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Abstract  

Background 

Rotavirus is a major contributor to child mortality. Rotavirus vaccine impact on diarrhoea 

mortality has been estimated in middle- but not low-income settings, where mortality is high 

and vaccine effectiveness against hospitalisation is lower. Empirical population-based 

mortality studies have not been conducted in any setting. Malawi introduced monovalent 

rotavirus vaccine (RV1) in October 2012.  

 

Methods 

We evaluated RV1 impact and effectiveness (VE) against diarrhoea-associated infant (10-51 

weeks) mortality using a population-based cohort study of infants born 1st January 2012 to 1st 

June 2015 in Mchinji, Central Malawi. Individual vaccination status was extracted from 

caregiver-held records or report at home visits at four months and one year of age. Survival to 

one year was confirmed at home visit, or cause of death ascertained by verbal autopsy. Impact 

(one minus mortality rate ratio following-vs-before vaccine introduction) was evaluated using 

Poisson regression. Among vaccine-eligible infants (born from 17th September 2012), VE (one 

minus hazard ratio) was evaluated using Cox regression.  

  

Results 

We recruited 48,672 live births in Mchinji, among whom 38,518 were vaccine-eligible and 

37,570 survived to age ten weeks. VE analysis included 29,085 infants, of whom 108 had 

diarrhoea-associated death before one year of age. Diarrhoea-associated mortality declined 

31% (95% CI: 1, 52; P=0.04) following RV1 introduction. VE against diarrhoea-mortality was 

34% (95% CI: -28, 66, P=0.22).  

 



3 
 

Conclusions 

RV1 substantially reduced diarrhoea deaths among infants in this rural, sub-Saharan African 

setting. These data add considerable weight to the evidence demonstrating the impact of 

rotavirus vaccine programmes. 
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Research in context 

Evidence before this study 

Rotavirus vaccine has been introduced in many high mortality, low income Gavi-supported 

countries, but mortality impact or effectiveness estimates are lacking from these settings. We 

searched PubMed using the term ((rotavirus vaccine[Title/Abstract] AND 

(mortality[Title/Abstract] OR death[Title/Abstract])) NOT "review"[Publication Type] 

NOT cost-effectiveness[Title]). Title/abstract review of 185 arising citations performed 

independently by the two first authors excluded review articles and secondary publication of 

data.  Thirteen studies, all from middle-income countries, were identified. Botswana and 

Panama reported hospitalised case fatality reductions of 48% and 45%, respectively, but did 

not report on population mortality.  All other studies (Bolivia 1, Brazil 5, Mexico 3, 

combined South American countries 2) used time series analyses of national administrative 

datasets to estimate mortality reductions following rotavirus vaccine introduction. These 

studies report infant diarrhoeal-mortality reductions of between 21% and 41%, with higher 

estimates noted within rotavirus season. No mortality impact data were identified from low-

income countries. Prospective, population based studies evaluating rotavirus vaccine impact 

on mortality have not been published from any country. In southern Malawi, RV1 

introduction was associated with 43% reduction in laboratory proven rotavirus infant 

hospitalisation, with vaccine effectiveness of 64% and was highly cost-effective. 

What this study adds 

This large population based birth cohort study is the first to report rotavirus vaccine 

associated infant mortality reductions from a low-income country using the WHO 

recommended EPI schedule of 6 and 10 weeks, and demonstrates a relationship between 

coverage and mortality impact gained. In addition, this study demonstrates a possible added 
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benefit on diarrhoeal mortality of vaccine introduction in the context of enhanced water, 

hygiene and sanitation improvements. 

Implications of all the available evidence 

In addition to morbidity impact and high cost-effectiveness, countries with national or 

localised areas of high diarrhoeal mortality should consider introducing rotavirus vaccines 

for their survival benefits. Vaccine implementation combined with improvement in water 

and sanitation may provide maximum impact. 
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Introduction 1 

Diarrhoea causes 17% of post-neonatal infant deaths globally.1 Despite impressive survival 2 

gains from improved sanitation and case management, in 2013 rotavirus, the greatest 3 

contributor to this mortality still caused 215,000 child deaths, 121,000 of these in Africa.2  4 

Subsequently, with support from Gavi the Vaccine Alliance, many African countries with the 5 

highest mortality burdens have introduced live attenuated rotavirus vaccines.3  6 

 7 

Vaccine impact (population reductions in disease burden following vaccine introduction) and 8 

vaccine effectiveness (individual protection afforded by vaccination, henceforth VE) on 9 

hospitalized rotavirus gastroenteritis has been shown in high, middle and low-income 10 

countries.4-7 Vaccine efficacy against laboratory proven rotavirus in clinical trials is lower in 11 

low-income, high-mortality countries than in high income, low-mortality countries. Therefore 12 

to support widespread implementation, evidence of rotavirus vaccine impact on population-13 

level mortality and real-world effectiveness on individual risk of death is crucially important. 14 

Vaccine impact on mortality has been demonstrated through analysis of administrative datasets 15 

from middle-income countries in Central and South America.8-10 However, no direct mortality 16 

benefit of rotavirus vaccination has been documented at population level from a low-income, 17 

high-burden setting. 18 

 19 

Malawi, a low-income country in Sub-Saharan Africa, with year-round rotavirus transmission, 20 

has made sustained efforts to reduce child mortality and in 2015 had reached the Millennium 21 

Development Goal target of reducing child mortality by two thirds from 1990 levels. In Malawi 22 

health centres and community based Health Surveillance Assistants (the community healthcare 23 

workers/vaccinators in Malawi, henceforth HSA) routinely provide oral rehydration solution 24 

and zinc for diarrhoeal disease, and these are widely available. 13-valent Pneumococcal 25 
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Conjugate Vaccine was introduced into Malawi’s National Immunisation Programme with 26 

three doses given at 6, 10, and 14 weeks of age on 12th November 2011. Monovalent rotavirus 27 

vaccine (Rotarix™, RV1) at the WHO recommended schedule of 6 and 10 weeks, was 28 

introduced on 29th October 2012, without catch-up. We have demonstrated RV1 efficacy 29 

(49%, 95% CI: 19, 68), effectiveness (64%, 95% CI: 24, 83) and impact (43%, 95% CI: 18, 30 

61) on severe laboratory confirmed rotavirus gastroenteritis in Malawian infants, and have 31 

shown that RV1 is highly cost-effective in this setting.6, 7, 11, 12  32 

 33 

We aimed to evaluate population-level impact and individual-level effectiveness of RV1 34 

against diarrhoea-associated mortality using a large prospective population-based birth cohort 35 

in a rural population in Mchinji district, Central Malawi (Site 1). In order to validate our 36 

estimate of RV1 programme impact, we also undertook concurrent impact evaluation in a 37 

smaller separate population in Chilumba, Northern Malawi (Site 2, Appendix 1 Fig. 1) .13 We 38 

present the studies at each site in turn. 39 

  40 
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Methods  41 

Prior to study commencement, extensive community engagement and consultation activities 42 

were undertaken with Traditional Authorities, village chiefs, health committees, women’s 43 

groups, District and Environmental Health Officers, health centre managers and HSAs to 44 

ensure the study was welcome in communities and households.  45 

 46 

Site 1: Mchinji district - prospective population-based birth cohort 47 

 48 

Setting  49 

Site 1 population was 456,516 persons in the 2008 national census, with a crude birth rate of 50 

32 per 1000 population and post-neonatal infant mortality rate of 28 per 1000 live births in 51 

2015.14, 15  The district is rural and borders Zambia and Mozambique. Its sparsely populated 52 

villages and agricultural estates are interspersed with semi-urban trading-centres. The economy 53 

is based on subsistence maize farming. Electricity is available in 3.3% of households. 15 This 54 

district was the location of a previous cluster randomised trial, with strong community support 55 

for research. It had the requisite infrastructure to expand to district-wide mortality surveillance, 56 

and allowed us to undertake a large-scale population-based birth cohort study. 57 

 58 

Data collection and validation 59 

We conducted a baseline district-wide census in March 2012 to obtain household membership 60 

and create community-held household registers. We established prospective household 61 

surveillance in 1,832 census-enumerated villages within all 354 HSA clusters by a cadre of 62 

1059 village-based key informants (KIs), who were selected by village health committees. KIs 63 

conducted continuous household surveillance and maintained updated paper-based household 64 

registers for about 100 households each, recording all pregnancies, birth outcomes and deaths 65 
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of children under-5 and of women of childbearing age. KIs were supervised by and reported 66 

data monthly to 50 enumerators, who electronically scanned the updated registers.  67 

Enumerators conducted home visits of all liveborn infants at four and 12 months of age to 68 

record vaccination status and confirm survival. The system was supervised by eight monitoring 69 

and evaluation officers (MEOs). Deaths reported by informants were verified and cause of 70 

death determined by verbal autopsy (VA) conducted as culturally appropriate at least two 71 

weeks after death, by specially trained MEOs using the WHO 2012 VA instrument captured 72 

electronically at the household using Open Data Kit software (https://opendatakit.org/ ).16 We 73 

have published a detailed description of this surveillance system.13  74 

 75 

Vaccine status was obtained from a scanned image of government issued caregiver-held 76 

vaccine record (health passport) and caregiver report (at household visits by enumerators at 77 

four and 12 months of age or by MEOs following death). Caregivers were asked directly about 78 

receipt and date of each dose of every vaccine to which the child was age-eligible under the 79 

National Immunisation Programme. Vaccine status was cross checked against vaccination 80 

centre registers in a sub-set of records for quality assurance. Final vaccine status was 81 

determined per criteria outlined in Web appendix 4. Additionally, throughout recruitment, 82 

interviews with mothers following infant vaccination at randomly allocated clinics compared 83 

reported vs recorded vaccine receipt. Throughout recruitment, enumerators collected socio-84 

demographic data on maternal vital and marital status, educational level obtained, and on 85 

house, water source and sanitation quality. Quality controls were embedded in the database 86 

which automatically triggered field checks in case of error or anomalous runs of data (e.g. no 87 

births in a catchment for three months). MEOs met monthly to review data quality and 88 

timeliness and address field challenges.  89 

 90 

https://opendatakit.org/
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Cohort definitions 91 

Infants surviving at least ten weeks of age who were born between 1st January 2012 and 16th 92 

September 2012 constituted the pre-vaccination cohort. Those born between 17th September 93 

2012 (i.e. eligible for 1st dose RV1 on the date of vaccine introduction) and 1st June 2015 94 

constituted the vaccine-age eligible cohort. Impact analysis compared both cohorts, while 95 

analysis of individual survival for VE was conducted in the vaccine-eligible cohort only. Live 96 

births were followed to one year of age or death or were excluded if they migrated. One year 97 

follow-up concluded 1st June 2016. Diarrhoea-associated death was defined as any deceased 98 

child whose caregiver reported non-bloody diarrhoea in the illness preceding death upon direct 99 

closed questioning at VA.  100 

 101 

Analysis 102 

Vaccine programme impact was derived as one minus diarrhoea-associated-mortality rate ratio 103 

in the vaccine-eligible cohort vs pre-vaccine-introduction cohort following and prior to vaccine 104 

introduction using Poisson regression adjusted for socio-demographic covariates (Table 1).  105 

The relative brevity of the pre-vaccine-introduction period at Site 1 precluded adjustment by 106 

year. We also performed analysis restricted to January-June, months with known high rotavirus 107 

prevalence in Blantyre, Malawi.17 To examine the relationship between population vaccine 108 

coverage and mortality, we Poisson regressed the mortality rate against two-dose vaccine 109 

coverage (proportion of 2-dose-eligible infants in the population who actually received both 110 

doses) over time and by HSA cluster.18 For HSA cluster analysis of mortality vs vaccine 111 

coverage we also adjusted for cluster-specific means of household-level socio-demographic 112 

covariates, but had no data on communal assets such as state of roads or public infrastructure. 113 

Plotting of mortality rates over time used locally weighted moving average smoothing (Fig. 2).  114 
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Two (vs zero) dose VE was calculated as (one minus hazard ratio) using Cox proportional 115 

hazards modelling of diarrhoea-associated death occurring at 10-51 completed weeks of life. 116 

Because children may die from causes other than diarrhoea, we also performed competing risk 117 

survival analysis. Multivariable modelling was used to adjust for socio-demographic covariates 118 

using complete-case analysis (Table 1). We have previously published the primary analysis 119 

plan and justification.19 In case of violation of the proportional hazards assumption and to better 120 

understand how VE may be related to age, we conducted fully parametric survival analysis 121 

using Royston-Parmar modelling (Fig. 3, panels b, c & d).20 We examined whether cluster-122 

level determinants influence individual level mortality hazard using random effects 123 

hierarchical models. 124 

 125 

Sample size 126 

In our sentinel hospital in Blantyre, rotavirus prevalence in severe gastroenteritis is 35% overall 127 

and 51% in peak periods; we therefore presumed rotavirus prevalence of 45% in diarrhoea-128 

associated deaths.6, 21 Given our published VE against hospitalised rotavirus gastroenteritis in 129 

Malawian infants is 64%, we assumed VE against very severe rotavirus gastroenteritis (leading 130 

to death) would be higher at 70 to 80%. Applying a presumed 76% reduction to the 45% of 131 

deaths presumed attributable to rotavirus, gave a VE of 34% against all-cause diarrhoea-132 

associated death. Based on our established surveillance prior to RV1 introduction, we expected 133 

1500 births per month and post-neonatal infant mortality rate (PNIMR) of 18 per 1000 live 134 

births, of which six were diarrhoea-associated. We assumed 60% mean vaccine coverage over 135 

the recruitment period. Inflating for 12% loss to follow-up, we required 36,293 10-week 136 

survivors to obtain 80% power to detect VE≥34%.  137 

 138 

Site 2: Validation of Impact Estimate  139 
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A Demographic Surveillance Site (DSS) covering 35,000 individuals has operated in the 140 

remote lakeside region of Chilumba, Northern Malawi since 2002.22 Crude birth rate was 30.8 141 

in 2015, post-neonatal infant mortality 15 per 1,000 live births and electricity available in 8.7% 142 

of households.15 This longstanding DSS provided robust data on historical mortality rates in 143 

infants prior to vaccine introduction from 2004, and was therefore considered useful for 144 

independent impact evaluation. Individual survival analysis was precluded by the small total 145 

population. In this site, births, deaths and migrations were reported monthly by village 146 

informants and validated in a rolling annual re-census as previously described.22 Verbal 147 

autopsies were conducted at home visit as locally culturally appropriate at least two weeks after 148 

death. Socio-demographic covariates and vaccine status were collected on age-eligible children 149 

at the time of census visit with vaccination date transcribed from caregiver-held record or 150 

caregiver report. Monthly population-based diarrhoea-associated mortality rate among ten-51 151 

week old infants was Poisson regressed against vaccine coverage, adjusting for year to account 152 

for long-term trend (Fig. 2 panel b). 23 Unbeknownst to us at planning phase, the Red Cross 153 

implemented rapid, widespread and sustained water and sanitation interventions (WASH) 154 

across the Site 2 DSS area alongside national vaccine introduction.24 Site 2 could therefore no 155 

longer serve its intended validation function, but afforded an unplanned opportunity to evaluate 156 

the combined impact of vaccination with WASH as a post-hoc analysis. 157 

 158 

Ethics 159 

Malawi’s National Health Sciences Research Committee (#837) and the London School of 160 

Hygiene and Tropical Medicine (#6047) provided ethical approval. 161 

 162 

Results  163 

 164 
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Site 1  165 

Cohort Description 166 

We registered 48,672 live births. Of these, the pre-vaccination cohort (born between 1st January 167 

2012 and 16th September 2012) comprised 10,154 infants, among whom 7,818 survived 10 168 

weeks and were included in analysis (Appendix 1 Fig. 2). The vaccine-eligible cohort (born 169 

between 17th September 2012 to 1st June 2015) numbered 38,518. Among these 37,570 170 

survived to ten weeks, and 29,085 were included in analysis, of whom 108 died with diarrhoea 171 

before one year of age (Fig. 1). Among the vaccine-eligible cohort mean age at diarrhoea-172 

associated death was 34 weeks, and 27 weeks for non-diarrhoea associated death (t-test 173 

P<0·001). Two-dose RV1 coverage was 90·6% overall; 90·8% in survivors and 84·3% in 174 

deceased infants. Health passports were seen in 90% of infants overall, but ascertainment 175 

differed by survivorship; 91% in survivors and 40% among the deceased. Socio-demographic 176 

factors were similar among survivors and deceased infants, except for maternal marital status 177 

or maternal death (Table 1). Compared with baseline assumptions (see Sample Size), in the pre-178 

RV1 period, monthly births were 1,112, PNIMR 18·8, diarrhoea-associated mortality 5·6, and 179 

loss to follow-up 18%. Post-hoc exploratory analysis found that infants lost to follow-up had 180 

younger (mean age: 25 vs. 27 years) but more educated mothers (15% vs. 12% secondary 181 

education) who were more likely to be unmarried (86% versus 89% married) and have slightly 182 

better housing quality (11% vs 9% best quality). 183 

 184 

Mortality Impact 185 

Prior to vaccine introduction, 44 of 7,818 surviving ten-week olds died with diarrhoea before 186 

one year of age (mortality rate [MR] 5·6 per 1000 live births) (Fig. 2 panel a). Among the 187 

vaccine age-eligible cohort, 108 of 29,085 surviving ten-week olds died of diarrhoea before 188 

one year of age (MR 3·7). Unadjusted and socio-demographically adjusted Poisson regression 189 
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estimated vaccine impact on diarrhoea-associated mortality was 34% (95% CI: 6, 53; P=0.03; 190 

N=36,900) and 31% (95% CI: 1, 52; P=0.04N=36,770), respectively. For equivalent January-191 

June periods assumed to represent peak rotavirus prevalence, in the post-introduction years 192 

2013 to 2015 the diarrhoea-associated mortality per 1000 was 3·7, 2·1 and 2·6 and respective 193 

impact was 44% (95% CI: -3, 70; P=0.06), 67% (95% CI: 31, 85; P=0.003) and 61% (95% CI: 194 

19, 81; P=0.01) (Table 2). All-cause mortality rate reduction post RV1 introduction was 25% 195 

(95% CI: 8, 39; P=0.008).  196 

 197 

Mortality vs. vaccine coverage 198 

Among 354 HSA clusters of approximately 1,300 persons each,18 mean post-neonatal infant 199 

mortality per 1000 was 12·3 (range 0, 76·9) and diarrhoea-associated mortality was 3·6 (range 200 

0, 64·5). Two-dose vaccine coverage ranged from 63·6 to 100% across clusters; each 201 

percentage point greater vaccine coverage was associated with a 1·6% (95% CI: 0·8%, 2·5%) 202 

lower diarrhoea-associated mortality rate (Web extra Figure 3). Adjusting for socio-203 

demographic covariates the reduction was 1.1% (95% CI: 0.9%, 1.3%) 204 

 205 

Vaccine effectiveness 206 

Among 26,352 fully RV1 vaccinated infants 91 (0·4%) died, while among 1,789 unvaccinated 207 

infants ten (0·6%) died (Fig. 3, panel a). Unadjusted and adjusted Cox modelling respectively 208 

gave 2-dose VE against diarrhoea-associated mortality of 39% (95% CI: -16, 68) and 34% 209 

(95% CI: -28, 66) (Table 1). Adjusting for HSA catchment area using a random effects 210 

hierarchical model gave a VE of 36% (95% CI: -24, 67; likelihood ratio [LR] test p<0·001).  211 

Analysis of Schöenfeld residuals showed no evidence of violation of the proportional hazards 212 

assumption (p = 0·23). Competing risks regression gave a VE of 28% (95% CI: -43, 67). 213 

Royston-Parmar model derived VE estimates showed high VE in early infancy which declined 214 
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after 6 months of age (Fig. 3 panel c). Further sensitivity analyses and effectiveness against all-215 

cause mortality are presented in Appendix 2.  216 

 217 

 218 

Site 2  219 

Between 1 January 2004 and 1 June 2015, 15,394 live births were recorded. Of these 3,531 220 

were eligible for RV1 among whom 3,433 survived to 10 weeks. Follow-up was completed on 221 

1 June 2016 for 3,249 infants, of whom 3,235 survived to 1 year. Of the 14 deceased infants, 222 

three died with diarrhoea.  223 

 224 

All-cause and diarrhoea-associated deaths were declining since 2006, but were substantially 225 

lower since RV1 introduction and the Red Cross WASH interventions (Fig. 2 panel b). 226 

Adjusting for year to account for the longer-term trend, Poisson regression of raw monthly 227 

diarrhoea-associated mortality before and after these interventions gives mortality-rate 228 

reduction of 46% (95% CI: 26, 60) P<0.001.  229 

 230 

  231 
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Discussion  232 

In this large population-based birth cohort study, national introduction of RV1 was associated 233 

with a 31% reduction in diarrhoea-associated mortality in infants surviving to at least ten weeks 234 

of age, and the degree of impact was strongly associated with vaccine coverage. Point estimate 235 

for individual protection from diarrhoea-associated mortality was 34%, though too few cases 236 

of diarrhoeal death occurred following introduction to achieve sufficiently precise confidence 237 

bounds. In the context of published RV1 impact (43%) and effectiveness (64%) estimates 238 

against laboratory-proven rotavirus hospitalization from Blantyre in Southern Malawi, our 239 

estimates of impact (31%) and effectiveness (34%) against aetiologically non-specific 240 

diarrhoea-associated death have prima facie validity.6 The higher effectiveness observed in 241 

months known to have high rotavirus prevalence (January to June) and the association between 242 

vaccine coverage and impact further attest to causal plausibility. These data from a low-income, 243 

high-burden setting therefore provide compelling evidence of RV1 impact on diarrhoea-244 

associated infant mortality. 245 

 246 

The estimates of mortality impact in Site 1 are similar to those found in previous analyses of 247 

administrative datasets in middle-income countries.8-10, 25 RV1 introduction in Mexico and 248 

Brazil, for example, was associated with diarrhoeal-mortality rate reduction in infants of 41% 249 

and 21% respectively.8, 9 25 Botswana, a sub-Saharan middle-income country reported a 48% 250 

(95% CI: 11, 69) reduction in hospitalised case fatality during the rotavirus season and similar 251 

findings have been reported from Panama; though neither study measured population 252 

mortality.26, 27 The comparable levels of protection found in our low-income Sub-Saharan 253 

African setting is encouraging, as children from this region account for more than half of global 254 

diarrhoea deaths, and with 31 African countries thus far introducing rotavirus vaccine the 255 

absolute impact on mortality is likely to be substantial. 2, 3  256 
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 257 

The cohort design allowed us to estimate hazard and VE by age, a metric that has been 258 

approximated in case-control studies.28 The observed hazard by age mimics the age at 259 

laboratory-confirmed rotavirus hospitalization seen in our sentinel surveillance site in Blantyre 260 

(Fig. 2 panel b). The apparent decline in VE with age is unlikely to be due to individual 261 

immunological waning before 12 months, but could be explained by changes in the force of 262 

infection through indirect effects.12  If rotavirus prevalence is declining (Table 2), the hazard 263 

for unvaccinated infants declines, so the measurable protection afforded by vaccine direct 264 

effects is thereby reduced.  Survivorship bias may also contribute to lower VE estimates in 265 

older infants, since survivors who happen to receive vaccination late do not contribute their 266 

pre-vaccination survival time to the unvaccinated cohort and survivors are implicitly more 267 

robust. 268 

 269 

The greater individual level VE against all-cause mortality than against diarrhoea-associated 270 

mortality (Web Extra Table 2·5) in Site 1 is explained by confounding. Infants who did not 271 

receive RV1 had a greater likelihood of not receiving other EPI vaccinations, in particular 272 

pneumococcal vaccine that was introduced 10 months before RV1. Moreover such children 273 

had greater association with other socio-demographic risk factors for mortality (Appendix 274 

Table 2·5). Children from households with fewer assets had increased mortality hazard (Table 275 

1 and Web Extra Tables  2.1-2.5). We have previously published data from Site 2 showing that 276 

vulnerable infants are at greater risk of both vaccine non-receipt and of death. 29 277 

  278 

Our study has several limitations. First, vaccination population-impact evaluations are subject 279 

to temporal and secular biases, particularly for aetiologically non-specific endpoints. On the 280 

other hand, individual VE estimates may be biased by access to vaccination or choice to 281 
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vaccinate. We thus sought to determine both impact and effectiveness, and took account of 282 

socio-demographic confounding. However, successful vaccines with strong impact on disease 283 

incidence challenge sufficient accumulation of cases for individual-level analysis of adequate 284 

power, because deaths become rarer events. Thus although the impact and effectiveness point 285 

estimates were similar, impact was such that effectiveness had wide confidence bounds. 286 

Second, although we inflated our sample size to account for anticipated loss to follow-up, it is 287 

possible that migrating children differed systematically from the rest of the population, thereby 288 

biasing vaccine effectiveness estimates. Single, wealthier more educated women were more 289 

mobile, but the differences, though nominally statistically significant, were modest. The 290 

observed vaccine coverage and mortality rates in the non-migrating cohort aligned with our 291 

initial expectations. Third, retrospective updating of vaccine status may have been associated 292 

with bias toward higher apparent vaccine effectiveness.30 Coding vaccination date as date of 293 

study ascertainment rather than the date vaccination actually occurred might mitigate this bias, 294 

but this approach requires high frequency of visits. Not only is this logistically challenging in 295 

a study of this magnitude but may itself affect mortality outcome by increasing opportunity for 296 

illness recognition. Our maternal exit interviews following vaccine clinic visits showed 297 

bidirectional misclassification of about 4% (data not shown). Fourth, we went to great lengths 298 

to minimize under-ascertainment of both unvaccinated survivors and vaccinated infants who 299 

died, as previously described.19 Yet among deceased infants health passports were often buried 300 

along with the child and unavailable for review. We could not change this cultural practice 301 

despite educational campaigns by radio and through community engagement. We actively 302 

sought vaccination clinic records to obtain vaccine status of deceased children, but it was 303 

challenging to find the correct individual records of specific infants. We therefore evaluated 304 

the quality of parental reporting through quality assurance activities. Restricting analysis to 305 

deceased infants whose records were available would itself have introduced bias. Fifth, cause 306 
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of death misclassification can affect VE. Under-reporting of diarrhoea among vaccinated 307 

deceased infants will bias VE and impact estimates away from the null. However, validation 308 

studies from Africa have shown high sensitivity for diarrhoea in VA, and these are relatively 309 

robust to recall bias, parents recollect the details of their child’s final illness.31 Sixth, since date 310 

of vaccination was not always available we could not analyse vaccination status as a time-311 

varying covariate. This likely introduced a slight bias away from the null, since had we done 312 

so then the brief survival time between becoming eligible (we allowed 2 weeks for vaccination 313 

to be considered timely) and actually receiving vaccination would not have been included in 314 

vaccinated survival time. The fact that most vaccination was timely is therefore reassuring. 315 

Finally, other co-administered vaccines might also reduce diarrhoea-associated mortality thus 316 

subtly increasing apparent RV1 VE. Co-administration of other vaccines was almost universal, 317 

and we cannot account for this bias. In Site 2, where we report a combined impact of RV1 318 

introduction and a comprehensive WASH intervention, the magnitude of mortality reduction 319 

was 46%. Surveillance duration and therefore model adjustments differed across our two sites 320 

so the two results are not directly comparable. Given the unanticipated co-introduction of 321 

extensive improvements in sanitation at Site 2 our result could have been biased away from the 322 

null due to other improvements in healthcare in this region, though in scoping with stakeholders 323 

we have not become aware of any other concurrent population interventions. Notwithstanding 324 

these caveats, the implication that concurrent interventions may have synergistic benefit is 325 

intriguing and warrants further programmatic evaluation.  326 

 327 

Conclusions 328 

Childhood diarrhoea-associated mortality in this rural African population has fallen during the 329 

past decade, in part due to improvements in sanitation and treatment interventions including 330 

ORS and zinc. Our large and comprehensive study demonstrates for the first time using 331 
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empirically observed, population-based surveillance that rotavirus vaccine further reduces 332 

diarrhoea deaths in a low income, rural African population. These data add considerable weight 333 

to the WHO recommendation that countries with high childhood mortality should add rotavirus 334 

vaccine to existing public health interventions to further reduce diarrhoea deaths. 335 

  336 
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Figure 1: Flow diagram per STROBE guidelines of participating vaccine-eligible cohort born from 17th 481 

September 2012 – 1st June 2015, Site 1 482 

 483 

 484 
*Completion of follow-up means sufficient information was obtained by 1 year of age to determine 485 
whether the participant can be included in analysis or excluded for the reasons outlined in the 486 
figure.  487 

Excluded from analysis - death  
- Missing dates = 22  
- Migrated = 23 
- No consent = 3  
- No event = 3 
- Record error = 0 
- Household not located = 6 

Livebirths registered: 38,518 

Follow-ups initiated: 35,602 

Follow-up not completed: 173 

Follow-ups complete*: 35,429 
Excluded from analysis - survivors  

- Missing dates = 6 
- Migrated = 5,537 
- No consent = 30 
- No event = 4 
- Record error = 514  
- Household not located =196  

Excluded due to data issues:  
- ID error = 1637 
- Suspected duplicate = 119 
- Implausible birth = 31 
- Unknown issue = 181 

  
Not eligible for cohort: 

- Neonatal deaths = 844 
- Early infant deaths = 104  

29,085 included in analysis:  
Surviving = 28,718 

Deceased = 367 

Diarrhoeal deaths = 108 
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Figure 2: Panel A. 12-month weighted moving average smoothed trend* in all-cause and diarrhoea-488 
associated mortality in 10-51 week infants and 2-dose RV1 coverage, September 2012 to June 2015, Site 1. 489 
Panel B. 12-month weighted moving average smoothed trend* in all-cause and diarrhoea-associated 490 
mortality in 10-51 week infants; 2-dose RV1 coverage and 3-dose pneumococcal conjugate vaccine 491 
coverage, 2004 to 2016, Site 2. 492 

 493 
* 12-month weighted moving average smoothed trend: 494 

𝑌̂𝑡 =
1

24
(𝑌𝑡−6 + 𝑌𝑡+6) +

1

12
(𝑌𝑡 + 𝑌𝑡−1 + 𝑌𝑡+1 + 𝑌𝑡−2 + 𝑌𝑡+2 + 𝑌𝑡−3 + 𝑌𝑡+3 + 𝑌𝑡−4 + 𝑌𝑡+4 + 𝑌𝑡−5 + 𝑌𝑡+5) 495 

; where 𝑌𝑡 is the monthly observation at month t and 𝑌̂𝑡 is the locally-weighted estimate at month t.  496 
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 497 
Figure 3: Survival analysis of diarrhoea-associated death in vaccine-eligible cohort, Site 1. 498 

 499 

Panel A: Kaplan-Meier survival curve and confidence bounds, by vaccine receipt. (Deaths shown in parentheses 500 
in At-Risk table beneath the plot) 501 
Panel B: Fully parametric hazard rate over survival time, by vaccine receipt. 502 
Panel C: Vaccine effectiveness over survival time. 503 
Panel D: Hazard rate difference (between vaccinated and unvaccinated infants) over survival time. 504 
  505 
  506 
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Table 1: Vaccine-eligible cohort description and multivariable Cox proportional hazards survival analysis, Site 1. 507 

Variable 
Survived All-cause deaths Diarrhoea-deaths Cox multivariable model 

N (%) N (%) N (%) Hazard ratio‡‡ 95% CI P-value 

TOTAL 28,718 367 108    

Rotavirus vaccine 

status 

0 doses 

1 dose 

2 doses 

Missing 

1724 

563 

26086 

345 

(6%) 

(2%) 

(91%) 

(1%) 

65 

33 

266 

3 

(18%) 

(9%) 

(72%) 

(1%) 

10 

7 

91 

- 

(9%) 

(7%) 

(84%) 

1 

- 

0·66 

 

 

0·34, 1·28 

 

 

0·22 

Maternal marital 

status: 

Married 

Single 

Divorced/widow 

Died 

Missing 

25810  

1567 

1287 

20 

34 

(90%) 

(5%) 

(5%) 

(0.1%) 

(0.1%) 

283 

39 

33 

9 

3 

(77%) 

(11%) 

(9%) 

(2%) 

(1%) 

83 

11 

9 

5 

- 

(77%) 

(10%) 

(8%) 

(5%) 

1 

1·91 

1·55 

98·1 

 

1·00, 3·65 

0·74, 3·27 

39.5, 243.6 

 

0·05 

0·25 

<0·001 

Maternal education: None 

Primary 

Secondary/Tertiary 

Missing 

3173 

21963 

3543 

39 

(11%) 

(77%) 

(12%) 

(0.1%) 

46 

280 

37 

4 

(13%) 

(76%) 

(10%) 

(1%) 

13 

82 

13 

- 

(12%) 

(76%) 

(12%) 

1 

1·12 

0·95 

 

0·59, 2·11 

0·40, 2·27 

 

0·73 

0·91 

Water source 

 

Protected source 

Open source 

Missing 

23525 

5167 

26 

(82%) 

 (18%) 

 (0.1%) 

283 

81 

3 

(77%) 

 (22%) 

 (1%) 

81 

27 

- 

(75%)  

(25%) 

 

1 

1·42 

 

0·90, 2·24 

 

0·13 

Toilet facility No facility 

Some facility 

Missing 

5186 

23503 

29 

(18%) 

(82%) 

(0.1%) 

63 

301 

3 

(17%) 

(82%) 

(1%) 

20 

88 

- 

(19%) 

(81%) 

1 

1·30 

 

0·76, 2·21 

 

0·34 

House quality† Worst 

Middle 

Best 

Missing 

21922 

4302 

2464 

33 

(76%) 

(15%) 

(9%) 

(0.1%) 

297 

41 

26 

3 

(81%) 

(11%) 

(7%) 

(1%) 

86 

11 

11 

- 

(80%) 

(10%) 

(10%) 

1 

0·90 

1·71 

 

0·48, 1·72 

0·84, 3·46 

 

0·76 

0·14 

Season of birth Dry 

Rainy 

15229 

13489 

(53%) 

(47%) 

202 

165 

(55%) 

(45%) 

63 

45 

(58%) 

(42%) 

1 

0.89 

 

0.60, 1.31 

 

0.55 

 Mean (SD) Mean (SD) Mean (SD)    

Mother’s age†† 26·0 (6·6) 27·1 (7·3) 27·9 (7·9)    

Household assets‡ 1·5 (1·2) 1·2 (1·2) 1·1 (1·2) 0·72 0·59, 0·87 0·001 

† House quality is a composite of the construction materials use to make the roof, walls and floor 

†† Mother’s age is standardized to be the age at birth of the child  

‡ Household assets include: bicycle, radio, ox cart and mobile phone 

‡‡ Hazard ratio of diarrhoea-associated death 

  508 
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Table 2: Diarrhoea-associated death before and after RV1 introduction, Site 1. 509 

Time period Survived 

Diarrhoea-associated 

deaths 

Diarrhoea-associated 

mortality rate (per 1000) 

Vaccine coverage  

(% of eligible) 

Vaccination impact * 

(95% CI, P-value) 

Pre-vaccine cohort 7,690 44 5·6 N/A - 

Vaccine eligible cohort 28,718 108 3·7 91% 31% (1, 52, P=0.043) 

Jan-Jun 2012 (pre-RV1) 4,232 28 6·6 N/A - 
Jan-Jun 2013 4,339 16 3·7 89% 39% (10, 59, P=0.013) 

Jan-Jun 2014 4,180 9 2·1 94% 76% (58, 86, P<0.001) 

Jan-Jun 2015 3,830 10 2·6 95% 68% (47, 81, P<0.001) 

CI = confidence interval 

*  1 minus relative rate reduction in mortality following vaccine introduction compared to pre-introduction rate, using 

adjusted Poisson regression  

 510 
 511 
  512 
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Web Extra Materials 513 

Web Extra 1: Additional figures 514 

Web Extra Figure 1: Map of Malawi, study sites marked in red 515 

Web Extra Figure 2: Site 1 pre-vaccination cohort flow diagram per STROBE guidelines 516 

Web Extra Figure 3: Poisson model predicted diarrhoea-associated mortality vs vaccine 517 

coverage, Site 1. 518 

Web Extra 2: Sensitivity analysis using different survival cut-offs and investigating random effects 519 

Web Extra 3: Socio-demographic status, Site 1. 520 

Web Extra 4: Vaccine status construction  521 

  522 



31 
 

Web Extra 1: Additional figures 523 
 524 
Web Extra Figure 1: Map of Malawi, study sites marked in red 525 

  526 
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Web extra Figure 2: Site 1 pre-vaccination cohort flow diagram per STROBE guidelines 527 
 528 

 529 
  530 

Excluded from analysis - death  
- Missing dates = 0 
- Migrated = 5 
- No consent = 0 
- No event = 1 
- Record error = 2 
- Household not located = 0 

Livebirths registered: 10,154 

Follow-ups initiated: 9,425 

Follow-up not completed: 44 

Follow-ups complete: 9,381 

Excluded from analysis - survivors  
- Missing dates = 0 
- Migrated = 1,238 
- No consent = 10 
- No event = 3 
- Record error = 58 
- Household not located =  246 

Excluded due to data issues:  
- ID error = 506 
- Suspected duplicate = 47 
- Implausible birth = 16 
- Unknown issue = 2 

  
Not eligible for cohort: 

- Neonatal deaths = 140 
- Early infant deaths = 18 

7,818 included in analysis:  
Surviving = 7,690 

Deceased = 128 

Diarrhoeal deaths = 44 
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Web Extra Figure 3: Poisson model predicted diarrhoea-associated mortality vs vaccine coverage, Site 1. 531 

 532 
 533 

  534 
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Web Extra 2: Sensitivity survival analyses, Site 1 535 
 536 
2.1 InterVA defined diarrhoea outcome (10wk survival) 537 

Variable 
Hazard 

Ratio 

95% Confidence 

Interval 
p-value 

RV status 0 doses 

2 doses 

1·00 

0·71 

 

0·21 

 

2·35 

 

0·574 

Mother’s status Married 

Single 
Divorced/widow 

Deceased 

1·00 

2·34 
1·85 

66·60 

 

0·79 
0·54 

8·93 

 

6·93 
6·34 

469·80 

 

0·126 
0·330 

<0·001 

Mother’s education None 
Primary 

Secondary/Tertiary 

1·00 
0·57 

0·44 

 
0·23 

0·10 

 
1·42 

1·89 

 
0·230 

0·271 

Water source                  
 

Protected source 
Open source 

1·00 
1·03 

 
0·42 

 
2·53 

 
0·942 

Toilet facility None 

Some facility 

1·00 

0·94 

 

0·40 

 

2·24 

 

0·890 

House quality Worst 
Middle 

Best 

1·00 
0·88 

2·62 

 
0·26 

0·83 

 
3·00 

8·29 

 
0·842 

0·101 

Household asset index 0·69 0·48 0·99 0·041 

Global test of proportional hazards: 0·2942 

Infants eligible for inclusion in this sensitivity analysis: 27,912 survived, 31 died 

 538 
  539 
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2.2 Cohort inclusion at 6 week survival 540 

Variable 
Hazard 

Ratio 

95% Confidence 

Interval 
p-value 

RV status 0 doses 
2 doses 

1·00 
0·57 

 
0·31 

 
1·04 

 
0·066 

Mother’s status Married 

Single 

Divorced/widow 
Deceased 

1·00 

1·85 

1·45 
82·90 

 

0·97 

0·69 
33·40 

 

3·52 

3·06 
205·77 

 

0·061 

0·323 
<0·001 

Mother’s education None 

Primary 
Secondary/Tertiary 

1·00 

1·00 
0·85 

 

0·55 
0·37 

 

1·80 
1·96 

 

0·990 
0·700 

Water source                  

 

Protected source 

Open source 

1·00 

1·42 

 

0·91 

 

2·22 

 

0·122 

Toilet facility None 
Some facility 

1·00 
1·29 

 
0·77 

 
2·17 

 
0·333 

House quality Worst 

Middle 
Best 

1·00 

0·93 
1·65 

 

0·50 
0·82 

 

1·72 
3·33 

 

0·818 
0·161 

Household asset index 0·73 0·61 0·88 0·001 

Global test of proportional hazards: 0·447 

Infants eligible for inclusion in this sensitivity analysis: Survived = 28,342, died = 105 
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2.3 Cohort inclusion at 26 week survival 542 

Variable 
Hazard 

Ratio 

95% Confidence 

Interval 
p-value 

RV status 0 doses 
2 doses 

1·00 
0·72 

 
0·33 

 
1·58 

 
0·412 

Mother’s status Married 

Single 

Divorced/widow 
Deceased 

1·00 

1·69 

1·92 
136·81 

 

0·76 

0·86 
54·62 

 

3·76 

4·31 
342·69 

 

0·199 

0·111 
<0·001 

Mother’s education None 

Primary 
Secondary/Tertiary 

1·00 

1·17 
1·08 

 

0·56 
0·40 

 

2·47 
2·89 

 

0·675 
0·881 

Water source                  

 

Protected source 

Open source 

1·00 

1·42 

 

0·84 

 

2·39 

 

0·188 

Toilet facility None 
Some facility 

1·00 
1·25 

 
0·68 

 
2·30 

 
0·471 

House quality Worst 

Middle 
Best 

1·00 

0·93 
1·44 

 

0·46 
0·63 

 

1·91 
3·34 

 

0·853 
0·389 

Household asset index 0·77 0·62 0·96 0·020 

Global test of proportional hazards: 0·665 

Infants eligible for inclusion in this sensitivity analysis: Survived = 27,718, died = 77 

 543 
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2.4 Any dose of RV versus 0 doses (10 week cohort inclusion) 545 

Variable 
Hazard 

Ratio 

95% Confidence 

Interval 
p-value 

RV status 0 doses 
≥1 dose 

1·00 
0·62 

 
0·32 

 
1·20 

 
0·156 

Mother’s status Married 

Single 

Divorced/widow 
Deceased 

1·00 

1·87 

1·42 
94·73 

 

0·95 

0·65 
37·47 

 

3·68 

3·14 
239·49 

 

0·071 

0·382 
<0·001 

Mother’s education None 

Primary 
Secondary/Tertiary 

1·00 

1·43 
1·48 

 

0·70 
0·60 

 

2·89 
3·66 

 

0·324 
0. ·393 

Water source                  

 

Protected source 

Open source 

1·00 

1·56 

 

0·99 

 

2·44 

 

0·053 

Toilet facility None 
Some facility 

1·00 
1·24 

 
0·73 

 
2·12 

 
0·422 

House quality Worst 

Middle 
Best 

1·00 

0·90 
1·65 

 

0·47 
0·83 

 

1·71 
3·28 

 

0·740 
0·151 

Household asset index 0·77 0·63 0·93 0·006 

Global test of proportional hazards: 0·779 

Infants eligible for inclusion in this sensitivity analysis: Survived = 28,012, died = 101 
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2.5 All-cause non-traumatic mortality (10 week cohort inclusion) 547 

Variable 
Hazard 

Ratio 

95% Confidence 

Interval 
p-value 

RV status 0 doses 
2 doses 

1·00 
0·29 

 
0·22 

 
0·38 

 
<0·001 

Mother’s status Married 

Single 

Divorced/widow 
Deceased 

1·00 

2·27 

1·97 
49·13 

 

1·59 

1·33 
24·25 

 

3·23 

2·92 
99·56 

 

<0·001 

0·001 
<0·001 

Mother’s education None 

Primary 
Secondary/Tertiary 

1·00 

1·02 
0·75 

 

0·73 
0·45 

 

1·45 
1·24 

 

0·89 
0·26 

Water source                  

 

Protected source 

Open source 

1·00 

1·27 

 

0·98 

 

1·65 

 

0·07 

Toilet facility None 
Some facility 

1·00 
1·27 

 
0·95 

 
1·71 

 
0·11 

House quality Worst 

Middle 
Best 

1·00 

0·79 
1·15 

 

0·54 
0·74 

 

1·14 
1·79 

 

0·21 
0·53 

Household asset index 0·83 0·74 0·92 0·001 

Global test of proportional hazards: 0·0002 (ie PH assumption is rejected) 

Infants eligible for inclusion in this sensitivity analysis: Survived = 27,912, died = 317 
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Web Extra 3: Socio-demographic status, Site 1. 550 
 551 
3.1 Socio-demographic characteristics of children according to vaccination status 552 

Variable 
0 doses 1 dose 2 doses 

N (%) N (%) N (%) 

TOTAL 1,750 603 25,831 

Mother died 3 (0.2%) 0  (0%) 22 (0.1%) 

Marital status:  
Married 
Single 

Divorced/widow 

1,536 
95 

114 

(88%) 
(5%) 

(7%) 

541 
33 

28 

(90%) 
(5%) 

(5%) 

23,273 
1,406 

1,133 

(90%) 
(5%) 

(5%) 

Education: 
None 
Primary 

Secondary 

260 
1,341 

148 

(15%) 
(77%) 

(8%) 

103 
447 

52 

(17%) 
(74%) 

(9%) 

2,762 
19,771 

3,285 

(11%) 
(77%) 

(13%) 

Water source                  
Open source 

Protected source 

444 

1,304 

(25%) 

(75%) 

129 

474 

(21%) 

(79%) 

4,523 

21,308 

(18%) 

(82%) 

Toilet facility 
No facility 

Some facility 

394 

1,354 

(23%) 

(77%) 

139 

464 

(23%) 

(77%) 

4,561 

21,268 

(18%) 

(82%) 

House quality 

Worst 

Middle 
Best 

1,399 

234 
115 

(80%) 

(13%) 
(7%) 

471 

80 
52 

(78%) 

(13%) 
(9%) 

19,675 

3,906 
2,247 

(76%) 

(15%) 
(9%) 

 Mean (SD) Mean (SD) Mean (SD) 

Mother’s age 27·6 (6·76) 27·7 (7·30) 27·0 (6·58) 

Household assets 1·33 (1·15) 1·36 (1·15) 1·55 (1·18) 
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3.2 Socio-demographic characteristics of entire cohort over time 555 
 Year 

Socio-demographic factor 2012 2013 2014 2015 

Any toilet facility 78·4% 79·9% 83·4% 85·1% 

Household mobile phone ownership 38·5% 42·0% 44·6% 50·1% 
No maternal education 13·6% 11·8% 10·4% 9·4% 

Maternal primary education 74·2% 75·7% 77·3% 78·5% 

Maternal secondary / tertiary education 11·8% 12·3% 12·3% 12·1% 
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Web Extra 4: Vaccine status construction 558 
 559 
There are three sources of vaccine status information available in Malawi:  560 

- Health passports (government issued caregiver-held documents) 561 
- Caregiver recall  562 
- Under 1 government vaccine registers (filled by healthcare workers at the point of vaccination and 563 

stored in frontline health facilities) 564 
 565 
Health passports were witnessed at home-visit interviews at 4 months and 1 year of age and at verbal autopsy 566 
interviews. Degree of reliability was then assigned to vaccine data source as outlined in the table, including 567 
relative merits of each source. 568 
 569 

4.1 Vaccine data source reliability 
Data Source Strengths Weaknesses Reliability 

Health passport 

• Filled in at the point of vaccination 

• Dates included 

• Less than 5% mis-recording 

• Differential availability according to 

survival status 
High 

Under 1 register 
• Routine data, therefore should be 

available for all, irrespective of 

survival status 

• Some registers are missing or of very 

poor quality 

• Issues in tracing children through 

registers and across facilities 

• Absence of record does not mean they 

are unvaccinated 

Medium 

Caregiver recall with 

known dates 

• Dates included 

• Generally some documented evidence 

provided e.g. twins health passport 

• Uncommon High 

Caregiver recall of no 

vaccinations 
• Generally anecdotal support which 

makes it believable  

• Uncommon 

• Relies on accurate recall  
High 

Caregiver recall 
• Available for most children, regardless 

of survival status 

• Recall bias and social-desirability bias 

(in both directions), so hard to adjust for 

the uncertainty 

• Chance of interviewer bias  

Low 

 570 
The following hierarchical rules were applied to construct a binary variable indicating vaccine received or vaccine 571 
not received:  572 

1. If at home visit interview or VA a vaccine is recorded as ‘received’ in the health passport, this information 573 
will be taken as correct. 574 

2. If at home visit interview or VA a vaccine is recorded as ‘not received’ or ‘missing’, or where no health 575 
passport was seen: 576 

a. If available, the vaccine status from a health passport at any prior 4-month interview (if such 577 
occurred) will be used 578 

b. If vaccines have been recorded in the under 1 register with evidence of a date of vaccination, 579 
this vaccine status will be used 580 

c. If vaccine status is not determined by 1, 2a or 2b then caregiver report will be used. 581 
3. In case of data conflict between 4-month visit, 1 year old visit, under-1 register or maternal report, 582 

information from the health passport will be prioritised, followed by under 1 register and then caregiver 583 
report.  584 

 585 


