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Summary 

 
This paper presents research combining spatiotemporal population flow data, flood modelling and 
network analysis to examine the effect of time of flood onset and flood magnitude on travel across a 
city for commuters and primary school children.  Findings quantify that flood onset time has an effect 
on the disruption to travel comparable to flood event magnitude.  
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1. Introduction and Background 
 
The majority of fatalities caused by pluvial flash-floods in post-industrial countries concern those 
travelling in a vehicle (Debionne et al., 2016; Arrighi et al., 2019). The number of people travelling 
varies greatly over the course of the day, week or year, however mobility aspects are not frequently 
considered in flood exposure and risk assessments (Debionne et al., 2016; Dawson et al., 2011). This 
lack of dynamic population consideration means an important aspect of risk is missing when planning 
for flood events. 
 
 
Risk is a dynamic phenomenon and varies over both space and time (Mechler & Bouwer, 2014). The 
‘risk equation’ is a common conceptualisation of risk but rarely includes time or space (Hu et al., 
2017). Therefore in this paper it is adapted to include both (Equation 1).  
 

Risk = f(Hazardst,Exposurest, Vulnerabilityst) (1) 
  
When studying the effect of floods on human populations, the time of flood onset is important as the 
same hazard event could have different effects due to variation in the exposure and vulnerability 
components of the risk equation (Freire et al., 2013; Dawson et al., 2011). Exposure is highly time 
dependent (Aubrecht et al., 2012),  for example, a flood occurring during the Monday morning rush 
hour would mean more people are exposed on the roads than a Sunday morning. There are also 
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differences in vulnerability as certain groups of the population are less able to react swiftly to floods, 
for example young children and the elderly (Smith et al., 2015).  
 
This paper presents a proof of concept for combining spatiotemporal population flow data with flood 
data and network analysis to quantify the effect of time of flood onset versus size of flood hazard. The 
hypothesis is that the time of flood onset has an effect on travel disruption comparable to flood event 
magnitude. Commuters and primary school children are the population groups selected for analysis 
using a case study for York, UK.  
 
 
2. Methods 
 
Spatiotemporal population origins were produced in two different ways. (i) For commuters, census data 
describing output area to workplace zone commutes were combined with Labour Force Survey data to 
create temporal profiles of numbers of people travelling at a given time. (ii) The origin data for 
schoolchildren were generated through a spatially weighted Monte Carlo process converting 
spatiotemporal gridded population data into a set of likely origin centroids. The destinations were the 
population weighted centroids for the workplace zones and the point location of the primary schools. 
Inundated areas were delineated through pluvial flood modelling of York using the Flowroute-iTM 
model (Ambiental Risk Analytics). These data were analysed using ESRI’s ‘closest facility’ algorithm 
and traffic data from HERE to model driving routes for a specific time of day.  
 
A scenario-based approach was taken to test the hypothesis (Table 1). First a ‘baseline’ set of data were 
created to be a control comparison to the flood scenarios. Two factors, time of flood onset and size of 
flood event, were varied in turn. Three times of flood onset were picked to cover the morning commute, 
6am (flood time 1, FT1), 7am (flood time 2, FT2) and 8am (flood time 3, FT3). 1 in 30 and 1 in 100 
year flood layers formed barriers to travel at each of these onset times and the output routes saved for 
comparison to each other and the baseline. The network analysis was conducted at set points during the 
morning commute (7am, 7:30am, 8am, 8:30am and 9am) to capture variation. The analytical overview 
for this paper is presented in Figure 1. The origin, destination and flood layer (if applicable) were used 
in the network analysis, producing shapefiles of the routes taken between each origin-destination pair 
with distance and travel time. This procedure was repeated for each time step in the scenario.  
 
 

Table 1 Scenarios run during the analysis 

 
Scenario Name Description 
Non-flood Baseline Network analysis with no flood layer included as a baseline.  
Flood time 1, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood 

onset at 6am.  
Flood time 2, 30yr flood Network analysis with flood layer for a 1 in 30 year event, flood 

onset at 7am. 
Flood time 3, 30yr flood 
 
Flood time 1, 100yr flood 

Network analysis with flood layer for a 1 in 30 year event, flood 
onset at 8am. 
Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 6am. 

Flood time 2, 100yr flood Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 7am. 

Flood time 3, 100yr flood Network analysis with flood layer for a 1 in 100 year event, 
flood onset at 8am. 

 
 



 

 

 
3. Results and Discussion 
 
Three examples of the results from the analysis are given. Firstly, Figure 2 compares road travel 
between the baseline and a flood scenario, the FT1 1 in 30yr scenario. Whilst there are similarities in 
road usage volumes, with the city centre and ring road most used, a northern part of the ring road is 
flooded in Figure 2b and longer routes are taken outside of the city to avoid flooding.  
 
Secondly, Figure 3 compares the average travel time to an example destination between all scenarios. 
FT1 has the highest average travel times, higher than the baseline at all given time points, with FT2 
rising above the baseline after 7:30am. In Figure 3a the increase in travel time for FT2 is similar to FT1 
from 8:30am, and in Figure 3b average travel time rises but not enough to reach FT1. In both Figure 3a 
and 3b, the results for FT3 match the baseline until 9:00am where there is a slight increase from the 
baseline. The pattern of results is similar between Figure 3a and 3b, but with a greater increase in travel 
time seen in 3b as the flood magnitude has increased.  
 
Finally Figure 4 is a summary of the effect of each disruption scenario on the city. The time lost was 
calculated by aggregating the additional travel time per origin-destination pair and, if a journey to a 
destination was not possible, the time for a full work/school day. This gives the total time lost at 
workplaces and schools due to flood disruptions. Commuters have more time lost partly due to higher 
numbers of commuters and workplaces meaning more journeys take place. It shows that the disruption 
is greater from FT1 for both magnitudes, and the decrease in time lost is greater when changing the 
time of flood onset than changes in the flood magnitude. This therefore provides evidence to support 
the hypothesis that flood onset time has a comparable effect to flood magnitude.  
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Figure 1 Diagram of analysis workflow. Black boxes indicate inputs and outputs, the 
blue box optional flood data, the yellow boxes processes and the dashed arrows steps 

included for flood scenario analysis.  



 

 

 
 

 

Figure 2 Road usage maps for 8:30am, a) non-flood baseline conditions and b) 1 in 30 year flood at flood 
onset time 1 (FT1) (6am).  

Figure 3 Average travel time of origins to an example destination (Workplace zone E33010098) for 
each flood magnitude a) 1 in 30 b) 1 in 100. The three flood onset scenarios plus the baseline are shown 
in each.  

a) b) 

a) b) 



 

 

 
 
 
 
 
 
 
4. Conclusion 
 
These results show that there are spatial and temporal differences in the impact of flooding on road 
travel, with time of flood onset and magnitude affecting the average travel time to a destination. This 
workflow could be applied to other cities and types of hazard for risk assessments including 
spatiotemporal population data.  
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Figure 4 The total time lost (hours) at all destinations in each flood scenario in York. Dark grey 
represents the time lost by commuters at workplaces and the light grey the time lost by school 
children at schools. 



 

 

 
Alan Smith is a Lecturer in Environmental Management in the School of Geography, Earth and 
Environmental Sciences at the University of Plymouth. His research interests include, spatiotemporal 
population mapping and modelling, hazard risk assessment and applied GIS. 
 
Sally Brown is Deputy Head of Department for Life and Environmental Sciences at Bournemouth 
University. She is interested in coastal geomorphology, the impacts of sea-level rise on a range of 
settings and climate change adaptation at local to global scales, plus the long-term sustainability of 
coastal zones. 
 
Jeremiah J Nieves focuses on spatio-temporal modelling of populations and urban growth at high-
resolution using machine learning methods and remote sensing with applications in planning, public 
health, sustainability, and disaster risk reduction. He is finishing his PhD and has been a WorldPop 
researcher since 2014. 
 
7. References          
 
Arrighi, C., Pregnolato, M., Dawson, R.J. & Castelli, F. (2019). Preparedness against mobility 

disruption by floods. Science of the Total Environment. 654.  
Aubrecht, C., Freire, S., Neuhold, C., Curtis, A. & Steinnocher, K. (2012). Introducing a temporal 

component in spatial vulnerability analysis. Disaster Advances. 5 (2).  
Dawson, R.J., Peppe, R. & Wang, M. (2011). An agent-based model for risk-based flood incident 

management. Natural Hazards. 59 (1). p.pp. 167–189. 
Debionne, S., Ruin, I., Shabou, S., Lutoff, C. & Creutin, J.D. (2016). Assessment of commuters’ daily 

exposure to flash flooding over the roads of the Gard region, France. Journal of Hydrology. 541. 
Freire, S., Aubrecht, C. & Wegscheider, S. (2013). Advancing tsunami risk assessment by improving 

spatio-temporal population exposure and evacuation modeling. Natural Hazards. 68 (3). p.pp. 
1311–1324. 

Hu, K., Yang, X., Zhong, J., Fei, F. & Qi, J. (2017). Spatially Explicit Mapping of Heat Health Risk 
Utilizing Environmental and Socioeconomic Data. Environmental Science and Technology. 51. 
p.pp. 1498–1507. 

Mechler, R. & Bouwer, L.M. (2014). Understanding trends and projections of disaster losses and 
climate change: is vulnerability the missing link? Climatic Change. 133 (1). p.pp. 23–35. 

Smith, A., Newing, A., Quinn, N., Martin, D., Cockings, S. & Neal, J. (2015). Assessing the Impact of 
Seasonal Population Fluctuation on Regional Flood Risk Management. ISPRS International 
Journal of Geo-Information. 4 (3). p.pp. 1118–1141. 

Terti, G., Ruin, I., Anquetin, S. & Gourley, J.J. (2017). A situation-based analysis of flash flood 
fatalities in the united states. American Meteorological Society. p.pp. 333–345.  

 
 
 


