, though we did not investigate this 

in this study. Furthermore, we show that Vit C, like ANP and SNP protects 

HepG2 cells against Tg-induced hepatotoxicity, and the Vit C-mediated 

HepG2 cell protection is mediated by PKG and modulated by PDI.  

Our observation that Vit C through PKG attenuated Tg-induced HepG2 cell 

damage suggests that the hepatoprotective effect of Vit C may be mediated 

via the attenuation of harmful [Ca2+]i elevations, mimicking the previously 

demonstrated actions of ANP (225), distinct from the direct free radical 
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scavenging property of the vitamin. Importantly, the Vit C-mediated 

hepatoprotection against Tg-induced damage was also observed in PHHs, 

and our data also demonstrates that the vitamin protects against EtOH-

induced PHH damage. 

The concentrations of Vit C required to stimulate cGMP generation, reduce  

[Ca2+]i and achieve hepatoprotection in this study is consistent with the 

concentrations that have been used by majority of the previous studies (322, 

329, 332, 399). Although the normal plasma concentration of Vit C is in the 

range of 50-60 µM (400, 401),  this can increase up to 100 µM following long-

term vegetarian diet and/or oral supplementation (400). Also, certain 

cells/tissues/organs can accumulate higher concentrations of Vit C in high 

micromolar range or even millimolar range (402-404) including human liver 

where Vit C concentration is in the range of 600-900 µM (401). Moreover, 

pharmacologic plasma Vit C concentrations  (0.3 to 15 mM) can be achieved 

by intravenous administration (405-408). These pharmacologic concentrations 

are not maintained but are cleared from the body within hrs by renal filtration 

and excretion (408, 409). Oral administration have been shown to yield only a 

maximum of about 220 µM plasma Vit C concentration due to pharmacokinetic 

control processes which can be bypassed by intravenous administration (408, 

410, 411). Treatment with such pharmacologic concentrations of Vit C has the 

potential to alleviate Ca2+-mediated hepatocyte damage.  

An important feature of the Vit C-mediated cGMP elevation, reduction of [Ca2+]i 

and hepatoprotection against the Tg-induced HepG2 cell damage is the 

involvement of PDI, assessed through the modulatory action of the PDI 

inhibitor Bac and the anti-PDI monoclonal antibody RL90 (Discussed in 
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chapters 3, 4 and 6 respectively) and the apparent colocalization of PDI and 

NPRA on hepatocyte membrane (chapter 5). Our observation that the two PDI 

inhibitors (Bac and RL90) modulates the ability of Vit C to protect against Tg-

induced HepG2 cell damage, suggest that PDI could be a potential therapeutic 

target in hepatocyte injury. Interestingly, similar emerging roles of PDI as a 

therapeutic target in various disease conditions have been demonstrated in 

previous studies (389, 412-414). For example, PDI has been implicated in the 

induction and progression of tumours/cancers in various organs such as 

kidney, ovary, lungs, brain and prostrate (415-417). Particularly, administration 

of the PDI inhibitor Bac and an anti-PDI monoclonal antibody were reportedly 

observed to inhibit the migration and invasion of glioma cells (413). In these 

disease states, PDI is thought to suppress apoptosis, resulting in tumour 

growth and metastasis. While the above studies demonstrate the anti-

apoptotic effects of PDI, other studies have revealed that PDI can also be pro-

apoptotic; inhibition of PDI catalytic activity reduces apoptosis induced by pro-

apoptotic stimuli in MEFs and PC12 cells (389, 418). Together, these studies 

suggest that PDI has both detrimental and protective effects in specific disease 

states, hence, we suggest that there is need for further validation of the roles 

of the isomerase in various disease conditions. In this study, we have 

investigated the role of PDI in Vit C-mediated hepatoprotection using HepG2 

cells, which is a liver cancer cell line, we therefore suggest that the mechanism 

should also be explored further in PHHs and possibly in primary human liver 

cancer cells as this would give a better representation of what is achievable in 

vivo, and also enable us to better understand the effect that would be mediated 
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by PDI both on normal (non-cancerous) hepatocytes and on cancerous 

hepatocytes as in the case of liver cancer patients.  

In addition to Vit C mediating cytoprotection as shown in this study and 

previous studies (317, 419), recent evidence suggests that it has anti-cancer 

property, suggesting the possibility of a dual therapeutic role for the vitamin; 

at pharmacologic concentrations, Vit C is reported to be cytotoxic to cancer 

cells, but not to normal cells (407, 409, 420-422). Chen and colleagues 

demonstrated that pharmacologic Vit C concentrations (0.3 mM to 10 mM) 

reduced the viability of three different human cancer cell lines (lymphoma; 

JLP-119, breast; MCF7 and breast; MB231)  and four mouse cancer cell lines 

(lung; KLN205, kidney; RAG, colon; CT26 and melanoma; B16) to less than 

50%, whereas, 20 mM Vit C had no effect on the viability of different normal 

human cells (breast; Hs587Bst, fibroblast; CCD34SK, lymphocyte and 

monocyte) (409). Also, High-dose parenteral Vit C enhanced the effect of 

conventional chemotherapeutic agents in ovarian cancer in mouse models but 

protected normal cells/tissues from chemotherapy-associated toxicity, 

including hepatobiliary toxicity in cancer patients (420). These studies clearly 

demonstrate that high concentrations of Vit C kill different cancer cells, but not 

normal cells. In comparison, our data revealed that different concentrations of 

Vit C had similar effects on the viability of both the liver cancer cell line (HepG2 

cells) and the normal liver cells (PHHs) used in this study. For example, 

concentrations of Vit C up to 1 mM protected both HepG2 cells and PHHs 

against Tg-induced cell death, and these concentrations did not cause any 

damage to either of the liver cell types, except for the 1 mM Vit C that was 

observed to be cytotoxic to the primary liver cells after 48 hrs incubation 
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(chapter 6). On the other hand, higher Vit C concentrations were toxic to both 

the HepG2 cells and PHHs. For example, 10 mM Vit C reduced the viability of 

both liver cell types to less than 50 %. The ability of Vit C to protect normal 

liver cells (PHHs) against the hepatotoxicity induced by harmful Ca2+ 

elevations, will be of enormous value. However, the observation that this 

protection is also achievable in HepG2 which is a liver cancer cell line raises 

some concern over its safety in liver cancer patients. Importantly, since Vit C 

protected HepG2 cells against the cytotoxic effect of Tg, it is necessary to 

investigate whether it would protect primary liver cancer cells against the toxic 

effects of chemotherapy, with a possible consequence of protecting liver 

cancer cells against cancer drugs in vivo, even though previous studies have 

demonstrated that it acts in synergy with chemotherapy in certain cancers 

such as ovarian cancer (420). We must reiterate that most of the mechanisms 

in this study have been demonstrated in HepG2 cells and less in normal PHHs, 

hence there is need to explore the mechanisms further in the PHHs as this 

would give a better representation of what would happen in vivo.  

Also, the ability of Vit C to elevate cellular cGMP and reduce [Ca2+]i could also 

have implications on other liver-related conditions such as portal hypertension 

and reduced blood pressure in the liver. Thrombosis is one of the causes of 

portal hypertension, in addition to liver cirrhosis, and increased platelet [Ca2+] 

is a major culprit in thrombus formation (423, 424). Data from this study and 

previous studies  have demonstrated that Vit C reduces [Ca2+]i, in HepG2 cells 

and HEK293 cells (chapter 4), PRH (unpublished study from our group), and 

Molt-3 human lymphoblastoid cells (332), we therefore speculate that the Vit 

C reduction of [Ca2+]i, could be achieved in other cell types like platelets and 
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vascular smooth muscle cells (VSMCs). Ability of Vit C to reduce [Ca2+]i in 

platelets might therefore have the benefit of attenuating Ca2+-dependent 

thrombus formation, which could then ameliorate thrombosis-induced portal 

hypertension and its associated complications such as gastrointestinal 

bleeding from varices. Another important factor is the possibility of Vit C 

stimulating cGMP in VSMCs present in the hepatic and portal vessels. In 

VSMCs, elevation in cGMP would activate PKG, consequently resulting in 

vasodilation (425), which may also help reduce blood pressure within the liver. 

Therefore, in addition to Vit C protecting against Ca2+-mediated cell death 

through the elevation of cGMP as demonstrated in this study, its cGMP 

stimulating ability might also have beneficial effect on blood pressure as 

described above. An investigation on the possibility of Vit C modulating cellular 

cGMP and Ca2+ in platelets and VSMCs is therefore of interest.  

Our current study has shown that Vit C elevates cGMP and reduces [Ca2+]i in 

HepG2 and HEK293 cells. Though the data does not demonstrate the exact 

mechanism of action, our observation that non-cell permeant inhibitors of PDI 

modulates the action of the vitamin, like that of ANP suggest that the Vit C-

mediated elevation of cGMP occurs at the cell surface via the ANP/pGC route. 

We therefore speculate that Vit C could be mediating its cGMP generation 

action and consequent [Ca2+]i reduction and hepatoprotective effect via two 

possible mechanistic pathways as listed below. 

1) First Speculation: That Vit C could be acting directly on the membrane 

GC-linked receptor on the cell surface, consequently activating the 

membrane bound guanylyl cyclase, stimulating cGMP generation and 

cGMP/PKG-mediated [Ca2+]i reduction and protection against Ca2+-
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mediated damage (Figure 7.1). Here we also adopt the hypothesis of 

Pan and group that csPDI by colocalizing with membrane GC-linked 

receptor, interacts with it and allosterically modulates cGMP generation 

action (333).  

 

Figure 7.1: First hypothesized mechanism of Vit C elevation of cGMP and 

reduction of [Ca2+]i in hepatocytes. Direct action of Vit C on NPR activates 

the cGMP generation action of the NPR-linked pGC, with an allosteric 

modification of the cGMP system by colocalized csPDI. The generated cGMP, 

through PKG, reduces [Ca2+]i and protects against Ca2+-mediated hepatocyte 

damage. Solid arrows without bars represent activation of the protein/channel 

the arrow is leading to, while arrows with red bar represent inhibition of the 

protein/channel the arrow is leading to.   
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2) Second Speculation: That Vit C through its redox property acts on and  

reduces csPDI. When reduced, csPDI interacts with colocalized GC-

linked receptors on the cell membrane, catalysing changes in the 

disulphide bonds in the receptor. This would consequently result in a 

conformational change of the receptor and subsequent transmembrane 

signal transduction and activation of GC. GC activation would in return 

lead to cGMP generation, reduction in [Ca2+]i and hepatoprotection 

(Figure 7.2).  

 

Figure 7.2: Second hypothesized mechanism of Vit C elevation of cGMP 

and reduction of [Ca2+]i in hepatocytes. Vit C acts on and reduces csPDI. 

Reduced csPDI then catalyses changes in the disulphide bonds present in the 

colocalized NPR which results in a transmembrane signal transduction and 
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activation of the NPR-linked pGC and consequent generation of cGMP and 

reduction of [Ca2+]i.  

Future experiments 

 

In this study, we have shown that Vit C modulates both cGMP and [Ca2+]i and  

protects hepatocytes against Ca2+-mediated damage. However, we could not 

establish the exact target on which the vitamin acts to mediate these effects. 

To address this, we have made two possible speculations as stated above. To 

investigate these speculations, one important experiment that could be 

performed would be to utilize a cell line that lack csPDI, like LLC-PK1 which 

has previously been shown to lack PDI expression (333) and investigate 

whether Vit C would be able to stimulate cGMP in them. Ability of Vit C to 

stimulate cGMP generation in such cell types would suggest that the vitamin 

is not acting on csPDI, but directly on the pGC-linked NPR (first speculation). 

However, if Vit C does not elevate the cGMP level in such cell types that lack 

PDI, then that would suggest that the vitamin is acting on the isomerase, 

possibly by reducing it, which in turn catalyse changes in the colocalized pGC-

linked NPRA, thus causing an activation of the pGC and subsequent cGMP 

generation (second speculation).  

One key limitation of this study is that most of the mechanisms were 

investigated in the liver cancer cell line HepG2 with limited work carried out on 

PHHs. For example, Vit C elevation of cGMP and reduction of [Ca2+]i was 

investigated only in HepG2 cells. Also, though we were able to establish that 

Vit C protects against Tg-induced hepatotoxicity in PHHs, the involvement of 
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cGMP/PKG and PDI in the protection was only investigated in HepG2 cells. 

Hence, it is important to further explore these  in PHHs.  

Other important experiments that could be performed in order to further 

improve the validity of this study include:  

1) Since our current data shows that Vit C protects against Tg-induced 

hepatocyte damage, it would be useful to determine whether these 

protections can be achieved against other consumable Ca2+ elevators 

such as bile salts.  

2) In this study, we have performed the cell viability assay by measuring 

the amount of ATP present in the cells using CellTitre Glo luminescent 

cell viability assay. Repeating these experiments using another assay 

such as propidium iodide staining would also help in improving the 

validity of our findings.  

3) Here we have used Rp-8-Br-cGMP to investigate the involvement of 

cGMP/PKG in the Vit C protection against Tg-induced damage, but 

there is need to also utilize other inhibitors of PKG such as Rp-8-pCPT-

cGMPS to further validate this experiment. 

In conclusion, I have revealed that Vit C elevates cellular cGMP, reduces 

[Ca2+]i, and mediates hepatoprotection in HepG2 cells. With the aid of the PDI 

inhibitor Bac and the anti-PDI monoclonal antibody, I have also demonstrated 

that these functions of Vit C are modulated by PDI. As the intact membrane of 

living cells are generally impermeable to large proteins including antibodies 

(342, 343), our observation that RL90 which is an anti-PDI monoclonal 

antibody and a specific inhibitor of PDI attenuates these actions of Vit C, 
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including cGMP elevation, reduction of [Ca2+]i, and hepatoprotection, 

particularly suggests the involvement of csPDI in these mechanisms. Also, the 

observation in chapter 3 that Bac and RL90 attenuated ANP-mediated cGMP 

elevation, like that of Vit C, but had no effect on SNP-mediated cGMP 

elevation is consistent with the notion that Vit C and ANP mediates their cGMP 

elevating action via the same route; i.e., the ANP/pGC pathway, as previously 

proposed by Chen and colleagues (329). This also implicates csPDI and not 

ER PDI in the mechanism. Our study therefore suggests a link between Vit C, 

cGMP, csPDI, intracellular Ca2+ signal and hepatoprotection and identifies a 

mechanism via which Vit C mediates hepatoprotection distinct from its direct 

free radical scavenging ability. These findings highlight pGC and csPDI as 

promising therapeutic targets to protect hepatocytes and other cell types 

against injury induced by harmful Ca2+ elevations. Since these mechanisms 

have been investigated in HepG2 cells which is a liver cancer cell line, with 

limited data in PHHs, I therefore suggest that these mechanisms should be 

further explored in PHHs and even in primary liver cancer cells as this would 

help verify the utility of this approach being achieved in vivo, and also the 

safety of administering Vit C and modulators of PDI as therapeutic agents in 

liver cancer patients.  
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