A DYNAMIC ANALYSIS OF THE IMPACT OF AIR POLLUTION ON THE DAYLIGHT AVAILABILITY IN AN OPEN-PLAN OFFICE IN LONDON

Jiangtao Du BSc PhD CEng MCIBSE MSLL

Steve Sharples BSc PhD CEng MCIBSE FSLL MASHRAE

School of Architecture, University of Liverpool, Liverpool, L69 7ZN, UK

Correspondence: Dr Jiangtao Du, School of Architecture, University of Liverpool,

Liverpool, L69 7ZN, UK. E-mail: jiangtao.du@liverpool.ac.uk

ABSTRACT:

The deposition of air pollutants on glazing can significantly affect the daylight transmittance of building fenestration systems in urban areas. This study presents a simulation analysis of the impact of air pollution and glazing visual transmittance on indoor daylight availability in an open-plan office in London. First, the direct links between glazing visual transmittance and daylighting conditions were developed and assessed. Second, several simple algorithms were established to estimate the loss of daylight availability due to the pollutant deposition at the external surface of vertical glazing. Finally, some conclusions and design strategies to support façade planning at the early design stage of an urban building project were developed.

KEYWORDS: Daylight availability, Air pollution, Dynamic simulation, Open-plan offices, UK

1. INTRODUCTION

Daylighting (by sky and sun) has been recognized as one of the most crucial environmental issues in office buildings in relation to energy savings [1, 2], enhancing productivities at work [3, 4], improving human health and well-being [5, 6, 7].

In large cities the deposition of air-borne pollutants on to building surfaces can notably affect daylight availability in buildings [8, 9, 10]. For glazing elements, the impact of air pollution deposition on daylight transmittance is commonly quantified in terms of the application of a glazing dirt correction factor [11, 12]. For accurate daylight design in a polluted urban area it is important to have appropriate, site-relevant values for the glazing dirt correction factor [12].

Between 1999 and 2003 several field surveys were implemented in the UK and Singapore [8, 9, 13] to measure the drop in glazing daylight transmittance due to pollutant depositions in urban buildings. For the British surveys, Tregenza et al. [8] observed an average transmittance reduction of 4% to 8% for commercial buildings in clean environments, whilst Sharples et al. [9] found that the loss in diffuse transmittance for a vertical window did not usually exceed 10%. These findings can be used in architectural daylighting calculations for regions environmentally similar to the temperate maritime climate of the UK. Another investigation, in the high-density city of Singapore, which has a tropical humid climate, found a total transmittance reduction ranging from 9% to 36% for vertical and horizontal widows [13]. In general, Tregenza et al. [8] concluded that the glazing dirt correction factor is related to the particulates in the external atmosphere, precipitation and building form. Two studies [13, 14] further emphasized the fact that external atmospheric pollutants should be first considered when evaluating the loss of glazing daylight/solar transmittance.

However, the dirt correction factor mentioned above was generally measured via a simple approach (e.g. lux meter), which did not consider the nature and composition of pollutants in the urban atmosphere [13]. The glazing soiling mechanism has, therefore, also been studied. According to Watt and Hamilton [10], the glass soiling means 'a visual nuisance resulting from the darkening of exposed surfaces by the deposition of atmospheric particles'. An earlier study [15] pointed out that the particulate element carbon (EC) is the main soiling source on the glazing surface in cities. A global soiling model of modern glazing was developed in Paris under a simple exposure condition (sheltered from rain) [16, 17]. It has been found that four soiling parameters vary in a logical trend with an increasing exposure time, including total mass of deposited particles (by weighing), mass of total carbon (by thermo-coulometry), mass of water soluble ions (by ion chromatography on glass surface rinsing water) and haze (by spectrophotometry) [17]. Based on the measured data from six European cities, Favez et.al [18] built new models to predict the soiling impact on the optical properties of architectural glazing in terms of two typical pollutants: EC and ions (soluble inorganic particle). These studies would give an opportunity to quantify the dirt correction factor in a more accurate way.

It can be concluded from the literature that there have been only a few studies focusing on a direct link between the situation of air pollution / glazing dirt deposition and the final reduction of daylight availability in buildings [8, 9, 13]. In addition, some simple design strategies [12] could be required to support a practical daylight design application that takes into consideration the negative impact of environmental urban air pollutions. Thus, this article presents

daylighting simulation in an open-plan office building, and has two aims: (i) to investigate a link between the vertical glazing transmittance and indoor daylight availability and (ii) to build algorithms to estimate the reduction of daylight availability according to typical pollutants in European urban areas. The achieved results could benefit the development of guidelines for façade design at an early stage.

2. BUILDING MODEL AND SIMULATION

2.1. Location, office model, and glazing sizes

A multi-story office building in the urban area of London was simulated in this study (Fig. 1). This location has a typical temperate maritime climate. The office had an open-plan working space (L×W×H: 21.6×10×3m) and vertical side windows in just one façade. Two glazing sizes were studied: one with a large glazing area to wall area ratio (GWR) of 60% and another with a small GWR of 30%. The total visual transmittance (VT) value of the glazing used in the modelling was decreased from 0.85 to 0.3 in 0.05 step intervals to simulate a range of transmittance changes due to air pollution. It was assumed that the glazing was directly exposed to the urban air (i.e. no obstructions, no sheltering effects from recesses or shading elements). The reflectances of the office room surfaces were 0.8 (ceiling), 0.6 (wall) and 0.3 (floor).

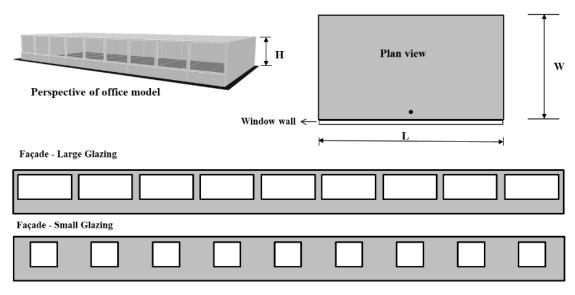


Fig. 1. The open-plan office model and glazing sizes studied.

2.2. Daylighting simulation

As a climate-based daylight modelling tool [19], DAYSIM [20] was adopted in this study to assess the daylight availability. Four daylight metrics were used: Average Daylight Factor (ADF) [21, 11]; Daylight Autonomy (DA); continuous Daylight Autonomy (DAcon), and Useful Daylight Illuminance (UDI) [22, 23]. Average Daylight Factor is a conventional metric

that is primarily used under CIE overcast sky conditions, and which can display basic daylight availability. As a dynamic metric under various sky conditions, Daylight Autonomy is an indicator of whether the daylight illuminance meets the required working illuminance. Continuous Daylight Autonomy data include not only the daylight illuminance above a standard level, but also a partial credit of each time step when the daylight illuminance lies below the required illuminance level. A minimum illuminance of 500 lux at the working plane was chosen for the office building modelled in this study. The Useful Daylight Illuminance (UDI) metric can also be used to evaluate daylight availability under various climates. Three UDI types are defined according to the daylight illuminance ranges: 0-100 lux (too dark), 100-2000 lux (useful light), and over 2000 lux (too bright).

The calculation position in the office modelling was at a horizontal working plane height of 0.8m above the floor. A calculation grid with 880 points was evenly distributed across the plane. In this study, an average value of all the calculation positions was derived to represent the daylight availability of the office. For each office model (large or small GWR), the simulated average values of ADF, DA and UDI associated with the varying glazing transmittance were used to produce algorithms.

3. GLASS SOILING MODEL

Glass soiling model has been studied over a 15-year period [17]. From measurements in six European cities (Athens, Kracow, London, Prague, Montelibretti and Troyes) two equations were developed to estimate the air pollutant impact on glass optical properties (light absorption and light scatter) [18]:

$$X = 0.16EC/(EC+15) \tag{1}$$

$$Y = 0.28ions / (ions + 64) \tag{2}$$

where X is the light absorption (%); EC is particulate elemental carbon amounts (μ gC/cm²) at the external glazing surface; Y is the diffuse visual transmittance and ions is the soluble inorganic particle amounts (μ g/cm²) at the external glazing surface. Two curves (Fig. 2 and Fig. 3) were plotted of Equations (1) and (2). The figures show the variation of light absorption and diffuse transmittance due to pollutant depositions, respectively.

18

Light absorption vs. carbon amounts

16 Light Absorption (%) 14 12 10 8 6 4 2 5 10 15 0 20 25 30 35 40 45 50 EC (µgC/cm²)

Fig. 2. Impact of particulate elemental carbon amounts on the light absorption.

Figure 2 shows how increasing EC amounts will clearly increase the light absorption (solid curve). However, the measurements of Favez et al. [18] pointed out that a saturation of EC deposition can be found. This will result in a top limit of light absorption of around 16% (dashed line in Figure 2). Similarly, an increasing diffuse light transmittance occurs with the increase of ions amount (solid curve in Figure 3). The top limit of diffuse transmittance is around 20% (dashed line in Figure 3), which is due to the saturation of ions deposition [18].

As mentioned in several studies [13, 17, 18], EC deposition is the main factor that can substantially reduce the visual transmittance of glazing in urban buildings. This soiling effect (Equation (1)) was generally found at the external glazing surface [18]. According to the measurements [18], nevertheless, the ions' impact on the diffuse transmittance was just used for indicating the haze of glass (clearness of view), while no findings relating to the total visual transmittance were reported. In this study, therefore, only Equation (1) was adopted as the basic algorithm to establish the relationship between external air pollution and daylight availability.

Diffuse transmittance vs. ion amounts

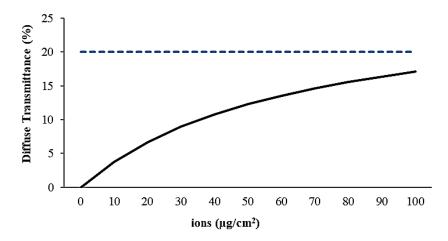


Fig. 3. Impact of soluble inorganic particle (ion) amounts on the diffuse transmittance.

4. RESULTS AND DISCUSSIONS

4.1. Glazing transmittance and daylight availability

First, the simulated results of the office with a large glazing size (GWR 60%) were analyzed. Figure 4 indicates the impact of glazing visual transmittance on the average daylight factor (ADF) in the highly glazed office. With a GWR of 60%, a visual transmittance VT of 0.3 can ensure a good daylighting condition (ADF=2%). Increasing glazing VT will significantly increase the ADF. For example, taking the VT of 0.3 as a reference, a doubling of VT to 0.6 sees a relative ADF increase of 126%. A linear equation can be achieved through the regression to express the simple varying trend:

$$ADF = 8.48T - 0.583 (R^2 = 0.999)$$
 (3)

where ADF is average daylight factor (%) and T is glazing visual transmittance.

Large Glazing: transmittance and daylight availability

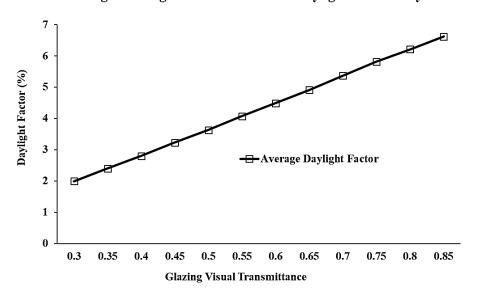


Fig. 4. The relationship between glazing visual transmittance and average daylight factor (large glazing area).

Figure 5 presents the variations of average daylight autonomy and average continuous daylight autonomy for various glazing visual transmittances. In contrast to the linear variation of ADF, the two DA values vary in a polynomial trend. Apparently, the increasing of VT would result in an increased DA or DAcon. It is normal that the DAcon value is higher than the DA value at each VT. However, the difference between DA and DAcon tends to decrease with an increasing VT. The absolute difference between DAcon and DA, on average, is around 16%. This is because daylight illuminances lower than 500 lux will be still included in the calculation of

continuous DA with a discounted credit (Reinhart et al. 2006). Two equations can be regressed in terms of the two curves in Figure 5:

$$DA = 41.23T^3 - 165.20T^2 + 205.17T - 10.22$$
, $(F - test, p < 0.001)$ (4)

$$DAcon = 88.31T^3 - 217.34T^2 + 192.10T + 21.17$$
, $(F - test, p < 0.001)$ (5)

where DA and DAcon are daylight autonomy and continuous daylight autonomy respectively (%) and T is glazing visual transmittance.

Large Glazing: transmittance and daylight availability 90 80 70 Daylight Autonomy (%) 60 50 40 30 Daylight Autonomy (average) 20 Continuous Daylight Autonomy (average) 10 0.3 0.35 0.55 0.6 0.85 0.4 0.45 0.65 0.7 0.75 0.8 **Glazing Visual Transmittance**

Fig. 5. The relationship between glazing visual transmittance and average daylight autonomy (large glazing area).

Figure 6 shows how three average UDI values vary in three different trends with the various glazing VT values in the open-plan office. When the glazing VT increases both UDI (100-2000 lux) and UDI (<100 lux) tend to slightly decrease, while UDI (>2000 lux) slightly increases. Clearly, UDI (100-2000 lux) achieves the largest value for each VT. At VT = 0.45, UDI (<100 lux) and UDI (>2000 lux) have a similar value. UDI (<100 lux) has a lower value than UDI (>2000 lux) when VT<0.45, whilst an opposite trend can be found for VT>0.45. The average UDI values of the three types are around 15% (<100 lux), 64% (100-2000 lux) and 21% (>2000 lux). In an office with a large glazing area it would be normal to find the biggest occurrence of daylight illuminance is in the range of 100-2000 lux. Also, the large glazing size will bring in a relatively higher occurrence of daylight illuminances greater than 2000 lux. Thus, the 'dark' range (illuminance<100 lux) has the lowest occurrence. The lower glazing transmittance (<0.45) will give rise to lower daylight illuminances (<100 lux). Based on the UDI curves in Figure 6, three equations were regressed for the large glazing area as follows:

Vol. 29, No. 1, pp. 94-103, 2021

$$UDI(<100lux) = -46.59T^{3} + 115.80T^{2} - 103.51T + 43.49, (F - test, p < 0.001)$$
 (6)

$$UDI(100-2000lux) = 71.10T^3 - 144.92T^2 + 72.88T + 56.57, (F-test, p < 0.001)$$
 (7)

$$UDI(>2000lux) = -24.0T^3 + 27.99T^2 + 31.45T - 0.46, (F - test, p < 0.001)$$
 (8)

where UDI (<100 lux), UDI (100-2000 lux) and UDI (>2000 lux) are the occurrences of daylight illuminance in three different ranges (%); T is glazing visual transmittance.

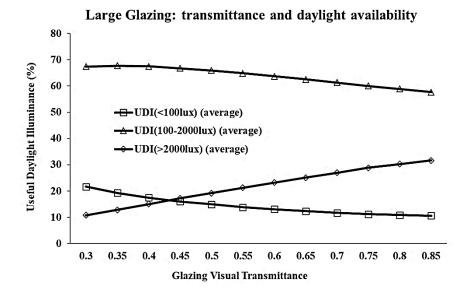


Fig. 6. The relationship between glazing visual transmittance and average useful daylight illuminance (large glazing area).

In the second stage of the analysis the simulated results of the office with a small glazing area (GWR 30%) were considered. Similar to Figure 4, a linear relationship was found between glazing visual transmittance and average daylight factor, as can be seen in Figure 7 (small glazing GRW 30%). The linear trend was expressed by the following equation:

$$ADF = 3.97T - 0.308, \quad (R^2 = 0.999)$$
 (9)

where ADF is average daylight factor (%) and T is glazing visual transmittance. A larger VT will produce a bigger ADF. Taking the VT 0.3 as a reference, VT values of 0.6 and 0.8 have a relative ADF difference of 126% and 218% respectively. Compared with the large glazing area (Figure 4), the magnitude of the ADF increase of the small glazing area office is relatively smaller in Figure 7. Normally, to reduce the glazing size from a GWR of 60% to a GWR of 30% would result in a 50% reduction of ADF value across the working plane.

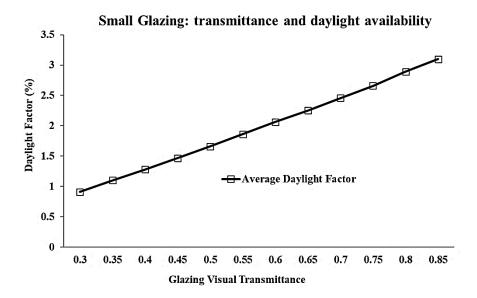


Fig. 7. The relationship between glazing visual transmittance and average daylight factor (small glazing area).

Figure 8 illustrates the variation of average daylight autonomy and continuous daylight autonomy with various glazing visual transmittances. The increasing VT significantly increases the DA and DAcon values. Unlike the situation for the large glazing area (Figure 5), the small glazing area in Figure 8 leads to two parallel curves of DA and DAcon. For each transmittance, the absolute difference between DAcon and DA is around 21%. Two equations were therefore regressed as follows:

$$DA = 37.09T^3 - 88.67T^2 + 115.81T - 8.98, (F - test, p < 0.001)$$
 (10)

$$DAcon = 50.70T^3 - 136.9T^2 + 152.75T + 6.57, (F - test, p < 0.001)$$
 (11)

80 70 60 Daylight Autonomy (%) 50 40 30 20 ■ Daylight Autonomy (average) Continuous Daylight Autonomy (average) 10 0 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 Glazing Visual Transmittance

Small Glazing: transmittance and daylight availability

Fig. 8. The relationship between glazing visual transmittance and average daylight autonomy (small glazing area).

In Figure 9 three average UDI values for the small-glazing office have different variations in terms of varying glazing transmittances. When VT<0.45, increasing glazing transmittance can still increase the UDI (100-2000 lux) values. However, for VT>0.45 the increase of glazing transmittance will not significantly affect the UDI (100-2000 lux). Similar to the results for the large glazing area (Figure 6), a higher VT will give rise to a smaller UDI (<100 lux) and a larger UDI (>2000 lux). The difference between UDI (<100 lux) and UDI (>2000 lux) tends to become smaller with an increasing glazing transmittance. The average UDI values within the three ranges were 26% (<100 lux), 65% (100-2000 lux) and 9% (>2000 lux). Interestingly, it can be found that the large glazing (Figure 6) and the small glazing (Figure 9) achieve the same occurrence of useful daylight illuminance (100-2000 lux). In contrast to the large glazing area, the small glazing area office receives a larger UDI (<100 lux) and smaller UDI (>2000 lux) value. These results could be explained by the glazing size: the 30% GWR still meets the minimum requirements of window size in the British Standards Institution recommendations (2008), which could ensure a proper daylighting level (100-2000 lux) and less high level daylight illuminance (>2000 lux) in the office building. In terms of the UDI curves in Figure 9, three equations were regressed as follows:

$$UDI(<100lux) = -135.80T^3 + 294.69T^2 - 232.55T + 85.91, (F-test, p < 0.001)$$
 (12)

$$UDI(100-2000lux) = 151.63T^3 - 328.13T^2 + 232.75T + 12.78, (F-test, p < 0.001)$$
 (13)

$$UDI(>2000lux) = -16.61T^3 + 34.67T^2 - 0.74T + 1.37, (F - test, p < 0.001)$$
 (14)

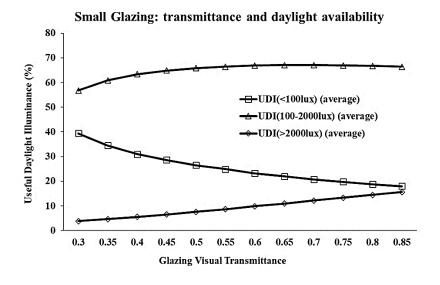


Fig. 9. The relationship between glazing visual transmittance and average useful daylight illuminance (small glazing area).

4.2. Pollutant particle and daylight availability

At the external glazing surface, the light absorption (X) of the EC layer can be calculated using Equation (1). The light transmittance TEC can be calculated from:

$$T_{EC} = 1 - X - R \tag{15}$$

where R is the reflectance of the EC layer. According to the study by Favez et al. [18], the amount of reflected light from the EC layer was insignificant ($R \approx 0$). Thus, the light transmittance TEC is just decided by the light absorption equation:

$$T_{EC} = 1 - X \tag{16}$$

This could be used as a dynamic dirt correction factor for window transmittance in urban buildings.

Based on Equation (16) and Equations (3 to 14), several algorithms for assessing the negative impact of EC on daylight availability have been produced. For the large glazing area, the differences (Δ) of daylight availability between clean and polluted glazing are calculated by:

$$\Delta ADF = 8.48TX \tag{17}$$

$$\Delta DA = 41.23T^3A - 165.20T^2B + 205.17TC \tag{18}$$

$$\Delta DAcon = 88.31T^3A - 217.34T^2B + 192.10TC \tag{19}$$

$$\Delta UDI(<100lux) = -46.59T^3A + 115.8T^2B - 103.51TC \tag{20}$$

$$\Delta UDI(100 - 2000 lux) = 71.10T^3 A - 144.92T^2 B + 72.88TC$$
 (21)

$$\Delta UDI(>2000lux) = -24.0T^3A + 27.99T^2B + 31.45TC \tag{22}$$

For the small glazing area, the differences (Δ) of daylight availability between clean and polluted glazing are achieved using the following:

$$\Delta ADF = 3.97TX \tag{23}$$

$$\Delta DA = 37.09T^3A - 88.67T^2B + 115.81TC \tag{24}$$

$$\Delta DAcon = 50.70T^{3}A - 136.92T^{2}B + 152.75TC \tag{25}$$

$$R_{UDI} = \frac{\Delta UDI}{UDI} \times 100\% \tag{26}$$

$$\Delta UDI(100 - 2000lux) = 151.63T^3A - 328.13T^2B + 232.75TC \tag{27}$$

$$\Delta UDI(>2000lux) = -16.6T^3A + 34.67T^2B - 0.74TC \tag{28}$$

In Equations 17 to 28, T is the glazing visual transmittance, ΔADF , ΔDA , ΔDA con, ΔUDI are the differences of average daylight factor, daylight autonomy, continuous daylight factor and useful daylight illuminance respectively (the value of clean glazing – the value of polluted glazing):

$$\Delta ADF = ADF(T) - ADF(T \times T_{EC}) = ADF(T) - ADF(T(1-X))$$
(29)

$$\Delta DA = DA(T) - DA(T \times T_{EC}) = DA(T) - DA(T(1 - X))$$
(30)

$$\Delta UDI = UDI(T) - UDI(T \times T_{EC}) = UDI(T) - UDI(T(1-X))$$
(31)

Thus, A, B and C can be defined as:

$$A = 1 - (1 - X)^3 \tag{32}$$

$$B = 1 - (1 - X)^2 \tag{33}$$

$$C = 1 - (1 - X) = X \tag{34}$$

In terms of these algorithms, the loss of daylight availability can be estimated for a specific glazing after measuring the situation of EC soiling.

4.3. Applications

This section presents the applications of the algorithms (Equations 17-28). Typical glazing visual transmittances of 0.3, 0.5 and 0.8 were selected as representative of glazing systems with low, medium and high visual transmittances respectively. Only the ADF, DA and UDI (100-2000 lux) are discussed here.

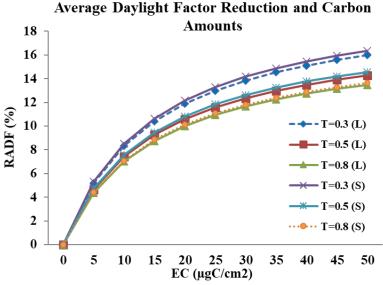


Fig. 10. The relative reduction of ADF with the increasing elemental carbon amounts at external glazing surface with three typical visual transmittances (0.3, 0.5 and 0.8).

In Figure 10 the relative reductions of average daylight factor (R_{ADF}) due to the EC depositions are given according to VT values of 0.3, 0.5 and 0.8. The following equation was used for the calculation of R_{ADF} :

$$R_{ADF} = \frac{\Delta ADF}{ADF} \times 100\% \tag{35}$$

The ADF reductions vary polynomially; an increasing EC deposition would clearly reduce the ADF at the working plane, especially in a range of $0\text{-}10\mu\text{gC/m}^2$. When the EC deposition is low ($<5\mu\text{gC/m}^2$), no clear differences of ADF reductions can be found between various glazing sizes and transmittances. However, the ADF reductions start to diverge at the value $5\mu\text{gC/m}^2$ and the divergence tends to be larger with an increasing EC deposition. Generally, the glazing size does not substantially affect the relative reduction of ADF due to EC. The glazing transmittance is the main factor affecting the reduction. The lower the VT then the higher is the relative reduction of ADF. For locations dominated by cloudy skies the indoor daylight availability is highly sensitive to the glazing dirt deposition. It is essential to clean the window surface of urban buildings on a frequent basis. If the EC deposition saturation level is assumed to be $30\mu\text{gC/m}^2$ then the maximum relative reduction of ADF would be less than 16% [18].

Daylight Autonomy Reduction and Carbon Amounts

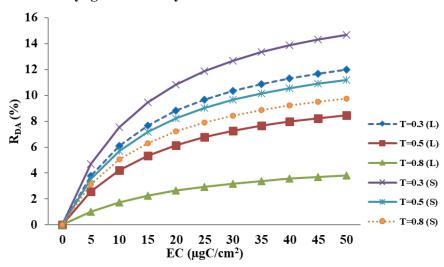


Fig. 11. The relative reduction of DA with the increase of elemental carbon amounts of external glazing surface with three typical transmittances (0.3, 0.5 and 0.8).

Figure 11 shows the relative reductions of daylight autonomy (R_{DA}) affected by the EC depositions according to glazing VT values of 0.3, 0.5 and 0.8. The R_{DA} values were calculated from the following equation:

$$R_{DA} = \frac{\Delta DA}{DA} \times 100\% \tag{36}$$

The relative DA reductions increase with the increasing EC amount at the external glazing surface. Unlike the observations of ADF in Figure 10, both the glazing size and transmittance can have clear effects on the reduction. The large glazing with a VT of 0.8 sees the lowest DA reduction (any R_{DA} <5%), whilst the highest DA reduction can be found for the small glazing area with a VT of 0.3 (most R_{DA} >5%). Interestingly, the large glazing with a VT of 0.3 achieves a higher DA reduction than the small glazing with a VT of 0.5 and 0.8. This could indicate that the visual transmittance plays a more important role in reducing daylight autonomy than the glazing size. The average R_{DA} values of each curve are 10.3% (small, VT of 0.3); 8.38% (large, VT of 0.3); 7.84% (small, VT of 0.5); 6.85% (small, VT of 0.8); 5.88% (large, VT of 0.5) and 2.57% (large, VT of 0.8). Similarly, the maximum relative reduction of DA would be less than 14% if the EC deposition saturation level was assumed to be 30μ gC/m². It can be pointed out that a large glazing size combined with a higher visual glazing transmittance would ensure proper daylighting conditions even with the occurrence of heavy outdoor air pollution and without regular cleaning and maintenance.

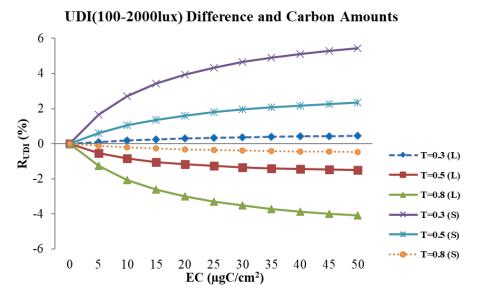


Fig. 12. The relative difference of UDI(100-2000 lux) with the increase of elemental carbon amounts of external glazing surface with three typical transmittances (0.3, 0.5 and 0.8).

Figure 12 displays the impact of increasing EC deposition at the external glazing surface on the relative reduction of useful daylight illuminance in a range of 100-2000 lux (R_{UDI}). Similarly, the R_{UDI} can be calculated from the equation:

$$R_{UDI} = \frac{\Delta UDI}{UDI} \times 100\% \tag{37}$$

Apparently, the variations of the relative reduction of UDI (100-2000 lux) can be divided into two groups in terms of negative/positive values of the R_{UDI} . With the $R_{UDI} > 0$ three curves (small, VT of 0.3; small, VT of 0.5; large, VT of 0.3) show an increasing relative reduction with the increase of EC amount. This indicates that EC has a negative effect on the availability of useful daylight illuminance. The small glazing with a VT of 0.3 had the highest R_{UDI} values while the lowest R_{UDI} values were achieved by the large glazing with VT of 0.3. The R_{UDI} values of the small glazing with VT of 0.5 were in the middle. These results mean that the small glazing size area, combined with the low transmittance, were very sensitive to the pollutant deposition according to the availability of useful daylight illuminance. On the other hand, with an increasing EC deposition, a decreasing trend was found for the three curves when the R_{UDI} <0 (large, VT of 0.8; large, VT of 0.5; small, VT of 0.8). This expresses an opposing view that the EC deposition can positively affect the availability of useful daylight illuminance. In addition, the large glazing with a VT of 0.8 sees the lowest R_{UDI} values, which means the best positive influence on the availability of useful daylight illuminance. The highest R_{UDI} values were found for the small glazing with a VT of 0.8. In general, the top ranges of absolute RUDI values for the curves were 1% (large, VT of 0.3; small, VT of 0.8); 3% (small & large, VT of 0.5) and 6% (large, VT of 0.8; small, VT of 0.3). Except for the extreme cases (small glazing size and low transmittance; large glazing size and high transmittance), the EC deposition will not substantially affect the availability of useful daylight illuminance. According to the definition of UDI, the broad range of illuminance (100-2000 lux) could well explain the results. A frequent cleaning maintenance could be just required by the buildings with a small glazing area (GWR 30%).

According to the previous analysis and discussions, different daylight metrics, like ADF, DA and UDI, will give rise to some divergences of the impact of pollution on the resulting daylighting conditions in the office.

5. CONCLUSIONS

This study has presented a simulation analysis of daylight availability and air pollution in a typical open-plan office in an urban area of the UK. Some conclusions that can be drawn from this study include: (1) it could be necessary to implement a study of the direct link between the glazing transmittance and indoor daylight availability in the office buildings in order to simplify the design process at an early stage; (2) several simple algorithms have been established to estimate the impact of glazing transmittance on the daylight availability at the working plane of office buildings. In addition, further algorithms to predict the reduction of the daylight availability due to one typical air pollutant (element carbon particulate) were developed. These algorithms could be used to support efficiently the façade design; (3) it would be essential to implement a dynamic analysis using climate-based daylight modelling (CBDM) in order to achieve a practical and comprehensive evaluation of daylighting performances in the open-plan office building, due to the fact that the conventional method of Average Daylight Factor might only provide a fundamental assessment without including locations and climates. However, it should be noted that various daylight metrics would result in the final evaluations displaying some divergences; (4) for the metric using Average Daylight Factor, the indoor daylight availability is significantly sensitive to the glazing visual transmittance, which receives a direct influence from the outdoor air pollution. However, the glazing size will not have a significant effect on the daylighting condition if a minimum GWR of 30% has been achieved; (5) according to the metric using daylight autonomy, both the glazing visual transmittance and glazing size can have effects on the indoor daylight availability. However, the glazing transmittance should be the first factor to be considered in a daylighting design. A clear negative impact of air pollution could just be found for the glazing systems with medium/low visual transmittance. A large glazing combined with a high transmittance will possibly provide a proper daylighting condition even with the occurrence of outdoor air pollution; (6) according to the indoor daylight availability and the metric using useful daylight illuminance, the air pollution could be a positive factor for the glazing systems with a large size (e.g. 80% GWR) and high visual transmittance, or a negative factor if the glazing systems have a small size (e.g. 30% GWR) and a low visual transmittance.

Limitations and future work: these conclusions are obviously limited to a simple office model and one typical air-borne pollutant (EC) and a specific location and climate. The office models with various facade systems and orientations and under more complicated conditions of air

pollution should be investigated to find the general findings of glazing dirt correction factor in daylit rooms. These issues will be studied in future work.

REFERENCES

- 1. IEA (SHC Task 21/ ECBCS Annex 29) (2000). Daylight in buildings: a source book on daylighting system and components. Report of Lawrence Berkeley National Laboratory. Available from: https://facades.lbl.gov/daylight-buildings-source-book-daylighting-systems [Accessed 10 July 2019].
- 2. Boyce P, Hunte C, Howlett O (2003). The benefits of daylight through windows. Report of Lighting Research Centre. USA. Available from:

www.lrc.rpi.edu/programs/daylighting/pdf/DaylightBenefits [Accessed 9 Nov 2011].

- 3. Chen X, Zhang X, Du J (2019a). Exploring the effects of daylight and glazing types on self-reported satisfactions and performances: a pilot investigation in an office. Architectural Science Review, 64(4), 388-352.
- 4. Chen X, Zhang X, Du J (2019b). Glazing type (colour and transmittance), daylighting, and human performances at a workspace: A full-scale experiment in Beijing. Building and Environment, 153, 168-185.
- 5. Boubekri M, Cheung IN, Reid KJ, Wang CH, Zee PC (2014). Impact of windows and daylight exposure on overall health and sleep quality of office workers: a case-control pilot study. Journal of Clinical Sleep Medicine, 10(6), 603-611.
- 6. Borisuit A, Linhart F, Scartezzini J-L, Munch M (2015). Effects of realistic office daylighting and electric lighting conditions on visual comfort, alertness and mood. Lighting Research & Technology, 47, 1-18.
- 7. Figueiro MG, Rea MS (2016). Office lighting and personal light exposures in two seasons: Impact on sleep and mood. Lighting Research & Technology, 48(3), 352–364.
- 8. Tregenza PA, Stewart L, Sharples S (1999). Reduction of glazing transmittance by atmospheric pollutants. Lighting Research & Technology, 31: 135–138.
- 9. Sharples S, Stewart L, Tregenza PA (2001). Glazing daylight transmittances: a field survey of windows in urban areas. Building and Environment, 36: 503–509.
- 10. Watt J, Hamilton R (2003). The soiling of buildings by air pollution. In: Brimblecombe, P. (Ed), Air Pollution Reviews. The Effects of Air Pollution on the Built Environment. Vol. 2. Imperial College Press, London, UK. pp. 289-334.
- 11. BSI (British Standards Institution) (2008). BS 8206-2:2008. Lighting for buildings. Code of practice for daylighting.

- 12. SLL (The Society of Light and Lighting) (2014). Lighting for the built environment: LG10: Daylighting a guide for designers. Norwich. UK.
- 13. Ullah MB, Kurniawan JT, Poh, LK, Wai TK., Tregenza P A (2003). Attenuation of diffuse daylight due to dust deposition on glazing in a tropical urban environment. Lighting Research & Technology, 35: 19–29.
- 14. Mastekbayeva GA, Kumar S (2000). Effect of dust on the transmittance of low-density polythene glazing in a Tropical climate. Solar Energy, 68, 135-41.
- 15. Lanting RW (1986). Black smoke and soiling. In: Lee, S.D., Schneider, T., Grant, L.D., Verkerk, P.J. (Eds.), Aerosols. Lewis Publisher, Chelsea, Michigan, USA, pp. 923–932.
- 16. Lombardo T, Chabas A, Lefevre RA, Verita M, Geotti-Bianchini F (2005a). Weathering of a float glass exposed outdoor in urban area. Glass Technology, 46, 271–276.
- 17. Lombardo T, Ionescu A, Lefevre RA, Chabas A, Ausset P, Cachier H (2005b). Soiling of silica-soda-lime float glass in urban environment: measurements and modelling. Atmospheric Environment, 39: 989–997.
- 18. Favez O, Cachier H, Chabas A, Ausset P, Lefevre R (2006). Crossed optical and chemical evaluations of modern glass soiling in various European urban environments. Atmospheric Environment, 40: 7192–7204.
- 19. Mardaljevic J (2006). Examples of climate-based daylight modelling. CIBSE National Conference 2006: Engineering the Future, London, UK.
- 20. Reinhart CF, Herkel S (2002). The simulation of annual daylight illuminance distributions a state-of-art comparison of six Radiance-based method. Energy and Buildings, 32:167–187.
- 21. Philips GM, Littlefair PJ (1988). Average daylight factor under rooflights. CIBSE National Lighting Conference, Cambridge, UK.
- 22. Nabil A, Mardaljevic J (2006). Useful daylight illuminances: a replacement for daylight factors. Energy and Buildings, 38(7): 905-913.
- 23. Reinhart CF, Mardaljevic J, Rogers Z (2006). Dynamic daylight performance metrics for sustainable building design. LEUKOS, 3: 7-31.