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Abstract

The degree of intrinsic and interpatient phenotypic heterogeneity and its role in tumour evolution 

is poorly understood. Phenotypic drifts can be transmitted via inheritable transcriptional programs. 

Cell-type specific transcription is maintained through the activation of epigenetically-defined 

regulatory regions including promoters and enhancers. Here we annotated the epigenome of 47 

primary and metastatic oestrogen-receptor (ERα)-positive breast cancer clinical specimens and 

inferred phenotypic heterogeneity from the regulatory landscape, identifying key regulatory 

elements commonly shared across patients. Shared regions contain a unique set of regulatory 

information including the motif for the transcription factor YY1. We identify YY1 as a critical 

determinant of ERα transcriptional activity promoting tumour growth in most luminal patients. 

YY1 also contributes to the expression of genes mediating resistance to endocrine treatment. 

Finally, we used H3K27ac levels at active enhancer elements as a surrogate of intra-tumour 

phenotypic heterogeneity to track the expansion and contraction of phenotypic subpopulations 

throughout breast cancer progression. By tracking the clonality of SLC9A3R1-positive cells, a 

bona fide YY1-ERα-regulated gene, we show that endocrine therapies select for phenotypic 

clones underrepresented at diagnosis. Collectively, our data show that epigenetic mechanisms 

significantly contribute to phenotypic heterogeneity and evolution in systemically treated breast 

cancer patients.

Introduction

Breast cancer (BC) is the most common cancer type and the second most frequent cause of 

cancer related death in women1. 70% of all BC cases contain variable amounts of ERα-

positive cells. ERα is central to BC pathogenesis and serves as the target of endocrine 

therapies (ET) 2. ERα-positive BC is subdivided into ‘intrinsic’ subtypes (luminal A and 

luminal B3) characterized by distinct prognosis, highlighting functional heterogeneity. 

Recent analyses demonstrate that inter-patient heterogeneity is more pervasive (reflected by 

histological 4, genetic architecture 5 and transcriptional differences 6) ultimately influencing 

long-term response to endocrine treatment7. Indeed, 30-40% of ERα BC patients relapse 

during or after completion of adjuvant endocrine therapies. At the time of relapse ET 

resistance is commonplace, partly achieved via treatment-specific genetic evolutionary 

trajectories8. Yet, recent studies have shown that driver coding-mutations do not 

significantly change between primary and metastatic luminal breast cancer, with the notable 

exception of ESR1 mutations9, suggesting that alternative non-genetic mechanisms might 

contribute to BC progression and drug-resistance. Parallel to genetic evolution, phenotypic/

functional changes driven by epigenetic mechanisms can also contribute to breast cancer 

progression and ET resistance in cell lines10. Epigenetic modifications of histone proteins 

have been successfully used to map regulatory regions and to annotate the non-coding 

DNA11,12. Acetylation of lysine 27 on histone 3 (H3K27ac) is strongly associated with 
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promoters and enhancers of transcriptionally active genes 13–15. Increasing evidence 

suggests that epigenetic information can actively transfer gene transcription states across cell 

division 16–19. Epigenetic modifications also modulate ERα binding to enhancers by 

interacting with ERα-associated pioneer factors 20,21. Nevertheless, little is known about 

the epigenome of BC patients, its influence on intra-tumour phenotypic heterogeneity and its 

role in breast cancer progression. Here we show the results of the first systematic 

investigation of the epigenetic landscape of ERα-positive primary and metastatic BC from 

47 individuals. Using H3K27ac-ChIP-seq and ad-hoc bioinformatics analyses, we have 

characterized inter- and intra-patient epigenetic heterogeneity and identified YY1 as a novel 

key player in ERα-positive BC. Finally, we demonstrate that epigenetic mapping can 

efficiently estimate phenotypic heterogeneity changes throughout BC progression.

Results

Mapping of regulatory regions in primary and metastatic ERα positive breast cancer

We profiled fifty-five ERα-positive BC samples with H3K27ac ChIP-seq to build a 

comprehensive compendium of clinically relevant active regulatory regions (Fig. 1A, 

primary n=39, and metastatic n=16) (Fig. 1A, Supplementary Table 1-2, Supplementary 

Data 1). H3K27ac-enriched regions were classified into 23,976 proximal-promoters and 

326,719 enhancers. 80% of promoters were identified by the profiling of 4 patients, while 

nearly 40 are needed to reach the same coverage for enhancers, reflecting the 10:1 ratio 

between captured-enhancers and promoters (Supplementary Figure 1C). These data are in 

agreement with enhancers being the main determinants of cell-type specific transcriptional 

differences 13,14,22,23. To gain insights on the penetrance of each regulatory region, we 

developed a Sharing Index (SI, Supplementary Computational Methods) by annotating all 

enhancers and promoters in function of the number of patients sharing the H3K27ac signal 

at each specific location (Supplementary Figure S1D). This analysis shows that a vast 

proportion of enhancers is patient-specific (SI=1) while active promoters typically display 

higher SI (Supplementary Figure 1D). Collectively, these data demonstrate that enhancers 

account for the majority of potential epigenetic heterogeneity in ERα-positive BC.

Assessment of phenotypic heterogeneity by enhancer ranking

Genetic heterogeneity is a hallmark of most solid tumours 24 but its impact on phenotypic 

heterogeneity is characteristically hard to resolve. In agreement, despite extensive inter- and 

intra-tumoral genetic heterogeneity 25, the majority of ERα-positive patients benefit from 

systemic ET7. Furthermore, de novo metastatic patients initially respond well to ET, 

suggesting that genetic heterogeneity on its own cannot explain treatment resistance/

response. Of note, phenotypic hierarchies can override genetic hierarchies in brain cancers 

26,27, suggesting that inheritable epigenetic programs might contribute to phenotypic 

heterogeneity and treatment outcome. Phenotypic heterogeneity in breast has been known 

for decades. For example, immunohistochemistry (IHC) assessment of the proportion of 

ERα-positive cell in single biopsies varies on a continuum from less than 1% to nearly 

100%28. However, IHC has been used to test only few targets whereas deconvolution from 

bulk transcriptional data is technically unfeasible (Fig 1B). For instance, cells with focal 

gene amplification have higher bulk gene expression but individual cells contribute 
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stochastic discrete amounts as shown by single-molecule single-cell RNA FISH8. 

Conversely, recent evidence show that the signal captured by one-way reaction chromatin 

assays such as ATAC-seq appears to be linearly proportional to the cells contributing to it29. 

Histone modifications can also be thought of as digital information with each single 

nucleosome being ON (K27ac) or OFF at any given time (Fig. 1B). Notably, even within 

genetically clonal cell lines, the H3K27ac signal varies considerably between different 

regulatory regions. Regulatory regions labelled as super enhancers, for example, have 

10-100-times more H3K27ac signal than typical enhancers14. What accounts for the 

variation in signal is not known, but one possibility is that heterogeneity within the cell 

population (either clonal or sub-clonal) contribute to signal intensity. While other factors 

might partially contribute to variation in the signal (local antibody affinity, histone dynamic, 

cell cycle, sonication efficiency, di-nucleotide content, mappability and copy number 

aberrations, see Supplementary Computational Methods and Supplementary Figure 2-4), we 

propose that ChIP-seq signal is robustly positively correlated with the number of 

contributing cells via a logistic relationship. Super-enhancers might represent regulatory 

regions active across most cells within a population at any given time (clonal, C-peaks), 

while “typical” enhancers with lower H3K27ac signal may represent sub-clones (S peaks, 

Fig. 1B). This interpretation is conceptually similar to using variant allele frequencies (VAF) 

to infer genetic heterogeneity.

Phenotypical heterogeneity might be the consequence of heterogeneous cell populations (i.e. 

normal-cancer) or actual cancer-specific epigenetic subclones. As our ChIP-seq data are 

derived from high tumor burden samples, we hypothesized that H3K27ac signal could allow 

for a qualitative assessment of phenotypic heterogeneity (Fig. 1B). To test the relationship 

between clonality and ChIP signal we performed spike-in experiments in which known 

numbers of cells with well-characterized enhancer activity (MCF7:ON, MCF7-F:OFF) and 

similar genetic background10 were admixed in incremental proportions prior to H3K27ac 

ChIP-qPCR. The data shows that H3K27ac enrichment is positively correlated to the number 

of cells in the absence of genomic differences (Fig. 1C). These findings are corroborated by 

an independent analysis using a different antibody (ERα) (Supplementary Figure 5). As the 

signal between different patients is not directly comparable, we quantile-normalized the data 

assigning to each H3K27ac signal a Rank Index (RI:1-100 strongest to weakest, see 

Supplementary computational methods and Supplementary Figure 6A). The signal from low 

RI (C peaks) is then associated with clonal regulatory regions active in almost all cells. 

Conversely, high RI (S peaks) mark more heterogeneous/sub-clonal enhancer activity. By 

investigating the relationship between RI and SI (Supplementary computational methods) 

we found extremely robust correlation between these two parameters (Fig.1D and 

Supplementary Figure 6B), suggesting that clonal regulatory regions are more common 

between patients (low RI/high SI) while sub-clonal regulatory elements are more patient-

specific (high RI/low SI). For follow up analysis we then split enhancer elements into two 

main subgroups (SI<21 and SI ≥21) on the hypothesis that SI≥21 might more strongly 

contribute to the population phenotype.
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Enhancers are associated with breast cancer risk-SNP and control gene transcription

Previous analyses from ERα-BC cell lines have shown that genetic predisposition to breast 

cancer might occur through SNPs that modulate transcription factors binding at enhancers 

(FOXA1 and ERα30). We then tested the relationship between regulatory regions captured 

in patients and DNA risk variants specifically associated with BC through GWAS30–32. 

Almost the totality of known BC risk variants from two independent datasets overlapped 

with our H3K27ac database. This overlap is highly significant specifically for enhancers but 

not for other annotations (Fig. 1F-G). Notably, this association is not replicated using 

colorectal cancer risk variants suggesting that these enhancers might play a specific role in 

BC development (Fig. 1F). Currently, our patient-derived enhancer dataset represents the 

most enriched annotation for GWAS variants in breast cancer. Next, we assessed the 

relationship between estimated enhancers clonality and transcriptional output. As the 

average expression is function of the number of cells engaged in active transcription and the 

number of RNA molecule within each cell33, assuming stochastic single-cell contribution, 

bulk mRNA levels should positively correlate with the number of transcribing cells. We 

could then test if clonal enhancers active in the majority of cells correlate with higher RNA 

levels. To do so we linked enhancers to their potential target genes using CTCF insulated 

boundaries 34. We then analysed three independent BC expression datasets 5,6,35 in 

function of RI/SI indexes. Our analyses support the hypothesis that genes associated with 

clonal enhancers have higher bulk RNA levels (Supplementary Figure 7A). We observed 

more modest associations when analysing the transcriptome from normal breast tissue 

(Supplementary Figure 7A, small insets) suggesting that our analysis has identified a subset 

of regulatory regions associated with malignant outgrowth. These data indicate that 

transcripts identified as dis-regulated in BC might reflect changes in the size of phenotypic 

subpopulations between the heterogeneous normal tissue and a cancer population dominated 

by epithelial features. Collectively, our data show that enhancer activity strongly tracks 

transcriptional changes in breast cancer patients.

Imputed transcription factors landscape of ERα breast cancer patients

Enhancers store regulatory information in the form of transcription factors (TFs) binding 

motifs36. The vast majority of TFs require accessible chromatin in order to bind their 

cognate DNA sequences 37. To extrapolate the TFs landscape from our data we integrated 

the DNaseI signal (DHS) from 129 cell lines with the inferred nucleosome patterns obtained 

from the H3K27ac signal (Fig. 2A, Supplementary Computational Methods and 

Supplementary Figure 7B). As expected, this analysis could identify well-known BC-TFs 

according to their promoter–enhancer bias (Supplementary Figure 7C). Applying TF motif 

analysis to regulatory regions defined by the same SI followed by unsupervised clustering 

identified two major clades (Supplementary Figure 8). Remarkably, high and low SI 

clustered together suggesting that putative clonal and sub-clonal enhancers contain distinct 

regulatory information (Supplementary Figure 8). Functional TF binding is often associated 

with TF leaving a footprint within chromatin accessible regions 36,38. Analyzing footprints 

in function of RI in ERα-positive MCF7 breast cancer cells reveals that enhancers with 

RI<20 accumulate more footprints than expected (Fig. 2B). These data show that potentially 

clonal enhancers might recruit TFs with longer residence time 38. Unexpectedly, we find 

estrogen-response elements (ERE) motifs significantly enriched only in low SI sub-clonal 
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enhancers (Figure 2E and Supplementary Figure 8). By integrating in vivo ERα binding 39 

with our dataset we find that proportion of binding sites increases with the SI for enhancers 

(Fig. 2C) but not for promoters (Fig. 2C) consistently with ERα preferential binding at 

enhancer elements40. These data imply that shared enhancers have a strong propensity for 

ERα binding despite being generally under-represented in EREs. Interestingly, while the 

bulk of ERα binding events appear to be patient-specific (ERα SI=1), 0.003% of ERα are 

shared across most patients primary and metastatic patients (484 core-ERα)39 (Fig. 2D). 

Together, these data support transcription factor imaging data that indicate that only a small 

fraction of ERα binding events with longer-residency time is functional38. We therefore 

conclude that the largest portion of ERα binding identified in patients occurs at patient 

specific, sub-clonal enhancers and might reflect transient ERα-DNA interactions occurring 

while the receptor scans the genome38. The discrepancy between the small number of 

highly shared ERα core binding and the observation of ERE-poor clonal enhancers led us to 

hypothesize that other TFs might collaborate with ERα to increase its transcriptional 

efficiency at clonal enhancers. Examining TF-motifs bias toward high SI enhancers we 

identified YY1 as the top candidate (Fig. 2E). YY1 is also the top ranked motif within the 

footprints of clonal MCF7 enhancers (Fig. 2B). YY1 has been recently implied in de novo 
formation of enhancer promoter looping during neural development 41,42 and MYC-like 

ability to potentiate gene expression43 indicating a potential role in modulating the enhancer 

landscape in ERα-positive BC.

YY1 enhancer activity marks a dominant phenotypic clone in breast cancer

YY1 is a ubiquitously expressed TF (Supplementary Figure 9A-B) that can act as an 

activator or repressor by binding DNA, RNA and chromatin modifiers44,45. Interestingly, 

YY1 drosophila homolog PhoRC is involved in epigenetic memory by recruiting of 

Polycomb repressor complex to sequence specific regions46, but YY1’s role in mammals is 

only partially understood. Collectively, our analyses predict that most BC cells should be 

YY1-positive, consequently the enhancer driving YY1 should be clonal. To test this, we 

identified three bona fide enhancers looping at YY1 promoter using 3D chromatin data 47 

(Supplementary Fig. 10A). Enhancer A (SI=41) directly interacts with Enhancer B-C, 

suggesting a multi-enhancers interaction with YY1 promoter. Enhancer A consistently ranks 

among the most clonal enhancer in our dataset (Fig. 3A). By comparison, YY1 enhancer A 

activity is more variable in most normal tissues profiled by H3K27ac within the Epigenome 

Roadmap consortium11, implying that some tissues might harbour YY1-subclonal 

subpopulations (Fig 3B). Consistent with these predictions, immunocytochemistry (IHC) 

meta-analysis (Fig 3B) show sub-clonal YY1-positive populations in tissue with high RI 

(Fig 3B and Supplementary Figure 10B). To directly test the regulatory potential of enhancer 

A, we used CRIPR-Cas9 mediated deletion to generate enhancer-KO ERα positive MCF7 

cells (eKO cells, Fig. 3C). Deletion of 2/5 alleles directly reduce YY1 mRNA level by 

30-35% (Fig. 3D). Collectively, these data show that enhancer ranking can capture 

qualitative changes in intra-tumoral heterogeneity, and that YY1-enhancer activity marks a 

dominant phenotypic clone in ERα-positive BC.

Tumour tissues generally have significantly higher expression level for YY1 as compared to 

normal tissues (Supplementary Figure 11A). This observation was replicated in an 
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independent BC dataset (Fig. 3E and Supplementary Figure 11B). These data suggest that 

BC lesions might contain a larger fraction of YY1-positive as compared to normal breast 

tissue (Fig. 3B). Meta-analysis of the METABRIC5 datasets shows that ERα-positive 

patients with higher bulk YY1 mRNA at diagnosis have significantly worse outcome, while 

this does not hold true for ERα-negative (Fig. 3E). The prognostic value for YY1 in ERα-

positive patients is maintained when adjusting for other clinical features (Fig. 3E). To test if 

increased YY1 mRNA levels could be driven by an expansion of YY1-positive cells from a 

more heterogeneous population we stained normal breast tissue sections with IHC. Our data 

show that lobules and ducts contain distinct YY1 positive sub-clonal populations while the 

nearby tumour tissue is overwhelmingly YY1 positive, (Fig. 3F-G). Interestingly, YY1 

staining was absent or limited in several triple negative breast cancer patients 

(Supplementary Figure 11C).

YY1 modulates functional ERα binding at enhancer regions

To gain mechanistic insights on the role of YY1 we performed ChIP-Seq in estrogen-

deprived and estrogen-stimulated luminal BC MCF7 cells. In absence of estrogen, YY1 

occupies a small set of enhancers and promoters near housekeeping genes (Fig. 4A). 

Strikingly, estrogen stimulation induced a 23-fold expansion of the YY1 binding repertoire, 

mostly at enhancer regions associated with ERα-BC signatures (Fig. 4A). Orthogonal 

analyses show that induced YY1 binding involves almost all MCF7 active regulatory regions 

and is strongly associated with H3K27ac marks (Fig. 4B). Conversely, YY1 binding is 

absent from silenced genes (Supplementary Figure 12A), demonstrating that YY1 does not 

associate with PRC2 mediated repression in BC cancer cells. Our in vivo analyses suggest 

that YY1-motif enriched enhancers are generally deprived of EREs (Fig 2B). In agreement, 

our in vitro data show only marginal overlap between YY1 and ERα or its pioneer factor 

FOXA1 (Fig. 4B-C). Nevertheless, YY1, ERα and FOXA1 co-localization becomes 

significant at core-ERα loci in MCF7 cells (Fig. 4C). Similar observations were made by 

comparing YY1 overlap with patient-derived ERα binding site analyses (Fig. 4D). In 

addition, we find that genes defining the luminal subtype in TCGA patients are significantly 

associated with YY1-ERα core binding but not patient-unique ERα (Fig. 4E). Overall, these 

data further suggest that YY1 might contribute to ERα binding transcriptional output at a 

small subset of enhancers captured in most tumour cells and most patients. We further show 

that YY1 depletion is sufficient to abrogate transcription from an ERα-driven reporter (Fig. 

4F). YY1 depletion also abrogates cell proliferation in response to estrogen stimulation in 

MCF7 (Fig. 4G) suggesting that YY1 is a direct driver of the clonal proliferation observed in 

BC (Fig. 3D-E). These observations were replicated in independent luminal BC cell models 

(ZR75 and T47D, Supplementary Figure 12B-C). YY1 depletion leads to significant 

downregulation of core-ERα target genes in luminal BC cell line models (Supplementary 

Figure 12D). Finally, monitoring cell proliferation at the single cell level using eKO cell 

lines, we show that deletion of YY1 enhancer A is sufficient to reduce MCF7 growth in 

estrogen-supplemented conditions (Fig. 4H). Collectively these data identify YY1 as a novel 

essential transcription factor significantly contributing to ERα regulatory network 

transcriptional activity.
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YY1 contributes to endocrine resistance in luminal breast cancer

YY1-positive cells appear to dominate both primary and metastatic lesions in luminal 

patients suggesting that might remain important even after ET (Fig 3A). YY1 depletion is 

indeed sufficient to abrogate proliferation in LTED cells, an MCF7-derivative mimicking 

AI-treated breast cancer cells10(Fig. 4I). Interestingly, LTED cells have an expanded 

repertoire of ERα binding compared to MCF7, fuelled by endogenous ligands8,10. 

Nonetheless, YY1 and ERα overlap remains restricted to a minority of sites (Supplementary 

Figure 13A). Intriguingly, the set of enhancers engaged by ERα and YY1 in LTED cells is 

radically different compared to MCF7, with the majority of ERα-YY1 being specific to each 

cell type (Supplementary Figure 13A). ERα-YY1 bound enhancers in LTED strongly 

associates with the transcription of genes involved with acquired endocrine therapy, 

suggesting that during epigenetic reprogramming, YY1 might stabilize ERα to LTED 

specific enhancers (Supplementary Figure 13B). Previous studies have shown that the 

transcription of a small set of estrogen-activated genes is not antagonized by current 

endocrine therapies 48. Examining the regulatory landscape near these genes we found an 

ever-increasing association with ERα-YY1 bound enhancers, especially with core ERα-

YY1 (Supplementary Figure 13C). Collectively, these data strongly support the role of YY1 

in ERα BC growth and progression.

YY1-ERα promote SCL9A3R1 expression despite endocrine treatment

By ranking the set of endocrine unresponsive genes bound by YY1-ERα for gene-specific 

prognostic power calculated in patient treated with endocrine therapies 35 we identified 

SLC9A3R1 as a potential driver of endocrine therapy resistance (Fig. 5A). SLC9A3R1 
(NHERF1/EBP50) encodes a Na/H exchanger regulatory cofactor with a potential role in 

metastatic invasion49. High expression of SLC9A3R1 independently correlates with poor 

survival in additional ERα-BC datasets (Supplementary Figure 14A). Despite being an ERα 
target, SLC9A3R1 expression is not suppressed by Tamoxifen in MCF7 cells 48. 

Additionally, SLC9A3R1 remains transcriptionally active in most endocrine therapy 

resistant BC cell lines that retain ERα expression (Supplementary Figure 14B-E) 

demonstrating that ERα activity remains critical for SLC9A3R1 expression. In vivo 
SLC9A3R1 expression is also unaffected by neo-adjuvant AI treatment (Fig. 5B). Notably, 

bulk RNA-seq data from a panel of cancer cell lines demonstrate that ERα-positive BC cells 

have the highest levels of SLC9A3R1 mRNA (Supplementary Figure 15A). More 

importantly, TCGA RNA-seq analysis shows that SLC9A3R1 expression is higher 

specifically in ERα-positive BC patients compared to normal tissue or other subtypes 

(Supplementary Figure 15B). Chromatin analyses of MCF7 and LTED cells identify 3 

potential enhancers within the insulated SLC9A3R1 locus (E1-E3). Interestingly, E1-E2 

enhancers loop to SLC9A3R1 promoter and are characterized by a high SI, YY1/core-ERα 
binding sites (Supplementary Figure 15C). In vivo transcriptional analysis demonstrates that 

SLC9A3R1 is the only gene near the E1-E2 enhancers that shows a significant increase in 

bulk-RNA level when comparing normal breast tissue with ERα–positive BC 

(Supplementary Figure 15D). Remarkably, enhancer-activity appears to be resistant to 

endocrine therapies (Supplementary Figure 15C). Furthermore, SLC9A3R1 expression is 

dependent on YY1 (Supplementary Figure 16A), demonstrating that both ERα and YY1 are 

essential for full enhancer activity. Collectively, these data demonstrate that SLC9A3R1 
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expression is driven by a breast cancer specific YY1-ERα bound enhancer. Silencing 

SLC9A3R1 is sufficient to reduce oestrogen-induced growth in ERα-positive cells (Fig 5C). 

Intriguingly, SLC9A3R1 is not essential for a second ERα-positive model (T47D) but 

appears to be a critical gene for both AI-resistant cells models (Fig. 5C and Supplementary 

Figure S16B). Overall, these data identify SLC9A3R1 as a novel player involved in ET 

resistance which function remains to be elucidated.

Mapping phenotypic heterogeneity using YY1 and SLC9AR1 enhancer activity

SLC9A3R1 enhancer activity (E1-2, SI=34, RI≥20) indicates that SLC9A3R1 marks sub-

clonal populations in most primary patients (Fig 5D). Meta-analysis of SLC9A3R1 enhancer 

activity (RI) within the ENCODE H3K27ac datasets indicates that MCF7 are the only 

cancer cells contain a clonal SLC9A3R1 population (Supplementary Figure 16C). Of note, 

the size of the sub-clonal population correlates with total RNA content for the cells 

contained in both assays, suggesting that the decreasing bulk RNA signal is driven by a 

progressively smaller subpopulation (Supplementary Figure 16C). Similar analyses of YY1 

enhancers indicate that cancer cell lines are prevalently clonal for YY1 expression 

(Supplementary Figure 16D) while both YY1 and SLC9A3R1 RIs in mammary epithelial 

cells predict for smaller sub-clonal populations. These observations fit extremely well with 

experimental data from IHC profiles from normal and malignant breast (Fig. 3D and 

Supplementary Figure 11C). Meta-analyses of Epigenome Roadmap predict for mainly 

SLC9A3R1-positive sub-clonal populations with the exception of gastro-intestinal tissues 

and these data fit well with RNA-seq measurement from independent cohorts (Fig. 5E and 

Supplementary Figure 17A). Analogously to YY1, meta-analysis of IHC data identifies 

decreasing SLC9A3R1-positive with increasing RI scores (Fig. 5E and Supplementary 

Figure 17B). To validate that RI index can estimate phenotypic clones, we retrospectively 

collected available biopsies for the BC patients profiled with H3K27ac ChIP-seq (n=19). 

IHC analysis of YY1 (Fig. 5F) shows that with the exception of one metastatic sample (M3), 

YY1 staining robustly correlate with RI, confirming large clonal YY1 positive populations 

in all examined tissues (Fig. 5F). In parallel, SLC9A3R1 enhancer activity correctly 

estimated the size of the sub-clonal subpopulations in individual patients (Fig 5G). 

Additional meta-analyses on Protein Atlas data support these findings by identifying YY1 

clonal populations and SLC9A3R1 sub-clonal populations in most ERα BC samples 

(Supplementary Figure 18). Overall, these data show that enhancer activity can be used to 

qualitatively deconvolute heterogeneous populations into phenotypical subclones.

Phenotypic evolution during breast cancer progression is shaped by endocrine treatment

Tumor evolution studies have primarily focused on treatment naïve patients, taking 

advantage of multi-regional sampling to monitor changes in clonality50,51. Clonal tracking 

is dependent in part on passenger mutations, and the effect of therapy has been rarely 

accounted for8,52. More importantly, clonality has been traced using genetic variants, with 

the intrinsic limitation of correlating genetic changes to phenotypic ones. For example, 

genetic sub-clones might be phenotypically equivalent, while a recent study using barcoded 

glioblastoma cells shows that phenotypic clones might evolve independently from genetic 

clones26. The few studies that looked at driver coding mutations changes in BC show 

relatively similar mutational landscapes9 (Fig. 1A), suggesting a potential role for 
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epigenetically-driven phenotypic evolution. We thus leveraged our ability to infer 

phenotypic clones trough enhancer activity to interrogate our patient’s dataset focusing on 

events occurring between treatment-naïve primaries and treatment-resistant metastatic BC 

(Fig. 6A). We hypothesized that phenotypic clonal evolution might be driven by a 

coordinated activation/selection of groups of enhancers during BC progression and this 

could be influenced by treatment. Our previous results suggest that YY1+ cells remain 

clonal during progression (Fig 3A). Conversely, we show that SLC9A3R1 expression is not 

antagonized by endocrine treatment suggesting that SLC9A3R1-positive clones could 

expand during progression. We then calculated changes in RI (∆RI) for all enhancers 

captured in at least three patients (SI>3, n=88,935) between primary and metastatic samples 

(Fig. 6B). SLC9A3R1 ranks amongst the enhancers with the strongest increase in predicted 

clonality going from primary to metastatic samples (Fig. 6B-C). Conversely, YY1 enhancer 

activity remains relatively unchanged (Fig. 6B-C). To substantiate these data, we mapped the 

size of YY1 and SLC9A3R1-positive phenotypic clones in an independent cohort of 20 

primary tumour and metastasis-matched longitudinal biopsies. We found YY1-positive cells 

remain clonal in both settings, while SLC9A3R1-positive subclones significantly expand 

during metastatic progression(Fig. 6D). Interestingly, the only metastatic case in which we 

have observed a contraction of the SLC9A3R1+ clone also showed a concomitant loss of 

ERα and PR positivity, demonstrating that SLC9A3R1 remains an ERα-dependent target 

despite being ET insensitive in vivo (Fig. 6D). Overall, these data demonstrate that changes 

in enhancer ranking can estimate functional evolution during breast cancer progression.

To gain insight on functional evolution, we systematically annotated all regulatory regions 

based on bias in detection between primary and metastatic patients (Fig 6E). As expected, 

the bulk of enhancers and promoters do not show bias toward primary and metastatic BC 

patients (common enhancers, CEs). However, we could identify two distinct sets of 

regulatory regions which activity is stronger in primary (primary enhancers, PEs) or 

metastatic (metastatic enhancers, MEs) patients (Fig. 6F). We next explored the potential 

causes and functional consequences driving these coordinated epigenetic changes by 

identifying the associated transcriptional targets of MEs and PEs 34. Strikingly, we find that 

PE-driven gene-transcription is associated with significantly better outcome while ME-

associated gene-transcription in primary samples is associated with poor prognosis (Fig 6G). 

These data imply that primary samples containing larger subpopulations of phenotypic 

clones with metastatic features relapse earlier. PEs are associated with abnormal 

proliferation and vascularization, two key events in early tumorigenesis. Remarkably, ME 

are associated with genes promoting BC progression (FOXA139) or endocrine therapy 

resistance (Fig. 6H). Altogether, these data suggest that endocrine therapies play a central 

role in shaping phenotypic clonal evolution. Additional in-depth studies are needed to 

dissect the temporal events triggered during phenotypic clonal evolution. Phenotypic 

subclones could evolve by early coordinated activation and decommissioning of 

epigenetically defined regulatory regions (acquired), selection of the fittest pre-existent 

epigenomic landscape (de novo) or a combination of both.
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Discussion

While genomic profiling of breast cancer patients has revealed extensive clonal 

heterogeneity and evolution24,53, it remains difficult to link genotype to actual phenotypes. 

Most RNA-based analyses, which may better reflect the phenotypic state of cancer cells, 

cannot inform on the existence of distinct subpopulations. Finally, molecular pathology can 

inform on the relative amount of protein abundance at the single-cell level but is laborious 

and not suitable for testing multiple targets simultaneously. In this work, we used 

epigenomic analyses to extrapolate phenotypic heterogeneity in solid tumour samples. Our 

analysis reveals that histone-based ChIP-seq signals, similarly to ATAC-seq29, generally 

correlates with the number of cells in a population carrying the specific epigenetic 

information. Our predictions using YY1 and SLC9A3R1 enhancer fit extremely well with 

experimental data derived from normal tissues or BC patients. The findings that clonal 

regulatory regions dominating the landscape of individual tumour samples are shared across 

many patients, parallel recent genomic evidences showing that truncal (high allele 

frequency) mutations are also the most common mutations within cancer cohorts.

Our work reveals several critical principles underlying phenotypic-functional heterogeneity 

and its role in breast cancer progression. First, by comparing samples from drug-resistant 

metastatic patients with drug-naïve primary samples, we uncovered a set of enhancers 

marking phenotypic clones that significantly expand during breast cancer progression. A set 

of enhancers expanding in metastatic samples point at progressive activation of FOXA1 and 

its network. It was recently reported that FOXA1 levels are increased in metastatic 

samples39. Our data predict that, similarly to SLC9A3R1, FOXA1 positivity increases as a 

consequence of the expansion of a phenotypic clone marked by an active FOXA1 enhancer. 

It is tempting to speculate that this paradigm might be valid for other genes. If correct it 

might signify that during cancer evolution, the proportion of cells activating transcription is 

more important than the absolute changes in transcription at the single-cell levels. 

Interestingly, a set of enhancers deactivated during progression involve IL-2 signalling (Fig. 

6H). Reduction in IL-2 signalling was identified as a potential marker of relapse54. Whether 

the IL-2 signal source is the BC cells themselves or it is due to a small contamination of 

immune cells, needs to be defined. Equally, it will be important to measure real-time 

activation/selection of enhancers in appropriate systems to ultimately establish if phenotypic 

cancer evolution can be driven by Lamarckian events.

Additionally, our analysis has identified two novel drivers of luminal BC. Firstly, we 

identified YY1 as a key TF associated with clonal enhancers and promoters in BC patients. 

Our data strongly support the idea that YY1 acts as a global co-activator associating with the 

entire active epigenetic landscape in BC cells. Several lines of evidence indicate that YY1 

might interact directly with modified nucleosomes, possibly through its partner INO8055. 

YY1 widespread association with clonal enhancer suggests it might play a role in epigenetic 

memory. Intriguingly, a positive screen for factors that improve induced pluripotent cells 

formation (iPS), identified YY1 as the top hit, further supporting its potential role as 

enhancer gatekeeper 56. More specifically to ERα BC, we hypothesize that YY1 plays a 

critical role to stabilize ERα binding at the transcriptionally productive core- ERα 
enhancers. Single-molecule imaging shows that estrogen activated ERα increases its 
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residency time on the chromatin38 and recent evidence has shown that eRNA can trap YY1 

on the chromatin 45. Altogether, these data raise the intriguing hypothesis that YY1 might 

contribute to increased ERα residency at clonal enhancers (Supplementary Figure 19). This 

could explain why some ERα occupancy is captured in most patients, as longer residency 

time would increase chances of being captured by ChIP-Seq39. Longer residency might also 

explain the increased transcriptional activity (Fig. 4D) and increased TF footprints (Fig. 2C) 

of these enhancers. Another possibility is that YY1 defines the set of ERα-bound enhancers 

with transcriptionally productive looping at target genes 41,42,57. Further studies will 

investigate these hypotheses. Future studies are also required to investigate the exact 

mechanisms through which SLC9A3R1 contribute to BC and efficient strategies to 

antagonize its transcription. We recently demonstrated that individual endocrine therapies 

can drive parallel genetic evolution in vivo 8 and epigenetic reprogramming in vitro10. Our 

data now strongly support the notion that therapeutic interventions also play an essential role 

driving specific epigenetic evolution during BC progression in the clinic.

Online Materials and Methods

Tumour tissue processing

Breast cancer sample for ChIP-seq were collected by Imperial Tissue Bank (project ethic 

approval R15021) and from Breast Cancer Now Tissue Bank (BCNTB- TR000053-MTA & 

TR000040). Breast cancer fresh frozen tissue samples each undergo aseptic macroscopic 

adipose tissue dissection. The dissected tumour tissue is sectioned into 2mm x 2mm 

fragments in a petri-dish placed over dry ice. Tumour fragments are then fixed using 1% 

formaldehyde solution for 10 minutes. Cold glycine (1M) is added to the formaldehyde-

fixed tissue for 10 minutes. The tumour fragments are then pulverised using pestle and 

mortar and homogenised using liquid nitrogen. We used samples with high tumour burden to 

minimize the introduction of noise from non-tumour tissues (>70%, Supplementary Figure 

1A). Wherever possible, we profiled patients for known cancer drivers using targeted 

enrichment sequencing (Fig. 1A and Supplementary Data 1). 85% of samples yielded 

satisfactory results (47/55, Supplementary Figure 1B and Table S2).

Cancer hotspots mutations

See Supplementary Computational Methods.

Chromatin immunoprecipitation (ChIP)

The ChIP protocol was conducted as described by Schmidt et al.58 with few modifications. 

In summary, following fixation, the tumour tissue undergoes chromatin extraction and 

sonication using the Bioruptor Pico sonication device (Diagenode; B01060001) using 20 

cycles (30s on and 30s off) at maximum intensity. Purified chromatin was then separated for 

1. Immunoprecipitation using 4ug of H3k27ac antibodies (Abcam; ab4729) per ChIP 

experiment or using 4ug of YY1 antibodies (Santa Cruz; sc-281 X). ChIP-seq experiment 

for YY1 were performed in biological duplicates. Cells were stimulated with estrogen for 45 

minutes, upon which maximum ERα-binding to chromatin occurs. Biological replicates 

showed very high correlation (R2=0.98), thus only consensus loci were kept for further 

analyses. 2. Non-immunoprecipitated chromatin, used as Input control and 3. Assessment of 
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sonication efficiencies using a 1% agarose gel. Before construction of ChIP-seq libraries 

(NEB Ultra II kit, see supplementary methods), enrichment of the immunoprecipitated 

sample was ascertained using positive and negative controls for ChIP-qPCR. Library 

preparation was performed using 10 – 50 ng of immunoprecipitated and Input samples. 

Before sequencing, libraries were again re-tested to confirm enrichment using positive and 

negative controls.

ChIP-qPCR

Briefly, reactions were carried out in 10 ul volume containing 5 ul of Sybr-green mix (ABI; 

4472918), 0.5 ul of primer (5 uM final concentration), 2.5 ul of genomic DNA and 2 ul of 

DNASE/RNASE –free water. A three-step cycle programme and a melting analysis were 

applied. The cycling steps were as follows: 10s at 95 oC, 30s at 60 oC and 30s at 72 oC, 

repeated 40 times.

Ranking and Sharing Index

See Supplementary Computational Methods.

VSE

See Supplementary Computational Methods.

DHS imputations and TF motif analyses

See Supplementary Computational Methods.

Imputed DHS with vivo ERα binding Overlap

ERα binding from in breast cancer patients were obtained from39. ERα sharing index was 

calculated as before (see Supplementary Computational Methods). Overlap with imputed 

DHS was calculated using BedTools calculating the overlap (at least one base pair) via 

Cistrome Pipeline Analysis Suite (http://cistrome.org/Cistrome/Cistrome_Project.html). The 

percentage of overlap were calculated using binned DHS as variable first dataset and all the 

concatenated in vivo ERα as second dataset.

Footprint analysis

See Supplementary Computational Methods.

Encode and Epigenomic Roadmap Ranking

See Supplementary Computational Methods.

Immunocytochemistry

Hematoxylin and eosin staining of clinical samples was performed to calculate tumor burden 

prior to ChIP-seq. Briefly, 4-μm-thick sections were obtained from formalin-fixed and 

paraffin-embedded specimens. After de-waxing in xylene and graded ethanol, sections were 

incubated in 3% H2O2 solution for 25 minutes to block endogenous peroxidase activities 

and then subjected to microwaving in EDTA buffer for antigen retrieval. For YY1 (Protein 

Atlas HPA001119, Atlas Antibodies Cat#HPA001119, RRID:AB_1858930) the flowing 
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conditions were used: tissue sections were incubated with the primary monoclonal. 

overnight at 4°C, and chromogen development was performed using the Envision system 

(DAKO Corporation, Glostrup, Denmark). A minimum of 500 tumor cells were scored with 

the percentage of tumor cell nuclei in each category recorded. For SLC9A3R1 (HPA9672 

and HPA27247, Atlas Antibodies Cat#HPA009672, RRID:AB_1857215 and Atlas 

Antibodies Cat#HPA027247, RRID:AB_10601162 respectively) the following conditions 

were used. HPA9672 was diluted 1:400 and HPA27247 was diluted 1:1500. Staining was 

automatized with a Ventana Benchmark-Ultra using epitope retrieval ER2 for 20 minutes. 

ER and PgR immunoreactivity was assessed by the FDA-approved ER/PR PharmDX kit 

(Dako). The prevalence of ER/PgR positive invasive cancer cells, independent of their 

staining intensity, was quantitatively annotated in the original reports. In accordance with 

ASCO/CAP guidelines, tumors with ≥1% of immunoreactivity was considered positive

Cell culture

MCF7 was cultured using Dulbecco’s modified Eagle’s medium (DMEM) containing 10% 

fetal calf serum (FCS) and 100 U penicillin/0.1 mg ml-1 streptomycin, 2mM L-glutamine 

plus 10-8 17-β-estradiol (SIGMA E8875). MCF7 long term oestrogen deprived (MCF7-

LTED) cells were grown in phenol-free DMEM with 10% charcoal-stripped FCS (DCFCS) 

and 100 U penicillin/0.1 mg ml-1 streptomycin and 2mM L-glutamine. T47D and T47D-

LTED cells were passaged using DMEM containing 10% FCS and 100 U penicillin/0.1 mg 

ml-1 streptomycin, 2mM L-glutamine and phenol-free DMEM with 10% DCFCS and 100 U 

penicillin/0.1 mg ml-1 streptomycin and 2mM L-glutamine, respectively. ZR75-1 cells were 

grown in DMEM containing 10% FCS and 100 U penicillin/0.1 mg ml-1 streptomycin, 2mM 

L-glutamine.

sIRNA

Small interfering RNA (siRNA) against SLC9A3R1 (Gene ID; 9368: Ambion; s17919, 

s17920), YY1 (Gene ID; 7528: Ambion; s14958, s14959, s14960) and Silencer negative 

control (Ambion; AM4611). 1.5 x 105 cells were seeded per well using a 6-well plate. 

MCF7 cells were seeded in phenol-free DMEM with 10% DCFCS and 100 U penicillin/0.1 

mg ml-1 streptomycin and 2mM L-glutamine. Following 24 hours, the cells were then 

transfected with siRNA using Lipofectamine 3000 (Invitrogen; L3000015). T47D and 

ZR75-1 cells were seeded in DMEM containing 10% FCS and 100 U penicillin/0.1 mg ml-1 

streptomycin, 2mM L-glutamine. Following 24 hours, the cells were then transfected with 

siRNA using Lipofectamine 3000 (Invitrogen; L3000015). Cells were harvested for analysis 

following at least 48 hours of transfection.

CRISPR/Cas9 Enhancer Knockout

See Supplementary Methods

Live Cell Imaging

MCF7 and YY1-EKO clones cells were plated at a density of 3 x 103 in a 96 well plate in 

FluoroBrite DMEM media (ThermoFisher) supplemented with 1*10-8M oestradiol. Cells 

were culture in an Incucyte Zoom (EssenBioscience) programmed to capture images every 6 
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hours. Twenty single cells for each cell line were followed over the course of 84 hours and 

their doubling time recorded and plotted.

Cell lysis and Western blot

Cells were washed twice in ice-cold PBS and lysed in RIPA (Sigma-Aldrich; R02780) buffer 

supplemented with protease (Roche 11697498001) and phosphastase (Sigma-Aldrich 

93482) inhibitors for 30 minutes with intermittent vortexing. Samples were centrifuged at 

4°C at maximum speed for 30 minutes after which, the supernatant is transferred to a clean 

Eppendorf. Protein concentrations for each sample was ascertained using the bicinchoninic 

acid (BCA) assay (ThermoFisher Scientific; 23227). Equal amounts of lysates were loaded 

into BOLT 4-12% Bis-Tris Plus Gel (Invitrogen; NW04120BOX). Proteins were transferred 

to a Biotrace nitrocellulose membrane (VWR; PN66485) and incubated with primary 

antibodies overnight. Proteins were then visualised using goat anti-mouse (ThermoFisher 

Scientific; 31446) and anti-rabbit (ThermoFisher Scientific; 31462) HRP conjugated 

secondary antibodies. Amersham ECL start Western Blotting Detection reagent (GE 

Healthcare Life Sciences; RPN3243) was used for chemiluminescent imaging using the 

Fusion solo (Vilber; Germany) imager. For SLC9A3R1 we used HPA027247 (protein atlas) 

at 1:1000 dilution, for YY we used Santa Cruz; sc-281 at 1:500 dilution. For GAPDH we 

used Abcam #ab9385 at 1:5000 dilution.

Transcriptional profiling

Following 48 hours of transfection, MCF7 cells were either treated with 10-8 17-β-estradiol 

(SIGMA E8875) or control treatment for 6 hours prior to RNA extraction. T47D and 

ZR75-1 cells lines were harvested for RNA following 48 hours of transfection. No 

treatments were added.

RNA extraction and real-time PCR

Total RNA was extracted using RNeasy Mini Kit (Qiagen; 74106), and the cDNA was 

reverse transcribed from 1ug of RNA using iScript cDNA synthesis kit (Bio-Rad; 

#1708891). Real time-qPCR (RT-qPCR) reactions were carried out in 10 uL volume 

containing 5 uL of sybergreen mix (ABI; 4472918), 0.5 ul of primer (2.5 uM final 

concentration), 2.5 ul of genomic DNA and 2 ul of DNASE/RNASE–free water. A three-

step cycle programme and a melting analysis were applied. The cycling steps were as 

follows: 10s at 95 °C, 30s at 60 °C and 30s at 72 °C, repeated 40 times.

Luciferase reporter assay

MCF7 cells were seeded in a 24-well plate at 5 x 104 cells per well in phenol-free DMEM 

with 10% DCFCS and 100 U penicillin/0.1 mg ml-1 streptomycin and 2mM L-glutamine. 

After 24 hours of incubation, transfection of plasmid DNA was performed using 

Lipofectamine 3000 (Invitrogen; L3000015). Cells were transfected with 100ng of 

ERE_Luciferase reporter, 10ng of the renilla luciferase control plasmid (pRL-CMV), 10ng 

of pSG5_ER-α, 15 nm of siRNA and 280ng of Bluescribe DNA (BSM) per well; totalling 

400ng of DNA/well. After 12 hours of transfection the media was replaced with fresh 

phenol-free DMEM with 10% DCFCS and 100 U penicillin/0.1 mg ml-1 streptomycin and 
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2mM L-glutamine. Treatment with 10-8 17-β-estradiol (SIGMA E8875) or control treatment 

was administered and the cells incubated for 24 hours. Cell lysates are then obtained using 

Passive lysis 5X buffer (Promega; E1941). The firefly and renilla luciferase activity was 

determined using DualGlo luciferase assay kit (Promega; E2920) according to the 

manufacturer protocol. The renilla luciferase activity measurement was utilised as control 

for transfection efficiency and therefore the ERE_Luciferase activity was normalised to the 

reading obtained for the renilla luciferase activity.

SRB assay

Briefly, the sulphorhodamine B (SRB) assay was used to monitor the effects of silencing 

either SLC9A3R1 or YY1, using siRNAs, on cell proliferation monolayer cultures. Cells 

were seeded in flat-bottomed 96-well plates (Costar; CLS3585) at a density of 2 x 103. Cells 

were allowed to attach overnight after which, the first plate (Day 0) is assayed after the cells 

have become adherent. Prospective plates are assayed sequentially after 3 days, 5 days and 7 

days. The cells are fixed by adding 200uL of cold 40% (weight/volume) of trichloroacetic 

acid (TCA) to each well for at least 60 minutes. The plates were washed five times with 

distilled water and then 100 uL/well of SRB (0.4% wt/vol SRB in 1% wt/vol acetic acid) 

reagent is added to each well and the plates are allowed to incubate for 30 minutes. The 

plates were then washed five times in 1% (wt/vol) acetic acid and allowed to dry overnight. 

SRB solubilisation was performed by adding 100 uL/well of 10 mM Tris HCl to the plates 

and allowed to shake for 30 minutes. Optical density was then measured using the Sunrise 

microplate reader (Tecan; Sunrise) at 492 nm. Cell proliferation is then calculated over the 

7-day period using Day 0 as a baseline measurement.

Enrichment scores

See Supplementary Computational Methods.

RI-IHC correlation

FFPE sections for the patients used in the ChIP-seq section were retrieved from Imperial 

Tissue bank. Sections were stained with YY1 or SLC9A3R1 antibodies. Stained sections 

were divided in 20 sectors. 5 sectors with high tumor burden were scored for the number of 

IHC+ cells and results averaged. The number of IHC+ cells and the matched RI was 

analyzed using linear regression using Prism 5 (GraphPad software Inc.).

∆RI

See Supplementary Computational Methods.

YY1 and SLC9A3R1 Pan cancer expression analysis

YY1 and SLC9A3R1 expression profile for matched Normal vs. Cancer samples was 

obtained using TIMER diff.exp option (https://cistrome.shinyapps.io/timer/). YY1 

transcriptional analyses of breast cancer subtypes was performed in the Metabric Dataset 

(Curtis Breast) using probe ILMN_1770892 or TCGA dataset using Oncomine (https://

www.oncomine.org/resource/login.html).
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SLC9A3R1 Meta-analyses

SLC9A3R1 expression profile in drug resistant cell lines was performed by analysis of 

RNA-seq data from10. SLC9A3R1 expression profile in MCF7 cells transfected with siRNA 

against ERα was performed by analysis of microarray data from GSE27473. SLC9A3R1 

expression profile in additional LTED models was performed by analysis of microarray data 

from E-GEOD-19639. All statistical analyses were performed using Prism 5 (GraphPad 

software Inc.). Kaplan-Meier analysis using SLC9A3R1 expression were performed by re-

analysis of 23 independent microarray datasets (KMPLOT), TCGA RNA-seq data or the 

combined Metabric Dataset. Multivariate Cox proportional hazards survival analysis was 

performed using gene expression and clinical variables including nodal status, grade, and 

size in the Metabric and Affymetrix datasets using Winstat for Excel 2017. A multivariate 

analysis in the TCGA dataset employing available clinical data including TNM, histology, 

menopausal status, and race did not deliver significant result for any of the included 

parameters probably due to the short follow-up combined with limited number of events. 

SLC9A3R1 transcriptional profile in breast cancer cell lines was obtained from the HPA 

RNA-seq dataset (http://www.proteinatlas.org/about/download). SLC9A3R1 transcriptional 

profile from tissues was obtained from the HPA, GTEx and FANTOM5 RNA-seq datasets 

(http://www.proteinatlas.org/about/download).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Assessment of inter- and intra-tumor epigenetic heterogeneity
A) Mutational analysis for common cancer driver genes in the patient cohort selected for the 

study B) Main hypothesis of the study. RNA is ultimately an analog signal in which each 

individual cell, at any given time, can contribute a stochastic amount of RNA while 

transcriptional data from bulk tissue represent the average over million cells. For chromatin 

data, at any given time (t=Xi) each cell can only contribute a deterministic value to the bulk 

signal, generally from two alleles. Therefore, the relative strength of ChIP-seq data is 

dependent on the number of cells carrying epigenetic signal at discrete loci. C, and S 
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represent strong, and medium/weak signal, respectively (Scale bars, 50 μm). Clonal 

regulatory regions are commonly shared by BC patients while weak enhancers are more 

patient specific C) EGR3 mRNA is expressed in MCF7 but not derivative MCF7-F cells. 

eRNA and Pol-II ChIA-PET show enhancer activity in MC7 but not MCF7-F. CTCF 

insulated perimeter is shown in yellow. Predicted looping from ChIA-PET is shown in red. 

The observed ChIP-qPCR signal for H3K27ac at EGR3 enhancers increase with increasing 

number of MCF7 cells mixed in the sample. Similar results were obtained from three 

independent experiments D) Linear regression shows that clonal enhancers are commonly 

shared between breast cancer patients. Of note, a small but discrete proportion of promoters/

enhancers escape this general trend having extremely low RI despite being patient-specific 

or higher RI while being shared (dotted-areas). Y axis=Ranking Index, X axis=Sharing 

index. Sharing index indicate the number of patients sharing the regulatory region. Each dot 

represents the median RI (all patients) for each single enhancer. The boxplots represent the 

median RI value and interquartile ranges for regulatory regions with the same SI E) Overlap 

between BC risk variants and annotated DNA elements F) Variant Set Enrichment analysis 

indicates that BC-specific but not CRC-specific GWAS risk variants occur more frequently 

than expected within the enhancers elements identified in our study G) Overlap with 

annotated DNA elements and Variant Set Enrichment analysis for the most recent 

independent set of BC risk variants.
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Figure 2. Clonal and sub-clonal regulatory regions contain distinct regulatory information.
A) Bioinformatic framework of the analyses. H3K27ac calls were split to identify 

approximate nucleosome-level enrichment (sub-peaks). Sub-peaks data were integrated with 

ENCODE-derived DHS-seq calls to identify potential sites of TF binding. Individual 

imputed DHS regions were assigned SI values based on the number of patient sharing the 

region B) Clonal enhancers in MCF7 cells (RI<20) are characterized by a higher number of 

TF footprints, while sub-clonal enhancers (RI>70) have less footprint than expected. Each 

bin contains 34 nucleosome free regions. The number of footprint (from Wellington) was 

normalized for enhancer size. Observed/Expected values were calculated by dividing the 
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number of normalised footprints in each enhancer by the overall average (2.7 footprints per 

enhancer). Each value and error bar represent the average footprint and 95% CI. Asterisks 

represent a pValue of <0.001 in a Wilcoxon Signed Rank Test C) Overlap of imputed DHS 

regions with in vivo derived ERα binding sites. The left Y axis indicates cumulative DHS 

regions. The right Y axes indicate the percentage of overlap based on total DHS in each SI 

bin D) Distribution plot of in vivo derived ERα binding sites versus the number of patients 

in which they were observed E) YY1 motif is enriched in putatively clonal enhancers in 

luminal breast cancer patients. TF motifs within imputed DHS are plotted based on their bias 

toward highly shared enhancers (green) or more private enhancers (orange).
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Figure 3. YY1 identify a dominant phenotypic clone in ERα BC
A) RIs for the YY1 enhancer within all the individual patients included in the current study 

YY1 enhancer location with its 3D interactions are shown in the top right inset B) YY1 

enhancer ranking analysis of available Epigenome Roadmap H3K27ac datasets. Tissues are 

displayed from the strongest to the weakest YY1 enhancer activity (based on RI). 

Representative IHC analysis of normal tissues stained with a YY1 antibody are shown C) 

eKO cell lines were generated by deleting a 2.4kb containing YY1-A enhancers in MCF7 

cells. Actual karyotyping is shown in the bottom panel was performed on 10 individual cells 
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D) YY1 expression in control and eKO cell lines was measured using RT-qPCR. Lines and 

error bars represent average and 95% CI of five independent experiments. Significance was 

calculated with a one-way ANOVA followed by Tukey’s test E) Top left: YY1 expression in 

ERα-positive breast cancer compared to normal breast tissue. Median, lowest and highest 

values are reported. Top right: YY1 prognostic value in triple negative breast cancers. 

Bottom left: YY1 prognostic value in luminal breast cancers. Confidence interval 

(1.19-1.76). Bottom right: multivariate correction for the luminal breast cancer dataset is 

shown. Analyses included 1476 ERα-positive and 432 ERα-negative patients. Comparison 

of survival curves was performed using a Log-rank (Mantel-Cox) test. F) IHC analysis of 

normal breast tissues highlights YY1 functional subclones in normal breast. Similar results 

were observed in 10 independent clinical specimens from independent individuals G) IHC 

analysis of ERα positive invasive ductal carcinomas identify YY1 positive clones as the 

dominant clonal population (Scale bars, 50 μm).
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Figure 4. YY1 marks critical enhancers in breast cancer cells
A) ChIP-seq data from ERα-positive MCF7 for YY1 in quiescent or 17ß -estradiol (E2) 

stimulated cells B) Heatmaps showing global enrichment profiles of several chromatin 

markers associated with active regulatory regions in MCF7 cells C) Overlap between ERα, 

YY1 and FOXA1 in MCF7 cells. The right panel shows the potential overlap with in vivo- 
derived core ERα binding sites D) ERα core binding sites are strongly enriched for YY1 

binding in MCF7 cells while patient-specific ERα bindings are generally YY1-free. 

Proportion were compared using Fisher’s Exact test. E) Genes used to classify luminal 
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breast cancer patients are strongly enriched for ERα-YY1 binding sites. Asterisks represent 

p<10-5 in a Fisher’s Exact test vs. private ERα F) YY1 depletion leads to transcriptional 

shut-down of an ERE-driven luciferase reporter. Blot has been cropped, full blot is shown in 

and Supplementary Figure 12B. Bars and error bars represent the average and 95% CI of 4 

independent experiments. Asterisks represent significance at P<0.001 after ANOVA with 

Dunnet’s correction. G) Silencing YY1 blocks estrogen-induced growth in MCF7 cells. 

Proliferation assays were conducted in three independent biological replicates. Symbol and 

error bars indicate average and 95% confidence intervals. Significance was calculated using 

a two-way ANOVA with Bonferroni’s correction H) YY1-A enhancer deletion directly leads 

to reduced proliferation in MCF7 cells. Bars represent highest, lowest and median count for 

cell number from individual colonies (n=20) monitored individually using single-cell live 

imaging. Significance was calculated using a two-way ANOVA with Bonferroni’s correction 

Asterisks represent significant differences after ANOVA followed by Dunnet’s test *<0.05, 

**<0.01, ***<0.001, ****<0.0001. I) Silencing YY1 blocks growth in LTED cells. 

Proliferation assays were conducted in three independent biological replicates. Symbol and 

error bars indicate average and 95% confidence intervals. Significance was calculated using 

a two-way ANOVA with Bonferroni’s correction
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Figure 5. Epigenomic mapping predicts the size of phenotypic clones in patients
A) Global Kaplan-Meier analysis summarize univariate analysis for 22278 genes included in 

the Affymetrix microarray platform. Hazard Ratios are plotted in the X axis B) SLC9A3R1 

RNA levels pre- and post- short-term aromatase inhibitor treatment in responder and non-

responder patients61. Oestrogen-dependent expression of progesterone receptor mRNA is 

shown as comparison C) Silencing SLC9A3R1 leads to proliferation arrest in response to 

estrogen stimulation in MCF7 and estrogen independent growth in LTED cells. Proliferation 

assays were conducted in biological triplicate. Symbol and error bars indicate average and 
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95% confidence intervals. Asterisks represent significance at P<0.05, 0.01, 0.001 and 0.0001 

after two-way ANOVA with Bonferroni’s correction D) RIs for the SLC9A3R1 enhancer 

within all the individual patients included in the current study. SLC9A3R1 enhancer location 

and its 3D interactions are shown in the top right inset E) SLC9A3R1 enhancer ranking 

analysis of available Epigenome Roadmap H3K27ac datasets. Tissues are displayed from the 

strongest to the weakest SLC9A3R1 enhancer activity (based on RI). Representative IHC 

analysis of normal tissues stained with a SLC9A3R1 antibody are shown (Scale bars, 50 

μm). F-G) YY1 and SLC9A3R1 IHC analysis of BC patients profiled using H3K27ac ChIP-

seq. Predicted activity (RI) of YY and SLC9A3R1 enhancers is shown on the X axis. The 

number of cells positively stained for YY1 and SLC9A3R1 protein is indicated on the Y 

axis. Representative images are shown in the inbox. We stained one slide for each patient. 

Linear regression R square, confidence intervals and representative staining are also shown.
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Figure 6. Endocrine treatment shapes phenotypic evolution.
A) Theoretical framework of the analysis. The relative size of phenotypic clones can be 

tracked using enhancer ranking (RIs). Phenotypic clones can be positively or negatively 

selected during BC progression in response to endocrine therapies. B) Expanding or 

contracting phenotypic clones were defined based on the RI-ratio in primary and metastatic 

samples (RIP/RIM). Distribution of RI-ratio shows that YY1 enhancers RI does not change 

significantly during progression compared to other enhancers, while SLC9A3R1 RI ranks 

among the enhancers with stronger increase in activity during progression. Vertical bars 
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represent 1σ (Standard Deviation) increments from the population median C) Scatterplot of 

YY1 and SLC9A3R1 enhancer ranking according to patient stage. Bars indicate mean and 

95% confidence intervals. Asterisks represent significance at P<0.05 after students two-tail 

T-Test D) IHC staining for YY1 and SLC9A3R1 positive cells in an independent matched 

longitudinal cohort of 22 ERα breast cancer patients (Scale bars, 100 μm). All normal and 

primaries are treatment naïve. All metastatic have received endocrine therapies (Tamoxifen 

or Aromatase inhibitors). Statistical significance was calculated using a pair-wise, two-tail 

T-test. Representative images are also shown E) Enhancer and promoter stratification based 

on frequency of usage in primary and metastatic patients. Percentages were calculated for 

each regulatory region for each stage (primary and metastatic) and differential was then 

derived and plotted on the X-axis. All enhancers and promoters called in figure 1 were used. 

PE and ME were called by taking the top 1/1000 in the distribution that also satisfied a 

Fisher-exact test p<0.05. F) Dot-plot represent RI indexes for all PE (324) and ME (301) are 

plotted. As a control, RI for common enhancers (CE=320) were also plotted. Bottom plot: 

permutation was used to assess changes in RI in 50 randomly selected sets of 320 CE. Bow 

and whiskers represent median and 1-99 percentile for P-Value distribution. A Wilcoxon 

matched-pairs signed rank test was used to test for statistical significance G) Kaplan-Meier 

analysis using 1427 ERα-positive patients and averaged RNA expression of genes 

associated with PE or ME regulatory regions. Confidence interval for PE (0.39-0.61). 

Confidence interval for ME (1.1-1.67). Comparison of survival curves was performed using 

a Log-rank (Mantel-Cox) test. Genes were assigned considering CTCF insulated perimeters. 

Multivariate correction for the comparisons is also shown H) Pathway analysis for genes 

associated with PE or ME regulatory regions. Pathways were identified using GREAT and 

are listed in order of significance (symbols indicate qValue).
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