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Abstract. We use ocean bottom-pressure measurements
from 17 tropical sites to determine the annual cycle of ocean
mass. We show that such a calculation is robust, and use three
methods to estimate errors in the mass determination. Our
final best estimate, using data from the best sites and two
ocean models, is that the annual cycle has an amplitude of
0.85 mbar (equivalent to 8.4 mm of sea level, or 3100 Gt of
water), with a 95 % chance of lying within the range 0.61–
1.17 mbar. The time of the peak in ocean mass is 10 October,
with 95 % chance of occurring between 21 September and
25 October. The simultaneous fitting of annual ocean mass
also improves the fitting of bottom-pressure instrument drift.

1 Introduction

The total mass of water in the oceans fluctuates with seasonal
changes in continental water storage. A measure of the an-
nual cycle of water exchange is of widespread interest and
has been estimated in at least nine studies using data and
models including satellite gravity, hydrology, ocean steric
height and satellite altimetry. Amplitude estimates have a
wide range of 5.5–9.4 mm (Vinogradov et al., 2008; Wouters
et al., 2011), and phases from 259–303◦ (Siegismund et al.,
2011; Rietbroek et al., 2009). (A phase of zero represents an
annual peak at the start of the year, so these correspond to a
maximum ocean mass between 19 September and 3 Novem-
ber.)

It is theoretically possible to use a single bottom-pressure
sensor to monitor changes in the total mass of water in
the oceans independently of satellite gravity measurements
and, if the sensor location is carefully selected, with little

dependence on hydrology models (Hughes et al., 2012).
There is also a great deal of interest in monitoring inter-
annual or decadal variations and long-term trends in ocean
mass, but existing bottom-pressure sensor technology makes
this extremely difficult, as the instruments, usually deployed
for high-frequency tasks such as tsunami monitoring, suffer
from non-linear drift of the order of centimetres per year.
The drift can vary even between redeployment of the same
instrument (Watts and Kontoyiannis, 1990; Polster et al.,
2009). However, a good determination of the annual cycle
of ocean mass change is still valuable for constraining mod-
els of hydrology and ocean dynamics, and in providing an
independent measurement for comparison with GRACE and
altimetry. Conversely, knowledge of the annual cycle also al-
lows us to improve estimates of the non-linear contribution
to bottom-pressure instrument drift.

Based on a pair of bottom-pressure sensors moored in the
Pacific,Hughes et al.(2012) estimated an amplitude 8.5 mm
(equivalent to a global average pressure of 0.86 mbar, or
about 3200 Gt of water) and phase 262◦ (22 September). This
lies within the envelope of results from other studies, but no
formal attempt was made to put error bounds on this number,
although it was noted that a similar value could be derived
using different ocean models.

Ocean dynamics aside, the bottom-pressure cycle mea-
sured at a given site is affected by the crustal deformation
and gravitational effects caused by the mass change on land.
The bottom pressure needs adjusting everywhere to derive
the global ocean mass change, but at certain sensor locations
in the central Pacific the result is uniformly biased high. At
these locations the effect on local bottom pressure is almost
independent of the origin of the additional water mass, which
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could equally come from Greenland, Antarctica or the Ama-
zon. This was the reason for the choice of sites S and N of
Hughes et al.(2012), as the nearest existing data to the opti-
mal region.

In this paper, we will apply theHughes et al.(2012)
“weighing” technique to existing bottom-pressure data from
17 moorings (including sites S and N) at tropical sites around
the world. Many of these represent sites that would not be
considered ideal, either due to increased variance of the
dynamic bottom-pressure signal or dependence upon the
specifics of the continental hydrology. We use ocean models
to remove local dynamics, including self-attraction and load-
ing corrections. We use long-period tide models and atmo-
spheric pressure data to correct for those components omitted
from ocean models.

We will first, independently of any hydrology model, show
the range of annual cycles in local pressure that arise from
mass exchange, and how the error bounds vary between
sites according to the quality of available data. Then, with
an hydrology-and-atmosphere model based on GLDAS (the
Global Land Data Assimilation System,Rodell et al., 2004),
we account for the expected differences between sites and
make use of data from these sub-optimal locations, reducing
error bounds on the predicted annual cycle of global ocean
mass. We will describe three techniques to derive error es-
timates, and how to combine data from multiple sites. Our
best estimate is that the ocean annual cycle has an amplitude
of 0.85 mbar and phase of 280◦ (10 October), with 95 % of
results within 0.61–1.17 mbar or 261–294◦ (21 September–
25 October).

2 Calculating annual cycle in bottom pressure at
the 17 sites individually: method

2.1 Contributions to bottom pressure

The bottom pressureprec measured by a given sensor can be
decomposed as

prec = pdrift + pdyn+ pt + pa+ pm, (1)

wherepdrift is sensor drift,pdyn is the change due to ocean
dynamics,pt is due to tides,pa is the atmospheric pressure
averaged over the ocean andpm is due to the change in ocean
mass due to precipitation, evaporation, grounded ice melt and
river runoff.

Some functionFs relates the global-average mass change
mo to the pressure felt at an individual site. In general,Fs , an
adjustment due to the changing geoid and crustal loading, is
dependent not just on the site location but on the distribution
of ocean and continental water mass, and cannot be assumed
to be stationary. However, for the annual component we may
assume that such a uniquely invertible function exists for a
given site,

pm = Fs(mo). (2)

In this part of the paper we seek only to determine the an-
nual cycle of the local pressurepm at each site, and notmo

itself. This annual cycle ofpm is calculated completely in-
dependently of any hydrological or atmospheric model, or
GRACE data. In Sects.4 and 5 we will employ a hydro-
logical and atmospheric model to determineFs at annual
timescales for each site – a rather small correction, at certain
sites – and hence the annual cycle in ocean mass.

2.1.1 Sensor locations

For this paper, we use data from the US National Tsunami
Hazard Mitigation Program (González et al., 2005), down-
loaded from http://www.ndbc.noaa.gov/dart.shtml. These
were, at the time of selection, all the sites available in the
open ocean within 18◦ of the equator with records from 2001
onwards. Where records have been converted to equivalent
metres of sea level, we revert them to pressure in mbar using
the original conversion factor. There are 17 sites, at locations
shown in Fig.1 and TableA1. Sites 17 and 11 correspond
to sites N and S ofHughes et al.(2012). These two sites are
the earliest, starting in September 2001 and January 2003 re-
spectively; the other sites have deployments between 2006
and 2011. At most sites there are multiple instrument de-
ployments. The deployments varying in length from a few
months to over 2 years, and there are many gaps in data both
between and during deployments. Sites 3, 8, 9, and 16 have
particularly short records.

We initially do an approximate detrending, in order to fit
and remove tides with daily or shorter periods and the fort-
nightly tide componentsMf andMsf with periods 13.66 and
14.77 days. Then we replace trends ready to calculate a more
precise drift fit in combination with the annual signal, as de-
scribed in Sect.2.2. The data with fortnightly and shorter
tides removed is shown in Fig.2.

2.1.2 Long-period tides

There remain other tidal constituents with monthly or longer
periods inpt which can be removed by modelling rather than
fitting, and thus avoiding contamination by the sensor drift.
(In fact we tried both fitting and modelling for removing fort-
nightly and monthly equilibrium tides, and found less than
0.01 mbar difference in results for the annual cycle.)

The first of the long-period tides we consider is the Pole
Tide ηp, which arises from variations in the apparent lo-
cation of the Earth’s rotational axis, and hence variations
in the centrifugal potential. It has main periods of 12 and
14 months and amplitudes of up to 0.7 mbar at the bottom-
pressure recorder sites. We calculate this using the derivation
given byDesai(2002). Over the ocean,

ηp = pxE(ηx) − pyE(ηy), (3)
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Figure 1. Locations of test sites and bathymetry from Nemo 1/12◦ model.

where

ηx = −3.856 sin(2φ)cos(λ),

ηy = −3.856 sin(2φ)sin(λ),

in mbar, for longitudeλ, latitudeφ. The functionE is the
correction toη due to self-attraction and loading, and is ex-
plained below. The componentspx , py are the tilt of the
pole in arcseconds taken from the EOP (IERS) 08 C04 data
set of Earth orientation parameters, from the International
Earth Rotation and Reference Systems Service. (Note that
the IERS definesy along 90◦ W, hence the negative coeffi-
cient). We subtract a constant and linear trend frompx , py ,
in order to focus on shorter period signals.

There are also long-period equilibrium tides with ampli-
tude of up to 1.5 mbar over the recorder sites. These are of
the form

ηlp = (z0(t) + z1(t))E(ηc) + z1a(t)E(η3), (4)

where

ηc = 3 sin2φ − 1,

η3 = 2.5 sin3φ − 1.5 sinφ,

and the coefficientz0 corresponds to the components with pe-
riods 18.6 years, annual, semi-annual and 4-monthly, andz1,
z1a to monthly components. The time series forz0, z1 andz1a

are synthesised using components tabulated byCartwright
and Tayler(1971); Cartwright and Edden(1973).

2.1.3 Self-attraction and loading of long-period tides

The presence of additional water causes crustal deformation
and geoid changes that change the ocean depth, both locally
and globally. Generically, loading effects such as these are
sometimes referred to as self-attraction and loading (SAL).
So as well as the effect of the external changes in gravita-
tional potential, we account for SAL corrections to the long-
period tides.

We do this following the method using Green’s functions
described byStepanov and Hughes(2004). To calculateE
for eachη we apply the technique described byAgnew and
Farrell (1978), who applied it to an input potential equiv-
alent to ourηc. The ocean at a point(φa,λa) feels the ef-
fect of the sea-level change at each other point,η(φb,λb),
according to a functionG(α) whereα is the angular dis-
tance betweena andb. We assume that the additional mass
at the point(φb,λb) due to the sea-level changeη(φb,λb) is
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Figure 2. Bottom-pressure data from the 17 test sites (mbar, offset for clarity), following subtraction by least squares fitting of tides with
periods of fortnightly and shorter. Stars indicate the start of sensor deployments. There may be gaps in data within deployments. Black
squares indicate convergence warnings in the drift fitting. These are not necessarily on the shortest deployments. The overlaid green line
shows the sensor drift fitted using the iterative technique on all sites simultaneously. The end dates of the ocean models are also indicated.
They-axis offset between sites is 15 mbar.

distributed in a circular cosine bell hump, i.e. mass is propor-
tional to (1+ cos(πr/rx))/2 wherer is the arc length ofα
andrx = 0.25◦ is chosen as the grid size.

G has three components,G = G1 + Gk − Gh, which are
the Green functions for vertical seafloor displacement due to
loading,Gh; vertical geoid displacement due to indirect at-
traction,Gk; and vertical geoid displacement due to direct
attraction of the load,G1. These are taken from interpola-
tions of the Green functions given byFrancis and Mazzega
(1990).

We integrate the attraction over all pointsb to give the
global functionE(η), the additional mass at any point due
to the input sea levelη:

E(η(a)) =

∫
ocean

η(a)G(α(a,b))db.

Then, since the correctionE(η) itself changes the geoid,
the process must be iterated. Eventually we converge on
ηtot(φ,λ), an equilibrium response to the forcing by the
spherical harmonicη, which is self-consistent under loading

and self-attraction, soηtot ≈ E(ηtot) = E(η). This is done for
η = ηx , ηy , ηc andη3, and the result is consistent with the
maps ofAgnew and Farrell(1978) for ηc andDesai(2002)
for ηx andηy . The process only slightly changes the analyt-
ical functions calculated without applying the SAL correc-
tion, in most areas scaling them by about 1.25.

2.1.4 Ocean dynamics and atmospheric pressure

To remove the local ocean dynamicspdyn from the bottom-
pressure measurements, we use ocean models. For this study
we have available five models, as detailed in Table1. ECCO
and the 1/12◦ NEMO runs provide the best overlap with the
bottom-pressure data, and results below are based on ECCO
unless stated otherwise.

We subtract the global spatial average of bottom pressure
at each time from the model data, to remove any added mass,
as well as removing artifacts due to the model’s Boussinesq
approximation.

FigureA1 shows the annual cycles of local bottom pres-
sure that are found in the models at each site, with most sites
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Table 1.Ocean circulation models used in this study.

Model Resolution Start date End date

ECCOa 1/4◦ 1992 2010
OCCAMb 1/4◦ 1985 2003
OCCAM 1/12◦ 1988 2004
NEMOc 1/4◦ 1959 2007
NEMO 1/12◦ 1979 2010

a ECCO data is the 18 km resolution ECCO2 model with data
assimilation from Jet Propulsion Laboratory (Menemenlis et al.,
2005), b OCCAM data from National Oceanography Centre, run
202 at1/4◦ and run 401 at 1/12◦ (Marsh et al., 2009), c NEMO
data from National Oceanography Centre, runs ORCA025-N206
and ORCA0083-N001 (Blaker et al., 2014).

having an amplitude of about 0.5–1 mbar. At some sites (e.g.
11) the models give consistent annual cycles, but at site 2
there is almost a factor of 2 difference in amplitude between
ECCO and NEMO 1/12◦ and at site 17 there is a range of
76◦ between OCCAM 1/12◦ and NEMO 1/12◦. This is one
of the greatest areas of uncertainty in this study.

The atmospheric pressure averaged over the global ocean,
pa, needs to be removed from the bottom-pressure record,
and this is done using the ECMWF analysis data set provided
as a satellite altimeter product by Aviso.pa has an annual
amplitude of 0.61 mbar and phase 186◦, peaking at 7 July.

2.1.5 Self-attraction and loading of dynamic pressure

The ocean models assume a constant gravitational field and
ocean floor, but in the real world water masses cause crustal
deformation and changes to the geoid as described above.
For thepdyn component, we correct the model data for these
SAL effects, in a similar way to the calculation byTamisiea
et al. (2010). The SAL correction to the dynamic pressure
from model data has an annual amplitude of up to 0.2 mbar
at these sites.

This correction was not made in the previous study
(Hughes et al., 2012) and accounts for a large part of the
phase difference between that study and this one.

2.2 Removing non-linear sensor drift

Currently available bottom-pressure sensors suffer from drift
that can be larger than the annual cycle of bottom pres-
sure (Fig.2). We follow Watts and Kontoyiannis(1990) and
Polster et al.(2009) in assuming that the drift is an initial de-
caying exponential and a long-term linear, that is of the form

pdrift = a1 + a2τ + a3e
−τ/|a4|,

whereτ is the time in days since the start of the deployment.
To prevent our fitted drift absorbing the annual cycle (we can-
not prevent it absorbing the long-term trend without further
information on instrument drift), we use an iterative process
as follows. We writepm = pANN

m +pnoise, i.e. the annual sig-
nal we seek plus some signal which includes high frequency

Figure 3. Drift fitting to site 15. The yellow line is the fit to the raw
bp record (blue), without taking account of the annual mass signal
or other corrections. Green is the iterative fit to just that site, and
magenta is the fit with the annual fitted to all sites simultaneously
(discussed later).

ocean mass changes and errors in the ocean model. Rearrang-
ing Eq. (1) as

pres= pdrift + pnoise= prec− (pdyn+ pt + pa+ pANN
m ),

we guesspANN
m (we start with amplitude = 1 mbar, phase = 0)

and find coefficients to fitpdrift to pres. If we have correctly
guessedpANN

m , then there will be no annual signal in the
dedrifted residualpnoise. So we fit another annualpANN1

m to
pnoise, and use this to adjust our estimate ofpANN

m . We iterate
with fresh attempts atpANN

m and the drift fit, until there is no
annual signal left inpnoise, andpANN

m has converged. Conver-
gence to a tolerance of 0.005 mbar (amplitude of adjustment
between iterations) is usually achieved within about 10 iter-
ations; “no convergence” is declared after 80 iterations.

For most sites in our test set, there is more than one de-
ployment, although there may be gaps between and during
deployments. In these cases the iterative procedure involves
all deployments at a site, simultaneously fitting individual
drifts and a single annual cycle. An example of the fitted drift
is shown in Fig.3.

3 Calculating annual cycle in bottom pressure at
the 17 sites individually: results

3.1 Requirement for iterative fit for dedrifting

Figure4 shows the fitted annual cycle of bottom pressure at
each site when the recorder drift is calculated (a) with the it-
erative procedure outlined above and (b) with a least-squares
fit of an exponential-plus-linear to the raw recorder dataprec.
At some sites (1, 2, 4, 10, 11 and 12) the iterative fitting

www.ocean-sci.net/10/701/2014/ Ocean Sci., 10, 701–718, 2014
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Figure 4. Phasor diagrams for annual cycles at each site, for:(a) local bottom pressurepANN
m predicted using iterative fitting;(b) local

bottom pressurepANN
m predicted without iterative fitting (sites 3 and 8 are outside the axes);(c) local pressureph and global ocean massmh

predicted by two hydrology models: GLDAS-1 is shown with stars (ph) and cross (mh), GLDAS-2.0 with squares (ph) and diamond (mh);
(d) global ocean massmo, using a hydrology model GLDAS-1 to provideFs . Axes for (c) are indicated by red box on(a). All converged
sites are included, some have large error bounds to be described below.

makes fairly small differences, but the fitted annuals at sites
5, 13, 14 and 15 are changed substantially.

Site 15 provides a particularly clear example (see Fig.3).
The apparent decrease of the bottom-pressure record in late
2008 is due to the coincidence of the annual ocean mass de-
crease. The drift fitted to the raw data is 21.54− 0.05τ −

47.47e−τ/84.33, which is decreasing at the end of the record.
The iterative fit allows for the sinusoidal contribution of the
ocean mass and other variables, and the resulting drift is
−3.76+ 0.05τ − 19.41e−τ/37.24, increasing throughout the
record. Using the raw-data drift fit would result in a bottom-
pressure error of over 3 mbar for the end of the record. With
a differing sign for the linear part, serious error could result
from any extrapolation of the raw-data drift fit.

This removal of a real pressure signal occurs for the first
deployment of sites 13, 14, and 15, all of which are only
16 months long and finish in April 2008 at the minimum of
the ocean mass cycle, maximising the risk of the annual sig-
nal contaminating the drift fit to the raw data. For the first
deployment at site 13 the raw fit is over 6 mbar too low at the
end of the record.

It is worth remembering that we have not attempted to
distinguish between the bottom-pressure recorder drift and
any long-term trends in ocean mass. So this fit represents a
combination of recorder drift and any trend or variability in
ocean mass longer than 1 year. Trends in other components
of Eq. (1) may also remain.

Ocean Sci., 10, 701–718, 2014 www.ocean-sci.net/10/701/2014/
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3.2 Range of results across test sites

The amplitude and phase of the annual cycles inpANN
m for

each of the test sites is shown in Fig.4a, plotted with a phase
of zero at the top representing an annual peak at the start
of the year. Site 11 (S) has amplitude 0.93 mbar and phase
272◦ peaking at 3 October, slightly larger and later than the
result ofHughes et al.(2012) for the combination of sites S
and N. For sites 3, 8, 9 and 16, all of which had very short
deployments, the iteration did not converge.

At this stage, some of the results differ wildly from other
measurements of the ocean annual cycle, with a scatter of
6 months of phase and several times amplitude. They are
not expected to be exactly the same as these are measure-
ments of residual pressure cycle (pANN

m ) at each site, with
geographic variation in ocean mass still included, i.e. the in-
verse of the functionFs still to be applied to convert to global
average ocean massmo. But it is clear that the scatter is larger
than that predicted by the ocean mass model (Fig.4c). It is
perhaps not surprising that the short deployment at sites 4
and 5 produced implausible results, but more so that there is
so much difference between neighbouring sites 13 and 15.
However, we have yet to examine the error bounds on these
measurements and as we will see in following sections, the
bounds on some sites are much larger than on others.

3.3 Sensitivity to noise

If all dynamical signals were perfectly modelled and re-
moved, then it would always be possible to distinguish an-
nual cycles from sensor drift. However, the presence of noise
means that our ability to distinguish these two signals will
depend in a complicated way on the type and amplitude of
the noise, the nature of the drift, and lengths of time series.

To test this, we produce a random noise signalpnoise1with
similar frequency spectrum to the residualpres. To produce
simulated time series whose stochastic properties closely
match the real data we first form the power spectra from
the 17 series. Given that the series contains many gaps we
use a combination of the Lomb–Scargle periodogram (Lomb,
1976; Scargle, 1982) and Fourier spectral analysis on seg-
ments that were over 5000 epochs (52 days) long to produce
a good representation of the spectra. We find that the spectra
follow a power law shape, that is the power is proportional
to f α, for frequencyf and spectral indexα. However, the
slope appears to change at around a period of 2 days and at
the lowest frequencies the spectra is essentially flat, proba-
bly due to removing the drift from the series. We estimate
the low-frequency spectral index (period greater than 2 days)
by averaging the series to daily estimates and using maxi-
mum likelihood estimation (MLE). All 17 estimates of the
spectral index are then averaged to come out with a spectral
index of−1.3. We cannot estimate the high-frequency spec-
tral index using MLE because the sub-daily part of the spec-
trum is biased by remaining power at tidal frequencies. The

spectral index is therefore estimated from the power spectra
to be around−1.8. We simulate the noise using the discrete
simulation method described byKasdin(1995) where the im-
pulse response function is created to mimic the−1.8 spectral
index at high frequencies and−1.3 index at periods greater
than 2 days. Finally, to recreate the flattening at low frequen-
cies we also remove trends from the simulated data for ran-
domly sized segments equivalent to that seen in the real data.
We do not create any extra power at tidal frequencies.

We then adjust each of the 17 original bottom-pressure sig-
nals usingprec−pnoise+pnoise1– the samepnoise1for every
site – and redo the iterative drift and annual fit. This is re-
peated for 100 noise signals to give a spread of results for
each site. Although the models perform better at some sites
than others, the same noise spectrum is used for each site.
This enables us to directly compare the spread of results at
one site with another.

Figure5 shows the scatter of the resulting annual fits for
each site. For sites 3, 8, 9 and 16 only a few results are plot-
ted, this is not necessarily because the amplitude is greater
than the range shown but because the iterative fit diverged.
The fits with a close grouping, such as 1, 2, and 11, are those
for which the annual fit has been robust to the specific noise
estimate. Some of the surprising results in Fig.4a, such as
sites 4 and 15, are those for which there is a large spread
here.

3.4 Comparison of ocean models

The models for ocean dynamics, NEMO, ECCO and OC-
CAM, have similar annual cycles of model bottom pressure
(pdyn) for some sites (e.g. sites 7, 10, 11) but agree less well
at others (e.g. sites 2, 15) (see Fig.A1). This increases the
error bound on the ocean mass for the latter sites, suggesting
that more weight should be given to those sites with good
model agreement. To calculate this rigorously, we repeat the
noise calculation in Sect.3.3 for all models. These have the
distributions as shown in Fig.6. The OCCAM and NEMO4
models have shorter overlaps with the data, and hence pro-
vide shorter series for the annual fitting, which may account
for the poorer performance of these models. The OCCAM
models are only used at sites 11 and 17. NEMO4 has a short
overlap with the data at most sites, but overlaps more than
16 months only at sites 1, 11 and 17. At sites 4 and 5 there
are only 14 months of data, insufficient for a reliable estimate
of the annual cycle. Site 16 has a long gap between deploy-
ments, with only 15 months of data in total. We see that the
result at site 1 is consistent between models.

www.ocean-sci.net/10/701/2014/ Ocean Sci., 10, 701–718, 2014
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Figure 5. Scatter ofpANN
m for each site with noise added to the bottom-pressure records. Subplot axes are identical to Fig.4a.

4 Calculating annual cycle in ocean mass from
the 17 sites individually

4.1 Spatial variability of mass signalpm

In Sect.3 we focussed onpm, the annual that can be re-
trieved from bottom-pressure records once other known sig-
nals had been removed: atmospheric pressure, long-period
tides and ocean dynamics. Of these, the last is probably the
least known and would introduce the greatest spatial vari-
ability into the bottom-pressure records. However, even once
these “known” signals are removed, hopefully leaving just
the pressure signal due to mass flux, we would not expect
pm to be globally uniform (e.g.Clarke et al., 2005). During
the annual water cycle, some continental locations store large
masses of water, and the SAL effects of this additional mass
should be accounted for.

Ideally, one might locate bottom-pressure sensors far from
land, so that the location of the variation of water mass on the
continents would be irrelevant.Hughes et al.(2012) demon-
strated that no matter the location of the mass change on the
continents, areas of the Pacific Ocean experience nearly the

same change in bottom pressure. They divided the continen-
tal areas into 2283 separate regions, and looked at the change
in bottom pressure associated with a water loss from each
region that would be associated with a one millimetre glob-
ally averaged sea level rise. While areas near the mass loss
experience a bottom-pressure decrease, a section of the Pa-
cific experiences an increase only ranging between 0.9 mm
and 1.3 mm whatever the locations of mass loss on the con-
tinents. On average, this region experiences a higher-than-
average sea level change of 1.15–1.18 mm.

Unfortunately, the bottom-pressure records are not located
in this ideal area, as coastal locations are more relevant in
their role in the tsunami warning system. Thus, we expect
that crustal deformation and geoid changes can introduce
spatial variations into the amplitude and phase of the annual
mass signal. We will now introduce how we account for this
when trying to find a globally averaged value.

4.2 Modelling the spatial variability of pm

The change in bottom pressurepm due to the annual cy-
cle of mass changemo, depends upon the location of

Ocean Sci., 10, 701–718, 2014 www.ocean-sci.net/10/701/2014/



Joanne Williams et al.: Error estimates on weighing the oceans 709

Figure 6. Comparison ofpANN
m derived from different models, for each site. Models are indicated as ECCO (blue), NEMO12 (green),

NEMO4 (red), OCCAM12 (cyan), OCCAM4 (magenta). 95 % of results lie within the contours. No contours are plotted if there is less than
13 months overlap between model and record data at a site. Subplot axes are identical to Fig.4a.

the bottom-pressure sensor and pattern of mass change
on the continents, according to some functionFs . Simi-
lar to Hughes et al.(2012), we follow the approach of
Tamisiea et al.(2010), using hydrological and atmospheric
models to estimateFs as

Fs ≈ ph/mh,

whereph is the model prediction of pressure for that site, and
mh is the model estimate ofmo. The dominant contribution
to the ocean mass comes from the change in water storage on
the continents. However, the atmosphere also contributes to
the global annual cycle in ocean mass, both by storing water
mass and by pressure changes introducing loading changes
on the continent. In this calculation, we assume that the Earth
responds elastically, which is reasonable for the annual cycle.

For our primary estimate of this effect, we use the
GLDAS/Noah data version 1 (GLDAS-1) (Rodell et al.,
2004) over the period December 2001 to November 2010.
Since this does not extend to Antarctica, and the data in
Greenland should not be used, we add the same component

from GRACE for these regions as used inTamisiea et al.
(2010) andVelicogna(2009), although this has a rather small
effect. For the atmospheric data, we use the monthly-mean
surface pressure fields from the National Centers for Envi-
ronmental Prediction/National Center for Atmospheric Re-
search (NCEP/NCAR) reanalyses (Kalnay et al., 1996) over
the same period. The resulting annual cycle estimate at each
of the 17 bottom-pressure locations, as well as the global
average, is shown in Fig.4c. Compared to the global aver-
age, 0.86 mbar and a phase of 265◦ (25 September), most of
the sites show a larger amplitude. Many of the sites (4, 11–
14, 16–17) show a similar amplification of amplitude with
rather small phase change. However, other locations indi-
cate quite different behaviour. Most notable is site 2, located
in the Indian Ocean. The large water storage on the conti-
nents in the region, with a not-too-different phase with re-
spect to the ocean’s maximum, leads to a much larger am-
plitude (1.21 mbar) and later phase (277◦, 8 October) at this
site.
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Figure 7. Probability density functions (PDFs) for the amplitude and phase ofmo calculated from each site with noise added to the bottom-
pressure records, and mappingsFs from hydrology and atmosphere model. Convergence was too poor at site 9 to calculate a PDF; 95 % of
results fall inside the white contour. Subplot axes are identical to Fig.4a.

The actual values displayed in Fig.4c are not as important
as the scaling relationship one can infer between the glob-
ally averaged annual mass variation and the changes at each
bottom-pressure recorder location. As long as the distribu-
tion of water is correct, both spatially and temporally, then
the scaling inferred from the results should be independent
of the actual value of the global average. This is the critical
assumption employed here. We assume that the relationship
between local pressure change and the global average is the
same for the model and the observations.

4.3 Correcting for spatial variability of pm

The values ofph for each site andmh provided by the hy-
drology and atmosphere model are shown in Fig.4c. Then
our estimates ofmo from each site are given by

mo = pANN
m

mh

ph

.

The calculation is done using complex variables to treat
the amplitude and phase of the annual signal together. This

results in the range ofmo results shown in Fig.4d. The most
significant change is to site 2. With this conversion factor, we
can convert the scattered estimates ofpANN

m shown in Fig.4a
into corresponding estimates ofmo in Fig. 4d.

In order to quantify the noise distributions using kernel
density estimators on the sine and cosine coefficients of the
annual signal, we use the function kde2d submitted to the
Matlab file exchange by Zdravko Botev (Botev et al., 2010).
The distributions for sites 4 and 11 in Fig.7 illustrate how the
results for some sites are much more susceptible to noise than
others. Sites with very few converged results are omitted, but
note that the probability density functions (PDFs) for these
sites will be close to uniform, so will not substantially affect
later results. After correction for the spatial variability ofpm,
sites 2, 6, 7, and 11–14 all show a focussed peak in results
with an annual of around 0.9 mbar and phase in early Octo-
ber. Only sites 1 and 10 show a focussed peak with results
elsewhere. Site 10 has only one good deployment and the re-
sults are slightly smeared. The high amplitude of site 1 is not
easy to explain, but notice that its location in the Caribbean
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Figure 8. (a) The probability of the annual mass having a given amplitude and phase for all 17 sites, combining individual site fits, renor-
malised to integrate to 1.(b) Scatter of annual amplitude and phase for all sites simultaneously, with noise added to the bottom-pressure
records. Both plots are for the ECCO model, with GLDAS-1. 95 % of results fall inside the white contour.

Sea is not ideal. We speculate that it may be subject to local
ocean dynamics poorly captured by these models, although
ECCO and NEMO12 are in reasonable agreement.

The noise spread of the results is much greater than the
correction for spatial variability, and it seems unlikely from
these results that we could reverse the calculation to de-
tect meaningful spatial variation in continental water storage
from the bottom-pressure record.

4.4 Combining all the sites

We can combine the sites to make use of as much infor-
mation as possible, by first using the hydrology and atmo-
sphere model to adjust frompANN

m to mo. Since the PDFs
for each site are independent realisations of ocean mass cy-
cle estimates, the PDF for a combined estimate is given by
the product of these PDFs, renormalised to integrate to 1. In
effect, this gives more weight to those sites with a narrower
noise spread, in which we have greater confidence. The re-
sulting PDF is shown in Fig.8a. The peak has an annual
amplitude of 0.93 mbar (3400 Gt) and phase of 287◦ (18 Oc-
tober),> 95 % of results fall inside an amplitude range of
0.79–1.06 mbar and> 95 % within a phase range of 266–
293◦ (26 September–23 October).

Including the NEMO12 model as well as ECCO leads
to a result that is smaller and earlier than the result for
ECCO alone, with peak amplitude 0.82 mbar and phase 282◦

(13 October). The smaller amplitude appears to be due to
the difference between NEMO12 and ECCO at site 2 (see
Fig. 6).

4.5 Comparison of different hydrology models

Thus far we have described results using the GLDAS-1 data
for the hydrology model to derive the functionFs . We have

also tested the GLDAS-2.0 data (also plotted on Fig.4c),
which uses an updated version of the NOAH model and,
more importantly, different meteorological forcing. While
the whole GLDAS-1 model time series is forced by a mix
of meteorological data sets, over the period of this study the
forcing is consistent and includes high-quality observational
precipitation and solar radiation. GLDAS-2 uses the Prince-
ton meteorological forcing data set, which is a bias-corrected
reanalysis product.

In this case the global-average ocean mass predicted by
the combined hydrology and atmospheric data sets,mh, is
very different, with an amplitude of only 0.52 mbar (peaking
24 September). (The ECCO ocean model is used here.) But
as seen in Fig.9 the relationship betweenmh and the local
pressureph is similar, soFs is little changed at most sites.
The largest difference is at site 2 in the Bay of Bengal, for
which GLDAS-2.0 predicts a much larger amplitudeFs than
GLDAS-1. When the results for different sites are combined,
the most probable prediction for the annual of ocean mass is
0.84 mbar with phase 277◦, 7 October, earlier than the result
with GLDAS-1 and with a smaller amplitude. The spread of
results is similar. We believe this is largely because of the
increased shift of site 2, which brings it closer to the centre
of the spread of other sites’ results than with GLDAS-1.

5 Calculating ocean mass from all deployments at
the 17 sites simultaneously

5.1 Simultaneous fit

As there is only one ocean mass cycle to be determined, it
makes sense to consider the alternative approach of calculat-
ing a simultaneous fit to all deployments, rather than treating
each site separately. This also allows us to improve the fit to
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Figure 9. Amplitude of Fs = ph/mh as derived from GLDAS-1
and GLDAS-2.0 for each site.

drifts at sites for which all deployments are short, as the an-
nual cycle used in the fitting process will be constrained by
longer records from other sites.

To combine records we apply the procedure outlined in
Sect.2 with a single guess atmo, the annual cycle in ocean
mass. We useFs (from GLDAS-1) to givepANN

m , the annual
cycle in bottom pressure at each site. (Observe that this re-
quires us to haveFs , the relative scaling on each location at
this stage, although not an absolute value for the ocean mass.)
We fit linear-plus-exponential drifts topres for each deploy-
ment, to givepnoise, then use a least-squares fit onpnoise for
all deployments to find any annual in the residuals. This is
used to adjust our guess atmo and we iterate to minimise the
annual signal remaining inpnoise.

The multiple-site drift fitting makes only a small differ-
ence to many deployments, but it does improve the fit to
sites with very short deployments (e.g. 3, 9). On the first
deployment (2007–2008) of site 15 it has the effect of re-
ducing the effect of the annual signal and shortening the
timescale of the exponential part (see Fig.3). The drift there
changes from 1238−0.50τ−1251e−τ/2104to 21.29−0.02τ−

33.79e−τ/254.3. This pattern is repeated at other sites, with
the exponential timescales tending to be shorter when the si-
multaneous fit is done. For most deployments the timescale
is less than 60 days.

This simultaneous fit to all the deployments gives an an-
nual mass cyclemo with amplitude 0.86 mbar, phase 277◦,
peaking at 8 October.

5.2 Noise on the simultaneous fit

We test the sensitivity to noise of the simultaneous fittings.
We do this with a separate noise signal added to every de-
ployment. The resulting distribution is shown in Fig.8b and
again as the ECCO model in Fig.12. The annual cycle ofmo

has 95 % of results within amplitude range 0.68–1.05 mbar,
phase range 265–290◦ (maximum at 26 September–21 Octo-
ber).

Figure 10 shows the comparison between the remainder
prec-pdrift-pdyn-pt-pa,where the ocean dynamics are from
ECCO, andFs(mo), whereFs is taken from GLDAS-1 and
mo is the peak of this distribution. We can see that at most
sites most of the monthly or longer variability is accounted
for. The exceptions are site 2 (Bay of Bengal), for which
there is interannual variability with a larger signal in 2008,
and sites 1 (Caribbean Sea) and 7 (Peru Basin), for which
there is unaccounted variability of several mbar over periods
of a few months. This variability is not captured by our noise
model, effectively giving too high weighting to these sites.

5.3 Sensitivity to data selection

As a third method of estimating errors, we use bootstrapping-
with-replacement. We select half of the deployments at ran-
dom, and fit the annual to these simultaneously as described
in Sect.5.1. This is repeated 100 times. The amplitude and
phase of the annual is shown in Fig.11. Note that bootstrap-
ping should overestimate the errors as we are not using all
the available deployments, and the sampling will sometimes
select short deployments.

Also in Fig.11 is shown the result for the simultaneous fit
to only sites 11 and 17 (S and N fromHughes et al., 2012)
and excluding those sites. The change between the latest cal-
culation from S and N only (blue up-triangle) and the result
quoted byHughes et al.(2012) is largely due to the inclu-
sion of the SAL corrections to the dynamical ocean pressure.
The more detailed long-period tides also make a slight dif-
ference. All these results are enclosed by the 95 % noise con-
tour for sites 11 and 17 only. The annual cycle ofmo for
sites 11 and 17 only has an amplitude 0.81 mbar, phase 272◦

peaking 2 October. For all other sites: amplitude 0.89 mbar,
phase 280◦ peaking 10 October. Although the most probable
value is not much changed from just using two sites, the error
bounds are reduced by including more deployments.

5.4 Minimum deployment length

It would seem likely that it is easier to distinguish between
drifts and annual cycles in long deployments. To test this
we apply the simultaneous dedrifting procedure described in
Sect.5.1 to bottom-pressure records, omitting deployments
shorter than 6, 12, 18 or 24 months. We find that there is lit-
tle difference in the amplitude or phase of the fitted annual
ocean mass. This is perhaps because the few long deploy-
ments contain the majority of the data points, dominating the
fit. The annual cyclemo found for deployments of minimum
length [6, 12, 18, 24] months has amplitude [0.86, 0.87, 0.88,
0.88] mbar and phase [279, 279, 282, 277] degrees, peaks at
[09, 10, 13, 08] October.

We also tried applying the dedrifting procedure to individ-
ual sites omitting short deployments. Again, the long deploy-
ments seem to dominate, and the only deployments we have
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Figure 10.Monthly mean bottom pressure at each site after removing ocean dynamics (from ECCO), tides, atmospheric pressure; vs. site-
adjusted annual masspANN

m calculated from simultaneous fit to bottom-pressure recorder data using ECCO with GLDAS-1 (peak of noise
distribution). Bottom pressure before averaging is plotted in grey at each site. They-axis offset between sites is 3 mbar.

at > 2 years, at sites 2, 6, 10 and 12, all give similar results
to the full records at those sites.

If only deployments shorter than 14 months are used, there
is no convergence to an annual cycle, but the simultaneous fit
to multiple sites will converge with only deployments shorter
than 16 months (to amplitude 0.87 mbar, phase 270◦, peaking
30 September).

5.5 Comparison of hydrology models

If we use GLDAS-2.0 instead of GLDAS-1, and fit simul-
taneously to all sites (with ECCO), the ocean mass has an
annual amplitude of 0.83 mbar, peaking at 279◦ (9 October).
This is a slightly smaller amplitude than with GLDAS-1, but
the change is much less than when we used the technique of
combining fits to individual sites. We think that the method
of fitting to all sites simultaneously is less sensitive to the
change inFs at site 2 between hydrology models.

5.6 Comparison of ocean models

Figure 12 shows the result of fitting to all sites simultane-
ously, using the various models available. The error bars are

much larger for the OCCAM model, and NEMO4, which
have much shorter overlap with the data (see Fig.2).

Unlike the method of combining sites after fitting, with
the simultaneous fitting the NEMO12 modelincreasesthe
amplitude of the annual relative to the fit with the ECCO
model. Again, the fit is less sensitive to site 2.

Summing the results of the ECCO and NEMO 1/12 mod-
els, which have the longest overlap with the data, gives a
peak amplitude of 0.92 mbar and phase of 273◦ (4 Octo-
ber), with 95 % of results within 0.71–1.14 mbar or 262–288◦

(22 September–19 October).

5.7 Selection of optimal sites

We also tried the calculation using only the “best” sites 6, 10–
15 and 17. That is we excluded sites with less than 15 months
records; sites 1 and 7, where there is unaccounted variability
shown in Fig.10; and site 2, where there are inconsistencies
between GLDAS models and between ocean models.

For ECCO alone this moves the predicted annual to
0.82 mbar, peaking on 12 October. When NEMO12 is used
there is very little change in the prediction, and if the mod-
els are combined then the annual has amplitude 0.85 mbar
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Figure 11. Spread of simultaneous results under bootstrapping
(dots). Also the result for only sites 11 and 17 (S and N from pre-
vious study) and excluding sites 11 and 17; the 95 % noise contour
for only sites 11 and 17; the result fromHughes et al.(2012); and
only sites 11 and 17 with no self-attraction and loading correction
to the ocean dynamics.

Figure 12. 95 % noise contours for annual amplitude and phase
fitted to each site simultaneously with noise, using ECCO (blue),
NEMO12 (green), NEMO4 (red), OCCAM12 (cyan) or OCCAM4
(magenta). Note that the latter models have only a short overlap in
time with the bottom-pressure data.

Figure 13. Probability distribution function of annual amplitude
and phase for best sites (6, 10–15, 17) simultaneously with noise
added to the bottom-pressure records, using both ECCO and
NEMO12. 95 % of results fall inside the white contour. The peak of
the distribution is emphasised with a black cross, and grey dashed
lines indicate one standard error and the 95 % bounds for ampli-
tude and phase independently. With predictions for the ocean mass
annual from previous studies: colours indicate publication, basis of
method is indicated by circles (GRACE), squares (altimetry-steric),
diamonds (ECCO model), stars (hydrology), up-triangles (bottom
pressure), down-triangles (GRACE with complementary constraints
including bottom-pressure data). Note that axes are zoomed from
earlier figures, PDF colours are the same.

and peaks at 10 October. The change is largely due to the
omission of site 2. This estimate and probability distribution
function is summarised and compared with results of other
studies in Fig.13.

6 Conclusions

We have shown that the annual cycle in ocean mass can be
robustly determined from ocean bottom-pressure records of
sufficient length. Records much shorter than a year contribute
little to this determination, and for typical record lengths of
1–2 years, accurate calculation relies heavily on performing
an iterative fit to the instrumental drift and annual cycle to-
gether.

The result from individual sites with records shorter than
16 months have unacceptably large error bounds, but by com-
bining records from multiple locations in a simultaneous fit,
we can provide a single estimate making using of all avail-
able data. The simultaneous fit is fairly robust to the selection
of deployments, and even to omitting all deployments longer
than 16 months. However, it does change slightly when only
the “best” sites are used, omitting those with uncertainties
between dynamical and GLDAS models, and we would rec-
ommend careful selection of sites.

Ocean Sci., 10, 701–718, 2014 www.ocean-sci.net/10/701/2014/



Joanne Williams et al.: Error estimates on weighing the oceans 715

Table 2.Summary of results for ocean mass. Summary of results for ocean mass. Our best estimate is highlighted in bold.

Result 95 % bounds

Amp (mbar) Date Amp (mbar) Date

Combining individual sites:
ECCO 0.93 18 Oct 0.79–1.06 26 Sep–23 Oct
ECCO, GLDAS-2.0 0.84 7 Oct 0.71–0.98 28 Sep–21 Oct
ECCO + NEMO 0.82 13 Oct 0.69–1.02 1 Oct–26 Oct

Simultaneous fit across sites:
ECCO + noise 0.86 8 Oct 0.68–1.05 26 Sep–21 Oct
ECCO + noise, GLDAS-2.0 0.83 9 Oct 0.66–0.99 27 Sep–21 Oct
ECCO, bootstrapping 0.86 8 Oct 0.66–1.09 26 Sep–21 Oct
ECCO (sites 11 & 17) 0.81 2 Oct 0.50–1.17 8 Sep–25 Oct
ECCO (sites except 11 & 17) 0.89 10 Oct 0.74–1.12 26 Sep–24 Oct
ECCO, +noise, best sites (6, 10–15, 17) 0.82 12 Oct 0.60–0.97 24 Sep–27 Oct
ECCO, excluding records< 12 months 0.87 10 Oct 0.69–1.05 27 Sep–21 Oct
ECCO, only records< 16 months 0.87 30 Sep
NEMO + noise 0.96 2 Oct 0.82–1.16 20 Sep–14 Oct
NEMO + noise, best sites (6, 10–15, 17) 0.96 4 Oct 0.77–1.19 20 Sep–17 Oct
ECCO + NEMO + noise 0.92 4 Oct 0.71–1.14 22 Sep–19 Oct
ECCO + NEMO + noise, best sites (6, 10–15, 17) 0.85 10 Oct 0.61–1.17 21 Sep–25 Oct

Hughes et al.(2012), ECCO 0.86 22 Sep

A simple fit to the sensor dataprec of an exponential-plus-
linear function to model the instrument drift can result in er-
rors in bottom pressure of up to 6 mbar for records of less
than 2 years. It is essential that the drift fit is performed not
just to prec, but allowing for the annual signals as we have
described.

Three methods of estimating errors in the final calcula-
tion produce consistent distributions (results are summarised
in Table2), and our best estimate, using sites 6, 10–15 and
17, is that the global average amplitude is 0.85 mbar with a
95 % chance of lying within the range 0.61–1.17 mbar. The
corresponding phase (for the time after the start of the year
of the maximum in ocean mass) is 280◦ (10 October) with
95 % chance of occurring between 261–294◦ (21 September
and 25 October). An amplitude of 0.85 mbar corresponds to
8.4 mm of sea level, or 3100 Gt of water.

The above estimate includes the uncertainty due to ocean
model predictions, based on ECCO and NEMO12 ocean
models (although a suite of five ocean models shows that the
difference in annual cycles between these two models is of
representative size). The estimate also relies to some extent
on a knowledge of the spatial distribution of land and atmo-
spheric source regions responsible for the change in ocean
mass, for which we have to rely on a combined hydrology
and atmosphere model (based on GLDAS-1). The expected
spread in measured local annual cycles from this cause is not
very large, but can be significant in some cases; it may be
responsible for the larger annual amplitude and later phase
seen at site 2. One way to avoid this cause of uncertainty
would be to use satellite gravity data as a measure of the land

water distribution, but our aim in this paper was to provide
an independent test of such gravity-determined budgets as far
as possible. Tests using a second hydrology and atmosphere
model (based on GLDAS-2.0), with a very different annual
cycle, resulted in very similar corrections and made only a
small difference to our global estimate.

Our new estimate is consistent in amplitude, but slightly
later in phase, than our previously reported value based
only on sites 11 and 17, which was 8.6 mbar and 262◦

(Hughes et al., 2012). The phase change is about half the re-
sult of adding a self-attraction and loading correction to the
ocean dynamic pressure component, and about half due to
the influence of data from the additional 15 sites. A determi-
nation using all sites except 11 and 17 produces values con-
sistent with the new calculation using 11 and 17 only, demon-
strating that we have (at least) two determinations of the
annual mass cycle using independent sets of ocean bottom-
pressure measurements.

Our measurement has slightly higher amplitude than that
of most studies, lying close to that ofChambers et al.
(2004), Wouters et al.(2011), and Leuliette and Miller
(2009). The error margin, enclosing 95 % of our results, en-
compasses results from most authors includingChambers
et al. (2004) and some of the results fromWu et al.(2006),
Rietbroek et al. (2009), Siegismund et al.(2011) and
Leuliette and Miller(2009). Our prediction is later in phase
than that ofWillis et al. (2008).
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Appendix A

The DART station numbers and locations of the bottom-
pressure recorders used in this study are given in TableA1.

FigureA1 shows the spread of the bottom-pressure annual
signal at each site in the five ocean models used in this study.

Table A1. Locations of the bottom-pressure sensors used in this study.

Site DART station no. Long. (◦ E) Lat. (◦ N)

1 42407 291.8 15.3
2 23401 88.5 8.9
3 53401 91.9 0.1
4 56001 110.0 −14.0
5 56003 118.0 −15.0
6 32411 269.3 4.9
7 32412 273.6 −18.0
8 32413 266.5 −7.4
9 43412 253.0 16.0
10 43413 259.9 10.8
11 (S) 51406 235.0 −8.5
12 51425 183.8 −9.5
13 52402 154.6 11.6
14 52403 145.6 4.0
15 52405 132.3 12.9
16 52406 165.1 −5.3
17 (N) 50184 235.0 8.5

Figure A1. Annual cycles of bottom pressurepdyn from ocean models at each site in mbar. These are calculated over the duration of the
model, rather than the available record dates. Open circles are model data, filled circles have SAL effects included. Axes as for Fig.4a.
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