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SUMMARY

Neutrophils are short-lived cells that play important
roles in both health and disease. Neutrophils and
monocytes originate from the granulocyte monocyte
progenitor (GMP) in bone marrow; however, unipo-
tent neutrophil progenitors are not well defined.
Here, we use cytometry by time of flight (CyTOF)
and single-cell RNA sequencing (scRNA-seq) meth-
odologies to identify a committed unipotent early-
stage neutrophil progenitor (NeP) in adult mouse
bone marrow. Importantly, we found a similar unipo-
tent NeP (hNeP) in human bone marrow. Both NeP
and hNeP generate only neutrophils. NeP and hNeP
both significantly increase tumor growth when trans-
ferred into murine cancer models, including a hu-
manized mouse model. hNeP are present in the
blood of treatment-naive melanoma patients but
not of healthy subjects. hNeP can be readily identi-
fied by flow cytometry and could be used as a
biomarker for early cancer discovery. Understanding
the biology of hNeP should allow the development of
new therapeutic targets for neutrophil-related dis-
eases, including cancer.

INTRODUCTION

Neutrophils are themostabundantpopulationof circulatingblood

leukocytes. With many emerging studies suggesting critical roles

of neutrophils in chronic inflammatorydiseases, includingcancer,

a complete understanding of neutrophil development is impera-

tive (Huang et al., 2016; Sagiv et al., 2015; Soehnlein et al.,

2017; Summers et al., 2010). Neutrophils originate in the bone

marrow (BM). In murine BM, Lin�CD117 (c-kit)+ (LK) cells include

Lin�CD117+Ly6A/E (Sca1)+CD127� (LSK) cells that give rise to all

hematopoietic cells, Lin�CD117loLy6A/E+CD127+ cells that

contain the common lymphoid progenitor (CLP) that give rise to

all lymphoid lineages, and Lin� CD117+Ly6A/E� that selectively
Cell Re
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generate onlymyeloid lineages (Akashi et al., 2000). In this classic

hematopoietic paradigm, the Lin�CD117+ Ly6A/E� population is

divided into commonmyeloid progenitor (CMP), megakaryocyte-

erythroidprogenitor (MEP), andgranulocytemonocyteprogenitor

(GMP) by differential expression of surface markers CD16/32

(FcRgIII/II) and CD34 (Akashi et al., 2000). CMPs are the multipo-

tent progenitors for MEP and GMP, whereas GMP have lost

erythroid potency and thus are restricted to generate granulocyte

and monocyte lineages (Manz et al., 2002).

High-dimensional mass cytometry (also known as cytometry

by time of flight [CyTOF]) has become a powerful tool to investi-

gate the hematopoietic system (Becher et al., 2014; Bendall

et al., 2011; Samusik et al., 2016). Notably, with the development

of multi-channel flow cytometry, mass cytometry and single-cell

RNA sequencing (scRNA-seq), new markers have allowed the

discovery of several new hematopoietic progenitors, including

a CD41+ megakaryocyte progenitor (MkP), a Ter119+ erythroid

precursor (Pro Ery) (Pronk et al., 2007), and the Ly6C+ committed

monocyte progenitor (cMoP) (Hettinger et al., 2013). The hetero-

geneity of GMP has been suggested in many studies. In mouse,

single-cell analysis of gene expression patterns revealed that

GMP already have restricted lineage potential toward mono-

cytes or neutrophils (Buenrostro et al., 2018; Olsson et al.,

2016). Gene expression analysis of CMP and GMP at the single-

cell level showed heterogeneity in these progenitors (Paul et al.,

2015), suggesting that classification of these subsets using

solely CD34 and CD16/32 was not sufficient. In agreement

with gene expression analysis, additional heterogeneity has

been discovered in Lin� CD117+ Ly6A/E� cells with the use of

additional surface markers. For example, CD105, CD150,

CD41, and CD71 divide Lin� CD117+ Ly6A/E� cells into pre-

MegE, preCFU-E, CFU-E, MkP, preGM, GMP, and Pro Ery

(Pronk et al., 2007). CX3CR1+ CD115+ CD135+ monocyte/DC

progenitors (MDP) were also found to partially overlap with the

classic CMP/GMP (Auffray et al., 2009). GMP heterogeneity

has also been suggested in humans (Buenrostro et al., 2018)

with similar developmental-staged transcriptional factors (such

as IRF8) in mouse (Olsson et al., 2016). Comparable with GMP,

myeloblasts are known to have both granulocytic andmonocytic

potentials (Borregaard, 2010). The use of CD64 identified a
ports 24, 2329–2341, August 28, 2018 ª 2018 The Author(s). 2329
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human CD34+CD64hi monocyte progenitor within human GMPs

(Kawamura et al., 2017).

In mouse, several monocyte progenitors (Fogg et al., 2006;

Hettinger et al., 2013; Liu et al., 2009; Satoh et al., 2017) and

granulocyte progenitors, including eosinophil progenitors (Mori

et al., 2009; Zhang et al., 2004) and basophil/mast cell progeni-

tors (Arinobu et al., 2005; Qi et al., 2013), have been identified.

Several immature neutrophil precursors have also been identi-

fied (Fiedler and Brunner, 2012; Kim et al., 2017; Satake et al.,

2012; Sturge et al., 2015; Yáñez et al., 2015). However, these

precursors are late-stage precursors with neutrophil potency

(Kim et al., 2017; Sturge et al., 2015), and several show multi-

or oligo-potency (Satake et al., 2012; Yáñez et al., 2015).

Recently, a proliferative neutrophil precursor was identified in

mouse BM that generates neutrophils after intra-BM adoptive

transfer (Evrard et al., 2018). However, the long-term potency

of this precursor was not tested. Thus, several gaps in under-

standing the complete neutrophil-lineage hierarchy from CMP

to mature neutrophils remain.

In humans, the search for a unipotent neutrophil progenitor

(hNeP) has been ongoing for decades (Bainton et al., 1971;

Elghetany et al., 2004; Pillay et al., 2010; Terstappen and Loken,

1990). Human CMP and GMP express positive levels of CD34

and CD38 andmirror themurine CMP/GMP paradigm in myeloid

cell production (Doulatov et al., 2010; Edvardsson et al., 2006;

Manz et al., 2002). A missing link in human neutrophil develop-

ment is the identification of NePs that are downstream of GMP

but upstream of short-term neutrophil precursors. Recently,

mass cytometry analysis of human BM neutrophils indicates

that human neutrophils are heterogeneous and contain a

CD117�CD34�CD49d+CD101� subset termed preNeu (Evrard

et al., 2018). This subset was suggested to be a counterpart of

mouse neutrophil precursors, but unfortunately the neutrophil

potential of this possible precursor was not evaluated.

Here, we decided to take advantage of mass cytometry and

viSNE (visualization of t-distributed stochastic neighbor embed-

ding) automated mapping to identify and study new NePs in

mouse and human BM.

RESULTS

Automated Single-Cell Analysis of Lin� CD117+ Ly6A/E�

Cells Identifies a Distinct NeP Population
We analyzed mouse BM using mass cytometry with the purpose

of identifying all NePs. We developed an antibody panel, shown

in Table S1, that measures 39 parameters simultaneously and

used it to perform CyTOF mass cytometry on healthy mouse

BM. We used viSNE automated analysis to study CD45+ BM

cells and found a portion of CD117(c-Kit)+ cells that had close

relation to Ly6G+ cells (Figure S1A). Interestingly, CD34+ GMP

clustered with different populations, including the Ly6G-

enriched population and the CD115-enriched population (Fig-

ure S1B). These results agree with the reported observation

that CD115+ MDP overlaps with CMP/GMP (Auffray et al.,

2009) and, more important, suggest that the GMP fraction has

NeP potential. We then focused exclusively on myeloid cells by

examining the Lin� CD117+ Ly6A/E� fraction of LK cells, which

contains all myeloid cell progenitors (Figure S1C). Using viSNE
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automated unbiased analysis, we found five distinct clusters of

cells in Lin� CD117+ Ly6A/E� cells, which we labeled as clusters

#A–#E in Figure 1A. Each of these clusters expresses distinctive

biomarkers that uniquely define specific myeloid cell types.

Siglec F (cluster #A) marks eosinophils, CD115 (cluster #B)

marks monocytes, Ly6G (cluster #C) marks neutrophils, FcεRIa

(cluster #D) marks mast cells and basophils, and CD16/32 and

CD34 (cluster #E) marks both CMP and GMP. The neutrophil-

specific antigen, Ly6G, is observed in a continuum from negative

to high expression in cluster #C, suggesting the presence of NeP

and precursors within this cluster (Kim et al., 2017; Satake et al.,

2012; Sturge et al., 2015; Yáñez et al., 2015).We confirmed these

results using conventional flow cytometry (Figures S2A and

S2B).

Because we were interested in identifying NePs, we focused

our efforts on further analysis of cluster #C, which showed a con-

tinuum of Ly6G expression. Using PhenoGraph, a second unbi-

ased clustering algorithm (Chen et al., 2016; Levine et al., 2015),

we found that cluster #C consists of two major populations that

display a continuum of Ly6G, Ly6C, and Ly6B expression (Fig-

ure 1B). These Ly6 proteins are highly expressed in mature neu-

trophils and their precursors (Kim et al., 2017; Lee et al., 2013).

We developed a conventional flow cytometry gating strategy,

shown in Figure 1C, to isolate with purity cluster #C cells

(Lin� CD117+ Ly6A/E� Siglec F� FcεRIa� CD16/32+ Ly6B+

CD162lo CD48lo Ly6Clo CD115�) from BM. This cell population,

when backgated onto a viSNE map, fell exclusively into cluster

#C (Figure 1C).

ScRNA-Seq Analysis of Cluster #C Reveals Two Major
Subpopulations, #C1 and #C2
To closely investigate cluster #C, we sorted cluster #C cells for

scRNA-seq.We found two primary subpopulations within cluster

#C, #C1 and #C2 (Figure 2A), by scRNA-seq. Notably, #C1

shows low Ly6g expression at the mRNA level (Figure 2A), which

confirms our low Ly6G protein expression in this cluster found by

mass cytometry (Figure 1B).

Using these data, we were able to design a flow cytometry

panel (Figure 2B) that allowed us to isolate both #C1 and #C2

as well as other Lin� CD117+ Ly6A/E� cell fractions for further

detailed study. Cluster #C1 is Lin� CD117+ Ly6A/E� Siglec

F� FcεRIa� CD16/32+ Ly6B+ CD11a+ (LFA1a+) CD162lo CD48lo

Ly6Clo CD115� Ly6G�, and cluster #C2 is Lin�CD117+ Ly6A/E�

Siglec F� FcεRIa� CD16/32+ Ly6B+ CD11a+ (LFA1a+) Ly6G+.

On the basis of surface marker expression patterns, we predict

#C1 and #C2 as NeP candidates.

As identified in Figure 1A, cluster #E is enriched with CD16/

32�CD34+ CMPs, and cluster #B is enrichedwith CD115+mono-

cyte progenitors. We performed bulk RNA-seq for transcriptome

analysis on #C1 and #C2 and analyzed #E and #B cells as control

groups. BM neutrophils (BM Neuts) containing immature and

mature neutrophils were also sorted from the same donors for

analysis. We found that #C1 expresses high levels of GMP

genes, including Egr1, Fosb, Jun, Gata2, and Gata1, as well as

genes that are shown to be critical for neutrophil development,

including Gfi1, Cebpa, Cebpe, Per3, and Ets1 (Avellino et al.,

2016; Buenrostro et al., 2018; Evrard et al., 2018; Horman

et al., 2009; Olsson et al., 2016; Radomska et al., 1998; Zhang



Figure 1. Automated Single-Cell Analysis of

Lin� CD117+ Ly6A/E� Cells in Bone Marrow

Identifies a Distinct Neutrophil Progenitor

Population

(A) ViSNE defines a largest cluster #C of the five

subsets in Lin� CD117+ Ly6A/E� cells from murine

BM using mass cytometry (CyTOF). BM cells iso-

lated from C57BL/6J donors were stained with the

antibody panel shown in Table S1. ViSNE maps of

Lin� CD117+ Ly6A/E� cells are shown as dot

overlays to display the five automated clusters

(#A–#E). Ly6G expression pattern is shown on

viSNE map of Lin� CD117+ Ly6A/E� cells as

spectrum colored dots. The expression patterns of

the indicated markers are shown as histogram

overlays of each cluster. Results are representative

of two independent experiments (n = 6 mice each).

(See CyTOF panel in Table S1, CyTOF gating

strategy in Figure S1, and flow cytometry gating

strategy in Figure S2.)

(B) PhenoGraph defines two subpopulations of

cluster #C using mass cytometry (CyTOF). Left:

two PhenoGraph meta-clusters present two

distinct populations (1, 2) in cluster #C. Right:

expression profile of Ly6G, Ly6C, and Ly6B for

randomly selected cells in each cluster is visual-

ized on the first component of a nonlinear dimen-

sionality reduction isomap (the regression black

line estimated using the generalized linear model is

added for each marker).

(C) FACS gating strategy for cluster #C using mass

cytometry (CyTOF). Manually gated cluster #C is

backgated to automated viSNE map for validation.

(See flow cytometry gating strategy in Figure S2C.)
et al., 1997). Genes that are critical for monocyte development,

such as Irf8 (Olsson et al., 2016; Yáñez et al., 2015), on the other

hand, show low expression in #C1 and #C2. Interestingly, #C2

cells have lost expression of the GMP gene signature, while

the neutrophil gene signature increased in #C2 cells to levels

comparable with those of BM Neuts.

We next wanted to focus on the hierarchical structure of #C1

and #C2 within the neutrophil developmental lineage. Fre-

quencies of #C1 are lowest in BM, followed by #C2 (Figure S3A).

Comparison of #C1 and #C2 by flow cytometry showed a

gradient of Ly6G expression from negative in #C1 to intermedi-
Cell Rep
ate in #C2 to high in mature BM Neuts,

whereas CXCR2 is expressed only by

terminally differentiated BM Neuts (Fig-

ure S3A). Reconstruction in three dimen-

sions of the nuclear architecture of #C1

and #C2 cells suggests more stem cell-

like morphology than that of mature BM

Neuts and blood neutrophils (blood

Neuts) (Figure S3B). #C1 has more stem

cell-like nuclear morphology and higher

Ki67 expression and nuclear integration

(Figures 2C and S3C) than does #C2,

BM Neuts, and blood Neuts, suggesting

an early stage of development for #C1.
These data suggest that #C1 lies earlier in the neutrophil devel-

opmental hierarchy and may partially overlap with GMP from

the classic myeloid progenitor paradigm. #C2, however, may

represent a transitional intermediate progenitor between #C1

and terminally differentiated neutrophils in mouse BM. Thus,

we then decided to focus on #C1 cells as the candidate for the

early-stage committed NeP.

The selective neutrophil potency of #C1 cells was first tested

by examining in vitro methylcellulose colony-forming unit for-

mation (Figure 2E). All donor cell fractions were sorted using

fluorescence-activated cell sorting (FACS) using the gating
orts 24, 2329–2341, August 28, 2018 2331



Figure 2. ScRNA-Seq Analysis of Cluster #C

Reveals Two Major Subpopulations, #C1

and #C2

(A) Single-cell RNA sequencing (scRNA-seq) un-

covers the heterogeneity of cluster #C. Twenty

thousand cluster #C cells were sorted from

healthy wild-type mouse BM for scRNA-seq

assay (three biological triplicates, two technical

replicates). FACS strategies for cluster #C are

shown in Figure 1C using mass cytometry and

Figure S2C using flow cytometry. Left: t-distrib-

uted stochastic neighbor embedding (t-SNE) two-

dimensional (2D) plots, obtained applying Seurat

scRNA-seq analysis R package for the scRNA-

seq data, showing two main clusters corre-

sponding to subsets of cluster #C (n = 16,268

cells; #C1, 2,149 cells [green]; #C2, 14,089 cells

[salmon]). Right: heatmap shows top 40 differen-

tially expressed genes in each cluster. Black box

highlights Ly6G expression. Log2 fold change of

each gene expression is relative to the entire

dataset.

(B) FACS gating strategy for clusters #A and #D,

#B, #C1, #C2, and #E using mass cytometry

(CyTOF). Manually gated clusters are backgated

to automated viSNE map for validation. (See flow

cytometry gating strategy in Figure S3D.)

(C) RNA-seq shows upregulation of important

neutrophil lineage-decision genes in #C1 and

#C2. Clusters #C1, #C2, and #E and BM Neuts

were sorted from healthy wild-type mice BM for

RNA-seq. FACS strategies for these cell types are

shown in Figure 2B using mass cytometry and

Figure S3D using flow cytometry. Heatmap

showing expression of important development

transcriptional factors for myeloid cell develop-

ment in sorted populations by RNA-seq. Black

box highlights expression of important neutrophil

lineage-decision genes (bold) in #C1 and #C2.

Cebpa (green) expression is higher in #C1

compared with #C2. Cebpe (orange) expression

is lower in #C1 compared with #C2. Z score

normalization from CPM (counts per million)

expression level (log2 scale) was quantified from

RNA-seq.

(D) Confocal microscopy detected Ki67 localiza-

tion within the nuclei in clusters #C1and #C2.

#C1, #C2, BM Neuts, and blood Neuts were

sorted and stained with antibodies to Ki67 (red),

and DNA was labeled with Hoechst (blue). FACS

strategies for these cell types are shown in Figure 2B using mass cytometry and Figure S3D using flow cytometry. IgG-stained cells served as a negative

control. Scale bar, 5 mm.

(E) Clusters #C1 and #C2 cells produce only neutrophils in vitro. Clusters #C1, #C2, #B (CD115+), #A, #D, and #E cells were sorted from wild-type mice

and diluted to single-cell suspensions. FACS strategies for these cell types are shown in Figure 2B using mass cytometry and Figure S3D using flow

cytometry. Single cells of each cluster were cultured in methylcellulose-based medium. Numbers of colonies generated from the indicated progenitors were

counted at day 10 of culture. Contingency plot shows mean value of six independent experiments (each contains three biological triplicates). (See also

Figure S3.)
strategy described in Figure 2B. CD115+ CD117+ cells are

monocyte progenitors and are located within cluster #B, so

the CD115+ portion of cluster #B was sorted as monocyte pro-

genitors (Figure S4A). Clusters #A, #D, and #E were collected

together as a control group. As shown in Figure 2E, #C1 single

cells generate colony-forming unit-granulocyte (CFU-G)

in methylcellulose-based medium with 100% purity, but not
2332 Cell Reports 24, 2329–2341, August 28, 2018
colony-forming unit-macrophage (CFU-M) or colony-forming

unit-granulocyte, macrophage (CFU-GM). Similar results were

also observed with #C2. Cluster #B (CD115+) cells were able

to generate CFU-M only, as expected. The #A#D#E control

group generated all three types of colonies. These results sug-

gest that #C1 cells have restricted granulocyte potency in vitro

that lasts at least 10 days.



Figure 3. Clusters #C1 and #C2 Cells Are

Committed Hierarchical Unipotent Progeni-

tors for Neutrophil Production In Vivo

(A) Scheme showing the experimental procedure.

Clusters #C1 and #C2 were sorted from CD45.2

donors and adoptively transferred into irradiated

wild-type CD45.1 recipient mice. Clusters #B

(CD115+), #A, #D, and #E cells were sorted from

the same donors for this experiment and served as

controls. FACS strategies for these cell types are

shown in Figure 2B using mass cytometry and

Figure S3D using flow cytometry. Each recipient

group includes 25 mice. Each recipient received

50,000 donor cells. After the transfer, peripheral

blood was collected for flow cytometry of CD45.2+

cells from five recipients of each group at days (D)

5, 7, 12, 14, and 28. CD45.2+ cells were evaluated

for the donor cell-derived monocytes (CD115+),

neutrophils (Ly6G+), eosinophils (Siglec F+), and

basophils (FcεRIa+). N = 5 mice for each time point

in each group. (See FACS strategy in Figures S3D

and S4A.)

(B) Clusters #C1 and #C2 cells produce only neu-

trophils in vivo. Representative plots show the

appearance of neutrophils and monocytes in each

recipient group at the time points indicated. Re-

sults are representative of two independent ex-

periments. (See quantification in Figure S4.)

(C) Cluster #C1 produces #C2 cells in vivo. #C1

cells were sorted from CD45.2 donors and adop-

tively transferred into irradiated wild-type CD45.1

recipient mice. FACS strategies for #C1 cells are

shown in Figure 2B using mass cytometry and

Figure S3D using flow cytometry. After transfer,

BM was collected for flow cytometry of CD45.2+

cells from three recipients of each group at days

(D) 3, 5, 7, and 14. CD117+CD45.2+ cells were

evaluated for the donor #C1 homing to bone

marrow and differentiation into #C2 cells. Expres-

sion in recipients of #C1 and #C2 cells are

identified by the panel shown in Figures 2B and

S3D and overlaid for display. #C2 differentiation

into #C2 cells are shown as the ratio of #C2 to #C1

(R#C2/#C1). (See also Figure S4.)
Cluster #C1 Is the Early-Stage Committed Unipotent
NeP In Vivo

We next analyzed the function of #C1 in generating neutrophils

in vivo using adoptive transfer approaches. The experimental

scheme is shown in Figure 3A. The cell populations described

in Figure 2E were FACS-sorted from the same donor mice.

Each of the four cell groups was adoptively transferred into a

group of sub-lethally irradiated CD45.1 recipient mice. Blood

from each group was examined at days 5, 7, 12, 14, and 28

by flow cytometry for appearance of donor-derived progeny.

The flow cytometry gating for all donor cell progeny is shown

in representative plots of the #A#D#E recipient group in Fig-

ure 3A (right). Donor cells (CD45.2+) appeared in blood as early
Cell Rep
as day 5 and peaked at day 14 (Fig-

ure 3A, right, and Figure S4B, left). Donor

cells were analyzed for expression of key

markers for myeloid progenies: mono-
cytes (Mo, CD115+), neutrophils (Ne, Ly6G+), eosinophils (Eo,

Siglec F+), or basophils (Ba, FcεRIa+).

Donor-derived neutrophils appeared in recipient blood at

day 5 and day 7 post-adoptive transfer in the groups reconsti-

tuted with #C1 (green) and #C2 (orange), suggesting neutro-

phil potency in both populations and slower kinetics of the

#C1 cells in producing neutrophils (Figure 3B). NePs from

these progenitors constitute nearly 100% of CD45.2+ donor

cell-derived leukocytes in the #C1 recipients (Figure S4B,

middle). In the control groups, #B (CD115+) produced only

monocytes and did not produce neutrophils, and #A#D#E

produced both neutrophils and monocytes (Figures 3B and

S4B, red and black). These results illustrate the restricted
orts 24, 2329–2341, August 28, 2018 2333



Figure 4. Cluster #C1NeP and #C2Cells Are

Increased in BM with Tumor and Promote

Tumor Growth In Vivo

(A) Cluster #C1 NeP and #C2 cells are increased in

BMof tumor-bearingmice. Five hundred thousand

B16F10 melanoma cells were s.c. injected into the

rear flank of wild-type recipient mice for primary

tumor growth. The frequencies of clusters #E, #B

(CD115+), #C1, and #C2were detected in BM from

tumor-bearing mice at 14 days post-injection

(open bars) or their healthy counterparts (solid

bars). N = 15. Error bars indicate mean (SD). (See

also Figure S5.)

(B) Left: scheme showing the experiment pro-

cedure. Clusters #E, #B (CD115+), #C1, and #C2

were sorted from the same CD45.2 wild-type do-

nors and were adoptively transferred into sub-

lethally irradiated congenic CD45.1 recipients.

FACS strategies for these cell types are shown in

Figure 2B using mass cytometry and Figure S3D

using flow cytometry. Each recipient received

53 104 donor cells. The next day, 33 105 B16F10

melanoma cancer cells were s.c. injected into

each recipient mouse. Right: the tumor volume in

each recipient was measured at 12 and 22 days

post-injection. Results are representative of two

independent experiments. N = 5 mice in each

group. Error bars indicate mean (SD).

(C)Clusters #C1and#C2cells infiltrate to tumor and

generate PD-L1-positive progenies. At day 22 (D22)

after the adoptive transfer, the tumors were har-

vested from recipients. Live singlet cells in tumor

wereevaluatedusingflowcytometry.CD45+donor-

derived cells were analyzed for PD-L1 expression.

#C1, #C2, and donor-derived neutrophils were

identified with the panel from Figures 2B and S3D

and overlaid for display. (See also Figure S5.)
unipotency of #C1 and #C2 progenitors to generate solely

neutrophils.

Neutrophil production peaks at day 14 in #C2 recipients, but at

day 28, neutrophils vanished from the #C2 recipients, suggesting

limited developmental potency of #C2 (Figure S4B, right). How-

ever, in #C1 recipients, neutrophil production continued to day

28, our latest time point, indicating that the #C1 progenitors

have longer termpotency. This long-term potency of #C1 is com-

parable with the #A#D#E fractions of Lin�CD117+ Ly6A/E� cells,

which contains CMP. To further determine that #C1 cells give

rise to #C2 cells, we FACS-sorted only the #C1 cells (using the

gating strategy shown in Figure 2B) from CD45.2 BM and adop-

tively transferred these CD45.2+ #C1 cells into CD45.1 recipi-

ents. We tracked the fate of the CD45.2+ #C1 donor cells by

examine the recipients’ peripheral and BM for the production

of #C2 after the adoptive transfer. As shown in Figures 3C and

S4C (top), #C1 cells infiltrated into spleen quickly by day 3 and

appeared in BM 5 days after adoptive transfer. Importantly, a

portion of the CD45+ #C1 donor cells started to generate #C2

very quickly after adoptive transfer, while some #C1 cells seeded

in the BM (Figures S4C and 3C, bottom), again confirming that

#C1 is the early-stage committed NeP.

Thus, by using high-dimensional mass cytometry and scRNA-

seq approaches, as well as adoptive transfers in vivo, we have
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discovered an early-stage committed unipotent NeP (#C1,

termed NeP) in mouse BM. This progenitor can be identified as

Lin� CD117+ Ly6A/E� Siglec F� FcεRIa� CD16/32+ Ly6B+

CD11a+ CD162lo CD48lo Ly6Clo CD115� Ly6G�.

Cluster #C1 Cells Are Increased in BM and in Periphery
with Tumor and Promote Tumor Growth In Vivo

Granulopoiesis is associated with cancer, with neutrophils hav-

ing both pro-tumoral and anti-tumoral roles (Casbon et al.,

2015; Hagerling and Werb, 2016; Sagiv et al., 2015). We

wondered what role #C1 NeP would have in tumorigenesis

in vivo. We first asked whether #C1 or #C2 cells were increased

in BM in a melanoma mouse model. We injected B16F10 tumor

cells subcutaneously (s.c.) into the rear flank of wild-type C57BL/

6J mice (tumor). Age- and gender-matched wild-type mice

received D-PBS to serve as healthy controls (healthy). At

14 days post-injection, we found a significant expansion of

#C1 NeP and #C2 cells and a slight increase of #B (CD115+),

but not #E (CMP) cells, in the BM of tumor-bearing mice (Fig-

ure 4A), indicating that in the setting of cancer, myelopoiesis is

strongly geared toward the neutrophil lineage. Interestingly, we

detected minimal numbers of cluster #C cells (less than 0.02%

of all CD45+ cells in the periphery) of healthy mice, whereas

#C cells are increased 10-fold in periphery of tumor-bearing



mice (Figure S5A), suggesting that there is increased production

and egress of these NePs from BM to periphery in response to

the tumor microenvironment. To test whether NeP can directly

contribute to tumor growth, #C1 NeP cells, #C2 cells, #B

(CD115+) cells, and #E cells were sorted from CD45.2 wild-type

donor mice and adoptively transferred into irradiated CD45.1

recipient healthymice. At day 1 after donor cell transfer, recipient

mice were injected s.c. with B16F10 tumor cells into the rear

flank. Tumor size wasmeasured at days 12 and 22 after injection

(Figure 4B, left). As shown in Figure 4B (right), mice receiving #C1

cells or #C2 cells showed increased tumor growth compared to

#B (CD115+) cells or #E cells (CMP) at both time points. #C1

NeP promoted more potent tumor growth at the later time point

compared with #C2 cells. At day 22 after tumor injection, tumors

were harvested for detection of donor-derived cells. More #C1

NeP-derived cells infiltrated the tumor than did #C2 cells, and

more than 30% of these #C1 NeP-derived cells expressed PD-

L1, an inhibitory costimulatory molecule that contributes to im-

mune suppression (Figure 4C). Further analysis revealed that

tumor-infiltrated #C1 cells were able to maintain their stem cell

phenotype as well as produce PD-L1+ #C2 and CD117�Ly6G+

neutrophils. #C2 cells were also able to promote tumor growth

via the same mechanism but to a lesser degree, whereas other

cell types did not infiltrate the tumor (#B) and showed minimal

PD-L1 expression (#E) (Figure S5B). Thus, #C1 NeP progenitors

respond to melanoma tumor cues and have tumor-promoting

functions by producing immune-suppressive progenies.

Discovery of a Heterogeneous CD66b+CD117+ CD38+

CD34+/� Progenitor-like Cell Fraction in Human BM
On the basis of our cancer findings inmice showing the relevance

of NePs to tumor growth, we next decided to look for NePs in

human BM. Human CMP and GMP express CD34, CD38, and

CD117 and mirror the murine CMP/GMP paradigm in myeloid

cell production (Doulatov et al., 2010; Edvardsson et al., 2006;

Manz et al., 2002). CD66b is an important marker for neutrophil

identification. However, it is often excluded from flow cytometry

panels geared toward discovery of hematopoietic progenitors.

We decided to retain this marker in our search for the early

NeP in human BM. We developed a flow cytometry panel to

investigate the neutrophil lineage by focusing on CD45+ cells

that excluded other hematopoietic stem/progenitor cells

(HSPCs), including hematopoietic stem cells (HSC), multipotent

progenitors (MPPs), CLP, multilymphoid progenitor (MLP),

lymphoid-primed MPPs (LMPP), MEP, eosinophil progenitor

(EoP), CMP, GMP, cMoP, andMDP and other terminally differen-

tiated leukocytes (Doulatov et al., 2012; Edvardsson et al., 2006;

Hoebeke et al., 2007; Kawamura et al., 2017; Kohn et al., 2012;

Lee et al., 2015; Manz et al., 2002; Mori et al., 2009; Notta

et al., 2016; Weiskopf et al., 2016). In this panel, all gates were

strictly controlled with both single-color and fluorescence minus

one (FMO) controls (Figure S6A). Indeed, we discovered that

human BM contains a CD66b+ population that expresses

CD117 (Figure 5A), suggesting the presence of CD66b+ stem

cell progenitors within human BM (termed here as hNeP). This

CD66b+CD117+ population expresses high levels of CD38+ (Fig-

ure S6B), an important stem cell marker that is exclusively ex-

pressed by CMP/GMP (Doulatov et al., 2010, 2012; Kohn et al.,
2012; Manz et al., 2002), suggesting that this population is

committed to the myeloid lineage for development. ScRNA-seq

analysis of this CD66b+CD117+ human NeP population revealed

twomajor subsets that showed either positive (subset A) or nega-

tive (subset B) expression of CD34 (Figure 5B). Interestingly,

lower CD34 gene expression in subset B is associated with

increased expression of neutrophil-specific genes such as

ELANE and LYZ (Figure 5B). We then confirmed the CD34+ and

CD34� subsets suggested by scRNA-seq by flow cytometry

(Figure 6C). Both subsets appeared positive for Ki67 localization

in the nuclei, suggesting active proliferation, with a slightly higher

(about 1.3-fold) Ki67 mean fluorescence intensity value in CD34+

hNeP compared with CD34� hNeP (Figure 5D).

Both hNeP Subsets Produce Only Neutrophils in NSG-
SGM3 Mice
We then examined the neutrophil potency of both CD34+ and

CD34� hNeP subsets in vivo by performing adoptive transfers

of each subset into NSG-SGM3 (NSG-M3) mice. The triple trans-

genic NSG-M3 mice are immunodeficient NOD scid gamma

(NSG) mice that express the human cytokines interleukin-3

(IL-3), granulocyte/macrophage-stimulating factor (GM-CSF),

and SCF, also known as KITLG. This mousemodel supports sta-

ble engraftment of the human hematopoietic system, including

the myeloid lineage (Billerbeck et al., 2011; Coughlan et al.,

2016). The two subsets were isolated from fresh human BM by

FACS using the sorting panel in Figure 5 and transferred into

two groups of recipient NSG-M3 mice. Peripheral blood of

each NSG-M3 recipient mouse was collected on days 5, 7, 14,

and 28 for flow cytometry analysis (Figure 6A). To analyze the

progeny produced, we used a control group of NSG-M3 recip-

ient mice that received all CD34+ HSPCs (which contain progen-

itors for all leukocyte cell types). The blood of this control group

was analyzed for monocyte (Mo), neutrophils (Ne), eosinophils

(Eo), and lymphocytes (Ly), including T cells, B cells, and natural

killer (NK) cells using the flow cytometry panel shown in Figure

S6C. This flow cytometry panel is then used for the analysis of

hNeP recipient blood. After adoptive transfer, CD66b+ cells

were detected in both CD34+ hNeP and CD34� hNeP recipients,

but no other cell types were expressed (Figure 6B), illustrating

that both hNeP subsets are unipotent progenitors that produce

only neutrophils. Repopulation of the neutrophil pool by either

hNeP progenitor subset occurred quickly after the adoptive

transfer (day 5) and lasted to day 28 (Figure 6B), indicating rela-

tively long-term neutrophil unipotency of both progenitor sub-

sets. These data demonstrate that the CD66b+ CD117+ CD38+

CD34+/� fraction in human BM cells contains the unipotent

human NeP (hNeP) that occupies about 1%–3% of CD45+ cells

in human BM under homeostatic conditions.

hNeP Increase in Melanoma Patient Blood and Promote
Early Osteosarcoma Tumor Growth in Humanized NSG-
M3 Mice
We of course wanted to see if hNeP played a role in

tumorigenesis. First, we analyzed blood from human subjects

withmelanoma for the presence of hNeP (Table S2). Flow cytom-

etry analysis of blood from melanoma versus healthy patients

blood using the panel in Figure 5 revealed the presence of
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Figure 5. Human BM Contains a CD66b+

CD117+ hNeP Fraction that Contains CD34+

and CD34� Subsets

(A) Flow cytometry analysis of healthy human BM

uncovers a heterogeneous Lin�CD66b+CD117+

hNeP fraction. Dump antibody cocktail contains

antibodies against markers that are expressed by

HSC (CD90 [Thy1]), lymphocytes and their pro-

genitors (CD3, CD19, CD56, CD161, CD7, and

CD127 [IL-7Ra]), erythrocytes and their pro-

genitors (CD41 and CD235a [glycophorin A]),

eosinophils/basophils and their progenitors

(Siglec 8, FcεRIa, and CD125 [IL-5Ra]), CMP/GMP

and monocyte progenitors (CD123 [IL-3Ra]), DCs,

and macrophages (CD11c and CD169). (See also

Figure S6.)

(B) ScRNA-seq analysis of Lin�CD66b+CD117+

hNeP cells reveals two major subpopulations,

subset A and subset B. Twenty thousand hNeP

cells were FACS-sorted from healthy human BM

for scRNA-seq. Heatmap shows top 40 differen-

tially expressed genes in each cluster. Log2 fold

change of each gene expression is relative to the

entire dataset. Two biological triplicates, two

technical replicates.

(C) Lin�CD66b+CD117+ hNeP were divided into

CD34+ subset and CD34� subset by flow cy-

tometry. (D) Confocal microscopy was used to

detect Ki67 localization (red) within the nuclei (blue)

in CD34+ subset and CD34� subset using anti-

bodies to Ki67 and Hoechst. IgG-stained cells

served as negative control. Scale bar, 5 mm.
CD66b+CD117+ cells (about 1% of circulating CD45+ cells) in the

blood of healthy donors (Figure 7A). The frequency of these

hNeP was significantly elevated in the blood of melanoma pa-

tients, with frequencies of about 3%–9% of circulating CD45+

cells (Figure 7A). We did not observe direct correlations between

the hNeP frequencies and gender or age despite the small pool

of donors (data not shown). Importantly, CD34+ hNeP were

barely detected in healthy donor blood but were elevated in

the blood of melanoma patients (Figure 7A). This increase of

hNeP cells in human melanoma patient blood is consistent

with what we have observed for mouse NeP in our mouse mela-

noma model (Figure S5A), suggesting that the hNeP could serve

as a biomarker candidate for early cancer detection.

Then we examined the role of hNeP in regulating multiple solid

tumor types growth to see if the tumor-promoting role of NePs

was relevant in more than one tumor type using NSG-M3 mice.

A high neutrophil-to-lymphocyte ratio is an indicator of worse

prognosis in sarcomas (Anderson, 2017). Here we used osteo-

sarcoma as model of solid tumor. Shown in Figure 7B (left),

both CD34+ hNeP and CD34� hNeP were isolated from human

BM and adoptively transferred into NSG-M3 recipient mice.

Two different control groups were used in this experiment: one

control group received only PBS for adoptive transfer, and the

other group received human cMoP as a source of human

monocyte progenitors. Human cMoP were sorted from the

same human BM donor using the panel described previously
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(Kawamura et al., 2017). One day after adoptive transfer of pro-

genitors, 1 3 106 human osteosarcoma cells were injected s.c.

into the rear flank of mice in all four recipient groups. The tumor

size wasmeasured 10 days after injection. As shown in Figure 7B

(right), mice receiving either CD34+ hNeP or CD34� hNeP cells

showed an increase in tumor growth compared with recipient

mice receiving cMoP or PBS as a control. These data

are concomitant with the mouse data shown in Figure 4B, sug-

gesting that hNeP, the counterpart of mouse NeP, also are

pro-tumoral and mediate solid tumor growth.

Finally, as we observed increased tumor size with hNeP adop-

tive transfer, we askedwhether hNeP promoted tumor growth by

blunting T cell activation. CD34+ hNeP, CD34� hNeP, or mature

neutrophils were FACS-sorted from fresh human BM and co-

cultured with purified CD3+ T cells isolated from other donor’s

blood in the presence of anti-CD3. At 24 hr after co-culture,

mature neutrophils efficiently induced CD3+ T cell activation as

measured by CD69+ expression (Figure 7C). CD3+ T cells

co-cultured with CD34+ hNeP expressed very low levels of

CD69 compared with the mature neutrophil co-culture group,

suggesting significant induction of suppression in this group.

CD34� hNeP inhibited T cell activation to a lesser extent

compared with CD34+ hNeP (Figure 7C). These data suggest

that compared with mature neutrophils, hNeP are possibly

immunosuppressive and promote tumorigenesis by attenuating

tumor-destructive, pro-inflammatory T cell activation.



Figure 6. hNeP Produce Only Neutrophils in

NSG-SGM3 Mice In Vivo

(A) Scheme showing the experimental procedure.

CD34+ hNeP and CD34� hNeP subsets identified

in Figure 5C were sorted from healthy human BM

and adoptively transferred into NSG-M3 recipient

mice. Each recipient mouse received 25,000 donor

human hNeP progenitor cells. After the transfer,

peripheral blood was collected from each recipient

via saphenous vein for flow cytometry on days (D)

5, 7, 14, and 28.

(B) Representative plots show the appearance of

monocytes (CD86+ CD66b�), neutrophils (CD86�

Siglec 8� CD66b+), eosinophils (Siglec 8+), and

lymphocytes (hLy+) in each recipient group at the

time points indicated. hLy antibody cocktail con-

tains CD3, CD19, and CD56. N = 10 mice for each

group. (See flow cytometry gating strategy in Fig-

ure S6C.)
DISCUSSION

In this paper, we report the discovery of a very early stage

committed unipotent NeP that is present in mouse and human

BM. We found that both the mouse and human NeP promoted

primary tumor growth in vivo in established cancer models.

Furthermore, we identified the presence of the human NeP

(hNeP) in the blood of patients with recently diagnosed

melanoma, suggesting that this hNeP is released from the BM

in patients with cancer and can be readily identified in human

blood.

Importantly, we found a tumor-promoting role for this early-

stage NeP in both mice and humans. In tumor-bearing mice,

frequencies of this NeP are increased in BM, suggesting aberrant

myelopoiesis in response to tumor growth (Figure 4A). These re-

sults are consistent with previous studies that suggest that the

tumor reprograms GMP to cause increased production of

tumor-associated neutrophils (Casbon et al., 2015). Interest-

ingly, we found that tumor-induced myelopoiesis is specific

for NeP in mouse BM (Figure 4A). Furthermore, when adoptively

transferred into recipient mice, the NeP significantly promoted

melanoma tumor growth compared with other myeloid progeni-

tors and was also found in the periphery as well as in the tumor,

suggesting egress from the BM and infiltration to the tumor.

Some of the #C1 and #C2 cells remain undifferentiated

once they infiltrate into tumor and meanwhile start to express

PD-L1 (Figures S5 and 4C). We also detected similar tumor-
Cell Rep
promoting effects of hNeP in human

tumorigenesis using an NSG-humanized

mouse model. After adoptive transfer,

hNeP significantly promoted osteosar-

coma tumor growth in NSG mice

compared with other myeloid progenitors

(Figure 7B). Importantly, we observed a

3- to 9-fold increase of hNeP in the blood

of patients diagnosed with melanoma.

This result is consistent with our observa-

tion of increased NeP in mouse periphery
in response to tumor growth (Figure S5) and suggests that this

hNeP could be used in some manner as a biomarker for early

cancer detection.

The earliest committed NeP has remained elusive for de-

cades. Most studies have focused on murine hematopoiesis.

In this regard, the classic model of hematopoiesis shows

that LSK+ (Lin�CD117+Ly6A/E+CD127�) HSPCs give rise to

CLP (Lin�CD117loLy6A/E+CD127+) for lymphopoiesis and to

the Lin�CD117+Ly6A/E�CD127� HSPCs for myelopoiesis

(Weissman et al., 2001). A higher level of heterogeneity exists

within the lin�CD117+Ly6A/E�CD127� population, and the

committed long-term monocyte progenitor partially overlaps

with this HSPC fraction (Auffray et al., 2009; Olsson et al.,

2016; Paul et al., 2015; Pronk et al., 2007). Indeed, further ex-

amination of the Lin�CD117+Ly6A/E� HSPC fraction by mass

cytometry showed five possibly committed myeloid progeni-

tors (Figure 1A). Cluster #C in Figure 1A showed low to mod-

erate expression of Ly6G, suggesting a neutrophil lineage

potential for cells found within this cluster. This cluster was

not identified in earlier hematopoiesis studies, as the neutro-

phil marker Ly6G was routinely excluded from flow cytometry

panels at that time. ScRNA-seq analysis of this Ly6G-contain-

ing cluster #C further revealed two populations: an early-stage

progenitor (#C1) with stem cell morphology and little Ly6G

expression and a late-stage precursor (#C2) that expressed

low levels of Ly6G with morphological features similar to tran-

sient neutrophil precursors (Figures 2D and S3B) (Evrard et al.,
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Figure 7. hNeP Is Increased in Melanoma

Patient Blood and Promotes Early Osteosar-

coma Tumor Growth in NSG-M3 Mice

(A) hNeP is increased in melanoma patient blood.

hNeP frequency was detected by flow cytometry in

peripheral blood collected from healthy donors

(n = 5) and melanoma patients (n = 5). Error bars

indicate mean ± SEM. (See donor information in

Table S2.)

(B) Left: scheme showing the experiment pro-

cedure. CD34+ hNeP subset, CD34� hNeP subset,

and human cMoP were FACS-sorted from healthy

human BM. The three populations were adoptively

transferred into NSG-M3 recipient mice. Each

recipient mouse received 25,000 donor human

progenitor cells. Blank control group received only

PBS for adoptive transfer. The next day, 1 3 106

143B human osteosarcoma cells were s.c. in-

jected into each recipient mouse. Right: the tumor

volume in each recipient was measured at 10 days

post-injection. N = 5 mice in each group. Error

bars indicate mean ± SEM.

(C) CD34+ hNeP cells blunt T cell activation. FACS

strategies for CD34+ hNeP and CD34� hNeP are

shown in Figures 5A and 5C using flow cytometry;

FACS strategies for mature neutrophils is shown in

Figure S7D using flow cytometry. Histogram

overlay of CD69 for CD3+ T cells cultured with

CD34+ hNeP, CD34� hNeP, and mature neutro-

phils, in the presence of anti-CD3 for 24 hr. CD3+

T cells alone cultured without anti-CD3 served as

the negative control group, and CD3+ T cells alone

cultured with anti-CD3, CD28 served as the posi-

tive control group for T cell activation.
2018; Satake et al., 2012; Sturge et al., 2015; Yáñez et al.,

2015). Recently, a late-stage neutrophil precursor was

identified in BM of mice (Kim et al., 2017). We located this

population (termed by us as K.NeuP) on a viSNE map of

Lin�CD117+Ly6A/E� HSPCs (Figure S7A). Surprisingly, we

found that this K.NeuP population was highly heterogeneous

and contained other myeloid progenitors. From our mass

cytometry data, we were able to generate a stringent flow cy-

tometry gating strategy (Figure S7A) that allowed us to

completely purify, with no contamination from other myeloid

lineages, both #C1 (NeP) and #C2 cells (late-stage precursors)

(Figure S7B) in order to demonstrate their neutrophil unipo-

tency. We also located the recently reported mouse neutrophil

precursor (termed by us as Ng.preNeu) (Evrard et al., 2018)

and aligned it with #C1 (NeP) and #C2 in the neutrophil devel-

opmental branch. ViSNE analysis suggested the mouse

Ng.preNeu shares phenotype that shares approximately 22%

similarity to #C1 NeP and is mostly similar to #C2 (Figure S7C).

The signature nuclear shape of the murine Ng.preNeu also
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closely resembles that of #C2 (Evrard

et al., 2018). In addition, we compared

the human Ng.preNeu (Evrard et al.,

2018) with the hNeP that we have

identified. The human Ng.preNeu does

not express CD117 and CD34 and
therefore does not overlap with the hNeP we identified (Fig-

ure S7D). Likely, the human Ng.preNeu represents a transient

precursor between hNeP and terminally differentiated neutro-

phils. This hypothesis is supported by our analysis shown

in Figure S7E that hNeP represents the lowest frequency

(1%–3%) of human BM CD45+ cells followed by Ng.preNeu

(4%–10%), immature neutrophils 20%–40%, and mature neu-

trophils 30%–40%.

The lifespan of human neutrophils is better studied than is

neutrophil heterogeneity. It is commonly recognized that the life-

span of neutrophils that are isolated by gradient separation

varies from hours to days (Bekkering, 2013; Pillay et al., 2010).

One possible hint we can take from this notion is that gradient

isolation may yield a heterogeneous neutrophil population

that contains neutrophil subsets and/or immature and mature

neutrophils that are at different differentiation stages. Indeed,

neutrophil heterogeneity has been suggested in both humans

and mice (Beyrau et al., 2012; Silvestre-Roig et al., 2016).

A few biological markers, such as CD49 or TCRa, b variants,



were suggested to identify certain neutrophil subsets in addition

to neutrophil markers Ly6G (mouse) and CD66b (human)

(Silvestre-Roig et al., 2016). However, neutrophil heterogeneity

is still not well defined. In this study, we focused on the unipo-

tency and the functions of NePs rather than the heterogeneity

of the produced neutrophil progeny. Although we know that

the identified NePs give rise to solely neutrophils, we have not

yet studied whether these progenitors give rise to specific sub-

sets of neutrophils, particularly in the setting of cancer. Hints

from our data suggest that these hNePNePsmay promote tumor

growth by suppressing T cell activation. Future studies will

further examine the mechanisms by which these hNeP subsets

influence T cell responses within the tumor microenvironment.

We also do not exclude the possibility that the NeP itself, once

egressed from the BM and present in the periphery, could

directly participate in the tumor-promoting effects we observed

(Figures 4 and 7).

In sum, using mass cytometry, we have identified an early-

stage committed unipotent NeP that is present in both mouse

and human BM. This discovery may drive new therapeutic

and pharmaceutical targets for neutrophil-related diseases

or treatment outcomes that are associated with chronic inflam-

mation. For example, neutropenia leads to high susceptibility to

infections and is often associated as a by-product of cancer

treatments (Lyman et al., 2014). Targeting hNeP could rescue

patients from undesirable neutropenia. In addition, our obser-

vation of increased hNeP in blood of melanoma patients could

assist in early detection for cancer diagnosis as a biomarker. As

this hNeP also displays tumor-promoting effects, we suggest

the possibility that this hNeP itself could be an immune-

oncology target, which opens a new field of therapeutic

discovery.
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Anti-Mouse CD45 (Clone 30-F11) �89Y Fluidigm Cat# 3089005B

Anti-mouse TER-119/Erythroid Cells

(Clone TER-119)-MaxPar� Ready

Biolegend Cat# 116241; RRID:AB_2563789

Anti-mouse CD41 (Clone MWReg30)-MaxPar� Ready Biolegend Cat# 133919; RRID:AB_2565433

Anti-mouse CD127 (IL-7Ra) (Clone A7R34)-MaxPar� Ready Biolegend Cat# 135029; RRID:AB_2563716

Anti-mouse CD335 (NKp46) (Clone 29A1.4)-MaxPar� Ready Biolegend Cat# 137625; RRID:AB_2563744

Anti-Mouse CD11c (Clone N418)-142Nd Fluidigm Cat# 3142003B
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Anti-mouse CD90 (Clone G7)-Purified Biolegend Cat# 105202; RRID:AB_313169

Anti-Mouse I-A/I-E (Clone M5/114.15.2)-174Yb Fluidigm Cat# 3174003B

Anti-mouse CD16.2 (FcgRIV) (Clone 9E9)-Purified Biolegend Cat# 149502; RRID:AB_2565302

Anti-Human/Mouse CD45R/B220 (Clone

RA36B2)-176Yb

Fluidigm Cat# 3176002B

Flow Cytometry antibodies (mouse)

Anti-mouse CD3ε (Clone 145-2C11)-APC-Cy7 BD Biosciences Cat# 557596; RRID:AB_396759

Anti-mouse CD19 (Clone 1D3)-APC-Cy7 BD Biosciences Cat# 557655; RRID:AB_396770
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Anti-mouse CD161 (Clone PK136)- APC-eFluor� 780 ThermoFisher Cat# 47-5941-82; RRID:AB_10853969

Anti-mouse F4/80 (Clone T45-2342)-PE-CF594 BD Biosciences Cat# 565613

Anti-mouse/human CD11b (Clone M1/70)-Brilliant Violet 605 BioLegend Cat# 101257; RRID:AB_2565431

Anti-mouse CD11a (Clone M17/4)-APC BioLegend Cat#101120; RRID:AB_2562779

Anti-mouse CD11c (Clone HL3)-APC-Cy7 BD Biosciences Cat# 561241; RRID:AB_10611727

Anti-mouse CD45 (Clone 30-F11)- Brilliant Violet 570 BioLegend Cat# 103135; RRID:AB_10898325

Anti-mouse CD45 (Clone 30-F11)- Brilliant Violet 605 BioLegend Cat# 103139; RRID:AB_2562341

Anti-mouse CD45.1 (Clone A20)-PerCP/Cy5.5 BioLegend Cat# 110728; RRID:AB_893346

Anti-mouse CD45.2 (Clone 104)-FITC BioLegend Cat# 109806; RRID:AB_313443

Anti-mouse CD117 (c-kit) (Clone 2B8)-PE BioLegend Cat# 105808; RRID:AB_313217

Anti-mouse CD117 (c-kit) (Clone 2B8)-APC-R700 BD Biosciences Cat# 565476

Anti-mouse Ly6A/E (Sca-1) (Clone D7)- Brilliant Violet 785 BioLegend Cat# 108139; RRID:AB_2565957

Anti-mouse CD16/32 (FcgRIII/II) (Clone 2.4G2)-APC-R700 BD Biosciences Cat# 565502

Anti-mouse CD16/32 (FcgRIII/II) (Clone 93)-FITC BioLegend Cat# 101306; RRID:AB_312805

Anti-mouse CD16/32 (FcgRIII/II) (Clone 2.4G2)-Purified

NA/LE

BD Biosciences Cat# 553140

Anti-mouse CD41 (Clone MWReg30)-APC-Cy7 BioLegend Cat# 133928; RRID:AB_2572132

Anti-mouse CD115 (M-CSFR) (Clone AFS98;)- Brilliant

Violet 421

BioLegend Cat# 135513; RRID:AB_2562667

Anti-mouse CD127 (IL-7Ra) (Clone A7R34)-APC/Cy7 BioLegend Cat# 135040; RRID:AB_2566161

Anti-mouse CD127 (IL-7Ra) (Clone A7R34)-PE/Dazzle 594 BioLegend Cat# 135032; RRID:AB_2564217

Anti-Mouse CD162 (Clone 2PH1)-BV510 BD Biosciences Cat# 563448

Anti-mouse Ter119 (Clone TER-119)-APC-Cy7 BioLegend Cat# 116223; RRID:AB_2137788

Anti-mouse Ly6B (Clone 7/4)-FITC Abcam Cat# ab53453; RRID:AB_881408

Anti-mouse Ly6G (Clone 1A8)-FITC BioLegend Cat# 127606; RRID:AB_1236494

Anti-mouse Ly6G (Clone 1A8)-PE BioLegend Cat# 127608; RRID:AB_1186099

Anti-mouse CD48 (Clone HM48-1)-PE/Cy7 BioLegend Cat# 103424; RRID:AB_2075049

Anti-mouse Ly6C (Clone HK1.4)-PerCP/Cy5.5 BioLegend Cat# 128012; RRID:AB_1659241

Anti-mouse Siglec F (Clone E50-2446)-Alexa Fluor� 647 BD Biosciences Cat# 562680; RRID:AB_2687570

Anti-mouse Siglec F (Clone E50-2446)-PE-CF594 BD Biosciences Cat# 562757; RRID:AB_2687994

Anti-mouse FcεRIa (Clone MAR-1)-Alexa Fluor� 647 BioLegend Cat# 134310; RRID:AB_1626093

Rabbit anti-Ki67 monoclonal antibody (Clone SP6) Abcam Cat# ab16667; RRID:AB_302459

Anti-rabbit IgG (H+L), F(ab’)2 Fragment (Alexa Fluor�647

Conjugate)

CellSignaling Cat#4414; RRID:AB_10693544

Flow Cytometry antibodies (human)

Anti-human CD45 (Clone 2D1)-Brilliant Violet 570 BioLegend Cat#304034; RRID:AB_2563426

Anti-human CD3ε (Clone HIT3a)- BB515 BD Biosciences Cat# 565100

Anti-human CD3ε (Clone OKT3)- Alexa Fluor� 647 BD Biosciences Cat# 566686

Anti-human CD3ε (Clone HIT3a)- PerCP/Cy5.5 BioLegend Cat# 300328; RRID:AB_1575008

Anti-human CD7 (Clone M-T701)-BB515 BD Biosciences Cat# 565211

Anti-human CD10 (Clone Hl10a)-FITC BioLegend Cat#312208; RRID:AB_314919

Anti-human CD11c (Clone B-ly6)-BB515 BD Biosciences Cat# 564490

Anti-human CD19 (Clone HIB19)-BB515 BD Biosciences Cat# 564456

Anti-human CD19 (Clone SJ25C1)-PerCP/Cy5.5 BioLegend Cat# 363016; RRID:AB_2564207

Anti-human CD161 (Clone HP-3G10)-FITC BioLegend Cat# 339936; RRID:AB_2564140

Anti-human CD56 (Clone B159)-BB515 BD Biosciences Cat# 564488

Anti-human CD56 (NCAM) (Clone MEM-188)-PerCP/Cy5.5 BioLegend Cat# 304626; RRID:AB_10641700

Anti-human CD90 (Thy1) (Clone 5E10)-FITC BioLegend Cat#328108; RRID:AB_893429
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Anti-human CD127 (IL-7Ra) (Clone A019D5)-FITC BioLegend Cat# 351312; RRID:AB_10897643

Anti-human CD235a (Clone GA-R2)-BB515 BD Biosciences Cat# 565233

Anti-human CD41a (Clone HIP8)-BB515 BD Biosciences Cat# 565237; RRID:AB_2721014

Anti-Human Siglec-1 (CD169)(Clone 7-239)-BB515 BD Biosciences Cat#565353

Anti-human CD69 (Clone FN50)-APC BioLegend Cat#310910; RRID:AB_314845

Anti-human CD86 (Clone IT2.2)- Brilliant Violet 605 BioLegend Cat# 305430; RRID:AB_2563824

Anti-human CD14 (Clone 63D3)-APC/Cy7 BioLegend Cat# 367108; RRID:AB_2566710

Anti-human HLA-DR (Clone L243)-PE/Cy7 BioLegend Cat# 307616; RRID:AB_493588

Anti-human CD16 (Clone 3G8)-Brilliant Violet 785 BioLegend Cat#302046; RRID:AB_2563803

Anti-human CD66b (Clone G10F5)-PE BioLegend Cat# 305106; RRID:AB_2077857

Anti-human CD34 (Clone 581)-BV421 BD Biosciences Cat#562577; RRID:AB_2687922

Anti-human CD117 (c-kit) (Clone YB5.B8)- APC-R700 BD Biosciences Cat# 565195; RRID:AB_2716871

Anti-human CD117 (c-kit) (Clone 104D2)-Brilliant Violet 711 BioLegend Cat# 313230; RRID:AB_2566217

Anti-human CD38 (Clone HB-7)- PE/Dazzle 594 BioLegend Cat# 356630; RRID:AB_2650757

Anti-human CD15 (SSEA-1) (Clone W6D3)-Alexa Fluor� 700 BioLegend Cat#323026; RRID:AB_2561427

Anti-human CD15 (SSEA-1) (Clone W6D3)-Brilliant Violet 605 BioLegend Cat#323032; RRID:AB_2562132

Anti-human CD49d (Clone 9F10)-APC BioLegend Cat# 304308; RRID:AB_2130041

Anti-human CD49d (Clone 9F10)-Brilliant Violet 711 BioLegend Cat# 304308; RRID:AB_2687198

Anti-human CD101 (Clone BB27)-PE/Cy7 BioLegend Cat# 331014; RRID:AB_2716109

Anti-human Siglec 8 (Clone 7C9)-FITC Miltenyi Biotec Cat#130-098-715; RRID:AB_2653427

Anti-human Siglec 8 (Clone 7C9)-APC BioLegend Cat#347106; RRID:AB_2561402

Anti-human FcεRIa (Clone AER-37)-APC BioLegend Cat#334612; RRID:AB_10578086

Anti-human FcεRIa (Clone AER-37)-FITC BioLegend Cat# 334608; RRID:AB_1227653

Biological Samples

Healthy human BM AllCells, Inc. Cat# ABM001

Healthy human peripheral blood La Jolla Institute

for Allergy and

Immunology, Clinical

studies core, Normal

Blood Donor Program

(NBDP)

https://www.lji.org/faculty-research/

scientific-cores/clinical-studies

Melanoma patient peripheral blood University of Kansas

Cancer Center,

Biospecimen Repository

Core Facility (BRCF)

http://www.kumc.edu/school-of-

medicine/biospecimen.html

Chemicals, Peptides, and Recombinant Proteins

eBioscience 1X RBC Lysis Buffer ThermoFisher Cat# 00-4333-57

HyClone Phosphate Buffered Saline solution GE Lifesciences Cat#SH30256.01

Ethylenediaminetetraacetic acid (EDTA) ThermoFisher Cat# AM9260G

Trypsin EDTA 1X Corning Cat# 25-053-Cl

Human AB Serum, Heat Inactivated Omega Scientific Cat# HS-25

Bovine Serum Albumin Sigma-Aldrich Cat# A4503

Fetal Bovine Serum Omega Scientific Cat# FB-02

Donkey Serum Sigma-Aldrich Cat# S30-M

Sodium azide Sigma-Aldrich Cat# S2002

Triton X-100 Sigma-Aldrich Cat# X100

ProLong Gold Antifade Mountant ThermoFisher Cat# P10144

Antibody Stabilizer CANDOR Bioscience Cat# 130050

MAXPAR� Antibody Labeling Kits Fluidigm http://www.dvssciences.com/product-

catalog-maxpar.php
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Cisplatin-194Pt Fluidigm Cat# 201194

Intercalator-Ir Fluidigm Cat# 201192B

eBioscience Foxp3 / Transcription Factor Staining Buffer Set ThermoFisher Cat# 00-5523-00

EQ Four Element Calibration Beads Fluidigm Cat# 201078

Hoechst ThermoFisher Cat# H1399

Dimethyl sulphoxide Sigma-Aldrich Cat# D5879

Paraformaldehyde Sigma-Aldrich Cat# 158127

MethoCult GF M3434 Stem Cell Technologies Cat# 03434

DMEM–Dulbecco’s Modified Eagle Medium ThermoFisher Cat#11995065

HEPES buffer Corning Cat# 25-06-Cl

Critical Commercial Assays

LIVE/DEAD Fixable Blue Dead Cell Stain Kit ThermoFisher Cat# L23105

LIVE/DEAD Fixable Yellow Dead Cell Stain Kit ThermoFisher Cat# L34968

TRIzol Plus RNA Purification Kit ThermoFisher Cat# 12183555

Chromium Single Cell 30 v2 Reagent Kits 10x Genomics Cat# PN-120237

Beckman Coulter AMPURE XP Fisher Scientific Cat# NC9959336

EasySep Human T Cell Isolation Kit Stem Cell Technologies Cat# 17951

Dynabeads Human T-Activator CD3/CD28 ThermoFisher Cat# 11161D

Deposited Data

scRNA-seq data This paper GEO: GSE117131

RNA-seq data This paper GEO: GSE117129

Experimental Models: Cell Lines

B16-F10 mouse Melanoma cell line ATCC Cat# CRL-6475

143B human Osteosarcoma cell line ATCC Cat# CRL-8303

Experimental Models: Organisms/Strains

Mouse: C57BL/6J The Jackson Laboratory Stock No: 000664

Mouse: B6.SJL-Ptprca Pepcb/BoyJ The Jackson Laboratory Stock No: 002014

Mouse: NOD.Cg-Prkdcscid Il2rgtm1WjlTg(CMV-

IL3,CSF2,KITLG)1Eav/MloySzJ

The Jackson Laboratory Stock No: 013062

Software and Algorithms

Bead-based Normalizer Finck et al., 2013 https://med.virginia.edu/flow-cytometry-

facility/wp-content/uploads/sites/170/

2015/10/3_Finck-Rachel_CUGM_

May2013.pdf

Cytobank Cytobank https://www.cytobank.org/

t-SNE van der Maaten and

Hinton, 2008

https://cran.r-project.org/web/packages/

Rtsne/index.html

PhenoGraph Levine et al., 2015 https://doi.org/10.1016/j.cell.2015.05.047

Cytofkit v1.r.0 Chen et al., 2016 https://bioconductor.org/packages/

release/bioc/html/cytofkit.html

FlowJo (version 10.1r5) TreeStar http://flowjo.com/

Seurat (version 1.4) Rizzo, 2016; Satija

et al., 2015

https://satijalab.org/seurat/

FeatureCount R package v1.22.2 Liao et al., 2013 https://rdrr.io/bioc/Rsubread/man/

featureCounts.html

RSubread R package v1.30.5 Liao et al., 2013 http://bioconductor.org/packages/

release/bioc/html/Rsubread.html

edgeR v3.22.3 Robinson et al., 2010 https://bioconductor.org/packages/

release/bioc/html/edgeR.html

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

ZEN ZEISS https://www.zeiss.com/microscopy/int/

products/microscope-software/zen.html

HyVolution 2 Leica https://www.leica-microsystems.com/

products/confocal-microscopes/

details/product/hyvolution-2/downloads/

Image-Pro Premier Media Cybernetics http://www.mediacy.com/imagepro

Huygens Essential Scientific Volume

Imaging

https://svi.nl/HuygensSoftware

Imaris Bitplane http://www.bitplane.com/imaris/imaris

GraphPad Prism 7 GraphPad Software http://www.graphpad.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to and will be fulfilled by lead contact Catherine C. Hedrick (hedrick@

lji.org).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6J, B6 CD45.1 congenic mice, and NSG-SGM3 mice were purchased from The Jackson Laboratory. Mice were fed a stan-

dard rodent chow diet and were housed in microisolator cages in a pathogen-free facility. Mice were euthanized by CO2 inhalation

followed by cervical dislocation. All experiments followed approved guidelines of the La Jolla Institute for Allergy and Immunology

Animal Care and Use Committee, and approval for use of rodents was obtained from the La Jolla Institute for Allergy and Immunology

according to criteria outlined in the Guide for the Care and Use of Laboratory Animals from the National Institutes of Health. Animals

were randomly assigned to groups from available mice bred in our facility or ordered from distributor. Experiments in this study used

male animals 6-10 weeks of age in good health. If animals were observed with non-experiment related health conditions (i.e., maloc-

clusion, injuries from fighting, etc.), animals were removed from study groups. For tumor studies, B16F10 melanoma cells and 143B

human osteosarcoma cells were obtained from ATCC. Cell lines were tested for being pathogen free. Cell lines were maintained

in DMEM medium containing 10% heat-inactivated FBS, 2 mmol/L l-glutamine, 1 mmol/L sodium pyruvate, 50 U/mL penicillin,

50 mg/mL streptomycin. For tumor injection, the hair around the tumor injection area of the 6-10 week old mice or adoptive transfer

recipients was removed before injection. For Figure 4A and S5A, 5 3 105 B16F10 cells were washed and resuspended in 100 ul

D-PBS and then SubQ injected into the rear flank of the mouse, and the tumor-bearing mice were euthanized by CO2 inhalation fol-

lowed by cervical dislocation at Day 14 post-tumor injection. For Figure 4B and S5B, 33 105 B16F10 cells were washed and resus-

pended in 100 ul DPBS and then SubQ injected into the rear flank of the mouse, and the tumor size were measured with a digital

caliper at Day 12 and Day 22 post-tumor injection. For Figures 7B and 1 3 106 143B human osteosarcoma cells were washed

and resuspended in 100 ul DPBS and then SubQ injected into the rear flank of the mouse, and the tumor size were measured

with a digital caliper at Day 10 post-tumor injection. Tumor volume was calculated using the formula V (volume) = D 3 d2/2 (D is

the largest measured tumor diameter and d is the smallestmeasured tumor diameter). Laboratory personnel were blinded to the iden-

tities of experimental groups during sample collection and analysis.

Human BM cells
Fresh BM samples of anonymous healthy adult donors were obtained from AllCells, Inc. (Alameda, CA). The cells were stained for

either flow cytometry or FACS-sorting following protocols described in the Flow Cytometry and Cell Sorting section.

Melanoma Patient Blood Collection
Blood from melanoma patients (no previous radiation, no prior chemo treatment) was collected in EDTA-tubes by the Biospecimen

Repository Core Facility (BRCF) at University of Kansas Cancer Center and delivered via overnight shipping. In the meantime, blood

from healthy donors were collected in EDTA-tubes in La Jolla Institute for Allergy and Immunology and stored and treated similarly as

control groups for the study. All blood samples were processed at the same time and cells were stained for flow cytometry followed

by the protocol described in the Flow Cytometry and Cell Sorting section.

Human Peripheral Blood Collection
EDTA-coated blood from healthy volunteers was obtained after written informed consent under the guidelines of the Institutional Re-

viewBoard of the La Jolla Institute for Allergy and Immunology and in accordancewith USDepartment of Health andHuman Services
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Policy for protection of Human Research Subjects (VD-057-0217). Cells were stained for flow cytometry followed by the protocol

described in the Flow Cytometry and Cell Sorting section.

METHOD DETAILS

Cell suspension for mass cytometry and flow cytometry
BM cells were harvested from femurs, and tibias of 6-10 week old mice. Bones were centrifuged for the collection of marrow. For the

adoptive transfer experiments, donor BM cells were collected and stained under sterile conditions. Peripheral blood was obtained by

cardiac puncture with an EDTA-coated syringe. For Figure 6B and S6B, a drop of blood was obtained from the saphenous vein of the

adoptive transferred NSG-SGM3 mice recipients. All samples (both mouse and human) were collected in ice cold D-PBS (GIBCO)

with 2 mM EDTA to prevent cation-dependent cell-cell adhesion. Prior to staining cells, cells were subject to a red blood cell lysis

(RBC lysis buffer, eBiosciences) at room temperature (5min x 1 for BMcells, 10min x 2 for blood cells). Cells werewashed and filtered

through a 70 mm strainer. Cell suspensions were prepared by sieving and gentle pipetting to reach final concentration of 33 106 cells

per 100 ul buffer.

Mass Cytometry Antibodies
Metal-conjugated antibodies were purchased directly from Fluidigm for available targets. For all other targets, purified antibodies

were purchased from the companies listed in Table S1. Antibody conjugations were prepared using the Maxpar Antibody Labeling

Kit according to the recommended protocol provided by Fluidigm. Maxpar-conjugated antibodies were stored in PBS-based anti-

body stabilization solution (Candor Biosciences) supplemented with 0.05% NaN3 at 4�C. All antibodies were titrated before use.

Mass Cytometry (CyTOF)
For viability staining, cells were washed in PBS and stained with Cisplatin (Fluidigm) to a final concentration of 5 mM. Prior to surface

staining, anti-CD16/32 (151Eu) antibody was added to cell suspension in ice-cold staining buffer (PBS + 2mM EDTA + 0.1% BSA +

0.05%NaN3) to stain and block the Fc receptors for 15 min. The surface antibody cocktail listed in Table S1 was then added into the

cell suspension for 1h. The cells were then washed and fixed with 2% paraformaldehyde overnight at 4�C. After fixation, cells were

washed in staining buffer and permeabilized using Foxp3/Transcription Factor Staining Buffer (eBioscience) for intracellular staining

according to the manufacturer’s protocol. Following permeabilization, cells were washed twice with 1 mL 1X Perm Buffer (Saponin-

based). The intracellular antibody cocktail listed in Table S1 were added into cell suspension for 1h. Cells were then washed in stain-

ing buffer and stained with DNA intercalator (Fluidigm) containing natural abundance Iridium (191Ir and 193Ir) prepared to a final

concentration of 125 nM in 2% paraformaldehyde. Cells were washed in staining buffer, with subsequent washes in Milli-Q water

(EMD Millipore) to remove buffer salts. Cells were resuspended in Milli-Q water with a 1:10 dilution of EQ Four Element Calibration

beads (Fluidigm) and filtered through a 35 mm nylon mesh filter cap (Corning, Falcon). Samples were analyzed on a Helios 2 CyTOF

Mass Cytometer (Fluidigm) equipped with a Super Sampler (Victorian Airship & Scientific Apparatus) at an event rate of 500 events/

second or less. Mass cytometry data files were normalized using the bead-based Normalizer (Finck et al. 2013) and analyzed using

Cytobank analysis software (https://www.cytobank.org/). The PhenoGraph clustering (Levine et al., 2015) and isomap dimensionality

reduction were done using R package cytofkit (Chen et al., 2016). Hierarchical clustering was used to determine two meta-clusters

based on the median of markers’ expression from each PhenoGraph clusters.

Flow Cytometry and Cell Sorting
All mouse FACS staining was performed in FACS buffer (D-PBS + 1% BSA + 0.1% sodium azide + 2mM EDTA) on ice. All human

FACS staining was performed in FACS buffer (D-PBS + 1% human serum + 0.1% sodium azide + 2mM EDTA) on ice. Cells

were filtered through sterile 70 mm cell strainers to obtain a single cell suspension (30,000 cells per ml for flow cytometry analysis,

0.5 - 23 107 per ml for sorting). Prior to surface staining, anti-CD16/32 (FITC) antibody (for mouse) or human Fc receptors blocking

reagent (MACS Miltenyi Biotec) was added for 15 min to stain and block the Fc receptors. Surface staining was performed for

30 minutes in a final volume of 500ul for FACS sorts and 100ul for regular flow cytometry. Cells were washed twice in at least

200ul FACS buffer before acquisition. Cells were sorted using a FACS Aria II and Aria-Fusion (BD biosciences) and conventional

flow cytometry using an LSRII or a LSR Fortessa (BD Biosciences). All flow cytometry was performed on live cells. Calculations of

percentages of CD45+ immune cells were based on live cells as determined by forward and side scatter and viability analysis. All

analyses and sorts were repeated at least 3 times, and purity of sorted fractions was checked visually and by FACS reanalysis of

the surface markers. Data were analyzed using Cytobank (https://www.cytobank.org/) and FlowJo (version 10.1r5).

Confocal Microscopy
Cells were FACS-sorted by using the flow cytometry panel shown in Figure S3D and resuspended in PBS. Following fixation in 4%

methanol-free formaldehyde in PBS for 10 min at room temperature, cells were washed with PBS and resuspended in 5% normal

donkey serum, 0.3% Triton X-100 in PBS for one hour. Cells were then incubated with a rabbit anti-Ki67 monoclonal antibody (clone

SP6, Abcam, 1:150) or negative control (normal rabbit IgG) in 1% bovine serum albumin and 0.3% Triton X-100 in PBS overnight

at 4�C. Cells were washed twice with PBS and incubated with anti-rabbit IgG (H+L) F(ab’)2 fragment conjugated to Alexa Fluor
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647 (Cell Signaling, #4414, 1:500) and Hoechst (1:1000 of 10 mg/ml solution) for one hour at room temperature. After washing, cells

were adhered to poly-L-lysine coated #1.5H coverslips and embedded in Prolong Gold (Thermo Fisher). Samples were imagedwith a

Zeiss LSM780 and Leica SP8 confocal microscopes using a 63x/1.40 NA oil-immersion objectives. Images were processed with ZEN

or Leica HyVolution software and 3D reconstructions of DNA were created in Imaris software. The mean and integrated fluorescence

intensity (select the one you will show) of Ki-67 within the nuclear regions were calculated in Image-Pro Premier. To reduce Z-stretch-

ing confocal images were deconvolved with Huygens Essential. Analysis of the surface area, volume and sphericity was performed in

Imaris software.

Adoptive transfer
Recipient mice were housed in a barrier facility under pathogen-free conditions before and after adoptive transfer. NSG-SGM3 recip-

ient mice were maintained in sterile conditions at all times. CD45.1 recipient mice were fed with autoclaved acidified water with

antibiotics (trimethoprimsulfamethoxazole) for 3 days before the adoptive transfer. Sub-lethally irradiated recipient mice received

600 Rads. Donor BM cells were collected and FACS sorted as described in the flow cytometry section. Mouse and human progenitor

cells were sorted directly into sterile FBS and kept chilled during sorting. Cells thenwerewashed and resuspended in ice-cold D-PBS

for injection. 50,000 donor progenitors in 200 ul DPBS were delivered into each recipient mouse for Figures 3 and 4. 25,000 donor

progenitors in 200 ul DPBS were delivered into each recipient mouse for Figures 6 and 7. All adoptive transfer experiments were

achieved via tail vein injection. After the adoptive transfer, recipient mice were provided with autoclaved food and autoclaved acid-

ified water with antibiotics.

In vitro progenitor differentiation assay
Sorted progenitor cells were seeded into 6-well plates and cultured for 10 days with MethocultTM GF M3434 media (Stem Cell

Technologies) according to the manufacturer’s protocol. The numbers of wells containing proliferated colonies were counted

for -colony-forming assays.

Human T cell co-culture with NePs
To investigate the effects of NeP subsets on human autologous T cell activation, CD3+ T cells were negatively-selected from healthy

donor PBMCs (LJI NBDP) according to manufacturer’s instructions (Stem Cell Technologies). CD34+ hNeP, CD34- hNeP, and

mature neutrophils were FACS sorted from fresh human BM obtained from AllCells, Inc. (Alameda, CA). The sorted CD3+ T cells

were cultured with CD34+ hNeP, CD34- hNeP, and mature neutrophils at a 2:1 ratio, in the presence or absence of 2mg/mL plate-

bound anti-CD3 Ab (Biolegend) for 24 hr at 37�C with 5% CO2. For polyclonal stimulation, purified CD3+ T cells were incubated

with anti-CD3,-CD28 Dynabeads (Invitrogen). To investigate CD69 activation, cells were collected and stained with anti-human

CD3, CD69, and a fixable live/dead viability dye at 24 hours post stimulation. 75,000 events were collected on the Fortessa (BD Bio-

sciences), and data was analyzed using FlowJo (v.10.3).

Single-cell RNA-seq. 30 end
Mouse Cluster#C cells were FACS-sorted using the flow cytometry panel shown in Figure S2C. Human hNeP were FACS-sorted by

using the flow cytometry panel shown in Figure 5A. Single cell RNA-Sequencing was performed using Chromium Single Cell 30 v2
Reagent Kits (10x Genomics) following the manufacturer’s protocol (Zheng et al., 2017). Briefly, after sort collection, cells were

resuspended in PBS at concentration ranging between 400 to 600 cells per ml. Between 5,000 to 10,000 cells were loaded for gel

bead-in-emulsion generation and barcoding. To increase barcode diversity, samples were split in 2 technical replicates for all down-

stream steps: Reverse transcription, cDNA amplification, fragmentation and library preparation. Final libraries with size ranging be-

tween 200 to 1000 bpwere size-selected using Ampure XP beads (BeckmanCoulter). Quality and quantity of samples was controlled

at multiple steps during the procedure by running small fraction (< 5%) of sample on BioAnalyzer (high sensitivity DNA chip, Agilent).

Libraries were sequenced on HiSeq2500 platform to obtain 26 (read1) x 100 (read2) paired-end reads.

Single cell RNA-Seq analysis
Using Cell Ranger v1.3.0 (10x genomics), reads were aligned on themm10 reference genome for mouse and hg19 reference genome

for human and unique molecular identifier gene expression profiles were generated for every single cell reaching standard

sequencing quality threshold (default parameters). On average we obtained data for 2868 cells for mouse samples and 518 cells

for human samples, and on average 46,477 reads per cell for mouse and 274,080 reads per cell for human. Only confidently mapped,

non-PCR duplicates with valid barcodes and UMIs were used to generate a gene-barcode matrix for further analysis. Counts were

normalized to get counts per million (CPM). Unbiased clustering of single cells was performed using Seurat (version 1.4) (Rizzo, 2016;

Satija et al., 2015). Principal Component Analysis (PCA) was performed using a set of top variable genes (ranging between 647 to

2142 genes) and then dimensionality reduction was performed using t-SNE algorithm with top 10 to 18 PCAs. For Figure 2A,

tSNE 2D plots were obtained applying Seurat scRNA-Seq analysis R Package (using 12 first PCA, and 810 most variable genes

with resolution parameter set at 0.03).
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RNA-Seq
Cells were FACS-sorted by using the flow cytometry panel shown in Figure S3D. RNA-Seq was prepared on FACS sorted BM cells

using Universal Plus mRNA-Seq (Nugen) and sequenced on an Illumina 2500 instrument. Single-ended reads in FASTQ format were

mapped to mouse genome (mm10) using Rsubread (Liao et al., 2013) and overlapped with UCSC mm10 transcriptome annotation

from using FeatureCount R package(Liao et al., 2014). Gene expression level was then quantified as counts per million (CPM) using

edgeR(Robinson et al., 2010).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data for all experiments were analyzed with Prism software (GraphPad). For Figure 4A and S5A, unpaired t tests were used to

compare the values in tumor groups to healthy groups. P value was calculated based on two-tailed comparison with 99%confidence

level. For Figure 4B and 7B, unpaired ordinary one-way ANOVA was used for multiple comparisons between experimental groups

and the control group. P value was calculated based on Dunnett’s test with 95% confidence level. No statistical methods were

used to predetermine sample size. No animal or sample was excluded from the analysis.
Cell Reports 24, 2329–2341.e1–e8, August 28, 2018 e8


	Identification of an Early Unipotent Neutrophil Progenitor with Pro-tumoral Activity in Mouse and Human Bone Marrow
	Introduction
	Results
	Automated Single-Cell Analysis of Lin− CD117+ Ly6A/E− Cells Identifies a Distinct NeP Population
	ScRNA-Seq Analysis of Cluster #C Reveals Two Major Subpopulations, #C1 and #C2
	Cluster #C1 Is the Early-Stage Committed Unipotent NeP In Vivo
	Cluster #C1 Cells Are Increased in BM and in Periphery with Tumor and Promote Tumor Growth In Vivo
	Discovery of a Heterogeneous CD66b+CD117+ CD38+ CD34+/− Progenitor-like Cell Fraction in Human BM
	Both hNeP Subsets Produce Only Neutrophils in NSG-SGM3 Mice
	hNeP Increase in Melanoma Patient Blood and Promote Early Osteosarcoma Tumor Growth in Humanized NSG-M3 Mice

	Discussion
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References
	STAR★Methods
	Key Resources Table
	Contact for Reagent and Resource Sharing
	Experimental Model and Subject Details
	Mice
	Human BM cells
	Melanoma Patient Blood Collection
	Human Peripheral Blood Collection

	Method Details
	Cell suspension for mass cytometry and flow cytometry
	Mass Cytometry Antibodies
	Mass Cytometry (CyTOF)
	Flow Cytometry and Cell Sorting
	Confocal Microscopy
	Adoptive transfer
	In vitro progenitor differentiation assay
	Human T cell co-culture with NePs
	Single-cell RNA-seq. 3′ end
	Single cell RNA-Seq analysis
	RNA-Seq

	Quantification and Statistical Analysis



