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Abstract

We present a modified implementation of the Euclidean action formalism
suitable for studying the thermodynamics of a class of cosmological solutions
containing Killing horizons. To obtain a real metric of definite signature,
we perform a “triple Wick-rotation” by analytically continuing all space-
like directions. The resulting Euclidean geometry is used to calculate the
Euclidean on-shell action, which defines a thermodynamic potential. We
show that for the vacuum de Sitter solution, planar solutions of Einstein-
Maxwell theory and a previously found class of cosmological solutions of
N = 2 supergravity, this thermodynamic potential can be used to define an
internal energy which obeys the first law of thermodynamics. Our approach
is complementary to, but consistent with the isolated horizon formalism.
For planar Einstein-Maxwell solutions, we find dual solutions in Einstein-
anti-Maxwell theory where the sign of the Maxwell term is reversed. These
solutions are planar black holes, rather than cosmological solutions, but
give rise, upon a standard Wick-rotation to the same Euclidean action and
thermodynamic relations.
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1 Introduction and motivation

The laws of black hole mechanics [1] were initially thought of as formal
analogies of the laws of thermodynamics, but subsequent work has shown
that they have a genuine thermodynamical interpretation. This suggests
that the relation between classical and quantum gravity may be analogous
to the relation between thermodynamics and statistical mechanics [2, 3, 4, 5].
This is among the most compelling clues that we have about the nature of
quantum gravity. It is therefore important to identify ever-larger classes of
solutions to classical gravity which obey the laws of black hole mechanics,
or variant versions thereof.

One setting in which the laws of black hole mechanics can be derived is
static, asymptotically flat spacetimes containing a Killing horizon.1 Then
the first law of black hole mechanics takes the form

dM =
κ

8πG
dA+ µidQi,

where M is the mass, κ is the surface gravity, A is the area of the black
hole horizon and Qi, µi are a set of conserved charges and their associated
potentials. This statement does not involve any thermodynamics and is
derived using geometrical reasoning. Yet, the seminal work by Bekenstein
[2] and Hawking [3] has demonstrated that this relation can be interpreted
as the first law of thermodynamics through identifying

S =
A

4G
, TH =

κ

2π
,

where S is the entropy and TH is the Hawking temperature. With these
identifications, the first law of black hole mechanics becomes the first law of
thermodynamics:

dE = THdS + µidQi.

Here the internal energy E is understood to be equal to the mass of the
black hole solution, while the charges Qi replace the particle numbers of a
grand ensemble, as usual in relativistic thermodynamics.

One obstruction in generalising this statement to Killing horizons in more
general spacetimes — in particular, those which are not asymptotically flat
and not static — is the definition of the mass M , which takes the role of
energy E. Diffeomorphism invariance prevents one from assigning a total
momentum four-vector, and hence a mass to regions of spacetime in general.
For asymptotically flat spacetimes the ADM construction can be used to

1This generalizes to the larger class of stationary spacetimes, where the first law also contains
a term involving the angular momentum and rotation velocity of the spacetime. But since the
solutions which we will consider in this paper are of the more restricted, static type, we will
neglect this term from the beginning.
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define a total mass [6]. For Killing horizons with an asymptotically flat
static region, this is equivalent to the Komar construction [7], where the
mass is a conserved charge associated with a timelike Killing vector which
becomes null on the horizon. In these constructions, the normalisation of
the mass is implied by the ‘natural’ normalisation of this Killing vector field,
which is that the Killing vector field has unit norm at infinity.

There are various proposals for mass-like quantities in more general sit-
uations, for example, the quasi-local mass of Brown and York [8] which is
well-defined when the region is stationary. However, this yields a mass pa-
rameter which is necessarily position-dependent and thus does not have a
natural normalisation, making it unsuitable as a starting point for the first
law. Alternatively, Asthekar’s isolated horizon formalism [9] recasts the first
law using only quantities defined locally on the horizon. This result pro-
duces a mass-like parameter, but in this approach, the (variation of the)
energy is simply defined by the first law.

In the present paper, we argue that analogues of the mass/energy of the
first law of black hole mechanics exist for a class of cosmological solutions
which are asymptotic to Kasner solutions at timelike infinity. These space-
times, which are solutions to N = 2 supergravity with vector multiplets,
have planar symmetry and were found in [10], when attempting to generalise
the black brane type solutions of [11]. It was found that when sufficiently
many charges are turned on, these solutions consist of static ‘interior’ re-
gions which are bounded by a timelike singularity and a Killing horizon, and
time-dependent ‘exterior’ regions on the other side of the Killing horizon,
which are asymptotic to Kasner cosmologies. The simplest member of this
family, which is obtained by imposing that all scalar fields are constant, is
the planar version of the Reissner-Nordström solution of Einstein-Maxwell
theory. As explained in [10], the planar symmetry has the effect of prevent-
ing the existence of the static asymptotically flat regions familiar from the
spherically symmetric Reissner-Nordström solution. One is left with a dy-
namical region which is now the outer part, and a static inner region around
the singularity. The resulting conformal diagram is that of a maximally ex-
tended Schwarzschild spacetime, rotated by 90 degrees, or equivalently, the
conformal diagram of a spherical Reissner-Nordström solution with the as-
symptotically flat regions (called ‘type I’ in most references) removed, see
Figure 2. When attempting to derive the first law for the Killing horizons
of these solutions, we face the problem that we cannot define a mass-like
quantity by an ADM or Komar-type construction, as the static region is not
asymptotically flat, but has finite size and terminates in a singularity. In
order to define a mass-like quantity which plays the role of E in the first law,
we employ the Euclidean action formulation (with a modification to account
for the static region ending in a singularity), to obtain a thermal partition
function for the solutions of [10]. In the standard setting with a static ex-
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terior region with a well behaved asymptotic boundary, one Wick-rotates
the time coordinate and obtains a smooth, positive definite metric on a real
slice of the complexification of the original solution. One then substitutes
the Euclideanised solution into the action, thus obtaining a function which
depends on the parameters of the solution. In this step of the procedure,
boundary terms play a central role. The exponential of the resulting Eu-
clidean action can be viewed as the saddle point approximation to the full
Euclidean functional integral. Following Gibbons and Hawking [4] we can
interpret this expression as a thermal partition function. Given this, the
energy E can be computed by taking suitable derivatives with respect to
combinations of parameters, of the solution which correspond to thermody-
namic variables. By then computing its variation δE, one can check whether
the first law is satisfied.

For the type of solution we are interested in, the singularities in the
static region prevent us from computing the Euclidean action in the static
patch, as its boundary is a singularity. Therefore, we work instead in the
dynamic outer region, as it is well behaved at its asymptotic boundary,
located at past timelike infinity.2 Since the horizontal Killing vector field
is spacelike in this region, we cannot apply a Wick-rotation in time, which
would make spacetime complex. Instead, we perform a triple Wick-rotation
in all spacelike coordinates, which provides a real slice of the complexified
spacetime with a (negative) definite metric. Using this slice, we obtain a
well behaved Euclidean action. We note that the standard argument for
identifying the resulting Euclidean action with a thermodynamic potential
depends on the Killing vector being timelike, and thus being related to time
translations and energy. In the dynamic outer patch, the Killing vector
is spacelike and thus corresponds to spatial translations and momentum.
We proceed formally and relate our Euclidean action to a thermodynamic
potential, leaving questions about the underlying microscopic theory aside.
The ‘energy’ E is defined as a derivative of this potential, and we prove
that its variation δE satisfies a relation which takes the exact form of the
first law. As a further consistency check, we also apply the isolated horizon
formalism, which imposes the first law and this way obtains an expression
for the energy, and and we find that the results of both formalisms agree.

The structure of the paper is as follows. We begin by introducing the
Euclidean action formalism and reviewing the relevant ingredients. After an
overview of standard techniques, the procedure of the triple Wick-rotation
is defined. Following this, three examples of the triple Wick-rotation are
given. First, the de Sitter solution is discussed in Section 3, serving as a
simple example of the first law for a vacuum solution, where we can com-

2The global solutions have a second cosmological region which is related to this region by time-
reversal, see Figure 2. For thermodynamics we choose pairs of patches such that the exterior
and interior are related by future-pointing null rays, that is regions III/IV or III/I.
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pare against a standard Wick rotation in the static region as a consistency
check. Then, in Section 4, the planar Reissner-Nordström solution to the
Einstein-Maxwell system is studied using the triple Wick-rotation. A ther-
modynamic potential is derived, and from this, the first law is verified. This
solution can be regarded as a limit of a family of solutions to the STU
model of N = 2 supergravity, for which we verify the first law in Section
5. The method is applied again for the full STU model, allowing the defi-
nition of a mass-like parameter which, when varied, gives the first law. In
the following Section 6, these results are supported through an alternative
calculation using the isolated horizon technique of [9]. In Section 7 we find
a dual planar Reissner-Nordström solution in Einstein-anti-Maxwell theory,
that is, in a theory where the sign of the Maxwell term is flipped. In this
solution, the roles of the interior and exterior region are exchanged, and
so the solution is a planar black hole with a static exterior region. This
allows us to apply a standard Wick rotation, and we find that this solution
has the same Euclidean action and thermodynamic relations as the planar
Reissner-Nordström solution. While we do not discuss the embedding of
these solutions into string theory, we point out that this duality between
solutions, as well as their connection through a common Euclidean section,
is related to the existence of a ‘twisted’ version of the N = 2 supersymme-
try algebra, and to timelike T-duality [12, 13]. We conclude with a physical
interpretation and discussion of the work completed in this paper in sec-
tion 8. Some of the calculational details are relegated to the appendices,
together with a summary of the conventions used in this work. Specifically,
Appendix A summarises our conventions, while Appendix B reviews extrin-
sic curvature, to the extent that is needed to compute boundary terms for
the gravitational action. Appendix C reviews the definition and normaliza-
tion of charges, and gives details of the dualization of magnetic to electric
charges that we use in the main part. The quite substantial Appendix
D presents details of the maximal analytical extensions for all solutions
considered plus the Schwarzschild solution for reference. This includes the
definition of Kruskal and of advanced and retarded Eddington-Finkelstein
coordinates, the computation of the expansion of null congruences, and the
classification of horizons. We also show how type A-III vacuum Einstein
solutions arise as asymptotic limits, and we show that the maximally ex-
tended planar Reissner-Nordström solution is a bouncing cosmology, which
interpolates between, and regularizes, two Kasner cosmological solutions.
Appendix E collects some thermodynamic relations for reference.

2 Euclidean action formalism

In this section, we first review the standard Euclidean action formalism,
which interprets the saddle point approximation of the partition function for
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a gravitational theory as a thermodynamic partition function [4, 5]. Then
we present a modification which assigns a Euclidean action to a dynamic3

spacetime by using a triple Wick-rotation.

2.1 Gravitational and thermodynamic partition functions

The thermodynamic canonical partition function Z(β) for a system with a
Hamiltonian Ĥ is defined by

Z(β) := e−βF = Tre−βĤ ,

where F is the free energy and β is the inverse temperature. For a sys-
tem with a conserved charge Q, the thermodynamic potential depends
on the conserved charge in addition to its dependence on temperature,
F = F (β,Q). The grand canonical ensemble is defined by keeping the charge
constant and letting the corresponding intensive thermodynamic variable,
the chemical potential µ, fluctuate. The corresponding thermodynamic par-
tition function is the grand canonical partition function:

Z(β, µ) := e−βΩ = Tre−βĤ ,

where Ω(β, µ) is the grand potential. Note that we are suppressing the
contribution of a pressure/volume term usually seen in the thermodynamic
potentials. From a gravitational perspective, these arise from rotations and
angular momentum, or, in the case of planar solutions, translations and
linear momentum, which are not present in the solutions we consider in this
paper. The thermodynamic relations for such an ensemble are summarized
in Appendix E for convenience.

To illustrate the correspondence between partition functions of quantum
(field) theories and thermodynamic partition functions, we consider the case
of a quantum particle. The time-evolution operator admits a path integral
representation involving the classical action

〈x| e−itH |x′〉 =
∫

DxeiS[x],

where we have set ~ = 1. By Wick-rotating the time coordinate t → −iβ
and taking the trace, which in the path integral corresponds to integrating
over paths periodic in time, one obtains

Tre−βH =

∫

Dxe−SE [x] = e−βF ,

where β is interpreted as inverse temperature, and where F is the free energy.

3Here and in the following ‘dynamic’ means ‘non-stationary’, that is a spacetime without a
timelike Killing vector field.
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It is straightforward, at least at a formal level, to extend this prescription
to quantum field theories. In a quantum theory including gravity, the path
integral is performed over the space of all metrics g, as well as over the
matter fields ϕ,

Z =

∫

DgDϕe−SE [g,ϕ] .

While it is challenging to give a precise meaning to the full path integral,
one can proceed formally and attempt to make sense of it in a saddle point
approximation. This leads to the expression Z ≃ e−SE , where the Euclidean
action SE is evaluated on an on-shell field configuration satisfying suitable
boundary conditions [14].

Employing this, we obtain a relation between the Euclidean on-shell
action and the free energy:

log(Z) ≃ −SE ≃ −βF ⇒ F ≃ SE

β
.

When gauge fields are present, the boundary conditions are chosen such
that the total charge Q is fixed. Then the Euclidean action depends on the
associated chemical potential µ, so that SE = SE(β, µ), and one obtains
the following relation between the Euclidean on-shell action and the grand
potential Ω(β, µ):

log(Z) ≃ −SE ≃ −βΩ, ⇒ Ω ≃ SE

β
.

2.2 Simple Wick-rotation

We now use the Einstein-Maxwell theory with a cosmological constant to re-
view the standard Wick-rotation. Our conventions for actions are explained
in Appendix A. We follow [15] for the gravitational action, and generalise
this by including the cosmological constant and the Maxwell action:

S = Sbulk + SGHY

= − 1

16π

∫

M

√

|g|(R− 2Λ)d4x− 1

16π

∫

M

√

|g|FµνF
µνd4x

+
ǫ

8π

∫

∂M

√

|γ|(K −K0)d
3x .

(2.1)

The middle line is the bulk term, containing the Einstein-Hilbert action with
the Ricci scalar R, a cosmological constant Λ and the Maxwell term. The
second line is the Gibbons-Hawking-York boundary term SGHY [16, 4], which
is needed to cancel boundary terms arising from the variation of the Einstein-
Hilbert action if spacetime is not closed (compact without boundary). The
spacetime metric g induces a metric γ on the boundary ∂M . K is trace
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of the extrinsic curvature of ∂M as an embedded submanifold of spacetime
M , see the Appendix B for details. The constant ǫ takes the values ǫ = ±1
for boundaries with unit normals which are either spacelike (+) or timelike
(−). To obtain a finite value for the on-shell action, we include a background
term K0. For an asymptotically flat spacetime K0 is the extrinsic curvature
of the boundary embedded into a flat spacetime, which ensures that the
action of Minkowski space, which is a solution for Λ = 0, is zero rather than
divergent.

We now apply the Wick-rotation t → −it to (2.1) to map exp(iS) →
exp(−SE). Following [15] we first consider the gravitational terms. The
bulk gravitational term receives a factor of −i from the measure:

− 1

16π

∫

M

√
g(R− 2Λ)d4x → i

1

16π

∫

M

√
g(R− 2Λ)d4x.

For the transformation of the GHY-term we need to distinguish two cases.

1. For surfaces with a timelike unit normal:

ǫ = −1, K → iK
√
γd3x → √

γd3x

2. For surfaces with a spacelike unit normal:

ǫ = 1, K → K,
√
γd3x → −i

√
γd3x

The resulting Euclidean Gibbons-Hawking-York term is the same for both
types of hypersurfaces and transforms as

+
ǫ

8π

∫

∂M

√

|γ|(K −K0)d
3x → −i

1

8π

∫

∂M

√

|γ|(K −K0)d
3x.

We now consider the Maxwell field. Before Wick-rotation, we use that the
Maxwell action is evaluated on-shell, allowing us to rewrite its contribution
as a total derivative4

FµνFµν = 2∇µ(AνF
µν).

Applying Stoke’s theorem, we can write the bulk contribution as an integral
over the boundary

− 1

8π

∫

M

√

|g|∇µ (AνF
µν) d4x =

1

8π

∫

∂M
FµνAµdΣν ,

where the volume element on the boundary is defined as dΣµ = nµ

√

|γ|d3x
and nµ is the outward-pointing unit normal vector. Applying a Wick-
rotation, we find the Maxwell action transforms as

1

8π

∫

∂M
FµνAµdΣν → −i

1

8π

∫

∂M
FµνAµdΣν ,

4In terms of differential forms, F ∧ ⋆F = dA ∧ ⋆F = d(A ∧ ⋆F ), if d ⋆ F = 0.
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where note explicitly that each pieces transforms as: dΣµ → −idΣµ, Aµ →
−iAµ, and Fµν → iFµν .

Taking all contributions together, the Euclidean action is

SE = −iSWick−rotated =
1

16π

∫

M

√
g(R − 2Λ)d4x

− 1

8π

∫

∂M

√

|γ|(K −K0)d
3x− 1

8π

∫

∂M
FµνAµdΣν .

(2.2)

2.3 Triple Wick-rotation

The standard simple Wick-rotation can be applied for static spacetimes
which upon continuation remain real, so that the Euclidean on-shell action
can be interpreted as a thermal partition function. The static patches of
the planar solutions found in [10] take the form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) , (2.3)

which at first appears suitable for this procedure. However, we also need
smooth field configurations to obtain a well-defined and finite Euclidean on-
shell action. For the solutions of [10] the static patches have a curvature
singularity for some finite value r = rsing of the transverse coordinate r,
which makes the Euclidean on-shell action ill-defined.

However, these static patches have a horizon at another finite value r =
rh > rsing of the coordinate r, and by analytic continuation one obtains a
dynamic patch, where the metric, after relabelling r ↔ t, takes the form

ds2 = − dt2

f̃(t)
+ f̃(t)dr2 + t2(dx2 + dy2) . (2.4)

Note that the function f̃(t) has been modified with an additional sign:
f̃(x) = −f(x). This ensures that f̃(t) is positive definite within the do-
main of t ∈ (th,∞). For the remainder of the discussion, the tilde will be
dropped and it is understood that functions f appearing in the line element
are positive definite for each patch, and that the coordinate denoted t is
timelike while the coordinate denoted r is spacelike.

It was shown in [10] that these solutions have a well behaved asymptotic
behaviour for t → ∞.5 In the dynamic patch, the horizontal Killing vec-
tor field is spacelike rather than timelike, and the application of the simple
Wick-rotation leads to a complex line element and action. To work with

5To be precise, there are two extensions of the static patch, and depending on the extension,
t → ∞ either corresponds to future or to past timelike infinity. We refer to the Appendix D for
a discussion of the global structure of the solution.
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this dynamic patch, we will need to modify the standard Euclidean method.
There are some examples where complex line elements are used in the lit-
erature, the canonical example being the Kerr metric [4]. In this case, the
generalisation is to admit timelike Killing vector fields which are not hyper-
surface orthogonal, and the complexification arises from cross terms in the
line element. This is different from our case, where the Killing vector field
is still hypersurface orthogonal, but spacelike.

We therefore explore an alternative procedure, which in principle can
be applied to any metric which has no timelike-spacelike cross-terms, and
depends explicitly on time but not on the spatial coordinates. We choose
to Wick-rotate all three spacelike coordinates of the line element. Since the
examples for which we will obtain a well defined Euclidean action are of
the form (2.4), we denote the spatial coordinates r, x, y so that the triple
Wick-rotation takes the form

(r, x, y) → ±i(r, x, y) ,

where we admit either choice of sign. As we work with the mostly plus
conventions, the resulting Euclidean line element will be negative-definite.

Applying this transformation to (2.1) the Euclidean action associated
with the triple Wick-rotation is calculated. The bulk contribution trans-
forms as

− 1

16π

∫

M
(R− 2Λ)

√−gd4x →− (±i)3
1

16π

∫

M
(R− 2Λ)

√−gd4x

=± i
1

16π

∫

M
(R− 2Λ)

√−gd4x .

The GHY-term, as with the single Wick-rotation, transforms with the same
sign for ǫ = ±1.

1. For surfaces with a timelike unit normal

ǫ = −1, K → K,
√
γd3x → (±i)3

√
γd3x.

2. For surfaces with a spacelike unit normal,

ǫ = 1, K → ∓iK,
√
γd3x → (±i)2

√
γd3x,

and we see that for either hypersurface, the GHY term transforms under a
triple Wick-rotation as

+
ǫ

8π

∫

∂M

√

|γ|(K −K0)d
3x → ±i

1

8π

∫

∂M

√

|γ|(K −K0)d
3x.
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As with the standard Wick-rotation, we can write the gauge field contri-
bution as a boundary term as we evaluate the action on shell. Performing
the triple Wick-rotation, we find

1

8π

∫

∂M
FµνAµdΣν → ∓i

1

8π

∫

∂M
FµνAµdΣν ,

where we have used that dΣµ → (±i)3dΣµ, Aµ → ±iAµ and Fµν → ∓iFµν .
Piecing this all together, the triple Wick-rotated Euclidean action is given
by

SE =± 1

16π

∫

M

√
g(R− 2Λ)d4x

± 1

8π

∫

∂M

√

|γ|(K −K0)d
3x∓ 1

8π

∫

∂M
FµνAµdΣν .

(2.5)

We then identify the thermodynamic potential as we do in the standard
formulation, evaluating the partition function Z in a saddle point approxi-
mation to obtain

logZ = −SE(β, µ) = −βΩ , (2.6)

where the inverse temperature β and chemical potential µ can be expressed
in terms of parameters of the triple-Wick rotated solution.

2.4 Surface gravity and temperature

When working with the Euclidean action formalism, the temperature as-
sociated with a Killing horizon is usually determined by the periodicity of
Euclidean time, which in turn is fixed by imposing the absence of a conical
singularity after Wick-rotation. The near horizon approximation of the line
element has the Rindler-like metric

ds2 = −κ2r′2dt2 + dr′2 + (A+ · · · )d ~X2,

where κ is the surface gravity, r′ = r − rh is a shifted coordinate which
vanishes at the horizon, and A is independent on r′. The term d ~X2 is the
standard line element on the unit-sphere or on the Euclidean plane, depend-
ing on whether we impose spherical or planar symmetry. While the term
proportional to d ~X2 in the line element is manifestly regular for r′ = 0, there
is a conical singularity in (t, r′)-plane unless the Euclidean time coordinate
t satisfies κt ∼ κt+ 2π and thus is periodic with period 2πκ−1. This deter-
mines the temperature TH associated with the horizon, β = T−1

H = 2πκ−1.
We observe that since the surface gravity κ enters the line element quadrat-
ically, this procedure does not actually determine whether TH is positive
or negative. However, the sign can be set through computing the Hawk-
ing temperature using curved spacetime quantum field [3], or the tunneling
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effect for a quantum particle [17]. As an aside, we note that by removing
the conical singularity, the horizon becomes the origin in the Wick-rotated
spacetime. As a result, the Wick-rotated spacetime has only one boundary,
located at r → ∞. This means that when we calculate boundary terms for
the Euclidean action, there will only be asymptotic contributions.

The surface gravity κ of a Killing horizon is defined by

ξν∇νξ
µ
∣

∣

r=rh
= κξµ , (2.7)

evaluated on the horizon, where ξ is a Killing vector field which is null on
the horizon and non-null outside the horizon. We observe that κ changes
sign under ξ → −ξ. For static, asymptotically flat spacetimes, the sign can
be fixed by defining κ to be the acceleration of a test mass at the horizon,
multiplied by the redshift factor [18]. This also fixes the magnitude of κ,
which changes under rescalings of ξ. The standard formula (2.7) applies to
the case where ξ has unit norm at spatial infinity.

Since we will investigate a non-standard situation, we will not assume
that κ and TH are positive. Furthermore, as the asymptotic region is not
flat, we have to specify how we normalize the horizontal Killing vector field.
For this purpose we will follow the work of [19] and [20, 21], which provides
a method for computing the surface gravity and temperature of trapping
horizons. While the definition of an event horizon requires the knowledge
of the global causal structure of a spacetime, trapping horizons are defined
quasi-locally by the existence of marginally trapped surfaces. That is, on a
trapping horizon the expansion of one of the two future-directed null con-
gruences defined by ingoing and outgoing light rays changes sign, so that
the horizon separates a non-trapping region where one congruence expands
and the other contracts from a trapping region where both congruences ei-
ther expand or contract. The Killing horizons of the solutions [10] are event
horizons, and thus in particular trapping horizons, so that the formalism
can be applied.6 In the literature the term ‘trapping horizon’ is used for
hypersurfaces where the expansion of one null congruence vanishes, while
spatial cross sections of a trapping horizon are called ‘apparent horizons.’
We will use both terms interchangeably.

In the so-called Kodama-Hayward approach [22, 19], the surface gravity
is obtained as follows. The metric is required to have the structure

ds2 = γij(x)dx
idxj + C2(x)d ~X2 , i = 0, 1,

where γij
7 and C only depend on the coordinates (x0, x1) = (t, r). For

spherically symmetric spacetimes, d ~X2 = dΩ2 is the standard metric on the

6While [19] and [21] assume spherical symmetry, their formalism extends straightforwardly
to situations with planar symmetry.

7Note that here γ is the metric for the transverse coordinates and is distinct from the boundary
metric γ used in our Euclidean action calculations. As it is unlikely to cause confusion, we allow
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two-sphere. In our calculations, we allow planar symmetry and hence d ~X2

is the standard metric on R
2. The surface gravity in the Kodama-Hayward

formalism is

κ =
1

2
√−γ

∂i
(√−γγij∂iC

)

=
1

2
∆γC .

For later reference, we compute the Kodama-Hayward surface gravity for
line elements of the form

ds2 = − dt2

f(t)
+ f(t)dr2 + t2d ~X2,

which include the dynamic patches of [10], and obtain

κ = −1

2
∂tf(t). (2.8)

Following [20, 21], trapping horizons and their Kodama-Hayward surface
gravity subdivide into four cases, as follows. One chooses a local frame
containing two future-directed null vectors, Nµ

± which are ‘outgoing’ (+)
and ‘intgoing’ (−). Using the definition for the expansion

θ± = ∇µN
µ
±, (2.9)

the four types of horizons are determined by calculating their expansions θ±
and their Lie derivative, evaluated on the horizon.

Non-trapping regions in spacetime are those where θ+θ− < 0. The con-
vention taken in [20, 21] is that θ− < 0 and θ+ > 0 in all non-trapping
regions so that the outgoing congruence Nµ

+ is diverging (or expanding)
while the ingoing congruence Nµ

− is converging (or contracting). Trapping
regions are those where θ+θ− > 0, so that either both congruences expand,
or both congruences contract. Apparent horizons occur at boundaries where
θ± = 0, θ∓ 6= 0.

In Appendix D, we construct the maximal extensions of spacetimes with
a line element of the form (2.3), using only qualitative properties of the
function f , namely its zeros and asymptotic behaviour. We compute the
expansions of null congruences, identify the types of the trapping horizons
and identify the global causal structure. For comparison, we also include
spacetimes like the Schwarzschild spacetime where the static region is r > rh
rather than r < rh. In all cases the maximally extended spacetime consists
of four regions, which are separated by trapping horizons which happen to
be Killing horizons. We identify one of the two non-trapping regions with
the region where the line element (2.3) is static, and use this ‘standard static
patch’ (or standard non-trapping patch) to fix the direction of physical time

this duplicity in our notation in order that this section uses the same conventions as the cited
papers [20, 21].
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for the extended spacetime. In this patch we identify two future-pointing
null geodesic congruences Nµ

±, such that their expansions satisfy θ+ > 0
and θ− < 0. Then we choose Kruskal-like coordinates {X+,X−, . . .} in such
a way that they are adapted to the standard patch, that is, such that in
the standard patch ingoing future-pointing null congruences have constant
X+ and propagate towards increasing X−, while outgoing future-pointing
null congruences have constant X− and propagate towards increasing X+.
When extending the metric, the vector fields Nµ

± and the scalars θ± to the
full maximally extended spacetime, we observe that there always is a second
static, non-trapping patch. In this second static patch the roles of ingoing
and outgoing congruences are reversed so that we have the non-standard
assignments θ+ < 0 and θ− > 0. In addition, there always are two trapping
regions, one where both congruences expand, one where both contract. The
transverse coordinate r used in (2.3) can always be extended beyond the
trapping horizon and covers two regions of the extended spacetime, depend-
ing on the choice of the static patch and the way in which we continue. We
call regions interior regions when they contain a curvature singularity, and
exterior regions if null geodesics can be extended to infinite affine parameter
in one direction. The coordinate r takes values r < rh in the interior and
r > rh in the exterior regions. For our main examples, the de Sitter, planar
Einstein-Maxwell and planar STU solutions, the inner region r < rh is static
while the exterior region r > rh is dynamic. We will therefore relabel r → t
in exterior regions to emphasize that this cooordinate is timelike. For more
details, we refer the reader to Appendix D.

The variation of the expansions are given by their Lie derivatives L±θ∓
with respect to the lightcone coordinates X±. Since L±θ∓ does not change
sign across horizons, there are four types of horizons [20, 21].

1. Future outer horizons: θ+ = 0, θ− < 0, LN−θ+ < 0. The sign of θ+
changes from positive to negative with growing X−. The situation is
analogous to regions I and II of the extended Schwarzschild solution,
see the left diagram in Figure 6. For sufficiently small X− (‘outside the
horizon’) the outgoing congruence is expanding, while for sufficiently
large X− (‘inside the horizon’) both congruences contract. Therefore
future outer horizons can be taken as local definitions of black holes.

2. Past outer horizons: θ− = 0, θ+ > 0, LN+
θ− < 0. The sign of θ−

changes from positive to negative with growing X+. For sufficiently
large X+ (‘outside the horizon’) the ingoing congruences are converg-
ing, while for sufficiently small X+ (‘inside the horizon’) both congru-
ences expand. The small X+ region is analogous to the time-reflected
region IV of the extended Schwarzschild solution, while the large X+

region is analogous to region I. Therefore past outer horizons can be
taken as local definitions of white holes.
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3. Future inner horizons: θ+ = 0, θ− < 0, LN−θ+ > 0. The sign of
θ+ changes from negative to positive with increasing X−. The inside
region (large X−) is non-trapping while in the outside region (small
X−) both congruences contract. Therefore future inner horizons can
be taken as local definitions of contracting cosmologies, where all null
congruences become converging for large enough distances from the
observer.

4. Past inner horizons: θ− = 0, θ+ > 0, LN+
θ− > 0. The sign of

θ− changes from negative on the inside (small X+) to positive on the
outside (large X+). The interior region is non-trapping while in the ex-
terior region both congruences expand. Therefore past inner horizons
are local definitions of expanding cosmologies, where all null congru-
ences become expanding for large enough distances from the observer.

The surface gravities of these horizons are related to variations of the ex-
pansions by κ ∝ −L±θ∓. Thus outer horizons have positive surface gravity,
while inner horizons have negative surface gravity. A further sign has been
argued for in the relation between surface gravity and temperature. In
[20, 21] the Hawking temperature of an apparent horizon was computed us-
ing the Parikh-Wilczek tunnelling method. It was found that TH ∝ ±κ, with
the upper sign for future horizons and the lower sign for past horizons. The
net effect is that future outer horizons (black holes), and past inner horizons
(expanding cosmologies) have positive temperature, while future inner hori-
zons (contracting cosmologies) and past outer horizons (white holes) have
negative temperature.

Negative temperature was argued to indicate the absence of Hawking
radiation, since future inner and past outer horizons cannot separate virtual
particle pairs created by vacuum fluctuations, thus not enabling the Hawking
effect [20, 21]. In thermodynamics, the inverse temperature is related to the
entropy S and internal energy E by

β =
∂S

∂E
.

Therefore, negative temperature can occur if one drops the usual assumption
that the entropy increases monotonically with the energy. A toy model for
negative temperature is provided by a system with finite maximum energy
[23]. Taking a system with two energy eigenstates E1 < E2 as the simplest
example, this will be in a maximally ordered state, S = 0, if all particles
are either in the lower or in the higher state, while a maximally disordered
state is realized when half of the particles are in either state. Upon heating
up such a system, entropy and temperature first increase, with the temper-
ature reaching +∞ when entropy becomes maximal. Upon further heating,
the entropy decreases and the temperature jumps at the turning point from
+∞ to −∞. After this point, it increases, approaching 0 from below when
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reaching a situation where all particles are in the higher state. Thus neg-
ative temperatures are ‘higher’ than positive temperatures and correspond
to ‘population inversion.’ We will see later that some of the horizons we are
interested in have negative surface gravity and negative temperature, and
that this is necessary in order to for the first law to take its standard form
when using our triple Wick rotated Euclidean formalism.

3 Thermodynamics of the de Sitter solution

As an introductory example of the implementation of the triple Wick-rotation
in spacetimes with dynamic asymptotic regions, we study the de Sitter so-
lution of Einstein’s equations with a positive cosmological constant. This
example is somewhat simpler than the solutions of [10] since it is a vacuum
solution. However, it allows us to demonstrate that the results we obtain
using a triple Wick-rotation in the dynamic patch agree with those obtained
previously using a single Wick-rotation in the static patch.

3.1 Static patch, single Wick-rotation

The de Sitter spacetime line element in static coordinates is given by

ds2 = −
(

1− r2

L2

)

dt2 +

(

1− r2

L2

)−1

dr2 + r2dΩ2
2, (3.1)

with the cosmological horizon located at rh = L, where L is the de Sitter
radius and the domain of our variable is r ∈ [0, rh). At r = rh there is a
Killing horizon for the Killing vector field ξ = ∂t, which becomes spacelike
when we continue to r > rh. The thermodynamics of de Sitter space can
be calculated within the static patch 0 < r < rh using standard methods.
The cosmological constant Λ can be written generally as a function of the
de Sitter radius

Λ =
(d− 1)(d − 2)

2L2
=

3

L2
,

where for reference, we first give the relation for general dimension d before
setting d = 4.

Under the Wick-rotation t → −it, the line element (3.1) maps to the
positive definite line element

ds2 =

(

1− r2

L2

)

dt2 +

(

1− r2

L2

)−1

dr2 + r2dΩ2
2. (3.2)

Entropy: Using the Bekenstein-Hawking area law, the entropy is deter-
mined by

SdS =
A

4
= π2L. (3.3)
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Temperature: The temperature associated with the horizon is propor-
tional to the Kodama-Hayward surface gravity, which is found to be κ =
−L−1, thus yielding the Hawking temperature

TH =
κ

2π
= − 1

2πL
.

Note that the Hawking temperature is negative since we employ the def-
initions of [20, 21] and consider horizons which can be crossed by future
directed null rays and future directed time-like curves (‘observers’) from the
outside to the inside. These are the regions III and IV in Figure 1, where
the global time orientation is chosen such that the Killing vector field is
future-pointing in region III, that is, globally time flows ‘upwards.’ This
choice of regions is natural because it has the same causal structure as the
part of the extended Schwarzschild spacetime which describes a black hole
(regions I and II in the left diagram of Figure 6). As we show in Appendix
D the horizon between regions III and IV in the global de Sitter spacetime
is a future inner horizon, which therefore has negative surface gravity and
temperature. This is different from the assignments made in other refer-
ences, including [5, 24], where the Hawking temperature is positive TH > 0.
However according to [24] this implies that the entropy is negative. In con-
trast, in this paper the sign of the temperature is determined by the type
of apparent horizon, but the entropy is always defined by the area law and
therefore positive. Note that the expression TdS entering into the first law
is the same in both approaches.

Euclidean action: Global de Sitter space is a maximally symmetric space
of constant positive curvature with topology R × S3. Its Kruskal diagram
decomposes into four regions, two of which have a timelike Killing vector
field and do not intersect the boundary, which is spacelike with topology S3.
If we evaluate the Euclidean action on a static patch, the boundary terms
do not contribute and the de Sitter action is completely determined by the
bulk terms:

SE =
1

16π

∫

M

√
g(R− 2Λ),

where the Ricci curvature is constant: R = 12L−2 and the integral over the
four manifold gives

SE =
1

16π

6

L2

∫ β

0
dτ

∫

S2

sin θdθdφ

∫ rh

0
r2dr = −πL2.

As there are no charges in the solution, we work in the canonical ensemble
and we have the following relations:

log(Z) = −SE = −βF, F = E − TS.
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Figure 1: Conformal diagram for the global de Sitter solu-
tion. Dashed lines denote the comological horizon located
for r = L and the North/South poles are identified for
r = 0. Blue curved arrows denote the flow of the Killing
vector field.

The de Sitter solution is a maximally symmetric vacuum solution and thus
interpreted as a ground state. We therefore choose the natural normalisation
E = 0. Following from this we obtain

SE = βF = −S ⇒ S = πL2.

We see that the thermodynamic entropy matches with (3.3) and the first
law is satisfied though in a ‘degenerate way’, as the entropy is constant:
dS = 0 = TdS = dE = d(0) = 0.

3.2 Dynamic patch, triple Wick-rotation

The static patch is not complete and by analytical extension of the coordi-
nate r through the Killing horizon to values r > rh we obtain a second, dy-
namical patch, with asymptotic region r → ∞. When crossing the horizon,
the function f(r) becomes strictly negative, and we find that the coordinates
t, r exchange their roles. The timelike coordinate t becomes spacelike, while
the spacelike coordinate r becomes timelike. We adopt the convention to
relabel coordinates in the dynamic patch, so that t is always timelike and r
always spacelike.
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Then the line element in the dynamic patch is

ds2 = −
(

t2

L2
− 1

)−1

dt2 +

(

t2

L2
− 1

)

dr2 + t2dΩ2
2 . (3.4)

The coordinate domain is t ∈ (th,∞) where th is the Killing horizon located
at th = L. Note that while this cannot be read of from the local form of
the line element, we have chosen the continuation from region IV to region
III, so that t → ∞ corresponds to past timelike infinity, see Appendix D for
details. This is relevant because it determines the sign of the temperature.

Triple Wick-rotation: We now perform a triple Wick-rotation where
r → ±ir and where the sphere S2 is analytically continued to the hyperbolic
plane H2 by (θ, φ) → ±i(θ, φ). The line element (3.4) is mapped to the
negative-definite line element

ds2 = −
(

t2

L2
− 1

)−1

dt2−
(

t2

L2
− 1

)

dr2−t2dH2
2 , dH2

2 = dθ2+sinh2 θdφ2 .

Temperature & entropy: The temperature associated to the Killing
horizon is the same as in the previous calculation. Using the Kodama-
Hayward expression (2.8), the surface gravity is found to be κ = −L−1 and
for a future inner horizon the Hawking temperature is

TH = κ = − 1

2πL
.

The entropy is identical to the static solution and is given by

SdS =
A

4
= π2L.

Euclidean action: The dynamical patches of global de Sitter space in-
tersect the boundary, which is spacelike with topology S3. Therefore we
need to take boundary terms into account. After our triple Wick-rotation,
the boundary has topology S1 ×H2, where the radius of the S1 is fixed by
imposing the absence of a conical singularity.

The Euclidean action for the triple-Wick-rotated system is

SE = ± 1

16π

∫

M

√
g(R − 2Λ)d4x± 1

8π

∫

∂M

√
γKd3x+

∫

∂M
Lct[γ]d

3x,

where a counter term Lct has been included to remove divergences from the
action. The boundary is at t → ∞, and we first integrate t in the domain
t ∈ [th, ǫ

−1) and then take the limit of ǫ → 0. The volume
∫

H2

sinh θdθdφ = ω,
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of the hyperbolic plane is divergent. While one option in this situation is to
work with densities, we keep ω as a formal constant which corresponds to
the parametric volume ωS2 = 4π of the two-sphere in the static patch.

The bulk term of the Euclidean action is

SBulk = ± 1

16π

∫

M

√
g(R− 2Λ)d4x ,

where

R =
12

L2
, Λ =

3

L2
,

√
g = t2 sinh θ.

Putting these into the action and integrating over the manifold we find:

SBulk = ± 1

16π

∫

M

√
g(R− 2Λ)d4x

= ± 1

16π

∫ β

0
dr

∫

H2

sinh θdθdφ

∫ ǫ−1

L
dt

(

6t2

L2

)

= ∓ βω

16π

2

L2

(

1

ǫ3
− L3

)

.

The Gibbons-Hawking-York term

SGHY = ± 1

8π

∫

∂M

√−γKd3x,

can be calculated in the following way: the normal vector to the boundary
for constant t is

nµ =
(

−
√

f, 0, 0, 0
)

⇒ nµn
µ = −1 .

The trace K of the extrinsic curvature, evaluated on a surface of constant
t = t0, can then be computed using (B.7):

K = ∇µn
µ =

3t20 − 2L2

t0L2
√
f

,
√−γ =

√

f(t0)t
2
0 sinh θ ,

K
√−γ =

3t30
L2

− 2t0 .

Combining these, we find that the boundary contribution at t0 = ǫ−1 is:

SGHY = ± 1

8π

∫

∂M

√−γKd3x

= ± 1

8π

(

3

L2ǫ3
− 2

ǫ

)
∫ β

0
dr

∫

H2

sinh θdθdφ

= ±βω

8π

(

−2

ǫ
+

3

L2ǫ3

)

.
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The counter term is constructed from the geometric data of the boundary
metric:

∫

∂M
Lct[γ]d

3x =

∫

∂M
d3x
√

|γ|(c1 + c2R[γ]),

where R[γ] is the Ricci curvature associated to the boundary manifold, and
c1,2 are renormalisation constants. We can expand out the counter terms in
orders of ǫ and find:

√

|γ| =
(

1

Lǫ3
− L

2ǫ
+O(ǫ1)

)

sinh θ,

R[γ]
√

|γ| =
(

− 2

Lǫ
+O(ǫ1)

)

sinh θ.

Comparing terms of order ǫ we find that the counter term is:
∫

∂M
Lct[γ]d

3x = ∓ 1

4πL

∫

∂M
d3x
√

|γ|
(

1 +
L2

4
R[γ]

)

.

By construction, our action is now finite at the boundary ǫ → 0 and is of
the form:

SE = ±βω

8π

(

t3h
L2

)

= ∓2πLω

8π

L3

L2
= ∓ωL2

4
.

Picking the sign
(r, θ, φ) → +i(r, θ, φ),

for the triple Wick-rotation, the signs of the Euclidean actions agree for both
patches, and the actions only differ by the numerical factors ω, ωS2 = 4π.
As these are numbers, which we could eliminate by taking the Euclidean
action per coordinate area, the resulting thermodynamics is the same.

4 Planar solutions to the Einstein-Maxwell theory

Our next examples are vacuum solutions of the Einstein-Maxwell equations
with planar symmetry, or ‘planar Reissner-Nordström solutions.’ These
solutions are the simplest examples of a class of planar solutions to the STU
model of N = 2 supergravity [10], and correspond to the limit where all
scalar fields are taken to be constant. It was shown in [10] that planar
Einstein-Maxwell solutions already show all the qualitative features of the
global causal structure of the full class of solutions. Similarly, we will see
in the next section that the thermodynamics of planar Einstein-Maxwell
solution is simpler than, but representative of, the thermodynamics of planar
solutions of the STU model.

Following our conventions, which are summarized in Appendix A, the
Lorentzian bulk action for Einstein-Maxwell theory is

S =
1

16π

∫

d4x e (−R− FµνFµν) .
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In particular, we work in a convention where Newton’s constant is set to
unity, G = 1, so that the gravitational coupling κ4 satisfies κ24 = 8π. For
later use we observe that the Maxwell term has the coefficient (16π)−1 =
(4g2)−1, where g =

√
4π is interpreted as a coupling constant, see Appendix

C.

4.1 Static patch

Solving the Einstein-Maxwell equations while imposing planar symmetry
and staticity leads to a Ricci flat solution with the line element

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2), f(r) = −2M

r
+

q2

r2
, (4.1)

where we must choose M > 0 in order to ensure the presence of a horizon.8

The transverse coordinate r takes values in the interval 0 < r < rh, where
r = 0 is the location of a curvature singularity, while rh is the location of
a Killing horizon, where f(rh) = 0. Since we assume that the solution only
carries electric charge, the gauge field is given by

F =
(

−q

r

)

dt ∧ dr . (4.2)

The gauge potential A is found through integration of (4.2) together with
the standard boundary condition A(rh) = 0:9

A =

(

−q

r
+

q

rh

)

dt. (4.3)

Charge & chemical potential: The chemical potential is given by the
asymptotic value of the gauge potential [26]; taking this limit for (4.3) gives

µ := lim
r→∞

At =
q

rh
=

2M

q
.

Note that while r → ∞ is outside the static patch 0 < r < rh, we will see
below that we can analytically extend spacetime to 0 < r < ∞, so that this
limit makes sense. The conserved electric charge is computed using Gauss’
law, which for planar symmetric gives

Q =
1

4π

∫

R2

⋆F =
qω

4π
, ω =

∫

R2

dx ∧ dy .

Here ω is the divergent parametric area of the horizon, which we keep as a
formal constant to allow comparison to the spherically symmetric case. The
factor of 4π is due to the normalization we have chosen for the gauge field.
In our conventions the volume form is defined using the conventional choice
ǫtrxy = 1.

8Solutions with M < 0 have naked singularities.
9See [25] Appendix F for an explanation.
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4.2 Dynamic patch

Due to the presence of a curvature singularity at r = 0 we cannot apply the
standard thermodynamic formalism in the static patch. By analytic continu-
ation, using advanced Eddington-Finkelstein coordinates at an intermediate
step, see Appendix D, we can extend space time to the dynamical region
rh < r < ∞, where the horizontal Killing vector field becomes spacelike.
Since r becomes a timelike coordinate in the dynamic patch, we apply the
same convention as in the de Sitter example, and as in [10], we relabel the
coordinates (t, r) → (r, t), and redefine f by a minus sign. Then the line
element of the dynamic patch takes the form

ds2 = − dt2

f(t)
+ f(t)dr2 + t2(dx2 + dy2) f(t) =

2M

t
− q2

t2
th =

q2

2M
,

(4.4)
which covers region III of Figure 2, with t → ∞ corresponding to past
timelike infinity. It has been shown in [10] that this line element becomes
asymptotic to a Kasner cosmological solution in the limit t → ∞. Using
advanced Eddington-Finkelstein coordinates, one can show that the Killing
horizon between regions III and IV (and I) is an apparent horizon of future
inner type, consistent with the interpretation as a contracting cosmological
solution, see Appendix D.

Temperature & entropy: To compute the surface gravity and temper-
ature of the future inner horizon, we use the Kodama-Hayward formalism.
Applying (2.8) to the line element (4.4), and taking into account that for
future horizons the surface gravity and temperature have the same sign we
obtain

κ = −4M3

q4
⇒ TH =

κ

2π
= −2M3

πq4
. (4.5)

The Bekenstein-Hawking area law gives a relation for the entropy of the
horizon in terms of the horizon area:

SBH =
A

4
=

ωt2h
4

=
q4ω

16M2
.

As with other extensive quantities, we keep the divergent volume ω as a
formal constant rather than using densities.

4.3 Euclidean action

Our main goal is to show that the future inner horizon satisfies the first law
of horizon mechanics, which takes the same form as the first law of thermo-
dynamics. This requires to identify geometrically defined quantities of the
solution with thermodynamic quantities. In standard black hole thermody-
namics the mass M of the black hole is identified with the internal energy of

22



II

III

IV I

i+

i−

J
+

J
−

Figure 2: Conformal diagram of the planar Reissner-
Nordström solution and planar solution of the STU model.
The standard static region, where the Killing vector field
∂t is timelike and future-pointing is Region IV. For thermo-
dynamics we consider the future inner horizon between Re-
gions III and IV, which can be crossed by causal geodesics
from the outside to the inside.

a canonical or grand canonical ensemble. Due to the planar symmetry, and
since we are not working in a static patch, we do not have a natural can-
didate for a mass-like quantity. Since there is no asymptotically flat region
which we could use to normalize the mass or the horizontal timelike Killing
vector field, we cannot apply the ADM or Komar approach. We will trade
this problem for the one of obtaining a well behaved Euclidean action which
we interpret as a grand canonical partition function. The mass-like quan-
tity we identify with the internal energy is then obtained using standard
thermodynamic relations. The remaining problem in defining the Euclidean
action is its normalisation. For solutions which are asymptotic to a ‘vac-
uum’, that is to a maximally symmetric spacetime, the normalisation is
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fixed by adding a boundary term such that the Euclidean action is zero
when evaluated on the vacuum solution. We do not have this option since
our solution is not asymptotic to a maximally symmetric spacetime. More-
over, the GHY-boundary term will turn out to be finite, so there is no need
to add counterterms. However, the integral over the two planar directions
is divergent, and while we can formally absorb this in a constant ω, we will
allow for a finite multiplicative factor N between the Euclidean action SE

and the grand potential Ω:

βΩ = NSE . (4.6)

The constant N parametrizes the relative normalisation between thermody-
namic and geometric quantities. To fix it we can impose one relation, which
we choose to be Gauss’ law. That is, we identify the charge Q defined by
the gauge field of our field configuration with the negative derivative of Ω
with respect to the chemical potential

∂Ω

∂µ

!
= −Q . (4.7)

Once N has been fixed by this condition, all thermodynamic relations must
take their standard form, if our interpretation of Z = exp(−NSE) as a
thermodynamic partition function is correct.

Performing the triple Wick-rotation

(r, x, y) → ±i(r, x, y),

we obtain the negative definite line element

ds2 = −f(t)−1dt2 − f(t)dr2 − t2(dx2 + dy2). (4.8)

The Euclidean action is given by

SE =± 1

16π

∫

M

√
gRd4x± 1

8π

∫

∂M

√

|γ|Kd3x

∓ 1

8π

∫

∂M
FµνAµdΣν .

The bulk gauge field term has been transformed into a boundary term. Since
the planar Einstein-Maxwell solution has a vanishing Ricci scalar, R = 0, the
action is completely determined by the boundary terms, which are evaluated
in the limit where t → ∞. We do not include a background boundary term,
because SE will turn out to be finite.

The hypersurface Σ = ∂M is obtained as the limit of a sequence of slices
of the spacetime M for constant time t0, and has an extrinsic curvature with
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trace K when considered as an embedded submanifold of M . The GHY-
term is determined by K and by the induced boundary metric γ [8]. It can
be computed using the formulas reviewed in Appendix B with the result

K =
3Mt0 − q2

t20
√

2Mt0 − q2
,

√

|γ| = t20

√

2M

t0
− q2

t20
.

Evaluating this in the limit t0 → ∞ gives

SGHY = ± 1

8π

∫

∂M

√

|γ|K = ±3Mβω

8π
.

The factor βω is the parametric volume of the boundary. After Wick-
rotation the coordinate r becomes periodic with period β, in order to avoid
a conical singularity at t = th.

10

As the gauge potential has only one non zero component, the boundary
term is simply calculated

∓ 1

8π

∫

∂M
FµνAµdΣν = ±Mβω

4π
.

Together, the GHY-term and the gauge field contribution yield the Eu-
clidean action

SE = ±5
Mβω

8π
. (4.9)

Formally equating the partition function calculated from the Euclidean
action with the negative logarithm of the thermal partition function, log(Z) =
−NSE = −βΩ, yields the grand potential

Ω(β, µ) =
NSE

β
= ∓5N βµ4ω

(8π)2
,

which we have written in terms of its natural thermodynamic variables11

β = 1/T and µ using that

M = −βµ4

8π
, Q = −µ3βω

(4π)2
.

We now apply our normalisation condition (4.7): the conserved charge Q
calculated from Gauss’ law must match the negative µ-derivative of Ω. This
fixes N = ∓1

5 so that the grand potential is determined to be

Ω(β, µ) =
βµ4ω

(8π)2
. (4.10)

10To be precise, the conical method determines the period up to sign, and we choose β to have
the sign determined by the Kodama-Hayward method.

11The thermodynamic identities used here and in the following have been summarized in
Appendix E.

25



The free energy F (β,Q) is obtained as the Legendre transform of the grand
potential

F (β,Q) = Ω− µ
∂Ω

∂µ
= Ω+ µQ = 3

(

−π2Q4

4βω

)

1

3

, (4.11)

where we have used the relation

µ =

(

−16π2Q
ωβ

)1/3

,

to express the free energy in terms of its natural variables β and Q. From
F we can compute the thermodynamic entropy S and check that it matches
the Bekenstein-Hawking entropy SBH :

S = β2 ∂F

∂β
=

(

π2Q4β2

4ω

)

1

3

= SBH . (4.12)

As a further consistency check, we can also verify that the free energy gives
us the correct chemical potential:

∂F

∂Q =

(

−16π2Q
βω

)1/3

= µ.

The internal energy E, for which we do not have a geometric definition, is
computed using the free energy:

E =
∂(Fβ)

∂β
=

(

−2π2Q4

βω

)1/3

=
Mω

4π
.

We observe that E is proportional to the parameter M , and therefore E is
positive.

Using our previous results we can verify that the thermodynamic vari-
ables E,T, S, µ,Q satisfy the Smarr relation

E = 2TS + µQ . (4.13)

Expressing the internal energy E in terms of its natural variables S and Q
we obtain the equation of state

E(S,Q) =
πQ2

(Sω)1/2
.

The partial derivates of the internal energy are

∂E

∂S
= − πQ2

2S3/2ω1/2
=

1

β
= T,

∂E

∂Q =
2πQ

(Sω)1/2
= µ,
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where both expressions have been simplified by substituting in S(β,Q) using
(4.12). The variation of the internal energy is

dE =
∂E

∂S
dS +

∂E

∂QdQ = TdS + µdQ .

This relation takes the standard form of the first law of thermodynamics.
Note that this works because we have allowed that the temperature is neg-
ative. If we had insisted that the temperature is positive, this would have
resulted in a non-standard sign for the entropy term.

5 Planar solutions to the STU model

We are now in a position to turn to our main application, the planar cosmo-
logical solutions of the STU model found in [10], for which we will establish
thermodynamical relations, including the first law. The general bosonic
Lagrangian for n vector multiplets coupled to N = 2 supergravity is

e−1
4 L = − 1

2κ24
R− 1

κ24
gAB̄∂µz

A∂µz̄B+
1

4κ24
IIJF I

µνF
J |µν+

1

4κ24
RIJF

I
µν ⋆F

J |µν ,

(5.1)
where compared to [10] we have restored the four-dimensional gravitational
coupling κ4, see for example [27]. While we used standard supergravity con-
ventions where κ24 = 1 in [10], it will be more convenient in the following
to use relativist’s conventions where G = 1 and κ24 = 8π, in order to avoid
non-standard numerical factors in thermodynamic relations. The couplings
gAB̄ ,IIJ and RIJ , where A,B = 1, . . . , n and I, J = 0, . . . , n are functions
of the scalar fields zA which can be expressed in terms of a holomorphic
function, called the prepotential. The STU model has three vector multi-
plets, and therefore there are three complex scalars zA and four gauge fields
F I
µν , including the graviphoton which belongs to the Poincaré supergravity

multiplet. The Hodge dual gauge fields are denoted ⋆F I
µν . We refer to [10]

for details and only review the results which are directly relevant for the
following calculations.

5.1 Dynamic patch

The line element in the dynamical patch of the planar symmetric cosmolog-
ical solution is

ds2 = −H(ζ)

W(ζ)
dζ2 +

W(ζ)

H(ζ)
dη2 +G(ζ)(dx2 + dy2), (5.2)

27



where all functions depend only on the timelike coordinate ζ:

W(ζ) = αζ − 1,

Ha(ζ) = (βa + γaζ),

H(ζ) = 2 (H0H1H2H3)
1

2 ,

G(ζ) = ζ2
[(

1 +
β0
γ0ζ

)(

1 +
β1
γ1ζ

)(

1 +
β2
γ2ζ

)(

1 +
β3
γ3ζ

)]
1

2

.

Compared to [10] we have performed a rescaling (x̄, ȳ) 7→ (x, y) of the coor-
dinates of the plane which changes the corresponding part of the line element
as follows

H(ζ)(dx̄2 + dȳ2) = 2
√
γ0γ1γ2γ3G(ζ)(dx̄2 + dȳ2),

= G(ζ)(dx2 + dy2) .

In our new parametrization the asymptotic form of the planar line element
is ds22 = ζ2(dx2 + dy2).

The integration constants βa, γa are related to the integration constants
found in the solution [10] via the relations:

βa =
2Ka

α
sinh

(

αha
2Ka

)

,

γa = Ka exp

(

−αha
2Ka

)

,

where
Ka =

(

Q0, P
1, P 2, P 3

)

,

are the four non-zero charges carried by the gauge fields F I
µν . To avoid a

proliferation of cases, we have chosen Q0, P
A to be positive.12 While Q0 is

an electric charge, PA, A = 1, 2, 3 are magnetic charges. Explicit formulae
for the gauge fields will be given below. The scalar fields are expressed as
functions of ζ through

z1 = −i

(H0H1

H2H3

)
1

2

, z2 = −i

(H0H2

H1H3

)
1

2

, z3 = −i

(H0H3

H1H2

)
1

2

. (5.3)

Having reviewed the planar cosmological solution of [10] we now apply
the same procedure as for planar solutions of Einstein-Maxwell theory. The
metric (5.2) has a future inner horizon at ζ = ζh = α−1 and is asymptotic
to a Kasner solution for ζ → ∞.

12Otherwise we would need to distinguish several cases, and to carry along ± signs, which
would be cumbersome without contributing any insights. See [11, 28, 10] for a more detailed
discusssion.
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Temperature: Using the Kodama-Hayward formulation, we find that the
temperature associated with the future inner horizon is negative and of the
form:

TH = − 1

4π
∂ζ

(

W (ζ)

H(ζ)

)
∣

∣

∣

∣

ζ=α−1

= −α3

8π
[(αβ0 + γ0) (αβ1 + γ1) (αβ2 + γ2) (αβ3 + γ3)]

− 1

2 .

(5.4)

We can simplify this by noting:

(αβa + γa) = Ka exp

(

αha
2Ka

)

=
K2

a

γa
⇒ TH = −α3

8π

√
γ0γ1γ2γ3

Q0P 1P 2P 3
.

Entropy: Using the Bekenstein-Hawking area law we can compute the
entropy of the solution:

SBH =
G(ζh)

4
=

1

4α2
exp

[

α

2

(

h0
Q0

+
h1
P 1

+
h2
P 2

+
h3
P 3

)]

,

=
1

4α2

Q0P
1P 2P 3

γ0γ1γ2γ3
.

Since the planar STU solution has several integration constants, we will
suppress the parametric volume ω of the planar directions in this section by
setting ω = 1. This can be interpreted as either working with densities of
divergent extensive quantities, or as compactitfying the planar dimensions
on a two-torus.

Chemical potentials: The solution for the gauge field is [10]:

F 0
ζη = (Ȧ0)η = − Q0

2(β0 + γ0ζ)2
, F̃A|ζη = ( ˙̃AA)η =

PA

2(βA + γAζ)2
.

Here F̃A|µν denote the duals of the gauge field FA
µν . Since the gauge couplings

are field dependent, dualisation is not just Hodge dualisation, but involves
inverting the couplings. We refer to Appendix C for details. As shown there
the precise relation between gauge fields and dual gauge fields is

F̃A = − ⋆ IABF
B ⇒ FA = ⋆IABF̃B ,

where FA, F̃A are the two-forms corresponding to the gauge fields, and where
⋆ is the Hodge-⋆ operator. Note that the coupling matrix IIJ is invertible,
and in our convention is negative definite. The advantage of using the fields
F 0, F̃A instead of F 0, FA is that now all gauge fields and charges appearing in
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the solution are electric.13 The corresponding gauge potentials are found by
integration, subject to the standard boundary condition A(ζh) = Ã(ζh) = 0:

(A0)η = − γ0(αζ − 1)

2Q0 (β0 + γ0ζ)
, (ÃA)η =

γA(αζ − 1)

2PA (βA + γAζ)
.

We then take the asymptotic limit of the gauge potentials to obtain the
chemical potentials

µ0 := lim
ζ→∞

A0
η = − α

2Q0
, µ̃A := lim

ζ→∞
ÃA|η =

α

2PA
.

Electromagnetic charges: As with the Einstein-Maxwell solution, the
conserved charges are computed using Gauss’ law. However, we need to
take into account that the gauge couplings depend on the scalar fields. The
gauge field couplings come from IIJ and were calculated explicitly in [10]

IIJ = diag

(

−stu,− tu

s
,−su

t
,−st

u

)

, IIJ = diag

(

− 1

stu
,− s

tu
,− t

su
,− u

st

)

,

where
s = −Im(z1), t = −Im(z2), u = −Im(z3).

Putting in the solution (5.3) for the scalar fields zA we can write these
couplings as:

I00 = −
( H3

0

H1H2H3

)

1

2

, I11 = −
(H0H2H3

H3
1

)
1

2

,

I22 = −
(H0H1H3

H3
2

)
1

2

, I33 = −
(H0H1H2

H3
3

)
1

2

.

(5.5)

The charge Q0 carried by the gauge field F 0 is

Q0 = lim
ζ→∞

1

8π

∫

⋆(−I00F 0), (5.6)

We refer to Appendix C for a derivation of the expressions for the charges.
Evaluating (5.6) we obtain the conserved charge14

Q0 = − 1

16π

Q0√
γ0γ1γ2γ3

. (5.7)

We use the normalisation ǫηζxy = 1 for the volume form, which is the stan-
dard normalisation in the static patch of the solution, where η is timelike

13This is for computational simplicity. In [14], the authors show how magnetic and electric
black hole solutions are equivalent in the semi-classical approach applied here.

14Actually charge density, as we set ω = 1.
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and ζ spacelike. Note that the Hodge operator contains a factor of ζ2, so
that when we evaluate the integral in the limit ζ → ∞ we read out the co-
efficient of the leading term in the integrand, which is proportional to 1/ζ2.
This is the leading behaviour of the field strength F 0, while the coupling
I00 approaches a constant.

As mentioned, we have dualised the magnetic field strengths FA and
instead work with their electric duals F̃A, but we must remember that when
we dualise a gauge potential in the Lagrangian the corresponding coupling
is inverted. This means the conserved dual electric charges are

Q̃A = lim
ζ→∞

1

8π

∫

⋆(−IAAF̃A),

which when evaluated on our solution take the values

Q̃A =
1

16π

PA

√
γ0γ1γ2γ3

. (5.8)

The dual electric charge Q̃A can be related to the magnetic charge of FA

by Q̃A = −PA. This relationship is expanded upon in Appendix C.

5.2 Euclidean action

Employing the triple Wick-rotation

(η, x, y) → ±i(η, x, y),

the Euclidean line element has (negative) definite signature and is of the
form:

ds2 = −H(ζ)

W(ζ)
dζ2 − W(ζ)

H(ζ)
dη2 −G(ζ)(dx2 + dy2). (5.9)

As we did with the Einstein-Maxwell solution, we evaluate the Euclidean
action on-shell, which allows us to write the gauge contributions as boundary
terms

SE =± 1

16π

∫

M

√
g
(

R+ 2gAB̄∂µz
A∂µz̄B

)

d4x

± 1

8π

∫

∂M

√

|γ| Kd3x

± 1

16π

∫

∂M
(I00Fµν|0)A0

µdΣν ±
1

16π

∫

∂M
(IAAF̃µν

A )Ãµ|AdΣν .

We have performed the dualisation procedure such that we work with a
purely electric solution.
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Cancellation of bulk terms: As in the much simpler case of Einstein-
Maxwell theory, the bulk term does not contribute. This is non-trivial since
the Ricci scalar does no longer vanish on-shell, R 6= 0. However, the gauge
field contribution still is a boundary term, and the scalar contribution pre-
cisely cancels the gravitational term in the bulk. The trace of Einstein’s
equation gives that

Rµν −
1

2
gµνR = −8πTµν ⇒ R = 8πT .

In four dimensions the gauge fields do not contribute to the trace of the
energy momentum tensor, which therefore is completely given by the scalars:

T = gµνTµν = − 2

8π
gAB̄

(

∂µz
A∂µz̄B

)

,

which shows that

−1

2
R = gAB̄

(

∂µz
A∂µz̄B

)

,

and therefore the bulk contribution of the solution vanishes. Note that
when we set the scalars constant we recover the electro-vac type solution
of Einstein-Maxwell theory considered in the previous section, which is not
Ricci flat Rµν ∝ Tµν 6= 0, but has vanishing Ricci scalar.

Calculation of boundary terms: With the bulk terms found vanishing,
the Euclidean action for the planar solution of the STU model can be found
from the boundary terms. Following the same method as for the planar
Einstein-Maxwell solution, the GHY-term is calculated to be

± 1

8π

∫

∂M

√

|γ|Kd3x = ± 3

32π

αβ√
γ0γ1γ2γ3

.

The gauge field term is calculated, through simply substituting in the various
components and taking the limit of ζ → ∞, obtaining

± 1

16π

∫

∂M
(I00Fµν|0)A0

µdΣν = ∓ 1

64π

αβ√
γ0γ1γ2γ3

and similarly

±
3
∑

A=1

1

16π

∫

∂M
(IAAF̃µν

A )Ãµ|AdΣν = ∓ 3

64π

αβ√
γ0γ1γ2γ3

.

Collecting these terms, the Euclidean action is found to be

SE = ± 1

32π

αβ√
γ0γ1γ2γ3

.
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As in the Einstein-Maxwell case we admit a multiplicative constant N in
the relation between the Euclidean action and the grand potential:

Ω(β, µ0, µ̃A) =
NSE

β
= ± N

32π

α√
γ0γ1γ2γ3

.

The constant N is fixed by imposing that one of the thermodynamic rela-
tions takes its standard form. We choose to impose the relation between the
µ0 derivative of Ω and the charge Q0:

(

∂Ω

∂µ0

)

β,µ̃A

!
= −Q0 =

1

16π

Q0√
γ0γ1γ2γ3

. (5.10)

To impose this condition, we first need to express the grand potential Ω in
terms of its natural variables. This can be done using the relationship

α√
γ0γ1γ2γ3

=
2β

π
µ0µ̃1µ̃2µ̃3

with the result

Ω(β, µ0, µ̃A) = ± N
16π2

βµ0µ̃1µ̃2µ̃3 . (5.11)

Taking the partial derivate we obtain the conserved charge from the grand
potential

(

∂Ω

∂µ0

)

β,µ̃A

= ± N
16π2

βµ̃1µ̃2µ̃3 = ∓ N
16π

Q0√
γ0γ1γ2γ3

.

Comparing this with (5.10) we find that N = ∓1. This determines the
grand potential to be

Ω(β, µ0, µ̃A) = − 1

16π2
βµ0µ̃1µ̃2µ̃3 = − 1

8π

α

4
√
γ0γ1γ2γ3

.

Note that Ω has turned out to be independent of our choice of sign for the
triple Wick-rotation. It is clear that the other derivatives of Ω with respect
to chemical potentials give the correct corresponding charges.

To obtain the free energy we must Legendre transform the grand poten-
tial:

F (β,Q0, Q̃A) = Ω + µ0Q0 + µ̃1Q̃1 + µ̃2Q̃2 + µ̃3Q̃3,

= − 1

8π

α

4
√
γ0γ1γ2γ3

+
1

8π

α√
γ0γ1γ2γ3

,

and so the free energy is given by:

F (β,Q0, Q̃A) =
1

8π

3α

4
√
γ0γ1γ2γ3

. (5.12)
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To express F in terms of its natural thermodynamical variables we use

β = −8π

α3

Q0P
1P 2P 3

√
γ0γ1γ2γ3

⇒ α√
γ0γ1γ2γ3

=

(

(16π)5Q0Q̃1Q̃2Q̃3

2β

)
1

3

,

and obtain:

F (β,Q0,PA) =
3

32π

(

(16π)5Q0Q̃1Q̃2Q̃3

2β

)
1

3

. (5.13)

We can now verify that all remaining thermodynamic relations take
their standard form. First we verify that the Bekenstein-Hawking entropy
matches with the thermodynamic definition:

S = β2

(

∂F

∂β

)

Q0,Q̃A

=
1

4α2

Q0P
1P 2P 3

γ0γ1γ2γ3
.

A further consistency check comes from ensuring that the chemical poten-
tials that were found from the gauge field satisfy the standard thermody-
namic relations for chemical potentials:

µ0 =

(

∂F

∂Q0

)

β,Q̃A

=
1

16πQ0

α

2
√
γ0γ1γ2γ3

= − α

2Q0
,

and for the dual gauge fields:

µ̃A =

(

∂F

∂Q̃A

)

β,Q0

=
α

2PA
,

which matches exactly with the chemical potentials found from the asymp-
totic limit of the vector potentials.

The internal energy of our solution can now be defined by the relation

E =

(

∂(βF )

∂β

)

Q0,Q̃A

=
1

16π

(

(16π)5Q0Q̃1Q̃2Q̃3

2β

)
1

3

,

=
1

16π

α√
γ0γ1γ2γ3

.

Next we express the entropy in terms of its natural thermodynamic vari-
ables:

S(E,Q0, Q̃A) = −16 · 4π2Q0Q̃1Q̃2Q̃3

E2
.

Note that the entropy is positive, due to Q0 < 0 and QA > 0, see (5.7) and
(5.8), bearing in mind that we we have chosen Q0 and PA to be positive.15

15Note that the sign of the entropy does not change if change the signs of charges. We have
just chosen certain charges to be postive or negative in order to avoid carrying around ± signs
or to distinguish several cases.

34



We need to verify that the Hawking temperature of our solution satisfies
the thermodynamic relation

β =
1

TH
=

(

∂S

∂E

)

Q0,PA

.

Taking the partial derivate of S with respect to E we find that

(

∂S

∂E

)

Q0Q̃A

=
16 · 8π2Q0Q̃1Q̃2Q̃3

E3
.

To compare this with the Hawking temperature we restore the original in-
tegration constants:

(

∂S

∂E

)

Q0,Q̃A

= −8πQ0P
1P 2P 3

α3√γ0γ1γ2γ3
= β.

Thus the Hawking temperature TH , calculated from the geometry of the
solution agrees with the thermodynamic quantity T = ∂E/∂S.

Smarr relation: Evaluating the grand potential we find

Ω = E − TS − µ0Q0 − µ̃AQ̃A = − α

32π
√
γ0γ1γ2γ3

= TS ,

which we can rearrange in the form of a standard Smarr relation

E = 2TS + µ0Q0 + µ̃AQ̃A. (5.14)

First law of thermodynamics: We wish to verify the first law:

dE = THdS + µ0dQ0 + µ̃1dQ̃1 + µ̃2dQ̃2 + µ̃3dQ̃3.

The total differential of E is

dE =

(

∂E

∂S

)

dS+

(

∂E

∂Q0

)

dQ0+

(

∂E

∂Q̃1

)

dQ̃1+

(

∂E

∂Q̃2

)

dQ̃2+

(

∂E

∂Q̃3

)

dQ̃3.

Having already found that

(

∂E

∂S

)

= TH ,

we turn our attention to the derivatives with respect to the charges. Using
that:

E2 = −16 · 4π2Q0Q̃1Q̃2Q̃3

S
,
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we find
(

∂E

∂Q0

)

S,Q̃A

= − 1

2E

16 · 4π2Q̃1Q̃2Q̃3

S
= − α

2Q0
= µ0.

Taking derivatives with respect to the magnetic charges we verify
(

∂E

∂Q̃A

)

S,Q0

=
α

2PA
= µ̃A.

Hence we see that the first law of thermodynamics holds.

6 Comparison to the isolated horizon formalism

An alternative way of formulating the first law is to work entirely on the
horizon. This allows one to calculate thermodynamic variables in the static
region of the spacetime where the usual definitions of the thermodynamic
constants hold. From [9], we find that the first law using variables defined
on the horizon is:

δE∆ =
κδa∆
8πG

+ µaδQa. (6.1)

The ambiguity of the energy in the spacetime is fixed by imposing that the
infinitesimal energy (mass) is equal to the RHS (6.1). For the remainder of
this discussion, we set G = 1. We note here that this derivation of the first
law of black hole mechanics is still only self-consistent as this does not give a
direct way to measure the mass outside of the first law itself. The subscript
∆ denotes variables evaluated on the isolated horizon ∆, which for us is the
location of our Killing horizon at ζ = α−1. The contracted a index denotes
the multiple charges (in our case, we have 4).

6.1 Planar solutions of the STU model

Before we begin, we must make a coordinate change into Eddington-Finkelstein
coordinates. From there we identify a Killing vector ℓ which we use to find
κ. In a similar way to the previous section, we then determine the elec-
tromagnetic terms, but this time evaluated on the horizon rather than for
ζ → ∞.

Eddington-Finkelstein coordinates: Beginning with the metric from
the dynamic region of the spacetime

ds2 = −H(ζ)

W(ζ)
dζ2 +

W(ζ)

H(ζ)
dη2 +G(ζ)(dx2 + dy2),

we make the coordinate change:

η = u+ ζ̄(ζ), dη = du+ ζ̄ ′dζ,
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which we can substitute into the metric to obtain:

ds2 =

(W
H (ζ̄ ′)2 − H

W

)

dζ2 +
W
H du2 +

2W
H ζ̄ ′dudζ +G(dx2 + dy2).

By making the choice

ζ̄ ′ =
H
W ,

we obtain the EF metric which is well defined for ζ = α−1:

ds2 =
W
H du2 + 2dudζ̄ +G(dx2 + dy2). (6.2)

This allows us to identify a suitable null normal vector field

ℓ =
∂

∂u
.

Surface gravity and area term: We can reuse our calculation for the
surface gravity from (5.4) to find

κ = −α

2

1

H(α−1)
.

From the metric (6.2) we can read off the infinitesimal change in the area
as:

δa∆ = δ(G(α−1)) = δ(cH(α−1)) = H(α−1)δc+cδH(α−1) , c =
1

2
√
γ0γ1γ2γ3

,

where as in the Euclidean action formalism we have set

ω =

∫

dx ∧ dy = 1,

for the area of the planar directions.
Putting these together we find that the first term on the RHS of (6.1) is

given by:

κδa∆ = −α

2

(

δc +
cδH(α−1)

H(α−1)

)

.

We can express:

H(α−1) =
4c

α2
Q0P

1P 2P 3,

to find:

κδa∆ = −1

2
αδc − 1

2
αcδ log(cα−2Q0P

1P 2P 3)

= −αδc+ cδα − 1

2
αcδ log(Q0P

1P 2P 3).
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Gauge fields and charges: From the previous calculation we found that
the gauge field strengths are given by the relations:

F 0
ζη = − Q0

2(β0 + γ0ζ)2
, F̃A|ζη =

PA

2(βA + γAζ)2
.

We need to express the gauge field strength in terms of the EF coordinates
and then write down the field strength and the correpsonding gauge cou-
plings on the horizon. Starting with the gauge field strengths, we see that
they are all of the form:

F = f(ζ)dζ ∧ dη.

Defining a null basis:
ds2 = 2e+e− + δije

iej ,

e+ = du , e− = dζ +
W
2Hdu , e+ ∧ e− = −dζ ∧ du,

and we can easily take the Hodge dual:

F = −f(ζ)e+ ∧ e− , ⋆F = f(ζ)e1 ∧ e2 = cHf(ζ)dx ∧ dy.

This allows us to write down the Hodge duals explicitly:

⋆F 0 = − Q0

2(β0 + γ0ζ)2
cHdx ∧ dy , ⋆F̃A =

PA

2(βA + γAζ)2
cHdx ∧ dy.

Evaluated on the horizon, these gauge fields are:

⋆F 0
∆ = − Q0α

2

2(β0α+ γ0)2
cH(α−1)dx∧dy , ⋆F̃A|∆ =

PAα2

2(βAα+ γA)2
cH(α−1)dx∧dy.

The last step is to take the gauge couplings (5.5) and evaluate them on the
horizon. We find that:

I00|∆ = −2(αβ0 + γ0)
2

α2H(α−1)
, IAB|∆ = −δAB

α2H(α−1)

2(αβA + γA)2
.

We are now in the position to calculate the conserved charges using the
integrals16:

Q0|∆ = − 1

8π

∫

R2

⋆F 0
∆I00|∆ , Q̃A

∆ = − 1

8π

∫

R2

⋆F̃A|∆IAA
∆ ,

which we can calculate by substituting in the above results to find:

Q0|∆ =

(

− Q0α
2

2(αβ0 + γ0)2
cH(α−1)

)

·
(

2(αβ0 + γ0)
2

α2H(α−1)

)

= −cQ0

8π
,

Q̃A
∆ =

(

PAα2

2(αβA + γA)2
cH(α−1)

)

·
(

2(αβA + γA)
2

α2H(α−1)

)

=
cPA

8π
.

16Note the addition of the extra minus sign as IIJ < 0, see Appendix C.
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Gauge potential and chemical potential: In the previous section the
gauge fields were found to be:

(A0)η =
Q0

2γ0(β0 + γ0ζ)
, (ÃA)η = − PA

2γA(βA + γAζ)
.

Re-expressing these in terms of the new EF coordinates, evaluated on the
horizon, we find that:

A0
∆ =

Q0

2γ0

α

αβ0 + γ0

(

du+
H
W dζ

)

,

ÃA|∆ = − PA

2γA

α

αβA + γA

(

du+
H
W dζ

)

.

Contracting with the null vector ℓ we find the chemical potentials from the
identities (this is justified in [9]):

µ0 = −ιℓA
0 , µ̃A = −ιℓÃA.

Simplifying the gauge potential using that

γa(αβa + γa) = K2
a ,

we can write down the chemical potentials:

µ0 = − α

2Q0
, µ̃A =

α

2PA
.

Now we can write down the second term on the RHS of (6.1) by com-
bining this with the conserved charge from the previous expression to find:

µaδQa
∆ =

α

16π

(

1

Q0
δ(cQ0) +

1

P 1
δ(cP 1) +

1

P 2
δ(cP 2) +

1

P 3
δ(cP 3)

)

=
α

16π

(

4δc+ cδ log
(

Q0P
1P 2P 3

))

=
1

8π

(

2αδc +
1

2
αcδ log

(

Q0P
1P 2P 3

)

)

.

First law of black hole mechanics: Using these quantities we are now
able to find an expression for the variation of the mass parameter from (6.1).
Combining our results we find that:

κδa∆
8π

+ µaδQa
∆ =

1

8π

[

− αδc + cδα − 1

2
αcδ log(Q0P

1P 2P 3)

+ 2αδc +
1

2
αcδ log

(

Q0P
1P 2P 3

)

]

=
1

8π

(

αδc + cδα
)

= δ

(

1

8π
αc

)

= δE∆,
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and so:
E∆ =

αc

8π
=

α

16π
√
γ0γ1γ2γ3

,

which is identical to the calculation from the Euclidean action.

Smarr relation: Our last consistency check comes from the Smarr rela-
tion we derived in the Euclidean formalism. Taking each piece and summing
together we calculate that:

µaQa
∆ +

κa∆
8π

=
1

8π

[

cQ0 ·
α

2Q0
+ cP 1 · α

2P 1
+ cP 2 · α

2P 2

+ cP 3 · α

2P 3
− cH(α−1) · α

2H(α−1)

]

=
αc

16π
(1 + 1 + 1 + 1− 1)

=
3

16π
αc =

3E∆

2
,

which is identical to the one from the Euclidean action formalism.

6.2 Planar solutions to Einstein-Maxwell theory

Einstein-Maxwell theory is a consistent truncation of the STU model where
all four gauge fields are set equal, while the scalar fields are constant. There-
fore we can map the solution of the STU model to that of Einstein-Maxwell
model by fine tuning the integration constants. The physical scalar fields
are given by

zA = iHA

(

− H0

H1H2H3

)
1

2

,

and we see that they are everywhere constant under the restriction that
H0 = H1 = H2 = H3. This means the integration constants must be fine-
tuned, such that Q0 = P 1 = P 2 = P 3 = K and h0 = h1 = h2 = h3 = h.
Consequently the four gauge fields take identical values, and the degrees
of freedom contributing to the solution match those of Einstein-Maxwell
theory. Following this through, the integration constants have the form

α = 2B, β =
2K

α
sinh

(

αh

2K

)

, γ = exp

(

− αh

2K

)

, α, β, γ ∈ (0,∞)

in the Einstein-Maxwell limit, and the line element becomes

ds2 = −2(β + γζ)2

(αζ − 1)
dζ2 +

(αζ − 1)

2(β + γζ)2
dη2 + ζ2

(

1 +
β

γζ

)2

(dx2 + dy2).
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By comparing this with (4.4), we can express the parameters M, q of the
Einstein-Maxwell solution in terms of the constrained integration constants
of the STU solution:

M =
α

4γ2
, q2 =

αβ + γ

2γ3
=

K2

2γ4
.

For a full discussion of this mapping, see Appendix B of [10].
We can now study each piece of the above calculation and see how it

changes under this mapping, and see that we recover the results from the
Euclidean action formalism in section 4. In the Einstein-Maxwell limit each
of the relavant pieces simplifies into the form

κ = −α3γ2

4K4
= −4M3

q4
, a∆ =

K4

γ4α2
=

q4

4M2
,

Q0|∆ = −Q̃A
∆ = − K

16πγ2
= −

√
2q

16π
,

µ0 = −µ̃A = − α

2K
= − 2M√

2q
,

where we have used that c−1 = 2γ2.
Looking at the variation of the appropriate terms:

κδa∆ = −4M3

q4

(

q3

M2
δq − q4

2M3
δM

)

= −4 ·
(

M

q
δq − 1

2
δM

)

,

µaδQa = 4 ·
(

2M√
2q

√
2

16π
δq

)

=
M

2πq
δq,

we obtain an expression for the variation of the energy by imposing the first
law

δE∆ :=
κδa∆
8π

+ µaδQa =
δM

4π
.

When this is integrated up, we obtain an expression for the internal energy

E∆ =
M

4π
,

which matches exactly with the internal energy derived from the free energy,
via the Euclidean action formalism in section 4.
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7 Planar solutions to Einstein-anti Maxwell theory

In this section, we report on a ‘dual version’ of the planar Einstein-Maxwell
solution, where the static and dynamic regions are exchanged such that
the first law and other thermodynamic relations can be derived using a
conventional Wick-rotation. The price to be paid for this is to flip the sign
of the Maxwell term. This theory is sometimes referred to as Einstein-

anti-Maxwell, and in general fields with a flipped sign kinetic terms are
referred to as “phantom” fields [29, 30]. Fields with negative kinetic energy
have been discussed in the context of cosmology, because some data suggest
that the current expansion of the universe is over-exponential, leading to a
‘big-rip’ cosmological singularity in finite time. While naively the negative
kinetic energy renders the theory unstable, p-form gauge fields with inverted
kinetic terms appear in the type-II∗ string theories which are related to type-
II string theories by timelike T-duality transformations. In these cases, the
theory is made consistent through the presence of massive string modes and
the related higher gauge symmetries [12]. Gauge fields with flipped kinetic
terms also appear in “Fake-Supergravity” theories.

We will now show that the Einstein-anti-Maxwell theory admits a planar
solution which can be viewed as the ‘dual’ partner of to the planar cosmo-
logical solution of Einstein-Maxwell theory. This solution realizes the same
thermodynamical system as studied in Section 4, in the sense that both
solutions have the same Euclidean action, and therefore the same grand po-
tential and other thermodynamic potentials. More precisely, the range of
some of thermodynamic quantities (temperature, energy) will turn out to
be different, suggesting that the two solutions represent different ‘phases’ of
the same system. We will discuss the interpretation of these observations in
Section 8.

7.1 The solution

We start with an action which simultaneously describes both theories,

S =

∫

d4x
√−g

(

− 1

2κ24
R+

ε

4g2
F 2

)

,

where ε = ±1 and g2 = 4π is the gauge coupling. Introducing g is convenient
because it allows us to relate both theories by analytic continuation of the
coupling constant g → ig. Alternatively we could relate them by analytic
continuation of the gauge fields F , but we prefer to keep F real valued
in both theories. This said, we revert to our standard conventions where
G = 1, κ24 = 8π and g2 = 4π.

Solving Einstein’s equations with a static, planar symmetric ansatz yields
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(a) Maxwell: cosmological

J
+

J
−

II

III

IV I

(b) anti-Maxwell: black/white hole

J
−

J
+

Figure 3: Comparison of the conformal diagrams of cos-
mological and black hole solutions. Left side: Planar cos-
mological solution of Einstein-Maxwell theory. Right side:
Planar black bole solution of Einstein-anti-Maxwell the-
ory, same as for the (spherical) Schwarzschild solution of
pure Einstein theory.

a line element of the form:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2d ~X2, f(r) =
2c

r
+

εq2

r2
. (7.1)

For spherically symmetric solutions, the value of the integration constant c
is set by comparing the result in a weak field limit to Newtonian results. In
planar symmetric theories, this is not possible as there is no asymptotically
flat region. Instead we choose the sign of c by imposing the existence of a
Killing horizon, which implements cosmic censorship by placing the singu-
larity at r = 0 behind a horizon. With this in mind, we can write the line
element as

ds2 = −f(r)dt2 + f(r)−1dr2 + r2d ~X2, f(r) = ε

(

2M

r
− q2

r2

)

, (7.2)

where the integration constant M is always positive. In this form, it is easy
to see that the sign of f(r) is set by ε. Namely, when ε = −1, the asymptotic
region is dynamic and the static patch for the solution is a finite region of
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the spacetime, bounded by

0 < r <
q2

2M
.

Conversely, for ε = 1 the static region is found for coordinate values of

r >
q2

2M
,

and we see that for Einstein-anti-Maxwell, the asymptotic region of the
spacetime is static. Asymptotically this metric is the vacuum Taub solution
[31]. This allows the Wick-rotation of the timelike coordinate t to produce a
(positive) definite, real line element. Unlike the Einstein-Maxwell solution,
we have the standard relation between quantum mechanics and statistical
mechanics, which identifies the saddle point approximation of the gravita-
tional functional integral with a thermodynamic potential.

In the following, we set ε = 1 and calculate the Euclidean action and
thermodynamic potentials. The line element in the static region is

ds2 = −f(r)2dt2 +
dr2

f(r)
+ r2d ~X2, f(r) =

2M

r
− q2

r2
, rh =

q2

2M
.

Chemical potential: The gauge field is

F =
(

−q

r

)

dt ∧ dr, A =

(

−q

r
+

q

rh

)

dt, (7.3)

and by taking the asymptotic limit of the gauge potential, we obtain the
chemical potential

µ = lim
r→∞

At =
2M

q
.

Conserved charge: The sign flip of the gauge field coupling leads to a
sign flip in the conserved charge, as we explain in Appendix C. Therefore

Q = − 1

4π

∫

∂Σ
⋆F = − q

4π
.

Note that we have set ω = 1 for simplicity.

Entropy & Temperature: The Einstein-anti-Maxwell solution has an
exterior region with a timelike Killing vector which allows the surface gravity
to be calculated by the standard method from the Killing vector field.

κ =
4M3

q4
⇒ β =

πq4

2M3
.
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We remark that using the Kodama-Hayward expression (2.8), we obtain an
identical result. We show in Appendix D that the horizon separating the
static exterior from a dynamic is a future outer horizon. In Figure 3 these
are regions I and II (or regions IV and II) in the conformal diagram on the
right hand side. This being a future outer horizon, we have κ ∝ TH and
the temperature is positive, but has the same magnitude as in the Einstein-
Maxwell solution.

The Bekenstein-Hawking area law gives

SBH =
r2h
4

=
q4

16M2
.

7.2 Euclidean action

After the Wick-rotation t → −it the Euclidean action is given by (2.2), with
the addition of a sign flip for the gauge field contribution

SE =
1

16π

∫

M

√
gRd4x

− 1

8π

∫

∂M

√

|γ|Kd3x+
1

8π

∫

∂M
FµνAµdΣν .

The bulk term does not contribute, since R = 0. The GHY-term is

− 1

8π

∫

∂M

√
γK = −3Mβ

8π
.

The gauge field contribution is identical to the one of the Einstein-Maxwell
solution

1

8π

∫

∂M
FµνAµdΣν = −2Mβ

8π
,

and when these two pieces are taken together, the Euclidean action is found
to be

SE = −5βM

8π
,

which is the same the Euclidean action of the triple Wick-rotated Einstein-
Maxwell action (4.9).

As the charge is kept fixed, we associate the grand canonical thermody-
namic partition function with the saddle-point approximation of the gravi-
tational partition function:

logZ = −NSE = −βΩ ⇒ Ω(β, µ) = −5Nβµ4

(8π)2
,

where we have expressed Ω in terms of its natural thermodynamical vari-
ables. The normalisation constant N is fixed by imposing the relation

∂Ω

∂µ
= −Q .
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Since

∂Ω

∂µ
= −20N µ3β

(8π)2
, −Q =

q

4π
=

µ3β

(4π)2
, µ =

(

−(4π)2Q
β

)1/3

,

this fixes N = −1
5 , so that the grand potential for the planar Einstein

anti-Maxwell solution is

Ω(β, µ) =
βµ4

(8π)2
.

The free energy is then obtained by a Legendre transformation:

F (β,Q) = Ω + µQ = −3

(Q4π2

4β

)

1

3

.

By taking partial derivatives we can verify that the following two thermo-
dynamic relations take their standard forms:

∂F

∂Q =

(

−(4π)2Q
β

)

1

3

= µ, S = β2 ∂F

∂β
=

(Q4β2π2

4

)

1

3

= SBH .

Therefore we are confident in defining the internal energy as

E =
∂(Fβ)

∂β
= −M

4π
< 0 .

We note that E is negative, which reflects that in the Einstein-anti Maxwell
theory the vector field has negative kinetic energy. By expressing E in terms
of its natural thermodynamic variables we obtain the following equation of
state:

E(S,Q) = −πQ2

√
S

.

Finally, we compute the total differential of the internal energy,

dE =
∂E

∂S
dS +

∂E

∂QQ = β−1dS + µdQ,

and find that the first law is satisfied. It is interesting to note that the
Euclidean action and grand potential, as well as other thermodynamic rela-
tions, are the same as for the planar solutions of Einstein-Maxwell theory,
except for the range of some of the variables. For the Einstein-Maxwell so-
lution temperature is negative and internal energy is positive, while for the
Einstein-anti Maxwell solution temperature is positive and internal energy is
negative. While both solutions exhibit features indicating instabilities (neg-
ative temperature and negative internal energy, respectively), they obey all
formal relations of thermodynamics and have the same underlying Euclidean
action.
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8 Discussion and outlook

In this paper, we have developed a modified version of the Euclidean ap-
proach to horizon thermodynamics, which can be applied to a class of cosmo-
logical spacetimes whose causal structure is related to black hole solutions
by exchanging the role of exterior and interior. By applying a triple Wick-
rotation we obtain a finite Euclidean on-shell action which defines a grand
thermodynamical potential, from which all thermodynamic quantities, the
Smarr relation and the first law can be derived. For planar solutions of
Einstein-Maxwell theory and of the STU model, the formalism allows the
definition of a positive mass-like quantity. Remarkably the formalism works
despite that the solution is not asymptotic to a vacuum solution. The results
obtained using the triple Wick-rotation are consistent with those from the
isolated horizon formalism, which is another check of its validity. Both ap-
proaches are complementary. The isolated horizon formalism is quasi-local,
and does not require knowledge of the global spacetime geometry. But it
therefore misses out on finding an underlying Euclidean action which defines
the grand potential and to obtain a mass-like quantity from the thermody-
namic formalism. In the isolated horizon formalism, the mass is instead
determined locally by imposing that the first law holds. The Euclidean ac-
tion is also required to make the connection between planar solutions of
Einstein-Maxwell and Einstein-anti-Maxwell theory.

For the thermodynamic formalism, we used the future inner horizons of
the maximally extended solutions. This is natural because these horizons
can be crossed by causal geodesics from the outside to the inside, which is
the same situation as for black holes. For future inner horizons the surface
gravity and temperature are both negative, when computed according to
[19, 20, 21], and we have shown that the first law takes its standard form.
It is natural to ask what happens if we use the past horizons instead, where
causal geodesics cross from the interior to the exterior. This is analogous
to asking about the thermodynamics of white holes. For our cosmological
solutions the past horizons are past inner horizons. Since the surface grav-
ity is still negative, the expression κdA and hence the ‘first law of horizon
mechanics’ retains its standard form. However, the temperature is now pos-
itive and the ‘first law of thermodynamics’ takes a non-standard form where
the sign of the temperature/entropy term is flipped, TdS → −TdS. This
depends, of course, on accepting both the definition of the surface gravity
by Kodama-Hayward and the sign of the Hawking temperature being deter-
mined by the Parikh-Wilczek tunneling method. We leave the investigation
of this observation to future work. Another question which deserves further
attention is the interpretation of the negative temperature and, for planar
black holes, negative energy. There is also the question how the thermo-
dynamics defined using the triple Wick rotation relates to an underlying
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microscopic description, given that the ‘Hamiltonian’ we use is actually re-
lated to spatial translations. Finally, there is the curious relation or ‘duality’
between cosmological and black hole solutions, induced by flipping the sign
of the Maxwell term, which exchanges interior and exterior, spacelike and
timelike singularities, and which relates solutions with negative temperature
to solutions with negative energy. We think that a promising way to ap-
proach all these questions is the embedding into string theory, to which we
turn now.

The realisation of a duality between two distinct Lorentzian solutions,
via the equivalence of their Euclidean actions, has an interesting relation
to recent results in N = 2 supersymmetry. In [13] four-dimensional N = 2
supersymmetry algebras have been classified for all possible signatures (t, s),
where t is the number to timelike and s the number of spacelike dimensions.
It was found that while the N = 2 supersymmetry algebra is unique in
Euclidean signature (0, 4), there are two inequivalent algebras in Minkowski
signature (1, 3), namely the standard algebra with compact R-symmetry
group U(2) and a twisted version with R-symmetry group U(1, 1). The
corresponding vector multiplet theories are distinguished by relative signs
between various terms in the Lagrangian, including a relative sign between
Maxwell and scalar terms. Already in [32] it has been shown that a non-
standard N = 2 supergravity theory coupled to vector multiplets with in-
verted signs for all Maxwell-like terms results from dimensional reduction
of five-dimensional supergravity coupled to vector multiplets with signature
(2, 3). This theory reduces to Einstein-anti-Maxwell theory upon truncating
out the matter fields and the gravitini. We remark that while vector mul-
tiplet theories in signature (0, 4) can likewise be obtained in two ways from
five dimensions, the resulting relative signs can be removed by a suitable
field redefinition, since the underlying Euclidean supersymmetry algebra is
unique up to isomorphism [13]. The situation is summarized in Figure 4.

The relative sign flips between the Minkowski signature theories are of
the same type as those between type-II and type-II∗ string theory, which
are related to each other by timelike T-duality [12]. Moreover, N = 2 su-
pergravity with vector (and hyper) multiplets arises by compactification of
type-II string theory on Calabi-Yau threefolds. In a future publication we
will present the details of the embedding of the twisted N = 2 supergravity
theory into type-II∗ theory and show that the STU and anti-STU model
(which generalizes the Einstein-anti-Maxwell theory considered in this pa-
per) are related by T-duality [33]. We expect that this will shed more light
onto the thermodynamics of planar solutions and their microscopic interpre-
tation in terms of string theory. We remark that when combining timelike
and spacelike T-duality with S-duality, it is possible to change spacetime
signature in type-II string theory, which provides a second way besides an-
alytical continuation, of relating theories in Euclidean and in Minkowski
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signature [34]. Solutions in neutral and in general signature have recently
found attention in the literature, see for example [35, 36, 37].

Both from the point of view of thermodynamics and from the one of
T-duality, certain spacetime geometries naturally form pairs which share
the same underlying Euclidean description. If one takes the Euclidean func-
tional integral as fundamental and allows both the spacetime and the field
space to be complex-valued, this will correspond to pairs of complex saddle
points of the functional integral which represent dual Minkowksi signature
solutions. At this point it is not clear whether the two dual solutions are
actually ‘the same’, that is, gauge equivalent under a chain of string duality
transformations, or just have ‘the same thermodynamics.’ In either case one
could also look for relations to solutions in neutral signature. It will be in-
teresting to further investigate these intriguing relations between geometry,
thermodynamics and dualities.

(0,5) (1,4) (2,3)

(0,4) (1,3)

U(2) U(1,1)

Figure 4: This diagram summarises the relations be-
tween five-dimensional and four-dimensional vector mul-
tiplet theories with spacetime signature (t, s), that is, t
timelike and s spacelike dimensions [13]. The two four-
dimensional theories in a given signature differ by rela-
tive signs between terms in their Lagrangians. In Eu-
clidean signature, these signs can be changed by a suit-
able field redefinition, and the Euclidean theory is unique.
In Minkowski signature there are two non-isomorphic su-
persymmetry algebra which are distinguished by their R-
symmetry groups U(2) and U(1, 1), respectively. There-
fore the corresponding vector multiplets theories cannot
be related by a field redefinition.
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A Conventions

We use the same parametrization of conventional signs as in [38]. When
studying general relativity this involves three conventional sign choices si =
±1, i = 1, 2, 3. The first is the overall sign of the Minkowski metric

ηab = s1diag(−+++),

and decides whether we work with a “mostly-plus” or “mostly-minus” sig-
nature. The second sign choice comes from the definition of the Riemann
tensor:

Rµ
νρσ = s2(∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ) ,

and the third sign from the Einstein equations

s3

(

Rµν −
1

2
gµνR

)

= κ24Tµν ,

where it is understood that T00 is always positive (for normal matter). The
signs s2, s3 enter into the definitions of the Ricci tensor and Ricci scalar:

s2s3Rµν = Rρ
µρν , R = gµνRµν .

These three signs enter into a Lagrangian for gravity, vector and scalar fields
as:

L =

(

s1s3
R

2κ24
− s1

1

κ24
∂µφ∂

µφ− 1

4g2
FµνF

µν

)

.

The conventions used in a particular paper can usually be reconstructed
using that the kinetic terms are positive. This depends of cause on knowing
that the overall sign of the Lagrangian has been fixed accordingly, and that
we are not dealing with a non-standard theory with flipped kinetic terrms.
We also need to assume that the energy momentum Tensor is defined such
that T00 is positive and and therefore:

Tµν = −s1
2√−g

δ(Lm
√−g)

δgµν
,

where Lm is the matter contribution to the Lagrangian.
In this work we use the same sign conventions as in [10] which in turn

where taken over from [28]. This is a parametrization where the Einstein-
Hilbert and scalar term enter with a minus sign:

L =

(

− R

2κ24
− 1

κ24
∂µφ∂

µφ− 1

4g2
FµνF

µν

)

.

From this we can read off

s1 = 1, s3 = −1.
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Defining the Ricci tensor such that s2s3 = 1, consistency determines the
overall sign of the Riemann tensor as s2 = −1,

Rµ
νρσ = −(∂ρΓ

µ
νσ − ∂σΓ

µ
νρ + Γτ

νσΓ
µ
τρ − Γτ

νρΓ
µ
τσ).

It follows that Einstein’s equations are:

Rµν −
1

2
gµνR = −κ24Tµν .

Following these conventions through to the Euclidean action, we find
that these signs appear as:

S =
s1s3
2κ24

∫

M

√
gRd4x+

s1s
′
4ǫ

κ24

∫

∂M

√

|γ|Kd3x, (A.1)

where the fourth sign s′4, which arises from the definition of the second
fundamental form, is discussed in the next appendix. Note that s′4 is distinct
from s4 in [38], which is related to the spin connection. Since we only
consider bosonic fields, this sign is irrelevant for us. We also do not need to
fix the fifth parameter s5 of [38], which determines the overall sign of the
ε-tensor, because the numerical value of the ε-tensor is not relevant for our
calculations.

B Extrinsic curvature

A well-posed variational problem for the Einstein-Hilbert action requires
the inclusion of boundary terms which ‘live’ on the boundary ∂M = Σ,
the exception being when M is closed (compact, without boundary). For
spacetimes of infinite volume the boundary is defined as the limit of a family
of hypersurfaces; for example, the boundary of R4 can be defined as the
limit of a family of three-spheres S3

R of radius R, where R → ∞. In such
situations, the boundary terms must be added to the Einstein-Hilbert action
to deal with variations of field configurations which do not fall off fast at
infinity.

The boundary term involves the (trace of the) extrinsic curvature of
the boundary, regarded as an embedded submanifold. In this appendix we
review how the extrinsic curvature Kµν and its trace K can be computed.
We use a parameter ǫ = ±1 to encode whether the boundary Σ is timelike,
ǫ = −1 or spacelike, ǫ = 1. We denote the outer unit normal vector field of
Σ by n, so that g(n, n) = nµn

µ = ǫ.
The first fundamental form, γ, is constructed out of the spacetime metric

g and the unit normal n. This tensor is transversal to Σ, that is γ(N, ·) =
0 for all vectors N which are normal to Σ. When evaluated on vectors
tangent to Σ, the tensor γ agrees with the pull-back metric (ι∗g) on Σ
which is induced by the embedding ι : Σ → M . Its mixed components

51



γµν = δµν − ǫnµnν can be used to project tensors on M onto tensors on Σ.
For example, the projection of a vector X at a point p ∈ Σ onto a vector
X‖ tangent to Σ takes the form Xµ 7→ Xµ

‖ = γµνXν in local coordinates.
The second fundamental form K, or the extrinsic curvature tensor, mea-

sures the failure of a normal vector to remain normal to Σ under parallel
transport with the Levi-Civita connection ∇ of (M,g) along curves on Σ.
To define the second fundamental form, consider the parallel transport of a
normal vector N along a curve C on Σ. Then ∇XN = Xµ∇µX

ν = 0, where
X is the tangent vector field of C. If N remains a normal vector field to Σ
under parallel transport on Σ, then g(N,Y ) = 0 for all points on C and all
tangent vectors Y to Σ along C. In other words we can measure the failure
of N remaining normal to Σ by studying the variation

X · g(N,Y ) = Xµ∇µ(Y
νNν) = NνX

µ∇µY
ν

of g(N,Y ) along C. To define the extrinsic curvature, we use the normal
unit vector field n on Σ, which we can extend around each point p ∈ M
to a unit vector field on a neighbourhood in M . The extrinsic curvature is
defined, using the projections introduced above, by

K(X,Y ) = −s4nµ

(

∇X‖
Y‖

)µ
, (B.1)

for vector fields X,Y on M . It can be shown that this definition is indepen-
dent of how n is extended away from Σ. The overall sign of K is coventional.
In our work, we use that s4 = 1, but note that many other authors choose
s4 = −1 (see for example eq. (5) in [15]). Using that nρY

ρ
‖ = 0 we can

evaluate K(X,Y ):

K(X,Y ) = −nρX
σ
‖∇σY

ρ
‖ = Xσ

‖ Y
ρ
‖ ∇ρnσ = (γσµγ

ρ
ν∇ρnσ)X

µY ν = KµνX
µY ν .

(B.2)
This leads to the expressions

Kµν = γρµγ
σ
ν∇ρnσ = ∇µnν − ǫnρnµ∇ρnν = γρµ∇ρnν (B.3)

for the extrinsic curvature, where we used nρ∇µnρ = 1
2∇µ(n

ρnρ) = 0. The
boundary can locally be described as the level set of a function f . Then
Nµ = ∂µf is a normal vector field, and the corresponding unit normal vector
field nµ is hypersurface orthogonal and satisfies the Frobenus integrability
condition

n[µ∇νnρ] = 0 . (B.4)

Contracting this relation with nρ it is straightforward to obtain a relation
which allows to show that Kµν is symmetric, Kµν = Kνµ.

An alternative definition commonly used in the literature is [15]

Kµν =
1

2
Lnγµν , (B.5)
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where Ln is the Lie derivative with respect to n. We can verify that this
agrees with our definition by writing out the Lie derivative in terms of
covariant derivatives, and using γµν = gµν − ǫnµnν :

1

2
Lnγµν =

1

2
(nc∇ρ(gµν − ǫnµnν) + (gµρ − ǫnµnρ)∇νn

ρ + (gρσ − ǫnρnν)∇µn
ρ)

=
1

2
(∇µnν +∇νnµ − ǫnρ∇ρ(nµnν)) = ∇µnν − ǫnµn

ρ∇ρnν ,

were we used the contracted Frobenius integrability property of nµ. In our
calculations, we need the trace of the extrinsic curvature,

K = gµνKµν . (B.6)

The trace can be easily calculated from the expression

K = gµνKµν =
1

2
gµν(∇µnν +∇νnµ − ǫnρ∇ρ(nµnν))

=
1

2
(∇µn

µ +∇µnµ − ǫnρ∇ρ(g
µνnµ)nν) = ∇µn

µ .

(B.7)

We have defined the first and second fundamental form as transversal tensors
on M , that is as tensors which vanish when contracted with normal vectors
to Σ. Alternatively, they can be defined as tensors on Σ, see for example
[39]. The resulting expressions are related by

γmn = (ι∗g)mn = eµmeνnγµν (= eµmeνngµν) , Kmn = eµmeνnKµν ,

where the vector fields em = (eµm), m = 1, 2, 3 define an orthonormal coor-
dinate frame on Σ.

C Charges and Hodge dualisation

The thermodynamic formalism for the STU-model makes use of an electric-
magnetic duality frame where the magnetic charges PA, A = 1, 2, 3 have
been replaced by electric charges Q̃A, so that all charges excited in our
solution are electric. In this appendix we give some details of the dualization
procedure and derive the expressions for the charges used in the main part
of this article.

To explain the idea we use a theory with a single Abelian vector field
Aµ with field strength Fµν = ∂µAν −∂νAµ and a curved spacetime Maxwell
type action

S[A] =

∫
(

− 1

4g2
FµνF

µν

)

e d4x . (C.1)

For Maxwell theory g is a constant, but to cover the case of N = 2 vector
multiplets we promote g to background field which depends on the spacetime
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coordinates. This background coupling can be used as a proxy for the scalar
field dependent couplings IIJ , as we will see below. We promote the Bianchi
identity ǫµνρσ∂νFρσ = 0 to a field equation by introducing the Lagrange
multiplier vector field Ãµ:

S[F, Ã] =

∫
(

− 1

4g2
FµνF

µν − 1

2
εµνρσ∂µÃνFρσ

)

e d4x . (C.2)

Note that εµνρσ denotes the Levi-Civita tensor, not the permutation symbol
ǫµνρσ = eεµνρσ = δµνρσ0123 , which is a tensor density. This parametrization is
convenient because the metric determinant e appears as an overall factor.
While variation with respect to Ãµ imposes the Bianchi identity, variation
with respect to Fµν produces its algebraic equation of motion

1

g2
Fµν = −εµνρσ∂ρÃσ = −1

2
εµνρσF̃ρσ , (C.3)

where we defined the dual field strength tensor

F̃ρσ = ∂ρÃσ − ∂σÃρ . (C.4)

Substituting this back into (C.2) we obtain the dual action

S[Ã] =

∫
(

−g2

4
F̃µν F̃

µν

)

e d4x =

∫
(

− 1

4g̃2
F̃µν F̃

µν

)

e d4x , (C.5)

where we defined the dual coupling

g̃ =
1

g
. (C.6)

The relation between the dual and the orginal field strength is

F̃µν =
1

g2
⋆ Fµν , (C.7)

where

⋆ Fµν =
1

2
εµνρσF

ρσ =
1

2
eǫµνρσF

ρσ (C.8)

is the Hodge-dual field strength. Thus the duality exchanges electric and
magnetic fields and inverts the coupling. It also exchanges Euler-Lagrange
equations and Bianchi identities:

∂µ

(

e

g2
Fµν

)

= 0 ⇔ ǫµνρσ∂νF̃ρσ = 0 , (C.9)

ǫµνρσ∂νFρσ = 0 ⇔ ∂µ

(

e

g̃2
F̃µν

)

= 0 . (C.10)
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Note that we can write both field equations as Bianchi identities:

dF̃ = 0 , dF = 0 . (C.11)

This tells us how to define conserved charges. In a theory with field depen-
dent coupling g, the electric and magnetic charge are defined by

Q =
1

8π

∫

X
F̃ =

1

8π

∫

X

1

g2
⋆ F , P =

1

8π

∫

X
F , (C.12)

where we have chosen the normalization to be same as in the main part of the
paper. For Maxwell theory, where g = const, the electric charge is given by
integral of the Hodge-dual two-form ⋆F , leading to the standard expression
for the Maxwell electric charge. For point-like charges the two-surface X has
the topology of a sphere. For solutions with planar symmetry, we take X
to be a plane. The resulting integral is divergent, but defines a finite charge
(density) upon formally dividing by the volume of X, or by compactifying
X into a two-torus. The equations of motions and Bianchi identities, which
are valid outside charges, tell us that both F and F̃ are closed. This allows
one to deform the integration surfaces X continuously, as long as one avoids
moving them through the charges, which for our solutions are located at the
singularities. Often it is convenient to evaluate the charges in a limit where
X is pushed to infinity, and this is in particular how charges are computed
in the main part of this paper.

The dualization procedure can be used to replace magnetic charges by
electric charges. This can be convenient since in a fixed duality frame electric
charges are Noether charges and can couple minimally to the gauge field,
whereas magnetic charges are topological and do not have local couplings
to the gauge field. For black hole thermodynamics we find it convenient to
replace magnetic charges by electric charges in the main part of the paper.
The dual charges are found by replacing F by F̃ . Using that

˜̃F =
1

g̃2
⋆ F̃ =

1

g̃2g2
⋆ ⋆F = −F ,

we find

Q̃ =
1

8π

∫

X

˜̃F = − 1

8π

∫

X
F = −P , (C.13)

P̃ =
1

8π

∫

X
F̃ = Q . (C.14)

Note that the transformation (Q,P) → (−P,Q) is symplectic.
The relation between the Einstein-Maxwell theory and the Einstein-anti-

Maxwell theory where the sign of the Maxwell term has been flipped, can
be interpreted as an analytic continuation of the coupling: g → ig, g−2 →
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−g−2. From (C.12) it is clear that this flips the signs of electric charges,
Q → −Q. The same conclusion is reached when including electric sources
and defining the electric charge using Gauss law,

Q = − 1

8π

∫

Σ
⋆j,

where Σ is a hypersurface such that X = ∂Σ, and where jµ is the charge
density. Maxwell’s equations relate the gauge field to the charge density:

d

(

1

g2
⋆ F

)

= − ⋆ j.

Integrating over a hypersurface Σ and applying the Gauss-Stokes theorem
we obtain:

Q =
1

8π

∫

Σ
d

(

1

g2
⋆ F

)

=
1

8π

∫

∂Σ

1

g2
⋆ F.

As we consider sources as external, the analytical continuation of the
coupling g changes the sign of Q.

Electric-magnetic duality can be extended to theories with multiplet vec-
tor fields, including N = 2 vector multiplets with bosonic Lagrangian (5.1).
In these theories electric-magnetic duality becomes part of a larger group
of symplectic transformations, which acts continuously on gauge fields, but
is broken to a discrete subgroup once charge quantization is taken into ac-
count. We refer to [40] for a general discussion. In this paper we consider
the STU-model, and for our solutions we only need the consistent truncation
where the coupling matrices are restricted by RIJ = 0. Since the remaining
coupling matrix IIJ is diagonal, the vector field part of the Lagrangian (5.1)
reduces to

e−1
4 L = +

1

4κ24

(

I00F 0
µνF

0|µν +

3
∑

A=1

IAAF
A
µνF

A|µν

)

+ · · · (C.15)

This amounts to four copies of the type of vector field Lagrangian we have
considered before. Our solution carries charges (Q0,PA), which we can map
to the purely electric charges (Q0, Q̃A), where Q̃A = −PA.

For reference we bring the expressions for the charges to the form used
for explicit computations in the main part of the paper:

Q0 =
1

8π

∫

X
F̃0 =

1

8π

∫

X
⋆
(

−I00F 0
)

, (C.16)

Q̃A = −PA = − 1

8π

∫

X
FA =

1

8π

∫

X
⋆
(

−IAAF̃A

)

. (C.17)
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D Kruskal extensions and classification of trapping horizons

In this section, we perform Kruskal-like coordinate transformations which
allow us to construct the maximal analytic extensions of all metrics con-
sidered within this paper. This allows us to understand their global causal
structure and to identify the type of all horizons using the classification of
trapping horizons reviewed in Section 2.4. Solutions fall into two categories,
which are distinguished by the causal relation between their interior and ex-
terior regions. For all solutions, we call regions exterior if transverse/radial
null geodesics reach a horizon in one direction, but can be extended to
infinite affine parameter in the other direction. In terms of our standard
transverse/radial coordinate, the asymptotic region is at r → ∞. In con-
trast, regions are called interior regions if transverse/radial null geodesics
terminate at a curvature singularity in one direction and reach a horizon in
the other. We refer to solutions with a static exterior region as black hole

solutions, and those with a time-dependent exteriors as cosmological solu-

tions. When using the Kodama-Hayward method [22, 19] for computing
the surface gravity, it is positive for black hole solutions, but negative for
cosmological solutions.

The static line elements considered in the main part are used to define
ingoing and outgoing null geodesics and to fix the global time orientation of
the maximally extended spacetime. This is important since the extension
contains two isometric static regions, where the line element takes same form
in terms of coordinates t, r, but where the timelike Killing vector field ∂t is
future-directed in one region, but past-directed in the other (where future-
directed is defined globally by picking one of the patches to fix the time
orientation). Starting from a ‘standard static patch,’ which fixes the defi-
nition of ingoing/outgoing and determines the direction of time, we define
Kruskal coordinates and obtain a maximally extended spacetime contain-
ing three additional regions. By computing the expansions of null geodesic
congruences for each regions, we can identify the types of the horizons sep-
arating them. For thermodynamics we consider future horizons, where the
exterior region can causally influence the interior, but not vice versa. The
horizons between such regions are future outer horizons for black hole solu-
tions and future inner horizons for cosmological solutions. For the thermo-
dynamic formalism based on the Euclidean action that we use in the main
part, we assume that temperature and surface gravity are related according
to [20, 21], that is they are proportional. Then black holes have positive
temperature, while (contracting) cosmologies have negative temperature.

57



X+X−

r
=

∞

r
=

∞
r = 0

r = 0

t =
∞

t = −∞

(a) Black hole solutions
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Figure 5: Kruskal diagrams for black hole and cosmolog-
ical solutions. Surfaces of constant r are hyperbola and
surfaces of constant t are straight lines. Also included are
the ingoing (blue) and outgoing (red) null geodesics which
are future-pointing.

D.1 Black hole solutions

For the following discussion, we will be considering solutions with a line
element given by

ds2 = −f(r)dt2 + f(r)−1dr2 + r2d ~X2 , (D.1)

where d ~X2 = dΩ2 for spherically symmetric solutions, and d ~X2 = dx2+dy2

for planar symmetric solutions. The function f(r) is assumed to have a
simple zero at r = rh > 0, and to be positive in the exterior region rh <
r < ∞, −∞ < t < ∞. This implies that the surface gravity of the horizon
is positive:

κ =
1

2
∂rf(r)

∣

∣

∣

∣

r=rh

> 0.

The solution is static in the exterior region, but the Killing vector field
∂t becomes spacelike for r < rh. This situation is known from the event
horizons of black holes. The two explicit choices for f that are relevant for
us are

1. The Schwarzschild solution

f(r) = 1− 2M

r
, κ =

1

4M
.
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Figure 6: Comparison of the Kruskal diagrams for black
hole and cosmological solutions. Shaded regions corre-
spond to the interior regions, curved lines show the di-
rection of the Killing vector field in the static patches of
the spacetime.

2. The planar anti-Einstein-Maxwell solution

f(r) =
2M

r
− q2

r2
, κ =

4M3

q4
.

While we do not explicitly work with the Schwarzschild solution in this
paper, we include it so that one compare computations with the well-known
results [18]. For the remainder of the discussion, we will keep f(r) general
and sometimes use its Taylor expansion near the horizon:

f(r) = 2κ(r − rh) +O((r − rh)
2) . (D.2)

D.1.1 Defining Kruskal coordinates

As a first step to extending the solution beyond the horizon17 we replace
the transversal/radial coordinate r by the tortoise coordinate

r⋆ =

∫

f(r)−1dr, −∞ < r⋆ < ∞ .

17It will turn out that the naive extension of the line element to r < rh covers part of the
maximal extension. This is of course well known for standard solutions, such as Schwarzschild.
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Then we can define the future-pointing null coordinates

x+ = t+ r⋆, x− = t− r⋆, −∞ < x± < ∞.

In these coordinates, the metric is given by

ds2 = −f(r)dx+dx− + r2d ~X2,

where we have used that

dx+ = dt+ f(r)−1dr, dx− = dt− f(r)−1dr .

It is understood that r is now a function of x±, which we only need to define
implicitly,

r = r[r⋆(x+, x−)] .

Outgoing null congruences consist of null rays with x− = constant and
propagate in the positive x+ direction, while ingoing null congruences are
defined by x+ = constant and move in the positive x− direction.

To extend our solution, we define Kruskal coordinates by

X− = −e−x−κ, −∞ < X− < 0 ⇔ −∞ < x− < ∞ ,

X+ = +ex+κ, 0 < X+ < ∞ ⇔ −∞ < x+ < ∞.

The Kruskal extension is obtained by dropping the constraintsX− < 0,X+ >
0, resulting in the four regions of Figure 6. In order for this extension to be
well defined, we must make sure that the metric is non-degenerate at the
horzions r = rh, where f(r) has its zero. It is for this purpose that factors
of the surface gravity κ have been included in the definition of X±.

The line element in Kruskal coordinates is given by

ds2 = − 1

κ2
f(r)e−2κr⋆dX+dX− + r2d ~X2 , (D.3)

where r(X+,X−) is determined implicitly by

X+X− = −e2κr⋆ .

We can also implicitly define the coordinate t(X+,X−) from

X+

X−
= −e2κt ,

To show that (D.3) is regular on the horizon, we look at the Taylor expansion
(D.2), and integrate to obtain r⋆,

−2κr⋆ =

∫
(

− 2κ

2κ(r − rh)
+O(r − rh)

)

dr = − log(r − rh) +O((r − rh)
2).
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We see that the zeros are cancelled,

−f(r)e−2κr⋆ = −2κ(r − rh)e
− log(r−rh) = −2κ+O((r − rh)

2),

and thus, on the horizon we find the line element

ds2 = −2

κ
dX+dX− + r2hdΩ

2.

As a result, one can consider the metric (D.3) with the coordinates extended
to

−∞ < X± < ∞ ,

subject to the constraint that r(X+,X−) > 0. This produces the four
regions of the diagram in Figure 6.

With our choice of signs in (D.3), the static region we started with is
identified with region I. The Kruskal extension contains a second static
region, region IV. In Region IV the null Kruskal coordinates take values
X− > 0 and X+ < 0. One can introduce null coordinates x± by

X− = +e−x−κ, 0 < X− < ∞ ↔ ∞ > x− > −∞ .

X+ = −ex+κ, −∞ < X+ < 0 ↔ ∞ > x+ > −∞ .

Observe that x+, x− are directed opposite to X+,X− in Region IV. If we
go back from x±, to t, r⋆ and further to t, r, using the same relations as
in Region I, the metric assumes the same local form (D.3) as in Region I.
But globally, there is a difference compared to Region I, as t, r point the
opposite way: t downwards, r leftwards. As a result, ingoing lightfronts
move in positive X+ = negative x+ direction. Outgoing lightfronts move in
the positive X− = negative x− direction. The association of X−,X+ with
in/out-moving lightfronts is reversed compared to Region I.

The global spacetime is time-orientable and time-reversal symmetric.
We should not conclude that time is flowing backwards in Region IV. If
we choose a global time orientation that points in the same direction as t
in Region I, then physical time in Region IV is measured by −t. We refer
to Region I as the ‘standard’ static region, and the definition of Kruskal
coordinates as the ‘standard embedding’ of the static region into its Kruskal
extension.

D.1.2 Calculation of expansions

With the global causal structure understood, we are now in a position to
write down future-directed ingoing and outgoing null geodesics and then
calculate their expansions. Before this, we perform some intermediate cal-
culations.
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Figure 7: Flow of coordinates in the static regions of the
Kruskal diagram for black hole solutions. The red arrow
denotes future directed outgoing null geodesics, the blue
arrow denotes future directed ingoing null geodesics

For X± in region I, we can calculate dr from

X+dX− +X−dX+ = −2κe2κr⋆dr⋆ = 2κX+X−dr⋆ ,

which allows us to write

dr =
f(r)

X+X−

1

2κ
(X+dX− +X−dX+) . (D.4)

Similarly, we can write down

dt = − 1

X+X−

1

2κ
(X+dX− −X−dX+) .

In the original coordinates, the Killing vector field is given by ξ = ∂
∂t , and

using the metric tensor we can write down the co-vector ξ♭ = −f(r)dt.18

Using the results from above, we can rewrite the Killing co-vector field in
terms of our new Kruskal-like coordinates

ξ♭ = −f(r)dt =
f(r)

X+X−

1

2κ
(X+dX− −X−dX+) .

The corresponding vector field is

ξ = κ

(

−X−
∂

∂X−
+X+

∂

∂X+

)

.

18We use ‘musical’ notation to distinguish between vectors and the corresponding co-vectors
(one-forms).
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To calculate the expansions we choose the following normal null co-vector
fields for our two null congruences:

N ♭
+ = −1

κ
dX−, N ♭

− = −1

κ
dX+ (D.5)

or, as vector fields,

N+ = −2κ
X+X−

f(r)

(

∂

∂X+

)

, N− = −2κ
X+X−

f(r)

(

∂

∂X−

)

.

The normalisation and overall sign has been set in (D.5) such that

ξ ·N+ = X−, ξ ·N− = −X+ ,

which ensure that the normal null vectors N± are future directed, ξ ·N± < 0,
in region I where the Killing vector flows in the direction of global time.
Their expansions are calculated

θ± = ∇µN
µ
± =

1√−g
∂µ
(√−gNµ

±

)

,
√−g = −f(r)

√
h

X+X−

r2

2κ2
,

where we use that h = det
(

d ~X2
)

for either the two-sphere or the two-plane

depending on the symmetry of the solution. This results in

θ± = −4κ

r

X+X−

f(r)

∂r

∂X±
.

To calculate the sign, we use (D.4) to find that

∂r

∂X±
=

f(r)

X+X−

X∓

2κ
,

which gives the result

θ+ = −2X−

r
, θ− = −2X+

r
.

Thus the expansions change signs across horizons, and the resulting pattern
already completely determines the nature of each horizon. For complete-
ness, we calculate the Lie derivatives of expansions vanishing at the hori-
zon, though we stress that their signs are completely determined by the sign
change of the corresponding expansion. We find that

LN−θ+ = −2κ
X+X−

f(r)
∂−

(

−2X−

r

)

=
4κ

r

(

X+X−

f(r)

)

− 2X+X−

r2
,

which evaluated on the horizon, gives

LN−θ+

∣

∣

∣

∣

r=rh

=
4κ

rh
·
(

− 1

2κ

)

= − 2

rh
.
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By symmetry, we can see that

LN+
θ−

∣

∣

∣

∣

r=rh

= − 2

rh
.

We can now look at the two horizons in region I, where we have X− < 0
and X+ > 0. For the horizon given by X+ = 0, we have:

θ+ > 0, θ− = 0, LN+
θ− < 0 ,

which is a past outer horizon. For the horizon set by X− = 0, we have that

θ+ = 0, θ− < 0, LN−θ+ < 0 ,

which is a future outer horizon.
Since the causal and expansion properties of the Kruskal diagram do

not depend on details of the function f , the interpretation is the same as
for the Kruskal-Schwarzschild solution, for all members of this class. The
future outer horizon is the event horizon of a black hole, and the past outer
horizon is the horizon for the white hole region. For thermodynamics we
use the horizon where causal geodesic cross from the exterior to the interior,
which is the future outer horizon between Regions I and II. This horizon
has positive temperature, TH ∝ κ > 0.

X+X−

θ+ > 0

θ− < 0

θ+ < 0

θ− > 0

θ+ < 0

θ− < 0

θ+ > 0

θ− > 0

θ+ = 0 θ− = 0

x+

x−

Figure 8: Signs of the expansions θ± in the four quadrants
of the Kruskal diagram for a our black hole solutions for
which κ > 0.
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D.2 Cosmological solutions

We now turn our attention to the cosmological solutions in this paper. The
line element takes the same form

ds2 = −f(r)dt2 + f(r)−1dr2 + r2d ~X2

as before, but now f(r) is positive for rsing < r < rh, where rsing is the posi-
tion of the singularity. The metric is static in this region, so that compared
to the previous class the roles of exterior and interior are exchanged, that
is, the interior region is static. We assume that f(r) has a simple zero and
therefore changes sign at r = rh. Since the Killing vector field ∂t becomes
spacelike for r > rh, the outside region is dynamical. We assume that f(r)
is negative for rh < r < ∞, with r → ∞ at infinite distance. Thus the
horizon at r = rh is a cosmological horizon. Under the conditions we have
imposed on f the surface gravity is negative

κ =
1

2
∂rf(r)

∣

∣

∣

∣

r=rh

< 0.

Explicit choices for f(r), which we consider in this paper, are

1. De Sitter solution

f(r) = 1− r2

L2
, κ = − 1

L
.

2. Planar Einstein-Maxwell solution

f(r) =

(

−2M

r
+

q2

r2

)

, κ = −4M3

q4
.

3. Planar STU solution

f(r) =
1− αr

2
√H0H1H2H3

, Ha = βa+γar, κ = −α3

4

√
γ0γ1γ2γ3

Q0P 1P 2P 3
.

For the remainder of the discussion, we will keep f(r) general and sometimes
use its Taylor expansion near the horizon:

f(r) = 2κ(r − rh) +O((r − rh)
2) .

D.2.1 Defining Kruskal coordinates

As in the black hole case we start by defining a Tortoise coordinate

r⋆ =

∫

f(r)−1dr, 0 < r⋆ < ∞ .
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Then we introduce future-pointing null coordinates

x+ = t+ r⋆, x− = t− r⋆, −∞ < x± < ∞ , r(x+, x−) > rsing .

The line element takes the form

ds2 = −f(r)dx+dx− + r2d ~X2 ,

where r is an implicitly defined function of x±. Note that x+ is future- and
outward-pointing while x− is future- and inward-pointing in the interior
region. This is the same assignment as in black hole solutions considered
previously. With coordinates fixed in this way, we can clearly see what
is the difference compared to the static patch of the black hole solutions.
Since r points in the opposite direction, the roles of interior and exterior
are exchanged, where interior means r < rh. While x+ points outwards
in both cases, it points away form the horizon for the black hole solutions,
but towards the horizon for the cosmological ones. This makes it natural to
define Kruskal coordinates such that the standard static region, which we
use to fix the overall time orientation, is Region IV, rather than Region I.

We start with the static line element, rewritten using null coordinates
x±, where x+ is future-pointing and outward-pointing, while x− is future-
pointing and inward-pointing, relative to the local coordinates t, r. This
fixes the definitions of the expansion θ±, and the direction of physical time.
Next, we define global null Kruskal coordinates X± such that they point in
the same direction as x±.

X+ = −eκx+ −∞ < X+ < 0 ⇔ −∞ < x+ < ∞ .

X− = e−κx− 0 < X− < ∞ ⇔ −∞ < x− < ∞ ,

where the factors of the surface gravity have been included to make manifest
that the metric is regular at r = rh where f(r) has its zero. We have also
used that κ < 0. The standard static patch is Region IV, and it is illustrative
to compare the black hole case and the cosmological case in Figures 5 and
6.

The line element in Kruskal coordinates is given by

ds2 = −f(r)e−2κr⋆

κ2
dX+dX− + r2d ~X2 .

We can show this is regular on the horizon using the same method as pre-
viously. By expanding at the horizon, we find

−2κr⋆ =

∫
(

− 2κ

2κ(r − rh)
+O(r − rh)

)

dr = − log(rh − r) +O((r− rh)
2) ,

where we note that the log(rh − r) is different from the black hole case, as
in the static patch we have r < rh. Putting this together, we obtain

−f(r)e−2κr⋆ = −2κ(r − rh)e
− log(rh−r) = 2κ+O((r − rh)

2) ,
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such that on the horizon, the line element is given by

ds2 =
2

κ
dX+dX− + r2hd

~X2 .

We see that we can extend the Kruskal null coordinates such that

−∞ < X± < ∞ ,

subject to the constraint that r(X+,X−) > rsing, where we implicitly write

X+X− = −e2κr⋆ ,
X+

X−
= −e2κt .

The direction of various coordinates in the respective regions is shown in
Figure 9.

X− X+

t

r

t

r

x−

x+

x+

x−

Figure 9: Flow of coordinates in the static regions of the
Kruskal diagram for cosmological solutions. The red arrow
denotes future directed outgoing null geodesics, the blue
arrow denotes future directed ingoing null geodesics

D.2.2 Calculating the expansions

As before, we precalculate a few useful relations for our calculations, which
we find are identical to the results for the black hole solutions, namely

dr =
f(r)

X+X−

1

2κ
(X+dX− +X−dX+) ,

dt = − 1

X+X−

1

2κ
(X+dX− −X−dX+) .
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Again as in the calculation for black hole solutions, we start with the
Killing vector field in our original coordinates: ξ = ∂

∂t . Using the metric

tensor write down the co-vector field ξ♭ = −f(r)dt, which we can rewrite
with the results above to write down the Killing co-vector field in terms of
the Kruskal-like coordinates

ξ♭ = −f(r)dt =
f(r)

X+X−

1

2κ
(X+dX− −X−dX+) ,

which the corresponding vector given by

ξ = κ

(

−X−
∂

∂X−
+X+

∂

∂X+

)

.

We now write down the geodesics which are future-pointing within region
IV, where the normalisation of the co-vectors is handpicked to ensure this
property:

N ♭
+ =

1

κ
dX−, N ♭

− =
1

κ
dX+ , (D.6)

or as vectors

N+ = 2κ
X+X−

f(r)

(

∂

∂X+

)

, N− = 2κ
X+X−

f(r)

(

∂

∂X−

)

.

Double checking that the normals are future-pointing, we look at the inner
product of these with the Killing vector field

ξ ·N+ = −X−, ξ ·N− = X+ ,

which we see obeys ξ ·N± < 0 in region IV. The expansions are calculated
in the same manner, and we find that the relative sign imposed in the
normalisation by considering region IV, rather than region I introduces a
relative sign in the expansions compared to the black hole case,

θ+ =
2X−

r
, θ− =

2X+

r
.

While this already determines the types of all horizons, we also calculate
the Lie derivative at the horizon explicitly. We find that

LN−θ+ = 2κ
X+X−

f(r)
∂−

(

2X−

r

)

=
4κ

r

(

X+X−

f(r)

)

− 2X+X−

r2
,

and on the horizon, we find

LN−θ+

∣

∣

∣

∣

r=rh

=
4κ

rh
· 1

2κ
=

2

rh
, LN+

θ−

∣

∣

∣

∣

r=rh

=
2

rh
.
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Let us look at the left part of the Kruskal diagram that is regions III, IV
and II. The physics of the sequence III, I, IV is equivalent, but parametrized
differently since ∂t is past-pointing in region I. In region IV of the Kruskal
diagram, we have X− > 0 and X+ < 0. On the horizon given by X+ = 0,
we have:

θ+ > 0, θ− = 0, LN+
θ− > 0

which shows that this is a past inner horizon. For the horizon set byX− = 0,
we have that

θ+ = 0, θ− < 0, LN−θ+ > 0

which is a future inner horizon. The expansions for all four regions is illus-
trated in Figure 10.

X+X−

θ+ < 0

θ− > 0

θ+ > 0

θ− < 0

θ+ > 0

θ− > 0

θ+ < 0

θ− < 0

θ+ = 0 θ− = 0

x−

x+

Figure 10: Signs of the expansions θ± in the four quadrants
of the Kruskal diagram for a cosmological solution where
κ < 0.

When considering future-directed causal geodesics which pass through a
horizon from the exterior to the interior, we must consider the future inner
horizon between region III and region IV. For a future inner horizon, we
have that TH ∝ κ < 0, which aligns with the signs of the temperatures we
consider throughout this paper while employing the triple Wick rotation for
our cosmological solutions. Overall the sequence III, IV (or I), II, describes
a cosmic bounce, since the solution is a contracting cosmology in III and an
expanding cosmology in II. We expand on the global interpretation of the
cosmological solution in D.4.
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D.3 Eddington-Finkelstein coordinates

For completeness we also derive expressions for advanced and retarded
Eddington-Finkelstein coordinates. We start with the line element

ds2 = −f(r)dt2 + f(r)−1dr2 + r2d ~X2 , (D.7)

where we assume that there is some interval for r such that f(r) > 0, so
that the line element is static, with Killing vector field ∂t. We also assume
that f(r) has a simple zero at r = rh, so that there is a second region where
the Killing vector field becomes spacelike. At this point we do not specify
whether the static region is r > rh or r < rh, so that we can cover black
holes and cosmological solutions simultaneously.

We first define advanced Eddington Finkelstein coordinates (x+, r, . . .),
where we omitted two further coordinates, which are θ, φ for spherical and
x, y for planar symmetry. The null coordinate x+ is defined as before,

dx+ = dt+ f(r)−1dr = dt+ dr⋆ . (D.8)

The line element takes the form

ds2 = −f(r)dx2+ + 2dx+dr + r2d ~X2 , (D.9)

which is manifestly regular at r = rh, so that we can cover both the
static and the non-static domain. Now we consider radial/transversal null
geodesics, which must satisfy

0 = −f(r)dx2+ + 2dx+dr ⇒ dx+ = 0 or
dr

dx+
=

f

2
. (D.10)

Using λ = x+ as an affine parameter, the normal vector field for the second
null congruence is

U+ =

(

dxµ

dλ

)

= (U+
+ , U r

+, . . .) =

(

1,
f

2
, . . .

)

. (D.11)

The corresponding co-vector has the form19

U ♭
+ = (U+|+, U+|r, . . .) =

(

−f

2
, 1, 0, 0

)

. (D.12)

The normal vector field U− for the congruence dx+ = 0 is a constant
vector field. We normalize it such that U+ · U− = −2:

U− = (U+
− , U r

−, . . .) = (0,−2, . . .) , U ♭
− = (U−|+, U−|r, . . .) = (−2, 0, . . .) .

(D.13)

19We note here that the normal vector fields U± differs in their overall normalisation from
N± defined in the previous section (D.6). The normalisation has been chosen to avoid carrying
around an irrelevant numerical factor.
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Both U± can be checked to be future-pointing. We could now proceed and
compute the expansions θ± but one nice feature of Eddington-Finkelstein
coordinates is that they allow one to ‘visualize’ the expansion properties of
geodesics, and the causal structure. To do this we introduce the advanced
time coordinate

t̄ := x+ − r = t+ r⋆ − r ⇔ x+ = t̄+ r = t+ r⋆ , (D.14)

and transform the null congruences U± from coordinates (x+, r, , . . .) to co-
ordinates t̄, r, . . .). The result is

(U t̄
+, U

r
+, . . .) =

(

1− f

2
,
f

2
, . . .

)

,

(U t̄
−, U

r
−, . . .) = (2,−2, . . .) .

Now it is manifest that U− is future and inward-pointing for all r, while U+

is future-pointing, but will switch between outward-pointing and inward-
pointing at r = rh. Further details depend on whether f is positive for
r > rh or for r < rh. Since the black hole case r > rh is familiar, we focus
on the cosmological case, r < rh. Then U+ is pointing outwards on the
inside r < rh, but pointing inwards on the outside r > rh. At the horizon,
r = rh, U+ points ‘upwards’, that is light rays are stuck at the horizon.
Drawing the lightcones associated with U± we see that future-pointing null
and timelike geodesics can cross from the outside to the inside, but not the
other way. This shows that r < rh corresponds to the standard static region
IV in the cosmological Kruskal diagram, while r > rh corresponds to region
III (and not to region II). In particular, the limit r → ∞ corresponds to
past timelike infinity and the coordinate r is timelike and past-pointing for
r > rh.

Outside the horizons r = rh we can use the expression (D.7) in all regions
of the Kruskal diagram. In the main part of the paper our convention is
to relabel coordinates r ↔ t in non-static patches, so that the timelike
coordinate is always denoted t. We also multiply f by a minus sign in non-
static regions, so that f remains positive. Let us here be more explicit and
define f̃(x) = −f(x). If we extend our solution from the static region IV to
the non-static region III, then t → ∞ corresponds to past timelike infinity,
and t is past-pointing. If we prefer to use a time coordinate in region III
which is future pointing, we should relabel t → −t, so that the line element
in region III is20

ds2 = − dt2

f̃(−t)
+ f̃(−t)dr2 + t2d ~X2 , −∞ < t < −rh . (D.15)

20Note that f and f̃ are, in general, not even functions.
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Let us now briefly discuss retarded Eddington-Finkelstein coordinates
(x−, r, . . .), where, in the static patch, we replace t by the ingoing future-
pointing null coordinate x−,

dx− = dt− f(r)−1dr = dt− dr⋆ . (D.16)

The line element is

ds2 = −f(r)dx2− − 2dx−dr + r2d ~X2 (D.17)

with radial/transversal null geodesics

dx− = 0 ,
dr

dx−
= −1

2
f(r) . (D.18)

The future-pointing null normal vector fields of the null congruences are

U+ = (U−
+ , U r

+, . . .) = (0, 2, . . .) , (D.19)

U− = (U−
− , U r

−, . . .) =

(

1,−f

2
, . . .

)

, (D.20)

which satisfy U+ ·U− = −2. Introducing the new ‘retarded’ time coordinate
t̄ = x− + r, and transforming from coordinates (x−, r, . . .) to coordinates
(t̄, r, . . .) they transform into

U+ = (U t̄
+, U

r
+, . . .) = (2, 2, . . .) , (D.21)

U− = (U t̄
−, U

r
−, . . .) =

(

1− f

2
,−f

2
, . . .

)

. (D.22)

This shows that U+ is future and outward-pointing for all r while U− is
future-pointing but changes between pointing inwards and pointing out-
wards at r = rh. For black holes, where f > 0 for r > rh, this provides the
extension into the white hole part of the Kruskal extension (region III). For
cosmological solutions we see that U− is pointing inwards for r < rh, which
we identify with the standard static region IV, and outwards for r > rh.
Future-pointing null and timelike geodesics can only cross from the inside
to the outside, which shows that the outside region is region II in the cosmo-
logical Kruskal diagram. Relabeling coordinates r ↔ t, the metric in region
II is

ds2 = − dt2

f̃(t)
+ f̃(t)dr2 + t2d ~X2 , rh < t < ∞ , (D.23)

where t is a future-pointing timelike coordinate, and where t → ∞ corre-
sponds to future timelike infinity. Comparing to (D.15) we see that the
regions II and III are related by time reflection.
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D.4 Asymptotic limits of planar Reissner-Nordström-like solu-
tions

Evaluating (D.23) for the planar Reissner-Nordström solution in the asymp-
totic limit t → ∞ we obtain

ds2II,(+∞) = − t

2M
dt2 +

2M

t
dr2 + t2d ~X2 , (D.24)

which is the ‘positive mass’ version of the planar (type D) A-III vacuum
solution of pure Einstein gravity.21 Introducing a new time coordinate t ∝
τ2/3 and absorbing numerical factors by rescaling r, x, y this becomes

ds2II,(+∞) = −dτ2 + τ−2/3dr2 + τ4/3d ~X2 , (D.25)

which belongs to the class of type D Kasner solutions. These are the simplest
homogeneous but anisotropic vacuum cosmological solution of pure Einstein
gravity. The A-III/Kasner solution is defined for 0 < t, τ < ∞ and describes
a universe starting in a big bang at t = τ = 0 and then expanding in the
(x, y)-directions while contracting in the transverse direction r. Its time-
reversed version, which is the asymptotic solution for Region III,

ds2III,(−∞) =
t

2M
dt2 − 2M

t
dr2 + t2d ~X2 , −∞ < t < 0 , (D.26)

= −dτ2 + τ−2/3dr2 + τ4/3d ~X2 , −∞ < τ < 0 ,(D.27)

describes a universe which contracts in the (x, y) directions, expands transver-
sally, and end in a big crunch at t = τ = 0. The planar Reissner-Nordström
solution that has been obtained by adding non-trivial Maxwell fields de-
scribes a bouncing cosmology which interpolates between a contracting and
an expanding Kasner cosmology. This removes the spacelike big crunch and
big bang singularities at t = τ = 0 and replaces them by an intermedi-
ate region containing two timelike singularities which are shielded behind
event horizons. These singularities can be interpreted as sources, and by
embedding Einstein-Maxwell theory into the STU-supergravity and subse-
quently into string theory, these source can be identified as certain brane
configurations [10].

The asymptotic solution in Regions I and IV for the planar solution of
the Einstein-anti-Maxwell theory is the ‘negative mass’ , static version of
the planar (type D) A-III vacuum solution of pure Einstein gravity, which
was first described by Taub [31]. It was interpreted as the geometry out-
side an infinite static plane or domain wall, but the observation that neutral
particles are repelled indicated a negative mass and made the physical inter-
pretation problematic. In the planar solution to the Einstein-anti-Maxwell

21See [41] for background and original literature.
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theory the naked timelike singularity is replaced by a spacelike singularity
shielded by a horizon, so that the deformed solution describes a planar black
hole. The negative mass issue becomes clearer in this description, since it is
related to the negative kinetic energy of the Maxwell field in this flipped sign
version of Einstein-Maxwell theory. It is an interesting question whether the
embedding of this theory into type-II* string theory will allow one to give
a viable physical interpretation of this solution.

E Grand canonical ensemble (with fixed volume)

In textbook thermodynamics, the internal energy E (often denoted U) in
the grand canonical ensemble depends on the extensive variables entropy
S, volume V and particle number N . In relativistic thermodynamics the
particle number is not conserved, and therefore it is replaced by conserved
charges. Let us consider the case of a single conserved charge Q. We take
the volume (which in black hole thermodynamics corresponds to angular
momentum, or for planar solutions, linear momentum) to be fixed, so that
the internal energy only depends on entropy and charge, E = E(S,Q). The
free energy F (T,Q) = E−TS and the grand potential Ω(T, µ) = E−TS−
µQ are related to E(S,Q) by Legendre transformations which exchange the
extensive variables S,Q with the intensive variables temperature T = 1/β
and chemical potential µ. Various partial derivatives can be read off from
the total differentials

dE = TdS + µdQ , dF = −SdT + µdQ , dΩ = −SdT −Qdµ . (E.1)

In particular, we obtain the following relations used in the main text:

Q = −∂Ω

∂µ
, µ =

∂F

∂Q , β =
1

T
=

∂S

∂E
, S = −∂F

∂T
= β2 ∂F

∂β

and
∂(βF )

∂β
= F + TS = E .
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